aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/s-taprop-lynxos.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/s-taprop-lynxos.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/s-taprop-lynxos.adb1423
1 files changed, 0 insertions, 1423 deletions
diff --git a/gcc-4.4.3/gcc/ada/s-taprop-lynxos.adb b/gcc-4.4.3/gcc/ada/s-taprop-lynxos.adb
deleted file mode 100644
index d553f1e69..000000000
--- a/gcc-4.4.3/gcc/ada/s-taprop-lynxos.adb
+++ /dev/null
@@ -1,1423 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
--- --
--- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
--- --
--- GNARL is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNARL was developed by the GNARL team at Florida State University. --
--- Extensive contributions were provided by Ada Core Technologies, Inc. --
--- --
-------------------------------------------------------------------------------
-
--- This is a LynxOS version of this file, adapted to make SCHED_FIFO and
--- ceiling locking (Annex D compliance) work properly.
-
--- This package contains all the GNULL primitives that interface directly with
--- the underlying OS.
-
-pragma Polling (Off);
--- Turn off polling, we do not want ATC polling to take place during tasking
--- operations. It causes infinite loops and other problems.
-
-with Ada.Unchecked_Deallocation;
-
-with Interfaces.C;
-
-with System.Tasking.Debug;
-with System.Interrupt_Management;
-with System.OS_Primitives;
-with System.Task_Info;
-
-with System.Soft_Links;
--- We use System.Soft_Links instead of System.Tasking.Initialization
--- because the later is a higher level package that we shouldn't depend on.
--- For example when using the restricted run time, it is replaced by
--- System.Tasking.Restricted.Stages.
-
-package body System.Task_Primitives.Operations is
-
- package SSL renames System.Soft_Links;
-
- use System.Tasking.Debug;
- use System.Tasking;
- use Interfaces.C;
- use System.OS_Interface;
- use System.Parameters;
- use System.OS_Primitives;
-
- ----------------
- -- Local Data --
- ----------------
-
- -- The followings are logically constants, but need to be initialized
- -- at run time.
-
- Single_RTS_Lock : aliased RTS_Lock;
- -- This is a lock to allow only one thread of control in the RTS at
- -- a time; it is used to execute in mutual exclusion from all other tasks.
- -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
-
- ATCB_Key : aliased pthread_key_t;
- -- Key used to find the Ada Task_Id associated with a thread
-
- Environment_Task_Id : Task_Id;
- -- A variable to hold Task_Id for the environment task
-
- Locking_Policy : Character;
- pragma Import (C, Locking_Policy, "__gl_locking_policy");
- -- Value of the pragma Locking_Policy:
- -- 'C' for Ceiling_Locking
- -- 'I' for Inherit_Locking
- -- ' ' for none.
-
- Unblocked_Signal_Mask : aliased sigset_t;
- -- The set of signals that should unblocked in all tasks
-
- -- The followings are internal configuration constants needed
-
- Next_Serial_Number : Task_Serial_Number := 100;
- -- We start at 100, to reserve some special values for
- -- using in error checking.
-
- Time_Slice_Val : Integer;
- pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
-
- Dispatching_Policy : Character;
- pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
-
- Foreign_Task_Elaborated : aliased Boolean := True;
- -- Used to identified fake tasks (i.e., non-Ada Threads)
-
- --------------------
- -- Local Packages --
- --------------------
-
- package Specific is
-
- procedure Initialize (Environment_Task : Task_Id);
- pragma Inline (Initialize);
- -- Initialize various data needed by this package
-
- function Is_Valid_Task return Boolean;
- pragma Inline (Is_Valid_Task);
- -- Does the current thread have an ATCB?
-
- procedure Set (Self_Id : Task_Id);
- pragma Inline (Set);
- -- Set the self id for the current task
-
- function Self return Task_Id;
- pragma Inline (Self);
- -- Return a pointer to the Ada Task Control Block of the calling task
-
- end Specific;
-
- package body Specific is separate;
- -- The body of this package is target specific
-
- ---------------------------------
- -- Support for foreign threads --
- ---------------------------------
-
- function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
- -- Allocate and Initialize a new ATCB for the current Thread
-
- function Register_Foreign_Thread
- (Thread : Thread_Id) return Task_Id is separate;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Abort_Handler (Sig : Signal);
- -- Signal handler used to implement asynchronous abort
-
- procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority);
- -- This procedure calls the scheduler of the OS to set thread's priority
-
- -------------------
- -- Abort_Handler --
- -------------------
-
- procedure Abort_Handler (Sig : Signal) is
- pragma Unreferenced (Sig);
-
- T : constant Task_Id := Self;
- Result : Interfaces.C.int;
- Old_Set : aliased sigset_t;
-
- begin
- -- It is not safe to raise an exception when using ZCX and the GCC
- -- exception handling mechanism.
-
- if ZCX_By_Default and then GCC_ZCX_Support then
- return;
- end if;
-
- if T.Deferral_Level = 0
- and then T.Pending_ATC_Level < T.ATC_Nesting_Level
- and then not T.Aborting
- then
- T.Aborting := True;
-
- -- Make sure signals used for RTS internal purpose are unmasked
-
- Result :=
- pthread_sigmask
- (SIG_UNBLOCK,
- Unblocked_Signal_Mask'Access,
- Old_Set'Access);
- pragma Assert (Result = 0);
-
- raise Standard'Abort_Signal;
- end if;
- end Abort_Handler;
-
- -----------------
- -- Stack_Guard --
- -----------------
-
- procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
- Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
- Guard_Page_Address : Address;
-
- Res : Interfaces.C.int;
-
- begin
- if Stack_Base_Available then
-
- -- Compute the guard page address
-
- Guard_Page_Address :=
- Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
-
- if On then
- Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON);
- else
- Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF);
- end if;
-
- pragma Assert (Res = 0);
- end if;
- end Stack_Guard;
-
- --------------------
- -- Get_Thread_Id --
- --------------------
-
- function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
- begin
- return T.Common.LL.Thread;
- end Get_Thread_Id;
-
- ----------
- -- Self --
- ----------
-
- function Self return Task_Id renames Specific.Self;
-
- ---------------------
- -- Initialize_Lock --
- ---------------------
-
- procedure Initialize_Lock
- (Prio : System.Any_Priority;
- L : not null access Lock)
- is
- Attributes : aliased pthread_mutexattr_t;
- Result : Interfaces.C.int;
-
- begin
- Result := pthread_mutexattr_init (Attributes'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = ENOMEM then
- raise Storage_Error;
- end if;
-
- if Locking_Policy = 'C' then
- L.Ceiling := Prio;
- end if;
-
- Result := pthread_mutex_init (L.Mutex'Access, Attributes'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = ENOMEM then
- raise Storage_Error;
- end if;
-
- Result := pthread_mutexattr_destroy (Attributes'Access);
- pragma Assert (Result = 0);
- end Initialize_Lock;
-
- procedure Initialize_Lock
- (L : not null access RTS_Lock;
- Level : Lock_Level)
- is
- pragma Unreferenced (Level);
-
- Attributes : aliased pthread_mutexattr_t;
- Result : Interfaces.C.int;
-
- begin
- Result := pthread_mutexattr_init (Attributes'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = ENOMEM then
- raise Storage_Error;
- end if;
-
- Result := pthread_mutex_init (L, Attributes'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = ENOMEM then
- Result := pthread_mutexattr_destroy (Attributes'Access);
- raise Storage_Error;
- end if;
-
- Result := pthread_mutexattr_destroy (Attributes'Access);
- pragma Assert (Result = 0);
- end Initialize_Lock;
-
- -------------------
- -- Finalize_Lock --
- -------------------
-
- procedure Finalize_Lock (L : not null access Lock) is
- Result : Interfaces.C.int;
- begin
- Result := pthread_mutex_destroy (L.Mutex'Access);
- pragma Assert (Result = 0);
- end Finalize_Lock;
-
- procedure Finalize_Lock (L : not null access RTS_Lock) is
- Result : Interfaces.C.int;
- begin
- Result := pthread_mutex_destroy (L);
- pragma Assert (Result = 0);
- end Finalize_Lock;
-
- ----------------
- -- Write_Lock --
- ----------------
-
- procedure Write_Lock
- (L : not null access Lock;
- Ceiling_Violation : out Boolean)
- is
- Result : Interfaces.C.int;
- T : constant Task_Id := Self;
-
- begin
- if Locking_Policy = 'C' then
- if T.Common.Current_Priority > L.Ceiling then
- Ceiling_Violation := True;
- return;
- end if;
-
- L.Saved_Priority := T.Common.Current_Priority;
-
- if T.Common.Current_Priority < L.Ceiling then
- Set_OS_Priority (T, L.Ceiling);
- end if;
- end if;
-
- Result := pthread_mutex_lock (L.Mutex'Access);
-
- -- Assume that the cause of EINVAL is a priority ceiling violation
-
- Ceiling_Violation := (Result = EINVAL);
- pragma Assert (Result = 0 or else Result = EINVAL);
- end Write_Lock;
-
- -- No tricks on RTS_Locks
-
- procedure Write_Lock
- (L : not null access RTS_Lock;
- Global_Lock : Boolean := False)
- is
- Result : Interfaces.C.int;
- begin
- if not Single_Lock or else Global_Lock then
- Result := pthread_mutex_lock (L);
- pragma Assert (Result = 0);
- end if;
- end Write_Lock;
-
- procedure Write_Lock (T : Task_Id) is
- Result : Interfaces.C.int;
- begin
- if not Single_Lock then
- Result := pthread_mutex_lock (T.Common.LL.L'Access);
- pragma Assert (Result = 0);
- end if;
- end Write_Lock;
-
- ---------------
- -- Read_Lock --
- ---------------
-
- procedure Read_Lock
- (L : not null access Lock;
- Ceiling_Violation : out Boolean)
- is
- begin
- Write_Lock (L, Ceiling_Violation);
- end Read_Lock;
-
- ------------
- -- Unlock --
- ------------
-
- procedure Unlock (L : not null access Lock) is
- Result : Interfaces.C.int;
- T : constant Task_Id := Self;
-
- begin
- Result := pthread_mutex_unlock (L.Mutex'Access);
- pragma Assert (Result = 0);
-
- if Locking_Policy = 'C' then
- if T.Common.Current_Priority > L.Saved_Priority then
- Set_OS_Priority (T, L.Saved_Priority);
- end if;
- end if;
- end Unlock;
-
- procedure Unlock
- (L : not null access RTS_Lock;
- Global_Lock : Boolean := False)
- is
- Result : Interfaces.C.int;
- begin
- if not Single_Lock or else Global_Lock then
- Result := pthread_mutex_unlock (L);
- pragma Assert (Result = 0);
- end if;
- end Unlock;
-
- procedure Unlock (T : Task_Id) is
- Result : Interfaces.C.int;
- begin
- if not Single_Lock then
- Result := pthread_mutex_unlock (T.Common.LL.L'Access);
- pragma Assert (Result = 0);
- end if;
- end Unlock;
-
- -----------------
- -- Set_Ceiling --
- -----------------
-
- -- Dynamic priority ceilings are not supported by the underlying system
-
- procedure Set_Ceiling
- (L : not null access Lock;
- Prio : System.Any_Priority)
- is
- pragma Unreferenced (L, Prio);
- begin
- null;
- end Set_Ceiling;
-
- -----------
- -- Sleep --
- -----------
-
- procedure Sleep
- (Self_ID : Task_Id;
- Reason : System.Tasking.Task_States)
- is
- pragma Unreferenced (Reason);
- Result : Interfaces.C.int;
-
- begin
- if Single_Lock then
- Result :=
- pthread_cond_wait
- (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
- else
- Result :=
- pthread_cond_wait
- (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
- end if;
-
- -- EINTR is not considered a failure
-
- pragma Assert (Result = 0 or else Result = EINTR);
- end Sleep;
-
- -----------------
- -- Timed_Sleep --
- -----------------
-
- -- This is for use within the run-time system, so abort is
- -- assumed to be already deferred, and the caller should be
- -- holding its own ATCB lock.
-
- procedure Timed_Sleep
- (Self_ID : Task_Id;
- Time : Duration;
- Mode : ST.Delay_Modes;
- Reason : Task_States;
- Timedout : out Boolean;
- Yielded : out Boolean)
- is
- pragma Unreferenced (Reason);
-
- Base_Time : constant Duration := Monotonic_Clock;
- Check_Time : Duration := Base_Time;
- Rel_Time : Duration;
- Abs_Time : Duration;
- Request : aliased timespec;
- Result : Interfaces.C.int;
-
- begin
- Timedout := True;
- Yielded := False;
-
- if Mode = Relative then
- Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
-
- if Relative_Timed_Wait then
- Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
- end if;
-
- else
- Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
-
- if Relative_Timed_Wait then
- Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
- end if;
- end if;
-
- if Abs_Time > Check_Time then
- if Relative_Timed_Wait then
- Request := To_Timespec (Rel_Time);
- else
- Request := To_Timespec (Abs_Time);
- end if;
-
- loop
- exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
-
- if Single_Lock then
- Result :=
- pthread_cond_timedwait
- (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
- Request'Access);
-
- else
- Result :=
- pthread_cond_timedwait
- (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
- Request'Access);
- end if;
-
- Check_Time := Monotonic_Clock;
- exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
-
- if Result = 0 or Result = EINTR then
-
- -- Somebody may have called Wakeup for us
-
- Timedout := False;
- exit;
- end if;
-
- pragma Assert (Result = ETIMEDOUT);
- end loop;
- end if;
- end Timed_Sleep;
-
- -----------------
- -- Timed_Delay --
- -----------------
-
- -- This is for use in implementing delay statements, so we assume
- -- the caller is abort-deferred but is holding no locks.
-
- procedure Timed_Delay
- (Self_ID : Task_Id;
- Time : Duration;
- Mode : ST.Delay_Modes)
- is
- Base_Time : constant Duration := Monotonic_Clock;
- Check_Time : Duration := Base_Time;
- Abs_Time : Duration;
- Rel_Time : Duration;
- Request : aliased timespec;
-
- Result : Interfaces.C.int;
- pragma Warnings (Off, Result);
-
- begin
- if Single_Lock then
- Lock_RTS;
- end if;
-
- -- Comments needed in code below ???
-
- Write_Lock (Self_ID);
-
- if Mode = Relative then
- Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
-
- if Relative_Timed_Wait then
- Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
- end if;
-
- else
- Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
-
- if Relative_Timed_Wait then
- Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
- end if;
- end if;
-
- if Abs_Time > Check_Time then
- if Relative_Timed_Wait then
- Request := To_Timespec (Rel_Time);
- else
- Request := To_Timespec (Abs_Time);
- end if;
-
- Self_ID.Common.State := Delay_Sleep;
-
- loop
- exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
-
- if Single_Lock then
- Result :=
- pthread_cond_timedwait
- (Self_ID.Common.LL.CV'Access,
- Single_RTS_Lock'Access,
- Request'Access);
- else
- Result :=
- pthread_cond_timedwait
- (Self_ID.Common.LL.CV'Access,
- Self_ID.Common.LL.L'Access,
- Request'Access);
- end if;
-
- Check_Time := Monotonic_Clock;
- exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
-
- pragma Assert (Result = 0 or else
- Result = ETIMEDOUT or else
- Result = EINTR);
- end loop;
-
- Self_ID.Common.State := Runnable;
- end if;
-
- Unlock (Self_ID);
-
- if Single_Lock then
- Unlock_RTS;
- end if;
-
- Result := sched_yield;
- end Timed_Delay;
-
- ---------------------
- -- Monotonic_Clock --
- ---------------------
-
- function Monotonic_Clock return Duration is
- TS : aliased timespec;
- Result : Interfaces.C.int;
- begin
- Result :=
- clock_gettime
- (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access);
- pragma Assert (Result = 0);
- return To_Duration (TS);
- end Monotonic_Clock;
-
- -------------------
- -- RT_Resolution --
- -------------------
-
- function RT_Resolution return Duration is
- Res : aliased timespec;
- Result : Interfaces.C.int;
- begin
- Result :=
- clock_getres
- (clock_id => CLOCK_REALTIME, res => Res'Unchecked_Access);
- pragma Assert (Result = 0);
- return To_Duration (Res);
- end RT_Resolution;
-
- ------------
- -- Wakeup --
- ------------
-
- procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
- pragma Unreferenced (Reason);
- Result : Interfaces.C.int;
- begin
- Result := pthread_cond_signal (T.Common.LL.CV'Access);
- pragma Assert (Result = 0);
- end Wakeup;
-
- -----------
- -- Yield --
- -----------
-
- procedure Yield (Do_Yield : Boolean := True) is
- Result : Interfaces.C.int;
- pragma Unreferenced (Result);
- begin
- if Do_Yield then
- Result := sched_yield;
- end if;
- end Yield;
-
- ------------------
- -- Set_Priority --
- ------------------
-
- procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority) is
- Result : Interfaces.C.int;
- Param : aliased struct_sched_param;
-
- function Get_Policy (Prio : System.Any_Priority) return Character;
- pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
- -- Get priority specific dispatching policy
-
- Priority_Specific_Policy : constant Character := Get_Policy (Prio);
- -- Upper case first character of the policy name corresponding to the
- -- task as set by a Priority_Specific_Dispatching pragma.
-
- begin
- Param.sched_priority := Interfaces.C.int (Prio);
-
- if Time_Slice_Supported
- and then (Dispatching_Policy = 'R'
- or else Priority_Specific_Policy = 'R'
- or else Time_Slice_Val > 0)
- then
- Result :=
- pthread_setschedparam
- (T.Common.LL.Thread, SCHED_RR, Param'Access);
-
- elsif Dispatching_Policy = 'F'
- or else Priority_Specific_Policy = 'F'
- or else Time_Slice_Val = 0
- then
- Result :=
- pthread_setschedparam
- (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
-
- else
- Result :=
- pthread_setschedparam
- (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
- end if;
-
- pragma Assert (Result = 0);
- end Set_OS_Priority;
-
- type Prio_Array_Type is array (System.Any_Priority) of Integer;
- pragma Atomic_Components (Prio_Array_Type);
- Prio_Array : Prio_Array_Type;
- -- Comments needed for these declarations ???
-
- procedure Set_Priority
- (T : Task_Id;
- Prio : System.Any_Priority;
- Loss_Of_Inheritance : Boolean := False)
- is
- Array_Item : Integer;
-
- begin
- Set_OS_Priority (T, Prio);
-
- if Locking_Policy = 'C' then
-
- -- Annex D requirements: loss of inheritance puts task at the start
- -- of the queue for that prio; copied from 5ztaprop (VxWorks).
-
- if Loss_Of_Inheritance
- and then Prio < T.Common.Current_Priority then
-
- Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
- Prio_Array (T.Common.Base_Priority) := Array_Item;
-
- loop
- Yield;
- exit when Array_Item = Prio_Array (T.Common.Base_Priority)
- or else Prio_Array (T.Common.Base_Priority) = 1;
- end loop;
-
- Prio_Array (T.Common.Base_Priority) :=
- Prio_Array (T.Common.Base_Priority) - 1;
- end if;
- end if;
-
- T.Common.Current_Priority := Prio;
- end Set_Priority;
-
- ------------------
- -- Get_Priority --
- ------------------
-
- function Get_Priority (T : Task_Id) return System.Any_Priority is
- begin
- return T.Common.Current_Priority;
- end Get_Priority;
-
- ----------------
- -- Enter_Task --
- ----------------
-
- procedure Enter_Task (Self_ID : Task_Id) is
- begin
- Self_ID.Common.LL.Thread := pthread_self;
- Self_ID.Common.LL.LWP := lwp_self;
-
- Specific.Set (Self_ID);
-
- Lock_RTS;
-
- for J in Known_Tasks'Range loop
- if Known_Tasks (J) = null then
- Known_Tasks (J) := Self_ID;
- Self_ID.Known_Tasks_Index := J;
- exit;
- end if;
- end loop;
-
- Unlock_RTS;
- end Enter_Task;
-
- --------------
- -- New_ATCB --
- --------------
-
- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
- begin
- return new Ada_Task_Control_Block (Entry_Num);
- end New_ATCB;
-
- -------------------
- -- Is_Valid_Task --
- -------------------
-
- function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-
- -----------------------------
- -- Register_Foreign_Thread --
- -----------------------------
-
- function Register_Foreign_Thread return Task_Id is
- begin
- if Is_Valid_Task then
- return Self;
- else
- return Register_Foreign_Thread (pthread_self);
- end if;
- end Register_Foreign_Thread;
-
- --------------------
- -- Initialize_TCB --
- --------------------
-
- procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
- Mutex_Attr : aliased pthread_mutexattr_t;
- Result : Interfaces.C.int;
- Cond_Attr : aliased pthread_condattr_t;
-
- begin
- -- Give the task a unique serial number
-
- Self_ID.Serial_Number := Next_Serial_Number;
- Next_Serial_Number := Next_Serial_Number + 1;
- pragma Assert (Next_Serial_Number /= 0);
-
- if not Single_Lock then
- Result := pthread_mutexattr_init (Mutex_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = 0 then
- Result :=
- pthread_mutex_init
- (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
- end if;
-
- if Result /= 0 then
- Succeeded := False;
- return;
- end if;
-
- Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
- pragma Assert (Result = 0);
- end if;
-
- Result := pthread_condattr_init (Cond_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = 0 then
- Result :=
- pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
- end if;
-
- if Result = 0 then
- Succeeded := True;
- else
- if not Single_Lock then
- Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
- pragma Assert (Result = 0);
- end if;
-
- Succeeded := False;
- end if;
-
- Result := pthread_condattr_destroy (Cond_Attr'Access);
- pragma Assert (Result = 0);
- end Initialize_TCB;
-
- -----------------
- -- Create_Task --
- -----------------
-
- procedure Create_Task
- (T : Task_Id;
- Wrapper : System.Address;
- Stack_Size : System.Parameters.Size_Type;
- Priority : System.Any_Priority;
- Succeeded : out Boolean)
- is
- Attributes : aliased pthread_attr_t;
- Adjusted_Stack_Size : Interfaces.C.size_t;
- Result : Interfaces.C.int;
-
- use System.Task_Info;
-
- begin
- Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
-
- if Stack_Base_Available then
-
- -- If Stack Checking is supported then allocate 2 additional pages:
-
- -- In the worst case, stack is allocated at something like
- -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
- -- to be sure the effective stack size is greater than what
- -- has been asked.
-
- Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size;
- end if;
-
- Result := pthread_attr_init (Attributes'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result /= 0 then
- Succeeded := False;
- return;
- end if;
-
- Result :=
- pthread_attr_setdetachstate
- (Attributes'Access, PTHREAD_CREATE_DETACHED);
- pragma Assert (Result = 0);
-
- Result :=
- pthread_attr_setstacksize
- (Attributes'Access, Adjusted_Stack_Size);
- pragma Assert (Result = 0);
-
- if T.Common.Task_Info /= Default_Scope then
-
- -- We are assuming that Scope_Type has the same values than the
- -- corresponding C macros
-
- Result :=
- pthread_attr_setscope
- (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info));
- pragma Assert (Result = 0);
- end if;
-
- -- Since the initial signal mask of a thread is inherited from the
- -- creator, and the Environment task has all its signals masked, we
- -- do not need to manipulate caller's signal mask at this point.
- -- All tasks in RTS will have All_Tasks_Mask initially.
-
- Result :=
- pthread_create
- (T.Common.LL.Thread'Access,
- Attributes'Access,
- Thread_Body_Access (Wrapper),
- To_Address (T));
- pragma Assert (Result = 0 or else Result = EAGAIN);
-
- Succeeded := Result = 0;
-
- Result := pthread_attr_destroy (Attributes'Access);
- pragma Assert (Result = 0);
-
- if Succeeded then
- Set_Priority (T, Priority);
- end if;
- end Create_Task;
-
- ------------------
- -- Finalize_TCB --
- ------------------
-
- procedure Finalize_TCB (T : Task_Id) is
- Result : Interfaces.C.int;
- Tmp : Task_Id := T;
- Is_Self : constant Boolean := T = Self;
-
- procedure Free is new
- Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
-
- begin
- if not Single_Lock then
- Result := pthread_mutex_destroy (T.Common.LL.L'Access);
- pragma Assert (Result = 0);
- end if;
-
- Result := pthread_cond_destroy (T.Common.LL.CV'Access);
- pragma Assert (Result = 0);
-
- if T.Known_Tasks_Index /= -1 then
- Known_Tasks (T.Known_Tasks_Index) := null;
- end if;
-
- Free (Tmp);
-
- if Is_Self then
- Result := st_setspecific (ATCB_Key, System.Null_Address);
- pragma Assert (Result = 0);
- end if;
- end Finalize_TCB;
-
- ---------------
- -- Exit_Task --
- ---------------
-
- procedure Exit_Task is
- begin
- Specific.Set (null);
- end Exit_Task;
-
- ----------------
- -- Abort_Task --
- ----------------
-
- procedure Abort_Task (T : Task_Id) is
- Result : Interfaces.C.int;
- begin
- Result :=
- pthread_kill
- (T.Common.LL.Thread,
- Signal (System.Interrupt_Management.Abort_Task_Interrupt));
- pragma Assert (Result = 0);
- end Abort_Task;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize (S : in out Suspension_Object) is
- Mutex_Attr : aliased pthread_mutexattr_t;
- Cond_Attr : aliased pthread_condattr_t;
- Result : Interfaces.C.int;
-
- begin
- -- Initialize internal state (always to False (RM D.10(6)))
-
- S.State := False;
- S.Waiting := False;
-
- -- Initialize internal mutex
-
- Result := pthread_mutexattr_init (Mutex_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = ENOMEM then
- raise Storage_Error;
- end if;
-
- Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result = ENOMEM then
- Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
- pragma Assert (Result = 0);
-
- raise Storage_Error;
- end if;
-
- Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
- pragma Assert (Result = 0);
-
- -- Initialize internal condition variable
-
- Result := pthread_condattr_init (Cond_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result /= 0 then
- Result := pthread_mutex_destroy (S.L'Access);
- pragma Assert (Result = 0);
-
- if Result = ENOMEM then
- raise Storage_Error;
- end if;
- end if;
-
- Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
- pragma Assert (Result = 0 or else Result = ENOMEM);
-
- if Result /= 0 then
- Result := pthread_mutex_destroy (S.L'Access);
- pragma Assert (Result = 0);
-
- if Result = ENOMEM then
- Result := pthread_condattr_destroy (Cond_Attr'Access);
- pragma Assert (Result = 0);
-
- raise Storage_Error;
- end if;
- end if;
-
- Result := pthread_condattr_destroy (Cond_Attr'Access);
- pragma Assert (Result = 0);
- end Initialize;
-
- --------------
- -- Finalize --
- --------------
-
- procedure Finalize (S : in out Suspension_Object) is
- Result : Interfaces.C.int;
-
- begin
- -- Destroy internal mutex
-
- Result := pthread_mutex_destroy (S.L'Access);
- pragma Assert (Result = 0);
-
- -- Destroy internal condition variable
-
- Result := pthread_cond_destroy (S.CV'Access);
- pragma Assert (Result = 0);
- end Finalize;
-
- -------------------
- -- Current_State --
- -------------------
-
- function Current_State (S : Suspension_Object) return Boolean is
- begin
- -- We do not want to use lock on this read operation. State is marked
- -- as Atomic so that we ensure that the value retrieved is correct.
-
- return S.State;
- end Current_State;
-
- ---------------
- -- Set_False --
- ---------------
-
- procedure Set_False (S : in out Suspension_Object) is
- Result : Interfaces.C.int;
-
- begin
- SSL.Abort_Defer.all;
-
- Result := pthread_mutex_lock (S.L'Access);
- pragma Assert (Result = 0);
-
- S.State := False;
-
- Result := pthread_mutex_unlock (S.L'Access);
- pragma Assert (Result = 0);
-
- SSL.Abort_Undefer.all;
- end Set_False;
-
- --------------
- -- Set_True --
- --------------
-
- procedure Set_True (S : in out Suspension_Object) is
- Result : Interfaces.C.int;
-
- begin
- SSL.Abort_Defer.all;
-
- Result := pthread_mutex_lock (S.L'Access);
- pragma Assert (Result = 0);
-
- -- If there is already a task waiting on this suspension object then
- -- we resume it, leaving the state of the suspension object to False,
- -- as specified in (RM D.10(9)). Otherwise, just leave state set True.
-
- if S.Waiting then
- S.Waiting := False;
- S.State := False;
-
- Result := pthread_cond_signal (S.CV'Access);
- pragma Assert (Result = 0);
-
- else
- S.State := True;
- end if;
-
- Result := pthread_mutex_unlock (S.L'Access);
- pragma Assert (Result = 0);
-
- SSL.Abort_Undefer.all;
- end Set_True;
-
- ------------------------
- -- Suspend_Until_True --
- ------------------------
-
- procedure Suspend_Until_True (S : in out Suspension_Object) is
- Result : Interfaces.C.int;
-
- begin
- SSL.Abort_Defer.all;
-
- Result := pthread_mutex_lock (S.L'Access);
- pragma Assert (Result = 0);
-
- if S.Waiting then
-
- -- Program_Error must be raised upon calling Suspend_Until_True
- -- if another task is already waiting on that suspension object
- -- (RM D.10 (10)).
-
- Result := pthread_mutex_unlock (S.L'Access);
- pragma Assert (Result = 0);
-
- SSL.Abort_Undefer.all;
-
- raise Program_Error;
-
- else
- -- Suspend the task if the state is False. Otherwise, the task
- -- continues its execution, and the state of the suspension object
- -- is set to False (RM D.10(9)).
-
- if S.State then
- S.State := False;
- else
- S.Waiting := True;
- Result := pthread_cond_wait (S.CV'Access, S.L'Access);
- end if;
-
- Result := pthread_mutex_unlock (S.L'Access);
- pragma Assert (Result = 0);
-
- SSL.Abort_Undefer.all;
- end if;
- end Suspend_Until_True;
-
- ----------------
- -- Check_Exit --
- ----------------
-
- -- Dummy version
-
- function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
- pragma Unreferenced (Self_ID);
- begin
- return True;
- end Check_Exit;
-
- --------------------
- -- Check_No_Locks --
- --------------------
-
- function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
- pragma Unreferenced (Self_ID);
- begin
- return True;
- end Check_No_Locks;
-
- ----------------------
- -- Environment_Task --
- ----------------------
-
- function Environment_Task return Task_Id is
- begin
- return Environment_Task_Id;
- end Environment_Task;
-
- --------------
- -- Lock_RTS --
- --------------
-
- procedure Lock_RTS is
- begin
- Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
- end Lock_RTS;
-
- ----------------
- -- Unlock_RTS --
- ----------------
-
- procedure Unlock_RTS is
- begin
- Unlock (Single_RTS_Lock'Access, Global_Lock => True);
- end Unlock_RTS;
-
- ------------------
- -- Suspend_Task --
- ------------------
-
- function Suspend_Task
- (T : ST.Task_Id;
- Thread_Self : Thread_Id) return Boolean
- is
- pragma Unreferenced (T);
- pragma Unreferenced (Thread_Self);
- begin
- return False;
- end Suspend_Task;
-
- -----------------
- -- Resume_Task --
- -----------------
-
- function Resume_Task
- (T : ST.Task_Id;
- Thread_Self : Thread_Id) return Boolean
- is
- pragma Unreferenced (T);
- pragma Unreferenced (Thread_Self);
- begin
- return False;
- end Resume_Task;
-
- --------------------
- -- Stop_All_Tasks --
- --------------------
-
- procedure Stop_All_Tasks is
- begin
- null;
- end Stop_All_Tasks;
-
- ---------------
- -- Stop_Task --
- ---------------
-
- function Stop_Task (T : ST.Task_Id) return Boolean is
- pragma Unreferenced (T);
- begin
- return False;
- end Stop_Task;
-
- -------------------
- -- Continue_Task --
- -------------------
-
- function Continue_Task (T : ST.Task_Id) return Boolean is
- pragma Unreferenced (T);
- begin
- return False;
- end Continue_Task;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize (Environment_Task : Task_Id) is
- act : aliased struct_sigaction;
- old_act : aliased struct_sigaction;
- Tmp_Set : aliased sigset_t;
- Result : Interfaces.C.int;
-
- function State
- (Int : System.Interrupt_Management.Interrupt_ID) return Character;
- pragma Import (C, State, "__gnat_get_interrupt_state");
- -- Get interrupt state. Defined in a-init.c
- -- The input argument is the interrupt number,
- -- and the result is one of the following:
-
- Default : constant Character := 's';
- -- 'n' this interrupt not set by any Interrupt_State pragma
- -- 'u' Interrupt_State pragma set state to User
- -- 'r' Interrupt_State pragma set state to Runtime
- -- 's' Interrupt_State pragma set state to System (use "default"
- -- system handler)
-
- begin
- Environment_Task_Id := Environment_Task;
-
- Interrupt_Management.Initialize;
-
- -- Prepare the set of signals that should unblocked in all tasks
-
- Result := sigemptyset (Unblocked_Signal_Mask'Access);
- pragma Assert (Result = 0);
-
- for J in Interrupt_Management.Interrupt_ID loop
- if System.Interrupt_Management.Keep_Unmasked (J) then
- Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
- pragma Assert (Result = 0);
- end if;
- end loop;
-
- -- Initialize the lock used to synchronize chain of all ATCBs
-
- Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
-
- Specific.Initialize (Environment_Task);
-
- Enter_Task (Environment_Task);
-
- -- Install the abort-signal handler
-
- if State
- (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
- then
- act.sa_flags := 0;
- act.sa_handler := Abort_Handler'Address;
-
- Result := sigemptyset (Tmp_Set'Access);
- pragma Assert (Result = 0);
- act.sa_mask := Tmp_Set;
-
- Result :=
- sigaction
- (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
- act'Unchecked_Access,
- old_act'Unchecked_Access);
-
- pragma Assert (Result = 0);
- end if;
- end Initialize;
-
-end System.Task_Primitives.Operations;