aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/layout.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/layout.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/layout.adb3205
1 files changed, 0 insertions, 3205 deletions
diff --git a/gcc-4.4.3/gcc/ada/layout.adb b/gcc-4.4.3/gcc/ada/layout.adb
deleted file mode 100644
index d4dcd3cb2..000000000
--- a/gcc-4.4.3/gcc/ada/layout.adb
+++ /dev/null
@@ -1,3205 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- L A Y O U T --
--- --
--- B o d y --
--- --
--- Copyright (C) 2001-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Exp_Ch3; use Exp_Ch3;
-with Exp_Util; use Exp_Util;
-with Namet; use Namet;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Repinfo; use Repinfo;
-with Sem; use Sem;
-with Sem_Ch13; use Sem_Ch13;
-with Sem_Eval; use Sem_Eval;
-with Sem_Util; use Sem_Util;
-with Sinfo; use Sinfo;
-with Snames; use Snames;
-with Stand; use Stand;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Uintp; use Uintp;
-
-package body Layout is
-
- ------------------------
- -- Local Declarations --
- ------------------------
-
- SSU : constant Int := Ttypes.System_Storage_Unit;
- -- Short hand for System_Storage_Unit
-
- Vname : constant Name_Id := Name_uV;
- -- Formal parameter name used for functions generated for size offset
- -- values that depend on the discriminant. All such functions have the
- -- following form:
- --
- -- function xxx (V : vtyp) return Unsigned is
- -- begin
- -- return ... expression involving V.discrim
- -- end xxx;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Assoc_Add
- (Loc : Source_Ptr;
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id) return Node_Id;
- -- This is like Make_Op_Add except that it optimizes some cases knowing
- -- that associative rearrangement is allowed for constant folding if one
- -- of the operands is a compile time known value.
-
- function Assoc_Multiply
- (Loc : Source_Ptr;
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id) return Node_Id;
- -- This is like Make_Op_Multiply except that it optimizes some cases
- -- knowing that associative rearrangement is allowed for constant folding
- -- if one of the operands is a compile time known value
-
- function Assoc_Subtract
- (Loc : Source_Ptr;
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id) return Node_Id;
- -- This is like Make_Op_Subtract except that it optimizes some cases
- -- knowing that associative rearrangement is allowed for constant folding
- -- if one of the operands is a compile time known value
-
- function Bits_To_SU (N : Node_Id) return Node_Id;
- -- This is used when we cross the boundary from static sizes in bits to
- -- dynamic sizes in storage units. If the argument N is anything other
- -- than an integer literal, it is returned unchanged, but if it is an
- -- integer literal, then it is taken as a size in bits, and is replaced
- -- by the corresponding size in storage units.
-
- function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id;
- -- Given expressions for the low bound (Lo) and the high bound (Hi),
- -- Build an expression for the value hi-lo+1, converted to type
- -- Standard.Unsigned. Takes care of the case where the operands
- -- are of an enumeration type (so that the subtraction cannot be
- -- done directly) by applying the Pos operator to Hi/Lo first.
-
- function Expr_From_SO_Ref
- (Loc : Source_Ptr;
- D : SO_Ref;
- Comp : Entity_Id := Empty) return Node_Id;
- -- Given a value D from a size or offset field, return an expression
- -- representing the value stored. If the value is known at compile time,
- -- then an N_Integer_Literal is returned with the appropriate value. If
- -- the value references a constant entity, then an N_Identifier node
- -- referencing this entity is returned. If the value denotes a size
- -- function, then returns a call node denoting the given function, with
- -- a single actual parameter that either refers to the parameter V of
- -- an enclosing size function (if Comp is Empty or its type doesn't match
- -- the function's formal), or else is a selected component V.c when Comp
- -- denotes a component c whose type matches that of the function formal.
- -- The Loc value is used for the Sloc value of constructed notes.
-
- function SO_Ref_From_Expr
- (Expr : Node_Id;
- Ins_Type : Entity_Id;
- Vtype : Entity_Id := Empty;
- Make_Func : Boolean := False) return Dynamic_SO_Ref;
- -- This routine is used in the case where a size/offset value is dynamic
- -- and is represented by the expression Expr. SO_Ref_From_Expr checks if
- -- the Expr contains a reference to the identifier V, and if so builds
- -- a function depending on discriminants of the formal parameter V which
- -- is of type Vtype. Otherwise, if the parameter Make_Func is True, then
- -- Expr will be encapsulated in a parameterless function; if Make_Func is
- -- False, then a constant entity with the value Expr is built. The result
- -- is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
- -- omitted if Expr does not contain any reference to V, the created entity.
- -- The declaration created is inserted in the freeze actions of Ins_Type,
- -- which also supplies the Sloc for created nodes. This function also takes
- -- care of making sure that the expression is properly analyzed and
- -- resolved (which may not be the case yet if we build the expression
- -- in this unit).
-
- function Get_Max_SU_Size (E : Entity_Id) return Node_Id;
- -- E is an array type or subtype that has at least one index bound that
- -- is the value of a record discriminant. For such an array, the function
- -- computes an expression that yields the maximum possible size of the
- -- array in storage units. The result is not defined for any other type,
- -- or for arrays that do not depend on discriminants, and it is a fatal
- -- error to call this unless Size_Depends_On_Discriminant (E) is True.
-
- procedure Layout_Array_Type (E : Entity_Id);
- -- Front-end layout of non-bit-packed array type or subtype
-
- procedure Layout_Record_Type (E : Entity_Id);
- -- Front-end layout of record type
-
- procedure Rewrite_Integer (N : Node_Id; V : Uint);
- -- Rewrite node N with an integer literal whose value is V. The Sloc for
- -- the new node is taken from N, and the type of the literal is set to a
- -- copy of the type of N on entry.
-
- procedure Set_And_Check_Static_Size
- (E : Entity_Id;
- Esiz : SO_Ref;
- RM_Siz : SO_Ref);
- -- This procedure is called to check explicit given sizes (possibly stored
- -- in the Esize and RM_Size fields of E) against computed Object_Size
- -- (Esiz) and Value_Size (RM_Siz) values. Appropriate errors and warnings
- -- are posted if specified sizes are inconsistent with specified sizes. On
- -- return, Esize and RM_Size fields of E are set (either from previously
- -- given values, or from the newly computed values, as appropriate).
-
- procedure Set_Composite_Alignment (E : Entity_Id);
- -- This procedure is called for record types and subtypes, and also for
- -- atomic array types and subtypes. If no alignment is set, and the size
- -- is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
- -- match the size.
-
- ----------------------------
- -- Adjust_Esize_Alignment --
- ----------------------------
-
- procedure Adjust_Esize_Alignment (E : Entity_Id) is
- Abits : Int;
- Esize_Set : Boolean;
-
- begin
- -- Nothing to do if size unknown
-
- if Unknown_Esize (E) then
- return;
- end if;
-
- -- Determine if size is constrained by an attribute definition clause
- -- which must be obeyed. If so, we cannot increase the size in this
- -- routine.
-
- -- For a type, the issue is whether an object size clause has been set.
- -- A normal size clause constrains only the value size (RM_Size)
-
- if Is_Type (E) then
- Esize_Set := Has_Object_Size_Clause (E);
-
- -- For an object, the issue is whether a size clause is present
-
- else
- Esize_Set := Has_Size_Clause (E);
- end if;
-
- -- If size is known it must be a multiple of the storage unit size
-
- if Esize (E) mod SSU /= 0 then
-
- -- If not, and size specified, then give error
-
- if Esize_Set then
- Error_Msg_NE
- ("size for& not a multiple of storage unit size",
- Size_Clause (E), E);
- return;
-
- -- Otherwise bump up size to a storage unit boundary
-
- else
- Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
- end if;
- end if;
-
- -- Now we have the size set, it must be a multiple of the alignment
- -- nothing more we can do here if the alignment is unknown here.
-
- if Unknown_Alignment (E) then
- return;
- end if;
-
- -- At this point both the Esize and Alignment are known, so we need
- -- to make sure they are consistent.
-
- Abits := UI_To_Int (Alignment (E)) * SSU;
-
- if Esize (E) mod Abits = 0 then
- return;
- end if;
-
- -- Here we have a situation where the Esize is not a multiple of the
- -- alignment. We must either increase Esize or reduce the alignment to
- -- correct this situation.
-
- -- The case in which we can decrease the alignment is where the
- -- alignment was not set by an alignment clause, and the type in
- -- question is a discrete type, where it is definitely safe to reduce
- -- the alignment. For example:
-
- -- t : integer range 1 .. 2;
- -- for t'size use 8;
-
- -- In this situation, the initial alignment of t is 4, copied from
- -- the Integer base type, but it is safe to reduce it to 1 at this
- -- stage, since we will only be loading a single storage unit.
-
- if Is_Discrete_Type (Etype (E))
- and then not Has_Alignment_Clause (E)
- then
- loop
- Abits := Abits / 2;
- exit when Esize (E) mod Abits = 0;
- end loop;
-
- Init_Alignment (E, Abits / SSU);
- return;
- end if;
-
- -- Now the only possible approach left is to increase the Esize but we
- -- can't do that if the size was set by a specific clause.
-
- if Esize_Set then
- Error_Msg_NE
- ("size for& is not a multiple of alignment",
- Size_Clause (E), E);
-
- -- Otherwise we can indeed increase the size to a multiple of alignment
-
- else
- Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
- end if;
- end Adjust_Esize_Alignment;
-
- ---------------
- -- Assoc_Add --
- ---------------
-
- function Assoc_Add
- (Loc : Source_Ptr;
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id) return Node_Id
- is
- L : Node_Id;
- R : Uint;
-
- begin
- -- Case of right operand is a constant
-
- if Compile_Time_Known_Value (Right_Opnd) then
- L := Left_Opnd;
- R := Expr_Value (Right_Opnd);
-
- -- Case of left operand is a constant
-
- elsif Compile_Time_Known_Value (Left_Opnd) then
- L := Right_Opnd;
- R := Expr_Value (Left_Opnd);
-
- -- Neither operand is a constant, do the addition with no optimization
-
- else
- return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
- end if;
-
- -- Case of left operand is an addition
-
- if Nkind (L) = N_Op_Add then
-
- -- (C1 + E) + C2 = (C1 + C2) + E
-
- if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Left_Opnd (L),
- Expr_Value (Sinfo.Left_Opnd (L)) + R);
- return L;
-
- -- (E + C1) + C2 = E + (C1 + C2)
-
- elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Right_Opnd (L),
- Expr_Value (Sinfo.Right_Opnd (L)) + R);
- return L;
- end if;
-
- -- Case of left operand is a subtraction
-
- elsif Nkind (L) = N_Op_Subtract then
-
- -- (C1 - E) + C2 = (C1 + C2) + E
-
- if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Left_Opnd (L),
- Expr_Value (Sinfo.Left_Opnd (L)) + R);
- return L;
-
- -- (E - C1) + C2 = E - (C1 - C2)
-
- elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Right_Opnd (L),
- Expr_Value (Sinfo.Right_Opnd (L)) - R);
- return L;
- end if;
- end if;
-
- -- Not optimizable, do the addition
-
- return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
- end Assoc_Add;
-
- --------------------
- -- Assoc_Multiply --
- --------------------
-
- function Assoc_Multiply
- (Loc : Source_Ptr;
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id) return Node_Id
- is
- L : Node_Id;
- R : Uint;
-
- begin
- -- Case of right operand is a constant
-
- if Compile_Time_Known_Value (Right_Opnd) then
- L := Left_Opnd;
- R := Expr_Value (Right_Opnd);
-
- -- Case of left operand is a constant
-
- elsif Compile_Time_Known_Value (Left_Opnd) then
- L := Right_Opnd;
- R := Expr_Value (Left_Opnd);
-
- -- Neither operand is a constant, do the multiply with no optimization
-
- else
- return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
- end if;
-
- -- Case of left operand is an multiplication
-
- if Nkind (L) = N_Op_Multiply then
-
- -- (C1 * E) * C2 = (C1 * C2) + E
-
- if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Left_Opnd (L),
- Expr_Value (Sinfo.Left_Opnd (L)) * R);
- return L;
-
- -- (E * C1) * C2 = E * (C1 * C2)
-
- elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Right_Opnd (L),
- Expr_Value (Sinfo.Right_Opnd (L)) * R);
- return L;
- end if;
- end if;
-
- -- Not optimizable, do the multiplication
-
- return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
- end Assoc_Multiply;
-
- --------------------
- -- Assoc_Subtract --
- --------------------
-
- function Assoc_Subtract
- (Loc : Source_Ptr;
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id) return Node_Id
- is
- L : Node_Id;
- R : Uint;
-
- begin
- -- Case of right operand is a constant
-
- if Compile_Time_Known_Value (Right_Opnd) then
- L := Left_Opnd;
- R := Expr_Value (Right_Opnd);
-
- -- Right operand is a constant, do the subtract with no optimization
-
- else
- return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
- end if;
-
- -- Case of left operand is an addition
-
- if Nkind (L) = N_Op_Add then
-
- -- (C1 + E) - C2 = (C1 - C2) + E
-
- if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Left_Opnd (L),
- Expr_Value (Sinfo.Left_Opnd (L)) - R);
- return L;
-
- -- (E + C1) - C2 = E + (C1 - C2)
-
- elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Right_Opnd (L),
- Expr_Value (Sinfo.Right_Opnd (L)) - R);
- return L;
- end if;
-
- -- Case of left operand is a subtraction
-
- elsif Nkind (L) = N_Op_Subtract then
-
- -- (C1 - E) - C2 = (C1 - C2) + E
-
- if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Left_Opnd (L),
- Expr_Value (Sinfo.Left_Opnd (L)) + R);
- return L;
-
- -- (E - C1) - C2 = E - (C1 + C2)
-
- elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
- Rewrite_Integer
- (Sinfo.Right_Opnd (L),
- Expr_Value (Sinfo.Right_Opnd (L)) + R);
- return L;
- end if;
- end if;
-
- -- Not optimizable, do the subtraction
-
- return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
- end Assoc_Subtract;
-
- ----------------
- -- Bits_To_SU --
- ----------------
-
- function Bits_To_SU (N : Node_Id) return Node_Id is
- begin
- if Nkind (N) = N_Integer_Literal then
- Set_Intval (N, (Intval (N) + (SSU - 1)) / SSU);
- end if;
-
- return N;
- end Bits_To_SU;
-
- --------------------
- -- Compute_Length --
- --------------------
-
- function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (Lo);
- Typ : constant Entity_Id := Etype (Lo);
- Lo_Op : Node_Id;
- Hi_Op : Node_Id;
- Lo_Dim : Uint;
- Hi_Dim : Uint;
-
- begin
- -- If the bounds are First and Last attributes for the same dimension
- -- and both have prefixes that denotes the same entity, then we create
- -- and return a Length attribute. This may allow the back end to
- -- generate better code in cases where it already has the length.
-
- if Nkind (Lo) = N_Attribute_Reference
- and then Attribute_Name (Lo) = Name_First
- and then Nkind (Hi) = N_Attribute_Reference
- and then Attribute_Name (Hi) = Name_Last
- and then Is_Entity_Name (Prefix (Lo))
- and then Is_Entity_Name (Prefix (Hi))
- and then Entity (Prefix (Lo)) = Entity (Prefix (Hi))
- then
- Lo_Dim := Uint_1;
- Hi_Dim := Uint_1;
-
- if Present (First (Expressions (Lo))) then
- Lo_Dim := Expr_Value (First (Expressions (Lo)));
- end if;
-
- if Present (First (Expressions (Hi))) then
- Hi_Dim := Expr_Value (First (Expressions (Hi)));
- end if;
-
- if Lo_Dim = Hi_Dim then
- return
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of
- (Entity (Prefix (Lo)), Loc),
- Attribute_Name => Name_Length,
- Expressions => New_List
- (Make_Integer_Literal (Loc, Lo_Dim)));
- end if;
- end if;
-
- Lo_Op := New_Copy_Tree (Lo);
- Hi_Op := New_Copy_Tree (Hi);
-
- -- If type is enumeration type, then use Pos attribute to convert
- -- to integer type for which subtraction is a permitted operation.
-
- if Is_Enumeration_Type (Typ) then
- Lo_Op :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Typ, Loc),
- Attribute_Name => Name_Pos,
- Expressions => New_List (Lo_Op));
-
- Hi_Op :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Typ, Loc),
- Attribute_Name => Name_Pos,
- Expressions => New_List (Hi_Op));
- end if;
-
- return
- Assoc_Add (Loc,
- Left_Opnd =>
- Assoc_Subtract (Loc,
- Left_Opnd => Hi_Op,
- Right_Opnd => Lo_Op),
- Right_Opnd => Make_Integer_Literal (Loc, 1));
- end Compute_Length;
-
- ----------------------
- -- Expr_From_SO_Ref --
- ----------------------
-
- function Expr_From_SO_Ref
- (Loc : Source_Ptr;
- D : SO_Ref;
- Comp : Entity_Id := Empty) return Node_Id
- is
- Ent : Entity_Id;
-
- begin
- if Is_Dynamic_SO_Ref (D) then
- Ent := Get_Dynamic_SO_Entity (D);
-
- if Is_Discrim_SO_Function (Ent) then
-
- -- If a component is passed in whose type matches the type of
- -- the function formal, then select that component from the "V"
- -- parameter rather than passing "V" directly.
-
- if Present (Comp)
- and then Base_Type (Etype (Comp))
- = Base_Type (Etype (First_Formal (Ent)))
- then
- return
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Ent, Loc),
- Parameter_Associations => New_List (
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Chars => Vname),
- Selector_Name => New_Occurrence_Of (Comp, Loc))));
-
- else
- return
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Ent, Loc),
- Parameter_Associations => New_List (
- Make_Identifier (Loc, Chars => Vname)));
- end if;
-
- else
- return New_Occurrence_Of (Ent, Loc);
- end if;
-
- else
- return Make_Integer_Literal (Loc, D);
- end if;
- end Expr_From_SO_Ref;
-
- ---------------------
- -- Get_Max_SU_Size --
- ---------------------
-
- function Get_Max_SU_Size (E : Entity_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (E);
- Indx : Node_Id;
- Ityp : Entity_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- S : Uint;
- Len : Node_Id;
-
- type Val_Status_Type is (Const, Dynamic);
-
- type Val_Type (Status : Val_Status_Type := Const) is
- record
- case Status is
- when Const => Val : Uint;
- when Dynamic => Nod : Node_Id;
- end case;
- end record;
- -- Shows the status of the value so far. Const means that the value is
- -- constant, and Val is the current constant value. Dynamic means that
- -- the value is dynamic, and in this case Nod is the Node_Id of the
- -- expression to compute the value.
-
- Size : Val_Type;
- -- Calculated value so far if Size.Status = Const,
- -- or expression value so far if Size.Status = Dynamic.
-
- SU_Convert_Required : Boolean := False;
- -- This is set to True if the final result must be converted from bits
- -- to storage units (rounding up to a storage unit boundary).
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Max_Discrim (N : in out Node_Id);
- -- If the node N represents a discriminant, replace it by the maximum
- -- value of the discriminant.
-
- procedure Min_Discrim (N : in out Node_Id);
- -- If the node N represents a discriminant, replace it by the minimum
- -- value of the discriminant.
-
- -----------------
- -- Max_Discrim --
- -----------------
-
- procedure Max_Discrim (N : in out Node_Id) is
- begin
- if Nkind (N) = N_Identifier
- and then Ekind (Entity (N)) = E_Discriminant
- then
- N := Type_High_Bound (Etype (N));
- end if;
- end Max_Discrim;
-
- -----------------
- -- Min_Discrim --
- -----------------
-
- procedure Min_Discrim (N : in out Node_Id) is
- begin
- if Nkind (N) = N_Identifier
- and then Ekind (Entity (N)) = E_Discriminant
- then
- N := Type_Low_Bound (Etype (N));
- end if;
- end Min_Discrim;
-
- -- Start of processing for Get_Max_SU_Size
-
- begin
- pragma Assert (Size_Depends_On_Discriminant (E));
-
- -- Initialize status from component size
-
- if Known_Static_Component_Size (E) then
- Size := (Const, Component_Size (E));
-
- else
- Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
- end if;
-
- -- Loop through indices
-
- Indx := First_Index (E);
- while Present (Indx) loop
- Ityp := Etype (Indx);
- Lo := Type_Low_Bound (Ityp);
- Hi := Type_High_Bound (Ityp);
-
- Min_Discrim (Lo);
- Max_Discrim (Hi);
-
- -- Value of the current subscript range is statically known
-
- if Compile_Time_Known_Value (Lo)
- and then Compile_Time_Known_Value (Hi)
- then
- S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
-
- -- If known flat bound, entire size of array is zero!
-
- if S <= 0 then
- return Make_Integer_Literal (Loc, 0);
- end if;
-
- -- Current value is constant, evolve value
-
- if Size.Status = Const then
- Size.Val := Size.Val * S;
-
- -- Current value is dynamic
-
- else
- -- An interesting little optimization, if we have a pending
- -- conversion from bits to storage units, and the current
- -- length is a multiple of the storage unit size, then we
- -- can take the factor out here statically, avoiding some
- -- extra dynamic computations at the end.
-
- if SU_Convert_Required and then S mod SSU = 0 then
- S := S / SSU;
- SU_Convert_Required := False;
- end if;
-
- Size.Nod :=
- Assoc_Multiply (Loc,
- Left_Opnd => Size.Nod,
- Right_Opnd =>
- Make_Integer_Literal (Loc, Intval => S));
- end if;
-
- -- Value of the current subscript range is dynamic
-
- else
- -- If the current size value is constant, then here is where we
- -- make a transition to dynamic values, which are always stored
- -- in storage units, However, we do not want to convert to SU's
- -- too soon, consider the case of a packed array of single bits,
- -- we want to do the SU conversion after computing the size in
- -- this case.
-
- if Size.Status = Const then
-
- -- If the current value is a multiple of the storage unit,
- -- then most certainly we can do the conversion now, simply
- -- by dividing the current value by the storage unit value.
- -- If this works, we set SU_Convert_Required to False.
-
- if Size.Val mod SSU = 0 then
-
- Size :=
- (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
- SU_Convert_Required := False;
-
- -- Otherwise, we go ahead and convert the value in bits, and
- -- set SU_Convert_Required to True to ensure that the final
- -- value is indeed properly converted.
-
- else
- Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
- SU_Convert_Required := True;
- end if;
- end if;
-
- -- Length is hi-lo+1
-
- Len := Compute_Length (Lo, Hi);
-
- -- Check possible range of Len
-
- declare
- OK : Boolean;
- LLo : Uint;
- LHi : Uint;
- pragma Warnings (Off, LHi);
-
- begin
- Set_Parent (Len, E);
- Determine_Range (Len, OK, LLo, LHi);
-
- Len := Convert_To (Standard_Unsigned, Len);
-
- -- If we cannot verify that range cannot be super-flat, we need
- -- a max with zero, since length must be non-negative.
-
- if not OK or else LLo < 0 then
- Len :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Standard_Unsigned, Loc),
- Attribute_Name => Name_Max,
- Expressions => New_List (
- Make_Integer_Literal (Loc, 0),
- Len));
- end if;
- end;
- end if;
-
- Next_Index (Indx);
- end loop;
-
- -- Here after processing all bounds to set sizes. If the value is a
- -- constant, then it is bits, so we convert to storage units.
-
- if Size.Status = Const then
- return Bits_To_SU (Make_Integer_Literal (Loc, Size.Val));
-
- -- Case where the value is dynamic
-
- else
- -- Do convert from bits to SU's if needed
-
- if SU_Convert_Required then
-
- -- The expression required is (Size.Nod + SU - 1) / SU
-
- Size.Nod :=
- Make_Op_Divide (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd => Size.Nod,
- Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
- Right_Opnd => Make_Integer_Literal (Loc, SSU));
- end if;
-
- return Size.Nod;
- end if;
- end Get_Max_SU_Size;
-
- -----------------------
- -- Layout_Array_Type --
- -----------------------
-
- procedure Layout_Array_Type (E : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (E);
- Ctyp : constant Entity_Id := Component_Type (E);
- Indx : Node_Id;
- Ityp : Entity_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- S : Uint;
- Len : Node_Id;
-
- Insert_Typ : Entity_Id;
- -- This is the type with which any generated constants or functions
- -- will be associated (i.e. inserted into the freeze actions). This
- -- is normally the type being laid out. The exception occurs when
- -- we are laying out Itype's which are local to a record type, and
- -- whose scope is this record type. Such types do not have freeze
- -- nodes (because we have no place to put them).
-
- ------------------------------------
- -- How An Array Type is Laid Out --
- ------------------------------------
-
- -- Here is what goes on. We need to multiply the component size of the
- -- array (which has already been set) by the length of each of the
- -- indexes. If all these values are known at compile time, then the
- -- resulting size of the array is the appropriate constant value.
-
- -- If the component size or at least one bound is dynamic (but no
- -- discriminants are present), then the size will be computed as an
- -- expression that calculates the proper size.
-
- -- If there is at least one discriminant bound, then the size is also
- -- computed as an expression, but this expression contains discriminant
- -- values which are obtained by selecting from a function parameter, and
- -- the size is given by a function that is passed the variant record in
- -- question, and whose body is the expression.
-
- type Val_Status_Type is (Const, Dynamic, Discrim);
-
- type Val_Type (Status : Val_Status_Type := Const) is
- record
- case Status is
- when Const =>
- Val : Uint;
- -- Calculated value so far if Val_Status = Const
-
- when Dynamic | Discrim =>
- Nod : Node_Id;
- -- Expression value so far if Val_Status /= Const
-
- end case;
- end record;
- -- Records the value or expression computed so far. Const means that
- -- the value is constant, and Val is the current constant value.
- -- Dynamic means that the value is dynamic, and in this case Nod is
- -- the Node_Id of the expression to compute the value, and Discrim
- -- means that at least one bound is a discriminant, in which case Nod
- -- is the expression so far (which will be the body of the function).
-
- Size : Val_Type;
- -- Value of size computed so far. See comments above
-
- Vtyp : Entity_Id := Empty;
- -- Variant record type for the formal parameter of the discriminant
- -- function V if Status = Discrim.
-
- SU_Convert_Required : Boolean := False;
- -- This is set to True if the final result must be converted from
- -- bits to storage units (rounding up to a storage unit boundary).
-
- Storage_Divisor : Uint := UI_From_Int (SSU);
- -- This is the amount that a nonstatic computed size will be divided
- -- by to convert it from bits to storage units. This is normally
- -- equal to SSU, but can be reduced in the case of packed components
- -- that fit evenly into a storage unit.
-
- Make_Size_Function : Boolean := False;
- -- Indicates whether to request that SO_Ref_From_Expr should
- -- encapsulate the array size expression in a function.
-
- procedure Discrimify (N : in out Node_Id);
- -- If N represents a discriminant, then the Size.Status is set to
- -- Discrim, and Vtyp is set. The parameter N is replaced with the
- -- proper expression to extract the discriminant value from V.
-
- ----------------
- -- Discrimify --
- ----------------
-
- procedure Discrimify (N : in out Node_Id) is
- Decl : Node_Id;
- Typ : Entity_Id;
-
- begin
- if Nkind (N) = N_Identifier
- and then Ekind (Entity (N)) = E_Discriminant
- then
- Set_Size_Depends_On_Discriminant (E);
-
- if Size.Status /= Discrim then
- Decl := Parent (Parent (Entity (N)));
- Size := (Discrim, Size.Nod);
- Vtyp := Defining_Identifier (Decl);
- end if;
-
- Typ := Etype (N);
-
- N :=
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Chars => Vname),
- Selector_Name => New_Occurrence_Of (Entity (N), Loc));
-
- -- Set the Etype attributes of the selected name and its prefix.
- -- Analyze_And_Resolve can't be called here because the Vname
- -- entity denoted by the prefix will not yet exist (it's created
- -- by SO_Ref_From_Expr, called at the end of Layout_Array_Type).
-
- Set_Etype (Prefix (N), Vtyp);
- Set_Etype (N, Typ);
- end if;
- end Discrimify;
-
- -- Start of processing for Layout_Array_Type
-
- begin
- -- Default alignment is component alignment
-
- if Unknown_Alignment (E) then
- Set_Alignment (E, Alignment (Ctyp));
- end if;
-
- -- Calculate proper type for insertions
-
- if Is_Record_Type (Underlying_Type (Scope (E))) then
- Insert_Typ := Underlying_Type (Scope (E));
- else
- Insert_Typ := E;
- end if;
-
- -- If the component type is a generic formal type then there's no point
- -- in determining a size for the array type.
-
- if Is_Generic_Type (Ctyp) then
- return;
- end if;
-
- -- Deal with component size if base type
-
- if Ekind (E) = E_Array_Type then
-
- -- Cannot do anything if Esize of component type unknown
-
- if Unknown_Esize (Ctyp) then
- return;
- end if;
-
- -- Set component size if not set already
-
- if Unknown_Component_Size (E) then
- Set_Component_Size (E, Esize (Ctyp));
- end if;
- end if;
-
- -- (RM 13.3 (48)) says that the size of an unconstrained array
- -- is implementation defined. We choose to leave it as Unknown
- -- here, and the actual behavior is determined by the back end.
-
- if not Is_Constrained (E) then
- return;
- end if;
-
- -- Initialize status from component size
-
- if Known_Static_Component_Size (E) then
- Size := (Const, Component_Size (E));
-
- else
- Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
- end if;
-
- -- Loop to process array indices
-
- Indx := First_Index (E);
- while Present (Indx) loop
- Ityp := Etype (Indx);
-
- -- If an index of the array is a generic formal type then there is
- -- no point in determining a size for the array type.
-
- if Is_Generic_Type (Ityp) then
- return;
- end if;
-
- Lo := Type_Low_Bound (Ityp);
- Hi := Type_High_Bound (Ityp);
-
- -- Value of the current subscript range is statically known
-
- if Compile_Time_Known_Value (Lo)
- and then Compile_Time_Known_Value (Hi)
- then
- S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
-
- -- If known flat bound, entire size of array is zero!
-
- if S <= 0 then
- Set_Esize (E, Uint_0);
- Set_RM_Size (E, Uint_0);
- return;
- end if;
-
- -- If constant, evolve value
-
- if Size.Status = Const then
- Size.Val := Size.Val * S;
-
- -- Current value is dynamic
-
- else
- -- An interesting little optimization, if we have a pending
- -- conversion from bits to storage units, and the current
- -- length is a multiple of the storage unit size, then we
- -- can take the factor out here statically, avoiding some
- -- extra dynamic computations at the end.
-
- if SU_Convert_Required and then S mod SSU = 0 then
- S := S / SSU;
- SU_Convert_Required := False;
- end if;
-
- -- Now go ahead and evolve the expression
-
- Size.Nod :=
- Assoc_Multiply (Loc,
- Left_Opnd => Size.Nod,
- Right_Opnd =>
- Make_Integer_Literal (Loc, Intval => S));
- end if;
-
- -- Value of the current subscript range is dynamic
-
- else
- -- If the current size value is constant, then here is where we
- -- make a transition to dynamic values, which are always stored
- -- in storage units, However, we do not want to convert to SU's
- -- too soon, consider the case of a packed array of single bits,
- -- we want to do the SU conversion after computing the size in
- -- this case.
-
- if Size.Status = Const then
-
- -- If the current value is a multiple of the storage unit,
- -- then most certainly we can do the conversion now, simply
- -- by dividing the current value by the storage unit value.
- -- If this works, we set SU_Convert_Required to False.
-
- if Size.Val mod SSU = 0 then
- Size :=
- (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
- SU_Convert_Required := False;
-
- -- If the current value is a factor of the storage unit, then
- -- we can use a value of one for the size and reduce the
- -- strength of the later division.
-
- elsif SSU mod Size.Val = 0 then
- Storage_Divisor := SSU / Size.Val;
- Size := (Dynamic, Make_Integer_Literal (Loc, Uint_1));
- SU_Convert_Required := True;
-
- -- Otherwise, we go ahead and convert the value in bits, and
- -- set SU_Convert_Required to True to ensure that the final
- -- value is indeed properly converted.
-
- else
- Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
- SU_Convert_Required := True;
- end if;
- end if;
-
- Discrimify (Lo);
- Discrimify (Hi);
-
- -- Length is hi-lo+1
-
- Len := Compute_Length (Lo, Hi);
-
- -- If Len isn't a Length attribute, then its range needs to be
- -- checked a possible Max with zero needs to be computed.
-
- if Nkind (Len) /= N_Attribute_Reference
- or else Attribute_Name (Len) /= Name_Length
- then
- declare
- OK : Boolean;
- LLo : Uint;
- LHi : Uint;
-
- begin
- -- Check possible range of Len
-
- Set_Parent (Len, E);
- Determine_Range (Len, OK, LLo, LHi);
-
- Len := Convert_To (Standard_Unsigned, Len);
-
- -- If range definitely flat or superflat,
- -- result size is zero
-
- if OK and then LHi <= 0 then
- Set_Esize (E, Uint_0);
- Set_RM_Size (E, Uint_0);
- return;
- end if;
-
- -- If we cannot verify that range cannot be super-flat, we
- -- need a max with zero, since length cannot be negative.
-
- if not OK or else LLo < 0 then
- Len :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Standard_Unsigned, Loc),
- Attribute_Name => Name_Max,
- Expressions => New_List (
- Make_Integer_Literal (Loc, 0),
- Len));
- end if;
- end;
- end if;
-
- -- At this stage, Len has the expression for the length
-
- Size.Nod :=
- Assoc_Multiply (Loc,
- Left_Opnd => Size.Nod,
- Right_Opnd => Len);
- end if;
-
- Next_Index (Indx);
- end loop;
-
- -- Here after processing all bounds to set sizes. If the value is a
- -- constant, then it is bits, and the only thing we need to do is to
- -- check against explicit given size and do alignment adjust.
-
- if Size.Status = Const then
- Set_And_Check_Static_Size (E, Size.Val, Size.Val);
- Adjust_Esize_Alignment (E);
-
- -- Case where the value is dynamic
-
- else
- -- Do convert from bits to SU's if needed
-
- if SU_Convert_Required then
-
- -- The expression required is:
- -- (Size.Nod + Storage_Divisor - 1) / Storage_Divisor
-
- Size.Nod :=
- Make_Op_Divide (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd => Size.Nod,
- Right_Opnd => Make_Integer_Literal
- (Loc, Storage_Divisor - 1)),
- Right_Opnd => Make_Integer_Literal (Loc, Storage_Divisor));
- end if;
-
- -- If the array entity is not declared at the library level and its
- -- not nested within a subprogram that is marked for inlining, then
- -- we request that the size expression be encapsulated in a function.
- -- Since this expression is not needed in most cases, we prefer not
- -- to incur the overhead of the computation on calls to the enclosing
- -- subprogram except for subprograms that require the size.
-
- if not Is_Library_Level_Entity (E) then
- Make_Size_Function := True;
-
- declare
- Parent_Subp : Entity_Id := Enclosing_Subprogram (E);
-
- begin
- while Present (Parent_Subp) loop
- if Is_Inlined (Parent_Subp) then
- Make_Size_Function := False;
- exit;
- end if;
-
- Parent_Subp := Enclosing_Subprogram (Parent_Subp);
- end loop;
- end;
- end if;
-
- -- Now set the dynamic size (the Value_Size is always the same
- -- as the Object_Size for arrays whose length is dynamic).
-
- -- ??? If Size.Status = Dynamic, Vtyp will not have been set.
- -- The added initialization sets it to Empty now, but is this
- -- correct?
-
- Set_Esize
- (E,
- SO_Ref_From_Expr
- (Size.Nod, Insert_Typ, Vtyp, Make_Func => Make_Size_Function));
- Set_RM_Size (E, Esize (E));
- end if;
- end Layout_Array_Type;
-
- -------------------
- -- Layout_Object --
- -------------------
-
- procedure Layout_Object (E : Entity_Id) is
- T : constant Entity_Id := Etype (E);
-
- begin
- -- Nothing to do if backend does layout
-
- if not Frontend_Layout_On_Target then
- return;
- end if;
-
- -- Set size if not set for object and known for type. Use the RM_Size if
- -- that is known for the type and Esize is not.
-
- if Unknown_Esize (E) then
- if Known_Esize (T) then
- Set_Esize (E, Esize (T));
-
- elsif Known_RM_Size (T) then
- Set_Esize (E, RM_Size (T));
- end if;
- end if;
-
- -- Set alignment from type if unknown and type alignment known
-
- if Unknown_Alignment (E) and then Known_Alignment (T) then
- Set_Alignment (E, Alignment (T));
- end if;
-
- -- Make sure size and alignment are consistent
-
- Adjust_Esize_Alignment (E);
-
- -- Final adjustment, if we don't know the alignment, and the Esize was
- -- not set by an explicit Object_Size attribute clause, then we reset
- -- the Esize to unknown, since we really don't know it.
-
- if Unknown_Alignment (E)
- and then not Has_Size_Clause (E)
- then
- Set_Esize (E, Uint_0);
- end if;
- end Layout_Object;
-
- ------------------------
- -- Layout_Record_Type --
- ------------------------
-
- procedure Layout_Record_Type (E : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (E);
- Decl : Node_Id;
-
- Comp : Entity_Id;
- -- Current component being laid out
-
- Prev_Comp : Entity_Id;
- -- Previous laid out component
-
- procedure Get_Next_Component_Location
- (Prev_Comp : Entity_Id;
- Align : Uint;
- New_Npos : out SO_Ref;
- New_Fbit : out SO_Ref;
- New_NPMax : out SO_Ref;
- Force_SU : Boolean);
- -- Given the previous component in Prev_Comp, which is already laid
- -- out, and the alignment of the following component, lays out the
- -- following component, and returns its starting position in New_Npos
- -- (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
- -- and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
- -- (no previous component is present), then New_Npos, New_Fbit and
- -- New_NPMax are all set to zero on return. This procedure is also
- -- used to compute the size of a record or variant by giving it the
- -- last component, and the record alignment. Force_SU is used to force
- -- the new component location to be aligned on a storage unit boundary,
- -- even in a packed record, False means that the new position does not
- -- need to be bumped to a storage unit boundary, True means a storage
- -- unit boundary is always required.
-
- procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id);
- -- Lays out component Comp, given Prev_Comp, the previously laid-out
- -- component (Prev_Comp = Empty if no components laid out yet). The
- -- alignment of the record itself is also updated if needed. Both
- -- Comp and Prev_Comp can be either components or discriminants.
-
- procedure Layout_Components
- (From : Entity_Id;
- To : Entity_Id;
- Esiz : out SO_Ref;
- RM_Siz : out SO_Ref);
- -- This procedure lays out the components of the given component list
- -- which contains the components starting with From and ending with To.
- -- The Next_Entity chain is used to traverse the components. On entry,
- -- Prev_Comp is set to the component preceding the list, so that the
- -- list is laid out after this component. Prev_Comp is set to Empty if
- -- the component list is to be laid out starting at the start of the
- -- record. On return, the components are all laid out, and Prev_Comp is
- -- set to the last laid out component. On return, Esiz is set to the
- -- resulting Object_Size value, which is the length of the record up
- -- to and including the last laid out entity. For Esiz, the value is
- -- adjusted to match the alignment of the record. RM_Siz is similarly
- -- set to the resulting Value_Size value, which is the same length, but
- -- not adjusted to meet the alignment. Note that in the case of variant
- -- records, Esiz represents the maximum size.
-
- procedure Layout_Non_Variant_Record;
- -- Procedure called to lay out a non-variant record type or subtype
-
- procedure Layout_Variant_Record;
- -- Procedure called to lay out a variant record type. Decl is set to the
- -- full type declaration for the variant record.
-
- ---------------------------------
- -- Get_Next_Component_Location --
- ---------------------------------
-
- procedure Get_Next_Component_Location
- (Prev_Comp : Entity_Id;
- Align : Uint;
- New_Npos : out SO_Ref;
- New_Fbit : out SO_Ref;
- New_NPMax : out SO_Ref;
- Force_SU : Boolean)
- is
- begin
- -- No previous component, return zero position
-
- if No (Prev_Comp) then
- New_Npos := Uint_0;
- New_Fbit := Uint_0;
- New_NPMax := Uint_0;
- return;
- end if;
-
- -- Here we have a previous component
-
- declare
- Loc : constant Source_Ptr := Sloc (Prev_Comp);
-
- Old_Npos : constant SO_Ref := Normalized_Position (Prev_Comp);
- Old_Fbit : constant SO_Ref := Normalized_First_Bit (Prev_Comp);
- Old_NPMax : constant SO_Ref := Normalized_Position_Max (Prev_Comp);
- Old_Esiz : constant SO_Ref := Esize (Prev_Comp);
-
- Old_Maxsz : Node_Id;
- -- Expression representing maximum size of previous component
-
- begin
- -- Case where previous field had a dynamic size
-
- if Is_Dynamic_SO_Ref (Esize (Prev_Comp)) then
-
- -- If the previous field had a dynamic length, then it is
- -- required to occupy an integral number of storage units,
- -- and start on a storage unit boundary. This means that
- -- the Normalized_First_Bit value is zero in the previous
- -- component, and the new value is also set to zero.
-
- New_Fbit := Uint_0;
-
- -- In this case, the new position is given by an expression
- -- that is the sum of old normalized position and old size.
-
- New_Npos :=
- SO_Ref_From_Expr
- (Assoc_Add (Loc,
- Left_Opnd =>
- Expr_From_SO_Ref (Loc, Old_Npos),
- Right_Opnd =>
- Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp)),
- Ins_Type => E,
- Vtype => E);
-
- -- Get maximum size of previous component
-
- if Size_Depends_On_Discriminant (Etype (Prev_Comp)) then
- Old_Maxsz := Get_Max_SU_Size (Etype (Prev_Comp));
- else
- Old_Maxsz := Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp);
- end if;
-
- -- Now we can compute the new max position. If the max size
- -- is static and the old position is static, then we can
- -- compute the new position statically.
-
- if Nkind (Old_Maxsz) = N_Integer_Literal
- and then Known_Static_Normalized_Position_Max (Prev_Comp)
- then
- New_NPMax := Old_NPMax + Intval (Old_Maxsz);
-
- -- Otherwise new max position is dynamic
-
- else
- New_NPMax :=
- SO_Ref_From_Expr
- (Assoc_Add (Loc,
- Left_Opnd => Expr_From_SO_Ref (Loc, Old_NPMax),
- Right_Opnd => Old_Maxsz),
- Ins_Type => E,
- Vtype => E);
- end if;
-
- -- Previous field has known static Esize
-
- else
- New_Fbit := Old_Fbit + Old_Esiz;
-
- -- Bump New_Fbit to storage unit boundary if required
-
- if New_Fbit /= 0 and then Force_SU then
- New_Fbit := (New_Fbit + SSU - 1) / SSU * SSU;
- end if;
-
- -- If old normalized position is static, we can go ahead and
- -- compute the new normalized position directly.
-
- if Known_Static_Normalized_Position (Prev_Comp) then
- New_Npos := Old_Npos;
-
- if New_Fbit >= SSU then
- New_Npos := New_Npos + New_Fbit / SSU;
- New_Fbit := New_Fbit mod SSU;
- end if;
-
- -- Bump alignment if stricter than prev
-
- if Align > Alignment (Etype (Prev_Comp)) then
- New_Npos := (New_Npos + Align - 1) / Align * Align;
- end if;
-
- -- The max position is always equal to the position if
- -- the latter is static, since arrays depending on the
- -- values of discriminants never have static sizes.
-
- New_NPMax := New_Npos;
- return;
-
- -- Case of old normalized position is dynamic
-
- else
- -- If new bit position is within the current storage unit,
- -- we can just copy the old position as the result position
- -- (we have already set the new first bit value).
-
- if New_Fbit < SSU then
- New_Npos := Old_Npos;
- New_NPMax := Old_NPMax;
-
- -- If new bit position is past the current storage unit, we
- -- need to generate a new dynamic value for the position
- -- ??? need to deal with alignment
-
- else
- New_Npos :=
- SO_Ref_From_Expr
- (Assoc_Add (Loc,
- Left_Opnd => Expr_From_SO_Ref (Loc, Old_Npos),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => New_Fbit / SSU)),
- Ins_Type => E,
- Vtype => E);
-
- New_NPMax :=
- SO_Ref_From_Expr
- (Assoc_Add (Loc,
- Left_Opnd => Expr_From_SO_Ref (Loc, Old_NPMax),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => New_Fbit / SSU)),
- Ins_Type => E,
- Vtype => E);
- New_Fbit := New_Fbit mod SSU;
- end if;
- end if;
- end if;
- end;
- end Get_Next_Component_Location;
-
- ----------------------
- -- Layout_Component --
- ----------------------
-
- procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id) is
- Ctyp : constant Entity_Id := Etype (Comp);
- ORC : constant Entity_Id := Original_Record_Component (Comp);
- Npos : SO_Ref;
- Fbit : SO_Ref;
- NPMax : SO_Ref;
- Forc : Boolean;
-
- begin
- -- Increase alignment of record if necessary. Note that we do not
- -- do this for packed records, which have an alignment of one by
- -- default, or for records for which an explicit alignment was
- -- specified with an alignment clause.
-
- if not Is_Packed (E)
- and then not Has_Alignment_Clause (E)
- and then Alignment (Ctyp) > Alignment (E)
- then
- Set_Alignment (E, Alignment (Ctyp));
- end if;
-
- -- If original component set, then use same layout
-
- if Present (ORC) and then ORC /= Comp then
- Set_Normalized_Position (Comp, Normalized_Position (ORC));
- Set_Normalized_First_Bit (Comp, Normalized_First_Bit (ORC));
- Set_Normalized_Position_Max (Comp, Normalized_Position_Max (ORC));
- Set_Component_Bit_Offset (Comp, Component_Bit_Offset (ORC));
- Set_Esize (Comp, Esize (ORC));
- return;
- end if;
-
- -- Parent field is always at start of record, this will overlap
- -- the actual fields that are part of the parent, and that's fine
-
- if Chars (Comp) = Name_uParent then
- Set_Normalized_Position (Comp, Uint_0);
- Set_Normalized_First_Bit (Comp, Uint_0);
- Set_Normalized_Position_Max (Comp, Uint_0);
- Set_Component_Bit_Offset (Comp, Uint_0);
- Set_Esize (Comp, Esize (Ctyp));
- return;
- end if;
-
- -- Check case of type of component has a scope of the record we are
- -- laying out. When this happens, the type in question is an Itype
- -- that has not yet been laid out (that's because such types do not
- -- get frozen in the normal manner, because there is no place for
- -- the freeze nodes).
-
- if Scope (Ctyp) = E then
- Layout_Type (Ctyp);
- end if;
-
- -- If component already laid out, then we are done
-
- if Known_Normalized_Position (Comp) then
- return;
- end if;
-
- -- Set size of component from type. We use the Esize except in a
- -- packed record, where we use the RM_Size (since that is what the
- -- RM_Size value, as distinct from the Object_Size is useful for!)
-
- if Is_Packed (E) then
- Set_Esize (Comp, RM_Size (Ctyp));
- else
- Set_Esize (Comp, Esize (Ctyp));
- end if;
-
- -- Compute the component position from the previous one. See if
- -- current component requires being on a storage unit boundary.
-
- -- If record is not packed, we always go to a storage unit boundary
-
- if not Is_Packed (E) then
- Forc := True;
-
- -- Packed cases
-
- else
- -- Elementary types do not need SU boundary in packed record
-
- if Is_Elementary_Type (Ctyp) then
- Forc := False;
-
- -- Packed array types with a modular packed array type do not
- -- force a storage unit boundary (since the code generation
- -- treats these as equivalent to the underlying modular type),
-
- elsif Is_Array_Type (Ctyp)
- and then Is_Bit_Packed_Array (Ctyp)
- and then Is_Modular_Integer_Type (Packed_Array_Type (Ctyp))
- then
- Forc := False;
-
- -- Record types with known length less than or equal to the length
- -- of long long integer can also be unaligned, since they can be
- -- treated as scalars.
-
- elsif Is_Record_Type (Ctyp)
- and then not Is_Dynamic_SO_Ref (Esize (Ctyp))
- and then Esize (Ctyp) <= Esize (Standard_Long_Long_Integer)
- then
- Forc := False;
-
- -- All other cases force a storage unit boundary, even when packed
-
- else
- Forc := True;
- end if;
- end if;
-
- -- Now get the next component location
-
- Get_Next_Component_Location
- (Prev_Comp, Alignment (Ctyp), Npos, Fbit, NPMax, Forc);
- Set_Normalized_Position (Comp, Npos);
- Set_Normalized_First_Bit (Comp, Fbit);
- Set_Normalized_Position_Max (Comp, NPMax);
-
- -- Set Component_Bit_Offset in the static case
-
- if Known_Static_Normalized_Position (Comp)
- and then Known_Normalized_First_Bit (Comp)
- then
- Set_Component_Bit_Offset (Comp, SSU * Npos + Fbit);
- end if;
- end Layout_Component;
-
- -----------------------
- -- Layout_Components --
- -----------------------
-
- procedure Layout_Components
- (From : Entity_Id;
- To : Entity_Id;
- Esiz : out SO_Ref;
- RM_Siz : out SO_Ref)
- is
- End_Npos : SO_Ref;
- End_Fbit : SO_Ref;
- End_NPMax : SO_Ref;
-
- begin
- -- Only lay out components if there are some to lay out!
-
- if Present (From) then
-
- -- Lay out components with no component clauses
-
- Comp := From;
- loop
- if Ekind (Comp) = E_Component
- or else Ekind (Comp) = E_Discriminant
- then
- -- The compatibility of component clauses with composite
- -- types isn't checked in Sem_Ch13, so we check it here.
-
- if Present (Component_Clause (Comp)) then
- if Is_Composite_Type (Etype (Comp))
- and then Esize (Comp) < RM_Size (Etype (Comp))
- then
- Error_Msg_Uint_1 := RM_Size (Etype (Comp));
- Error_Msg_NE
- ("size for & too small, minimum allowed is ^",
- Component_Clause (Comp),
- Comp);
- end if;
-
- else
- Layout_Component (Comp, Prev_Comp);
- Prev_Comp := Comp;
- end if;
- end if;
-
- exit when Comp = To;
- Next_Entity (Comp);
- end loop;
- end if;
-
- -- Set size fields, both are zero if no components
-
- if No (Prev_Comp) then
- Esiz := Uint_0;
- RM_Siz := Uint_0;
-
- -- If record subtype with non-static discriminants, then we don't
- -- know which variant will be the one which gets chosen. We don't
- -- just want to set the maximum size from the base, because the
- -- size should depend on the particular variant.
-
- -- What we do is to use the RM_Size of the base type, which has
- -- the necessary conditional computation of the size, using the
- -- size information for the particular variant chosen. Records
- -- with default discriminants for example have an Esize that is
- -- set to the maximum of all variants, but that's not what we
- -- want for a constrained subtype.
-
- elsif Ekind (E) = E_Record_Subtype
- and then not Has_Static_Discriminants (E)
- then
- declare
- BT : constant Node_Id := Base_Type (E);
- begin
- Esiz := RM_Size (BT);
- RM_Siz := RM_Size (BT);
- Set_Alignment (E, Alignment (BT));
- end;
-
- else
- -- First the object size, for which we align past the last field
- -- to the alignment of the record (the object size is required to
- -- be a multiple of the alignment).
-
- Get_Next_Component_Location
- (Prev_Comp,
- Alignment (E),
- End_Npos,
- End_Fbit,
- End_NPMax,
- Force_SU => True);
-
- -- If the resulting normalized position is a dynamic reference,
- -- then the size is dynamic, and is stored in storage units. In
- -- this case, we set the RM_Size to the same value, it is simply
- -- not worth distinguishing Esize and RM_Size values in the
- -- dynamic case, since the RM has nothing to say about them.
-
- -- Note that a size cannot have been given in this case, since
- -- size specifications cannot be given for variable length types.
-
- declare
- Align : constant Uint := Alignment (E);
-
- begin
- if Is_Dynamic_SO_Ref (End_Npos) then
- RM_Siz := End_Npos;
-
- -- Set the Object_Size allowing for the alignment. In the
- -- dynamic case, we must do the actual runtime computation.
- -- We can skip this in the non-packed record case if the
- -- last component has a smaller alignment than the overall
- -- record alignment.
-
- if Is_Dynamic_SO_Ref (End_NPMax) then
- Esiz := End_NPMax;
-
- if Is_Packed (E)
- or else Alignment (Etype (Prev_Comp)) < Align
- then
- -- The expression we build is:
- -- (expr + align - 1) / align * align
-
- Esiz :=
- SO_Ref_From_Expr
- (Expr =>
- Make_Op_Multiply (Loc,
- Left_Opnd =>
- Make_Op_Divide (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd =>
- Expr_From_SO_Ref (Loc, Esiz),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => Align - 1)),
- Right_Opnd =>
- Make_Integer_Literal (Loc, Align)),
- Right_Opnd =>
- Make_Integer_Literal (Loc, Align)),
- Ins_Type => E,
- Vtype => E);
- end if;
-
- -- Here Esiz is static, so we can adjust the alignment
- -- directly go give the required aligned value.
-
- else
- Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
- end if;
-
- -- Case where computed size is static
-
- else
- -- The ending size was computed in Npos in storage units,
- -- but the actual size is stored in bits, so adjust
- -- accordingly. We also adjust the size to match the
- -- alignment here.
-
- Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
-
- -- Compute the resulting Value_Size (RM_Size). For this
- -- purpose we do not force alignment of the record or
- -- storage size alignment of the result.
-
- Get_Next_Component_Location
- (Prev_Comp,
- Uint_0,
- End_Npos,
- End_Fbit,
- End_NPMax,
- Force_SU => False);
-
- RM_Siz := End_Npos * SSU + End_Fbit;
- Set_And_Check_Static_Size (E, Esiz, RM_Siz);
- end if;
- end;
- end if;
- end Layout_Components;
-
- -------------------------------
- -- Layout_Non_Variant_Record --
- -------------------------------
-
- procedure Layout_Non_Variant_Record is
- Esiz : SO_Ref;
- RM_Siz : SO_Ref;
- begin
- Layout_Components (First_Entity (E), Last_Entity (E), Esiz, RM_Siz);
- Set_Esize (E, Esiz);
- Set_RM_Size (E, RM_Siz);
- end Layout_Non_Variant_Record;
-
- ---------------------------
- -- Layout_Variant_Record --
- ---------------------------
-
- procedure Layout_Variant_Record is
- Tdef : constant Node_Id := Type_Definition (Decl);
- First_Discr : Entity_Id;
- Last_Discr : Entity_Id;
- Esiz : SO_Ref;
-
- RM_Siz : SO_Ref;
- pragma Warnings (Off, SO_Ref);
-
- RM_Siz_Expr : Node_Id := Empty;
- -- Expression for the evolving RM_Siz value. This is typically a
- -- conditional expression which involves tests of discriminant values
- -- that are formed as references to the entity V. At the end of
- -- scanning all the components, a suitable function is constructed
- -- in which V is the parameter.
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Layout_Component_List
- (Clist : Node_Id;
- Esiz : out SO_Ref;
- RM_Siz_Expr : out Node_Id);
- -- Recursive procedure, called to lay out one component list Esiz
- -- and RM_Siz_Expr are set to the Object_Size and Value_Size values
- -- respectively representing the record size up to and including the
- -- last component in the component list (including any variants in
- -- this component list). RM_Siz_Expr is returned as an expression
- -- which may in the general case involve some references to the
- -- discriminants of the current record value, referenced by selecting
- -- from the entity V.
-
- ---------------------------
- -- Layout_Component_List --
- ---------------------------
-
- procedure Layout_Component_List
- (Clist : Node_Id;
- Esiz : out SO_Ref;
- RM_Siz_Expr : out Node_Id)
- is
- Citems : constant List_Id := Component_Items (Clist);
- Vpart : constant Node_Id := Variant_Part (Clist);
- Prv : Node_Id;
- Var : Node_Id;
- RM_Siz : Uint;
- RMS_Ent : Entity_Id;
-
- begin
- if Is_Non_Empty_List (Citems) then
- Layout_Components
- (From => Defining_Identifier (First (Citems)),
- To => Defining_Identifier (Last (Citems)),
- Esiz => Esiz,
- RM_Siz => RM_Siz);
- else
- Layout_Components (Empty, Empty, Esiz, RM_Siz);
- end if;
-
- -- Case where no variants are present in the component list
-
- if No (Vpart) then
-
- -- The Esiz value has been correctly set by the call to
- -- Layout_Components, so there is nothing more to be done.
-
- -- For RM_Siz, we have an SO_Ref value, which we must convert
- -- to an appropriate expression.
-
- if Is_Static_SO_Ref (RM_Siz) then
- RM_Siz_Expr :=
- Make_Integer_Literal (Loc,
- Intval => RM_Siz);
-
- else
- RMS_Ent := Get_Dynamic_SO_Entity (RM_Siz);
-
- -- If the size is represented by a function, then we create
- -- an appropriate function call using V as the parameter to
- -- the call.
-
- if Is_Discrim_SO_Function (RMS_Ent) then
- RM_Siz_Expr :=
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (RMS_Ent, Loc),
- Parameter_Associations => New_List (
- Make_Identifier (Loc, Chars => Vname)));
-
- -- If the size is represented by a constant, then the
- -- expression we want is a reference to this constant
-
- else
- RM_Siz_Expr := New_Occurrence_Of (RMS_Ent, Loc);
- end if;
- end if;
-
- -- Case where variants are present in this component list
-
- else
- declare
- EsizV : SO_Ref;
- RM_SizV : Node_Id;
- Dchoice : Node_Id;
- Discrim : Node_Id;
- Dtest : Node_Id;
- D_List : List_Id;
- D_Entity : Entity_Id;
-
- begin
- RM_Siz_Expr := Empty;
- Prv := Prev_Comp;
-
- Var := Last (Variants (Vpart));
- while Present (Var) loop
- Prev_Comp := Prv;
- Layout_Component_List
- (Component_List (Var), EsizV, RM_SizV);
-
- -- Set the Object_Size. If this is the first variant,
- -- we just set the size of this first variant.
-
- if Var = Last (Variants (Vpart)) then
- Esiz := EsizV;
-
- -- Otherwise the Object_Size is formed as a maximum
- -- of Esiz so far from previous variants, and the new
- -- Esiz value from the variant we just processed.
-
- -- If both values are static, we can just compute the
- -- maximum directly to save building junk nodes.
-
- elsif not Is_Dynamic_SO_Ref (Esiz)
- and then not Is_Dynamic_SO_Ref (EsizV)
- then
- Esiz := UI_Max (Esiz, EsizV);
-
- -- If either value is dynamic, then we have to generate
- -- an appropriate Standard_Unsigned'Max attribute call.
- -- If one of the values is static then it needs to be
- -- converted from bits to storage units to be compatible
- -- with the dynamic value.
-
- else
- if Is_Static_SO_Ref (Esiz) then
- Esiz := (Esiz + SSU - 1) / SSU;
- end if;
-
- if Is_Static_SO_Ref (EsizV) then
- EsizV := (EsizV + SSU - 1) / SSU;
- end if;
-
- Esiz :=
- SO_Ref_From_Expr
- (Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Max,
- Prefix =>
- New_Occurrence_Of (Standard_Unsigned, Loc),
- Expressions => New_List (
- Expr_From_SO_Ref (Loc, Esiz),
- Expr_From_SO_Ref (Loc, EsizV))),
- Ins_Type => E,
- Vtype => E);
- end if;
-
- -- Now deal with Value_Size (RM_Siz). We are aiming at
- -- an expression that looks like:
-
- -- if xxDx (V.disc) then rmsiz1
- -- else if xxDx (V.disc) then rmsiz2
- -- else ...
-
- -- Where rmsiz1, rmsiz2... are the RM_Siz values for the
- -- individual variants, and xxDx are the discriminant
- -- checking functions generated for the variant type.
-
- -- If this is the first variant, we simply set the result
- -- as the expression. Note that this takes care of the
- -- others case.
-
- if No (RM_Siz_Expr) then
- RM_Siz_Expr := Bits_To_SU (RM_SizV);
-
- -- Otherwise construct the appropriate test
-
- else
- -- The test to be used in general is a call to the
- -- discriminant checking function. However, it is
- -- definitely worth special casing the very common
- -- case where a single value is involved.
-
- Dchoice := First (Discrete_Choices (Var));
-
- if No (Next (Dchoice))
- and then Nkind (Dchoice) /= N_Range
- then
- -- Discriminant to be tested
-
- Discrim :=
- Make_Selected_Component (Loc,
- Prefix =>
- Make_Identifier (Loc, Chars => Vname),
- Selector_Name =>
- New_Occurrence_Of
- (Entity (Name (Vpart)), Loc));
-
- Dtest :=
- Make_Op_Eq (Loc,
- Left_Opnd => Discrim,
- Right_Opnd => New_Copy (Dchoice));
-
- -- Generate a call to the discriminant-checking
- -- function for the variant. Note that the result
- -- has to be complemented since the function returns
- -- False when the passed discriminant value matches.
-
- else
- -- The checking function takes all of the type's
- -- discriminants as parameters, so a list of all
- -- the selected discriminants must be constructed.
-
- D_List := New_List;
- D_Entity := First_Discriminant (E);
- while Present (D_Entity) loop
- Append (
- Make_Selected_Component (Loc,
- Prefix =>
- Make_Identifier (Loc, Chars => Vname),
- Selector_Name =>
- New_Occurrence_Of
- (D_Entity, Loc)),
- D_List);
-
- D_Entity := Next_Discriminant (D_Entity);
- end loop;
-
- Dtest :=
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Function_Call (Loc,
- Name =>
- New_Occurrence_Of
- (Dcheck_Function (Var), Loc),
- Parameter_Associations =>
- D_List));
- end if;
-
- RM_Siz_Expr :=
- Make_Conditional_Expression (Loc,
- Expressions =>
- New_List
- (Dtest, Bits_To_SU (RM_SizV), RM_Siz_Expr));
- end if;
-
- Prev (Var);
- end loop;
- end;
- end if;
- end Layout_Component_List;
-
- -- Start of processing for Layout_Variant_Record
-
- begin
- -- We need the discriminant checking functions, since we generate
- -- calls to these functions for the RM_Size expression, so make
- -- sure that these functions have been constructed in time.
-
- Build_Discr_Checking_Funcs (Decl);
-
- -- Lay out the discriminants
-
- First_Discr := First_Discriminant (E);
- Last_Discr := First_Discr;
- while Present (Next_Discriminant (Last_Discr)) loop
- Next_Discriminant (Last_Discr);
- end loop;
-
- Layout_Components
- (From => First_Discr,
- To => Last_Discr,
- Esiz => Esiz,
- RM_Siz => RM_Siz);
-
- -- Lay out the main component list (this will make recursive calls
- -- to lay out all component lists nested within variants).
-
- Layout_Component_List (Component_List (Tdef), Esiz, RM_Siz_Expr);
- Set_Esize (E, Esiz);
-
- -- If the RM_Size is a literal, set its value
-
- if Nkind (RM_Siz_Expr) = N_Integer_Literal then
- Set_RM_Size (E, Intval (RM_Siz_Expr));
-
- -- Otherwise we construct a dynamic SO_Ref
-
- else
- Set_RM_Size (E,
- SO_Ref_From_Expr
- (RM_Siz_Expr,
- Ins_Type => E,
- Vtype => E));
- end if;
- end Layout_Variant_Record;
-
- -- Start of processing for Layout_Record_Type
-
- begin
- -- If this is a cloned subtype, just copy the size fields from the
- -- original, nothing else needs to be done in this case, since the
- -- components themselves are all shared.
-
- if (Ekind (E) = E_Record_Subtype
- or else
- Ekind (E) = E_Class_Wide_Subtype)
- and then Present (Cloned_Subtype (E))
- then
- Set_Esize (E, Esize (Cloned_Subtype (E)));
- Set_RM_Size (E, RM_Size (Cloned_Subtype (E)));
- Set_Alignment (E, Alignment (Cloned_Subtype (E)));
-
- -- Another special case, class-wide types. The RM says that the size
- -- of such types is implementation defined (RM 13.3(48)). What we do
- -- here is to leave the fields set as unknown values, and the backend
- -- determines the actual behavior.
-
- elsif Ekind (E) = E_Class_Wide_Type then
- null;
-
- -- All other cases
-
- else
- -- Initialize alignment conservatively to 1. This value will be
- -- increased as necessary during processing of the record.
-
- if Unknown_Alignment (E) then
- Set_Alignment (E, Uint_1);
- end if;
-
- -- Initialize previous component. This is Empty unless there are
- -- components which have already been laid out by component clauses.
- -- If there are such components, we start our lay out of the
- -- remaining components following the last such component.
-
- Prev_Comp := Empty;
-
- Comp := First_Component_Or_Discriminant (E);
- while Present (Comp) loop
- if Present (Component_Clause (Comp)) then
- if No (Prev_Comp)
- or else
- Component_Bit_Offset (Comp) >
- Component_Bit_Offset (Prev_Comp)
- then
- Prev_Comp := Comp;
- end if;
- end if;
-
- Next_Component_Or_Discriminant (Comp);
- end loop;
-
- -- We have two separate circuits, one for non-variant records and
- -- one for variant records. For non-variant records, we simply go
- -- through the list of components. This handles all the non-variant
- -- cases including those cases of subtypes where there is no full
- -- type declaration, so the tree cannot be used to drive the layout.
- -- For variant records, we have to drive the layout from the tree
- -- since we need to understand the variant structure in this case.
-
- if Present (Full_View (E)) then
- Decl := Declaration_Node (Full_View (E));
- else
- Decl := Declaration_Node (E);
- end if;
-
- -- Scan all the components
-
- if Nkind (Decl) = N_Full_Type_Declaration
- and then Has_Discriminants (E)
- and then Nkind (Type_Definition (Decl)) = N_Record_Definition
- and then Present (Component_List (Type_Definition (Decl)))
- and then
- Present (Variant_Part (Component_List (Type_Definition (Decl))))
- then
- Layout_Variant_Record;
- else
- Layout_Non_Variant_Record;
- end if;
- end if;
- end Layout_Record_Type;
-
- -----------------
- -- Layout_Type --
- -----------------
-
- procedure Layout_Type (E : Entity_Id) is
- Desig_Type : Entity_Id;
-
- begin
- -- For string literal types, for now, kill the size always, this is
- -- because gigi does not like or need the size to be set ???
-
- if Ekind (E) = E_String_Literal_Subtype then
- Set_Esize (E, Uint_0);
- Set_RM_Size (E, Uint_0);
- return;
- end if;
-
- -- For access types, set size/alignment. This is system address size,
- -- except for fat pointers (unconstrained array access types), where the
- -- size is two times the address size, to accommodate the two pointers
- -- that are required for a fat pointer (data and template). Note that
- -- E_Access_Protected_Subprogram_Type is not an access type for this
- -- purpose since it is not a pointer but is equivalent to a record. For
- -- access subtypes, copy the size from the base type since Gigi
- -- represents them the same way.
-
- if Is_Access_Type (E) then
-
- Desig_Type := Underlying_Type (Designated_Type (E));
-
- -- If we only have a limited view of the type, see whether the
- -- non-limited view is available.
-
- if From_With_Type (Designated_Type (E))
- and then Ekind (Designated_Type (E)) = E_Incomplete_Type
- and then Present (Non_Limited_View (Designated_Type (E)))
- then
- Desig_Type := Non_Limited_View (Designated_Type (E));
- end if;
-
- -- If Esize already set (e.g. by a size clause), then nothing further
- -- to be done here.
-
- if Known_Esize (E) then
- null;
-
- -- Access to subprogram is a strange beast, and we let the backend
- -- figure out what is needed (it may be some kind of fat pointer,
- -- including the static link for example.
-
- elsif Is_Access_Protected_Subprogram_Type (E) then
- null;
-
- -- For access subtypes, copy the size information from base type
-
- elsif Ekind (E) = E_Access_Subtype then
- Set_Size_Info (E, Base_Type (E));
- Set_RM_Size (E, RM_Size (Base_Type (E)));
-
- -- For other access types, we use either address size, or, if a fat
- -- pointer is used (pointer-to-unconstrained array case), twice the
- -- address size to accommodate a fat pointer.
-
- elsif Present (Desig_Type)
- and then Is_Array_Type (Desig_Type)
- and then not Is_Constrained (Desig_Type)
- and then not Has_Completion_In_Body (Desig_Type)
- and then not Debug_Flag_6
- then
- Init_Size (E, 2 * System_Address_Size);
-
- -- Check for bad convention set
-
- if Warn_On_Export_Import
- and then
- (Convention (E) = Convention_C
- or else
- Convention (E) = Convention_CPP)
- then
- Error_Msg_N
- ("?this access type does not correspond to C pointer", E);
- end if;
-
- -- If the designated type is a limited view it is unanalyzed. We can
- -- examine the declaration itself to determine whether it will need a
- -- fat pointer.
-
- elsif Present (Desig_Type)
- and then Present (Parent (Desig_Type))
- and then Nkind (Parent (Desig_Type)) = N_Full_Type_Declaration
- and then
- Nkind (Type_Definition (Parent (Desig_Type)))
- = N_Unconstrained_Array_Definition
- then
- Init_Size (E, 2 * System_Address_Size);
-
- -- When the target is AAMP, access-to-subprogram types are fat
- -- pointers consisting of the subprogram address and a static link
- -- (with the exception of library-level access types, where a simple
- -- subprogram address is used).
-
- elsif AAMP_On_Target
- and then
- (Ekind (E) = E_Anonymous_Access_Subprogram_Type
- or else (Ekind (E) = E_Access_Subprogram_Type
- and then Present (Enclosing_Subprogram (E))))
- then
- Init_Size (E, 2 * System_Address_Size);
-
- else
- Init_Size (E, System_Address_Size);
- end if;
-
- -- On VMS, reset size to 32 for convention C access type if no
- -- explicit size clause is given and the default size is 64. Really
- -- we do not know the size, since depending on options for the VMS
- -- compiler, the size of a pointer type can be 32 or 64, but choosing
- -- 32 as the default improves compatibility with legacy VMS code.
-
- -- Note: we do not use Has_Size_Clause in the test below, because we
- -- want to catch the case of a derived type inheriting a size clause.
- -- We want to consider this to be an explicit size clause for this
- -- purpose, since it would be weird not to inherit the size in this
- -- case.
-
- -- We do NOT do this if we are in -gnatdm mode on a non-VMS target
- -- since in that case we want the normal pointer representation.
-
- if Opt.True_VMS_Target
- and then (Convention (E) = Convention_C
- or else
- Convention (E) = Convention_CPP)
- and then No (Get_Attribute_Definition_Clause (E, Attribute_Size))
- and then Esize (E) = 64
- then
- Init_Size (E, 32);
- end if;
-
- Set_Elem_Alignment (E);
-
- -- Scalar types: set size and alignment
-
- elsif Is_Scalar_Type (E) then
-
- -- For discrete types, the RM_Size and Esize must be set already,
- -- since this is part of the earlier processing and the front end is
- -- always required to lay out the sizes of such types (since they are
- -- available as static attributes). All we do is to check that this
- -- rule is indeed obeyed!
-
- if Is_Discrete_Type (E) then
-
- -- If the RM_Size is not set, then here is where we set it
-
- -- Note: an RM_Size of zero looks like not set here, but this
- -- is a rare case, and we can simply reset it without any harm.
-
- if not Known_RM_Size (E) then
- Set_Discrete_RM_Size (E);
- end if;
-
- -- If Esize for a discrete type is not set then set it
-
- if not Known_Esize (E) then
- declare
- S : Int := 8;
-
- begin
- loop
- -- If size is big enough, set it and exit
-
- if S >= RM_Size (E) then
- Init_Esize (E, S);
- exit;
-
- -- If the RM_Size is greater than 64 (happens only when
- -- strange values are specified by the user, then Esize
- -- is simply a copy of RM_Size, it will be further
- -- refined later on)
-
- elsif S = 64 then
- Set_Esize (E, RM_Size (E));
- exit;
-
- -- Otherwise double possible size and keep trying
-
- else
- S := S * 2;
- end if;
- end loop;
- end;
- end if;
-
- -- For non-discrete scalar types, if the RM_Size is not set, then set
- -- it now to a copy of the Esize if the Esize is set.
-
- else
- if Known_Esize (E) and then Unknown_RM_Size (E) then
- Set_RM_Size (E, Esize (E));
- end if;
- end if;
-
- Set_Elem_Alignment (E);
-
- -- Non-elementary (composite) types
-
- else
- -- If RM_Size is known, set Esize if not known
-
- if Known_RM_Size (E) and then Unknown_Esize (E) then
-
- -- If the alignment is known, we bump the Esize up to the next
- -- alignment boundary if it is not already on one.
-
- if Known_Alignment (E) then
- declare
- A : constant Uint := Alignment_In_Bits (E);
- S : constant SO_Ref := RM_Size (E);
- begin
- Set_Esize (E, (S + A - 1) / A * A);
- end;
- end if;
-
- -- If Esize is set, and RM_Size is not, RM_Size is copied from Esize.
- -- At least for now this seems reasonable, and is in any case needed
- -- for compatibility with old versions of gigi.
-
- elsif Known_Esize (E) and then Unknown_RM_Size (E) then
- Set_RM_Size (E, Esize (E));
- end if;
-
- -- For array base types, set component size if object size of the
- -- component type is known and is a small power of 2 (8, 16, 32, 64),
- -- since this is what will always be used.
-
- if Ekind (E) = E_Array_Type
- and then Unknown_Component_Size (E)
- then
- declare
- CT : constant Entity_Id := Component_Type (E);
-
- begin
- -- For some reasons, access types can cause trouble, So let's
- -- just do this for discrete types ???
-
- if Present (CT)
- and then Is_Discrete_Type (CT)
- and then Known_Static_Esize (CT)
- then
- declare
- S : constant Uint := Esize (CT);
-
- begin
- if S = 8 or else
- S = 16 or else
- S = 32 or else
- S = 64
- then
- Set_Component_Size (E, Esize (CT));
- end if;
- end;
- end if;
- end;
- end if;
- end if;
-
- -- Lay out array and record types if front end layout set
-
- if Frontend_Layout_On_Target then
- if Is_Array_Type (E) and then not Is_Bit_Packed_Array (E) then
- Layout_Array_Type (E);
- elsif Is_Record_Type (E) then
- Layout_Record_Type (E);
- end if;
-
- -- Case of backend layout, we still do a little in the front end
-
- else
- -- Processing for record types
-
- if Is_Record_Type (E) then
-
- -- Special remaining processing for record types with a known
- -- size of 16, 32, or 64 bits whose alignment is not yet set.
- -- For these types, we set a corresponding alignment matching
- -- the size if possible, or as large as possible if not.
-
- if Convention (E) = Convention_Ada
- and then not Debug_Flag_Q
- then
- Set_Composite_Alignment (E);
- end if;
-
- -- Processing for array types
-
- elsif Is_Array_Type (E) then
-
- -- For arrays that are required to be atomic, we do the same
- -- processing as described above for short records, since we
- -- really need to have the alignment set for the whole array.
-
- if Is_Atomic (E) and then not Debug_Flag_Q then
- Set_Composite_Alignment (E);
- end if;
-
- -- For unpacked array types, set an alignment of 1 if we know
- -- that the component alignment is not greater than 1. The reason
- -- we do this is to avoid unnecessary copying of slices of such
- -- arrays when passed to subprogram parameters (see special test
- -- in Exp_Ch6.Expand_Actuals).
-
- if not Is_Packed (E)
- and then Unknown_Alignment (E)
- then
- if Known_Static_Component_Size (E)
- and then Component_Size (E) = 1
- then
- Set_Alignment (E, Uint_1);
- end if;
- end if;
- end if;
- end if;
-
- -- Final step is to check that Esize and RM_Size are compatible
-
- if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
- if Esize (E) < RM_Size (E) then
-
- -- Esize is less than RM_Size. That's not good. First we test
- -- whether this was set deliberately with an Object_Size clause
- -- and if so, object to the clause.
-
- if Has_Object_Size_Clause (E) then
- Error_Msg_Uint_1 := RM_Size (E);
- Error_Msg_F
- ("object size is too small, minimum allowed is ^",
- Expression (Get_Attribute_Definition_Clause
- (E, Attribute_Object_Size)));
- end if;
-
- -- Adjust Esize up to RM_Size value
-
- declare
- Size : constant Uint := RM_Size (E);
-
- begin
- Set_Esize (E, RM_Size (E));
-
- -- For scalar types, increase Object_Size to power of 2, but
- -- not less than a storage unit in any case (i.e., normally
- -- this means it will be storage-unit addressable).
-
- if Is_Scalar_Type (E) then
- if Size <= System_Storage_Unit then
- Init_Esize (E, System_Storage_Unit);
- elsif Size <= 16 then
- Init_Esize (E, 16);
- elsif Size <= 32 then
- Init_Esize (E, 32);
- else
- Set_Esize (E, (Size + 63) / 64 * 64);
- end if;
-
- -- Finally, make sure that alignment is consistent with
- -- the newly assigned size.
-
- while Alignment (E) * System_Storage_Unit < Esize (E)
- and then Alignment (E) < Maximum_Alignment
- loop
- Set_Alignment (E, 2 * Alignment (E));
- end loop;
- end if;
- end;
- end if;
- end if;
- end Layout_Type;
-
- ---------------------
- -- Rewrite_Integer --
- ---------------------
-
- procedure Rewrite_Integer (N : Node_Id; V : Uint) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Rewrite (N, Make_Integer_Literal (Loc, Intval => V));
- Set_Etype (N, Typ);
- end Rewrite_Integer;
-
- -------------------------------
- -- Set_And_Check_Static_Size --
- -------------------------------
-
- procedure Set_And_Check_Static_Size
- (E : Entity_Id;
- Esiz : SO_Ref;
- RM_Siz : SO_Ref)
- is
- SC : Node_Id;
-
- procedure Check_Size_Too_Small (Spec : Uint; Min : Uint);
- -- Spec is the number of bit specified in the size clause, and Min is
- -- the minimum computed size. An error is given that the specified size
- -- is too small if Spec < Min, and in this case both Esize and RM_Size
- -- are set to unknown in E. The error message is posted on node SC.
-
- procedure Check_Unused_Bits (Spec : Uint; Max : Uint);
- -- Spec is the number of bits specified in the size clause, and Max is
- -- the maximum computed size. A warning is given about unused bits if
- -- Spec > Max. This warning is posted on node SC.
-
- --------------------------
- -- Check_Size_Too_Small --
- --------------------------
-
- procedure Check_Size_Too_Small (Spec : Uint; Min : Uint) is
- begin
- if Spec < Min then
- Error_Msg_Uint_1 := Min;
- Error_Msg_NE
- ("size for & too small, minimum allowed is ^", SC, E);
- Init_Esize (E);
- Init_RM_Size (E);
- end if;
- end Check_Size_Too_Small;
-
- -----------------------
- -- Check_Unused_Bits --
- -----------------------
-
- procedure Check_Unused_Bits (Spec : Uint; Max : Uint) is
- begin
- if Spec > Max then
- Error_Msg_Uint_1 := Spec - Max;
- Error_Msg_NE ("?^ bits of & unused", SC, E);
- end if;
- end Check_Unused_Bits;
-
- -- Start of processing for Set_And_Check_Static_Size
-
- begin
- -- Case where Object_Size (Esize) is already set by a size clause
-
- if Known_Static_Esize (E) then
- SC := Size_Clause (E);
-
- if No (SC) then
- SC := Get_Attribute_Definition_Clause (E, Attribute_Object_Size);
- end if;
-
- -- Perform checks on specified size against computed sizes
-
- if Present (SC) then
- Check_Unused_Bits (Esize (E), Esiz);
- Check_Size_Too_Small (Esize (E), RM_Siz);
- end if;
- end if;
-
- -- Case where Value_Size (RM_Size) is set by specific Value_Size clause
- -- (we do not need to worry about Value_Size being set by a Size clause,
- -- since that will have set Esize as well, and we already took care of
- -- that case).
-
- if Known_Static_RM_Size (E) then
- SC := Get_Attribute_Definition_Clause (E, Attribute_Value_Size);
-
- -- Perform checks on specified size against computed sizes
-
- if Present (SC) then
- Check_Unused_Bits (RM_Size (E), Esiz);
- Check_Size_Too_Small (RM_Size (E), RM_Siz);
- end if;
- end if;
-
- -- Set sizes if unknown
-
- if Unknown_Esize (E) then
- Set_Esize (E, Esiz);
- end if;
-
- if Unknown_RM_Size (E) then
- Set_RM_Size (E, RM_Siz);
- end if;
- end Set_And_Check_Static_Size;
-
- -----------------------------
- -- Set_Composite_Alignment --
- -----------------------------
-
- procedure Set_Composite_Alignment (E : Entity_Id) is
- Siz : Uint;
- Align : Nat;
-
- begin
- -- If alignment is already set, then nothing to do
-
- if Known_Alignment (E) then
- return;
- end if;
-
- -- Alignment is not known, see if we can set it, taking into account
- -- the setting of the Optimize_Alignment mode.
-
- -- If Optimize_Alignment is set to Space, then packed records always
- -- have an alignment of 1. But don't do anything for atomic records
- -- since we may need higher alignment for indivisible access.
-
- if Optimize_Alignment_Space (E)
- and then Is_Record_Type (E)
- and then Is_Packed (E)
- and then not Is_Atomic (E)
- then
- Align := 1;
-
- -- Not a record, or not packed
-
- else
- -- The only other cases we worry about here are where the size is
- -- statically known at compile time.
-
- if Known_Static_Esize (E) then
- Siz := Esize (E);
-
- elsif Unknown_Esize (E)
- and then Known_Static_RM_Size (E)
- then
- Siz := RM_Size (E);
-
- else
- return;
- end if;
-
- -- Size is known, alignment is not set
-
- -- Reset alignment to match size if the known size is exactly 2, 4,
- -- or 8 storage units.
-
- if Siz = 2 * System_Storage_Unit then
- Align := 2;
- elsif Siz = 4 * System_Storage_Unit then
- Align := 4;
- elsif Siz = 8 * System_Storage_Unit then
- Align := 8;
-
- -- If Optimize_Alignment is set to Space, then make sure the
- -- alignment matches the size, for example, if the size is 17
- -- bytes then we want an alignment of 1 for the type.
-
- elsif Optimize_Alignment_Space (E) then
- if Siz mod (8 * System_Storage_Unit) = 0 then
- Align := 8;
- elsif Siz mod (4 * System_Storage_Unit) = 0 then
- Align := 4;
- elsif Siz mod (2 * System_Storage_Unit) = 0 then
- Align := 2;
- else
- Align := 1;
- end if;
-
- -- If Optimize_Alignment is set to Time, then we reset for odd
- -- "in between sizes", for example a 17 bit record is given an
- -- alignment of 4. Note that this matches the old VMS behavior
- -- in versions of GNAT prior to 6.1.1.
-
- elsif Optimize_Alignment_Time (E)
- and then Siz > System_Storage_Unit
- and then Siz <= 8 * System_Storage_Unit
- then
- if Siz <= 2 * System_Storage_Unit then
- Align := 2;
- elsif Siz <= 4 * System_Storage_Unit then
- Align := 4;
- else -- Siz <= 8 * System_Storage_Unit then
- Align := 8;
- end if;
-
- -- No special alignment fiddling needed
-
- else
- return;
- end if;
- end if;
-
- -- Here we have Set Align to the proposed improved value. Make sure the
- -- value set does not exceed Maximum_Alignment for the target.
-
- if Align > Maximum_Alignment then
- Align := Maximum_Alignment;
- end if;
-
- -- Further processing for record types only to reduce the alignment
- -- set by the above processing in some specific cases. We do not
- -- do this for atomic records, since we need max alignment there,
-
- if Is_Record_Type (E) and then not Is_Atomic (E) then
-
- -- For records, there is generally no point in setting alignment
- -- higher than word size since we cannot do better than move by
- -- words in any case. Omit this if we are optimizing for time,
- -- since conceivably we may be able to do better.
-
- if Align > System_Word_Size / System_Storage_Unit
- and then not Optimize_Alignment_Time (E)
- then
- Align := System_Word_Size / System_Storage_Unit;
- end if;
-
- -- Check components. If any component requires a higher alignment,
- -- then we set that higher alignment in any case. Don't do this if
- -- we have Optimize_Alignment set to Space. Note that that covers
- -- the case of packed records, where we already set alignment to 1.
-
- if not Optimize_Alignment_Space (E) then
- declare
- Comp : Entity_Id;
-
- begin
- Comp := First_Component (E);
- while Present (Comp) loop
- if Known_Alignment (Etype (Comp)) then
- declare
- Calign : constant Uint := Alignment (Etype (Comp));
-
- begin
- -- The cases to process are when the alignment of the
- -- component type is larger than the alignment we have
- -- so far, and either there is no component clause for
- -- the component, or the length set by the component
- -- clause matches the length of the component type.
-
- if Calign > Align
- and then
- (Unknown_Esize (Comp)
- or else (Known_Static_Esize (Comp)
- and then
- Esize (Comp) =
- Calign * System_Storage_Unit))
- then
- Align := UI_To_Int (Calign);
- end if;
- end;
- end if;
-
- Next_Component (Comp);
- end loop;
- end;
- end if;
- end if;
-
- -- Set chosen alignment, and increase Esize if necessary to match the
- -- chosen alignment.
-
- Set_Alignment (E, UI_From_Int (Align));
-
- if Known_Static_Esize (E)
- and then Esize (E) < Align * System_Storage_Unit
- then
- Set_Esize (E, UI_From_Int (Align * System_Storage_Unit));
- end if;
- end Set_Composite_Alignment;
-
- --------------------------
- -- Set_Discrete_RM_Size --
- --------------------------
-
- procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
- FST : constant Entity_Id := First_Subtype (Def_Id);
-
- begin
- -- All discrete types except for the base types in standard are
- -- constrained, so indicate this by setting Is_Constrained.
-
- Set_Is_Constrained (Def_Id);
-
- -- Set generic types to have an unknown size, since the representation
- -- of a generic type is irrelevant, in view of the fact that they have
- -- nothing to do with code.
-
- if Is_Generic_Type (Root_Type (FST)) then
- Set_RM_Size (Def_Id, Uint_0);
-
- -- If the subtype statically matches the first subtype, then it is
- -- required to have exactly the same layout. This is required by
- -- aliasing considerations.
-
- elsif Def_Id /= FST and then
- Subtypes_Statically_Match (Def_Id, FST)
- then
- Set_RM_Size (Def_Id, RM_Size (FST));
- Set_Size_Info (Def_Id, FST);
-
- -- In all other cases the RM_Size is set to the minimum size. Note that
- -- this routine is never called for subtypes for which the RM_Size is
- -- set explicitly by an attribute clause.
-
- else
- Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
- end if;
- end Set_Discrete_RM_Size;
-
- ------------------------
- -- Set_Elem_Alignment --
- ------------------------
-
- procedure Set_Elem_Alignment (E : Entity_Id) is
- begin
- -- Do not set alignment for packed array types, unless we are doing
- -- front end layout, because otherwise this is always handled in the
- -- backend.
-
- if Is_Packed_Array_Type (E) and then not Frontend_Layout_On_Target then
- return;
-
- -- If there is an alignment clause, then we respect it
-
- elsif Has_Alignment_Clause (E) then
- return;
-
- -- If the size is not set, then don't attempt to set the alignment. This
- -- happens in the backend layout case for access-to-subprogram types.
-
- elsif not Known_Static_Esize (E) then
- return;
-
- -- For access types, do not set the alignment if the size is less than
- -- the allowed minimum size. This avoids cascaded error messages.
-
- elsif Is_Access_Type (E)
- and then Esize (E) < System_Address_Size
- then
- return;
- end if;
-
- -- Here we calculate the alignment as the largest power of two multiple
- -- of System.Storage_Unit that does not exceed either the actual size of
- -- the type, or the maximum allowed alignment.
-
- declare
- S : constant Int :=
- UI_To_Int (Esize (E)) / SSU;
- A : Nat;
-
- begin
- A := 1;
- while 2 * A <= Ttypes.Maximum_Alignment
- and then 2 * A <= S
- loop
- A := 2 * A;
- end loop;
-
- -- Now we think we should set the alignment to A, but we skip this if
- -- an alignment is already set to a value greater than A (happens for
- -- derived types).
-
- -- However, if the alignment is known and too small it must be
- -- increased, this happens in a case like:
-
- -- type R is new Character;
- -- for R'Size use 16;
-
- -- Here the alignment inherited from Character is 1, but it must be
- -- increased to 2 to reflect the increased size.
-
- if Unknown_Alignment (E) or else Alignment (E) < A then
- Init_Alignment (E, A);
- end if;
- end;
- end Set_Elem_Alignment;
-
- ----------------------
- -- SO_Ref_From_Expr --
- ----------------------
-
- function SO_Ref_From_Expr
- (Expr : Node_Id;
- Ins_Type : Entity_Id;
- Vtype : Entity_Id := Empty;
- Make_Func : Boolean := False) return Dynamic_SO_Ref
- is
- Loc : constant Source_Ptr := Sloc (Ins_Type);
-
- K : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('K'));
-
- Decl : Node_Id;
-
- Vtype_Primary_View : Entity_Id;
-
- function Check_Node_V_Ref (N : Node_Id) return Traverse_Result;
- -- Function used to check one node for reference to V
-
- function Has_V_Ref is new Traverse_Func (Check_Node_V_Ref);
- -- Function used to traverse tree to check for reference to V
-
- ----------------------
- -- Check_Node_V_Ref --
- ----------------------
-
- function Check_Node_V_Ref (N : Node_Id) return Traverse_Result is
- begin
- if Nkind (N) = N_Identifier then
- if Chars (N) = Vname then
- return Abandon;
- else
- return Skip;
- end if;
-
- else
- return OK;
- end if;
- end Check_Node_V_Ref;
-
- -- Start of processing for SO_Ref_From_Expr
-
- begin
- -- Case of expression is an integer literal, in this case we just
- -- return the value (which must always be non-negative, since size
- -- and offset values can never be negative).
-
- if Nkind (Expr) = N_Integer_Literal then
- pragma Assert (Intval (Expr) >= 0);
- return Intval (Expr);
- end if;
-
- -- Case where there is a reference to V, create function
-
- if Has_V_Ref (Expr) = Abandon then
-
- pragma Assert (Present (Vtype));
-
- -- Check whether Vtype is a view of a private type and ensure that
- -- we use the primary view of the type (which is denoted by its
- -- Etype, whether it's the type's partial or full view entity).
- -- This is needed to make sure that we use the same (primary) view
- -- of the type for all V formals, whether the current view of the
- -- type is the partial or full view, so that types will always
- -- match on calls from one size function to another.
-
- if Has_Private_Declaration (Vtype) then
- Vtype_Primary_View := Etype (Vtype);
- else
- Vtype_Primary_View := Vtype;
- end if;
-
- Set_Is_Discrim_SO_Function (K);
-
- Decl :=
- Make_Subprogram_Body (Loc,
-
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => K,
- Parameter_Specifications => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Chars => Vname),
- Parameter_Type =>
- New_Occurrence_Of (Vtype_Primary_View, Loc))),
- Result_Definition =>
- New_Occurrence_Of (Standard_Unsigned, Loc)),
-
- Declarations => Empty_List,
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => Expr))));
-
- -- The caller requests that the expression be encapsulated in a
- -- parameterless function.
-
- elsif Make_Func then
- Decl :=
- Make_Subprogram_Body (Loc,
-
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => K,
- Parameter_Specifications => Empty_List,
- Result_Definition =>
- New_Occurrence_Of (Standard_Unsigned, Loc)),
-
- Declarations => Empty_List,
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Simple_Return_Statement (Loc, Expression => Expr))));
-
- -- No reference to V and function not requested, so create a constant
-
- else
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => K,
- Object_Definition =>
- New_Occurrence_Of (Standard_Unsigned, Loc),
- Constant_Present => True,
- Expression => Expr);
- end if;
-
- Append_Freeze_Action (Ins_Type, Decl);
- Analyze (Decl);
- return Create_Dynamic_SO_Ref (K);
- end SO_Ref_From_Expr;
-
-end Layout;