aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/gcc-interface/utils.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/gcc-interface/utils.c')
-rw-r--r--gcc-4.4.3/gcc/ada/gcc-interface/utils.c5518
1 files changed, 0 insertions, 5518 deletions
diff --git a/gcc-4.4.3/gcc/ada/gcc-interface/utils.c b/gcc-4.4.3/gcc/ada/gcc-interface/utils.c
deleted file mode 100644
index e27fd5559..000000000
--- a/gcc-4.4.3/gcc/ada/gcc-interface/utils.c
+++ /dev/null
@@ -1,5518 +0,0 @@
-/****************************************************************************
- * *
- * GNAT COMPILER COMPONENTS *
- * *
- * U T I L S *
- * *
- * C Implementation File *
- * *
- * Copyright (C) 1992-2008, Free Software Foundation, Inc. *
- * *
- * GNAT is free software; you can redistribute it and/or modify it under *
- * terms of the GNU General Public License as published by the Free Soft- *
- * ware Foundation; either version 3, or (at your option) any later ver- *
- * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
- * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
- * for more details. You should have received a copy of the GNU General *
- * Public License along with GCC; see the file COPYING3. If not see *
- * <http://www.gnu.org/licenses/>. *
- * *
- * GNAT was originally developed by the GNAT team at New York University. *
- * Extensive contributions were provided by Ada Core Technologies Inc. *
- * *
- ****************************************************************************/
-
-/* We have attribute handlers using C specific format specifiers in warning
- messages. Make sure they are properly recognized. */
-#define GCC_DIAG_STYLE __gcc_cdiag__
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "flags.h"
-#include "defaults.h"
-#include "toplev.h"
-#include "output.h"
-#include "ggc.h"
-#include "debug.h"
-#include "convert.h"
-#include "target.h"
-#include "function.h"
-#include "cgraph.h"
-#include "tree-inline.h"
-#include "tree-iterator.h"
-#include "gimple.h"
-#include "tree-dump.h"
-#include "pointer-set.h"
-#include "langhooks.h"
-
-#include "ada.h"
-#include "types.h"
-#include "atree.h"
-#include "elists.h"
-#include "namet.h"
-#include "nlists.h"
-#include "stringt.h"
-#include "uintp.h"
-#include "fe.h"
-#include "sinfo.h"
-#include "einfo.h"
-#include "ada-tree.h"
-#include "gigi.h"
-
-#ifndef MAX_FIXED_MODE_SIZE
-#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
-#endif
-
-#ifndef MAX_BITS_PER_WORD
-#define MAX_BITS_PER_WORD BITS_PER_WORD
-#endif
-
-/* If nonzero, pretend we are allocating at global level. */
-int force_global;
-
-/* Tree nodes for the various types and decls we create. */
-tree gnat_std_decls[(int) ADT_LAST];
-
-/* Functions to call for each of the possible raise reasons. */
-tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
-
-/* Forward declarations for handlers of attributes. */
-static tree handle_const_attribute (tree *, tree, tree, int, bool *);
-static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
-static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
-static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
-static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
-static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
-static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
-static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
-static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
-
-/* Fake handler for attributes we don't properly support, typically because
- they'd require dragging a lot of the common-c front-end circuitry. */
-static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
-
-/* Table of machine-independent internal attributes for Ada. We support
- this minimal set of attributes to accommodate the needs of builtins. */
-const struct attribute_spec gnat_internal_attribute_table[] =
-{
- /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
- { "const", 0, 0, true, false, false, handle_const_attribute },
- { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute },
- { "pure", 0, 0, true, false, false, handle_pure_attribute },
- { "no vops", 0, 0, true, false, false, handle_novops_attribute },
- { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute },
- { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute },
- { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute },
- { "malloc", 0, 0, true, false, false, handle_malloc_attribute },
- { "type generic", 0, 0, false, true, true, handle_type_generic_attribute },
-
- /* ??? format and format_arg are heavy and not supported, which actually
- prevents support for stdio builtins, which we however declare as part
- of the common builtins.def contents. */
- { "format", 3, 3, false, true, true, fake_attribute_handler },
- { "format_arg", 1, 1, false, true, true, fake_attribute_handler },
-
- { NULL, 0, 0, false, false, false, NULL }
-};
-
-/* Associates a GNAT tree node to a GCC tree node. It is used in
- `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
- of `save_gnu_tree' for more info. */
-static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
-
-#define GET_GNU_TREE(GNAT_ENTITY) \
- associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
-
-#define SET_GNU_TREE(GNAT_ENTITY,VAL) \
- associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
-
-#define PRESENT_GNU_TREE(GNAT_ENTITY) \
- (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
-
-/* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
-static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
-
-#define GET_DUMMY_NODE(GNAT_ENTITY) \
- dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
-
-#define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
- dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
-
-#define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
- (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
-
-/* This variable keeps a table for types for each precision so that we only
- allocate each of them once. Signed and unsigned types are kept separate.
-
- Note that these types are only used when fold-const requests something
- special. Perhaps we should NOT share these types; we'll see how it
- goes later. */
-static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
-
-/* Likewise for float types, but record these by mode. */
-static GTY(()) tree float_types[NUM_MACHINE_MODES];
-
-/* For each binding contour we allocate a binding_level structure to indicate
- the binding depth. */
-
-struct gnat_binding_level GTY((chain_next ("%h.chain")))
-{
- /* The binding level containing this one (the enclosing binding level). */
- struct gnat_binding_level *chain;
- /* The BLOCK node for this level. */
- tree block;
- /* If nonzero, the setjmp buffer that needs to be updated for any
- variable-sized definition within this context. */
- tree jmpbuf_decl;
-};
-
-/* The binding level currently in effect. */
-static GTY(()) struct gnat_binding_level *current_binding_level;
-
-/* A chain of gnat_binding_level structures awaiting reuse. */
-static GTY((deletable)) struct gnat_binding_level *free_binding_level;
-
-/* An array of global declarations. */
-static GTY(()) VEC(tree,gc) *global_decls;
-
-/* An array of builtin function declarations. */
-static GTY(()) VEC(tree,gc) *builtin_decls;
-
-/* An array of global renaming pointers. */
-static GTY(()) VEC(tree,gc) *global_renaming_pointers;
-
-/* A chain of unused BLOCK nodes. */
-static GTY((deletable)) tree free_block_chain;
-
-static void gnat_install_builtins (void);
-static tree merge_sizes (tree, tree, tree, bool, bool);
-static tree compute_related_constant (tree, tree);
-static tree split_plus (tree, tree *);
-static void gnat_gimplify_function (tree);
-static tree float_type_for_precision (int, enum machine_mode);
-static tree convert_to_fat_pointer (tree, tree);
-static tree convert_to_thin_pointer (tree, tree);
-static tree make_descriptor_field (const char *,tree, tree, tree);
-static bool potential_alignment_gap (tree, tree, tree);
-
-/* Initialize the association of GNAT nodes to GCC trees. */
-
-void
-init_gnat_to_gnu (void)
-{
- associate_gnat_to_gnu
- = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
-}
-
-/* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
- which is to be associated with GNAT_ENTITY. Such GCC tree node is always
- a ..._DECL node. If NO_CHECK is nonzero, the latter check is suppressed.
-
- If GNU_DECL is zero, a previous association is to be reset. */
-
-void
-save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
-{
- /* Check that GNAT_ENTITY is not already defined and that it is being set
- to something which is a decl. Raise gigi 401 if not. Usually, this
- means GNAT_ENTITY is defined twice, but occasionally is due to some
- Gigi problem. */
- gcc_assert (!(gnu_decl
- && (PRESENT_GNU_TREE (gnat_entity)
- || (!no_check && !DECL_P (gnu_decl)))));
-
- SET_GNU_TREE (gnat_entity, gnu_decl);
-}
-
-/* GNAT_ENTITY is a GNAT tree node for a defining identifier.
- Return the ..._DECL node that was associated with it. If there is no tree
- node associated with GNAT_ENTITY, abort.
-
- In some cases, such as delayed elaboration or expressions that need to
- be elaborated only once, GNAT_ENTITY is really not an entity. */
-
-tree
-get_gnu_tree (Entity_Id gnat_entity)
-{
- gcc_assert (PRESENT_GNU_TREE (gnat_entity));
- return GET_GNU_TREE (gnat_entity);
-}
-
-/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
-
-bool
-present_gnu_tree (Entity_Id gnat_entity)
-{
- return PRESENT_GNU_TREE (gnat_entity);
-}
-
-/* Initialize the association of GNAT nodes to GCC trees as dummies. */
-
-void
-init_dummy_type (void)
-{
- dummy_node_table
- = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
-}
-
-/* Make a dummy type corresponding to GNAT_TYPE. */
-
-tree
-make_dummy_type (Entity_Id gnat_type)
-{
- Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type);
- tree gnu_type;
-
- /* If there is an equivalent type, get its underlying type. */
- if (Present (gnat_underlying))
- gnat_underlying = Underlying_Type (gnat_underlying);
-
- /* If there was no equivalent type (can only happen when just annotating
- types) or underlying type, go back to the original type. */
- if (No (gnat_underlying))
- gnat_underlying = gnat_type;
-
- /* If it there already a dummy type, use that one. Else make one. */
- if (PRESENT_DUMMY_NODE (gnat_underlying))
- return GET_DUMMY_NODE (gnat_underlying);
-
- /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
- an ENUMERAL_TYPE. */
- gnu_type = make_node (Is_Record_Type (gnat_underlying)
- ? tree_code_for_record_type (gnat_underlying)
- : ENUMERAL_TYPE);
- TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
- TYPE_DUMMY_P (gnu_type) = 1;
- if (AGGREGATE_TYPE_P (gnu_type))
- {
- TYPE_STUB_DECL (gnu_type) = build_decl (TYPE_DECL, NULL_TREE, gnu_type);
- TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_type);
- }
-
- SET_DUMMY_NODE (gnat_underlying, gnu_type);
-
- return gnu_type;
-}
-
-/* Return nonzero if we are currently in the global binding level. */
-
-int
-global_bindings_p (void)
-{
- return ((force_global || !current_function_decl) ? -1 : 0);
-}
-
-/* Enter a new binding level. */
-
-void
-gnat_pushlevel ()
-{
- struct gnat_binding_level *newlevel = NULL;
-
- /* Reuse a struct for this binding level, if there is one. */
- if (free_binding_level)
- {
- newlevel = free_binding_level;
- free_binding_level = free_binding_level->chain;
- }
- else
- newlevel
- = (struct gnat_binding_level *)
- ggc_alloc (sizeof (struct gnat_binding_level));
-
- /* Use a free BLOCK, if any; otherwise, allocate one. */
- if (free_block_chain)
- {
- newlevel->block = free_block_chain;
- free_block_chain = BLOCK_CHAIN (free_block_chain);
- BLOCK_CHAIN (newlevel->block) = NULL_TREE;
- }
- else
- newlevel->block = make_node (BLOCK);
-
- /* Point the BLOCK we just made to its parent. */
- if (current_binding_level)
- BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
-
- BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
- TREE_USED (newlevel->block) = 1;
-
- /* Add this level to the front of the chain (stack) of levels that are
- active. */
- newlevel->chain = current_binding_level;
- newlevel->jmpbuf_decl = NULL_TREE;
- current_binding_level = newlevel;
-}
-
-/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
- and point FNDECL to this BLOCK. */
-
-void
-set_current_block_context (tree fndecl)
-{
- BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
- DECL_INITIAL (fndecl) = current_binding_level->block;
-}
-
-/* Set the jmpbuf_decl for the current binding level to DECL. */
-
-void
-set_block_jmpbuf_decl (tree decl)
-{
- current_binding_level->jmpbuf_decl = decl;
-}
-
-/* Get the jmpbuf_decl, if any, for the current binding level. */
-
-tree
-get_block_jmpbuf_decl ()
-{
- return current_binding_level->jmpbuf_decl;
-}
-
-/* Exit a binding level. Set any BLOCK into the current code group. */
-
-void
-gnat_poplevel ()
-{
- struct gnat_binding_level *level = current_binding_level;
- tree block = level->block;
-
- BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
- BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
-
- /* If this is a function-level BLOCK don't do anything. Otherwise, if there
- are no variables free the block and merge its subblocks into those of its
- parent block. Otherwise, add it to the list of its parent. */
- if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
- ;
- else if (BLOCK_VARS (block) == NULL_TREE)
- {
- BLOCK_SUBBLOCKS (level->chain->block)
- = chainon (BLOCK_SUBBLOCKS (block),
- BLOCK_SUBBLOCKS (level->chain->block));
- BLOCK_CHAIN (block) = free_block_chain;
- free_block_chain = block;
- }
- else
- {
- BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
- BLOCK_SUBBLOCKS (level->chain->block) = block;
- TREE_USED (block) = 1;
- set_block_for_group (block);
- }
-
- /* Free this binding structure. */
- current_binding_level = level->chain;
- level->chain = free_binding_level;
- free_binding_level = level;
-}
-
-
-/* Records a ..._DECL node DECL as belonging to the current lexical scope
- and uses GNAT_NODE for location information and propagating flags. */
-
-void
-gnat_pushdecl (tree decl, Node_Id gnat_node)
-{
- /* If this decl is public external or at toplevel, there is no context.
- But PARM_DECLs always go in the level of its function. */
- if (TREE_CODE (decl) != PARM_DECL
- && ((DECL_EXTERNAL (decl) && TREE_PUBLIC (decl))
- || global_bindings_p ()))
- DECL_CONTEXT (decl) = 0;
- else
- {
- DECL_CONTEXT (decl) = current_function_decl;
-
- /* Functions imported in another function are not really nested. */
- if (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl))
- DECL_NO_STATIC_CHAIN (decl) = 1;
- }
-
- TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node));
-
- /* Set the location of DECL and emit a declaration for it. */
- if (Present (gnat_node))
- Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
- add_decl_expr (decl, gnat_node);
-
- /* Put the declaration on the list. The list of declarations is in reverse
- order. The list will be reversed later. Put global variables in the
- globals list and builtin functions in a dedicated list to speed up
- further lookups. Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
- the list, as they will cause trouble with the debugger and aren't needed
- anyway. */
- if (TREE_CODE (decl) != TYPE_DECL
- || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
- {
- if (global_bindings_p ())
- {
- VEC_safe_push (tree, gc, global_decls, decl);
-
- if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
- VEC_safe_push (tree, gc, builtin_decls, decl);
- }
- else
- {
- TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
- BLOCK_VARS (current_binding_level->block) = decl;
- }
- }
-
- /* For the declaration of a type, set its name if it either is not already
- set, was set to an IDENTIFIER_NODE, indicating an internal name,
- or if the previous type name was not derived from a source name.
- We'd rather have the type named with a real name and all the pointer
- types to the same object have the same POINTER_TYPE node. Code in the
- equivalent function of c-decl.c makes a copy of the type node here, but
- that may cause us trouble with incomplete types. We make an exception
- for fat pointer types because the compiler automatically builds them
- for unconstrained array types and the debugger uses them to represent
- both these and pointers to these. */
- if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
- {
- tree t = TREE_TYPE (decl);
-
- if (!TYPE_NAME (t) || TREE_CODE (TYPE_NAME (t)) == IDENTIFIER_NODE)
- ;
- else if (TYPE_FAT_POINTER_P (t))
- {
- tree tt = build_variant_type_copy (t);
- TYPE_NAME (tt) = decl;
- TREE_USED (tt) = TREE_USED (t);
- TREE_TYPE (decl) = tt;
- DECL_ORIGINAL_TYPE (decl) = t;
- t = NULL_TREE;
- }
- else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
- ;
- else
- t = NULL_TREE;
-
- /* Propagate the name to all the variants. This is needed for
- the type qualifiers machinery to work properly. */
- if (t)
- for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
- TYPE_NAME (t) = decl;
- }
-}
-
-/* Do little here. Set up the standard declarations later after the
- front end has been run. */
-
-void
-gnat_init_decl_processing (void)
-{
- /* Make the binding_level structure for global names. */
- current_function_decl = 0;
- current_binding_level = 0;
- free_binding_level = 0;
- gnat_pushlevel ();
-
- build_common_tree_nodes (true, true);
-
- /* In Ada, we use a signed type for SIZETYPE. Use the signed type
- corresponding to the size of Pmode. In most cases when ptr_mode and
- Pmode differ, C will use the width of ptr_mode as sizetype. But we get
- far better code using the width of Pmode. Make this here since we need
- this before we can expand the GNAT types. */
- size_type_node = gnat_type_for_size (GET_MODE_BITSIZE (Pmode), 0);
- set_sizetype (size_type_node);
-
- /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
- boolean_type_node = make_node (BOOLEAN_TYPE);
- TYPE_PRECISION (boolean_type_node) = 1;
- fixup_unsigned_type (boolean_type_node);
- TYPE_RM_SIZE_NUM (boolean_type_node) = bitsize_int (1);
-
- build_common_tree_nodes_2 (0);
-
- ptr_void_type_node = build_pointer_type (void_type_node);
-}
-
-/* Create the predefined scalar types such as `integer_type_node' needed
- in the gcc back-end and initialize the global binding level. */
-
-void
-init_gigi_decls (tree long_long_float_type, tree exception_type)
-{
- tree endlink, decl;
- tree int64_type = gnat_type_for_size (64, 0);
- unsigned int i;
-
- /* Set the types that GCC and Gigi use from the front end. We would like
- to do this for char_type_node, but it needs to correspond to the C
- char type. */
- if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE)
- {
- /* In this case, the builtin floating point types are VAX float,
- so make up a type for use. */
- longest_float_type_node = make_node (REAL_TYPE);
- TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE;
- layout_type (longest_float_type_node);
- create_type_decl (get_identifier ("longest float type"),
- longest_float_type_node, NULL, false, true, Empty);
- }
- else
- longest_float_type_node = TREE_TYPE (long_long_float_type);
-
- except_type_node = TREE_TYPE (exception_type);
-
- unsigned_type_node = gnat_type_for_size (INT_TYPE_SIZE, 1);
- create_type_decl (get_identifier ("unsigned int"), unsigned_type_node,
- NULL, false, true, Empty);
-
- void_type_decl_node = create_type_decl (get_identifier ("void"),
- void_type_node, NULL, false, true,
- Empty);
-
- void_ftype = build_function_type (void_type_node, NULL_TREE);
- ptr_void_ftype = build_pointer_type (void_ftype);
-
- /* Build the special descriptor type and its null node if needed. */
- if (TARGET_VTABLE_USES_DESCRIPTORS)
- {
- tree null_node = fold_convert (ptr_void_ftype, null_pointer_node);
- tree field_list = NULL_TREE, null_list = NULL_TREE;
- int j;
-
- fdesc_type_node = make_node (RECORD_TYPE);
-
- for (j = 0; j < TARGET_VTABLE_USES_DESCRIPTORS; j++)
- {
- tree field = create_field_decl (NULL_TREE, ptr_void_ftype,
- fdesc_type_node, 0, 0, 0, 1);
- TREE_CHAIN (field) = field_list;
- field_list = field;
- null_list = tree_cons (field, null_node, null_list);
- }
-
- finish_record_type (fdesc_type_node, nreverse (field_list), 0, false);
- null_fdesc_node = gnat_build_constructor (fdesc_type_node, null_list);
- }
-
- /* Now declare runtime functions. */
- endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
-
- /* malloc is a function declaration tree for a function to allocate
- memory. */
- malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"),
- NULL_TREE,
- build_function_type (ptr_void_type_node,
- tree_cons (NULL_TREE,
- sizetype,
- endlink)),
- NULL_TREE, false, true, true, NULL,
- Empty);
- DECL_IS_MALLOC (malloc_decl) = 1;
-
- /* malloc32 is a function declaration tree for a function to allocate
- 32bit memory on a 64bit system. Needed only on 64bit VMS. */
- malloc32_decl = create_subprog_decl (get_identifier ("__gnat_malloc32"),
- NULL_TREE,
- build_function_type (ptr_void_type_node,
- tree_cons (NULL_TREE,
- sizetype,
- endlink)),
- NULL_TREE, false, true, true, NULL,
- Empty);
- DECL_IS_MALLOC (malloc32_decl) = 1;
-
- /* free is a function declaration tree for a function to free memory. */
- free_decl
- = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- ptr_void_type_node,
- endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- /* This is used for 64-bit multiplication with overflow checking. */
- mulv64_decl
- = create_subprog_decl (get_identifier ("__gnat_mulv64"), NULL_TREE,
- build_function_type_list (int64_type, int64_type,
- int64_type, NULL_TREE),
- NULL_TREE, false, true, true, NULL, Empty);
-
- /* Make the types and functions used for exception processing. */
- jmpbuf_type
- = build_array_type (gnat_type_for_mode (Pmode, 0),
- build_index_type (build_int_cst (NULL_TREE, 5)));
- create_type_decl (get_identifier ("JMPBUF_T"), jmpbuf_type, NULL,
- true, true, Empty);
- jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);
-
- /* Functions to get and set the jumpbuf pointer for the current thread. */
- get_jmpbuf_decl
- = create_subprog_decl
- (get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
- NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE),
- NULL_TREE, false, true, true, NULL, Empty);
- /* Avoid creating superfluous edges to __builtin_setjmp receivers. */
- DECL_PURE_P (get_jmpbuf_decl) = 1;
-
- set_jmpbuf_decl
- = create_subprog_decl
- (get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
- NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- /* Function to get the current exception. */
- get_excptr_decl
- = create_subprog_decl
- (get_identifier ("system__soft_links__get_gnat_exception"),
- NULL_TREE,
- build_function_type (build_pointer_type (except_type_node), NULL_TREE),
- NULL_TREE, false, true, true, NULL, Empty);
- /* Avoid creating superfluous edges to __builtin_setjmp receivers. */
- DECL_PURE_P (get_excptr_decl) = 1;
-
- /* Functions that raise exceptions. */
- raise_nodefer_decl
- = create_subprog_decl
- (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- build_pointer_type (except_type_node),
- endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- /* Dummy objects to materialize "others" and "all others" in the exception
- tables. These are exported by a-exexpr.adb, so see this unit for the
- types to use. */
-
- others_decl
- = create_var_decl (get_identifier ("OTHERS"),
- get_identifier ("__gnat_others_value"),
- integer_type_node, 0, 1, 0, 1, 1, 0, Empty);
-
- all_others_decl
- = create_var_decl (get_identifier ("ALL_OTHERS"),
- get_identifier ("__gnat_all_others_value"),
- integer_type_node, 0, 1, 0, 1, 1, 0, Empty);
-
- /* Hooks to call when entering/leaving an exception handler. */
- begin_handler_decl
- = create_subprog_decl (get_identifier ("__gnat_begin_handler"), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- ptr_void_type_node,
- endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- end_handler_decl
- = create_subprog_decl (get_identifier ("__gnat_end_handler"), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- ptr_void_type_node,
- endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- /* If in no exception handlers mode, all raise statements are redirected to
- __gnat_last_chance_handler. No need to redefine raise_nodefer_decl, since
- this procedure will never be called in this mode. */
- if (No_Exception_Handlers_Set ())
- {
- decl
- = create_subprog_decl
- (get_identifier ("__gnat_last_chance_handler"), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- build_pointer_type (char_type_node),
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))),
- NULL_TREE, false, true, true, NULL, Empty);
-
- for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
- gnat_raise_decls[i] = decl;
- }
- else
- /* Otherwise, make one decl for each exception reason. */
- for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
- {
- char name[17];
-
- sprintf (name, "__gnat_rcheck_%.2d", i);
- gnat_raise_decls[i]
- = create_subprog_decl
- (get_identifier (name), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- build_pointer_type
- (char_type_node),
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))),
- NULL_TREE, false, true, true, NULL, Empty);
- }
-
- /* Indicate that these never return. */
- TREE_THIS_VOLATILE (raise_nodefer_decl) = 1;
- TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1;
- TREE_TYPE (raise_nodefer_decl)
- = build_qualified_type (TREE_TYPE (raise_nodefer_decl),
- TYPE_QUAL_VOLATILE);
-
- for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
- {
- TREE_THIS_VOLATILE (gnat_raise_decls[i]) = 1;
- TREE_SIDE_EFFECTS (gnat_raise_decls[i]) = 1;
- TREE_TYPE (gnat_raise_decls[i])
- = build_qualified_type (TREE_TYPE (gnat_raise_decls[i]),
- TYPE_QUAL_VOLATILE);
- }
-
- /* setjmp returns an integer and has one operand, which is a pointer to
- a jmpbuf. */
- setjmp_decl
- = create_subprog_decl
- (get_identifier ("__builtin_setjmp"), NULL_TREE,
- build_function_type (integer_type_node,
- tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL;
- DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP;
-
- /* update_setjmp_buf updates a setjmp buffer from the current stack pointer
- address. */
- update_setjmp_buf_decl
- = create_subprog_decl
- (get_identifier ("__builtin_update_setjmp_buf"), NULL_TREE,
- build_function_type (void_type_node,
- tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
- NULL_TREE, false, true, true, NULL, Empty);
-
- DECL_BUILT_IN_CLASS (update_setjmp_buf_decl) = BUILT_IN_NORMAL;
- DECL_FUNCTION_CODE (update_setjmp_buf_decl) = BUILT_IN_UPDATE_SETJMP_BUF;
-
- main_identifier_node = get_identifier ("main");
-
- /* Install the builtins we might need, either internally or as
- user available facilities for Intrinsic imports. */
- gnat_install_builtins ();
-}
-
-/* Given a record type RECORD_TYPE and a chain of FIELD_DECL nodes FIELDLIST,
- finish constructing the record or union type. If REP_LEVEL is zero, this
- record has no representation clause and so will be entirely laid out here.
- If REP_LEVEL is one, this record has a representation clause and has been
- laid out already; only set the sizes and alignment. If REP_LEVEL is two,
- this record is derived from a parent record and thus inherits its layout;
- only make a pass on the fields to finalize them. If DO_NOT_FINALIZE is
- true, the record type is expected to be modified afterwards so it will
- not be sent to the back-end for finalization. */
-
-void
-finish_record_type (tree record_type, tree fieldlist, int rep_level,
- bool do_not_finalize)
-{
- enum tree_code code = TREE_CODE (record_type);
- tree name = TYPE_NAME (record_type);
- tree ada_size = bitsize_zero_node;
- tree size = bitsize_zero_node;
- bool had_size = TYPE_SIZE (record_type) != 0;
- bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
- bool had_align = TYPE_ALIGN (record_type) != 0;
- tree field;
-
- if (name && TREE_CODE (name) == TYPE_DECL)
- name = DECL_NAME (name);
-
- TYPE_FIELDS (record_type) = fieldlist;
- TYPE_STUB_DECL (record_type) = build_decl (TYPE_DECL, name, record_type);
-
- /* We don't need both the typedef name and the record name output in
- the debugging information, since they are the same. */
- DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1;
-
- /* Globally initialize the record first. If this is a rep'ed record,
- that just means some initializations; otherwise, layout the record. */
- if (rep_level > 0)
- {
- TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
- SET_TYPE_MODE (record_type, BLKmode);
-
- if (!had_size_unit)
- TYPE_SIZE_UNIT (record_type) = size_zero_node;
- if (!had_size)
- TYPE_SIZE (record_type) = bitsize_zero_node;
-
- /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
- out just like a UNION_TYPE, since the size will be fixed. */
- else if (code == QUAL_UNION_TYPE)
- code = UNION_TYPE;
- }
- else
- {
- /* Ensure there isn't a size already set. There can be in an error
- case where there is a rep clause but all fields have errors and
- no longer have a position. */
- TYPE_SIZE (record_type) = 0;
- layout_type (record_type);
- }
-
- /* At this point, the position and size of each field is known. It was
- either set before entry by a rep clause, or by laying out the type above.
-
- We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
- to compute the Ada size; the GCC size and alignment (for rep'ed records
- that are not padding types); and the mode (for rep'ed records). We also
- clear the DECL_BIT_FIELD indication for the cases we know have not been
- handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
-
- if (code == QUAL_UNION_TYPE)
- fieldlist = nreverse (fieldlist);
-
- for (field = fieldlist; field; field = TREE_CHAIN (field))
- {
- tree type = TREE_TYPE (field);
- tree pos = bit_position (field);
- tree this_size = DECL_SIZE (field);
- tree this_ada_size;
-
- if ((TREE_CODE (type) == RECORD_TYPE
- || TREE_CODE (type) == UNION_TYPE
- || TREE_CODE (type) == QUAL_UNION_TYPE)
- && !TYPE_IS_FAT_POINTER_P (type)
- && !TYPE_CONTAINS_TEMPLATE_P (type)
- && TYPE_ADA_SIZE (type))
- this_ada_size = TYPE_ADA_SIZE (type);
- else
- this_ada_size = this_size;
-
- /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
- if (DECL_BIT_FIELD (field)
- && operand_equal_p (this_size, TYPE_SIZE (type), 0))
- {
- unsigned int align = TYPE_ALIGN (type);
-
- /* In the general case, type alignment is required. */
- if (value_factor_p (pos, align))
- {
- /* The enclosing record type must be sufficiently aligned.
- Otherwise, if no alignment was specified for it and it
- has been laid out already, bump its alignment to the
- desired one if this is compatible with its size. */
- if (TYPE_ALIGN (record_type) >= align)
- {
- DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
- DECL_BIT_FIELD (field) = 0;
- }
- else if (!had_align
- && rep_level == 0
- && value_factor_p (TYPE_SIZE (record_type), align))
- {
- TYPE_ALIGN (record_type) = align;
- DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
- DECL_BIT_FIELD (field) = 0;
- }
- }
-
- /* In the non-strict alignment case, only byte alignment is. */
- if (!STRICT_ALIGNMENT
- && DECL_BIT_FIELD (field)
- && value_factor_p (pos, BITS_PER_UNIT))
- DECL_BIT_FIELD (field) = 0;
- }
-
- /* If we still have DECL_BIT_FIELD set at this point, we know the field
- is technically not addressable. Except that it can actually be
- addressed if the field is BLKmode and happens to be properly
- aligned. */
- DECL_NONADDRESSABLE_P (field)
- |= DECL_BIT_FIELD (field) && DECL_MODE (field) != BLKmode;
-
- /* A type must be as aligned as its most aligned field that is not
- a bit-field. But this is already enforced by layout_type. */
- if (rep_level > 0 && !DECL_BIT_FIELD (field))
- TYPE_ALIGN (record_type)
- = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
-
- switch (code)
- {
- case UNION_TYPE:
- ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
- size = size_binop (MAX_EXPR, size, this_size);
- break;
-
- case QUAL_UNION_TYPE:
- ada_size
- = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
- this_ada_size, ada_size);
- size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
- this_size, size);
- break;
-
- case RECORD_TYPE:
- /* Since we know here that all fields are sorted in order of
- increasing bit position, the size of the record is one
- higher than the ending bit of the last field processed
- unless we have a rep clause, since in that case we might
- have a field outside a QUAL_UNION_TYPE that has a higher ending
- position. So use a MAX in that case. Also, if this field is a
- QUAL_UNION_TYPE, we need to take into account the previous size in
- the case of empty variants. */
- ada_size
- = merge_sizes (ada_size, pos, this_ada_size,
- TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
- size
- = merge_sizes (size, pos, this_size,
- TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-
- if (code == QUAL_UNION_TYPE)
- nreverse (fieldlist);
-
- if (rep_level < 2)
- {
- /* If this is a padding record, we never want to make the size smaller
- than what was specified in it, if any. */
- if (TREE_CODE (record_type) == RECORD_TYPE
- && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
- size = TYPE_SIZE (record_type);
-
- /* Now set any of the values we've just computed that apply. */
- if (!TYPE_IS_FAT_POINTER_P (record_type)
- && !TYPE_CONTAINS_TEMPLATE_P (record_type))
- SET_TYPE_ADA_SIZE (record_type, ada_size);
-
- if (rep_level > 0)
- {
- tree size_unit = had_size_unit
- ? TYPE_SIZE_UNIT (record_type)
- : convert (sizetype,
- size_binop (CEIL_DIV_EXPR, size,
- bitsize_unit_node));
- unsigned int align = TYPE_ALIGN (record_type);
-
- TYPE_SIZE (record_type) = variable_size (round_up (size, align));
- TYPE_SIZE_UNIT (record_type)
- = variable_size (round_up (size_unit, align / BITS_PER_UNIT));
-
- compute_record_mode (record_type);
- }
- }
-
- if (!do_not_finalize)
- rest_of_record_type_compilation (record_type);
-}
-
-/* Wrap up compilation of RECORD_TYPE, i.e. most notably output all
- the debug information associated with it. It need not be invoked
- directly in most cases since finish_record_type takes care of doing
- so, unless explicitly requested not to through DO_NOT_FINALIZE. */
-
-void
-rest_of_record_type_compilation (tree record_type)
-{
- tree fieldlist = TYPE_FIELDS (record_type);
- tree field;
- enum tree_code code = TREE_CODE (record_type);
- bool var_size = false;
-
- for (field = fieldlist; field; field = TREE_CHAIN (field))
- {
- /* We need to make an XVE/XVU record if any field has variable size,
- whether or not the record does. For example, if we have a union,
- it may be that all fields, rounded up to the alignment, have the
- same size, in which case we'll use that size. But the debug
- output routines (except Dwarf2) won't be able to output the fields,
- so we need to make the special record. */
- if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
- /* If a field has a non-constant qualifier, the record will have
- variable size too. */
- || (code == QUAL_UNION_TYPE
- && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
- {
- var_size = true;
- break;
- }
- }
-
- /* If this record is of variable size, rename it so that the
- debugger knows it is and make a new, parallel, record
- that tells the debugger how the record is laid out. See
- exp_dbug.ads. But don't do this for records that are padding
- since they confuse GDB. */
- if (var_size
- && !(TREE_CODE (record_type) == RECORD_TYPE
- && TYPE_IS_PADDING_P (record_type)))
- {
- tree new_record_type
- = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
- ? UNION_TYPE : TREE_CODE (record_type));
- tree orig_name = TYPE_NAME (record_type);
- tree orig_id
- = (TREE_CODE (orig_name) == TYPE_DECL ? DECL_NAME (orig_name)
- : orig_name);
- tree new_id
- = concat_id_with_name (orig_id,
- TREE_CODE (record_type) == QUAL_UNION_TYPE
- ? "XVU" : "XVE");
- tree last_pos = bitsize_zero_node;
- tree old_field;
- tree prev_old_field = 0;
-
- TYPE_NAME (new_record_type) = new_id;
- TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
- TYPE_STUB_DECL (new_record_type)
- = build_decl (TYPE_DECL, new_id, new_record_type);
- DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1;
- DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
- = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
- TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
- TYPE_SIZE_UNIT (new_record_type)
- = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
-
- add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type);
-
- /* Now scan all the fields, replacing each field with a new
- field corresponding to the new encoding. */
- for (old_field = TYPE_FIELDS (record_type); old_field;
- old_field = TREE_CHAIN (old_field))
- {
- tree field_type = TREE_TYPE (old_field);
- tree field_name = DECL_NAME (old_field);
- tree new_field;
- tree curpos = bit_position (old_field);
- bool var = false;
- unsigned int align = 0;
- tree pos;
-
- /* See how the position was modified from the last position.
-
- There are two basic cases we support: a value was added
- to the last position or the last position was rounded to
- a boundary and they something was added. Check for the
- first case first. If not, see if there is any evidence
- of rounding. If so, round the last position and try
- again.
-
- If this is a union, the position can be taken as zero. */
-
- /* Some computations depend on the shape of the position expression,
- so strip conversions to make sure it's exposed. */
- curpos = remove_conversions (curpos, true);
-
- if (TREE_CODE (new_record_type) == UNION_TYPE)
- pos = bitsize_zero_node, align = 0;
- else
- pos = compute_related_constant (curpos, last_pos);
-
- if (!pos && TREE_CODE (curpos) == MULT_EXPR
- && host_integerp (TREE_OPERAND (curpos, 1), 1))
- {
- tree offset = TREE_OPERAND (curpos, 0);
- align = tree_low_cst (TREE_OPERAND (curpos, 1), 1);
-
- /* An offset which is a bitwise AND with a negative power of 2
- means an alignment corresponding to this power of 2. */
- offset = remove_conversions (offset, true);
- if (TREE_CODE (offset) == BIT_AND_EXPR
- && host_integerp (TREE_OPERAND (offset, 1), 0)
- && tree_int_cst_sgn (TREE_OPERAND (offset, 1)) < 0)
- {
- unsigned int pow
- = - tree_low_cst (TREE_OPERAND (offset, 1), 0);
- if (exact_log2 (pow) > 0)
- align *= pow;
- }
-
- pos = compute_related_constant (curpos,
- round_up (last_pos, align));
- }
- else if (!pos && TREE_CODE (curpos) == PLUS_EXPR
- && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
- && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
- && host_integerp (TREE_OPERAND
- (TREE_OPERAND (curpos, 0), 1),
- 1))
- {
- align
- = tree_low_cst
- (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
- pos = compute_related_constant (curpos,
- round_up (last_pos, align));
- }
- else if (potential_alignment_gap (prev_old_field, old_field,
- pos))
- {
- align = TYPE_ALIGN (field_type);
- pos = compute_related_constant (curpos,
- round_up (last_pos, align));
- }
-
- /* If we can't compute a position, set it to zero.
-
- ??? We really should abort here, but it's too much work
- to get this correct for all cases. */
-
- if (!pos)
- pos = bitsize_zero_node;
-
- /* See if this type is variable-sized and make a pointer type
- and indicate the indirection if so. Beware that the debug
- back-end may adjust the position computed above according
- to the alignment of the field type, i.e. the pointer type
- in this case, if we don't preventively counter that. */
- if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
- {
- field_type = build_pointer_type (field_type);
- if (align != 0 && TYPE_ALIGN (field_type) > align)
- {
- field_type = copy_node (field_type);
- TYPE_ALIGN (field_type) = align;
- }
- var = true;
- }
-
- /* Make a new field name, if necessary. */
- if (var || align != 0)
- {
- char suffix[16];
-
- if (align != 0)
- sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
- align / BITS_PER_UNIT);
- else
- strcpy (suffix, "XVL");
-
- field_name = concat_id_with_name (field_name, suffix);
- }
-
- new_field = create_field_decl (field_name, field_type,
- new_record_type, 0,
- DECL_SIZE (old_field), pos, 0);
- TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
- TYPE_FIELDS (new_record_type) = new_field;
-
- /* If old_field is a QUAL_UNION_TYPE, take its size as being
- zero. The only time it's not the last field of the record
- is when there are other components at fixed positions after
- it (meaning there was a rep clause for every field) and we
- want to be able to encode them. */
- last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
- (TREE_CODE (TREE_TYPE (old_field))
- == QUAL_UNION_TYPE)
- ? bitsize_zero_node
- : DECL_SIZE (old_field));
- prev_old_field = old_field;
- }
-
- TYPE_FIELDS (new_record_type)
- = nreverse (TYPE_FIELDS (new_record_type));
-
- rest_of_type_decl_compilation (TYPE_STUB_DECL (new_record_type));
- }
-
- rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type));
-}
-
-/* Append PARALLEL_TYPE on the chain of parallel types for decl. */
-
-void
-add_parallel_type (tree decl, tree parallel_type)
-{
- tree d = decl;
-
- while (DECL_PARALLEL_TYPE (d))
- d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d));
-
- SET_DECL_PARALLEL_TYPE (d, parallel_type);
-}
-
-/* Return the parallel type associated to a type, if any. */
-
-tree
-get_parallel_type (tree type)
-{
- if (TYPE_STUB_DECL (type))
- return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
- else
- return NULL_TREE;
-}
-
-/* Utility function of above to merge LAST_SIZE, the previous size of a record
- with FIRST_BIT and SIZE that describe a field. SPECIAL is nonzero
- if this represents a QUAL_UNION_TYPE in which case we must look for
- COND_EXPRs and replace a value of zero with the old size. If HAS_REP
- is nonzero, we must take the MAX of the end position of this field
- with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE.
-
- We return an expression for the size. */
-
-static tree
-merge_sizes (tree last_size, tree first_bit, tree size, bool special,
- bool has_rep)
-{
- tree type = TREE_TYPE (last_size);
- tree new;
-
- if (!special || TREE_CODE (size) != COND_EXPR)
- {
- new = size_binop (PLUS_EXPR, first_bit, size);
- if (has_rep)
- new = size_binop (MAX_EXPR, last_size, new);
- }
-
- else
- new = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
- integer_zerop (TREE_OPERAND (size, 1))
- ? last_size : merge_sizes (last_size, first_bit,
- TREE_OPERAND (size, 1),
- 1, has_rep),
- integer_zerop (TREE_OPERAND (size, 2))
- ? last_size : merge_sizes (last_size, first_bit,
- TREE_OPERAND (size, 2),
- 1, has_rep));
-
- /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
- when fed through substitute_in_expr) into thinking that a constant
- size is not constant. */
- while (TREE_CODE (new) == NON_LVALUE_EXPR)
- new = TREE_OPERAND (new, 0);
-
- return new;
-}
-
-/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
- related by the addition of a constant. Return that constant if so. */
-
-static tree
-compute_related_constant (tree op0, tree op1)
-{
- tree op0_var, op1_var;
- tree op0_con = split_plus (op0, &op0_var);
- tree op1_con = split_plus (op1, &op1_var);
- tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
-
- if (operand_equal_p (op0_var, op1_var, 0))
- return result;
- else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
- return result;
- else
- return 0;
-}
-
-/* Utility function of above to split a tree OP which may be a sum, into a
- constant part, which is returned, and a variable part, which is stored
- in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
- bitsizetype. */
-
-static tree
-split_plus (tree in, tree *pvar)
-{
- /* Strip NOPS in order to ease the tree traversal and maximize the
- potential for constant or plus/minus discovery. We need to be careful
- to always return and set *pvar to bitsizetype trees, but it's worth
- the effort. */
- STRIP_NOPS (in);
-
- *pvar = convert (bitsizetype, in);
-
- if (TREE_CODE (in) == INTEGER_CST)
- {
- *pvar = bitsize_zero_node;
- return convert (bitsizetype, in);
- }
- else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
- {
- tree lhs_var, rhs_var;
- tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
- tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
-
- if (lhs_var == TREE_OPERAND (in, 0)
- && rhs_var == TREE_OPERAND (in, 1))
- return bitsize_zero_node;
-
- *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
- return size_binop (TREE_CODE (in), lhs_con, rhs_con);
- }
- else
- return bitsize_zero_node;
-}
-
-/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
- subprogram. If it is void_type_node, then we are dealing with a procedure,
- otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
- PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
- copy-in/copy-out list to be stored into TYPE_CICO_LIST.
- RETURNS_UNCONSTRAINED is true if the function returns an unconstrained
- object. RETURNS_BY_REF is true if the function returns by reference.
- RETURNS_BY_TARGET_PTR is true if the function is to be passed (as its
- first parameter) the address of the place to copy its result. */
-
-tree
-create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
- bool returns_unconstrained, bool returns_by_ref,
- bool returns_by_target_ptr)
-{
- /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
- the subprogram formal parameters. This list is generated by traversing the
- input list of PARM_DECL nodes. */
- tree param_type_list = NULL;
- tree param_decl;
- tree type;
-
- for (param_decl = param_decl_list; param_decl;
- param_decl = TREE_CHAIN (param_decl))
- param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
- param_type_list);
-
- /* The list of the function parameter types has to be terminated by the void
- type to signal to the back-end that we are not dealing with a variable
- parameter subprogram, but that the subprogram has a fixed number of
- parameters. */
- param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
-
- /* The list of argument types has been created in reverse
- so nreverse it. */
- param_type_list = nreverse (param_type_list);
-
- type = build_function_type (return_type, param_type_list);
-
- /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
- or the new type should, make a copy of TYPE. Likewise for
- RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
- if (TYPE_CI_CO_LIST (type) || cico_list
- || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
- || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref
- || TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr)
- type = copy_type (type);
-
- TYPE_CI_CO_LIST (type) = cico_list;
- TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
- TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
- TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr;
- return type;
-}
-
-/* Return a copy of TYPE but safe to modify in any way. */
-
-tree
-copy_type (tree type)
-{
- tree new = copy_node (type);
-
- /* copy_node clears this field instead of copying it, because it is
- aliased with TREE_CHAIN. */
- TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type);
-
- TYPE_POINTER_TO (new) = 0;
- TYPE_REFERENCE_TO (new) = 0;
- TYPE_MAIN_VARIANT (new) = new;
- TYPE_NEXT_VARIANT (new) = 0;
-
- return new;
-}
-
-/* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose
- TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position of
- the decl. */
-
-tree
-create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
-{
- /* First build a type for the desired range. */
- tree type = build_index_2_type (min, max);
-
- /* If this type has the TYPE_INDEX_TYPE we want, return it. Otherwise, if it
- doesn't have TYPE_INDEX_TYPE set, set it to INDEX. If TYPE_INDEX_TYPE
- is set, but not to INDEX, make a copy of this type with the requested
- index type. Note that we have no way of sharing these types, but that's
- only a small hole. */
- if (TYPE_INDEX_TYPE (type) == index)
- return type;
- else if (TYPE_INDEX_TYPE (type))
- type = copy_type (type);
-
- SET_TYPE_INDEX_TYPE (type, index);
- create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node);
- return type;
-}
-
-/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character
- string) and TYPE is a ..._TYPE node giving its data type.
- ARTIFICIAL_P is true if this is a declaration that was generated
- by the compiler. DEBUG_INFO_P is true if we need to write debugging
- information about this type. GNAT_NODE is used for the position of
- the decl. */
-
-tree
-create_type_decl (tree type_name, tree type, struct attrib *attr_list,
- bool artificial_p, bool debug_info_p, Node_Id gnat_node)
-{
- tree type_decl = build_decl (TYPE_DECL, type_name, type);
- enum tree_code code = TREE_CODE (type);
-
- DECL_ARTIFICIAL (type_decl) = artificial_p;
-
- if (!TYPE_IS_DUMMY_P (type))
- gnat_pushdecl (type_decl, gnat_node);
-
- process_attributes (type_decl, attr_list);
-
- /* Pass type declaration information to the debugger unless this is an
- UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support,
- and ENUMERAL_TYPE or RECORD_TYPE which is handled separately, or
- type for which debugging information was not requested. */
- if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
- DECL_IGNORED_P (type_decl) = 1;
- else if (code != ENUMERAL_TYPE
- && (code != RECORD_TYPE || TYPE_IS_FAT_POINTER_P (type))
- && !((code == POINTER_TYPE || code == REFERENCE_TYPE)
- && TYPE_IS_DUMMY_P (TREE_TYPE (type))))
- rest_of_type_decl_compilation (type_decl);
-
- return type_decl;
-}
-
-/* Return a VAR_DECL or CONST_DECL node.
-
- VAR_NAME gives the name of the variable. ASM_NAME is its assembler name
- (if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is
- the GCC tree for an optional initial expression; NULL_TREE if none.
-
- CONST_FLAG is true if this variable is constant, in which case we might
- return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
-
- PUBLIC_FLAG is true if this is for a reference to a public entity or for a
- definition to be made visible outside of the current compilation unit, for
- instance variable definitions in a package specification.
-
- EXTERN_FLAG is nonzero when processing an external variable declaration (as
- opposed to a definition: no storage is to be allocated for the variable).
-
- STATIC_FLAG is only relevant when not at top level. In that case
- it indicates whether to always allocate storage to the variable.
-
- GNAT_NODE is used for the position of the decl. */
-
-tree
-create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init,
- bool const_flag, bool public_flag, bool extern_flag,
- bool static_flag, bool const_decl_allowed_p,
- struct attrib *attr_list, Node_Id gnat_node)
-{
- bool init_const
- = (var_init != 0
- && gnat_types_compatible_p (type, TREE_TYPE (var_init))
- && (global_bindings_p () || static_flag
- ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0
- : TREE_CONSTANT (var_init)));
-
- /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
- case the initializer may be used in-lieu of the DECL node (as done in
- Identifier_to_gnu). This is useful to prevent the need of elaboration
- code when an identifier for which such a decl is made is in turn used as
- an initializer. We used to rely on CONST vs VAR_DECL for this purpose,
- but extra constraints apply to this choice (see below) and are not
- relevant to the distinction we wish to make. */
- bool constant_p = const_flag && init_const;
-
- /* The actual DECL node. CONST_DECL was initially intended for enumerals
- and may be used for scalars in general but not for aggregates. */
- tree var_decl
- = build_decl ((constant_p && const_decl_allowed_p
- && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL,
- var_name, type);
-
- /* If this is external, throw away any initializations (they will be done
- elsewhere) unless this is a constant for which we would like to remain
- able to get the initializer. If we are defining a global here, leave a
- constant initialization and save any variable elaborations for the
- elaboration routine. If we are just annotating types, throw away the
- initialization if it isn't a constant. */
- if ((extern_flag && !constant_p)
- || (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
- var_init = NULL_TREE;
-
- /* At the global level, an initializer requiring code to be generated
- produces elaboration statements. Check that such statements are allowed,
- that is, not violating a No_Elaboration_Code restriction. */
- if (global_bindings_p () && var_init != 0 && ! init_const)
- Check_Elaboration_Code_Allowed (gnat_node);
-
- /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
- try to fiddle with DECL_COMMON. However, on platforms that don't
- support global BSS sections, uninitialized global variables would
- go in DATA instead, thus increasing the size of the executable. */
- if (!flag_no_common
- && TREE_CODE (var_decl) == VAR_DECL
- && !have_global_bss_p ())
- DECL_COMMON (var_decl) = 1;
- DECL_INITIAL (var_decl) = var_init;
- TREE_READONLY (var_decl) = const_flag;
- DECL_EXTERNAL (var_decl) = extern_flag;
- TREE_PUBLIC (var_decl) = public_flag || extern_flag;
- TREE_CONSTANT (var_decl) = constant_p;
- TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
- = TYPE_VOLATILE (type);
-
- /* If it's public and not external, always allocate storage for it.
- At the global binding level we need to allocate static storage for the
- variable if and only if it's not external. If we are not at the top level
- we allocate automatic storage unless requested not to. */
- TREE_STATIC (var_decl)
- = !extern_flag && (public_flag || static_flag || global_bindings_p ());
-
- /* For an external constant whose initializer is not absolute, do not emit
- debug info. In DWARF this would mean a global relocation in a read-only
- section which runs afoul of the PE-COFF runtime relocation mechanism. */
- if (extern_flag
- && constant_p
- && initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
- != null_pointer_node)
- DECL_IGNORED_P (var_decl) = 1;
-
- if (asm_name && VAR_OR_FUNCTION_DECL_P (var_decl))
- SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
-
- process_attributes (var_decl, attr_list);
-
- /* Add this decl to the current binding level. */
- gnat_pushdecl (var_decl, gnat_node);
-
- if (TREE_SIDE_EFFECTS (var_decl))
- TREE_ADDRESSABLE (var_decl) = 1;
-
- if (TREE_CODE (var_decl) != CONST_DECL)
- {
- if (global_bindings_p ())
- rest_of_decl_compilation (var_decl, true, 0);
- }
- else
- expand_decl (var_decl);
-
- return var_decl;
-}
-
-/* Return true if TYPE, an aggregate type, contains (or is) an array. */
-
-static bool
-aggregate_type_contains_array_p (tree type)
-{
- switch (TREE_CODE (type))
- {
- case RECORD_TYPE:
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- {
- tree field;
- for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
- if (AGGREGATE_TYPE_P (TREE_TYPE (field))
- && aggregate_type_contains_array_p (TREE_TYPE (field)))
- return true;
- return false;
- }
-
- case ARRAY_TYPE:
- return true;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its
- type, and RECORD_TYPE is the type of the parent. PACKED is nonzero if
- this field is in a record type with a "pragma pack". If SIZE is nonzero
- it is the specified size for this field. If POS is nonzero, it is the bit
- position. If ADDRESSABLE is nonzero, it means we are allowed to take
- the address of this field for aliasing purposes. If it is negative, we
- should not make a bitfield, which is used by make_aligning_type. */
-
-tree
-create_field_decl (tree field_name, tree field_type, tree record_type,
- int packed, tree size, tree pos, int addressable)
-{
- tree field_decl = build_decl (FIELD_DECL, field_name, field_type);
-
- DECL_CONTEXT (field_decl) = record_type;
- TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
-
- /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
- byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
- Likewise for an aggregate without specified position that contains an
- array, because in this case slices of variable length of this array
- must be handled by GCC and variable-sized objects need to be aligned
- to at least a byte boundary. */
- if (packed && (TYPE_MODE (field_type) == BLKmode
- || (!pos
- && AGGREGATE_TYPE_P (field_type)
- && aggregate_type_contains_array_p (field_type))))
- DECL_ALIGN (field_decl) = BITS_PER_UNIT;
-
- /* If a size is specified, use it. Otherwise, if the record type is packed
- compute a size to use, which may differ from the object's natural size.
- We always set a size in this case to trigger the checks for bitfield
- creation below, which is typically required when no position has been
- specified. */
- if (size)
- size = convert (bitsizetype, size);
- else if (packed == 1)
- {
- size = rm_size (field_type);
-
- /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to
- byte. */
- if (TREE_CODE (size) == INTEGER_CST
- && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0)
- size = round_up (size, BITS_PER_UNIT);
- }
-
- /* If we may, according to ADDRESSABLE, make a bitfield if a size is
- specified for two reasons: first if the size differs from the natural
- size. Second, if the alignment is insufficient. There are a number of
- ways the latter can be true.
-
- We never make a bitfield if the type of the field has a nonconstant size,
- because no such entity requiring bitfield operations should reach here.
-
- We do *preventively* make a bitfield when there might be the need for it
- but we don't have all the necessary information to decide, as is the case
- of a field with no specified position in a packed record.
-
- We also don't look at STRICT_ALIGNMENT here, and rely on later processing
- in layout_decl or finish_record_type to clear the bit_field indication if
- it is in fact not needed. */
- if (addressable >= 0
- && size
- && TREE_CODE (size) == INTEGER_CST
- && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
- && (!tree_int_cst_equal (size, TYPE_SIZE (field_type))
- || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
- || packed
- || (TYPE_ALIGN (record_type) != 0
- && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
- {
- DECL_BIT_FIELD (field_decl) = 1;
- DECL_SIZE (field_decl) = size;
- if (!packed && !pos)
- DECL_ALIGN (field_decl)
- = (TYPE_ALIGN (record_type) != 0
- ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type))
- : TYPE_ALIGN (field_type));
- }
-
- DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
-
- /* Bump the alignment if need be, either for bitfield/packing purposes or
- to satisfy the type requirements if no such consideration applies. When
- we get the alignment from the type, indicate if this is from an explicit
- user request, which prevents stor-layout from lowering it later on. */
- {
- int bit_align
- = (DECL_BIT_FIELD (field_decl) ? 1
- : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0);
-
- if (bit_align > DECL_ALIGN (field_decl))
- DECL_ALIGN (field_decl) = bit_align;
- else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl))
- {
- DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
- DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type);
- }
- }
-
- if (pos)
- {
- /* We need to pass in the alignment the DECL is known to have.
- This is the lowest-order bit set in POS, but no more than
- the alignment of the record, if one is specified. Note
- that an alignment of 0 is taken as infinite. */
- unsigned int known_align;
-
- if (host_integerp (pos, 1))
- known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
- else
- known_align = BITS_PER_UNIT;
-
- if (TYPE_ALIGN (record_type)
- && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
- known_align = TYPE_ALIGN (record_type);
-
- layout_decl (field_decl, known_align);
- SET_DECL_OFFSET_ALIGN (field_decl,
- host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
- : BITS_PER_UNIT);
- pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
- &DECL_FIELD_BIT_OFFSET (field_decl),
- DECL_OFFSET_ALIGN (field_decl), pos);
-
- DECL_HAS_REP_P (field_decl) = 1;
- }
-
- /* In addition to what our caller says, claim the field is addressable if we
- know that its type is not suitable.
-
- The field may also be "technically" nonaddressable, meaning that even if
- we attempt to take the field's address we will actually get the address
- of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
- value we have at this point is not accurate enough, so we don't account
- for this here and let finish_record_type decide. */
- if (!addressable && !type_for_nonaliased_component_p (field_type))
- addressable = 1;
-
- DECL_NONADDRESSABLE_P (field_decl) = !addressable;
-
- return field_decl;
-}
-
-/* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter,
- PARAM_TYPE is its type. READONLY is true if the parameter is
- readonly (either an In parameter or an address of a pass-by-ref
- parameter). */
-
-tree
-create_param_decl (tree param_name, tree param_type, bool readonly)
-{
- tree param_decl = build_decl (PARM_DECL, param_name, param_type);
-
- /* Honor targetm.calls.promote_prototypes(), as not doing so can
- lead to various ABI violations. */
- if (targetm.calls.promote_prototypes (param_type)
- && (TREE_CODE (param_type) == INTEGER_TYPE
- || TREE_CODE (param_type) == ENUMERAL_TYPE
- || TREE_CODE (param_type) == BOOLEAN_TYPE)
- && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
- {
- /* We have to be careful about biased types here. Make a subtype
- of integer_type_node with the proper biasing. */
- if (TREE_CODE (param_type) == INTEGER_TYPE
- && TYPE_BIASED_REPRESENTATION_P (param_type))
- {
- param_type
- = copy_type (build_range_type (integer_type_node,
- TYPE_MIN_VALUE (param_type),
- TYPE_MAX_VALUE (param_type)));
-
- TYPE_BIASED_REPRESENTATION_P (param_type) = 1;
- }
- else
- param_type = integer_type_node;
- }
-
- DECL_ARG_TYPE (param_decl) = param_type;
- TREE_READONLY (param_decl) = readonly;
- return param_decl;
-}
-
-/* Given a DECL and ATTR_LIST, process the listed attributes. */
-
-void
-process_attributes (tree decl, struct attrib *attr_list)
-{
- for (; attr_list; attr_list = attr_list->next)
- switch (attr_list->type)
- {
- case ATTR_MACHINE_ATTRIBUTE:
- decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args,
- NULL_TREE),
- ATTR_FLAG_TYPE_IN_PLACE);
- break;
-
- case ATTR_LINK_ALIAS:
- if (! DECL_EXTERNAL (decl))
- {
- TREE_STATIC (decl) = 1;
- assemble_alias (decl, attr_list->name);
- }
- break;
-
- case ATTR_WEAK_EXTERNAL:
- if (SUPPORTS_WEAK)
- declare_weak (decl);
- else
- post_error ("?weak declarations not supported on this target",
- attr_list->error_point);
- break;
-
- case ATTR_LINK_SECTION:
- if (targetm.have_named_sections)
- {
- DECL_SECTION_NAME (decl)
- = build_string (IDENTIFIER_LENGTH (attr_list->name),
- IDENTIFIER_POINTER (attr_list->name));
- DECL_COMMON (decl) = 0;
- }
- else
- post_error ("?section attributes are not supported for this target",
- attr_list->error_point);
- break;
-
- case ATTR_LINK_CONSTRUCTOR:
- DECL_STATIC_CONSTRUCTOR (decl) = 1;
- TREE_USED (decl) = 1;
- break;
-
- case ATTR_LINK_DESTRUCTOR:
- DECL_STATIC_DESTRUCTOR (decl) = 1;
- TREE_USED (decl) = 1;
- break;
- }
-}
-
-/* Record a global renaming pointer. */
-
-void
-record_global_renaming_pointer (tree decl)
-{
- gcc_assert (DECL_RENAMED_OBJECT (decl));
- VEC_safe_push (tree, gc, global_renaming_pointers, decl);
-}
-
-/* Invalidate the global renaming pointers. */
-
-void
-invalidate_global_renaming_pointers (void)
-{
- unsigned int i;
- tree iter;
-
- for (i = 0; VEC_iterate(tree, global_renaming_pointers, i, iter); i++)
- SET_DECL_RENAMED_OBJECT (iter, NULL_TREE);
-
- VEC_free (tree, gc, global_renaming_pointers);
-}
-
-/* Return true if VALUE is a known to be a multiple of FACTOR, which must be
- a power of 2. */
-
-bool
-value_factor_p (tree value, HOST_WIDE_INT factor)
-{
- if (host_integerp (value, 1))
- return tree_low_cst (value, 1) % factor == 0;
-
- if (TREE_CODE (value) == MULT_EXPR)
- return (value_factor_p (TREE_OPERAND (value, 0), factor)
- || value_factor_p (TREE_OPERAND (value, 1), factor));
-
- return false;
-}
-
-/* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
- unless we can prove these 2 fields are laid out in such a way that no gap
- exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
- is the distance in bits between the end of PREV_FIELD and the starting
- position of CURR_FIELD. It is ignored if null. */
-
-static bool
-potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
-{
- /* If this is the first field of the record, there cannot be any gap */
- if (!prev_field)
- return false;
-
- /* If the previous field is a union type, then return False: The only
- time when such a field is not the last field of the record is when
- there are other components at fixed positions after it (meaning there
- was a rep clause for every field), in which case we don't want the
- alignment constraint to override them. */
- if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
- return false;
-
- /* If the distance between the end of prev_field and the beginning of
- curr_field is constant, then there is a gap if the value of this
- constant is not null. */
- if (offset && host_integerp (offset, 1))
- return !integer_zerop (offset);
-
- /* If the size and position of the previous field are constant,
- then check the sum of this size and position. There will be a gap
- iff it is not multiple of the current field alignment. */
- if (host_integerp (DECL_SIZE (prev_field), 1)
- && host_integerp (bit_position (prev_field), 1))
- return ((tree_low_cst (bit_position (prev_field), 1)
- + tree_low_cst (DECL_SIZE (prev_field), 1))
- % DECL_ALIGN (curr_field) != 0);
-
- /* If both the position and size of the previous field are multiples
- of the current field alignment, there cannot be any gap. */
- if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
- && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
- return false;
-
- /* Fallback, return that there may be a potential gap */
- return true;
-}
-
-/* Returns a LABEL_DECL node for LABEL_NAME. */
-
-tree
-create_label_decl (tree label_name)
-{
- tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node);
-
- DECL_CONTEXT (label_decl) = current_function_decl;
- DECL_MODE (label_decl) = VOIDmode;
- DECL_SOURCE_LOCATION (label_decl) = input_location;
-
- return label_decl;
-}
-
-/* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
- ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
- node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
- PARM_DECL nodes chained through the TREE_CHAIN field).
-
- INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
- appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
-
-tree
-create_subprog_decl (tree subprog_name, tree asm_name,
- tree subprog_type, tree param_decl_list, bool inline_flag,
- bool public_flag, bool extern_flag,
- struct attrib *attr_list, Node_Id gnat_node)
-{
- tree return_type = TREE_TYPE (subprog_type);
- tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type);
-
- /* If this is a non-inline function nested inside an inlined external
- function, we cannot honor both requests without cloning the nested
- function in the current unit since it is private to the other unit.
- We could inline the nested function as well but it's probably better
- to err on the side of too little inlining. */
- if (!inline_flag
- && current_function_decl
- && DECL_DECLARED_INLINE_P (current_function_decl)
- && DECL_EXTERNAL (current_function_decl))
- DECL_DECLARED_INLINE_P (current_function_decl) = 0;
-
- DECL_EXTERNAL (subprog_decl) = extern_flag;
- TREE_PUBLIC (subprog_decl) = public_flag;
- TREE_STATIC (subprog_decl) = 1;
- TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
- TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
- TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
- DECL_DECLARED_INLINE_P (subprog_decl) = inline_flag;
- DECL_ARGUMENTS (subprog_decl) = param_decl_list;
- DECL_RESULT (subprog_decl) = build_decl (RESULT_DECL, 0, return_type);
- DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1;
- DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1;
-
- /* TREE_ADDRESSABLE is set on the result type to request the use of the
- target by-reference return mechanism. This is not supported all the
- way down to RTL expansion with GCC 4, which ICEs on temporary creation
- attempts with such a type and expects DECL_BY_REFERENCE to be set on
- the RESULT_DECL instead - see gnat_genericize for more details. */
- if (TREE_ADDRESSABLE (TREE_TYPE (DECL_RESULT (subprog_decl))))
- {
- tree result_decl = DECL_RESULT (subprog_decl);
-
- TREE_ADDRESSABLE (TREE_TYPE (result_decl)) = 0;
- DECL_BY_REFERENCE (result_decl) = 1;
- }
-
- if (asm_name)
- {
- SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
-
- /* The expand_main_function circuitry expects "main_identifier_node" to
- designate the DECL_NAME of the 'main' entry point, in turn expected
- to be declared as the "main" function literally by default. Ada
- program entry points are typically declared with a different name
- within the binder generated file, exported as 'main' to satisfy the
- system expectations. Redirect main_identifier_node in this case. */
- if (asm_name == main_identifier_node)
- main_identifier_node = DECL_NAME (subprog_decl);
- }
-
- process_attributes (subprog_decl, attr_list);
-
- /* Add this decl to the current binding level. */
- gnat_pushdecl (subprog_decl, gnat_node);
-
- /* Output the assembler code and/or RTL for the declaration. */
- rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
-
- return subprog_decl;
-}
-
-/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
- body. This routine needs to be invoked before processing the declarations
- appearing in the subprogram. */
-
-void
-begin_subprog_body (tree subprog_decl)
-{
- tree param_decl;
-
- current_function_decl = subprog_decl;
- announce_function (subprog_decl);
-
- /* Enter a new binding level and show that all the parameters belong to
- this function. */
- gnat_pushlevel ();
- for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
- param_decl = TREE_CHAIN (param_decl))
- DECL_CONTEXT (param_decl) = subprog_decl;
-
- make_decl_rtl (subprog_decl);
-
- /* We handle pending sizes via the elaboration of types, so we don't need to
- save them. This causes them to be marked as part of the outer function
- and then discarded. */
- get_pending_sizes ();
-}
-
-
-/* Helper for the genericization callback. Return a dereference of VAL
- if it is of a reference type. */
-
-static tree
-convert_from_reference (tree val)
-{
- tree value_type, ref;
-
- if (TREE_CODE (TREE_TYPE (val)) != REFERENCE_TYPE)
- return val;
-
- value_type = TREE_TYPE (TREE_TYPE (val));
- ref = build1 (INDIRECT_REF, value_type, val);
-
- /* See if what we reference is CONST or VOLATILE, which requires
- looking into array types to get to the component type. */
-
- while (TREE_CODE (value_type) == ARRAY_TYPE)
- value_type = TREE_TYPE (value_type);
-
- TREE_READONLY (ref)
- = (TYPE_QUALS (value_type) & TYPE_QUAL_CONST);
- TREE_THIS_VOLATILE (ref)
- = (TYPE_QUALS (value_type) & TYPE_QUAL_VOLATILE);
-
- TREE_SIDE_EFFECTS (ref)
- = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val));
-
- return ref;
-}
-
-/* Helper for the genericization callback. Returns true if T denotes
- a RESULT_DECL with DECL_BY_REFERENCE set. */
-
-static inline bool
-is_byref_result (tree t)
-{
- return (TREE_CODE (t) == RESULT_DECL && DECL_BY_REFERENCE (t));
-}
-
-
-/* Tree walking callback for gnat_genericize. Currently ...
-
- o Adjust references to the function's DECL_RESULT if it is marked
- DECL_BY_REFERENCE and so has had its type turned into a reference
- type at the end of the function compilation. */
-
-static tree
-gnat_genericize_r (tree *stmt_p, int *walk_subtrees, void *data)
-{
- /* This implementation is modeled after what the C++ front-end is
- doing, basis of the downstream passes behavior. */
-
- tree stmt = *stmt_p;
- struct pointer_set_t *p_set = (struct pointer_set_t*) data;
-
- /* If we have a direct mention of the result decl, dereference. */
- if (is_byref_result (stmt))
- {
- *stmt_p = convert_from_reference (stmt);
- *walk_subtrees = 0;
- return NULL;
- }
-
- /* Otherwise, no need to walk the same tree twice. */
- if (pointer_set_contains (p_set, stmt))
- {
- *walk_subtrees = 0;
- return NULL_TREE;
- }
-
- /* If we are taking the address of what now is a reference, just get the
- reference value. */
- if (TREE_CODE (stmt) == ADDR_EXPR
- && is_byref_result (TREE_OPERAND (stmt, 0)))
- {
- *stmt_p = convert (TREE_TYPE (stmt), TREE_OPERAND (stmt, 0));
- *walk_subtrees = 0;
- }
-
- /* Don't dereference an by-reference RESULT_DECL inside a RETURN_EXPR. */
- else if (TREE_CODE (stmt) == RETURN_EXPR
- && TREE_OPERAND (stmt, 0)
- && is_byref_result (TREE_OPERAND (stmt, 0)))
- *walk_subtrees = 0;
-
- /* Don't look inside trees that cannot embed references of interest. */
- else if (IS_TYPE_OR_DECL_P (stmt))
- *walk_subtrees = 0;
-
- pointer_set_insert (p_set, *stmt_p);
-
- return NULL;
-}
-
-/* Perform lowering of Ada trees to GENERIC. In particular:
-
- o Turn a DECL_BY_REFERENCE RESULT_DECL into a real by-reference decl
- and adjust all the references to this decl accordingly. */
-
-static void
-gnat_genericize (tree fndecl)
-{
- /* Prior to GCC 4, an explicit By_Reference result mechanism for a function
- was handled by simply setting TREE_ADDRESSABLE on the result type.
- Everything required to actually pass by invisible ref using the target
- mechanism (e.g. extra parameter) was handled at RTL expansion time.
-
- This doesn't work with GCC 4 any more for several reasons. First, the
- gimplification process might need the creation of temporaries of this
- type, and the gimplifier ICEs on such attempts. Second, the middle-end
- now relies on a different attribute for such cases (DECL_BY_REFERENCE on
- RESULT/PARM_DECLs), and expects the user invisible by-reference-ness to
- be explicitly accounted for by the front-end in the function body.
-
- We achieve the complete transformation in two steps:
-
- 1/ create_subprog_decl performs early attribute tweaks: it clears
- TREE_ADDRESSABLE from the result type and sets DECL_BY_REFERENCE on
- the result decl. The former ensures that the bit isn't set in the GCC
- tree saved for the function, so prevents ICEs on temporary creation.
- The latter we use here to trigger the rest of the processing.
-
- 2/ This function performs the type transformation on the result decl
- and adjusts all the references to this decl from the function body
- accordingly.
-
- Clearing TREE_ADDRESSABLE from the type differs from the C++ front-end
- strategy, which escapes the gimplifier temporary creation issues by
- creating it's own temporaries using TARGET_EXPR nodes. Our way relies
- on simple specific support code in aggregate_value_p to look at the
- target function result decl explicitly. */
-
- struct pointer_set_t *p_set;
- tree decl_result = DECL_RESULT (fndecl);
-
- if (!DECL_BY_REFERENCE (decl_result))
- return;
-
- /* Make the DECL_RESULT explicitly by-reference and adjust all the
- occurrences in the function body using the common tree-walking facility.
- We want to see every occurrence of the result decl to adjust the
- referencing tree, so need to use our own pointer set to control which
- trees should be visited again or not. */
-
- p_set = pointer_set_create ();
-
- TREE_TYPE (decl_result) = build_reference_type (TREE_TYPE (decl_result));
- TREE_ADDRESSABLE (decl_result) = 0;
- relayout_decl (decl_result);
-
- walk_tree (&DECL_SAVED_TREE (fndecl), gnat_genericize_r, p_set, NULL);
-
- pointer_set_destroy (p_set);
-}
-
-/* Finish the definition of the current subprogram BODY and compile it all the
- way to assembler language output. ELAB_P tells if this is called for an
- elaboration routine, to be entirely discarded if empty. */
-
-void
-end_subprog_body (tree body, bool elab_p)
-{
- tree fndecl = current_function_decl;
-
- /* Mark the BLOCK for this level as being for this function and pop the
- level. Since the vars in it are the parameters, clear them. */
- BLOCK_VARS (current_binding_level->block) = 0;
- BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
- DECL_INITIAL (fndecl) = current_binding_level->block;
- gnat_poplevel ();
-
- /* We handle pending sizes via the elaboration of types, so we don't
- need to save them. */
- get_pending_sizes ();
-
- /* Mark the RESULT_DECL as being in this subprogram. */
- DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
-
- DECL_SAVED_TREE (fndecl) = body;
-
- current_function_decl = DECL_CONTEXT (fndecl);
- set_cfun (NULL);
-
- /* We cannot track the location of errors past this point. */
- error_gnat_node = Empty;
-
- /* If we're only annotating types, don't actually compile this function. */
- if (type_annotate_only)
- return;
-
- /* Perform the required pre-gimplification transformations on the tree. */
- gnat_genericize (fndecl);
-
- /* We do different things for nested and non-nested functions.
- ??? This should be in cgraph. */
- if (!DECL_CONTEXT (fndecl))
- {
- gnat_gimplify_function (fndecl);
-
- /* If this is an empty elaboration proc, just discard the node.
- Otherwise, compile further. */
- if (elab_p && empty_body_p (gimple_body (fndecl)))
- cgraph_remove_node (cgraph_node (fndecl));
- else
- cgraph_finalize_function (fndecl, false);
- }
- else
- /* Register this function with cgraph just far enough to get it
- added to our parent's nested function list. */
- (void) cgraph_node (fndecl);
-}
-
-/* Convert FNDECL's code to GIMPLE and handle any nested functions. */
-
-static void
-gnat_gimplify_function (tree fndecl)
-{
- struct cgraph_node *cgn;
-
- dump_function (TDI_original, fndecl);
- gimplify_function_tree (fndecl);
- dump_function (TDI_generic, fndecl);
-
- /* Convert all nested functions to GIMPLE now. We do things in this order
- so that items like VLA sizes are expanded properly in the context of the
- correct function. */
- cgn = cgraph_node (fndecl);
- for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
- gnat_gimplify_function (cgn->decl);
-}
-
-
-tree
-gnat_builtin_function (tree decl)
-{
- gnat_pushdecl (decl, Empty);
- return decl;
-}
-
-/* Return an integer type with the number of bits of precision given by
- PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
- it is a signed type. */
-
-tree
-gnat_type_for_size (unsigned precision, int unsignedp)
-{
- tree t;
- char type_name[20];
-
- if (precision <= 2 * MAX_BITS_PER_WORD
- && signed_and_unsigned_types[precision][unsignedp])
- return signed_and_unsigned_types[precision][unsignedp];
-
- if (unsignedp)
- t = make_unsigned_type (precision);
- else
- t = make_signed_type (precision);
-
- if (precision <= 2 * MAX_BITS_PER_WORD)
- signed_and_unsigned_types[precision][unsignedp] = t;
-
- if (!TYPE_NAME (t))
- {
- sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
- TYPE_NAME (t) = get_identifier (type_name);
- }
-
- return t;
-}
-
-/* Likewise for floating-point types. */
-
-static tree
-float_type_for_precision (int precision, enum machine_mode mode)
-{
- tree t;
- char type_name[20];
-
- if (float_types[(int) mode])
- return float_types[(int) mode];
-
- float_types[(int) mode] = t = make_node (REAL_TYPE);
- TYPE_PRECISION (t) = precision;
- layout_type (t);
-
- gcc_assert (TYPE_MODE (t) == mode);
- if (!TYPE_NAME (t))
- {
- sprintf (type_name, "FLOAT_%d", precision);
- TYPE_NAME (t) = get_identifier (type_name);
- }
-
- return t;
-}
-
-/* Return a data type that has machine mode MODE. UNSIGNEDP selects
- an unsigned type; otherwise a signed type is returned. */
-
-tree
-gnat_type_for_mode (enum machine_mode mode, int unsignedp)
-{
- if (mode == BLKmode)
- return NULL_TREE;
- else if (mode == VOIDmode)
- return void_type_node;
- else if (COMPLEX_MODE_P (mode))
- return NULL_TREE;
- else if (SCALAR_FLOAT_MODE_P (mode))
- return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
- else if (SCALAR_INT_MODE_P (mode))
- return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
- else
- return NULL_TREE;
-}
-
-/* Return the unsigned version of a TYPE_NODE, a scalar type. */
-
-tree
-gnat_unsigned_type (tree type_node)
-{
- tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
-
- if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
- {
- type = copy_node (type);
- TREE_TYPE (type) = type_node;
- }
- else if (TREE_TYPE (type_node)
- && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
- && TYPE_MODULAR_P (TREE_TYPE (type_node)))
- {
- type = copy_node (type);
- TREE_TYPE (type) = TREE_TYPE (type_node);
- }
-
- return type;
-}
-
-/* Return the signed version of a TYPE_NODE, a scalar type. */
-
-tree
-gnat_signed_type (tree type_node)
-{
- tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
-
- if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
- {
- type = copy_node (type);
- TREE_TYPE (type) = type_node;
- }
- else if (TREE_TYPE (type_node)
- && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
- && TYPE_MODULAR_P (TREE_TYPE (type_node)))
- {
- type = copy_node (type);
- TREE_TYPE (type) = TREE_TYPE (type_node);
- }
-
- return type;
-}
-
-/* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
- transparently converted to each other. */
-
-int
-gnat_types_compatible_p (tree t1, tree t2)
-{
- enum tree_code code;
-
- /* This is the default criterion. */
- if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
- return 1;
-
- /* We only check structural equivalence here. */
- if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
- return 0;
-
- /* Array types are also compatible if they are constrained and have
- the same component type and the same domain. */
- if (code == ARRAY_TYPE
- && TREE_TYPE (t1) == TREE_TYPE (t2)
- && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
- || (TYPE_DOMAIN (t1)
- && TYPE_DOMAIN (t2)
- && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
- TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
- && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
- TYPE_MAX_VALUE (TYPE_DOMAIN (t2))))))
- return 1;
-
- /* Padding record types are also compatible if they pad the same
- type and have the same constant size. */
- if (code == RECORD_TYPE
- && TYPE_IS_PADDING_P (t1) && TYPE_IS_PADDING_P (t2)
- && TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2))
- && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
- return 1;
-
- return 0;
-}
-
-/* EXP is an expression for the size of an object. If this size contains
- discriminant references, replace them with the maximum (if MAX_P) or
- minimum (if !MAX_P) possible value of the discriminant. */
-
-tree
-max_size (tree exp, bool max_p)
-{
- enum tree_code code = TREE_CODE (exp);
- tree type = TREE_TYPE (exp);
-
- switch (TREE_CODE_CLASS (code))
- {
- case tcc_declaration:
- case tcc_constant:
- return exp;
-
- case tcc_vl_exp:
- if (code == CALL_EXPR)
- {
- tree *argarray;
- int i, n = call_expr_nargs (exp);
- gcc_assert (n > 0);
-
- argarray = (tree *) alloca (n * sizeof (tree));
- for (i = 0; i < n; i++)
- argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
- return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
- }
- break;
-
- case tcc_reference:
- /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
- modify. Otherwise, we treat it like a variable. */
- if (!CONTAINS_PLACEHOLDER_P (exp))
- return exp;
-
- type = TREE_TYPE (TREE_OPERAND (exp, 1));
- return
- max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true);
-
- case tcc_comparison:
- return max_p ? size_one_node : size_zero_node;
-
- case tcc_unary:
- case tcc_binary:
- case tcc_expression:
- switch (TREE_CODE_LENGTH (code))
- {
- case 1:
- if (code == NON_LVALUE_EXPR)
- return max_size (TREE_OPERAND (exp, 0), max_p);
- else
- return
- fold_build1 (code, type,
- max_size (TREE_OPERAND (exp, 0),
- code == NEGATE_EXPR ? !max_p : max_p));
-
- case 2:
- if (code == COMPOUND_EXPR)
- return max_size (TREE_OPERAND (exp, 1), max_p);
-
- /* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which
- may provide a tighter bound on max_size. */
- if (code == MINUS_EXPR
- && TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR)
- {
- tree lhs = fold_build2 (MINUS_EXPR, type,
- TREE_OPERAND (TREE_OPERAND (exp, 0), 1),
- TREE_OPERAND (exp, 1));
- tree rhs = fold_build2 (MINUS_EXPR, type,
- TREE_OPERAND (TREE_OPERAND (exp, 0), 2),
- TREE_OPERAND (exp, 1));
- return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
- max_size (lhs, max_p),
- max_size (rhs, max_p));
- }
-
- {
- tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
- tree rhs = max_size (TREE_OPERAND (exp, 1),
- code == MINUS_EXPR ? !max_p : max_p);
-
- /* Special-case wanting the maximum value of a MIN_EXPR.
- In that case, if one side overflows, return the other.
- sizetype is signed, but we know sizes are non-negative.
- Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
- overflowing or the maximum possible value and the RHS
- a variable. */
- if (max_p
- && code == MIN_EXPR
- && TREE_CODE (rhs) == INTEGER_CST
- && TREE_OVERFLOW (rhs))
- return lhs;
- else if (max_p
- && code == MIN_EXPR
- && TREE_CODE (lhs) == INTEGER_CST
- && TREE_OVERFLOW (lhs))
- return rhs;
- else if ((code == MINUS_EXPR || code == PLUS_EXPR)
- && ((TREE_CODE (lhs) == INTEGER_CST
- && TREE_OVERFLOW (lhs))
- || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
- && !TREE_CONSTANT (rhs))
- return lhs;
- else
- return fold_build2 (code, type, lhs, rhs);
- }
-
- case 3:
- if (code == SAVE_EXPR)
- return exp;
- else if (code == COND_EXPR)
- return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
- max_size (TREE_OPERAND (exp, 1), max_p),
- max_size (TREE_OPERAND (exp, 2), max_p));
- }
-
- /* Other tree classes cannot happen. */
- default:
- break;
- }
-
- gcc_unreachable ();
-}
-
-/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
- EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
- Return a constructor for the template. */
-
-tree
-build_template (tree template_type, tree array_type, tree expr)
-{
- tree template_elts = NULL_TREE;
- tree bound_list = NULL_TREE;
- tree field;
-
- while (TREE_CODE (array_type) == RECORD_TYPE
- && (TYPE_IS_PADDING_P (array_type)
- || TYPE_JUSTIFIED_MODULAR_P (array_type)))
- array_type = TREE_TYPE (TYPE_FIELDS (array_type));
-
- if (TREE_CODE (array_type) == ARRAY_TYPE
- || (TREE_CODE (array_type) == INTEGER_TYPE
- && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
- bound_list = TYPE_ACTUAL_BOUNDS (array_type);
-
- /* First make the list for a CONSTRUCTOR for the template. Go down the
- field list of the template instead of the type chain because this
- array might be an Ada array of arrays and we can't tell where the
- nested arrays stop being the underlying object. */
-
- for (field = TYPE_FIELDS (template_type); field;
- (bound_list
- ? (bound_list = TREE_CHAIN (bound_list))
- : (array_type = TREE_TYPE (array_type))),
- field = TREE_CHAIN (TREE_CHAIN (field)))
- {
- tree bounds, min, max;
-
- /* If we have a bound list, get the bounds from there. Likewise
- for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
- DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
- This will give us a maximum range. */
- if (bound_list)
- bounds = TREE_VALUE (bound_list);
- else if (TREE_CODE (array_type) == ARRAY_TYPE)
- bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
- else if (expr && TREE_CODE (expr) == PARM_DECL
- && DECL_BY_COMPONENT_PTR_P (expr))
- bounds = TREE_TYPE (field);
- else
- gcc_unreachable ();
-
- min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
- max = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MAX_VALUE (bounds));
-
- /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
- substitute it from OBJECT. */
- min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
- max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
-
- template_elts = tree_cons (TREE_CHAIN (field), max,
- tree_cons (field, min, template_elts));
- }
-
- return gnat_build_constructor (template_type, nreverse (template_elts));
-}
-
-/* Build a 32bit VMS descriptor from a Mechanism_Type, which must specify
- a descriptor type, and the GCC type of an object. Each FIELD_DECL
- in the type contains in its DECL_INITIAL the expression to use when
- a constructor is made for the type. GNAT_ENTITY is an entity used
- to print out an error message if the mechanism cannot be applied to
- an object of that type and also for the name. */
-
-tree
-build_vms_descriptor32 (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
-{
- tree record_type = make_node (RECORD_TYPE);
- tree pointer32_type;
- tree field_list = 0;
- int class;
- int dtype = 0;
- tree inner_type;
- int ndim;
- int i;
- tree *idx_arr;
- tree tem;
-
- /* If TYPE is an unconstrained array, use the underlying array type. */
- if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
- type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
-
- /* If this is an array, compute the number of dimensions in the array,
- get the index types, and point to the inner type. */
- if (TREE_CODE (type) != ARRAY_TYPE)
- ndim = 0;
- else
- for (ndim = 1, inner_type = type;
- TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
- && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
- ndim++, inner_type = TREE_TYPE (inner_type))
- ;
-
- idx_arr = (tree *) alloca (ndim * sizeof (tree));
-
- if (mech != By_Descriptor_NCA && mech != By_Short_Descriptor_NCA
- && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
- for (i = ndim - 1, inner_type = type;
- i >= 0;
- i--, inner_type = TREE_TYPE (inner_type))
- idx_arr[i] = TYPE_DOMAIN (inner_type);
- else
- for (i = 0, inner_type = type;
- i < ndim;
- i++, inner_type = TREE_TYPE (inner_type))
- idx_arr[i] = TYPE_DOMAIN (inner_type);
-
- /* Now get the DTYPE value. */
- switch (TREE_CODE (type))
- {
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- if (TYPE_VAX_FLOATING_POINT_P (type))
- switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
- {
- case 6:
- dtype = 10;
- break;
- case 9:
- dtype = 11;
- break;
- case 15:
- dtype = 27;
- break;
- }
- else
- switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
- {
- case 8:
- dtype = TYPE_UNSIGNED (type) ? 2 : 6;
- break;
- case 16:
- dtype = TYPE_UNSIGNED (type) ? 3 : 7;
- break;
- case 32:
- dtype = TYPE_UNSIGNED (type) ? 4 : 8;
- break;
- case 64:
- dtype = TYPE_UNSIGNED (type) ? 5 : 9;
- break;
- case 128:
- dtype = TYPE_UNSIGNED (type) ? 25 : 26;
- break;
- }
- break;
-
- case REAL_TYPE:
- dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
- break;
-
- case COMPLEX_TYPE:
- if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
- && TYPE_VAX_FLOATING_POINT_P (type))
- switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
- {
- case 6:
- dtype = 12;
- break;
- case 9:
- dtype = 13;
- break;
- case 15:
- dtype = 29;
- }
- else
- dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
- break;
-
- case ARRAY_TYPE:
- dtype = 14;
- break;
-
- default:
- break;
- }
-
- /* Get the CLASS value. */
- switch (mech)
- {
- case By_Descriptor_A:
- case By_Short_Descriptor_A:
- class = 4;
- break;
- case By_Descriptor_NCA:
- case By_Short_Descriptor_NCA:
- class = 10;
- break;
- case By_Descriptor_SB:
- case By_Short_Descriptor_SB:
- class = 15;
- break;
- case By_Descriptor:
- case By_Short_Descriptor:
- case By_Descriptor_S:
- case By_Short_Descriptor_S:
- default:
- class = 1;
- break;
- }
-
- /* Make the type for a descriptor for VMS. The first four fields
- are the same for all types. */
-
- field_list
- = chainon (field_list,
- make_descriptor_field
- ("LENGTH", gnat_type_for_size (16, 1), record_type,
- size_in_bytes ((mech == By_Descriptor_A ||
- mech == By_Short_Descriptor_A)
- ? inner_type : type)));
-
- field_list = chainon (field_list,
- make_descriptor_field ("DTYPE",
- gnat_type_for_size (8, 1),
- record_type, size_int (dtype)));
- field_list = chainon (field_list,
- make_descriptor_field ("CLASS",
- gnat_type_for_size (8, 1),
- record_type, size_int (class)));
-
- /* Of course this will crash at run-time if the address space is not
- within the low 32 bits, but there is nothing else we can do. */
- pointer32_type = build_pointer_type_for_mode (type, SImode, false);
-
- field_list
- = chainon (field_list,
- make_descriptor_field
- ("POINTER", pointer32_type, record_type,
- build_unary_op (ADDR_EXPR,
- pointer32_type,
- build0 (PLACEHOLDER_EXPR, type))));
-
- switch (mech)
- {
- case By_Descriptor:
- case By_Short_Descriptor:
- case By_Descriptor_S:
- case By_Short_Descriptor_S:
- break;
-
- case By_Descriptor_SB:
- case By_Short_Descriptor_SB:
- field_list
- = chainon (field_list,
- make_descriptor_field
- ("SB_L1", gnat_type_for_size (32, 1), record_type,
- TREE_CODE (type) == ARRAY_TYPE
- ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
- field_list
- = chainon (field_list,
- make_descriptor_field
- ("SB_U1", gnat_type_for_size (32, 1), record_type,
- TREE_CODE (type) == ARRAY_TYPE
- ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
- break;
-
- case By_Descriptor_A:
- case By_Short_Descriptor_A:
- case By_Descriptor_NCA:
- case By_Short_Descriptor_NCA:
- field_list = chainon (field_list,
- make_descriptor_field ("SCALE",
- gnat_type_for_size (8, 1),
- record_type,
- size_zero_node));
-
- field_list = chainon (field_list,
- make_descriptor_field ("DIGITS",
- gnat_type_for_size (8, 1),
- record_type,
- size_zero_node));
-
- field_list
- = chainon (field_list,
- make_descriptor_field
- ("AFLAGS", gnat_type_for_size (8, 1), record_type,
- size_int ((mech == By_Descriptor_NCA ||
- mech == By_Short_Descriptor_NCA)
- ? 0
- /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
- : (TREE_CODE (type) == ARRAY_TYPE
- && TYPE_CONVENTION_FORTRAN_P (type)
- ? 224 : 192))));
-
- field_list = chainon (field_list,
- make_descriptor_field ("DIMCT",
- gnat_type_for_size (8, 1),
- record_type,
- size_int (ndim)));
-
- field_list = chainon (field_list,
- make_descriptor_field ("ARSIZE",
- gnat_type_for_size (32, 1),
- record_type,
- size_in_bytes (type)));
-
- /* Now build a pointer to the 0,0,0... element. */
- tem = build0 (PLACEHOLDER_EXPR, type);
- for (i = 0, inner_type = type; i < ndim;
- i++, inner_type = TREE_TYPE (inner_type))
- tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
- convert (TYPE_DOMAIN (inner_type), size_zero_node),
- NULL_TREE, NULL_TREE);
-
- field_list
- = chainon (field_list,
- make_descriptor_field
- ("A0",
- build_pointer_type_for_mode (inner_type, SImode, false),
- record_type,
- build1 (ADDR_EXPR,
- build_pointer_type_for_mode (inner_type, SImode,
- false),
- tem)));
-
- /* Next come the addressing coefficients. */
- tem = size_one_node;
- for (i = 0; i < ndim; i++)
- {
- char fname[3];
- tree idx_length
- = size_binop (MULT_EXPR, tem,
- size_binop (PLUS_EXPR,
- size_binop (MINUS_EXPR,
- TYPE_MAX_VALUE (idx_arr[i]),
- TYPE_MIN_VALUE (idx_arr[i])),
- size_int (1)));
-
- fname[0] = ((mech == By_Descriptor_NCA ||
- mech == By_Short_Descriptor_NCA) ? 'S' : 'M');
- fname[1] = '0' + i, fname[2] = 0;
- field_list
- = chainon (field_list,
- make_descriptor_field (fname,
- gnat_type_for_size (32, 1),
- record_type, idx_length));
-
- if (mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA)
- tem = idx_length;
- }
-
- /* Finally here are the bounds. */
- for (i = 0; i < ndim; i++)
- {
- char fname[3];
-
- fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
- field_list
- = chainon (field_list,
- make_descriptor_field
- (fname, gnat_type_for_size (32, 1), record_type,
- TYPE_MIN_VALUE (idx_arr[i])));
-
- fname[0] = 'U';
- field_list
- = chainon (field_list,
- make_descriptor_field
- (fname, gnat_type_for_size (32, 1), record_type,
- TYPE_MAX_VALUE (idx_arr[i])));
- }
- break;
-
- default:
- post_error ("unsupported descriptor type for &", gnat_entity);
- }
-
- finish_record_type (record_type, field_list, 0, true);
- create_type_decl (create_concat_name (gnat_entity, "DESC"), record_type,
- NULL, true, false, gnat_entity);
-
- return record_type;
-}
-
-/* Build a 64bit VMS descriptor from a Mechanism_Type, which must specify
- a descriptor type, and the GCC type of an object. Each FIELD_DECL
- in the type contains in its DECL_INITIAL the expression to use when
- a constructor is made for the type. GNAT_ENTITY is an entity used
- to print out an error message if the mechanism cannot be applied to
- an object of that type and also for the name. */
-
-tree
-build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
-{
- tree record64_type = make_node (RECORD_TYPE);
- tree pointer64_type;
- tree field_list64 = 0;
- int class;
- int dtype = 0;
- tree inner_type;
- int ndim;
- int i;
- tree *idx_arr;
- tree tem;
-
- /* If TYPE is an unconstrained array, use the underlying array type. */
- if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
- type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
-
- /* If this is an array, compute the number of dimensions in the array,
- get the index types, and point to the inner type. */
- if (TREE_CODE (type) != ARRAY_TYPE)
- ndim = 0;
- else
- for (ndim = 1, inner_type = type;
- TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
- && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
- ndim++, inner_type = TREE_TYPE (inner_type))
- ;
-
- idx_arr = (tree *) alloca (ndim * sizeof (tree));
-
- if (mech != By_Descriptor_NCA
- && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
- for (i = ndim - 1, inner_type = type;
- i >= 0;
- i--, inner_type = TREE_TYPE (inner_type))
- idx_arr[i] = TYPE_DOMAIN (inner_type);
- else
- for (i = 0, inner_type = type;
- i < ndim;
- i++, inner_type = TREE_TYPE (inner_type))
- idx_arr[i] = TYPE_DOMAIN (inner_type);
-
- /* Now get the DTYPE value. */
- switch (TREE_CODE (type))
- {
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- if (TYPE_VAX_FLOATING_POINT_P (type))
- switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
- {
- case 6:
- dtype = 10;
- break;
- case 9:
- dtype = 11;
- break;
- case 15:
- dtype = 27;
- break;
- }
- else
- switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
- {
- case 8:
- dtype = TYPE_UNSIGNED (type) ? 2 : 6;
- break;
- case 16:
- dtype = TYPE_UNSIGNED (type) ? 3 : 7;
- break;
- case 32:
- dtype = TYPE_UNSIGNED (type) ? 4 : 8;
- break;
- case 64:
- dtype = TYPE_UNSIGNED (type) ? 5 : 9;
- break;
- case 128:
- dtype = TYPE_UNSIGNED (type) ? 25 : 26;
- break;
- }
- break;
-
- case REAL_TYPE:
- dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
- break;
-
- case COMPLEX_TYPE:
- if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
- && TYPE_VAX_FLOATING_POINT_P (type))
- switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
- {
- case 6:
- dtype = 12;
- break;
- case 9:
- dtype = 13;
- break;
- case 15:
- dtype = 29;
- }
- else
- dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
- break;
-
- case ARRAY_TYPE:
- dtype = 14;
- break;
-
- default:
- break;
- }
-
- /* Get the CLASS value. */
- switch (mech)
- {
- case By_Descriptor_A:
- class = 4;
- break;
- case By_Descriptor_NCA:
- class = 10;
- break;
- case By_Descriptor_SB:
- class = 15;
- break;
- case By_Descriptor:
- case By_Descriptor_S:
- default:
- class = 1;
- break;
- }
-
- /* Make the type for a 64bit descriptor for VMS. The first six fields
- are the same for all types. */
-
- field_list64 = chainon (field_list64,
- make_descriptor_field ("MBO",
- gnat_type_for_size (16, 1),
- record64_type, size_int (1)));
-
- field_list64 = chainon (field_list64,
- make_descriptor_field ("DTYPE",
- gnat_type_for_size (8, 1),
- record64_type, size_int (dtype)));
- field_list64 = chainon (field_list64,
- make_descriptor_field ("CLASS",
- gnat_type_for_size (8, 1),
- record64_type, size_int (class)));
-
- field_list64 = chainon (field_list64,
- make_descriptor_field ("MBMO",
- gnat_type_for_size (32, 1),
- record64_type, ssize_int (-1)));
-
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- ("LENGTH", gnat_type_for_size (64, 1), record64_type,
- size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
-
- pointer64_type = build_pointer_type_for_mode (type, DImode, false);
-
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- ("POINTER", pointer64_type, record64_type,
- build_unary_op (ADDR_EXPR,
- pointer64_type,
- build0 (PLACEHOLDER_EXPR, type))));
-
- switch (mech)
- {
- case By_Descriptor:
- case By_Descriptor_S:
- break;
-
- case By_Descriptor_SB:
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- ("SB_L1", gnat_type_for_size (64, 1), record64_type,
- TREE_CODE (type) == ARRAY_TYPE
- ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- ("SB_U1", gnat_type_for_size (64, 1), record64_type,
- TREE_CODE (type) == ARRAY_TYPE
- ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
- break;
-
- case By_Descriptor_A:
- case By_Descriptor_NCA:
- field_list64 = chainon (field_list64,
- make_descriptor_field ("SCALE",
- gnat_type_for_size (8, 1),
- record64_type,
- size_zero_node));
-
- field_list64 = chainon (field_list64,
- make_descriptor_field ("DIGITS",
- gnat_type_for_size (8, 1),
- record64_type,
- size_zero_node));
-
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- ("AFLAGS", gnat_type_for_size (8, 1), record64_type,
- size_int (mech == By_Descriptor_NCA
- ? 0
- /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
- : (TREE_CODE (type) == ARRAY_TYPE
- && TYPE_CONVENTION_FORTRAN_P (type)
- ? 224 : 192))));
-
- field_list64 = chainon (field_list64,
- make_descriptor_field ("DIMCT",
- gnat_type_for_size (8, 1),
- record64_type,
- size_int (ndim)));
-
- field_list64 = chainon (field_list64,
- make_descriptor_field ("MBZ",
- gnat_type_for_size (32, 1),
- record64_type,
- size_int (0)));
- field_list64 = chainon (field_list64,
- make_descriptor_field ("ARSIZE",
- gnat_type_for_size (64, 1),
- record64_type,
- size_in_bytes (type)));
-
- /* Now build a pointer to the 0,0,0... element. */
- tem = build0 (PLACEHOLDER_EXPR, type);
- for (i = 0, inner_type = type; i < ndim;
- i++, inner_type = TREE_TYPE (inner_type))
- tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
- convert (TYPE_DOMAIN (inner_type), size_zero_node),
- NULL_TREE, NULL_TREE);
-
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- ("A0",
- build_pointer_type_for_mode (inner_type, DImode, false),
- record64_type,
- build1 (ADDR_EXPR,
- build_pointer_type_for_mode (inner_type, DImode,
- false),
- tem)));
-
- /* Next come the addressing coefficients. */
- tem = size_one_node;
- for (i = 0; i < ndim; i++)
- {
- char fname[3];
- tree idx_length
- = size_binop (MULT_EXPR, tem,
- size_binop (PLUS_EXPR,
- size_binop (MINUS_EXPR,
- TYPE_MAX_VALUE (idx_arr[i]),
- TYPE_MIN_VALUE (idx_arr[i])),
- size_int (1)));
-
- fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
- fname[1] = '0' + i, fname[2] = 0;
- field_list64
- = chainon (field_list64,
- make_descriptor_field (fname,
- gnat_type_for_size (64, 1),
- record64_type, idx_length));
-
- if (mech == By_Descriptor_NCA)
- tem = idx_length;
- }
-
- /* Finally here are the bounds. */
- for (i = 0; i < ndim; i++)
- {
- char fname[3];
-
- fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- (fname, gnat_type_for_size (64, 1), record64_type,
- TYPE_MIN_VALUE (idx_arr[i])));
-
- fname[0] = 'U';
- field_list64
- = chainon (field_list64,
- make_descriptor_field
- (fname, gnat_type_for_size (64, 1), record64_type,
- TYPE_MAX_VALUE (idx_arr[i])));
- }
- break;
-
- default:
- post_error ("unsupported descriptor type for &", gnat_entity);
- }
-
- finish_record_type (record64_type, field_list64, 0, true);
- create_type_decl (create_concat_name (gnat_entity, "DESC64"), record64_type,
- NULL, true, false, gnat_entity);
-
- return record64_type;
-}
-
-/* Utility routine for above code to make a field. */
-
-static tree
-make_descriptor_field (const char *name, tree type,
- tree rec_type, tree initial)
-{
- tree field
- = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
-
- DECL_INITIAL (field) = initial;
- return field;
-}
-
-/* Convert GNU_EXPR, a pointer to a 64bit VMS descriptor, to GNU_TYPE, a
- regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
- which the VMS descriptor is passed. */
-
-static tree
-convert_vms_descriptor64 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
-{
- tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
- tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
- /* The CLASS field is the 3rd field in the descriptor. */
- tree class = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
- /* The POINTER field is the 6th field in the descriptor. */
- tree pointer64 = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (class)));
-
- /* Retrieve the value of the POINTER field. */
- tree gnu_expr64
- = build3 (COMPONENT_REF, TREE_TYPE (pointer64), desc, pointer64, NULL_TREE);
-
- if (POINTER_TYPE_P (gnu_type))
- return convert (gnu_type, gnu_expr64);
-
- else if (TYPE_FAT_POINTER_P (gnu_type))
- {
- tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
- tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
- tree template_type = TREE_TYPE (p_bounds_type);
- tree min_field = TYPE_FIELDS (template_type);
- tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
- tree template, template_addr, aflags, dimct, t, u;
- /* See the head comment of build_vms_descriptor. */
- int iclass = TREE_INT_CST_LOW (DECL_INITIAL (class));
- tree lfield, ufield;
-
- /* Convert POINTER to the type of the P_ARRAY field. */
- gnu_expr64 = convert (p_array_type, gnu_expr64);
-
- switch (iclass)
- {
- case 1: /* Class S */
- case 15: /* Class SB */
- /* Build {1, LENGTH} template; LENGTH64 is the 5th field. */
- t = TREE_CHAIN (TREE_CHAIN (class));
- t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- t = tree_cons (min_field,
- convert (TREE_TYPE (min_field), integer_one_node),
- tree_cons (max_field,
- convert (TREE_TYPE (max_field), t),
- NULL_TREE));
- template = gnat_build_constructor (template_type, t);
- template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
-
- /* For class S, we are done. */
- if (iclass == 1)
- break;
-
- /* Test that we really have a SB descriptor, like DEC Ada. */
- t = build3 (COMPONENT_REF, TREE_TYPE (class), desc, class, NULL);
- u = convert (TREE_TYPE (class), DECL_INITIAL (class));
- u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
- /* If so, there is already a template in the descriptor and
- it is located right after the POINTER field. The fields are
- 64bits so they must be repacked. */
- t = TREE_CHAIN (pointer64);
- lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
-
- t = TREE_CHAIN (t);
- ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- ufield = convert
- (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
-
- /* Build the template in the form of a constructor. */
- t = tree_cons (TYPE_FIELDS (template_type), lfield,
- tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
- ufield, NULL_TREE));
- template = gnat_build_constructor (template_type, t);
-
- /* Otherwise use the {1, LENGTH} template we build above. */
- template_addr = build3 (COND_EXPR, p_bounds_type, u,
- build_unary_op (ADDR_EXPR, p_bounds_type,
- template),
- template_addr);
- break;
-
- case 4: /* Class A */
- /* The AFLAGS field is the 3rd field after the pointer in the
- descriptor. */
- t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer64)));
- aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- /* The DIMCT field is the next field in the descriptor after
- aflags. */
- t = TREE_CHAIN (t);
- dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- /* Raise CONSTRAINT_ERROR if either more than 1 dimension
- or FL_COEFF or FL_BOUNDS not set. */
- u = build_int_cst (TREE_TYPE (aflags), 192);
- u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
- build_binary_op (NE_EXPR, integer_type_node,
- dimct,
- convert (TREE_TYPE (dimct),
- size_one_node)),
- build_binary_op (NE_EXPR, integer_type_node,
- build2 (BIT_AND_EXPR,
- TREE_TYPE (aflags),
- aflags, u),
- u));
- /* There is already a template in the descriptor and it is located
- in block 3. The fields are 64bits so they must be repacked. */
- t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN
- (t)))));
- lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
-
- t = TREE_CHAIN (t);
- ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- ufield = convert
- (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
-
- /* Build the template in the form of a constructor. */
- t = tree_cons (TYPE_FIELDS (template_type), lfield,
- tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
- ufield, NULL_TREE));
- template = gnat_build_constructor (template_type, t);
- template = build3 (COND_EXPR, p_bounds_type, u,
- build_call_raise (CE_Length_Check_Failed, Empty,
- N_Raise_Constraint_Error),
- template);
- template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template);
- break;
-
- case 10: /* Class NCA */
- default:
- post_error ("unsupported descriptor type for &", gnat_subprog);
- template_addr = integer_zero_node;
- break;
- }
-
- /* Build the fat pointer in the form of a constructor. */
- t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr64,
- tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
- template_addr, NULL_TREE));
- return gnat_build_constructor (gnu_type, t);
- }
-
- else
- gcc_unreachable ();
-}
-
-/* Convert GNU_EXPR, a pointer to a 32bit VMS descriptor, to GNU_TYPE, a
- regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
- which the VMS descriptor is passed. */
-
-static tree
-convert_vms_descriptor32 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
-{
- tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
- tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
- /* The CLASS field is the 3rd field in the descriptor. */
- tree class = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
- /* The POINTER field is the 4th field in the descriptor. */
- tree pointer = TREE_CHAIN (class);
-
- /* Retrieve the value of the POINTER field. */
- tree gnu_expr32
- = build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE);
-
- if (POINTER_TYPE_P (gnu_type))
- return convert (gnu_type, gnu_expr32);
-
- else if (TYPE_FAT_POINTER_P (gnu_type))
- {
- tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
- tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
- tree template_type = TREE_TYPE (p_bounds_type);
- tree min_field = TYPE_FIELDS (template_type);
- tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
- tree template, template_addr, aflags, dimct, t, u;
- /* See the head comment of build_vms_descriptor. */
- int iclass = TREE_INT_CST_LOW (DECL_INITIAL (class));
-
- /* Convert POINTER to the type of the P_ARRAY field. */
- gnu_expr32 = convert (p_array_type, gnu_expr32);
-
- switch (iclass)
- {
- case 1: /* Class S */
- case 15: /* Class SB */
- /* Build {1, LENGTH} template; LENGTH is the 1st field. */
- t = TYPE_FIELDS (desc_type);
- t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- t = tree_cons (min_field,
- convert (TREE_TYPE (min_field), integer_one_node),
- tree_cons (max_field,
- convert (TREE_TYPE (max_field), t),
- NULL_TREE));
- template = gnat_build_constructor (template_type, t);
- template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
-
- /* For class S, we are done. */
- if (iclass == 1)
- break;
-
- /* Test that we really have a SB descriptor, like DEC Ada. */
- t = build3 (COMPONENT_REF, TREE_TYPE (class), desc, class, NULL);
- u = convert (TREE_TYPE (class), DECL_INITIAL (class));
- u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
- /* If so, there is already a template in the descriptor and
- it is located right after the POINTER field. */
- t = TREE_CHAIN (pointer);
- template = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- /* Otherwise use the {1, LENGTH} template we build above. */
- template_addr = build3 (COND_EXPR, p_bounds_type, u,
- build_unary_op (ADDR_EXPR, p_bounds_type,
- template),
- template_addr);
- break;
-
- case 4: /* Class A */
- /* The AFLAGS field is the 7th field in the descriptor. */
- t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer)));
- aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- /* The DIMCT field is the 8th field in the descriptor. */
- t = TREE_CHAIN (t);
- dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- /* Raise CONSTRAINT_ERROR if either more than 1 dimension
- or FL_COEFF or FL_BOUNDS not set. */
- u = build_int_cst (TREE_TYPE (aflags), 192);
- u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
- build_binary_op (NE_EXPR, integer_type_node,
- dimct,
- convert (TREE_TYPE (dimct),
- size_one_node)),
- build_binary_op (NE_EXPR, integer_type_node,
- build2 (BIT_AND_EXPR,
- TREE_TYPE (aflags),
- aflags, u),
- u));
- /* There is already a template in the descriptor and it is
- located at the start of block 3 (12th field). */
- t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (t))));
- template = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
- template = build3 (COND_EXPR, p_bounds_type, u,
- build_call_raise (CE_Length_Check_Failed, Empty,
- N_Raise_Constraint_Error),
- template);
- template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template);
- break;
-
- case 10: /* Class NCA */
- default:
- post_error ("unsupported descriptor type for &", gnat_subprog);
- template_addr = integer_zero_node;
- break;
- }
-
- /* Build the fat pointer in the form of a constructor. */
- t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr32,
- tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
- template_addr, NULL_TREE));
-
- return gnat_build_constructor (gnu_type, t);
- }
-
- else
- gcc_unreachable ();
-}
-
-/* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular
- pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit)
- pointer type of GNU_EXPR. GNAT_SUBPROG is the subprogram to which the
- VMS descriptor is passed. */
-
-static tree
-convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type,
- Entity_Id gnat_subprog)
-{
- tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
- tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
- tree mbo = TYPE_FIELDS (desc_type);
- const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo));
- tree mbmo = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (mbo)));
- tree is64bit, gnu_expr32, gnu_expr64;
-
- /* If the field name is not MBO, it must be 32-bit and no alternate.
- Otherwise primary must be 64-bit and alternate 32-bit. */
- if (strcmp (mbostr, "MBO") != 0)
- return convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
-
- /* Build the test for 64-bit descriptor. */
- mbo = build3 (COMPONENT_REF, TREE_TYPE (mbo), desc, mbo, NULL_TREE);
- mbmo = build3 (COMPONENT_REF, TREE_TYPE (mbmo), desc, mbmo, NULL_TREE);
- is64bit
- = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
- build_binary_op (EQ_EXPR, integer_type_node,
- convert (integer_type_node, mbo),
- integer_one_node),
- build_binary_op (EQ_EXPR, integer_type_node,
- convert (integer_type_node, mbmo),
- integer_minus_one_node));
-
- /* Build the 2 possible end results. */
- gnu_expr64 = convert_vms_descriptor64 (gnu_type, gnu_expr, gnat_subprog);
- gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr);
- gnu_expr32 = convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
-
- return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32);
-}
-
-/* Build a stub for the subprogram specified by the GCC tree GNU_SUBPROG
- and the GNAT node GNAT_SUBPROG. */
-
-void
-build_function_stub (tree gnu_subprog, Entity_Id gnat_subprog)
-{
- tree gnu_subprog_type, gnu_subprog_addr, gnu_subprog_call;
- tree gnu_stub_param, gnu_param_list, gnu_arg_types, gnu_param;
- tree gnu_stub_decl = DECL_FUNCTION_STUB (gnu_subprog);
- tree gnu_body;
-
- gnu_subprog_type = TREE_TYPE (gnu_subprog);
- gnu_param_list = NULL_TREE;
-
- begin_subprog_body (gnu_stub_decl);
- gnat_pushlevel ();
-
- start_stmt_group ();
-
- /* Loop over the parameters of the stub and translate any of them
- passed by descriptor into a by reference one. */
- for (gnu_stub_param = DECL_ARGUMENTS (gnu_stub_decl),
- gnu_arg_types = TYPE_ARG_TYPES (gnu_subprog_type);
- gnu_stub_param;
- gnu_stub_param = TREE_CHAIN (gnu_stub_param),
- gnu_arg_types = TREE_CHAIN (gnu_arg_types))
- {
- if (DECL_BY_DESCRIPTOR_P (gnu_stub_param))
- gnu_param
- = convert_vms_descriptor (TREE_VALUE (gnu_arg_types),
- gnu_stub_param,
- DECL_PARM_ALT_TYPE (gnu_stub_param),
- gnat_subprog);
- else
- gnu_param = gnu_stub_param;
-
- gnu_param_list = tree_cons (NULL_TREE, gnu_param, gnu_param_list);
- }
-
- gnu_body = end_stmt_group ();
-
- /* Invoke the internal subprogram. */
- gnu_subprog_addr = build1 (ADDR_EXPR, build_pointer_type (gnu_subprog_type),
- gnu_subprog);
- gnu_subprog_call = build_call_list (TREE_TYPE (gnu_subprog_type),
- gnu_subprog_addr,
- nreverse (gnu_param_list));
-
- /* Propagate the return value, if any. */
- if (VOID_TYPE_P (TREE_TYPE (gnu_subprog_type)))
- append_to_statement_list (gnu_subprog_call, &gnu_body);
- else
- append_to_statement_list (build_return_expr (DECL_RESULT (gnu_stub_decl),
- gnu_subprog_call),
- &gnu_body);
-
- gnat_poplevel ();
-
- allocate_struct_function (gnu_stub_decl, false);
- end_subprog_body (gnu_body, false);
-}
-
-/* Build a type to be used to represent an aliased object whose nominal
- type is an unconstrained array. This consists of a RECORD_TYPE containing
- a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
- ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
- is used to represent an arbitrary unconstrained object. Use NAME
- as the name of the record. */
-
-tree
-build_unc_object_type (tree template_type, tree object_type, tree name)
-{
- tree type = make_node (RECORD_TYPE);
- tree template_field = create_field_decl (get_identifier ("BOUNDS"),
- template_type, type, 0, 0, 0, 1);
- tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
- type, 0, 0, 0, 1);
-
- TYPE_NAME (type) = name;
- TYPE_CONTAINS_TEMPLATE_P (type) = 1;
- finish_record_type (type,
- chainon (chainon (NULL_TREE, template_field),
- array_field),
- 0, false);
-
- return type;
-}
-
-/* Same, taking a thin or fat pointer type instead of a template type. */
-
-tree
-build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
- tree name)
-{
- tree template_type;
-
- gcc_assert (TYPE_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
-
- template_type
- = (TYPE_FAT_POINTER_P (thin_fat_ptr_type)
- ? TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
- : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
- return build_unc_object_type (template_type, object_type, name);
-}
-
-/* Shift the component offsets within an unconstrained object TYPE to make it
- suitable for use as a designated type for thin pointers. */
-
-void
-shift_unc_components_for_thin_pointers (tree type)
-{
- /* Thin pointer values designate the ARRAY data of an unconstrained object,
- allocated past the BOUNDS template. The designated type is adjusted to
- have ARRAY at position zero and the template at a negative offset, so
- that COMPONENT_REFs on (*thin_ptr) designate the proper location. */
-
- tree bounds_field = TYPE_FIELDS (type);
- tree array_field = TREE_CHAIN (TYPE_FIELDS (type));
-
- DECL_FIELD_OFFSET (bounds_field)
- = size_binop (MINUS_EXPR, size_zero_node, byte_position (array_field));
-
- DECL_FIELD_OFFSET (array_field) = size_zero_node;
- DECL_FIELD_BIT_OFFSET (array_field) = bitsize_zero_node;
-}
-
-/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In
- the normal case this is just two adjustments, but we have more to do
- if NEW is an UNCONSTRAINED_ARRAY_TYPE. */
-
-void
-update_pointer_to (tree old_type, tree new_type)
-{
- tree ptr = TYPE_POINTER_TO (old_type);
- tree ref = TYPE_REFERENCE_TO (old_type);
- tree ptr1, ref1;
- tree type;
-
- /* If this is the main variant, process all the other variants first. */
- if (TYPE_MAIN_VARIANT (old_type) == old_type)
- for (type = TYPE_NEXT_VARIANT (old_type); type;
- type = TYPE_NEXT_VARIANT (type))
- update_pointer_to (type, new_type);
-
- /* If no pointer or reference, we are done. */
- if (!ptr && !ref)
- return;
-
- /* Merge the old type qualifiers in the new type.
-
- Each old variant has qualifiers for specific reasons, and the new
- designated type as well. Each set of qualifiers represents useful
- information grabbed at some point, and merging the two simply unifies
- these inputs into the final type description.
-
- Consider for instance a volatile type frozen after an access to constant
- type designating it. After the designated type freeze, we get here with a
- volatile new_type and a dummy old_type with a readonly variant, created
- when the access type was processed. We shall make a volatile and readonly
- designated type, because that's what it really is.
-
- We might also get here for a non-dummy old_type variant with different
- qualifiers than the new_type ones, for instance in some cases of pointers
- to private record type elaboration (see the comments around the call to
- this routine from gnat_to_gnu_entity/E_Access_Type). We have to merge the
- qualifiers in those cases too, to avoid accidentally discarding the
- initial set, and will often end up with old_type == new_type then. */
- new_type = build_qualified_type (new_type,
- TYPE_QUALS (old_type)
- | TYPE_QUALS (new_type));
-
- /* If the new type and the old one are identical, there is nothing to
- update. */
- if (old_type == new_type)
- return;
-
- /* Otherwise, first handle the simple case. */
- if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
- {
- TYPE_POINTER_TO (new_type) = ptr;
- TYPE_REFERENCE_TO (new_type) = ref;
-
- for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
- for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1;
- ptr1 = TYPE_NEXT_VARIANT (ptr1))
- TREE_TYPE (ptr1) = new_type;
-
- for (; ref; ref = TYPE_NEXT_REF_TO (ref))
- for (ref1 = TYPE_MAIN_VARIANT (ref); ref1;
- ref1 = TYPE_NEXT_VARIANT (ref1))
- TREE_TYPE (ref1) = new_type;
- }
-
- /* Now deal with the unconstrained array case. In this case the "pointer"
- is actually a RECORD_TYPE where both fields are pointers to dummy nodes.
- Turn them into pointers to the correct types using update_pointer_to. */
- else if (TREE_CODE (ptr) != RECORD_TYPE || !TYPE_IS_FAT_POINTER_P (ptr))
- gcc_unreachable ();
-
- else
- {
- tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
- tree array_field = TYPE_FIELDS (ptr);
- tree bounds_field = TREE_CHAIN (TYPE_FIELDS (ptr));
- tree new_ptr = TYPE_POINTER_TO (new_type);
- tree new_ref;
- tree var;
-
- /* Make pointers to the dummy template point to the real template. */
- update_pointer_to
- (TREE_TYPE (TREE_TYPE (bounds_field)),
- TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_ptr)))));
-
- /* The references to the template bounds present in the array type
- are made through a PLACEHOLDER_EXPR of type new_ptr. Since we
- are updating ptr to make it a full replacement for new_ptr as
- pointer to new_type, we must rework the PLACEHOLDER_EXPR so as
- to make it of type ptr. */
- new_ref = build3 (COMPONENT_REF, TREE_TYPE (bounds_field),
- build0 (PLACEHOLDER_EXPR, ptr),
- bounds_field, NULL_TREE);
-
- /* Create the new array for the new PLACEHOLDER_EXPR and make
- pointers to the dummy array point to it.
-
- ??? This is now the only use of substitute_in_type,
- which is a very "heavy" routine to do this, so it
- should be replaced at some point. */
- update_pointer_to
- (TREE_TYPE (TREE_TYPE (array_field)),
- substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))),
- TREE_CHAIN (TYPE_FIELDS (new_ptr)), new_ref));
-
- /* Make ptr the pointer to new_type. */
- TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
- = TREE_TYPE (new_type) = ptr;
-
- for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
- SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);
-
- /* Now handle updating the allocation record, what the thin pointer
- points to. Update all pointers from the old record into the new
- one, update the type of the array field, and recompute the size. */
- update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
-
- TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
- = TREE_TYPE (TREE_TYPE (array_field));
-
- /* The size recomputation needs to account for alignment constraints, so
- we let layout_type work it out. This will reset the field offsets to
- what they would be in a regular record, so we shift them back to what
- we want them to be for a thin pointer designated type afterwards. */
- DECL_SIZE (TYPE_FIELDS (new_obj_rec)) = 0;
- DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))) = 0;
- TYPE_SIZE (new_obj_rec) = 0;
- layout_type (new_obj_rec);
-
- shift_unc_components_for_thin_pointers (new_obj_rec);
-
- /* We are done, at last. */
- rest_of_record_type_compilation (ptr);
- }
-}
-
-/* Convert EXPR, a pointer to a constrained array, into a pointer to an
- unconstrained one. This involves making or finding a template. */
-
-static tree
-convert_to_fat_pointer (tree type, tree expr)
-{
- tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
- tree p_array_type = TREE_TYPE (TYPE_FIELDS (type));
- tree etype = TREE_TYPE (expr);
- tree template;
-
- /* If EXPR is null, make a fat pointer that contains null pointers to the
- template and array. */
- if (integer_zerop (expr))
- return
- gnat_build_constructor
- (type,
- tree_cons (TYPE_FIELDS (type),
- convert (p_array_type, expr),
- tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
- convert (build_pointer_type (template_type),
- expr),
- NULL_TREE)));
-
- /* If EXPR is a thin pointer, make template and data from the record.. */
- else if (TYPE_THIN_POINTER_P (etype))
- {
- tree fields = TYPE_FIELDS (TREE_TYPE (etype));
-
- expr = save_expr (expr);
- if (TREE_CODE (expr) == ADDR_EXPR)
- expr = TREE_OPERAND (expr, 0);
- else
- expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);
-
- template = build_component_ref (expr, NULL_TREE, fields, false);
- expr = build_unary_op (ADDR_EXPR, NULL_TREE,
- build_component_ref (expr, NULL_TREE,
- TREE_CHAIN (fields), false));
- }
-
- /* Otherwise, build the constructor for the template. */
- else
- template = build_template (template_type, TREE_TYPE (etype), expr);
-
- /* The final result is a constructor for the fat pointer.
-
- If EXPR is an argument of a foreign convention subprogram, the type it
- points to is directly the component type. In this case, the expression
- type may not match the corresponding FIELD_DECL type at this point, so we
- call "convert" here to fix that up if necessary. This type consistency is
- required, for instance because it ensures that possible later folding of
- COMPONENT_REFs against this constructor always yields something of the
- same type as the initial reference.
-
- Note that the call to "build_template" above is still fine because it
- will only refer to the provided TEMPLATE_TYPE in this case. */
- return
- gnat_build_constructor
- (type,
- tree_cons (TYPE_FIELDS (type),
- convert (p_array_type, expr),
- tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
- build_unary_op (ADDR_EXPR, NULL_TREE, template),
- NULL_TREE)));
-}
-
-/* Convert to a thin pointer type, TYPE. The only thing we know how to convert
- is something that is a fat pointer, so convert to it first if it EXPR
- is not already a fat pointer. */
-
-static tree
-convert_to_thin_pointer (tree type, tree expr)
-{
- if (!TYPE_FAT_POINTER_P (TREE_TYPE (expr)))
- expr
- = convert_to_fat_pointer
- (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);
-
- /* We get the pointer to the data and use a NOP_EXPR to make it the
- proper GCC type. */
- expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)),
- false);
- expr = build1 (NOP_EXPR, type, expr);
-
- return expr;
-}
-
-/* Create an expression whose value is that of EXPR,
- converted to type TYPE. The TREE_TYPE of the value
- is always TYPE. This function implements all reasonable
- conversions; callers should filter out those that are
- not permitted by the language being compiled. */
-
-tree
-convert (tree type, tree expr)
-{
- enum tree_code code = TREE_CODE (type);
- tree etype = TREE_TYPE (expr);
- enum tree_code ecode = TREE_CODE (etype);
-
- /* If EXPR is already the right type, we are done. */
- if (type == etype)
- return expr;
-
- /* If both input and output have padding and are of variable size, do this
- as an unchecked conversion. Likewise if one is a mere variant of the
- other, so we avoid a pointless unpad/repad sequence. */
- else if (code == RECORD_TYPE && ecode == RECORD_TYPE
- && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype)
- && (!TREE_CONSTANT (TYPE_SIZE (type))
- || !TREE_CONSTANT (TYPE_SIZE (etype))
- || gnat_types_compatible_p (type, etype)
- || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))
- == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype)))))
- ;
-
- /* If the output type has padding, convert to the inner type and
- make a constructor to build the record. */
- else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type))
- {
- /* If we previously converted from another type and our type is
- of variable size, remove the conversion to avoid the need for
- variable-size temporaries. Likewise for a conversion between
- original and packable version. */
- if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
- && (!TREE_CONSTANT (TYPE_SIZE (type))
- || (ecode == RECORD_TYPE
- && TYPE_NAME (etype)
- == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0))))))
- expr = TREE_OPERAND (expr, 0);
-
- /* If we are just removing the padding from expr, convert the original
- object if we have variable size in order to avoid the need for some
- variable-size temporaries. Likewise if the padding is a mere variant
- of the other, so we avoid a pointless unpad/repad sequence. */
- if (TREE_CODE (expr) == COMPONENT_REF
- && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE
- && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
- && (!TREE_CONSTANT (TYPE_SIZE (type))
- || gnat_types_compatible_p (type,
- TREE_TYPE (TREE_OPERAND (expr, 0)))
- || (ecode == RECORD_TYPE
- && TYPE_NAME (etype)
- == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))))))
- return convert (type, TREE_OPERAND (expr, 0));
-
- /* If the result type is a padded type with a self-referentially-sized
- field and the expression type is a record, do this as an
- unchecked conversion. */
- else if (TREE_CODE (etype) == RECORD_TYPE
- && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
- return unchecked_convert (type, expr, false);
-
- else
- return
- gnat_build_constructor (type,
- tree_cons (TYPE_FIELDS (type),
- convert (TREE_TYPE
- (TYPE_FIELDS (type)),
- expr),
- NULL_TREE));
- }
-
- /* If the input type has padding, remove it and convert to the output type.
- The conditions ordering is arranged to ensure that the output type is not
- a padding type here, as it is not clear whether the conversion would
- always be correct if this was to happen. */
- else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype))
- {
- tree unpadded;
-
- /* If we have just converted to this padded type, just get the
- inner expression. */
- if (TREE_CODE (expr) == CONSTRUCTOR
- && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (expr))
- && VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->index
- == TYPE_FIELDS (etype))
- unpadded
- = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->value;
-
- /* Otherwise, build an explicit component reference. */
- else
- unpadded
- = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false);
-
- return convert (type, unpadded);
- }
-
- /* If the input is a biased type, adjust first. */
- if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
- return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype),
- fold_convert (TREE_TYPE (etype),
- expr),
- TYPE_MIN_VALUE (etype)));
-
- /* If the input is a justified modular type, we need to extract the actual
- object before converting it to any other type with the exceptions of an
- unconstrained array or of a mere type variant. It is useful to avoid the
- extraction and conversion in the type variant case because it could end
- up replacing a VAR_DECL expr by a constructor and we might be about the
- take the address of the result. */
- if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
- && code != UNCONSTRAINED_ARRAY_TYPE
- && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
- return convert (type, build_component_ref (expr, NULL_TREE,
- TYPE_FIELDS (etype), false));
-
- /* If converting to a type that contains a template, convert to the data
- type and then build the template. */
- if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
- {
- tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));
-
- /* If the source already has a template, get a reference to the
- associated array only, as we are going to rebuild a template
- for the target type anyway. */
- expr = maybe_unconstrained_array (expr);
-
- return
- gnat_build_constructor
- (type,
- tree_cons (TYPE_FIELDS (type),
- build_template (TREE_TYPE (TYPE_FIELDS (type)),
- obj_type, NULL_TREE),
- tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
- convert (obj_type, expr), NULL_TREE)));
- }
-
- /* There are some special cases of expressions that we process
- specially. */
- switch (TREE_CODE (expr))
- {
- case ERROR_MARK:
- return expr;
-
- case NULL_EXPR:
- /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
- conversion in gnat_expand_expr. NULL_EXPR does not represent
- and actual value, so no conversion is needed. */
- expr = copy_node (expr);
- TREE_TYPE (expr) = type;
- return expr;
-
- case STRING_CST:
- /* If we are converting a STRING_CST to another constrained array type,
- just make a new one in the proper type. */
- if (code == ecode && AGGREGATE_TYPE_P (etype)
- && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
- && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
- {
- expr = copy_node (expr);
- TREE_TYPE (expr) = type;
- return expr;
- }
- break;
-
- case CONSTRUCTOR:
- /* If we are converting a CONSTRUCTOR to a mere variant type, just make
- a new one in the proper type. */
- if (code == ecode && gnat_types_compatible_p (type, etype))
- {
- expr = copy_node (expr);
- TREE_TYPE (expr) = type;
- return expr;
- }
-
- /* Likewise for a conversion between original and packable version, but
- we have to work harder in order to preserve type consistency. */
- if (code == ecode
- && code == RECORD_TYPE
- && TYPE_NAME (type) == TYPE_NAME (etype))
- {
- VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr);
- unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e);
- VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, len);
- tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type);
- unsigned HOST_WIDE_INT idx;
- tree index, value;
-
- FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value)
- {
- constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
- /* We expect only simple constructors. Otherwise, punt. */
- if (!(index == efield || index == DECL_ORIGINAL_FIELD (efield)))
- break;
- elt->index = field;
- elt->value = convert (TREE_TYPE (field), value);
- efield = TREE_CHAIN (efield);
- field = TREE_CHAIN (field);
- }
-
- if (idx == len)
- {
- expr = copy_node (expr);
- TREE_TYPE (expr) = type;
- CONSTRUCTOR_ELTS (expr) = v;
- return expr;
- }
- }
- break;
-
- case UNCONSTRAINED_ARRAY_REF:
- /* Convert this to the type of the inner array by getting the address of
- the array from the template. */
- expr = build_unary_op (INDIRECT_REF, NULL_TREE,
- build_component_ref (TREE_OPERAND (expr, 0),
- get_identifier ("P_ARRAY"),
- NULL_TREE, false));
- etype = TREE_TYPE (expr);
- ecode = TREE_CODE (etype);
- break;
-
- case VIEW_CONVERT_EXPR:
- {
- /* GCC 4.x is very sensitive to type consistency overall, and view
- conversions thus are very frequent. Even though just "convert"ing
- the inner operand to the output type is fine in most cases, it
- might expose unexpected input/output type mismatches in special
- circumstances so we avoid such recursive calls when we can. */
- tree op0 = TREE_OPERAND (expr, 0);
-
- /* If we are converting back to the original type, we can just
- lift the input conversion. This is a common occurrence with
- switches back-and-forth amongst type variants. */
- if (type == TREE_TYPE (op0))
- return op0;
-
- /* Otherwise, if we're converting between two aggregate types, we
- might be allowed to substitute the VIEW_CONVERT_EXPR target type
- in place or to just convert the inner expression. */
- if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
- {
- /* If we are converting between mere variants, we can just
- substitute the VIEW_CONVERT_EXPR in place. */
- if (gnat_types_compatible_p (type, etype))
- return build1 (VIEW_CONVERT_EXPR, type, op0);
-
- /* Otherwise, we may just bypass the input view conversion unless
- one of the types is a fat pointer, which is handled by
- specialized code below which relies on exact type matching. */
- else if (!TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
- return convert (type, op0);
- }
- }
- break;
-
- case INDIRECT_REF:
- /* If both types are record types, just convert the pointer and
- make a new INDIRECT_REF.
-
- ??? Disable this for now since it causes problems with the
- code in build_binary_op for MODIFY_EXPR which wants to
- strip off conversions. But that code really is a mess and
- we need to do this a much better way some time. */
- if (0
- && (TREE_CODE (type) == RECORD_TYPE
- || TREE_CODE (type) == UNION_TYPE)
- && (TREE_CODE (etype) == RECORD_TYPE
- || TREE_CODE (etype) == UNION_TYPE)
- && !TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
- return build_unary_op (INDIRECT_REF, NULL_TREE,
- convert (build_pointer_type (type),
- TREE_OPERAND (expr, 0)));
- break;
-
- default:
- break;
- }
-
- /* Check for converting to a pointer to an unconstrained array. */
- if (TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
- return convert_to_fat_pointer (type, expr);
-
- /* If we are converting between two aggregate types that are mere
- variants, just make a VIEW_CONVERT_EXPR. */
- else if (code == ecode
- && AGGREGATE_TYPE_P (type)
- && gnat_types_compatible_p (type, etype))
- return build1 (VIEW_CONVERT_EXPR, type, expr);
-
- /* In all other cases of related types, make a NOP_EXPR. */
- else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
- || (code == INTEGER_CST && ecode == INTEGER_CST
- && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
- return fold_convert (type, expr);
-
- switch (code)
- {
- case VOID_TYPE:
- return fold_build1 (CONVERT_EXPR, type, expr);
-
- case INTEGER_TYPE:
- if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
- && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
- || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
- return unchecked_convert (type, expr, false);
- else if (TYPE_BIASED_REPRESENTATION_P (type))
- return fold_convert (type,
- fold_build2 (MINUS_EXPR, TREE_TYPE (type),
- convert (TREE_TYPE (type), expr),
- TYPE_MIN_VALUE (type)));
-
- /* ... fall through ... */
-
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- /* If we are converting an additive expression to an integer type
- with lower precision, be wary of the optimization that can be
- applied by convert_to_integer. There are 2 problematic cases:
- - if the first operand was originally of a biased type,
- because we could be recursively called to convert it
- to an intermediate type and thus rematerialize the
- additive operator endlessly,
- - if the expression contains a placeholder, because an
- intermediate conversion that changes the sign could
- be inserted and thus introduce an artificial overflow
- at compile time when the placeholder is substituted. */
- if (code == INTEGER_TYPE
- && ecode == INTEGER_TYPE
- && TYPE_PRECISION (type) < TYPE_PRECISION (etype)
- && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR))
- {
- tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type);
-
- if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
- && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0)))
- || CONTAINS_PLACEHOLDER_P (expr))
- return build1 (NOP_EXPR, type, expr);
- }
-
- return fold (convert_to_integer (type, expr));
-
- case POINTER_TYPE:
- case REFERENCE_TYPE:
- /* If converting between two pointers to records denoting
- both a template and type, adjust if needed to account
- for any differing offsets, since one might be negative. */
- if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type))
- {
- tree bit_diff
- = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
- bit_position (TYPE_FIELDS (TREE_TYPE (type))));
- tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
- sbitsize_int (BITS_PER_UNIT));
-
- expr = build1 (NOP_EXPR, type, expr);
- TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
- if (integer_zerop (byte_diff))
- return expr;
-
- return build_binary_op (POINTER_PLUS_EXPR, type, expr,
- fold (convert (sizetype, byte_diff)));
- }
-
- /* If converting to a thin pointer, handle specially. */
- if (TYPE_THIN_POINTER_P (type)
- && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
- return convert_to_thin_pointer (type, expr);
-
- /* If converting fat pointer to normal pointer, get the pointer to the
- array and then convert it. */
- else if (TYPE_FAT_POINTER_P (etype))
- expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
- NULL_TREE, false);
-
- return fold (convert_to_pointer (type, expr));
-
- case REAL_TYPE:
- return fold (convert_to_real (type, expr));
-
- case RECORD_TYPE:
- if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
- return
- gnat_build_constructor
- (type, tree_cons (TYPE_FIELDS (type),
- convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
- NULL_TREE));
-
- /* ... fall through ... */
-
- case ARRAY_TYPE:
- /* In these cases, assume the front-end has validated the conversion.
- If the conversion is valid, it will be a bit-wise conversion, so
- it can be viewed as an unchecked conversion. */
- return unchecked_convert (type, expr, false);
-
- case UNION_TYPE:
- /* This is a either a conversion between a tagged type and some
- subtype, which we have to mark as a UNION_TYPE because of
- overlapping fields or a conversion of an Unchecked_Union. */
- return unchecked_convert (type, expr, false);
-
- case UNCONSTRAINED_ARRAY_TYPE:
- /* If EXPR is a constrained array, take its address, convert it to a
- fat pointer, and then dereference it. Likewise if EXPR is a
- record containing both a template and a constrained array.
- Note that a record representing a justified modular type
- always represents a packed constrained array. */
- if (ecode == ARRAY_TYPE
- || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
- || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
- || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
- return
- build_unary_op
- (INDIRECT_REF, NULL_TREE,
- convert_to_fat_pointer (TREE_TYPE (type),
- build_unary_op (ADDR_EXPR,
- NULL_TREE, expr)));
-
- /* Do something very similar for converting one unconstrained
- array to another. */
- else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
- return
- build_unary_op (INDIRECT_REF, NULL_TREE,
- convert (TREE_TYPE (type),
- build_unary_op (ADDR_EXPR,
- NULL_TREE, expr)));
- else
- gcc_unreachable ();
-
- case COMPLEX_TYPE:
- return fold (convert_to_complex (type, expr));
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Remove all conversions that are done in EXP. This includes converting
- from a padded type or to a justified modular type. If TRUE_ADDRESS
- is true, always return the address of the containing object even if
- the address is not bit-aligned. */
-
-tree
-remove_conversions (tree exp, bool true_address)
-{
- switch (TREE_CODE (exp))
- {
- case CONSTRUCTOR:
- if (true_address
- && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
- && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
- return
- remove_conversions (VEC_index (constructor_elt,
- CONSTRUCTOR_ELTS (exp), 0)->value,
- true);
- break;
-
- case COMPONENT_REF:
- if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE
- && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
- return remove_conversions (TREE_OPERAND (exp, 0), true_address);
- break;
-
- case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR:
- CASE_CONVERT:
- return remove_conversions (TREE_OPERAND (exp, 0), true_address);
-
- default:
- break;
- }
-
- return exp;
-}
-
-/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
- refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P,
- likewise return an expression pointing to the underlying array. */
-
-tree
-maybe_unconstrained_array (tree exp)
-{
- enum tree_code code = TREE_CODE (exp);
- tree new;
-
- switch (TREE_CODE (TREE_TYPE (exp)))
- {
- case UNCONSTRAINED_ARRAY_TYPE:
- if (code == UNCONSTRAINED_ARRAY_REF)
- {
- new
- = build_unary_op (INDIRECT_REF, NULL_TREE,
- build_component_ref (TREE_OPERAND (exp, 0),
- get_identifier ("P_ARRAY"),
- NULL_TREE, false));
- TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp);
- return new;
- }
-
- else if (code == NULL_EXPR)
- return build1 (NULL_EXPR,
- TREE_TYPE (TREE_TYPE (TYPE_FIELDS
- (TREE_TYPE (TREE_TYPE (exp))))),
- TREE_OPERAND (exp, 0));
-
- case RECORD_TYPE:
- /* If this is a padded type, convert to the unpadded type and see if
- it contains a template. */
- if (TYPE_IS_PADDING_P (TREE_TYPE (exp)))
- {
- new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
- if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE
- && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new)))
- return
- build_component_ref (new, NULL_TREE,
- TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new))),
- 0);
- }
- else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
- return
- build_component_ref (exp, NULL_TREE,
- TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0);
- break;
-
- default:
- break;
- }
-
- return exp;
-}
-
-/* Return true if EXPR is an expression that can be folded as an operand
- of a VIEW_CONVERT_EXPR. See the head comment of unchecked_convert for
- the rationale. */
-
-static bool
-can_fold_for_view_convert_p (tree expr)
-{
- tree t1, t2;
-
- /* The folder will fold NOP_EXPRs between integral types with the same
- precision (in the middle-end's sense). We cannot allow it if the
- types don't have the same precision in the Ada sense as well. */
- if (TREE_CODE (expr) != NOP_EXPR)
- return true;
-
- t1 = TREE_TYPE (expr);
- t2 = TREE_TYPE (TREE_OPERAND (expr, 0));
-
- /* Defer to the folder for non-integral conversions. */
- if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2)))
- return true;
-
- /* Only fold conversions that preserve both precisions. */
- if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
- && operand_equal_p (rm_size (t1), rm_size (t2), 0))
- return true;
-
- return false;
-}
-
-/* Return an expression that does an unchecked conversion of EXPR to TYPE.
- If NOTRUNC_P is true, truncation operations should be suppressed.
-
- Special care is required with (source or target) integral types whose
- precision is not equal to their size, to make sure we fetch or assign
- the value bits whose location might depend on the endianness, e.g.
-
- Rmsize : constant := 8;
- subtype Int is Integer range 0 .. 2 ** Rmsize - 1;
-
- type Bit_Array is array (1 .. Rmsize) of Boolean;
- pragma Pack (Bit_Array);
-
- function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array);
-
- Value : Int := 2#1000_0001#;
- Vbits : Bit_Array := To_Bit_Array (Value);
-
- we expect the 8 bits at Vbits'Address to always contain Value, while
- their original location depends on the endianness, at Value'Address
- on a little-endian architecture but not on a big-endian one.
-
- ??? There is a problematic discrepancy between what is called precision
- here (and more generally throughout gigi) for integral types and what is
- called precision in the middle-end. In the former case it's the RM size
- as given by TYPE_RM_SIZE (or rm_size) whereas it's TYPE_PRECISION in the
- latter case, the hitch being that they are not equal when they matter,
- that is when the number of value bits is not equal to the type's size:
- TYPE_RM_SIZE does give the number of value bits but TYPE_PRECISION is set
- to the size. The sole exception are BOOLEAN_TYPEs for which both are 1.
-
- The consequence is that gigi must duplicate code bridging the gap between
- the type's size and its precision that exists for TYPE_PRECISION in the
- middle-end, because the latter knows nothing about TYPE_RM_SIZE, and be
- wary of transformations applied in the middle-end based on TYPE_PRECISION
- because this value doesn't reflect the actual precision for Ada. */
-
-tree
-unchecked_convert (tree type, tree expr, bool notrunc_p)
-{
- tree etype = TREE_TYPE (expr);
-
- /* If the expression is already the right type, we are done. */
- if (etype == type)
- return expr;
-
- /* If both types types are integral just do a normal conversion.
- Likewise for a conversion to an unconstrained array. */
- if ((((INTEGRAL_TYPE_P (type)
- && !(TREE_CODE (type) == INTEGER_TYPE
- && TYPE_VAX_FLOATING_POINT_P (type)))
- || (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type))
- || (TREE_CODE (type) == RECORD_TYPE
- && TYPE_JUSTIFIED_MODULAR_P (type)))
- && ((INTEGRAL_TYPE_P (etype)
- && !(TREE_CODE (etype) == INTEGER_TYPE
- && TYPE_VAX_FLOATING_POINT_P (etype)))
- || (POINTER_TYPE_P (etype) && !TYPE_THIN_POINTER_P (etype))
- || (TREE_CODE (etype) == RECORD_TYPE
- && TYPE_JUSTIFIED_MODULAR_P (etype))))
- || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
- {
- if (TREE_CODE (etype) == INTEGER_TYPE
- && TYPE_BIASED_REPRESENTATION_P (etype))
- {
- tree ntype = copy_type (etype);
- TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
- TYPE_MAIN_VARIANT (ntype) = ntype;
- expr = build1 (NOP_EXPR, ntype, expr);
- }
-
- if (TREE_CODE (type) == INTEGER_TYPE
- && TYPE_BIASED_REPRESENTATION_P (type))
- {
- tree rtype = copy_type (type);
- TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
- TYPE_MAIN_VARIANT (rtype) = rtype;
- expr = convert (rtype, expr);
- expr = build1 (NOP_EXPR, type, expr);
- }
-
- /* We have another special case: if we are unchecked converting either
- a subtype or a type with limited range into a base type, we need to
- ensure that VRP doesn't propagate range information because this
- conversion may be done precisely to validate that the object is
- within the range it is supposed to have. */
- else if (TREE_CODE (expr) != INTEGER_CST
- && TREE_CODE (type) == INTEGER_TYPE && !TREE_TYPE (type)
- && ((TREE_CODE (etype) == INTEGER_TYPE && TREE_TYPE (etype))
- || TREE_CODE (etype) == ENUMERAL_TYPE
- || TREE_CODE (etype) == BOOLEAN_TYPE))
- {
- /* The optimization barrier is a VIEW_CONVERT_EXPR node; moreover,
- in order not to be deemed an useless type conversion, it must
- be from subtype to base type.
-
- Therefore we first do the bulk of the conversion to a subtype of
- the final type. And this conversion must itself not be deemed
- useless if the source type is not a subtype because, otherwise,
- the final VIEW_CONVERT_EXPR will be deemed so as well. That's
- why we toggle the unsigned flag in this conversion, which is
- harmless since the final conversion is only a reinterpretation
- of the bit pattern.
-
- ??? This may raise addressability and/or aliasing issues because
- VIEW_CONVERT_EXPR gets gimplified as an lvalue, thus causing the
- address of its operand to be taken if it is deemed addressable
- and not already in GIMPLE form. */
- tree rtype
- = gnat_type_for_mode (TYPE_MODE (type), !TYPE_UNSIGNED (etype));
- rtype = copy_type (rtype);
- TYPE_MAIN_VARIANT (rtype) = rtype;
- TREE_TYPE (rtype) = type;
- expr = convert (rtype, expr);
- expr = build1 (VIEW_CONVERT_EXPR, type, expr);
- }
-
- else
- expr = convert (type, expr);
- }
-
- /* If we are converting to an integral type whose precision is not equal
- to its size, first unchecked convert to a record that contains an
- object of the output type. Then extract the field. */
- else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
- && 0 != compare_tree_int (TYPE_RM_SIZE (type),
- GET_MODE_BITSIZE (TYPE_MODE (type))))
- {
- tree rec_type = make_node (RECORD_TYPE);
- tree field = create_field_decl (get_identifier ("OBJ"), type,
- rec_type, 1, 0, 0, 0);
-
- TYPE_FIELDS (rec_type) = field;
- layout_type (rec_type);
-
- expr = unchecked_convert (rec_type, expr, notrunc_p);
- expr = build_component_ref (expr, NULL_TREE, field, 0);
- }
-
- /* Similarly if we are converting from an integral type whose precision
- is not equal to its size. */
- else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype)
- && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
- GET_MODE_BITSIZE (TYPE_MODE (etype))))
- {
- tree rec_type = make_node (RECORD_TYPE);
- tree field
- = create_field_decl (get_identifier ("OBJ"), etype, rec_type,
- 1, 0, 0, 0);
-
- TYPE_FIELDS (rec_type) = field;
- layout_type (rec_type);
-
- expr = gnat_build_constructor (rec_type, build_tree_list (field, expr));
- expr = unchecked_convert (type, expr, notrunc_p);
- }
-
- /* We have a special case when we are converting between two
- unconstrained array types. In that case, take the address,
- convert the fat pointer types, and dereference. */
- else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
- && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
- expr = build_unary_op (INDIRECT_REF, NULL_TREE,
- build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
- build_unary_op (ADDR_EXPR, NULL_TREE,
- expr)));
- else
- {
- expr = maybe_unconstrained_array (expr);
- etype = TREE_TYPE (expr);
- if (can_fold_for_view_convert_p (expr))
- expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr);
- else
- expr = build1 (VIEW_CONVERT_EXPR, type, expr);
- }
-
- /* If the result is an integral type whose precision is not equal to its
- size, sign- or zero-extend the result. We need not do this if the input
- is an integral type of the same precision and signedness or if the output
- is a biased type or if both the input and output are unsigned. */
- if (!notrunc_p
- && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
- && !(TREE_CODE (type) == INTEGER_TYPE
- && TYPE_BIASED_REPRESENTATION_P (type))
- && 0 != compare_tree_int (TYPE_RM_SIZE (type),
- GET_MODE_BITSIZE (TYPE_MODE (type)))
- && !(INTEGRAL_TYPE_P (etype)
- && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
- && operand_equal_p (TYPE_RM_SIZE (type),
- (TYPE_RM_SIZE (etype) != 0
- ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
- 0))
- && !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
- {
- tree base_type = gnat_type_for_mode (TYPE_MODE (type),
- TYPE_UNSIGNED (type));
- tree shift_expr
- = convert (base_type,
- size_binop (MINUS_EXPR,
- bitsize_int
- (GET_MODE_BITSIZE (TYPE_MODE (type))),
- TYPE_RM_SIZE (type)));
- expr
- = convert (type,
- build_binary_op (RSHIFT_EXPR, base_type,
- build_binary_op (LSHIFT_EXPR, base_type,
- convert (base_type, expr),
- shift_expr),
- shift_expr));
- }
-
- /* An unchecked conversion should never raise Constraint_Error. The code
- below assumes that GCC's conversion routines overflow the same way that
- the underlying hardware does. This is probably true. In the rare case
- when it is false, we can rely on the fact that such conversions are
- erroneous anyway. */
- if (TREE_CODE (expr) == INTEGER_CST)
- TREE_OVERFLOW (expr) = 0;
-
- /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
- show no longer constant. */
- if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
- && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
- OEP_ONLY_CONST))
- TREE_CONSTANT (expr) = 0;
-
- return expr;
-}
-
-/* Return the appropriate GCC tree code for the specified GNAT type,
- the latter being a record type as predicated by Is_Record_Type. */
-
-enum tree_code
-tree_code_for_record_type (Entity_Id gnat_type)
-{
- Node_Id component_list
- = Component_List (Type_Definition
- (Declaration_Node
- (Implementation_Base_Type (gnat_type))));
- Node_Id component;
-
- /* Make this a UNION_TYPE unless it's either not an Unchecked_Union or
- we have a non-discriminant field outside a variant. In either case,
- it's a RECORD_TYPE. */
-
- if (!Is_Unchecked_Union (gnat_type))
- return RECORD_TYPE;
-
- for (component = First_Non_Pragma (Component_Items (component_list));
- Present (component);
- component = Next_Non_Pragma (component))
- if (Ekind (Defining_Entity (component)) == E_Component)
- return RECORD_TYPE;
-
- return UNION_TYPE;
-}
-
-/* Return true if GNU_TYPE is suitable as the type of a non-aliased
- component of an aggregate type. */
-
-bool
-type_for_nonaliased_component_p (tree gnu_type)
-{
- /* If the type is passed by reference, we may have pointers to the
- component so it cannot be made non-aliased. */
- if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type))
- return false;
-
- /* We used to say that any component of aggregate type is aliased
- because the front-end may take 'Reference of it. The front-end
- has been enhanced in the meantime so as to use a renaming instead
- in most cases, but the back-end can probably take the address of
- such a component too so we go for the conservative stance.
-
- For instance, we might need the address of any array type, even
- if normally passed by copy, to construct a fat pointer if the
- component is used as an actual for an unconstrained formal.
-
- Likewise for record types: even if a specific record subtype is
- passed by copy, the parent type might be passed by ref (e.g. if
- it's of variable size) and we might take the address of a child
- component to pass to a parent formal. We have no way to check
- for such conditions here. */
- if (AGGREGATE_TYPE_P (gnu_type))
- return false;
-
- return true;
-}
-
-/* Perform final processing on global variables. */
-
-void
-gnat_write_global_declarations (void)
-{
- /* Proceed to optimize and emit assembly.
- FIXME: shouldn't be the front end's responsibility to call this. */
- cgraph_optimize ();
-
- /* Emit debug info for all global declarations. */
- emit_debug_global_declarations (VEC_address (tree, global_decls),
- VEC_length (tree, global_decls));
-}
-
-/* ************************************************************************
- * * GCC builtins support *
- * ************************************************************************ */
-
-/* The general scheme is fairly simple:
-
- For each builtin function/type to be declared, gnat_install_builtins calls
- internal facilities which eventually get to gnat_push_decl, which in turn
- tracks the so declared builtin function decls in the 'builtin_decls' global
- datastructure. When an Intrinsic subprogram declaration is processed, we
- search this global datastructure to retrieve the associated BUILT_IN DECL
- node. */
-
-/* Search the chain of currently available builtin declarations for a node
- corresponding to function NAME (an IDENTIFIER_NODE). Return the first node
- found, if any, or NULL_TREE otherwise. */
-tree
-builtin_decl_for (tree name)
-{
- unsigned i;
- tree decl;
-
- for (i = 0; VEC_iterate(tree, builtin_decls, i, decl); i++)
- if (DECL_NAME (decl) == name)
- return decl;
-
- return NULL_TREE;
-}
-
-/* The code below eventually exposes gnat_install_builtins, which declares
- the builtin types and functions we might need, either internally or as
- user accessible facilities.
-
- ??? This is a first implementation shot, still in rough shape. It is
- heavily inspired from the "C" family implementation, with chunks copied
- verbatim from there.
-
- Two obvious TODO candidates are
- o Use a more efficient name/decl mapping scheme
- o Devise a middle-end infrastructure to avoid having to copy
- pieces between front-ends. */
-
-/* ----------------------------------------------------------------------- *
- * BUILTIN ELEMENTARY TYPES *
- * ----------------------------------------------------------------------- */
-
-/* Standard data types to be used in builtin argument declarations. */
-
-enum c_tree_index
-{
- CTI_SIGNED_SIZE_TYPE, /* For format checking only. */
- CTI_STRING_TYPE,
- CTI_CONST_STRING_TYPE,
-
- CTI_MAX
-};
-
-static tree c_global_trees[CTI_MAX];
-
-#define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE]
-#define string_type_node c_global_trees[CTI_STRING_TYPE]
-#define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE]
-
-/* ??? In addition some attribute handlers, we currently don't support a
- (small) number of builtin-types, which in turns inhibits support for a
- number of builtin functions. */
-#define wint_type_node void_type_node
-#define intmax_type_node void_type_node
-#define uintmax_type_node void_type_node
-
-/* Build the void_list_node (void_type_node having been created). */
-
-static tree
-build_void_list_node (void)
-{
- tree t = build_tree_list (NULL_TREE, void_type_node);
- return t;
-}
-
-/* Used to help initialize the builtin-types.def table. When a type of
- the correct size doesn't exist, use error_mark_node instead of NULL.
- The later results in segfaults even when a decl using the type doesn't
- get invoked. */
-
-static tree
-builtin_type_for_size (int size, bool unsignedp)
-{
- tree type = lang_hooks.types.type_for_size (size, unsignedp);
- return type ? type : error_mark_node;
-}
-
-/* Build/push the elementary type decls that builtin functions/types
- will need. */
-
-static void
-install_builtin_elementary_types (void)
-{
- signed_size_type_node = size_type_node;
- pid_type_node = integer_type_node;
- void_list_node = build_void_list_node ();
-
- string_type_node = build_pointer_type (char_type_node);
- const_string_type_node
- = build_pointer_type (build_qualified_type
- (char_type_node, TYPE_QUAL_CONST));
-}
-
-/* ----------------------------------------------------------------------- *
- * BUILTIN FUNCTION TYPES *
- * ----------------------------------------------------------------------- */
-
-/* Now, builtin function types per se. */
-
-enum c_builtin_type
-{
-#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
-#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
-#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
-#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
-#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
-#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
-#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
-#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
-#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
-#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
-#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
-#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
-#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
-#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
-#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \
- NAME,
-#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
-#include "builtin-types.def"
-#undef DEF_PRIMITIVE_TYPE
-#undef DEF_FUNCTION_TYPE_0
-#undef DEF_FUNCTION_TYPE_1
-#undef DEF_FUNCTION_TYPE_2
-#undef DEF_FUNCTION_TYPE_3
-#undef DEF_FUNCTION_TYPE_4
-#undef DEF_FUNCTION_TYPE_5
-#undef DEF_FUNCTION_TYPE_6
-#undef DEF_FUNCTION_TYPE_7
-#undef DEF_FUNCTION_TYPE_VAR_0
-#undef DEF_FUNCTION_TYPE_VAR_1
-#undef DEF_FUNCTION_TYPE_VAR_2
-#undef DEF_FUNCTION_TYPE_VAR_3
-#undef DEF_FUNCTION_TYPE_VAR_4
-#undef DEF_FUNCTION_TYPE_VAR_5
-#undef DEF_POINTER_TYPE
- BT_LAST
-};
-
-typedef enum c_builtin_type builtin_type;
-
-/* A temporary array used in communication with def_fn_type. */
-static GTY(()) tree builtin_types[(int) BT_LAST + 1];
-
-/* A helper function for install_builtin_types. Build function type
- for DEF with return type RET and N arguments. If VAR is true, then the
- function should be variadic after those N arguments.
-
- Takes special care not to ICE if any of the types involved are
- error_mark_node, which indicates that said type is not in fact available
- (see builtin_type_for_size). In which case the function type as a whole
- should be error_mark_node. */
-
-static void
-def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
-{
- tree args = NULL, t;
- va_list list;
- int i;
-
- va_start (list, n);
- for (i = 0; i < n; ++i)
- {
- builtin_type a = va_arg (list, builtin_type);
- t = builtin_types[a];
- if (t == error_mark_node)
- goto egress;
- args = tree_cons (NULL_TREE, t, args);
- }
- va_end (list);
-
- args = nreverse (args);
- if (!var)
- args = chainon (args, void_list_node);
-
- t = builtin_types[ret];
- if (t == error_mark_node)
- goto egress;
- t = build_function_type (t, args);
-
- egress:
- builtin_types[def] = t;
-}
-
-/* Build the builtin function types and install them in the builtin_types
- array for later use in builtin function decls. */
-
-static void
-install_builtin_function_types (void)
-{
- tree va_list_ref_type_node;
- tree va_list_arg_type_node;
-
- if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
- {
- va_list_arg_type_node = va_list_ref_type_node =
- build_pointer_type (TREE_TYPE (va_list_type_node));
- }
- else
- {
- va_list_arg_type_node = va_list_type_node;
- va_list_ref_type_node = build_reference_type (va_list_type_node);
- }
-
-#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
- builtin_types[ENUM] = VALUE;
-#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
- def_fn_type (ENUM, RETURN, 0, 0);
-#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
- def_fn_type (ENUM, RETURN, 0, 1, ARG1);
-#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
- def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
-#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
- def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
-#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
- def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
-#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
- def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
-#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
- ARG6) \
- def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
-#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
- ARG6, ARG7) \
- def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
-#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
- def_fn_type (ENUM, RETURN, 1, 0);
-#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
- def_fn_type (ENUM, RETURN, 1, 1, ARG1);
-#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
- def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
-#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
- def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
-#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
- def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
-#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
- def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
-#define DEF_POINTER_TYPE(ENUM, TYPE) \
- builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
-
-#include "builtin-types.def"
-
-#undef DEF_PRIMITIVE_TYPE
-#undef DEF_FUNCTION_TYPE_1
-#undef DEF_FUNCTION_TYPE_2
-#undef DEF_FUNCTION_TYPE_3
-#undef DEF_FUNCTION_TYPE_4
-#undef DEF_FUNCTION_TYPE_5
-#undef DEF_FUNCTION_TYPE_6
-#undef DEF_FUNCTION_TYPE_VAR_0
-#undef DEF_FUNCTION_TYPE_VAR_1
-#undef DEF_FUNCTION_TYPE_VAR_2
-#undef DEF_FUNCTION_TYPE_VAR_3
-#undef DEF_FUNCTION_TYPE_VAR_4
-#undef DEF_FUNCTION_TYPE_VAR_5
-#undef DEF_POINTER_TYPE
- builtin_types[(int) BT_LAST] = NULL_TREE;
-}
-
-/* ----------------------------------------------------------------------- *
- * BUILTIN ATTRIBUTES *
- * ----------------------------------------------------------------------- */
-
-enum built_in_attribute
-{
-#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
-#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
-#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
-#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
-#include "builtin-attrs.def"
-#undef DEF_ATTR_NULL_TREE
-#undef DEF_ATTR_INT
-#undef DEF_ATTR_IDENT
-#undef DEF_ATTR_TREE_LIST
- ATTR_LAST
-};
-
-static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
-
-static void
-install_builtin_attributes (void)
-{
- /* Fill in the built_in_attributes array. */
-#define DEF_ATTR_NULL_TREE(ENUM) \
- built_in_attributes[(int) ENUM] = NULL_TREE;
-#define DEF_ATTR_INT(ENUM, VALUE) \
- built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
-#define DEF_ATTR_IDENT(ENUM, STRING) \
- built_in_attributes[(int) ENUM] = get_identifier (STRING);
-#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
- built_in_attributes[(int) ENUM] \
- = tree_cons (built_in_attributes[(int) PURPOSE], \
- built_in_attributes[(int) VALUE], \
- built_in_attributes[(int) CHAIN]);
-#include "builtin-attrs.def"
-#undef DEF_ATTR_NULL_TREE
-#undef DEF_ATTR_INT
-#undef DEF_ATTR_IDENT
-#undef DEF_ATTR_TREE_LIST
-}
-
-/* Handle a "const" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-handle_const_attribute (tree *node, tree ARG_UNUSED (name),
- tree ARG_UNUSED (args), int ARG_UNUSED (flags),
- bool *no_add_attrs)
-{
- if (TREE_CODE (*node) == FUNCTION_DECL)
- TREE_READONLY (*node) = 1;
- else
- *no_add_attrs = true;
-
- return NULL_TREE;
-}
-
-/* Handle a "nothrow" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
- tree ARG_UNUSED (args), int ARG_UNUSED (flags),
- bool *no_add_attrs)
-{
- if (TREE_CODE (*node) == FUNCTION_DECL)
- TREE_NOTHROW (*node) = 1;
- else
- *no_add_attrs = true;
-
- return NULL_TREE;
-}
-
-/* Handle a "pure" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
- int ARG_UNUSED (flags), bool *no_add_attrs)
-{
- if (TREE_CODE (*node) == FUNCTION_DECL)
- DECL_PURE_P (*node) = 1;
- /* ??? TODO: Support types. */
- else
- {
- warning (OPT_Wattributes, "%qE attribute ignored", name);
- *no_add_attrs = true;
- }
-
- return NULL_TREE;
-}
-
-/* Handle a "no vops" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
- tree ARG_UNUSED (args), int ARG_UNUSED (flags),
- bool *ARG_UNUSED (no_add_attrs))
-{
- gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
- DECL_IS_NOVOPS (*node) = 1;
- return NULL_TREE;
-}
-
-/* Helper for nonnull attribute handling; fetch the operand number
- from the attribute argument list. */
-
-static bool
-get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
-{
- /* Verify the arg number is a constant. */
- if (TREE_CODE (arg_num_expr) != INTEGER_CST
- || TREE_INT_CST_HIGH (arg_num_expr) != 0)
- return false;
-
- *valp = TREE_INT_CST_LOW (arg_num_expr);
- return true;
-}
-
-/* Handle the "nonnull" attribute. */
-static tree
-handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
- tree args, int ARG_UNUSED (flags),
- bool *no_add_attrs)
-{
- tree type = *node;
- unsigned HOST_WIDE_INT attr_arg_num;
-
- /* If no arguments are specified, all pointer arguments should be
- non-null. Verify a full prototype is given so that the arguments
- will have the correct types when we actually check them later. */
- if (!args)
- {
- if (!TYPE_ARG_TYPES (type))
- {
- error ("nonnull attribute without arguments on a non-prototype");
- *no_add_attrs = true;
- }
- return NULL_TREE;
- }
-
- /* Argument list specified. Verify that each argument number references
- a pointer argument. */
- for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
- {
- tree argument;
- unsigned HOST_WIDE_INT arg_num = 0, ck_num;
-
- if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
- {
- error ("nonnull argument has invalid operand number (argument %lu)",
- (unsigned long) attr_arg_num);
- *no_add_attrs = true;
- return NULL_TREE;
- }
-
- argument = TYPE_ARG_TYPES (type);
- if (argument)
- {
- for (ck_num = 1; ; ck_num++)
- {
- if (!argument || ck_num == arg_num)
- break;
- argument = TREE_CHAIN (argument);
- }
-
- if (!argument
- || TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
- {
- error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)",
- (unsigned long) attr_arg_num, (unsigned long) arg_num);
- *no_add_attrs = true;
- return NULL_TREE;
- }
-
- if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
- {
- error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)",
- (unsigned long) attr_arg_num, (unsigned long) arg_num);
- *no_add_attrs = true;
- return NULL_TREE;
- }
- }
- }
-
- return NULL_TREE;
-}
-
-/* Handle a "sentinel" attribute. */
-
-static tree
-handle_sentinel_attribute (tree *node, tree name, tree args,
- int ARG_UNUSED (flags), bool *no_add_attrs)
-{
- tree params = TYPE_ARG_TYPES (*node);
-
- if (!params)
- {
- warning (OPT_Wattributes,
- "%qE attribute requires prototypes with named arguments", name);
- *no_add_attrs = true;
- }
- else
- {
- while (TREE_CHAIN (params))
- params = TREE_CHAIN (params);
-
- if (VOID_TYPE_P (TREE_VALUE (params)))
- {
- warning (OPT_Wattributes,
- "%qE attribute only applies to variadic functions", name);
- *no_add_attrs = true;
- }
- }
-
- if (args)
- {
- tree position = TREE_VALUE (args);
-
- if (TREE_CODE (position) != INTEGER_CST)
- {
- warning (0, "requested position is not an integer constant");
- *no_add_attrs = true;
- }
- else
- {
- if (tree_int_cst_lt (position, integer_zero_node))
- {
- warning (0, "requested position is less than zero");
- *no_add_attrs = true;
- }
- }
- }
-
- return NULL_TREE;
-}
-
-/* Handle a "noreturn" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
- int ARG_UNUSED (flags), bool *no_add_attrs)
-{
- tree type = TREE_TYPE (*node);
-
- /* See FIXME comment in c_common_attribute_table. */
- if (TREE_CODE (*node) == FUNCTION_DECL)
- TREE_THIS_VOLATILE (*node) = 1;
- else if (TREE_CODE (type) == POINTER_TYPE
- && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
- TREE_TYPE (*node)
- = build_pointer_type
- (build_type_variant (TREE_TYPE (type),
- TYPE_READONLY (TREE_TYPE (type)), 1));
- else
- {
- warning (OPT_Wattributes, "%qE attribute ignored", name);
- *no_add_attrs = true;
- }
-
- return NULL_TREE;
-}
-
-/* Handle a "malloc" attribute; arguments as in
- struct attribute_spec.handler. */
-
-static tree
-handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
- int ARG_UNUSED (flags), bool *no_add_attrs)
-{
- if (TREE_CODE (*node) == FUNCTION_DECL
- && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
- DECL_IS_MALLOC (*node) = 1;
- else
- {
- warning (OPT_Wattributes, "%qE attribute ignored", name);
- *no_add_attrs = true;
- }
-
- return NULL_TREE;
-}
-
-/* Fake handler for attributes we don't properly support. */
-
-tree
-fake_attribute_handler (tree * ARG_UNUSED (node),
- tree ARG_UNUSED (name),
- tree ARG_UNUSED (args),
- int ARG_UNUSED (flags),
- bool * ARG_UNUSED (no_add_attrs))
-{
- return NULL_TREE;
-}
-
-/* Handle a "type_generic" attribute. */
-
-static tree
-handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name),
- tree ARG_UNUSED (args), int ARG_UNUSED (flags),
- bool * ARG_UNUSED (no_add_attrs))
-{
- tree params;
-
- /* Ensure we have a function type. */
- gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE);
-
- params = TYPE_ARG_TYPES (*node);
- while (params && ! VOID_TYPE_P (TREE_VALUE (params)))
- params = TREE_CHAIN (params);
-
- /* Ensure we have a variadic function. */
- gcc_assert (!params);
-
- return NULL_TREE;
-}
-
-/* ----------------------------------------------------------------------- *
- * BUILTIN FUNCTIONS *
- * ----------------------------------------------------------------------- */
-
-/* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two
- names. Does not declare a non-__builtin_ function if flag_no_builtin, or
- if nonansi_p and flag_no_nonansi_builtin. */
-
-static void
-def_builtin_1 (enum built_in_function fncode,
- const char *name,
- enum built_in_class fnclass,
- tree fntype, tree libtype,
- bool both_p, bool fallback_p,
- bool nonansi_p ATTRIBUTE_UNUSED,
- tree fnattrs, bool implicit_p)
-{
- tree decl;
- const char *libname;
-
- /* Preserve an already installed decl. It most likely was setup in advance
- (e.g. as part of the internal builtins) for specific reasons. */
- if (built_in_decls[(int) fncode] != NULL_TREE)
- return;
-
- gcc_assert ((!both_p && !fallback_p)
- || !strncmp (name, "__builtin_",
- strlen ("__builtin_")));
-
- libname = name + strlen ("__builtin_");
- decl = add_builtin_function (name, fntype, fncode, fnclass,
- (fallback_p ? libname : NULL),
- fnattrs);
- if (both_p)
- /* ??? This is normally further controlled by command-line options
- like -fno-builtin, but we don't have them for Ada. */
- add_builtin_function (libname, libtype, fncode, fnclass,
- NULL, fnattrs);
-
- built_in_decls[(int) fncode] = decl;
- if (implicit_p)
- implicit_built_in_decls[(int) fncode] = decl;
-}
-
-static int flag_isoc94 = 0;
-static int flag_isoc99 = 0;
-
-/* Install what the common builtins.def offers. */
-
-static void
-install_builtin_functions (void)
-{
-#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
- NONANSI_P, ATTRS, IMPLICIT, COND) \
- if (NAME && COND) \
- def_builtin_1 (ENUM, NAME, CLASS, \
- builtin_types[(int) TYPE], \
- builtin_types[(int) LIBTYPE], \
- BOTH_P, FALLBACK_P, NONANSI_P, \
- built_in_attributes[(int) ATTRS], IMPLICIT);
-#include "builtins.def"
-#undef DEF_BUILTIN
-}
-
-/* ----------------------------------------------------------------------- *
- * BUILTIN FUNCTIONS *
- * ----------------------------------------------------------------------- */
-
-/* Install the builtin functions we might need. */
-
-void
-gnat_install_builtins (void)
-{
- install_builtin_elementary_types ();
- install_builtin_function_types ();
- install_builtin_attributes ();
-
- /* Install builtins used by generic middle-end pieces first. Some of these
- know about internal specificities and control attributes accordingly, for
- instance __builtin_alloca vs no-throw and -fstack-check. We will ignore
- the generic definition from builtins.def. */
- build_common_builtin_nodes ();
-
- /* Now, install the target specific builtins, such as the AltiVec family on
- ppc, and the common set as exposed by builtins.def. */
- targetm.init_builtins ();
- install_builtin_functions ();
-}
-
-#include "gt-ada-utils.h"
-#include "gtype-ada.h"