aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/s-taprop-vxworks.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/s-taprop-vxworks.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/s-taprop-vxworks.adb1401
1 files changed, 0 insertions, 1401 deletions
diff --git a/gcc-4.4.3/gcc/ada/s-taprop-vxworks.adb b/gcc-4.4.3/gcc/ada/s-taprop-vxworks.adb
deleted file mode 100644
index 40ded21b2..000000000
--- a/gcc-4.4.3/gcc/ada/s-taprop-vxworks.adb
+++ /dev/null
@@ -1,1401 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
--- --
--- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
--- --
--- GNARL is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNARL was developed by the GNARL team at Florida State University. --
--- Extensive contributions were provided by Ada Core Technologies, Inc. --
--- --
-------------------------------------------------------------------------------
-
--- This is the VxWorks version of this package
-
--- This package contains all the GNULL primitives that interface directly with
--- the underlying OS.
-
-pragma Polling (Off);
--- Turn off polling, we do not want ATC polling to take place during tasking
--- operations. It causes infinite loops and other problems.
-
-with Ada.Unchecked_Conversion;
-with Ada.Unchecked_Deallocation;
-
-with Interfaces.C;
-
-with System.Tasking.Debug;
-with System.Interrupt_Management;
-
-with System.Soft_Links;
--- We use System.Soft_Links instead of System.Tasking.Initialization
--- because the later is a higher level package that we shouldn't depend
--- on. For example when using the restricted run time, it is replaced by
--- System.Tasking.Restricted.Stages.
-
-with System.VxWorks.Ext;
-
-package body System.Task_Primitives.Operations is
-
- package SSL renames System.Soft_Links;
-
- use System.Tasking.Debug;
- use System.Tasking;
- use System.OS_Interface;
- use System.Parameters;
- use type System.VxWorks.Ext.t_id;
- use type Interfaces.C.int;
-
- subtype int is System.OS_Interface.int;
-
- Relative : constant := 0;
-
- ----------------
- -- Local Data --
- ----------------
-
- -- The followings are logically constants, but need to be initialized at
- -- run time.
-
- Single_RTS_Lock : aliased RTS_Lock;
- -- This is a lock to allow only one thread of control in the RTS at a
- -- time; it is used to execute in mutual exclusion from all other tasks.
- -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
-
- Environment_Task_Id : Task_Id;
- -- A variable to hold Task_Id for the environment task
-
- Unblocked_Signal_Mask : aliased sigset_t;
- -- The set of signals that should unblocked in all tasks
-
- -- The followings are internal configuration constants needed
-
- Time_Slice_Val : Integer;
- pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
-
- Locking_Policy : Character;
- pragma Import (C, Locking_Policy, "__gl_locking_policy");
-
- Dispatching_Policy : Character;
- pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
-
- function Get_Policy (Prio : System.Any_Priority) return Character;
- pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
- -- Get priority specific dispatching policy
-
- Mutex_Protocol : Priority_Type;
-
- Foreign_Task_Elaborated : aliased Boolean := True;
- -- Used to identified fake tasks (i.e., non-Ada Threads)
-
- type Set_Stack_Limit_Proc_Acc is access procedure;
- pragma Convention (C, Set_Stack_Limit_Proc_Acc);
-
- Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
- pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
- -- Procedure to be called when a task is created to set stack
- -- limit.
-
- --------------------
- -- Local Packages --
- --------------------
-
- package Specific is
-
- procedure Initialize;
- pragma Inline (Initialize);
- -- Initialize task specific data
-
- function Is_Valid_Task return Boolean;
- pragma Inline (Is_Valid_Task);
- -- Does executing thread have a TCB?
-
- procedure Set (Self_Id : Task_Id);
- pragma Inline (Set);
- -- Set the self id for the current task
-
- procedure Delete;
- pragma Inline (Delete);
- -- Delete the task specific data associated with the current task
-
- function Self return Task_Id;
- pragma Inline (Self);
- -- Return a pointer to the Ada Task Control Block of the calling task
-
- end Specific;
-
- package body Specific is separate;
- -- The body of this package is target specific
-
- ---------------------------------
- -- Support for foreign threads --
- ---------------------------------
-
- function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
- -- Allocate and Initialize a new ATCB for the current Thread
-
- function Register_Foreign_Thread
- (Thread : Thread_Id) return Task_Id is separate;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Abort_Handler (signo : Signal);
- -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
-
- procedure Install_Signal_Handlers;
- -- Install the default signal handlers for the current task
-
- function To_Address is
- new Ada.Unchecked_Conversion (Task_Id, System.Address);
-
- -------------------
- -- Abort_Handler --
- -------------------
-
- procedure Abort_Handler (signo : Signal) is
- pragma Unreferenced (signo);
-
- Self_ID : constant Task_Id := Self;
- Old_Set : aliased sigset_t;
-
- Result : int;
- pragma Warnings (Off, Result);
-
- begin
- -- It is not safe to raise an exception when using ZCX and the GCC
- -- exception handling mechanism.
-
- if ZCX_By_Default and then GCC_ZCX_Support then
- return;
- end if;
-
- if Self_ID.Deferral_Level = 0
- and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
- and then not Self_ID.Aborting
- then
- Self_ID.Aborting := True;
-
- -- Make sure signals used for RTS internal purpose are unmasked
-
- Result :=
- pthread_sigmask
- (SIG_UNBLOCK,
- Unblocked_Signal_Mask'Access,
- Old_Set'Access);
- pragma Assert (Result = 0);
-
- raise Standard'Abort_Signal;
- end if;
- end Abort_Handler;
-
- -----------------
- -- Stack_Guard --
- -----------------
-
- procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
- pragma Unreferenced (T);
- pragma Unreferenced (On);
-
- begin
- -- Nothing needed (why not???)
-
- null;
- end Stack_Guard;
-
- -------------------
- -- Get_Thread_Id --
- -------------------
-
- function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
- begin
- return T.Common.LL.Thread;
- end Get_Thread_Id;
-
- ----------
- -- Self --
- ----------
-
- function Self return Task_Id renames Specific.Self;
-
- -----------------------------
- -- Install_Signal_Handlers --
- -----------------------------
-
- procedure Install_Signal_Handlers is
- act : aliased struct_sigaction;
- old_act : aliased struct_sigaction;
- Tmp_Set : aliased sigset_t;
- Result : int;
-
- begin
- act.sa_flags := 0;
- act.sa_handler := Abort_Handler'Address;
-
- Result := sigemptyset (Tmp_Set'Access);
- pragma Assert (Result = 0);
- act.sa_mask := Tmp_Set;
-
- Result :=
- sigaction
- (Signal (Interrupt_Management.Abort_Task_Interrupt),
- act'Unchecked_Access,
- old_act'Unchecked_Access);
- pragma Assert (Result = 0);
-
- Interrupt_Management.Initialize_Interrupts;
- end Install_Signal_Handlers;
-
- ---------------------
- -- Initialize_Lock --
- ---------------------
-
- procedure Initialize_Lock
- (Prio : System.Any_Priority;
- L : not null access Lock)
- is
- begin
- L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
- L.Prio_Ceiling := int (Prio);
- L.Protocol := Mutex_Protocol;
- pragma Assert (L.Mutex /= 0);
- end Initialize_Lock;
-
- procedure Initialize_Lock
- (L : not null access RTS_Lock;
- Level : Lock_Level)
- is
- pragma Unreferenced (Level);
- begin
- L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
- L.Prio_Ceiling := int (System.Any_Priority'Last);
- L.Protocol := Mutex_Protocol;
- pragma Assert (L.Mutex /= 0);
- end Initialize_Lock;
-
- -------------------
- -- Finalize_Lock --
- -------------------
-
- procedure Finalize_Lock (L : not null access Lock) is
- Result : int;
- begin
- Result := semDelete (L.Mutex);
- pragma Assert (Result = 0);
- end Finalize_Lock;
-
- procedure Finalize_Lock (L : not null access RTS_Lock) is
- Result : int;
- begin
- Result := semDelete (L.Mutex);
- pragma Assert (Result = 0);
- end Finalize_Lock;
-
- ----------------
- -- Write_Lock --
- ----------------
-
- procedure Write_Lock
- (L : not null access Lock;
- Ceiling_Violation : out Boolean)
- is
- Result : int;
-
- begin
- if L.Protocol = Prio_Protect
- and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
- then
- Ceiling_Violation := True;
- return;
- else
- Ceiling_Violation := False;
- end if;
-
- Result := semTake (L.Mutex, WAIT_FOREVER);
- pragma Assert (Result = 0);
- end Write_Lock;
-
- procedure Write_Lock
- (L : not null access RTS_Lock;
- Global_Lock : Boolean := False)
- is
- Result : int;
- begin
- if not Single_Lock or else Global_Lock then
- Result := semTake (L.Mutex, WAIT_FOREVER);
- pragma Assert (Result = 0);
- end if;
- end Write_Lock;
-
- procedure Write_Lock (T : Task_Id) is
- Result : int;
- begin
- if not Single_Lock then
- Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
- pragma Assert (Result = 0);
- end if;
- end Write_Lock;
-
- ---------------
- -- Read_Lock --
- ---------------
-
- procedure Read_Lock
- (L : not null access Lock;
- Ceiling_Violation : out Boolean)
- is
- begin
- Write_Lock (L, Ceiling_Violation);
- end Read_Lock;
-
- ------------
- -- Unlock --
- ------------
-
- procedure Unlock (L : not null access Lock) is
- Result : int;
- begin
- Result := semGive (L.Mutex);
- pragma Assert (Result = 0);
- end Unlock;
-
- procedure Unlock
- (L : not null access RTS_Lock;
- Global_Lock : Boolean := False)
- is
- Result : int;
- begin
- if not Single_Lock or else Global_Lock then
- Result := semGive (L.Mutex);
- pragma Assert (Result = 0);
- end if;
- end Unlock;
-
- procedure Unlock (T : Task_Id) is
- Result : int;
- begin
- if not Single_Lock then
- Result := semGive (T.Common.LL.L.Mutex);
- pragma Assert (Result = 0);
- end if;
- end Unlock;
-
- -----------------
- -- Set_Ceiling --
- -----------------
-
- -- Dynamic priority ceilings are not supported by the underlying system
-
- procedure Set_Ceiling
- (L : not null access Lock;
- Prio : System.Any_Priority)
- is
- pragma Unreferenced (L, Prio);
- begin
- null;
- end Set_Ceiling;
-
- -----------
- -- Sleep --
- -----------
-
- procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
- pragma Unreferenced (Reason);
-
- Result : int;
-
- begin
- pragma Assert (Self_ID = Self);
-
- -- Release the mutex before sleeping
-
- if Single_Lock then
- Result := semGive (Single_RTS_Lock.Mutex);
- else
- Result := semGive (Self_ID.Common.LL.L.Mutex);
- end if;
-
- pragma Assert (Result = 0);
-
- -- Perform a blocking operation to take the CV semaphore. Note that a
- -- blocking operation in VxWorks will reenable task scheduling. When we
- -- are no longer blocked and control is returned, task scheduling will
- -- again be disabled.
-
- Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
- pragma Assert (Result = 0);
-
- -- Take the mutex back
-
- if Single_Lock then
- Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
- else
- Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
- end if;
-
- pragma Assert (Result = 0);
- end Sleep;
-
- -----------------
- -- Timed_Sleep --
- -----------------
-
- -- This is for use within the run-time system, so abort is assumed to be
- -- already deferred, and the caller should be holding its own ATCB lock.
-
- procedure Timed_Sleep
- (Self_ID : Task_Id;
- Time : Duration;
- Mode : ST.Delay_Modes;
- Reason : System.Tasking.Task_States;
- Timedout : out Boolean;
- Yielded : out Boolean)
- is
- pragma Unreferenced (Reason);
-
- Orig : constant Duration := Monotonic_Clock;
- Absolute : Duration;
- Ticks : int;
- Result : int;
- Wakeup : Boolean := False;
-
- begin
- Timedout := False;
- Yielded := True;
-
- if Mode = Relative then
- Absolute := Orig + Time;
-
- -- Systematically add one since the first tick will delay *at most*
- -- 1 / Rate_Duration seconds, so we need to add one to be on the
- -- safe side.
-
- Ticks := To_Clock_Ticks (Time);
-
- if Ticks > 0 and then Ticks < int'Last then
- Ticks := Ticks + 1;
- end if;
-
- else
- Absolute := Time;
- Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
- end if;
-
- if Ticks > 0 then
- loop
- -- Release the mutex before sleeping
-
- if Single_Lock then
- Result := semGive (Single_RTS_Lock.Mutex);
- else
- Result := semGive (Self_ID.Common.LL.L.Mutex);
- end if;
-
- pragma Assert (Result = 0);
-
- -- Perform a blocking operation to take the CV semaphore. Note
- -- that a blocking operation in VxWorks will reenable task
- -- scheduling. When we are no longer blocked and control is
- -- returned, task scheduling will again be disabled.
-
- Result := semTake (Self_ID.Common.LL.CV, Ticks);
-
- if Result = 0 then
-
- -- Somebody may have called Wakeup for us
-
- Wakeup := True;
-
- else
- if errno /= S_objLib_OBJ_TIMEOUT then
- Wakeup := True;
-
- else
- -- If Ticks = int'last, it was most probably truncated so
- -- let's make another round after recomputing Ticks from
- -- the absolute time.
-
- if Ticks /= int'Last then
- Timedout := True;
-
- else
- Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
-
- if Ticks < 0 then
- Timedout := True;
- end if;
- end if;
- end if;
- end if;
-
- -- Take the mutex back
-
- if Single_Lock then
- Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
- else
- Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
- end if;
-
- pragma Assert (Result = 0);
-
- exit when Timedout or Wakeup;
- end loop;
-
- else
- Timedout := True;
-
- -- Should never hold a lock while yielding
-
- if Single_Lock then
- Result := semGive (Single_RTS_Lock.Mutex);
- taskDelay (0);
- Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
-
- else
- Result := semGive (Self_ID.Common.LL.L.Mutex);
- taskDelay (0);
- Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
- end if;
- end if;
- end Timed_Sleep;
-
- -----------------
- -- Timed_Delay --
- -----------------
-
- -- This is for use in implementing delay statements, so we assume the
- -- caller is holding no locks.
-
- procedure Timed_Delay
- (Self_ID : Task_Id;
- Time : Duration;
- Mode : ST.Delay_Modes)
- is
- Orig : constant Duration := Monotonic_Clock;
- Absolute : Duration;
- Ticks : int;
- Timedout : Boolean;
- Aborted : Boolean := False;
-
- Result : int;
- pragma Warnings (Off, Result);
-
- begin
- if Mode = Relative then
- Absolute := Orig + Time;
- Ticks := To_Clock_Ticks (Time);
-
- if Ticks > 0 and then Ticks < int'Last then
-
- -- First tick will delay anytime between 0 and 1 / sysClkRateGet
- -- seconds, so we need to add one to be on the safe side.
-
- Ticks := Ticks + 1;
- end if;
-
- else
- Absolute := Time;
- Ticks := To_Clock_Ticks (Time - Orig);
- end if;
-
- if Ticks > 0 then
-
- -- Modifying State, locking the TCB
-
- if Single_Lock then
- Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
- else
- Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
- end if;
-
- pragma Assert (Result = 0);
-
- Self_ID.Common.State := Delay_Sleep;
- Timedout := False;
-
- loop
- Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
-
- -- Release the TCB before sleeping
-
- if Single_Lock then
- Result := semGive (Single_RTS_Lock.Mutex);
- else
- Result := semGive (Self_ID.Common.LL.L.Mutex);
- end if;
- pragma Assert (Result = 0);
-
- exit when Aborted;
-
- Result := semTake (Self_ID.Common.LL.CV, Ticks);
-
- if Result /= 0 then
-
- -- If Ticks = int'last, it was most probably truncated
- -- so let's make another round after recomputing Ticks
- -- from the absolute time.
-
- if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
- Timedout := True;
- else
- Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
-
- if Ticks < 0 then
- Timedout := True;
- end if;
- end if;
- end if;
-
- -- Take back the lock after having slept, to protect further
- -- access to Self_ID.
-
- if Single_Lock then
- Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
- else
- Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
- end if;
-
- pragma Assert (Result = 0);
-
- exit when Timedout;
- end loop;
-
- Self_ID.Common.State := Runnable;
-
- if Single_Lock then
- Result := semGive (Single_RTS_Lock.Mutex);
- else
- Result := semGive (Self_ID.Common.LL.L.Mutex);
- end if;
-
- else
- taskDelay (0);
- end if;
- end Timed_Delay;
-
- ---------------------
- -- Monotonic_Clock --
- ---------------------
-
- function Monotonic_Clock return Duration is
- TS : aliased timespec;
- Result : int;
- begin
- Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
- pragma Assert (Result = 0);
- return To_Duration (TS);
- end Monotonic_Clock;
-
- -------------------
- -- RT_Resolution --
- -------------------
-
- function RT_Resolution return Duration is
- begin
- return 1.0 / Duration (sysClkRateGet);
- end RT_Resolution;
-
- ------------
- -- Wakeup --
- ------------
-
- procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
- pragma Unreferenced (Reason);
- Result : int;
- begin
- Result := semGive (T.Common.LL.CV);
- pragma Assert (Result = 0);
- end Wakeup;
-
- -----------
- -- Yield --
- -----------
-
- procedure Yield (Do_Yield : Boolean := True) is
- pragma Unreferenced (Do_Yield);
- Result : int;
- pragma Unreferenced (Result);
- begin
- Result := taskDelay (0);
- end Yield;
-
- ------------------
- -- Set_Priority --
- ------------------
-
- type Prio_Array_Type is array (System.Any_Priority) of Integer;
- pragma Atomic_Components (Prio_Array_Type);
-
- Prio_Array : Prio_Array_Type;
- -- Global array containing the id of the currently running task for each
- -- priority. Note that we assume that we are on a single processor with
- -- run-till-blocked scheduling.
-
- procedure Set_Priority
- (T : Task_Id;
- Prio : System.Any_Priority;
- Loss_Of_Inheritance : Boolean := False)
- is
- Array_Item : Integer;
- Result : int;
-
- begin
- Result :=
- taskPrioritySet
- (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
- pragma Assert (Result = 0);
-
- if (Dispatching_Policy = 'F' or else Get_Policy (Prio) = 'F')
- and then Loss_Of_Inheritance
- and then Prio < T.Common.Current_Priority
- then
- -- Annex D requirement (RM D.2.2(9)):
-
- -- If the task drops its priority due to the loss of inherited
- -- priority, it is added at the head of the ready queue for its
- -- new active priority.
-
- Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
- Prio_Array (T.Common.Base_Priority) := Array_Item;
-
- loop
- -- Give some processes a chance to arrive
-
- taskDelay (0);
-
- -- Then wait for our turn to proceed
-
- exit when Array_Item = Prio_Array (T.Common.Base_Priority)
- or else Prio_Array (T.Common.Base_Priority) = 1;
- end loop;
-
- Prio_Array (T.Common.Base_Priority) :=
- Prio_Array (T.Common.Base_Priority) - 1;
- end if;
-
- T.Common.Current_Priority := Prio;
- end Set_Priority;
-
- ------------------
- -- Get_Priority --
- ------------------
-
- function Get_Priority (T : Task_Id) return System.Any_Priority is
- begin
- return T.Common.Current_Priority;
- end Get_Priority;
-
- ----------------
- -- Enter_Task --
- ----------------
-
- procedure Enter_Task (Self_ID : Task_Id) is
- procedure Init_Float;
- pragma Import (C, Init_Float, "__gnat_init_float");
- -- Properly initializes the FPU for PPC/MIPS systems
-
- begin
- -- Store the user-level task id in the Thread field (to be used
- -- internally by the run-time system) and the kernel-level task id in
- -- the LWP field (to be used by the debugger).
-
- Self_ID.Common.LL.Thread := taskIdSelf;
- Self_ID.Common.LL.LWP := getpid;
-
- Specific.Set (Self_ID);
-
- Init_Float;
-
- -- Install the signal handlers
-
- -- This is called for each task since there is no signal inheritance
- -- between VxWorks tasks.
-
- Install_Signal_Handlers;
-
- Lock_RTS;
-
- for J in Known_Tasks'Range loop
- if Known_Tasks (J) = null then
- Known_Tasks (J) := Self_ID;
- Self_ID.Known_Tasks_Index := J;
- exit;
- end if;
- end loop;
-
- Unlock_RTS;
-
- -- If stack checking is enabled, set the stack limit for this task
-
- if Set_Stack_Limit_Hook /= null then
- Set_Stack_Limit_Hook.all;
- end if;
- end Enter_Task;
-
- --------------
- -- New_ATCB --
- --------------
-
- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
- begin
- return new Ada_Task_Control_Block (Entry_Num);
- end New_ATCB;
-
- -------------------
- -- Is_Valid_Task --
- -------------------
-
- function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-
- -----------------------------
- -- Register_Foreign_Thread --
- -----------------------------
-
- function Register_Foreign_Thread return Task_Id is
- begin
- if Is_Valid_Task then
- return Self;
- else
- return Register_Foreign_Thread (taskIdSelf);
- end if;
- end Register_Foreign_Thread;
-
- --------------------
- -- Initialize_TCB --
- --------------------
-
- procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
- begin
- Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
- Self_ID.Common.LL.Thread := 0;
-
- if Self_ID.Common.LL.CV = 0 then
- Succeeded := False;
-
- else
- Succeeded := True;
-
- if not Single_Lock then
- Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
- end if;
- end if;
- end Initialize_TCB;
-
- -----------------
- -- Create_Task --
- -----------------
-
- procedure Create_Task
- (T : Task_Id;
- Wrapper : System.Address;
- Stack_Size : System.Parameters.Size_Type;
- Priority : System.Any_Priority;
- Succeeded : out Boolean)
- is
- Adjusted_Stack_Size : size_t;
- begin
- -- Ask for four extra bytes of stack space so that the ATCB pointer can
- -- be stored below the stack limit, plus extra space for the frame of
- -- Task_Wrapper. This is so the user gets the amount of stack requested
- -- exclusive of the needs.
-
- -- We also have to allocate n more bytes for the task name storage and
- -- enough space for the Wind Task Control Block which is around 0x778
- -- bytes. VxWorks also seems to carve out additional space, so use 2048
- -- as a nice round number. We might want to increment to the nearest
- -- page size in case we ever support VxVMI.
-
- -- ??? - we should come back and visit this so we can set the task name
- -- to something appropriate.
-
- Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
-
- -- Since the initial signal mask of a thread is inherited from the
- -- creator, and the Environment task has all its signals masked, we do
- -- not need to manipulate caller's signal mask at this point. All tasks
- -- in RTS will have All_Tasks_Mask initially.
-
- -- We now compute the VxWorks task name and options, then spawn ...
-
- declare
- Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
- Name_Address : System.Address;
- -- Task name we are going to hand down to VxWorks
-
- function Get_Task_Options return int;
- pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
- -- Function that returns the options to be set for the task that we
- -- are creating. We fetch the options assigned to the current task,
- -- so offering some user level control over the options for a task
- -- hierarchy, and force VX_FP_TASK because it is almost always
- -- required.
-
- begin
- -- If there is no Ada task name handy, let VxWorks choose one.
- -- Otherwise, tell VxWorks what the Ada task name is.
-
- if T.Common.Task_Image_Len = 0 then
- Name_Address := System.Null_Address;
- else
- Name (1 .. Name'Last - 1) :=
- T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
- Name (Name'Last) := ASCII.NUL;
- Name_Address := Name'Address;
- end if;
-
- -- Now spawn the VxWorks task for real
-
- T.Common.LL.Thread :=
- taskSpawn
- (Name_Address,
- To_VxWorks_Priority (int (Priority)),
- Get_Task_Options,
- Adjusted_Stack_Size,
- Wrapper,
- To_Address (T));
- end;
-
- if T.Common.LL.Thread = -1 then
- Succeeded := False;
- else
- Succeeded := True;
- Task_Creation_Hook (T.Common.LL.Thread);
- Set_Priority (T, Priority);
- end if;
- end Create_Task;
-
- ------------------
- -- Finalize_TCB --
- ------------------
-
- procedure Finalize_TCB (T : Task_Id) is
- Result : int;
- Tmp : Task_Id := T;
- Is_Self : constant Boolean := (T = Self);
-
- procedure Free is new
- Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
-
- begin
- if not Single_Lock then
- Result := semDelete (T.Common.LL.L.Mutex);
- pragma Assert (Result = 0);
- end if;
-
- T.Common.LL.Thread := 0;
-
- Result := semDelete (T.Common.LL.CV);
- pragma Assert (Result = 0);
-
- if T.Known_Tasks_Index /= -1 then
- Known_Tasks (T.Known_Tasks_Index) := null;
- end if;
-
- Free (Tmp);
-
- if Is_Self then
- Specific.Delete;
- end if;
- end Finalize_TCB;
-
- ---------------
- -- Exit_Task --
- ---------------
-
- procedure Exit_Task is
- begin
- Specific.Set (null);
- end Exit_Task;
-
- ----------------
- -- Abort_Task --
- ----------------
-
- procedure Abort_Task (T : Task_Id) is
- Result : int;
- begin
- Result :=
- kill
- (T.Common.LL.Thread,
- Signal (Interrupt_Management.Abort_Task_Interrupt));
- pragma Assert (Result = 0);
- end Abort_Task;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize (S : in out Suspension_Object) is
- begin
- -- Initialize internal state (always to False (RM D.10(6)))
-
- S.State := False;
- S.Waiting := False;
-
- -- Initialize internal mutex
-
- -- Use simpler binary semaphore instead of VxWorks
- -- mutual exclusion semaphore, because we don't need
- -- the fancier semantics and their overhead.
-
- S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
-
- -- Initialize internal condition variable
-
- S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
- end Initialize;
-
- --------------
- -- Finalize --
- --------------
-
- procedure Finalize (S : in out Suspension_Object) is
- pragma Unmodified (S);
- -- S may be modified on other targets, but not on VxWorks
-
- Result : STATUS;
-
- begin
- -- Destroy internal mutex
-
- Result := semDelete (S.L);
- pragma Assert (Result = OK);
-
- -- Destroy internal condition variable
-
- Result := semDelete (S.CV);
- pragma Assert (Result = OK);
- end Finalize;
-
- -------------------
- -- Current_State --
- -------------------
-
- function Current_State (S : Suspension_Object) return Boolean is
- begin
- -- We do not want to use lock on this read operation. State is marked
- -- as Atomic so that we ensure that the value retrieved is correct.
-
- return S.State;
- end Current_State;
-
- ---------------
- -- Set_False --
- ---------------
-
- procedure Set_False (S : in out Suspension_Object) is
- Result : STATUS;
-
- begin
- SSL.Abort_Defer.all;
-
- Result := semTake (S.L, WAIT_FOREVER);
- pragma Assert (Result = OK);
-
- S.State := False;
-
- Result := semGive (S.L);
- pragma Assert (Result = OK);
-
- SSL.Abort_Undefer.all;
- end Set_False;
-
- --------------
- -- Set_True --
- --------------
-
- procedure Set_True (S : in out Suspension_Object) is
- Result : STATUS;
-
- begin
- SSL.Abort_Defer.all;
-
- Result := semTake (S.L, WAIT_FOREVER);
- pragma Assert (Result = OK);
-
- -- If there is already a task waiting on this suspension object then
- -- we resume it, leaving the state of the suspension object to False,
- -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
- -- the state to True.
-
- if S.Waiting then
- S.Waiting := False;
- S.State := False;
-
- Result := semGive (S.CV);
- pragma Assert (Result = OK);
- else
- S.State := True;
- end if;
-
- Result := semGive (S.L);
- pragma Assert (Result = OK);
-
- SSL.Abort_Undefer.all;
- end Set_True;
-
- ------------------------
- -- Suspend_Until_True --
- ------------------------
-
- procedure Suspend_Until_True (S : in out Suspension_Object) is
- Result : STATUS;
-
- begin
- SSL.Abort_Defer.all;
-
- Result := semTake (S.L, WAIT_FOREVER);
-
- if S.Waiting then
-
- -- Program_Error must be raised upon calling Suspend_Until_True
- -- if another task is already waiting on that suspension object
- -- (ARM D.10 par. 10).
-
- Result := semGive (S.L);
- pragma Assert (Result = OK);
-
- SSL.Abort_Undefer.all;
-
- raise Program_Error;
-
- else
- -- Suspend the task if the state is False. Otherwise, the task
- -- continues its execution, and the state of the suspension object
- -- is set to False (ARM D.10 par. 9).
-
- if S.State then
- S.State := False;
-
- Result := semGive (S.L);
- pragma Assert (Result = 0);
-
- SSL.Abort_Undefer.all;
-
- else
- S.Waiting := True;
-
- -- Release the mutex before sleeping
-
- Result := semGive (S.L);
- pragma Assert (Result = OK);
-
- SSL.Abort_Undefer.all;
-
- Result := semTake (S.CV, WAIT_FOREVER);
- pragma Assert (Result = 0);
- end if;
- end if;
- end Suspend_Until_True;
-
- ----------------
- -- Check_Exit --
- ----------------
-
- -- Dummy version
-
- function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
- pragma Unreferenced (Self_ID);
- begin
- return True;
- end Check_Exit;
-
- --------------------
- -- Check_No_Locks --
- --------------------
-
- function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
- pragma Unreferenced (Self_ID);
- begin
- return True;
- end Check_No_Locks;
-
- ----------------------
- -- Environment_Task --
- ----------------------
-
- function Environment_Task return Task_Id is
- begin
- return Environment_Task_Id;
- end Environment_Task;
-
- --------------
- -- Lock_RTS --
- --------------
-
- procedure Lock_RTS is
- begin
- Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
- end Lock_RTS;
-
- ----------------
- -- Unlock_RTS --
- ----------------
-
- procedure Unlock_RTS is
- begin
- Unlock (Single_RTS_Lock'Access, Global_Lock => True);
- end Unlock_RTS;
-
- ------------------
- -- Suspend_Task --
- ------------------
-
- function Suspend_Task
- (T : ST.Task_Id;
- Thread_Self : Thread_Id) return Boolean
- is
- begin
- if T.Common.LL.Thread /= 0
- and then T.Common.LL.Thread /= Thread_Self
- then
- return taskSuspend (T.Common.LL.Thread) = 0;
- else
- return True;
- end if;
- end Suspend_Task;
-
- -----------------
- -- Resume_Task --
- -----------------
-
- function Resume_Task
- (T : ST.Task_Id;
- Thread_Self : Thread_Id) return Boolean
- is
- begin
- if T.Common.LL.Thread /= 0
- and then T.Common.LL.Thread /= Thread_Self
- then
- return taskResume (T.Common.LL.Thread) = 0;
- else
- return True;
- end if;
- end Resume_Task;
-
- --------------------
- -- Stop_All_Tasks --
- --------------------
-
- procedure Stop_All_Tasks
- is
- Thread_Self : constant Thread_Id := taskIdSelf;
- C : Task_Id;
-
- Dummy : int;
- pragma Unreferenced (Dummy);
-
- begin
- Dummy := Int_Lock;
-
- C := All_Tasks_List;
- while C /= null loop
- if C.Common.LL.Thread /= 0
- and then C.Common.LL.Thread /= Thread_Self
- then
- Dummy := Task_Stop (C.Common.LL.Thread);
- end if;
-
- C := C.Common.All_Tasks_Link;
- end loop;
-
- Dummy := Int_Unlock;
- end Stop_All_Tasks;
-
- ---------------
- -- Stop_Task --
- ---------------
-
- function Stop_Task (T : ST.Task_Id) return Boolean is
- begin
- if T.Common.LL.Thread /= 0 then
- return Task_Stop (T.Common.LL.Thread) = 0;
- else
- return True;
- end if;
- end Stop_Task;
-
- -------------------
- -- Continue_Task --
- -------------------
-
- function Continue_Task (T : ST.Task_Id) return Boolean
- is
- begin
- if T.Common.LL.Thread /= 0 then
- return Task_Cont (T.Common.LL.Thread) = 0;
- else
- return True;
- end if;
- end Continue_Task;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize (Environment_Task : Task_Id) is
- Result : int;
-
- begin
- Environment_Task_Id := Environment_Task;
-
- Interrupt_Management.Initialize;
- Specific.Initialize;
-
- if Locking_Policy = 'C' then
- Mutex_Protocol := Prio_Protect;
- elsif Locking_Policy = 'I' then
- Mutex_Protocol := Prio_Inherit;
- else
- Mutex_Protocol := Prio_None;
- end if;
-
- if Time_Slice_Val > 0 then
- Result :=
- Set_Time_Slice
- (To_Clock_Ticks
- (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
-
- elsif Dispatching_Policy = 'R' then
- Result := Set_Time_Slice (To_Clock_Ticks (0.01));
-
- end if;
-
- Result := sigemptyset (Unblocked_Signal_Mask'Access);
- pragma Assert (Result = 0);
-
- for J in Interrupt_Management.Signal_ID loop
- if System.Interrupt_Management.Keep_Unmasked (J) then
- Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
- pragma Assert (Result = 0);
- end if;
- end loop;
-
- -- Initialize the lock used to synchronize chain of all ATCBs
-
- Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
-
- Enter_Task (Environment_Task);
- end Initialize;
-
-end System.Task_Primitives.Operations;