aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/s-gecobl.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/s-gecobl.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/s-gecobl.adb350
1 files changed, 0 insertions, 350 deletions
diff --git a/gcc-4.4.3/gcc/ada/s-gecobl.adb b/gcc-4.4.3/gcc/ada/s-gecobl.adb
deleted file mode 100644
index d20b53f31..000000000
--- a/gcc-4.4.3/gcc/ada/s-gecobl.adb
+++ /dev/null
@@ -1,350 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME COMPONENTS --
--- --
--- S Y S T E M . G E N E R I C _ C O M P L E X _ B L A S --
--- --
--- B o d y --
--- --
--- Copyright (C) 2006-2009, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Ada.Unchecked_Conversion; use Ada;
-with Interfaces; use Interfaces;
-with Interfaces.Fortran; use Interfaces.Fortran;
-with Interfaces.Fortran.BLAS; use Interfaces.Fortran.BLAS;
-with System.Generic_Array_Operations; use System.Generic_Array_Operations;
-
-package body System.Generic_Complex_BLAS is
-
- Is_Single : constant Boolean :=
- Real'Machine_Mantissa = Fortran.Real'Machine_Mantissa
- and then Fortran.Real (Real'First) = Fortran.Real'First
- and then Fortran.Real (Real'Last) = Fortran.Real'Last;
-
- Is_Double : constant Boolean :=
- Real'Machine_Mantissa = Double_Precision'Machine_Mantissa
- and then
- Double_Precision (Real'First) = Double_Precision'First
- and then
- Double_Precision (Real'Last) = Double_Precision'Last;
-
- subtype Complex is Complex_Types.Complex;
-
- -- Local subprograms
-
- function To_Double_Precision (X : Real) return Double_Precision;
- pragma Inline (To_Double_Precision);
-
- function To_Double_Complex (X : Complex) return Double_Complex;
- pragma Inline (To_Double_Complex);
-
- function To_Complex (X : Double_Complex) return Complex;
- function To_Complex (X : Fortran.Complex) return Complex;
- pragma Inline (To_Complex);
-
- function To_Fortran (X : Complex) return Fortran.Complex;
- pragma Inline (To_Fortran);
-
- -- Instantiations
-
- function To_Double_Complex is new
- Vector_Elementwise_Operation
- (X_Scalar => Complex_Types.Complex,
- Result_Scalar => Fortran.Double_Complex,
- X_Vector => Complex_Vector,
- Result_Vector => BLAS.Double_Complex_Vector,
- Operation => To_Double_Complex);
-
- function To_Complex is new
- Vector_Elementwise_Operation
- (X_Scalar => Fortran.Double_Complex,
- Result_Scalar => Complex,
- X_Vector => BLAS.Double_Complex_Vector,
- Result_Vector => Complex_Vector,
- Operation => To_Complex);
-
- function To_Double_Complex is new
- Matrix_Elementwise_Operation
- (X_Scalar => Complex,
- Result_Scalar => Double_Complex,
- X_Matrix => Complex_Matrix,
- Result_Matrix => BLAS.Double_Complex_Matrix,
- Operation => To_Double_Complex);
-
- function To_Complex is new
- Matrix_Elementwise_Operation
- (X_Scalar => Double_Complex,
- Result_Scalar => Complex,
- X_Matrix => BLAS.Double_Complex_Matrix,
- Result_Matrix => Complex_Matrix,
- Operation => To_Complex);
-
- function To_Double_Precision (X : Real) return Double_Precision is
- begin
- return Double_Precision (X);
- end To_Double_Precision;
-
- function To_Double_Complex (X : Complex) return Double_Complex is
- begin
- return (To_Double_Precision (X.Re), To_Double_Precision (X.Im));
- end To_Double_Complex;
-
- function To_Complex (X : Double_Complex) return Complex is
- begin
- return (Real (X.Re), Real (X.Im));
- end To_Complex;
-
- function To_Complex (X : Fortran.Complex) return Complex is
- begin
- return (Real (X.Re), Real (X.Im));
- end To_Complex;
-
- function To_Fortran (X : Complex) return Fortran.Complex is
- begin
- return (Fortran.Real (X.Re), Fortran.Real (X.Im));
- end To_Fortran;
-
- ---------
- -- dot --
- ---------
-
- function dot
- (N : Positive;
- X : Complex_Vector;
- Inc_X : Integer := 1;
- Y : Complex_Vector;
- Inc_Y : Integer := 1) return Complex
- is
- begin
- if Is_Single then
- declare
- type X_Ptr is access all BLAS.Complex_Vector (X'Range);
- type Y_Ptr is access all BLAS.Complex_Vector (Y'Range);
- function Conv_X is new Unchecked_Conversion (Address, X_Ptr);
- function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr);
- begin
- return To_Complex (BLAS.cdotu (N, Conv_X (X'Address).all, Inc_X,
- Conv_Y (Y'Address).all, Inc_Y));
- end;
-
- elsif Is_Double then
- declare
- type X_Ptr is access all BLAS.Double_Complex_Vector (X'Range);
- type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range);
- function Conv_X is new Unchecked_Conversion (Address, X_Ptr);
- function Conv_Y is new Unchecked_Conversion (Address, Y_Ptr);
- begin
- return To_Complex (BLAS.zdotu (N, Conv_X (X'Address).all, Inc_X,
- Conv_Y (Y'Address).all, Inc_Y));
- end;
-
- else
- return To_Complex (BLAS.zdotu (N, To_Double_Complex (X), Inc_X,
- To_Double_Complex (Y), Inc_Y));
- end if;
- end dot;
-
- ----------
- -- gemm --
- ----------
-
- procedure gemm
- (Trans_A : access constant Character;
- Trans_B : access constant Character;
- M : Positive;
- N : Positive;
- K : Positive;
- Alpha : Complex := (1.0, 0.0);
- A : Complex_Matrix;
- Ld_A : Integer;
- B : Complex_Matrix;
- Ld_B : Integer;
- Beta : Complex := (0.0, 0.0);
- C : in out Complex_Matrix;
- Ld_C : Integer)
- is
- begin
- if Is_Single then
- declare
- subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2));
- subtype B_Type is BLAS.Complex_Matrix (B'Range (1), B'Range (2));
- type C_Ptr is
- access all BLAS.Complex_Matrix (C'Range (1), C'Range (2));
- function Conv_A is
- new Unchecked_Conversion (Complex_Matrix, A_Type);
- function Conv_B is
- new Unchecked_Conversion (Complex_Matrix, B_Type);
- function Conv_C is
- new Unchecked_Conversion (Address, C_Ptr);
- begin
- BLAS.cgemm (Trans_A, Trans_B, M, N, K, To_Fortran (Alpha),
- Conv_A (A), Ld_A, Conv_B (B), Ld_B, To_Fortran (Beta),
- Conv_C (C'Address).all, Ld_C);
- end;
-
- elsif Is_Double then
- declare
- subtype A_Type is
- BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2));
- subtype B_Type is
- BLAS.Double_Complex_Matrix (B'Range (1), B'Range (2));
- type C_Ptr is access all
- BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2));
- function Conv_A is
- new Unchecked_Conversion (Complex_Matrix, A_Type);
- function Conv_B is
- new Unchecked_Conversion (Complex_Matrix, B_Type);
- function Conv_C is new Unchecked_Conversion (Address, C_Ptr);
- begin
- BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha),
- Conv_A (A), Ld_A, Conv_B (B), Ld_B,
- To_Double_Complex (Beta),
- Conv_C (C'Address).all, Ld_C);
- end;
-
- else
- declare
- DP_C : BLAS.Double_Complex_Matrix (C'Range (1), C'Range (2));
- begin
- if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then
- DP_C := To_Double_Complex (C);
- end if;
-
- BLAS.zgemm (Trans_A, Trans_B, M, N, K, To_Double_Complex (Alpha),
- To_Double_Complex (A), Ld_A,
- To_Double_Complex (B), Ld_B, To_Double_Complex (Beta),
- DP_C, Ld_C);
-
- C := To_Complex (DP_C);
- end;
- end if;
- end gemm;
-
- ----------
- -- gemv --
- ----------
-
- procedure gemv
- (Trans : access constant Character;
- M : Natural := 0;
- N : Natural := 0;
- Alpha : Complex := (1.0, 0.0);
- A : Complex_Matrix;
- Ld_A : Positive;
- X : Complex_Vector;
- Inc_X : Integer := 1;
- Beta : Complex := (0.0, 0.0);
- Y : in out Complex_Vector;
- Inc_Y : Integer := 1)
- is
- begin
- if Is_Single then
- declare
- subtype A_Type is BLAS.Complex_Matrix (A'Range (1), A'Range (2));
- subtype X_Type is BLAS.Complex_Vector (X'Range);
- type Y_Ptr is access all BLAS.Complex_Vector (Y'Range);
- function Conv_A is
- new Unchecked_Conversion (Complex_Matrix, A_Type);
- function Conv_X is
- new Unchecked_Conversion (Complex_Vector, X_Type);
- function Conv_Y is
- new Unchecked_Conversion (Address, Y_Ptr);
- begin
- BLAS.cgemv (Trans, M, N, To_Fortran (Alpha),
- Conv_A (A), Ld_A, Conv_X (X), Inc_X, To_Fortran (Beta),
- Conv_Y (Y'Address).all, Inc_Y);
- end;
-
- elsif Is_Double then
- declare
- subtype A_Type is
- BLAS.Double_Complex_Matrix (A'Range (1), A'Range (2));
- subtype X_Type is
- BLAS.Double_Complex_Vector (X'Range);
- type Y_Ptr is access all BLAS.Double_Complex_Vector (Y'Range);
- function Conv_A is
- new Unchecked_Conversion (Complex_Matrix, A_Type);
- function Conv_X is
- new Unchecked_Conversion (Complex_Vector, X_Type);
- function Conv_Y is
- new Unchecked_Conversion (Address, Y_Ptr);
- begin
- BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha),
- Conv_A (A), Ld_A, Conv_X (X), Inc_X,
- To_Double_Complex (Beta),
- Conv_Y (Y'Address).all, Inc_Y);
- end;
-
- else
- declare
- DP_Y : BLAS.Double_Complex_Vector (Y'Range);
- begin
- if Beta.Re /= 0.0 or else Beta.Im /= 0.0 then
- DP_Y := To_Double_Complex (Y);
- end if;
-
- BLAS.zgemv (Trans, M, N, To_Double_Complex (Alpha),
- To_Double_Complex (A), Ld_A,
- To_Double_Complex (X), Inc_X, To_Double_Complex (Beta),
- DP_Y, Inc_Y);
-
- Y := To_Complex (DP_Y);
- end;
- end if;
- end gemv;
-
- ----------
- -- nrm2 --
- ----------
-
- function nrm2
- (N : Natural;
- X : Complex_Vector;
- Inc_X : Integer := 1) return Real
- is
- begin
- if Is_Single then
- declare
- subtype X_Type is BLAS.Complex_Vector (X'Range);
- function Conv_X is
- new Unchecked_Conversion (Complex_Vector, X_Type);
- begin
- return Real (BLAS.scnrm2 (N, Conv_X (X), Inc_X));
- end;
-
- elsif Is_Double then
- declare
- subtype X_Type is BLAS.Double_Complex_Vector (X'Range);
- function Conv_X is
- new Unchecked_Conversion (Complex_Vector, X_Type);
- begin
- return Real (BLAS.dznrm2 (N, Conv_X (X), Inc_X));
- end;
-
- else
- return Real (BLAS.dznrm2 (N, To_Double_Complex (X), Inc_X));
- end if;
- end nrm2;
-
-end System.Generic_Complex_BLAS;