aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/gcc-interface/utils.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/gcc-interface/utils.c')
-rw-r--r--gcc-4.4.3/gcc/ada/gcc-interface/utils.c5518
1 files changed, 5518 insertions, 0 deletions
diff --git a/gcc-4.4.3/gcc/ada/gcc-interface/utils.c b/gcc-4.4.3/gcc/ada/gcc-interface/utils.c
new file mode 100644
index 000000000..e27fd5559
--- /dev/null
+++ b/gcc-4.4.3/gcc/ada/gcc-interface/utils.c
@@ -0,0 +1,5518 @@
+/****************************************************************************
+ * *
+ * GNAT COMPILER COMPONENTS *
+ * *
+ * U T I L S *
+ * *
+ * C Implementation File *
+ * *
+ * Copyright (C) 1992-2008, Free Software Foundation, Inc. *
+ * *
+ * GNAT is free software; you can redistribute it and/or modify it under *
+ * terms of the GNU General Public License as published by the Free Soft- *
+ * ware Foundation; either version 3, or (at your option) any later ver- *
+ * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
+ * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
+ * for more details. You should have received a copy of the GNU General *
+ * Public License along with GCC; see the file COPYING3. If not see *
+ * <http://www.gnu.org/licenses/>. *
+ * *
+ * GNAT was originally developed by the GNAT team at New York University. *
+ * Extensive contributions were provided by Ada Core Technologies Inc. *
+ * *
+ ****************************************************************************/
+
+/* We have attribute handlers using C specific format specifiers in warning
+ messages. Make sure they are properly recognized. */
+#define GCC_DIAG_STYLE __gcc_cdiag__
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "defaults.h"
+#include "toplev.h"
+#include "output.h"
+#include "ggc.h"
+#include "debug.h"
+#include "convert.h"
+#include "target.h"
+#include "function.h"
+#include "cgraph.h"
+#include "tree-inline.h"
+#include "tree-iterator.h"
+#include "gimple.h"
+#include "tree-dump.h"
+#include "pointer-set.h"
+#include "langhooks.h"
+
+#include "ada.h"
+#include "types.h"
+#include "atree.h"
+#include "elists.h"
+#include "namet.h"
+#include "nlists.h"
+#include "stringt.h"
+#include "uintp.h"
+#include "fe.h"
+#include "sinfo.h"
+#include "einfo.h"
+#include "ada-tree.h"
+#include "gigi.h"
+
+#ifndef MAX_FIXED_MODE_SIZE
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
+#endif
+
+#ifndef MAX_BITS_PER_WORD
+#define MAX_BITS_PER_WORD BITS_PER_WORD
+#endif
+
+/* If nonzero, pretend we are allocating at global level. */
+int force_global;
+
+/* Tree nodes for the various types and decls we create. */
+tree gnat_std_decls[(int) ADT_LAST];
+
+/* Functions to call for each of the possible raise reasons. */
+tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
+
+/* Forward declarations for handlers of attributes. */
+static tree handle_const_attribute (tree *, tree, tree, int, bool *);
+static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
+static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
+static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
+static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
+static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
+static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
+static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
+static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
+
+/* Fake handler for attributes we don't properly support, typically because
+ they'd require dragging a lot of the common-c front-end circuitry. */
+static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
+
+/* Table of machine-independent internal attributes for Ada. We support
+ this minimal set of attributes to accommodate the needs of builtins. */
+const struct attribute_spec gnat_internal_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
+ { "const", 0, 0, true, false, false, handle_const_attribute },
+ { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute },
+ { "pure", 0, 0, true, false, false, handle_pure_attribute },
+ { "no vops", 0, 0, true, false, false, handle_novops_attribute },
+ { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute },
+ { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute },
+ { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute },
+ { "malloc", 0, 0, true, false, false, handle_malloc_attribute },
+ { "type generic", 0, 0, false, true, true, handle_type_generic_attribute },
+
+ /* ??? format and format_arg are heavy and not supported, which actually
+ prevents support for stdio builtins, which we however declare as part
+ of the common builtins.def contents. */
+ { "format", 3, 3, false, true, true, fake_attribute_handler },
+ { "format_arg", 1, 1, false, true, true, fake_attribute_handler },
+
+ { NULL, 0, 0, false, false, false, NULL }
+};
+
+/* Associates a GNAT tree node to a GCC tree node. It is used in
+ `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
+ of `save_gnu_tree' for more info. */
+static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
+
+#define GET_GNU_TREE(GNAT_ENTITY) \
+ associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
+
+#define SET_GNU_TREE(GNAT_ENTITY,VAL) \
+ associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
+
+#define PRESENT_GNU_TREE(GNAT_ENTITY) \
+ (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
+
+/* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
+static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
+
+#define GET_DUMMY_NODE(GNAT_ENTITY) \
+ dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
+
+#define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
+ dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
+
+#define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
+ (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
+
+/* This variable keeps a table for types for each precision so that we only
+ allocate each of them once. Signed and unsigned types are kept separate.
+
+ Note that these types are only used when fold-const requests something
+ special. Perhaps we should NOT share these types; we'll see how it
+ goes later. */
+static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
+
+/* Likewise for float types, but record these by mode. */
+static GTY(()) tree float_types[NUM_MACHINE_MODES];
+
+/* For each binding contour we allocate a binding_level structure to indicate
+ the binding depth. */
+
+struct gnat_binding_level GTY((chain_next ("%h.chain")))
+{
+ /* The binding level containing this one (the enclosing binding level). */
+ struct gnat_binding_level *chain;
+ /* The BLOCK node for this level. */
+ tree block;
+ /* If nonzero, the setjmp buffer that needs to be updated for any
+ variable-sized definition within this context. */
+ tree jmpbuf_decl;
+};
+
+/* The binding level currently in effect. */
+static GTY(()) struct gnat_binding_level *current_binding_level;
+
+/* A chain of gnat_binding_level structures awaiting reuse. */
+static GTY((deletable)) struct gnat_binding_level *free_binding_level;
+
+/* An array of global declarations. */
+static GTY(()) VEC(tree,gc) *global_decls;
+
+/* An array of builtin function declarations. */
+static GTY(()) VEC(tree,gc) *builtin_decls;
+
+/* An array of global renaming pointers. */
+static GTY(()) VEC(tree,gc) *global_renaming_pointers;
+
+/* A chain of unused BLOCK nodes. */
+static GTY((deletable)) tree free_block_chain;
+
+static void gnat_install_builtins (void);
+static tree merge_sizes (tree, tree, tree, bool, bool);
+static tree compute_related_constant (tree, tree);
+static tree split_plus (tree, tree *);
+static void gnat_gimplify_function (tree);
+static tree float_type_for_precision (int, enum machine_mode);
+static tree convert_to_fat_pointer (tree, tree);
+static tree convert_to_thin_pointer (tree, tree);
+static tree make_descriptor_field (const char *,tree, tree, tree);
+static bool potential_alignment_gap (tree, tree, tree);
+
+/* Initialize the association of GNAT nodes to GCC trees. */
+
+void
+init_gnat_to_gnu (void)
+{
+ associate_gnat_to_gnu
+ = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
+}
+
+/* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
+ which is to be associated with GNAT_ENTITY. Such GCC tree node is always
+ a ..._DECL node. If NO_CHECK is nonzero, the latter check is suppressed.
+
+ If GNU_DECL is zero, a previous association is to be reset. */
+
+void
+save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
+{
+ /* Check that GNAT_ENTITY is not already defined and that it is being set
+ to something which is a decl. Raise gigi 401 if not. Usually, this
+ means GNAT_ENTITY is defined twice, but occasionally is due to some
+ Gigi problem. */
+ gcc_assert (!(gnu_decl
+ && (PRESENT_GNU_TREE (gnat_entity)
+ || (!no_check && !DECL_P (gnu_decl)))));
+
+ SET_GNU_TREE (gnat_entity, gnu_decl);
+}
+
+/* GNAT_ENTITY is a GNAT tree node for a defining identifier.
+ Return the ..._DECL node that was associated with it. If there is no tree
+ node associated with GNAT_ENTITY, abort.
+
+ In some cases, such as delayed elaboration or expressions that need to
+ be elaborated only once, GNAT_ENTITY is really not an entity. */
+
+tree
+get_gnu_tree (Entity_Id gnat_entity)
+{
+ gcc_assert (PRESENT_GNU_TREE (gnat_entity));
+ return GET_GNU_TREE (gnat_entity);
+}
+
+/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
+
+bool
+present_gnu_tree (Entity_Id gnat_entity)
+{
+ return PRESENT_GNU_TREE (gnat_entity);
+}
+
+/* Initialize the association of GNAT nodes to GCC trees as dummies. */
+
+void
+init_dummy_type (void)
+{
+ dummy_node_table
+ = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
+}
+
+/* Make a dummy type corresponding to GNAT_TYPE. */
+
+tree
+make_dummy_type (Entity_Id gnat_type)
+{
+ Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type);
+ tree gnu_type;
+
+ /* If there is an equivalent type, get its underlying type. */
+ if (Present (gnat_underlying))
+ gnat_underlying = Underlying_Type (gnat_underlying);
+
+ /* If there was no equivalent type (can only happen when just annotating
+ types) or underlying type, go back to the original type. */
+ if (No (gnat_underlying))
+ gnat_underlying = gnat_type;
+
+ /* If it there already a dummy type, use that one. Else make one. */
+ if (PRESENT_DUMMY_NODE (gnat_underlying))
+ return GET_DUMMY_NODE (gnat_underlying);
+
+ /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
+ an ENUMERAL_TYPE. */
+ gnu_type = make_node (Is_Record_Type (gnat_underlying)
+ ? tree_code_for_record_type (gnat_underlying)
+ : ENUMERAL_TYPE);
+ TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
+ TYPE_DUMMY_P (gnu_type) = 1;
+ if (AGGREGATE_TYPE_P (gnu_type))
+ {
+ TYPE_STUB_DECL (gnu_type) = build_decl (TYPE_DECL, NULL_TREE, gnu_type);
+ TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_type);
+ }
+
+ SET_DUMMY_NODE (gnat_underlying, gnu_type);
+
+ return gnu_type;
+}
+
+/* Return nonzero if we are currently in the global binding level. */
+
+int
+global_bindings_p (void)
+{
+ return ((force_global || !current_function_decl) ? -1 : 0);
+}
+
+/* Enter a new binding level. */
+
+void
+gnat_pushlevel ()
+{
+ struct gnat_binding_level *newlevel = NULL;
+
+ /* Reuse a struct for this binding level, if there is one. */
+ if (free_binding_level)
+ {
+ newlevel = free_binding_level;
+ free_binding_level = free_binding_level->chain;
+ }
+ else
+ newlevel
+ = (struct gnat_binding_level *)
+ ggc_alloc (sizeof (struct gnat_binding_level));
+
+ /* Use a free BLOCK, if any; otherwise, allocate one. */
+ if (free_block_chain)
+ {
+ newlevel->block = free_block_chain;
+ free_block_chain = BLOCK_CHAIN (free_block_chain);
+ BLOCK_CHAIN (newlevel->block) = NULL_TREE;
+ }
+ else
+ newlevel->block = make_node (BLOCK);
+
+ /* Point the BLOCK we just made to its parent. */
+ if (current_binding_level)
+ BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
+
+ BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
+ TREE_USED (newlevel->block) = 1;
+
+ /* Add this level to the front of the chain (stack) of levels that are
+ active. */
+ newlevel->chain = current_binding_level;
+ newlevel->jmpbuf_decl = NULL_TREE;
+ current_binding_level = newlevel;
+}
+
+/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
+ and point FNDECL to this BLOCK. */
+
+void
+set_current_block_context (tree fndecl)
+{
+ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
+ DECL_INITIAL (fndecl) = current_binding_level->block;
+}
+
+/* Set the jmpbuf_decl for the current binding level to DECL. */
+
+void
+set_block_jmpbuf_decl (tree decl)
+{
+ current_binding_level->jmpbuf_decl = decl;
+}
+
+/* Get the jmpbuf_decl, if any, for the current binding level. */
+
+tree
+get_block_jmpbuf_decl ()
+{
+ return current_binding_level->jmpbuf_decl;
+}
+
+/* Exit a binding level. Set any BLOCK into the current code group. */
+
+void
+gnat_poplevel ()
+{
+ struct gnat_binding_level *level = current_binding_level;
+ tree block = level->block;
+
+ BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
+ BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
+
+ /* If this is a function-level BLOCK don't do anything. Otherwise, if there
+ are no variables free the block and merge its subblocks into those of its
+ parent block. Otherwise, add it to the list of its parent. */
+ if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
+ ;
+ else if (BLOCK_VARS (block) == NULL_TREE)
+ {
+ BLOCK_SUBBLOCKS (level->chain->block)
+ = chainon (BLOCK_SUBBLOCKS (block),
+ BLOCK_SUBBLOCKS (level->chain->block));
+ BLOCK_CHAIN (block) = free_block_chain;
+ free_block_chain = block;
+ }
+ else
+ {
+ BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
+ BLOCK_SUBBLOCKS (level->chain->block) = block;
+ TREE_USED (block) = 1;
+ set_block_for_group (block);
+ }
+
+ /* Free this binding structure. */
+ current_binding_level = level->chain;
+ level->chain = free_binding_level;
+ free_binding_level = level;
+}
+
+
+/* Records a ..._DECL node DECL as belonging to the current lexical scope
+ and uses GNAT_NODE for location information and propagating flags. */
+
+void
+gnat_pushdecl (tree decl, Node_Id gnat_node)
+{
+ /* If this decl is public external or at toplevel, there is no context.
+ But PARM_DECLs always go in the level of its function. */
+ if (TREE_CODE (decl) != PARM_DECL
+ && ((DECL_EXTERNAL (decl) && TREE_PUBLIC (decl))
+ || global_bindings_p ()))
+ DECL_CONTEXT (decl) = 0;
+ else
+ {
+ DECL_CONTEXT (decl) = current_function_decl;
+
+ /* Functions imported in another function are not really nested. */
+ if (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl))
+ DECL_NO_STATIC_CHAIN (decl) = 1;
+ }
+
+ TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node));
+
+ /* Set the location of DECL and emit a declaration for it. */
+ if (Present (gnat_node))
+ Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
+ add_decl_expr (decl, gnat_node);
+
+ /* Put the declaration on the list. The list of declarations is in reverse
+ order. The list will be reversed later. Put global variables in the
+ globals list and builtin functions in a dedicated list to speed up
+ further lookups. Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
+ the list, as they will cause trouble with the debugger and aren't needed
+ anyway. */
+ if (TREE_CODE (decl) != TYPE_DECL
+ || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
+ {
+ if (global_bindings_p ())
+ {
+ VEC_safe_push (tree, gc, global_decls, decl);
+
+ if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
+ VEC_safe_push (tree, gc, builtin_decls, decl);
+ }
+ else
+ {
+ TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
+ BLOCK_VARS (current_binding_level->block) = decl;
+ }
+ }
+
+ /* For the declaration of a type, set its name if it either is not already
+ set, was set to an IDENTIFIER_NODE, indicating an internal name,
+ or if the previous type name was not derived from a source name.
+ We'd rather have the type named with a real name and all the pointer
+ types to the same object have the same POINTER_TYPE node. Code in the
+ equivalent function of c-decl.c makes a copy of the type node here, but
+ that may cause us trouble with incomplete types. We make an exception
+ for fat pointer types because the compiler automatically builds them
+ for unconstrained array types and the debugger uses them to represent
+ both these and pointers to these. */
+ if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
+ {
+ tree t = TREE_TYPE (decl);
+
+ if (!TYPE_NAME (t) || TREE_CODE (TYPE_NAME (t)) == IDENTIFIER_NODE)
+ ;
+ else if (TYPE_FAT_POINTER_P (t))
+ {
+ tree tt = build_variant_type_copy (t);
+ TYPE_NAME (tt) = decl;
+ TREE_USED (tt) = TREE_USED (t);
+ TREE_TYPE (decl) = tt;
+ DECL_ORIGINAL_TYPE (decl) = t;
+ t = NULL_TREE;
+ }
+ else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
+ ;
+ else
+ t = NULL_TREE;
+
+ /* Propagate the name to all the variants. This is needed for
+ the type qualifiers machinery to work properly. */
+ if (t)
+ for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
+ TYPE_NAME (t) = decl;
+ }
+}
+
+/* Do little here. Set up the standard declarations later after the
+ front end has been run. */
+
+void
+gnat_init_decl_processing (void)
+{
+ /* Make the binding_level structure for global names. */
+ current_function_decl = 0;
+ current_binding_level = 0;
+ free_binding_level = 0;
+ gnat_pushlevel ();
+
+ build_common_tree_nodes (true, true);
+
+ /* In Ada, we use a signed type for SIZETYPE. Use the signed type
+ corresponding to the size of Pmode. In most cases when ptr_mode and
+ Pmode differ, C will use the width of ptr_mode as sizetype. But we get
+ far better code using the width of Pmode. Make this here since we need
+ this before we can expand the GNAT types. */
+ size_type_node = gnat_type_for_size (GET_MODE_BITSIZE (Pmode), 0);
+ set_sizetype (size_type_node);
+
+ /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
+ boolean_type_node = make_node (BOOLEAN_TYPE);
+ TYPE_PRECISION (boolean_type_node) = 1;
+ fixup_unsigned_type (boolean_type_node);
+ TYPE_RM_SIZE_NUM (boolean_type_node) = bitsize_int (1);
+
+ build_common_tree_nodes_2 (0);
+
+ ptr_void_type_node = build_pointer_type (void_type_node);
+}
+
+/* Create the predefined scalar types such as `integer_type_node' needed
+ in the gcc back-end and initialize the global binding level. */
+
+void
+init_gigi_decls (tree long_long_float_type, tree exception_type)
+{
+ tree endlink, decl;
+ tree int64_type = gnat_type_for_size (64, 0);
+ unsigned int i;
+
+ /* Set the types that GCC and Gigi use from the front end. We would like
+ to do this for char_type_node, but it needs to correspond to the C
+ char type. */
+ if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE)
+ {
+ /* In this case, the builtin floating point types are VAX float,
+ so make up a type for use. */
+ longest_float_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE;
+ layout_type (longest_float_type_node);
+ create_type_decl (get_identifier ("longest float type"),
+ longest_float_type_node, NULL, false, true, Empty);
+ }
+ else
+ longest_float_type_node = TREE_TYPE (long_long_float_type);
+
+ except_type_node = TREE_TYPE (exception_type);
+
+ unsigned_type_node = gnat_type_for_size (INT_TYPE_SIZE, 1);
+ create_type_decl (get_identifier ("unsigned int"), unsigned_type_node,
+ NULL, false, true, Empty);
+
+ void_type_decl_node = create_type_decl (get_identifier ("void"),
+ void_type_node, NULL, false, true,
+ Empty);
+
+ void_ftype = build_function_type (void_type_node, NULL_TREE);
+ ptr_void_ftype = build_pointer_type (void_ftype);
+
+ /* Build the special descriptor type and its null node if needed. */
+ if (TARGET_VTABLE_USES_DESCRIPTORS)
+ {
+ tree null_node = fold_convert (ptr_void_ftype, null_pointer_node);
+ tree field_list = NULL_TREE, null_list = NULL_TREE;
+ int j;
+
+ fdesc_type_node = make_node (RECORD_TYPE);
+
+ for (j = 0; j < TARGET_VTABLE_USES_DESCRIPTORS; j++)
+ {
+ tree field = create_field_decl (NULL_TREE, ptr_void_ftype,
+ fdesc_type_node, 0, 0, 0, 1);
+ TREE_CHAIN (field) = field_list;
+ field_list = field;
+ null_list = tree_cons (field, null_node, null_list);
+ }
+
+ finish_record_type (fdesc_type_node, nreverse (field_list), 0, false);
+ null_fdesc_node = gnat_build_constructor (fdesc_type_node, null_list);
+ }
+
+ /* Now declare runtime functions. */
+ endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
+
+ /* malloc is a function declaration tree for a function to allocate
+ memory. */
+ malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"),
+ NULL_TREE,
+ build_function_type (ptr_void_type_node,
+ tree_cons (NULL_TREE,
+ sizetype,
+ endlink)),
+ NULL_TREE, false, true, true, NULL,
+ Empty);
+ DECL_IS_MALLOC (malloc_decl) = 1;
+
+ /* malloc32 is a function declaration tree for a function to allocate
+ 32bit memory on a 64bit system. Needed only on 64bit VMS. */
+ malloc32_decl = create_subprog_decl (get_identifier ("__gnat_malloc32"),
+ NULL_TREE,
+ build_function_type (ptr_void_type_node,
+ tree_cons (NULL_TREE,
+ sizetype,
+ endlink)),
+ NULL_TREE, false, true, true, NULL,
+ Empty);
+ DECL_IS_MALLOC (malloc32_decl) = 1;
+
+ /* free is a function declaration tree for a function to free memory. */
+ free_decl
+ = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* This is used for 64-bit multiplication with overflow checking. */
+ mulv64_decl
+ = create_subprog_decl (get_identifier ("__gnat_mulv64"), NULL_TREE,
+ build_function_type_list (int64_type, int64_type,
+ int64_type, NULL_TREE),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* Make the types and functions used for exception processing. */
+ jmpbuf_type
+ = build_array_type (gnat_type_for_mode (Pmode, 0),
+ build_index_type (build_int_cst (NULL_TREE, 5)));
+ create_type_decl (get_identifier ("JMPBUF_T"), jmpbuf_type, NULL,
+ true, true, Empty);
+ jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);
+
+ /* Functions to get and set the jumpbuf pointer for the current thread. */
+ get_jmpbuf_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
+ NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE),
+ NULL_TREE, false, true, true, NULL, Empty);
+ /* Avoid creating superfluous edges to __builtin_setjmp receivers. */
+ DECL_PURE_P (get_jmpbuf_decl) = 1;
+
+ set_jmpbuf_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
+ NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* Function to get the current exception. */
+ get_excptr_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__get_gnat_exception"),
+ NULL_TREE,
+ build_function_type (build_pointer_type (except_type_node), NULL_TREE),
+ NULL_TREE, false, true, true, NULL, Empty);
+ /* Avoid creating superfluous edges to __builtin_setjmp receivers. */
+ DECL_PURE_P (get_excptr_decl) = 1;
+
+ /* Functions that raise exceptions. */
+ raise_nodefer_decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (except_type_node),
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* Dummy objects to materialize "others" and "all others" in the exception
+ tables. These are exported by a-exexpr.adb, so see this unit for the
+ types to use. */
+
+ others_decl
+ = create_var_decl (get_identifier ("OTHERS"),
+ get_identifier ("__gnat_others_value"),
+ integer_type_node, 0, 1, 0, 1, 1, 0, Empty);
+
+ all_others_decl
+ = create_var_decl (get_identifier ("ALL_OTHERS"),
+ get_identifier ("__gnat_all_others_value"),
+ integer_type_node, 0, 1, 0, 1, 1, 0, Empty);
+
+ /* Hooks to call when entering/leaving an exception handler. */
+ begin_handler_decl
+ = create_subprog_decl (get_identifier ("__gnat_begin_handler"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ end_handler_decl
+ = create_subprog_decl (get_identifier ("__gnat_end_handler"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* If in no exception handlers mode, all raise statements are redirected to
+ __gnat_last_chance_handler. No need to redefine raise_nodefer_decl, since
+ this procedure will never be called in this mode. */
+ if (No_Exception_Handlers_Set ())
+ {
+ decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_last_chance_handler"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
+ gnat_raise_decls[i] = decl;
+ }
+ else
+ /* Otherwise, make one decl for each exception reason. */
+ for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
+ {
+ char name[17];
+
+ sprintf (name, "__gnat_rcheck_%.2d", i);
+ gnat_raise_decls[i]
+ = create_subprog_decl
+ (get_identifier (name), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type
+ (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, false, true, true, NULL, Empty);
+ }
+
+ /* Indicate that these never return. */
+ TREE_THIS_VOLATILE (raise_nodefer_decl) = 1;
+ TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1;
+ TREE_TYPE (raise_nodefer_decl)
+ = build_qualified_type (TREE_TYPE (raise_nodefer_decl),
+ TYPE_QUAL_VOLATILE);
+
+ for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
+ {
+ TREE_THIS_VOLATILE (gnat_raise_decls[i]) = 1;
+ TREE_SIDE_EFFECTS (gnat_raise_decls[i]) = 1;
+ TREE_TYPE (gnat_raise_decls[i])
+ = build_qualified_type (TREE_TYPE (gnat_raise_decls[i]),
+ TYPE_QUAL_VOLATILE);
+ }
+
+ /* setjmp returns an integer and has one operand, which is a pointer to
+ a jmpbuf. */
+ setjmp_decl
+ = create_subprog_decl
+ (get_identifier ("__builtin_setjmp"), NULL_TREE,
+ build_function_type (integer_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL;
+ DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP;
+
+ /* update_setjmp_buf updates a setjmp buffer from the current stack pointer
+ address. */
+ update_setjmp_buf_decl
+ = create_subprog_decl
+ (get_identifier ("__builtin_update_setjmp_buf"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ DECL_BUILT_IN_CLASS (update_setjmp_buf_decl) = BUILT_IN_NORMAL;
+ DECL_FUNCTION_CODE (update_setjmp_buf_decl) = BUILT_IN_UPDATE_SETJMP_BUF;
+
+ main_identifier_node = get_identifier ("main");
+
+ /* Install the builtins we might need, either internally or as
+ user available facilities for Intrinsic imports. */
+ gnat_install_builtins ();
+}
+
+/* Given a record type RECORD_TYPE and a chain of FIELD_DECL nodes FIELDLIST,
+ finish constructing the record or union type. If REP_LEVEL is zero, this
+ record has no representation clause and so will be entirely laid out here.
+ If REP_LEVEL is one, this record has a representation clause and has been
+ laid out already; only set the sizes and alignment. If REP_LEVEL is two,
+ this record is derived from a parent record and thus inherits its layout;
+ only make a pass on the fields to finalize them. If DO_NOT_FINALIZE is
+ true, the record type is expected to be modified afterwards so it will
+ not be sent to the back-end for finalization. */
+
+void
+finish_record_type (tree record_type, tree fieldlist, int rep_level,
+ bool do_not_finalize)
+{
+ enum tree_code code = TREE_CODE (record_type);
+ tree name = TYPE_NAME (record_type);
+ tree ada_size = bitsize_zero_node;
+ tree size = bitsize_zero_node;
+ bool had_size = TYPE_SIZE (record_type) != 0;
+ bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
+ bool had_align = TYPE_ALIGN (record_type) != 0;
+ tree field;
+
+ if (name && TREE_CODE (name) == TYPE_DECL)
+ name = DECL_NAME (name);
+
+ TYPE_FIELDS (record_type) = fieldlist;
+ TYPE_STUB_DECL (record_type) = build_decl (TYPE_DECL, name, record_type);
+
+ /* We don't need both the typedef name and the record name output in
+ the debugging information, since they are the same. */
+ DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1;
+
+ /* Globally initialize the record first. If this is a rep'ed record,
+ that just means some initializations; otherwise, layout the record. */
+ if (rep_level > 0)
+ {
+ TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
+ SET_TYPE_MODE (record_type, BLKmode);
+
+ if (!had_size_unit)
+ TYPE_SIZE_UNIT (record_type) = size_zero_node;
+ if (!had_size)
+ TYPE_SIZE (record_type) = bitsize_zero_node;
+
+ /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
+ out just like a UNION_TYPE, since the size will be fixed. */
+ else if (code == QUAL_UNION_TYPE)
+ code = UNION_TYPE;
+ }
+ else
+ {
+ /* Ensure there isn't a size already set. There can be in an error
+ case where there is a rep clause but all fields have errors and
+ no longer have a position. */
+ TYPE_SIZE (record_type) = 0;
+ layout_type (record_type);
+ }
+
+ /* At this point, the position and size of each field is known. It was
+ either set before entry by a rep clause, or by laying out the type above.
+
+ We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
+ to compute the Ada size; the GCC size and alignment (for rep'ed records
+ that are not padding types); and the mode (for rep'ed records). We also
+ clear the DECL_BIT_FIELD indication for the cases we know have not been
+ handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
+
+ if (code == QUAL_UNION_TYPE)
+ fieldlist = nreverse (fieldlist);
+
+ for (field = fieldlist; field; field = TREE_CHAIN (field))
+ {
+ tree type = TREE_TYPE (field);
+ tree pos = bit_position (field);
+ tree this_size = DECL_SIZE (field);
+ tree this_ada_size;
+
+ if ((TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ && !TYPE_IS_FAT_POINTER_P (type)
+ && !TYPE_CONTAINS_TEMPLATE_P (type)
+ && TYPE_ADA_SIZE (type))
+ this_ada_size = TYPE_ADA_SIZE (type);
+ else
+ this_ada_size = this_size;
+
+ /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
+ if (DECL_BIT_FIELD (field)
+ && operand_equal_p (this_size, TYPE_SIZE (type), 0))
+ {
+ unsigned int align = TYPE_ALIGN (type);
+
+ /* In the general case, type alignment is required. */
+ if (value_factor_p (pos, align))
+ {
+ /* The enclosing record type must be sufficiently aligned.
+ Otherwise, if no alignment was specified for it and it
+ has been laid out already, bump its alignment to the
+ desired one if this is compatible with its size. */
+ if (TYPE_ALIGN (record_type) >= align)
+ {
+ DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
+ DECL_BIT_FIELD (field) = 0;
+ }
+ else if (!had_align
+ && rep_level == 0
+ && value_factor_p (TYPE_SIZE (record_type), align))
+ {
+ TYPE_ALIGN (record_type) = align;
+ DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
+ DECL_BIT_FIELD (field) = 0;
+ }
+ }
+
+ /* In the non-strict alignment case, only byte alignment is. */
+ if (!STRICT_ALIGNMENT
+ && DECL_BIT_FIELD (field)
+ && value_factor_p (pos, BITS_PER_UNIT))
+ DECL_BIT_FIELD (field) = 0;
+ }
+
+ /* If we still have DECL_BIT_FIELD set at this point, we know the field
+ is technically not addressable. Except that it can actually be
+ addressed if the field is BLKmode and happens to be properly
+ aligned. */
+ DECL_NONADDRESSABLE_P (field)
+ |= DECL_BIT_FIELD (field) && DECL_MODE (field) != BLKmode;
+
+ /* A type must be as aligned as its most aligned field that is not
+ a bit-field. But this is already enforced by layout_type. */
+ if (rep_level > 0 && !DECL_BIT_FIELD (field))
+ TYPE_ALIGN (record_type)
+ = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
+
+ switch (code)
+ {
+ case UNION_TYPE:
+ ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
+ size = size_binop (MAX_EXPR, size, this_size);
+ break;
+
+ case QUAL_UNION_TYPE:
+ ada_size
+ = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_ada_size, ada_size);
+ size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_size, size);
+ break;
+
+ case RECORD_TYPE:
+ /* Since we know here that all fields are sorted in order of
+ increasing bit position, the size of the record is one
+ higher than the ending bit of the last field processed
+ unless we have a rep clause, since in that case we might
+ have a field outside a QUAL_UNION_TYPE that has a higher ending
+ position. So use a MAX in that case. Also, if this field is a
+ QUAL_UNION_TYPE, we need to take into account the previous size in
+ the case of empty variants. */
+ ada_size
+ = merge_sizes (ada_size, pos, this_ada_size,
+ TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
+ size
+ = merge_sizes (size, pos, this_size,
+ TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ if (code == QUAL_UNION_TYPE)
+ nreverse (fieldlist);
+
+ if (rep_level < 2)
+ {
+ /* If this is a padding record, we never want to make the size smaller
+ than what was specified in it, if any. */
+ if (TREE_CODE (record_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
+ size = TYPE_SIZE (record_type);
+
+ /* Now set any of the values we've just computed that apply. */
+ if (!TYPE_IS_FAT_POINTER_P (record_type)
+ && !TYPE_CONTAINS_TEMPLATE_P (record_type))
+ SET_TYPE_ADA_SIZE (record_type, ada_size);
+
+ if (rep_level > 0)
+ {
+ tree size_unit = had_size_unit
+ ? TYPE_SIZE_UNIT (record_type)
+ : convert (sizetype,
+ size_binop (CEIL_DIV_EXPR, size,
+ bitsize_unit_node));
+ unsigned int align = TYPE_ALIGN (record_type);
+
+ TYPE_SIZE (record_type) = variable_size (round_up (size, align));
+ TYPE_SIZE_UNIT (record_type)
+ = variable_size (round_up (size_unit, align / BITS_PER_UNIT));
+
+ compute_record_mode (record_type);
+ }
+ }
+
+ if (!do_not_finalize)
+ rest_of_record_type_compilation (record_type);
+}
+
+/* Wrap up compilation of RECORD_TYPE, i.e. most notably output all
+ the debug information associated with it. It need not be invoked
+ directly in most cases since finish_record_type takes care of doing
+ so, unless explicitly requested not to through DO_NOT_FINALIZE. */
+
+void
+rest_of_record_type_compilation (tree record_type)
+{
+ tree fieldlist = TYPE_FIELDS (record_type);
+ tree field;
+ enum tree_code code = TREE_CODE (record_type);
+ bool var_size = false;
+
+ for (field = fieldlist; field; field = TREE_CHAIN (field))
+ {
+ /* We need to make an XVE/XVU record if any field has variable size,
+ whether or not the record does. For example, if we have a union,
+ it may be that all fields, rounded up to the alignment, have the
+ same size, in which case we'll use that size. But the debug
+ output routines (except Dwarf2) won't be able to output the fields,
+ so we need to make the special record. */
+ if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
+ /* If a field has a non-constant qualifier, the record will have
+ variable size too. */
+ || (code == QUAL_UNION_TYPE
+ && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
+ {
+ var_size = true;
+ break;
+ }
+ }
+
+ /* If this record is of variable size, rename it so that the
+ debugger knows it is and make a new, parallel, record
+ that tells the debugger how the record is laid out. See
+ exp_dbug.ads. But don't do this for records that are padding
+ since they confuse GDB. */
+ if (var_size
+ && !(TREE_CODE (record_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (record_type)))
+ {
+ tree new_record_type
+ = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? UNION_TYPE : TREE_CODE (record_type));
+ tree orig_name = TYPE_NAME (record_type);
+ tree orig_id
+ = (TREE_CODE (orig_name) == TYPE_DECL ? DECL_NAME (orig_name)
+ : orig_name);
+ tree new_id
+ = concat_id_with_name (orig_id,
+ TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? "XVU" : "XVE");
+ tree last_pos = bitsize_zero_node;
+ tree old_field;
+ tree prev_old_field = 0;
+
+ TYPE_NAME (new_record_type) = new_id;
+ TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
+ TYPE_STUB_DECL (new_record_type)
+ = build_decl (TYPE_DECL, new_id, new_record_type);
+ DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1;
+ DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
+ = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
+ TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
+ TYPE_SIZE_UNIT (new_record_type)
+ = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
+
+ add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type);
+
+ /* Now scan all the fields, replacing each field with a new
+ field corresponding to the new encoding. */
+ for (old_field = TYPE_FIELDS (record_type); old_field;
+ old_field = TREE_CHAIN (old_field))
+ {
+ tree field_type = TREE_TYPE (old_field);
+ tree field_name = DECL_NAME (old_field);
+ tree new_field;
+ tree curpos = bit_position (old_field);
+ bool var = false;
+ unsigned int align = 0;
+ tree pos;
+
+ /* See how the position was modified from the last position.
+
+ There are two basic cases we support: a value was added
+ to the last position or the last position was rounded to
+ a boundary and they something was added. Check for the
+ first case first. If not, see if there is any evidence
+ of rounding. If so, round the last position and try
+ again.
+
+ If this is a union, the position can be taken as zero. */
+
+ /* Some computations depend on the shape of the position expression,
+ so strip conversions to make sure it's exposed. */
+ curpos = remove_conversions (curpos, true);
+
+ if (TREE_CODE (new_record_type) == UNION_TYPE)
+ pos = bitsize_zero_node, align = 0;
+ else
+ pos = compute_related_constant (curpos, last_pos);
+
+ if (!pos && TREE_CODE (curpos) == MULT_EXPR
+ && host_integerp (TREE_OPERAND (curpos, 1), 1))
+ {
+ tree offset = TREE_OPERAND (curpos, 0);
+ align = tree_low_cst (TREE_OPERAND (curpos, 1), 1);
+
+ /* An offset which is a bitwise AND with a negative power of 2
+ means an alignment corresponding to this power of 2. */
+ offset = remove_conversions (offset, true);
+ if (TREE_CODE (offset) == BIT_AND_EXPR
+ && host_integerp (TREE_OPERAND (offset, 1), 0)
+ && tree_int_cst_sgn (TREE_OPERAND (offset, 1)) < 0)
+ {
+ unsigned int pow
+ = - tree_low_cst (TREE_OPERAND (offset, 1), 0);
+ if (exact_log2 (pow) > 0)
+ align *= pow;
+ }
+
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+ else if (!pos && TREE_CODE (curpos) == PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
+ && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
+ && host_integerp (TREE_OPERAND
+ (TREE_OPERAND (curpos, 0), 1),
+ 1))
+ {
+ align
+ = tree_low_cst
+ (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+ else if (potential_alignment_gap (prev_old_field, old_field,
+ pos))
+ {
+ align = TYPE_ALIGN (field_type);
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+
+ /* If we can't compute a position, set it to zero.
+
+ ??? We really should abort here, but it's too much work
+ to get this correct for all cases. */
+
+ if (!pos)
+ pos = bitsize_zero_node;
+
+ /* See if this type is variable-sized and make a pointer type
+ and indicate the indirection if so. Beware that the debug
+ back-end may adjust the position computed above according
+ to the alignment of the field type, i.e. the pointer type
+ in this case, if we don't preventively counter that. */
+ if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
+ {
+ field_type = build_pointer_type (field_type);
+ if (align != 0 && TYPE_ALIGN (field_type) > align)
+ {
+ field_type = copy_node (field_type);
+ TYPE_ALIGN (field_type) = align;
+ }
+ var = true;
+ }
+
+ /* Make a new field name, if necessary. */
+ if (var || align != 0)
+ {
+ char suffix[16];
+
+ if (align != 0)
+ sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
+ align / BITS_PER_UNIT);
+ else
+ strcpy (suffix, "XVL");
+
+ field_name = concat_id_with_name (field_name, suffix);
+ }
+
+ new_field = create_field_decl (field_name, field_type,
+ new_record_type, 0,
+ DECL_SIZE (old_field), pos, 0);
+ TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
+ TYPE_FIELDS (new_record_type) = new_field;
+
+ /* If old_field is a QUAL_UNION_TYPE, take its size as being
+ zero. The only time it's not the last field of the record
+ is when there are other components at fixed positions after
+ it (meaning there was a rep clause for every field) and we
+ want to be able to encode them. */
+ last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
+ (TREE_CODE (TREE_TYPE (old_field))
+ == QUAL_UNION_TYPE)
+ ? bitsize_zero_node
+ : DECL_SIZE (old_field));
+ prev_old_field = old_field;
+ }
+
+ TYPE_FIELDS (new_record_type)
+ = nreverse (TYPE_FIELDS (new_record_type));
+
+ rest_of_type_decl_compilation (TYPE_STUB_DECL (new_record_type));
+ }
+
+ rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type));
+}
+
+/* Append PARALLEL_TYPE on the chain of parallel types for decl. */
+
+void
+add_parallel_type (tree decl, tree parallel_type)
+{
+ tree d = decl;
+
+ while (DECL_PARALLEL_TYPE (d))
+ d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d));
+
+ SET_DECL_PARALLEL_TYPE (d, parallel_type);
+}
+
+/* Return the parallel type associated to a type, if any. */
+
+tree
+get_parallel_type (tree type)
+{
+ if (TYPE_STUB_DECL (type))
+ return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
+ else
+ return NULL_TREE;
+}
+
+/* Utility function of above to merge LAST_SIZE, the previous size of a record
+ with FIRST_BIT and SIZE that describe a field. SPECIAL is nonzero
+ if this represents a QUAL_UNION_TYPE in which case we must look for
+ COND_EXPRs and replace a value of zero with the old size. If HAS_REP
+ is nonzero, we must take the MAX of the end position of this field
+ with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE.
+
+ We return an expression for the size. */
+
+static tree
+merge_sizes (tree last_size, tree first_bit, tree size, bool special,
+ bool has_rep)
+{
+ tree type = TREE_TYPE (last_size);
+ tree new;
+
+ if (!special || TREE_CODE (size) != COND_EXPR)
+ {
+ new = size_binop (PLUS_EXPR, first_bit, size);
+ if (has_rep)
+ new = size_binop (MAX_EXPR, last_size, new);
+ }
+
+ else
+ new = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
+ integer_zerop (TREE_OPERAND (size, 1))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 1),
+ 1, has_rep),
+ integer_zerop (TREE_OPERAND (size, 2))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 2),
+ 1, has_rep));
+
+ /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
+ when fed through substitute_in_expr) into thinking that a constant
+ size is not constant. */
+ while (TREE_CODE (new) == NON_LVALUE_EXPR)
+ new = TREE_OPERAND (new, 0);
+
+ return new;
+}
+
+/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
+ related by the addition of a constant. Return that constant if so. */
+
+static tree
+compute_related_constant (tree op0, tree op1)
+{
+ tree op0_var, op1_var;
+ tree op0_con = split_plus (op0, &op0_var);
+ tree op1_con = split_plus (op1, &op1_var);
+ tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
+
+ if (operand_equal_p (op0_var, op1_var, 0))
+ return result;
+ else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
+ return result;
+ else
+ return 0;
+}
+
+/* Utility function of above to split a tree OP which may be a sum, into a
+ constant part, which is returned, and a variable part, which is stored
+ in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
+ bitsizetype. */
+
+static tree
+split_plus (tree in, tree *pvar)
+{
+ /* Strip NOPS in order to ease the tree traversal and maximize the
+ potential for constant or plus/minus discovery. We need to be careful
+ to always return and set *pvar to bitsizetype trees, but it's worth
+ the effort. */
+ STRIP_NOPS (in);
+
+ *pvar = convert (bitsizetype, in);
+
+ if (TREE_CODE (in) == INTEGER_CST)
+ {
+ *pvar = bitsize_zero_node;
+ return convert (bitsizetype, in);
+ }
+ else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
+ {
+ tree lhs_var, rhs_var;
+ tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
+ tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
+
+ if (lhs_var == TREE_OPERAND (in, 0)
+ && rhs_var == TREE_OPERAND (in, 1))
+ return bitsize_zero_node;
+
+ *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
+ return size_binop (TREE_CODE (in), lhs_con, rhs_con);
+ }
+ else
+ return bitsize_zero_node;
+}
+
+/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
+ subprogram. If it is void_type_node, then we are dealing with a procedure,
+ otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
+ PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
+ copy-in/copy-out list to be stored into TYPE_CICO_LIST.
+ RETURNS_UNCONSTRAINED is true if the function returns an unconstrained
+ object. RETURNS_BY_REF is true if the function returns by reference.
+ RETURNS_BY_TARGET_PTR is true if the function is to be passed (as its
+ first parameter) the address of the place to copy its result. */
+
+tree
+create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
+ bool returns_unconstrained, bool returns_by_ref,
+ bool returns_by_target_ptr)
+{
+ /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
+ the subprogram formal parameters. This list is generated by traversing the
+ input list of PARM_DECL nodes. */
+ tree param_type_list = NULL;
+ tree param_decl;
+ tree type;
+
+ for (param_decl = param_decl_list; param_decl;
+ param_decl = TREE_CHAIN (param_decl))
+ param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
+ param_type_list);
+
+ /* The list of the function parameter types has to be terminated by the void
+ type to signal to the back-end that we are not dealing with a variable
+ parameter subprogram, but that the subprogram has a fixed number of
+ parameters. */
+ param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
+
+ /* The list of argument types has been created in reverse
+ so nreverse it. */
+ param_type_list = nreverse (param_type_list);
+
+ type = build_function_type (return_type, param_type_list);
+
+ /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
+ or the new type should, make a copy of TYPE. Likewise for
+ RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
+ if (TYPE_CI_CO_LIST (type) || cico_list
+ || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
+ || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref
+ || TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr)
+ type = copy_type (type);
+
+ TYPE_CI_CO_LIST (type) = cico_list;
+ TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
+ TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
+ TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr;
+ return type;
+}
+
+/* Return a copy of TYPE but safe to modify in any way. */
+
+tree
+copy_type (tree type)
+{
+ tree new = copy_node (type);
+
+ /* copy_node clears this field instead of copying it, because it is
+ aliased with TREE_CHAIN. */
+ TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type);
+
+ TYPE_POINTER_TO (new) = 0;
+ TYPE_REFERENCE_TO (new) = 0;
+ TYPE_MAIN_VARIANT (new) = new;
+ TYPE_NEXT_VARIANT (new) = 0;
+
+ return new;
+}
+
+/* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose
+ TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position of
+ the decl. */
+
+tree
+create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
+{
+ /* First build a type for the desired range. */
+ tree type = build_index_2_type (min, max);
+
+ /* If this type has the TYPE_INDEX_TYPE we want, return it. Otherwise, if it
+ doesn't have TYPE_INDEX_TYPE set, set it to INDEX. If TYPE_INDEX_TYPE
+ is set, but not to INDEX, make a copy of this type with the requested
+ index type. Note that we have no way of sharing these types, but that's
+ only a small hole. */
+ if (TYPE_INDEX_TYPE (type) == index)
+ return type;
+ else if (TYPE_INDEX_TYPE (type))
+ type = copy_type (type);
+
+ SET_TYPE_INDEX_TYPE (type, index);
+ create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node);
+ return type;
+}
+
+/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character
+ string) and TYPE is a ..._TYPE node giving its data type.
+ ARTIFICIAL_P is true if this is a declaration that was generated
+ by the compiler. DEBUG_INFO_P is true if we need to write debugging
+ information about this type. GNAT_NODE is used for the position of
+ the decl. */
+
+tree
+create_type_decl (tree type_name, tree type, struct attrib *attr_list,
+ bool artificial_p, bool debug_info_p, Node_Id gnat_node)
+{
+ tree type_decl = build_decl (TYPE_DECL, type_name, type);
+ enum tree_code code = TREE_CODE (type);
+
+ DECL_ARTIFICIAL (type_decl) = artificial_p;
+
+ if (!TYPE_IS_DUMMY_P (type))
+ gnat_pushdecl (type_decl, gnat_node);
+
+ process_attributes (type_decl, attr_list);
+
+ /* Pass type declaration information to the debugger unless this is an
+ UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support,
+ and ENUMERAL_TYPE or RECORD_TYPE which is handled separately, or
+ type for which debugging information was not requested. */
+ if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
+ DECL_IGNORED_P (type_decl) = 1;
+ else if (code != ENUMERAL_TYPE
+ && (code != RECORD_TYPE || TYPE_IS_FAT_POINTER_P (type))
+ && !((code == POINTER_TYPE || code == REFERENCE_TYPE)
+ && TYPE_IS_DUMMY_P (TREE_TYPE (type))))
+ rest_of_type_decl_compilation (type_decl);
+
+ return type_decl;
+}
+
+/* Return a VAR_DECL or CONST_DECL node.
+
+ VAR_NAME gives the name of the variable. ASM_NAME is its assembler name
+ (if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is
+ the GCC tree for an optional initial expression; NULL_TREE if none.
+
+ CONST_FLAG is true if this variable is constant, in which case we might
+ return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
+
+ PUBLIC_FLAG is true if this is for a reference to a public entity or for a
+ definition to be made visible outside of the current compilation unit, for
+ instance variable definitions in a package specification.
+
+ EXTERN_FLAG is nonzero when processing an external variable declaration (as
+ opposed to a definition: no storage is to be allocated for the variable).
+
+ STATIC_FLAG is only relevant when not at top level. In that case
+ it indicates whether to always allocate storage to the variable.
+
+ GNAT_NODE is used for the position of the decl. */
+
+tree
+create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init,
+ bool const_flag, bool public_flag, bool extern_flag,
+ bool static_flag, bool const_decl_allowed_p,
+ struct attrib *attr_list, Node_Id gnat_node)
+{
+ bool init_const
+ = (var_init != 0
+ && gnat_types_compatible_p (type, TREE_TYPE (var_init))
+ && (global_bindings_p () || static_flag
+ ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0
+ : TREE_CONSTANT (var_init)));
+
+ /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
+ case the initializer may be used in-lieu of the DECL node (as done in
+ Identifier_to_gnu). This is useful to prevent the need of elaboration
+ code when an identifier for which such a decl is made is in turn used as
+ an initializer. We used to rely on CONST vs VAR_DECL for this purpose,
+ but extra constraints apply to this choice (see below) and are not
+ relevant to the distinction we wish to make. */
+ bool constant_p = const_flag && init_const;
+
+ /* The actual DECL node. CONST_DECL was initially intended for enumerals
+ and may be used for scalars in general but not for aggregates. */
+ tree var_decl
+ = build_decl ((constant_p && const_decl_allowed_p
+ && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL,
+ var_name, type);
+
+ /* If this is external, throw away any initializations (they will be done
+ elsewhere) unless this is a constant for which we would like to remain
+ able to get the initializer. If we are defining a global here, leave a
+ constant initialization and save any variable elaborations for the
+ elaboration routine. If we are just annotating types, throw away the
+ initialization if it isn't a constant. */
+ if ((extern_flag && !constant_p)
+ || (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
+ var_init = NULL_TREE;
+
+ /* At the global level, an initializer requiring code to be generated
+ produces elaboration statements. Check that such statements are allowed,
+ that is, not violating a No_Elaboration_Code restriction. */
+ if (global_bindings_p () && var_init != 0 && ! init_const)
+ Check_Elaboration_Code_Allowed (gnat_node);
+
+ /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
+ try to fiddle with DECL_COMMON. However, on platforms that don't
+ support global BSS sections, uninitialized global variables would
+ go in DATA instead, thus increasing the size of the executable. */
+ if (!flag_no_common
+ && TREE_CODE (var_decl) == VAR_DECL
+ && !have_global_bss_p ())
+ DECL_COMMON (var_decl) = 1;
+ DECL_INITIAL (var_decl) = var_init;
+ TREE_READONLY (var_decl) = const_flag;
+ DECL_EXTERNAL (var_decl) = extern_flag;
+ TREE_PUBLIC (var_decl) = public_flag || extern_flag;
+ TREE_CONSTANT (var_decl) = constant_p;
+ TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
+ = TYPE_VOLATILE (type);
+
+ /* If it's public and not external, always allocate storage for it.
+ At the global binding level we need to allocate static storage for the
+ variable if and only if it's not external. If we are not at the top level
+ we allocate automatic storage unless requested not to. */
+ TREE_STATIC (var_decl)
+ = !extern_flag && (public_flag || static_flag || global_bindings_p ());
+
+ /* For an external constant whose initializer is not absolute, do not emit
+ debug info. In DWARF this would mean a global relocation in a read-only
+ section which runs afoul of the PE-COFF runtime relocation mechanism. */
+ if (extern_flag
+ && constant_p
+ && initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
+ != null_pointer_node)
+ DECL_IGNORED_P (var_decl) = 1;
+
+ if (asm_name && VAR_OR_FUNCTION_DECL_P (var_decl))
+ SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
+
+ process_attributes (var_decl, attr_list);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (var_decl, gnat_node);
+
+ if (TREE_SIDE_EFFECTS (var_decl))
+ TREE_ADDRESSABLE (var_decl) = 1;
+
+ if (TREE_CODE (var_decl) != CONST_DECL)
+ {
+ if (global_bindings_p ())
+ rest_of_decl_compilation (var_decl, true, 0);
+ }
+ else
+ expand_decl (var_decl);
+
+ return var_decl;
+}
+
+/* Return true if TYPE, an aggregate type, contains (or is) an array. */
+
+static bool
+aggregate_type_contains_array_p (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ if (AGGREGATE_TYPE_P (TREE_TYPE (field))
+ && aggregate_type_contains_array_p (TREE_TYPE (field)))
+ return true;
+ return false;
+ }
+
+ case ARRAY_TYPE:
+ return true;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its
+ type, and RECORD_TYPE is the type of the parent. PACKED is nonzero if
+ this field is in a record type with a "pragma pack". If SIZE is nonzero
+ it is the specified size for this field. If POS is nonzero, it is the bit
+ position. If ADDRESSABLE is nonzero, it means we are allowed to take
+ the address of this field for aliasing purposes. If it is negative, we
+ should not make a bitfield, which is used by make_aligning_type. */
+
+tree
+create_field_decl (tree field_name, tree field_type, tree record_type,
+ int packed, tree size, tree pos, int addressable)
+{
+ tree field_decl = build_decl (FIELD_DECL, field_name, field_type);
+
+ DECL_CONTEXT (field_decl) = record_type;
+ TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
+
+ /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
+ byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
+ Likewise for an aggregate without specified position that contains an
+ array, because in this case slices of variable length of this array
+ must be handled by GCC and variable-sized objects need to be aligned
+ to at least a byte boundary. */
+ if (packed && (TYPE_MODE (field_type) == BLKmode
+ || (!pos
+ && AGGREGATE_TYPE_P (field_type)
+ && aggregate_type_contains_array_p (field_type))))
+ DECL_ALIGN (field_decl) = BITS_PER_UNIT;
+
+ /* If a size is specified, use it. Otherwise, if the record type is packed
+ compute a size to use, which may differ from the object's natural size.
+ We always set a size in this case to trigger the checks for bitfield
+ creation below, which is typically required when no position has been
+ specified. */
+ if (size)
+ size = convert (bitsizetype, size);
+ else if (packed == 1)
+ {
+ size = rm_size (field_type);
+
+ /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to
+ byte. */
+ if (TREE_CODE (size) == INTEGER_CST
+ && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0)
+ size = round_up (size, BITS_PER_UNIT);
+ }
+
+ /* If we may, according to ADDRESSABLE, make a bitfield if a size is
+ specified for two reasons: first if the size differs from the natural
+ size. Second, if the alignment is insufficient. There are a number of
+ ways the latter can be true.
+
+ We never make a bitfield if the type of the field has a nonconstant size,
+ because no such entity requiring bitfield operations should reach here.
+
+ We do *preventively* make a bitfield when there might be the need for it
+ but we don't have all the necessary information to decide, as is the case
+ of a field with no specified position in a packed record.
+
+ We also don't look at STRICT_ALIGNMENT here, and rely on later processing
+ in layout_decl or finish_record_type to clear the bit_field indication if
+ it is in fact not needed. */
+ if (addressable >= 0
+ && size
+ && TREE_CODE (size) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
+ && (!tree_int_cst_equal (size, TYPE_SIZE (field_type))
+ || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
+ || packed
+ || (TYPE_ALIGN (record_type) != 0
+ && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
+ {
+ DECL_BIT_FIELD (field_decl) = 1;
+ DECL_SIZE (field_decl) = size;
+ if (!packed && !pos)
+ DECL_ALIGN (field_decl)
+ = (TYPE_ALIGN (record_type) != 0
+ ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type))
+ : TYPE_ALIGN (field_type));
+ }
+
+ DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
+
+ /* Bump the alignment if need be, either for bitfield/packing purposes or
+ to satisfy the type requirements if no such consideration applies. When
+ we get the alignment from the type, indicate if this is from an explicit
+ user request, which prevents stor-layout from lowering it later on. */
+ {
+ int bit_align
+ = (DECL_BIT_FIELD (field_decl) ? 1
+ : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0);
+
+ if (bit_align > DECL_ALIGN (field_decl))
+ DECL_ALIGN (field_decl) = bit_align;
+ else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl))
+ {
+ DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
+ DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type);
+ }
+ }
+
+ if (pos)
+ {
+ /* We need to pass in the alignment the DECL is known to have.
+ This is the lowest-order bit set in POS, but no more than
+ the alignment of the record, if one is specified. Note
+ that an alignment of 0 is taken as infinite. */
+ unsigned int known_align;
+
+ if (host_integerp (pos, 1))
+ known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
+ else
+ known_align = BITS_PER_UNIT;
+
+ if (TYPE_ALIGN (record_type)
+ && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
+ known_align = TYPE_ALIGN (record_type);
+
+ layout_decl (field_decl, known_align);
+ SET_DECL_OFFSET_ALIGN (field_decl,
+ host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
+ : BITS_PER_UNIT);
+ pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
+ &DECL_FIELD_BIT_OFFSET (field_decl),
+ DECL_OFFSET_ALIGN (field_decl), pos);
+
+ DECL_HAS_REP_P (field_decl) = 1;
+ }
+
+ /* In addition to what our caller says, claim the field is addressable if we
+ know that its type is not suitable.
+
+ The field may also be "technically" nonaddressable, meaning that even if
+ we attempt to take the field's address we will actually get the address
+ of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
+ value we have at this point is not accurate enough, so we don't account
+ for this here and let finish_record_type decide. */
+ if (!addressable && !type_for_nonaliased_component_p (field_type))
+ addressable = 1;
+
+ DECL_NONADDRESSABLE_P (field_decl) = !addressable;
+
+ return field_decl;
+}
+
+/* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter,
+ PARAM_TYPE is its type. READONLY is true if the parameter is
+ readonly (either an In parameter or an address of a pass-by-ref
+ parameter). */
+
+tree
+create_param_decl (tree param_name, tree param_type, bool readonly)
+{
+ tree param_decl = build_decl (PARM_DECL, param_name, param_type);
+
+ /* Honor targetm.calls.promote_prototypes(), as not doing so can
+ lead to various ABI violations. */
+ if (targetm.calls.promote_prototypes (param_type)
+ && (TREE_CODE (param_type) == INTEGER_TYPE
+ || TREE_CODE (param_type) == ENUMERAL_TYPE
+ || TREE_CODE (param_type) == BOOLEAN_TYPE)
+ && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
+ {
+ /* We have to be careful about biased types here. Make a subtype
+ of integer_type_node with the proper biasing. */
+ if (TREE_CODE (param_type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (param_type))
+ {
+ param_type
+ = copy_type (build_range_type (integer_type_node,
+ TYPE_MIN_VALUE (param_type),
+ TYPE_MAX_VALUE (param_type)));
+
+ TYPE_BIASED_REPRESENTATION_P (param_type) = 1;
+ }
+ else
+ param_type = integer_type_node;
+ }
+
+ DECL_ARG_TYPE (param_decl) = param_type;
+ TREE_READONLY (param_decl) = readonly;
+ return param_decl;
+}
+
+/* Given a DECL and ATTR_LIST, process the listed attributes. */
+
+void
+process_attributes (tree decl, struct attrib *attr_list)
+{
+ for (; attr_list; attr_list = attr_list->next)
+ switch (attr_list->type)
+ {
+ case ATTR_MACHINE_ATTRIBUTE:
+ decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args,
+ NULL_TREE),
+ ATTR_FLAG_TYPE_IN_PLACE);
+ break;
+
+ case ATTR_LINK_ALIAS:
+ if (! DECL_EXTERNAL (decl))
+ {
+ TREE_STATIC (decl) = 1;
+ assemble_alias (decl, attr_list->name);
+ }
+ break;
+
+ case ATTR_WEAK_EXTERNAL:
+ if (SUPPORTS_WEAK)
+ declare_weak (decl);
+ else
+ post_error ("?weak declarations not supported on this target",
+ attr_list->error_point);
+ break;
+
+ case ATTR_LINK_SECTION:
+ if (targetm.have_named_sections)
+ {
+ DECL_SECTION_NAME (decl)
+ = build_string (IDENTIFIER_LENGTH (attr_list->name),
+ IDENTIFIER_POINTER (attr_list->name));
+ DECL_COMMON (decl) = 0;
+ }
+ else
+ post_error ("?section attributes are not supported for this target",
+ attr_list->error_point);
+ break;
+
+ case ATTR_LINK_CONSTRUCTOR:
+ DECL_STATIC_CONSTRUCTOR (decl) = 1;
+ TREE_USED (decl) = 1;
+ break;
+
+ case ATTR_LINK_DESTRUCTOR:
+ DECL_STATIC_DESTRUCTOR (decl) = 1;
+ TREE_USED (decl) = 1;
+ break;
+ }
+}
+
+/* Record a global renaming pointer. */
+
+void
+record_global_renaming_pointer (tree decl)
+{
+ gcc_assert (DECL_RENAMED_OBJECT (decl));
+ VEC_safe_push (tree, gc, global_renaming_pointers, decl);
+}
+
+/* Invalidate the global renaming pointers. */
+
+void
+invalidate_global_renaming_pointers (void)
+{
+ unsigned int i;
+ tree iter;
+
+ for (i = 0; VEC_iterate(tree, global_renaming_pointers, i, iter); i++)
+ SET_DECL_RENAMED_OBJECT (iter, NULL_TREE);
+
+ VEC_free (tree, gc, global_renaming_pointers);
+}
+
+/* Return true if VALUE is a known to be a multiple of FACTOR, which must be
+ a power of 2. */
+
+bool
+value_factor_p (tree value, HOST_WIDE_INT factor)
+{
+ if (host_integerp (value, 1))
+ return tree_low_cst (value, 1) % factor == 0;
+
+ if (TREE_CODE (value) == MULT_EXPR)
+ return (value_factor_p (TREE_OPERAND (value, 0), factor)
+ || value_factor_p (TREE_OPERAND (value, 1), factor));
+
+ return false;
+}
+
+/* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
+ unless we can prove these 2 fields are laid out in such a way that no gap
+ exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
+ is the distance in bits between the end of PREV_FIELD and the starting
+ position of CURR_FIELD. It is ignored if null. */
+
+static bool
+potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
+{
+ /* If this is the first field of the record, there cannot be any gap */
+ if (!prev_field)
+ return false;
+
+ /* If the previous field is a union type, then return False: The only
+ time when such a field is not the last field of the record is when
+ there are other components at fixed positions after it (meaning there
+ was a rep clause for every field), in which case we don't want the
+ alignment constraint to override them. */
+ if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
+ return false;
+
+ /* If the distance between the end of prev_field and the beginning of
+ curr_field is constant, then there is a gap if the value of this
+ constant is not null. */
+ if (offset && host_integerp (offset, 1))
+ return !integer_zerop (offset);
+
+ /* If the size and position of the previous field are constant,
+ then check the sum of this size and position. There will be a gap
+ iff it is not multiple of the current field alignment. */
+ if (host_integerp (DECL_SIZE (prev_field), 1)
+ && host_integerp (bit_position (prev_field), 1))
+ return ((tree_low_cst (bit_position (prev_field), 1)
+ + tree_low_cst (DECL_SIZE (prev_field), 1))
+ % DECL_ALIGN (curr_field) != 0);
+
+ /* If both the position and size of the previous field are multiples
+ of the current field alignment, there cannot be any gap. */
+ if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
+ && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
+ return false;
+
+ /* Fallback, return that there may be a potential gap */
+ return true;
+}
+
+/* Returns a LABEL_DECL node for LABEL_NAME. */
+
+tree
+create_label_decl (tree label_name)
+{
+ tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node);
+
+ DECL_CONTEXT (label_decl) = current_function_decl;
+ DECL_MODE (label_decl) = VOIDmode;
+ DECL_SOURCE_LOCATION (label_decl) = input_location;
+
+ return label_decl;
+}
+
+/* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
+ ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
+ node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
+ PARM_DECL nodes chained through the TREE_CHAIN field).
+
+ INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
+ appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
+
+tree
+create_subprog_decl (tree subprog_name, tree asm_name,
+ tree subprog_type, tree param_decl_list, bool inline_flag,
+ bool public_flag, bool extern_flag,
+ struct attrib *attr_list, Node_Id gnat_node)
+{
+ tree return_type = TREE_TYPE (subprog_type);
+ tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type);
+
+ /* If this is a non-inline function nested inside an inlined external
+ function, we cannot honor both requests without cloning the nested
+ function in the current unit since it is private to the other unit.
+ We could inline the nested function as well but it's probably better
+ to err on the side of too little inlining. */
+ if (!inline_flag
+ && current_function_decl
+ && DECL_DECLARED_INLINE_P (current_function_decl)
+ && DECL_EXTERNAL (current_function_decl))
+ DECL_DECLARED_INLINE_P (current_function_decl) = 0;
+
+ DECL_EXTERNAL (subprog_decl) = extern_flag;
+ TREE_PUBLIC (subprog_decl) = public_flag;
+ TREE_STATIC (subprog_decl) = 1;
+ TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
+ TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
+ TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
+ DECL_DECLARED_INLINE_P (subprog_decl) = inline_flag;
+ DECL_ARGUMENTS (subprog_decl) = param_decl_list;
+ DECL_RESULT (subprog_decl) = build_decl (RESULT_DECL, 0, return_type);
+ DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1;
+ DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1;
+
+ /* TREE_ADDRESSABLE is set on the result type to request the use of the
+ target by-reference return mechanism. This is not supported all the
+ way down to RTL expansion with GCC 4, which ICEs on temporary creation
+ attempts with such a type and expects DECL_BY_REFERENCE to be set on
+ the RESULT_DECL instead - see gnat_genericize for more details. */
+ if (TREE_ADDRESSABLE (TREE_TYPE (DECL_RESULT (subprog_decl))))
+ {
+ tree result_decl = DECL_RESULT (subprog_decl);
+
+ TREE_ADDRESSABLE (TREE_TYPE (result_decl)) = 0;
+ DECL_BY_REFERENCE (result_decl) = 1;
+ }
+
+ if (asm_name)
+ {
+ SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
+
+ /* The expand_main_function circuitry expects "main_identifier_node" to
+ designate the DECL_NAME of the 'main' entry point, in turn expected
+ to be declared as the "main" function literally by default. Ada
+ program entry points are typically declared with a different name
+ within the binder generated file, exported as 'main' to satisfy the
+ system expectations. Redirect main_identifier_node in this case. */
+ if (asm_name == main_identifier_node)
+ main_identifier_node = DECL_NAME (subprog_decl);
+ }
+
+ process_attributes (subprog_decl, attr_list);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (subprog_decl, gnat_node);
+
+ /* Output the assembler code and/or RTL for the declaration. */
+ rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
+
+ return subprog_decl;
+}
+
+/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
+ body. This routine needs to be invoked before processing the declarations
+ appearing in the subprogram. */
+
+void
+begin_subprog_body (tree subprog_decl)
+{
+ tree param_decl;
+
+ current_function_decl = subprog_decl;
+ announce_function (subprog_decl);
+
+ /* Enter a new binding level and show that all the parameters belong to
+ this function. */
+ gnat_pushlevel ();
+ for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
+ param_decl = TREE_CHAIN (param_decl))
+ DECL_CONTEXT (param_decl) = subprog_decl;
+
+ make_decl_rtl (subprog_decl);
+
+ /* We handle pending sizes via the elaboration of types, so we don't need to
+ save them. This causes them to be marked as part of the outer function
+ and then discarded. */
+ get_pending_sizes ();
+}
+
+
+/* Helper for the genericization callback. Return a dereference of VAL
+ if it is of a reference type. */
+
+static tree
+convert_from_reference (tree val)
+{
+ tree value_type, ref;
+
+ if (TREE_CODE (TREE_TYPE (val)) != REFERENCE_TYPE)
+ return val;
+
+ value_type = TREE_TYPE (TREE_TYPE (val));
+ ref = build1 (INDIRECT_REF, value_type, val);
+
+ /* See if what we reference is CONST or VOLATILE, which requires
+ looking into array types to get to the component type. */
+
+ while (TREE_CODE (value_type) == ARRAY_TYPE)
+ value_type = TREE_TYPE (value_type);
+
+ TREE_READONLY (ref)
+ = (TYPE_QUALS (value_type) & TYPE_QUAL_CONST);
+ TREE_THIS_VOLATILE (ref)
+ = (TYPE_QUALS (value_type) & TYPE_QUAL_VOLATILE);
+
+ TREE_SIDE_EFFECTS (ref)
+ = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val));
+
+ return ref;
+}
+
+/* Helper for the genericization callback. Returns true if T denotes
+ a RESULT_DECL with DECL_BY_REFERENCE set. */
+
+static inline bool
+is_byref_result (tree t)
+{
+ return (TREE_CODE (t) == RESULT_DECL && DECL_BY_REFERENCE (t));
+}
+
+
+/* Tree walking callback for gnat_genericize. Currently ...
+
+ o Adjust references to the function's DECL_RESULT if it is marked
+ DECL_BY_REFERENCE and so has had its type turned into a reference
+ type at the end of the function compilation. */
+
+static tree
+gnat_genericize_r (tree *stmt_p, int *walk_subtrees, void *data)
+{
+ /* This implementation is modeled after what the C++ front-end is
+ doing, basis of the downstream passes behavior. */
+
+ tree stmt = *stmt_p;
+ struct pointer_set_t *p_set = (struct pointer_set_t*) data;
+
+ /* If we have a direct mention of the result decl, dereference. */
+ if (is_byref_result (stmt))
+ {
+ *stmt_p = convert_from_reference (stmt);
+ *walk_subtrees = 0;
+ return NULL;
+ }
+
+ /* Otherwise, no need to walk the same tree twice. */
+ if (pointer_set_contains (p_set, stmt))
+ {
+ *walk_subtrees = 0;
+ return NULL_TREE;
+ }
+
+ /* If we are taking the address of what now is a reference, just get the
+ reference value. */
+ if (TREE_CODE (stmt) == ADDR_EXPR
+ && is_byref_result (TREE_OPERAND (stmt, 0)))
+ {
+ *stmt_p = convert (TREE_TYPE (stmt), TREE_OPERAND (stmt, 0));
+ *walk_subtrees = 0;
+ }
+
+ /* Don't dereference an by-reference RESULT_DECL inside a RETURN_EXPR. */
+ else if (TREE_CODE (stmt) == RETURN_EXPR
+ && TREE_OPERAND (stmt, 0)
+ && is_byref_result (TREE_OPERAND (stmt, 0)))
+ *walk_subtrees = 0;
+
+ /* Don't look inside trees that cannot embed references of interest. */
+ else if (IS_TYPE_OR_DECL_P (stmt))
+ *walk_subtrees = 0;
+
+ pointer_set_insert (p_set, *stmt_p);
+
+ return NULL;
+}
+
+/* Perform lowering of Ada trees to GENERIC. In particular:
+
+ o Turn a DECL_BY_REFERENCE RESULT_DECL into a real by-reference decl
+ and adjust all the references to this decl accordingly. */
+
+static void
+gnat_genericize (tree fndecl)
+{
+ /* Prior to GCC 4, an explicit By_Reference result mechanism for a function
+ was handled by simply setting TREE_ADDRESSABLE on the result type.
+ Everything required to actually pass by invisible ref using the target
+ mechanism (e.g. extra parameter) was handled at RTL expansion time.
+
+ This doesn't work with GCC 4 any more for several reasons. First, the
+ gimplification process might need the creation of temporaries of this
+ type, and the gimplifier ICEs on such attempts. Second, the middle-end
+ now relies on a different attribute for such cases (DECL_BY_REFERENCE on
+ RESULT/PARM_DECLs), and expects the user invisible by-reference-ness to
+ be explicitly accounted for by the front-end in the function body.
+
+ We achieve the complete transformation in two steps:
+
+ 1/ create_subprog_decl performs early attribute tweaks: it clears
+ TREE_ADDRESSABLE from the result type and sets DECL_BY_REFERENCE on
+ the result decl. The former ensures that the bit isn't set in the GCC
+ tree saved for the function, so prevents ICEs on temporary creation.
+ The latter we use here to trigger the rest of the processing.
+
+ 2/ This function performs the type transformation on the result decl
+ and adjusts all the references to this decl from the function body
+ accordingly.
+
+ Clearing TREE_ADDRESSABLE from the type differs from the C++ front-end
+ strategy, which escapes the gimplifier temporary creation issues by
+ creating it's own temporaries using TARGET_EXPR nodes. Our way relies
+ on simple specific support code in aggregate_value_p to look at the
+ target function result decl explicitly. */
+
+ struct pointer_set_t *p_set;
+ tree decl_result = DECL_RESULT (fndecl);
+
+ if (!DECL_BY_REFERENCE (decl_result))
+ return;
+
+ /* Make the DECL_RESULT explicitly by-reference and adjust all the
+ occurrences in the function body using the common tree-walking facility.
+ We want to see every occurrence of the result decl to adjust the
+ referencing tree, so need to use our own pointer set to control which
+ trees should be visited again or not. */
+
+ p_set = pointer_set_create ();
+
+ TREE_TYPE (decl_result) = build_reference_type (TREE_TYPE (decl_result));
+ TREE_ADDRESSABLE (decl_result) = 0;
+ relayout_decl (decl_result);
+
+ walk_tree (&DECL_SAVED_TREE (fndecl), gnat_genericize_r, p_set, NULL);
+
+ pointer_set_destroy (p_set);
+}
+
+/* Finish the definition of the current subprogram BODY and compile it all the
+ way to assembler language output. ELAB_P tells if this is called for an
+ elaboration routine, to be entirely discarded if empty. */
+
+void
+end_subprog_body (tree body, bool elab_p)
+{
+ tree fndecl = current_function_decl;
+
+ /* Mark the BLOCK for this level as being for this function and pop the
+ level. Since the vars in it are the parameters, clear them. */
+ BLOCK_VARS (current_binding_level->block) = 0;
+ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
+ DECL_INITIAL (fndecl) = current_binding_level->block;
+ gnat_poplevel ();
+
+ /* We handle pending sizes via the elaboration of types, so we don't
+ need to save them. */
+ get_pending_sizes ();
+
+ /* Mark the RESULT_DECL as being in this subprogram. */
+ DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
+
+ DECL_SAVED_TREE (fndecl) = body;
+
+ current_function_decl = DECL_CONTEXT (fndecl);
+ set_cfun (NULL);
+
+ /* We cannot track the location of errors past this point. */
+ error_gnat_node = Empty;
+
+ /* If we're only annotating types, don't actually compile this function. */
+ if (type_annotate_only)
+ return;
+
+ /* Perform the required pre-gimplification transformations on the tree. */
+ gnat_genericize (fndecl);
+
+ /* We do different things for nested and non-nested functions.
+ ??? This should be in cgraph. */
+ if (!DECL_CONTEXT (fndecl))
+ {
+ gnat_gimplify_function (fndecl);
+
+ /* If this is an empty elaboration proc, just discard the node.
+ Otherwise, compile further. */
+ if (elab_p && empty_body_p (gimple_body (fndecl)))
+ cgraph_remove_node (cgraph_node (fndecl));
+ else
+ cgraph_finalize_function (fndecl, false);
+ }
+ else
+ /* Register this function with cgraph just far enough to get it
+ added to our parent's nested function list. */
+ (void) cgraph_node (fndecl);
+}
+
+/* Convert FNDECL's code to GIMPLE and handle any nested functions. */
+
+static void
+gnat_gimplify_function (tree fndecl)
+{
+ struct cgraph_node *cgn;
+
+ dump_function (TDI_original, fndecl);
+ gimplify_function_tree (fndecl);
+ dump_function (TDI_generic, fndecl);
+
+ /* Convert all nested functions to GIMPLE now. We do things in this order
+ so that items like VLA sizes are expanded properly in the context of the
+ correct function. */
+ cgn = cgraph_node (fndecl);
+ for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
+ gnat_gimplify_function (cgn->decl);
+}
+
+
+tree
+gnat_builtin_function (tree decl)
+{
+ gnat_pushdecl (decl, Empty);
+ return decl;
+}
+
+/* Return an integer type with the number of bits of precision given by
+ PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
+ it is a signed type. */
+
+tree
+gnat_type_for_size (unsigned precision, int unsignedp)
+{
+ tree t;
+ char type_name[20];
+
+ if (precision <= 2 * MAX_BITS_PER_WORD
+ && signed_and_unsigned_types[precision][unsignedp])
+ return signed_and_unsigned_types[precision][unsignedp];
+
+ if (unsignedp)
+ t = make_unsigned_type (precision);
+ else
+ t = make_signed_type (precision);
+
+ if (precision <= 2 * MAX_BITS_PER_WORD)
+ signed_and_unsigned_types[precision][unsignedp] = t;
+
+ if (!TYPE_NAME (t))
+ {
+ sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Likewise for floating-point types. */
+
+static tree
+float_type_for_precision (int precision, enum machine_mode mode)
+{
+ tree t;
+ char type_name[20];
+
+ if (float_types[(int) mode])
+ return float_types[(int) mode];
+
+ float_types[(int) mode] = t = make_node (REAL_TYPE);
+ TYPE_PRECISION (t) = precision;
+ layout_type (t);
+
+ gcc_assert (TYPE_MODE (t) == mode);
+ if (!TYPE_NAME (t))
+ {
+ sprintf (type_name, "FLOAT_%d", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Return a data type that has machine mode MODE. UNSIGNEDP selects
+ an unsigned type; otherwise a signed type is returned. */
+
+tree
+gnat_type_for_mode (enum machine_mode mode, int unsignedp)
+{
+ if (mode == BLKmode)
+ return NULL_TREE;
+ else if (mode == VOIDmode)
+ return void_type_node;
+ else if (COMPLEX_MODE_P (mode))
+ return NULL_TREE;
+ else if (SCALAR_FLOAT_MODE_P (mode))
+ return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
+ else if (SCALAR_INT_MODE_P (mode))
+ return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
+ else
+ return NULL_TREE;
+}
+
+/* Return the unsigned version of a TYPE_NODE, a scalar type. */
+
+tree
+gnat_unsigned_type (tree type_node)
+{
+ tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node)
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return the signed version of a TYPE_NODE, a scalar type. */
+
+tree
+gnat_signed_type (tree type_node)
+{
+ tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node)
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
+ transparently converted to each other. */
+
+int
+gnat_types_compatible_p (tree t1, tree t2)
+{
+ enum tree_code code;
+
+ /* This is the default criterion. */
+ if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
+ return 1;
+
+ /* We only check structural equivalence here. */
+ if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
+ return 0;
+
+ /* Array types are also compatible if they are constrained and have
+ the same component type and the same domain. */
+ if (code == ARRAY_TYPE
+ && TREE_TYPE (t1) == TREE_TYPE (t2)
+ && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
+ || (TYPE_DOMAIN (t1)
+ && TYPE_DOMAIN (t2)
+ && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
+ TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
+ && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
+ TYPE_MAX_VALUE (TYPE_DOMAIN (t2))))))
+ return 1;
+
+ /* Padding record types are also compatible if they pad the same
+ type and have the same constant size. */
+ if (code == RECORD_TYPE
+ && TYPE_IS_PADDING_P (t1) && TYPE_IS_PADDING_P (t2)
+ && TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2))
+ && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
+ return 1;
+
+ return 0;
+}
+
+/* EXP is an expression for the size of an object. If this size contains
+ discriminant references, replace them with the maximum (if MAX_P) or
+ minimum (if !MAX_P) possible value of the discriminant. */
+
+tree
+max_size (tree exp, bool max_p)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree type = TREE_TYPE (exp);
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ case tcc_constant:
+ return exp;
+
+ case tcc_vl_exp:
+ if (code == CALL_EXPR)
+ {
+ tree *argarray;
+ int i, n = call_expr_nargs (exp);
+ gcc_assert (n > 0);
+
+ argarray = (tree *) alloca (n * sizeof (tree));
+ for (i = 0; i < n; i++)
+ argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
+ return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
+ }
+ break;
+
+ case tcc_reference:
+ /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
+ modify. Otherwise, we treat it like a variable. */
+ if (!CONTAINS_PLACEHOLDER_P (exp))
+ return exp;
+
+ type = TREE_TYPE (TREE_OPERAND (exp, 1));
+ return
+ max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true);
+
+ case tcc_comparison:
+ return max_p ? size_one_node : size_zero_node;
+
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_expression:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ if (code == NON_LVALUE_EXPR)
+ return max_size (TREE_OPERAND (exp, 0), max_p);
+ else
+ return
+ fold_build1 (code, type,
+ max_size (TREE_OPERAND (exp, 0),
+ code == NEGATE_EXPR ? !max_p : max_p));
+
+ case 2:
+ if (code == COMPOUND_EXPR)
+ return max_size (TREE_OPERAND (exp, 1), max_p);
+
+ /* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which
+ may provide a tighter bound on max_size. */
+ if (code == MINUS_EXPR
+ && TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR)
+ {
+ tree lhs = fold_build2 (MINUS_EXPR, type,
+ TREE_OPERAND (TREE_OPERAND (exp, 0), 1),
+ TREE_OPERAND (exp, 1));
+ tree rhs = fold_build2 (MINUS_EXPR, type,
+ TREE_OPERAND (TREE_OPERAND (exp, 0), 2),
+ TREE_OPERAND (exp, 1));
+ return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
+ max_size (lhs, max_p),
+ max_size (rhs, max_p));
+ }
+
+ {
+ tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
+ tree rhs = max_size (TREE_OPERAND (exp, 1),
+ code == MINUS_EXPR ? !max_p : max_p);
+
+ /* Special-case wanting the maximum value of a MIN_EXPR.
+ In that case, if one side overflows, return the other.
+ sizetype is signed, but we know sizes are non-negative.
+ Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
+ overflowing or the maximum possible value and the RHS
+ a variable. */
+ if (max_p
+ && code == MIN_EXPR
+ && TREE_CODE (rhs) == INTEGER_CST
+ && TREE_OVERFLOW (rhs))
+ return lhs;
+ else if (max_p
+ && code == MIN_EXPR
+ && TREE_CODE (lhs) == INTEGER_CST
+ && TREE_OVERFLOW (lhs))
+ return rhs;
+ else if ((code == MINUS_EXPR || code == PLUS_EXPR)
+ && ((TREE_CODE (lhs) == INTEGER_CST
+ && TREE_OVERFLOW (lhs))
+ || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
+ && !TREE_CONSTANT (rhs))
+ return lhs;
+ else
+ return fold_build2 (code, type, lhs, rhs);
+ }
+
+ case 3:
+ if (code == SAVE_EXPR)
+ return exp;
+ else if (code == COND_EXPR)
+ return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
+ max_size (TREE_OPERAND (exp, 1), max_p),
+ max_size (TREE_OPERAND (exp, 2), max_p));
+ }
+
+ /* Other tree classes cannot happen. */
+ default:
+ break;
+ }
+
+ gcc_unreachable ();
+}
+
+/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
+ EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
+ Return a constructor for the template. */
+
+tree
+build_template (tree template_type, tree array_type, tree expr)
+{
+ tree template_elts = NULL_TREE;
+ tree bound_list = NULL_TREE;
+ tree field;
+
+ while (TREE_CODE (array_type) == RECORD_TYPE
+ && (TYPE_IS_PADDING_P (array_type)
+ || TYPE_JUSTIFIED_MODULAR_P (array_type)))
+ array_type = TREE_TYPE (TYPE_FIELDS (array_type));
+
+ if (TREE_CODE (array_type) == ARRAY_TYPE
+ || (TREE_CODE (array_type) == INTEGER_TYPE
+ && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
+ bound_list = TYPE_ACTUAL_BOUNDS (array_type);
+
+ /* First make the list for a CONSTRUCTOR for the template. Go down the
+ field list of the template instead of the type chain because this
+ array might be an Ada array of arrays and we can't tell where the
+ nested arrays stop being the underlying object. */
+
+ for (field = TYPE_FIELDS (template_type); field;
+ (bound_list
+ ? (bound_list = TREE_CHAIN (bound_list))
+ : (array_type = TREE_TYPE (array_type))),
+ field = TREE_CHAIN (TREE_CHAIN (field)))
+ {
+ tree bounds, min, max;
+
+ /* If we have a bound list, get the bounds from there. Likewise
+ for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
+ DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
+ This will give us a maximum range. */
+ if (bound_list)
+ bounds = TREE_VALUE (bound_list);
+ else if (TREE_CODE (array_type) == ARRAY_TYPE)
+ bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
+ else if (expr && TREE_CODE (expr) == PARM_DECL
+ && DECL_BY_COMPONENT_PTR_P (expr))
+ bounds = TREE_TYPE (field);
+ else
+ gcc_unreachable ();
+
+ min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
+ max = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MAX_VALUE (bounds));
+
+ /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
+ substitute it from OBJECT. */
+ min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
+ max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
+
+ template_elts = tree_cons (TREE_CHAIN (field), max,
+ tree_cons (field, min, template_elts));
+ }
+
+ return gnat_build_constructor (template_type, nreverse (template_elts));
+}
+
+/* Build a 32bit VMS descriptor from a Mechanism_Type, which must specify
+ a descriptor type, and the GCC type of an object. Each FIELD_DECL
+ in the type contains in its DECL_INITIAL the expression to use when
+ a constructor is made for the type. GNAT_ENTITY is an entity used
+ to print out an error message if the mechanism cannot be applied to
+ an object of that type and also for the name. */
+
+tree
+build_vms_descriptor32 (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
+{
+ tree record_type = make_node (RECORD_TYPE);
+ tree pointer32_type;
+ tree field_list = 0;
+ int class;
+ int dtype = 0;
+ tree inner_type;
+ int ndim;
+ int i;
+ tree *idx_arr;
+ tree tem;
+
+ /* If TYPE is an unconstrained array, use the underlying array type. */
+ if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
+
+ /* If this is an array, compute the number of dimensions in the array,
+ get the index types, and point to the inner type. */
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ ndim = 0;
+ else
+ for (ndim = 1, inner_type = type;
+ TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
+ && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
+ ndim++, inner_type = TREE_TYPE (inner_type))
+ ;
+
+ idx_arr = (tree *) alloca (ndim * sizeof (tree));
+
+ if (mech != By_Descriptor_NCA && mech != By_Short_Descriptor_NCA
+ && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
+ for (i = ndim - 1, inner_type = type;
+ i >= 0;
+ i--, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+ else
+ for (i = 0, inner_type = type;
+ i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+
+ /* Now get the DTYPE value. */
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ if (TYPE_VAX_FLOATING_POINT_P (type))
+ switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
+ {
+ case 6:
+ dtype = 10;
+ break;
+ case 9:
+ dtype = 11;
+ break;
+ case 15:
+ dtype = 27;
+ break;
+ }
+ else
+ switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
+ {
+ case 8:
+ dtype = TYPE_UNSIGNED (type) ? 2 : 6;
+ break;
+ case 16:
+ dtype = TYPE_UNSIGNED (type) ? 3 : 7;
+ break;
+ case 32:
+ dtype = TYPE_UNSIGNED (type) ? 4 : 8;
+ break;
+ case 64:
+ dtype = TYPE_UNSIGNED (type) ? 5 : 9;
+ break;
+ case 128:
+ dtype = TYPE_UNSIGNED (type) ? 25 : 26;
+ break;
+ }
+ break;
+
+ case REAL_TYPE:
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
+ break;
+
+ case COMPLEX_TYPE:
+ if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type))
+ switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
+ {
+ case 6:
+ dtype = 12;
+ break;
+ case 9:
+ dtype = 13;
+ break;
+ case 15:
+ dtype = 29;
+ }
+ else
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
+ break;
+
+ case ARRAY_TYPE:
+ dtype = 14;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Get the CLASS value. */
+ switch (mech)
+ {
+ case By_Descriptor_A:
+ case By_Short_Descriptor_A:
+ class = 4;
+ break;
+ case By_Descriptor_NCA:
+ case By_Short_Descriptor_NCA:
+ class = 10;
+ break;
+ case By_Descriptor_SB:
+ case By_Short_Descriptor_SB:
+ class = 15;
+ break;
+ case By_Descriptor:
+ case By_Short_Descriptor:
+ case By_Descriptor_S:
+ case By_Short_Descriptor_S:
+ default:
+ class = 1;
+ break;
+ }
+
+ /* Make the type for a descriptor for VMS. The first four fields
+ are the same for all types. */
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("LENGTH", gnat_type_for_size (16, 1), record_type,
+ size_in_bytes ((mech == By_Descriptor_A ||
+ mech == By_Short_Descriptor_A)
+ ? inner_type : type)));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DTYPE",
+ gnat_type_for_size (8, 1),
+ record_type, size_int (dtype)));
+ field_list = chainon (field_list,
+ make_descriptor_field ("CLASS",
+ gnat_type_for_size (8, 1),
+ record_type, size_int (class)));
+
+ /* Of course this will crash at run-time if the address space is not
+ within the low 32 bits, but there is nothing else we can do. */
+ pointer32_type = build_pointer_type_for_mode (type, SImode, false);
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("POINTER", pointer32_type, record_type,
+ build_unary_op (ADDR_EXPR,
+ pointer32_type,
+ build0 (PLACEHOLDER_EXPR, type))));
+
+ switch (mech)
+ {
+ case By_Descriptor:
+ case By_Short_Descriptor:
+ case By_Descriptor_S:
+ case By_Short_Descriptor_S:
+ break;
+
+ case By_Descriptor_SB:
+ case By_Short_Descriptor_SB:
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("SB_L1", gnat_type_for_size (32, 1), record_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("SB_U1", gnat_type_for_size (32, 1), record_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ break;
+
+ case By_Descriptor_A:
+ case By_Short_Descriptor_A:
+ case By_Descriptor_NCA:
+ case By_Short_Descriptor_NCA:
+ field_list = chainon (field_list,
+ make_descriptor_field ("SCALE",
+ gnat_type_for_size (8, 1),
+ record_type,
+ size_zero_node));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DIGITS",
+ gnat_type_for_size (8, 1),
+ record_type,
+ size_zero_node));
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("AFLAGS", gnat_type_for_size (8, 1), record_type,
+ size_int ((mech == By_Descriptor_NCA ||
+ mech == By_Short_Descriptor_NCA)
+ ? 0
+ /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
+ : (TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_CONVENTION_FORTRAN_P (type)
+ ? 224 : 192))));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DIMCT",
+ gnat_type_for_size (8, 1),
+ record_type,
+ size_int (ndim)));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("ARSIZE",
+ gnat_type_for_size (32, 1),
+ record_type,
+ size_in_bytes (type)));
+
+ /* Now build a pointer to the 0,0,0... element. */
+ tem = build0 (PLACEHOLDER_EXPR, type);
+ for (i = 0, inner_type = type; i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
+ convert (TYPE_DOMAIN (inner_type), size_zero_node),
+ NULL_TREE, NULL_TREE);
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("A0",
+ build_pointer_type_for_mode (inner_type, SImode, false),
+ record_type,
+ build1 (ADDR_EXPR,
+ build_pointer_type_for_mode (inner_type, SImode,
+ false),
+ tem)));
+
+ /* Next come the addressing coefficients. */
+ tem = size_one_node;
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+ tree idx_length
+ = size_binop (MULT_EXPR, tem,
+ size_binop (PLUS_EXPR,
+ size_binop (MINUS_EXPR,
+ TYPE_MAX_VALUE (idx_arr[i]),
+ TYPE_MIN_VALUE (idx_arr[i])),
+ size_int (1)));
+
+ fname[0] = ((mech == By_Descriptor_NCA ||
+ mech == By_Short_Descriptor_NCA) ? 'S' : 'M');
+ fname[1] = '0' + i, fname[2] = 0;
+ field_list
+ = chainon (field_list,
+ make_descriptor_field (fname,
+ gnat_type_for_size (32, 1),
+ record_type, idx_length));
+
+ if (mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA)
+ tem = idx_length;
+ }
+
+ /* Finally here are the bounds. */
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+
+ fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ (fname, gnat_type_for_size (32, 1), record_type,
+ TYPE_MIN_VALUE (idx_arr[i])));
+
+ fname[0] = 'U';
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ (fname, gnat_type_for_size (32, 1), record_type,
+ TYPE_MAX_VALUE (idx_arr[i])));
+ }
+ break;
+
+ default:
+ post_error ("unsupported descriptor type for &", gnat_entity);
+ }
+
+ finish_record_type (record_type, field_list, 0, true);
+ create_type_decl (create_concat_name (gnat_entity, "DESC"), record_type,
+ NULL, true, false, gnat_entity);
+
+ return record_type;
+}
+
+/* Build a 64bit VMS descriptor from a Mechanism_Type, which must specify
+ a descriptor type, and the GCC type of an object. Each FIELD_DECL
+ in the type contains in its DECL_INITIAL the expression to use when
+ a constructor is made for the type. GNAT_ENTITY is an entity used
+ to print out an error message if the mechanism cannot be applied to
+ an object of that type and also for the name. */
+
+tree
+build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
+{
+ tree record64_type = make_node (RECORD_TYPE);
+ tree pointer64_type;
+ tree field_list64 = 0;
+ int class;
+ int dtype = 0;
+ tree inner_type;
+ int ndim;
+ int i;
+ tree *idx_arr;
+ tree tem;
+
+ /* If TYPE is an unconstrained array, use the underlying array type. */
+ if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
+
+ /* If this is an array, compute the number of dimensions in the array,
+ get the index types, and point to the inner type. */
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ ndim = 0;
+ else
+ for (ndim = 1, inner_type = type;
+ TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
+ && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
+ ndim++, inner_type = TREE_TYPE (inner_type))
+ ;
+
+ idx_arr = (tree *) alloca (ndim * sizeof (tree));
+
+ if (mech != By_Descriptor_NCA
+ && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
+ for (i = ndim - 1, inner_type = type;
+ i >= 0;
+ i--, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+ else
+ for (i = 0, inner_type = type;
+ i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+
+ /* Now get the DTYPE value. */
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ if (TYPE_VAX_FLOATING_POINT_P (type))
+ switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
+ {
+ case 6:
+ dtype = 10;
+ break;
+ case 9:
+ dtype = 11;
+ break;
+ case 15:
+ dtype = 27;
+ break;
+ }
+ else
+ switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
+ {
+ case 8:
+ dtype = TYPE_UNSIGNED (type) ? 2 : 6;
+ break;
+ case 16:
+ dtype = TYPE_UNSIGNED (type) ? 3 : 7;
+ break;
+ case 32:
+ dtype = TYPE_UNSIGNED (type) ? 4 : 8;
+ break;
+ case 64:
+ dtype = TYPE_UNSIGNED (type) ? 5 : 9;
+ break;
+ case 128:
+ dtype = TYPE_UNSIGNED (type) ? 25 : 26;
+ break;
+ }
+ break;
+
+ case REAL_TYPE:
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
+ break;
+
+ case COMPLEX_TYPE:
+ if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type))
+ switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
+ {
+ case 6:
+ dtype = 12;
+ break;
+ case 9:
+ dtype = 13;
+ break;
+ case 15:
+ dtype = 29;
+ }
+ else
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
+ break;
+
+ case ARRAY_TYPE:
+ dtype = 14;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Get the CLASS value. */
+ switch (mech)
+ {
+ case By_Descriptor_A:
+ class = 4;
+ break;
+ case By_Descriptor_NCA:
+ class = 10;
+ break;
+ case By_Descriptor_SB:
+ class = 15;
+ break;
+ case By_Descriptor:
+ case By_Descriptor_S:
+ default:
+ class = 1;
+ break;
+ }
+
+ /* Make the type for a 64bit descriptor for VMS. The first six fields
+ are the same for all types. */
+
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("MBO",
+ gnat_type_for_size (16, 1),
+ record64_type, size_int (1)));
+
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("DTYPE",
+ gnat_type_for_size (8, 1),
+ record64_type, size_int (dtype)));
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("CLASS",
+ gnat_type_for_size (8, 1),
+ record64_type, size_int (class)));
+
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("MBMO",
+ gnat_type_for_size (32, 1),
+ record64_type, ssize_int (-1)));
+
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ ("LENGTH", gnat_type_for_size (64, 1), record64_type,
+ size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
+
+ pointer64_type = build_pointer_type_for_mode (type, DImode, false);
+
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ ("POINTER", pointer64_type, record64_type,
+ build_unary_op (ADDR_EXPR,
+ pointer64_type,
+ build0 (PLACEHOLDER_EXPR, type))));
+
+ switch (mech)
+ {
+ case By_Descriptor:
+ case By_Descriptor_S:
+ break;
+
+ case By_Descriptor_SB:
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ ("SB_L1", gnat_type_for_size (64, 1), record64_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ ("SB_U1", gnat_type_for_size (64, 1), record64_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ break;
+
+ case By_Descriptor_A:
+ case By_Descriptor_NCA:
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("SCALE",
+ gnat_type_for_size (8, 1),
+ record64_type,
+ size_zero_node));
+
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("DIGITS",
+ gnat_type_for_size (8, 1),
+ record64_type,
+ size_zero_node));
+
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ ("AFLAGS", gnat_type_for_size (8, 1), record64_type,
+ size_int (mech == By_Descriptor_NCA
+ ? 0
+ /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
+ : (TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_CONVENTION_FORTRAN_P (type)
+ ? 224 : 192))));
+
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("DIMCT",
+ gnat_type_for_size (8, 1),
+ record64_type,
+ size_int (ndim)));
+
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("MBZ",
+ gnat_type_for_size (32, 1),
+ record64_type,
+ size_int (0)));
+ field_list64 = chainon (field_list64,
+ make_descriptor_field ("ARSIZE",
+ gnat_type_for_size (64, 1),
+ record64_type,
+ size_in_bytes (type)));
+
+ /* Now build a pointer to the 0,0,0... element. */
+ tem = build0 (PLACEHOLDER_EXPR, type);
+ for (i = 0, inner_type = type; i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
+ convert (TYPE_DOMAIN (inner_type), size_zero_node),
+ NULL_TREE, NULL_TREE);
+
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ ("A0",
+ build_pointer_type_for_mode (inner_type, DImode, false),
+ record64_type,
+ build1 (ADDR_EXPR,
+ build_pointer_type_for_mode (inner_type, DImode,
+ false),
+ tem)));
+
+ /* Next come the addressing coefficients. */
+ tem = size_one_node;
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+ tree idx_length
+ = size_binop (MULT_EXPR, tem,
+ size_binop (PLUS_EXPR,
+ size_binop (MINUS_EXPR,
+ TYPE_MAX_VALUE (idx_arr[i]),
+ TYPE_MIN_VALUE (idx_arr[i])),
+ size_int (1)));
+
+ fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
+ fname[1] = '0' + i, fname[2] = 0;
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field (fname,
+ gnat_type_for_size (64, 1),
+ record64_type, idx_length));
+
+ if (mech == By_Descriptor_NCA)
+ tem = idx_length;
+ }
+
+ /* Finally here are the bounds. */
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+
+ fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ (fname, gnat_type_for_size (64, 1), record64_type,
+ TYPE_MIN_VALUE (idx_arr[i])));
+
+ fname[0] = 'U';
+ field_list64
+ = chainon (field_list64,
+ make_descriptor_field
+ (fname, gnat_type_for_size (64, 1), record64_type,
+ TYPE_MAX_VALUE (idx_arr[i])));
+ }
+ break;
+
+ default:
+ post_error ("unsupported descriptor type for &", gnat_entity);
+ }
+
+ finish_record_type (record64_type, field_list64, 0, true);
+ create_type_decl (create_concat_name (gnat_entity, "DESC64"), record64_type,
+ NULL, true, false, gnat_entity);
+
+ return record64_type;
+}
+
+/* Utility routine for above code to make a field. */
+
+static tree
+make_descriptor_field (const char *name, tree type,
+ tree rec_type, tree initial)
+{
+ tree field
+ = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
+
+ DECL_INITIAL (field) = initial;
+ return field;
+}
+
+/* Convert GNU_EXPR, a pointer to a 64bit VMS descriptor, to GNU_TYPE, a
+ regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
+ which the VMS descriptor is passed. */
+
+static tree
+convert_vms_descriptor64 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
+{
+ tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
+ tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
+ /* The CLASS field is the 3rd field in the descriptor. */
+ tree class = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
+ /* The POINTER field is the 6th field in the descriptor. */
+ tree pointer64 = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (class)));
+
+ /* Retrieve the value of the POINTER field. */
+ tree gnu_expr64
+ = build3 (COMPONENT_REF, TREE_TYPE (pointer64), desc, pointer64, NULL_TREE);
+
+ if (POINTER_TYPE_P (gnu_type))
+ return convert (gnu_type, gnu_expr64);
+
+ else if (TYPE_FAT_POINTER_P (gnu_type))
+ {
+ tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
+ tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
+ tree template_type = TREE_TYPE (p_bounds_type);
+ tree min_field = TYPE_FIELDS (template_type);
+ tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
+ tree template, template_addr, aflags, dimct, t, u;
+ /* See the head comment of build_vms_descriptor. */
+ int iclass = TREE_INT_CST_LOW (DECL_INITIAL (class));
+ tree lfield, ufield;
+
+ /* Convert POINTER to the type of the P_ARRAY field. */
+ gnu_expr64 = convert (p_array_type, gnu_expr64);
+
+ switch (iclass)
+ {
+ case 1: /* Class S */
+ case 15: /* Class SB */
+ /* Build {1, LENGTH} template; LENGTH64 is the 5th field. */
+ t = TREE_CHAIN (TREE_CHAIN (class));
+ t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ t = tree_cons (min_field,
+ convert (TREE_TYPE (min_field), integer_one_node),
+ tree_cons (max_field,
+ convert (TREE_TYPE (max_field), t),
+ NULL_TREE));
+ template = gnat_build_constructor (template_type, t);
+ template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
+
+ /* For class S, we are done. */
+ if (iclass == 1)
+ break;
+
+ /* Test that we really have a SB descriptor, like DEC Ada. */
+ t = build3 (COMPONENT_REF, TREE_TYPE (class), desc, class, NULL);
+ u = convert (TREE_TYPE (class), DECL_INITIAL (class));
+ u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
+ /* If so, there is already a template in the descriptor and
+ it is located right after the POINTER field. The fields are
+ 64bits so they must be repacked. */
+ t = TREE_CHAIN (pointer64);
+ lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
+
+ t = TREE_CHAIN (t);
+ ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ ufield = convert
+ (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
+
+ /* Build the template in the form of a constructor. */
+ t = tree_cons (TYPE_FIELDS (template_type), lfield,
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
+ ufield, NULL_TREE));
+ template = gnat_build_constructor (template_type, t);
+
+ /* Otherwise use the {1, LENGTH} template we build above. */
+ template_addr = build3 (COND_EXPR, p_bounds_type, u,
+ build_unary_op (ADDR_EXPR, p_bounds_type,
+ template),
+ template_addr);
+ break;
+
+ case 4: /* Class A */
+ /* The AFLAGS field is the 3rd field after the pointer in the
+ descriptor. */
+ t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer64)));
+ aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ /* The DIMCT field is the next field in the descriptor after
+ aflags. */
+ t = TREE_CHAIN (t);
+ dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ /* Raise CONSTRAINT_ERROR if either more than 1 dimension
+ or FL_COEFF or FL_BOUNDS not set. */
+ u = build_int_cst (TREE_TYPE (aflags), 192);
+ u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
+ build_binary_op (NE_EXPR, integer_type_node,
+ dimct,
+ convert (TREE_TYPE (dimct),
+ size_one_node)),
+ build_binary_op (NE_EXPR, integer_type_node,
+ build2 (BIT_AND_EXPR,
+ TREE_TYPE (aflags),
+ aflags, u),
+ u));
+ /* There is already a template in the descriptor and it is located
+ in block 3. The fields are 64bits so they must be repacked. */
+ t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN
+ (t)))));
+ lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
+
+ t = TREE_CHAIN (t);
+ ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ ufield = convert
+ (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
+
+ /* Build the template in the form of a constructor. */
+ t = tree_cons (TYPE_FIELDS (template_type), lfield,
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
+ ufield, NULL_TREE));
+ template = gnat_build_constructor (template_type, t);
+ template = build3 (COND_EXPR, p_bounds_type, u,
+ build_call_raise (CE_Length_Check_Failed, Empty,
+ N_Raise_Constraint_Error),
+ template);
+ template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template);
+ break;
+
+ case 10: /* Class NCA */
+ default:
+ post_error ("unsupported descriptor type for &", gnat_subprog);
+ template_addr = integer_zero_node;
+ break;
+ }
+
+ /* Build the fat pointer in the form of a constructor. */
+ t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr64,
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
+ template_addr, NULL_TREE));
+ return gnat_build_constructor (gnu_type, t);
+ }
+
+ else
+ gcc_unreachable ();
+}
+
+/* Convert GNU_EXPR, a pointer to a 32bit VMS descriptor, to GNU_TYPE, a
+ regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
+ which the VMS descriptor is passed. */
+
+static tree
+convert_vms_descriptor32 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
+{
+ tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
+ tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
+ /* The CLASS field is the 3rd field in the descriptor. */
+ tree class = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
+ /* The POINTER field is the 4th field in the descriptor. */
+ tree pointer = TREE_CHAIN (class);
+
+ /* Retrieve the value of the POINTER field. */
+ tree gnu_expr32
+ = build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE);
+
+ if (POINTER_TYPE_P (gnu_type))
+ return convert (gnu_type, gnu_expr32);
+
+ else if (TYPE_FAT_POINTER_P (gnu_type))
+ {
+ tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
+ tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
+ tree template_type = TREE_TYPE (p_bounds_type);
+ tree min_field = TYPE_FIELDS (template_type);
+ tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
+ tree template, template_addr, aflags, dimct, t, u;
+ /* See the head comment of build_vms_descriptor. */
+ int iclass = TREE_INT_CST_LOW (DECL_INITIAL (class));
+
+ /* Convert POINTER to the type of the P_ARRAY field. */
+ gnu_expr32 = convert (p_array_type, gnu_expr32);
+
+ switch (iclass)
+ {
+ case 1: /* Class S */
+ case 15: /* Class SB */
+ /* Build {1, LENGTH} template; LENGTH is the 1st field. */
+ t = TYPE_FIELDS (desc_type);
+ t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ t = tree_cons (min_field,
+ convert (TREE_TYPE (min_field), integer_one_node),
+ tree_cons (max_field,
+ convert (TREE_TYPE (max_field), t),
+ NULL_TREE));
+ template = gnat_build_constructor (template_type, t);
+ template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
+
+ /* For class S, we are done. */
+ if (iclass == 1)
+ break;
+
+ /* Test that we really have a SB descriptor, like DEC Ada. */
+ t = build3 (COMPONENT_REF, TREE_TYPE (class), desc, class, NULL);
+ u = convert (TREE_TYPE (class), DECL_INITIAL (class));
+ u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
+ /* If so, there is already a template in the descriptor and
+ it is located right after the POINTER field. */
+ t = TREE_CHAIN (pointer);
+ template = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ /* Otherwise use the {1, LENGTH} template we build above. */
+ template_addr = build3 (COND_EXPR, p_bounds_type, u,
+ build_unary_op (ADDR_EXPR, p_bounds_type,
+ template),
+ template_addr);
+ break;
+
+ case 4: /* Class A */
+ /* The AFLAGS field is the 7th field in the descriptor. */
+ t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer)));
+ aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ /* The DIMCT field is the 8th field in the descriptor. */
+ t = TREE_CHAIN (t);
+ dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ /* Raise CONSTRAINT_ERROR if either more than 1 dimension
+ or FL_COEFF or FL_BOUNDS not set. */
+ u = build_int_cst (TREE_TYPE (aflags), 192);
+ u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
+ build_binary_op (NE_EXPR, integer_type_node,
+ dimct,
+ convert (TREE_TYPE (dimct),
+ size_one_node)),
+ build_binary_op (NE_EXPR, integer_type_node,
+ build2 (BIT_AND_EXPR,
+ TREE_TYPE (aflags),
+ aflags, u),
+ u));
+ /* There is already a template in the descriptor and it is
+ located at the start of block 3 (12th field). */
+ t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (t))));
+ template = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
+ template = build3 (COND_EXPR, p_bounds_type, u,
+ build_call_raise (CE_Length_Check_Failed, Empty,
+ N_Raise_Constraint_Error),
+ template);
+ template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template);
+ break;
+
+ case 10: /* Class NCA */
+ default:
+ post_error ("unsupported descriptor type for &", gnat_subprog);
+ template_addr = integer_zero_node;
+ break;
+ }
+
+ /* Build the fat pointer in the form of a constructor. */
+ t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr32,
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
+ template_addr, NULL_TREE));
+
+ return gnat_build_constructor (gnu_type, t);
+ }
+
+ else
+ gcc_unreachable ();
+}
+
+/* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular
+ pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit)
+ pointer type of GNU_EXPR. GNAT_SUBPROG is the subprogram to which the
+ VMS descriptor is passed. */
+
+static tree
+convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type,
+ Entity_Id gnat_subprog)
+{
+ tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
+ tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
+ tree mbo = TYPE_FIELDS (desc_type);
+ const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo));
+ tree mbmo = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (mbo)));
+ tree is64bit, gnu_expr32, gnu_expr64;
+
+ /* If the field name is not MBO, it must be 32-bit and no alternate.
+ Otherwise primary must be 64-bit and alternate 32-bit. */
+ if (strcmp (mbostr, "MBO") != 0)
+ return convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
+
+ /* Build the test for 64-bit descriptor. */
+ mbo = build3 (COMPONENT_REF, TREE_TYPE (mbo), desc, mbo, NULL_TREE);
+ mbmo = build3 (COMPONENT_REF, TREE_TYPE (mbmo), desc, mbmo, NULL_TREE);
+ is64bit
+ = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
+ build_binary_op (EQ_EXPR, integer_type_node,
+ convert (integer_type_node, mbo),
+ integer_one_node),
+ build_binary_op (EQ_EXPR, integer_type_node,
+ convert (integer_type_node, mbmo),
+ integer_minus_one_node));
+
+ /* Build the 2 possible end results. */
+ gnu_expr64 = convert_vms_descriptor64 (gnu_type, gnu_expr, gnat_subprog);
+ gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr);
+ gnu_expr32 = convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
+
+ return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32);
+}
+
+/* Build a stub for the subprogram specified by the GCC tree GNU_SUBPROG
+ and the GNAT node GNAT_SUBPROG. */
+
+void
+build_function_stub (tree gnu_subprog, Entity_Id gnat_subprog)
+{
+ tree gnu_subprog_type, gnu_subprog_addr, gnu_subprog_call;
+ tree gnu_stub_param, gnu_param_list, gnu_arg_types, gnu_param;
+ tree gnu_stub_decl = DECL_FUNCTION_STUB (gnu_subprog);
+ tree gnu_body;
+
+ gnu_subprog_type = TREE_TYPE (gnu_subprog);
+ gnu_param_list = NULL_TREE;
+
+ begin_subprog_body (gnu_stub_decl);
+ gnat_pushlevel ();
+
+ start_stmt_group ();
+
+ /* Loop over the parameters of the stub and translate any of them
+ passed by descriptor into a by reference one. */
+ for (gnu_stub_param = DECL_ARGUMENTS (gnu_stub_decl),
+ gnu_arg_types = TYPE_ARG_TYPES (gnu_subprog_type);
+ gnu_stub_param;
+ gnu_stub_param = TREE_CHAIN (gnu_stub_param),
+ gnu_arg_types = TREE_CHAIN (gnu_arg_types))
+ {
+ if (DECL_BY_DESCRIPTOR_P (gnu_stub_param))
+ gnu_param
+ = convert_vms_descriptor (TREE_VALUE (gnu_arg_types),
+ gnu_stub_param,
+ DECL_PARM_ALT_TYPE (gnu_stub_param),
+ gnat_subprog);
+ else
+ gnu_param = gnu_stub_param;
+
+ gnu_param_list = tree_cons (NULL_TREE, gnu_param, gnu_param_list);
+ }
+
+ gnu_body = end_stmt_group ();
+
+ /* Invoke the internal subprogram. */
+ gnu_subprog_addr = build1 (ADDR_EXPR, build_pointer_type (gnu_subprog_type),
+ gnu_subprog);
+ gnu_subprog_call = build_call_list (TREE_TYPE (gnu_subprog_type),
+ gnu_subprog_addr,
+ nreverse (gnu_param_list));
+
+ /* Propagate the return value, if any. */
+ if (VOID_TYPE_P (TREE_TYPE (gnu_subprog_type)))
+ append_to_statement_list (gnu_subprog_call, &gnu_body);
+ else
+ append_to_statement_list (build_return_expr (DECL_RESULT (gnu_stub_decl),
+ gnu_subprog_call),
+ &gnu_body);
+
+ gnat_poplevel ();
+
+ allocate_struct_function (gnu_stub_decl, false);
+ end_subprog_body (gnu_body, false);
+}
+
+/* Build a type to be used to represent an aliased object whose nominal
+ type is an unconstrained array. This consists of a RECORD_TYPE containing
+ a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
+ ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
+ is used to represent an arbitrary unconstrained object. Use NAME
+ as the name of the record. */
+
+tree
+build_unc_object_type (tree template_type, tree object_type, tree name)
+{
+ tree type = make_node (RECORD_TYPE);
+ tree template_field = create_field_decl (get_identifier ("BOUNDS"),
+ template_type, type, 0, 0, 0, 1);
+ tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
+ type, 0, 0, 0, 1);
+
+ TYPE_NAME (type) = name;
+ TYPE_CONTAINS_TEMPLATE_P (type) = 1;
+ finish_record_type (type,
+ chainon (chainon (NULL_TREE, template_field),
+ array_field),
+ 0, false);
+
+ return type;
+}
+
+/* Same, taking a thin or fat pointer type instead of a template type. */
+
+tree
+build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
+ tree name)
+{
+ tree template_type;
+
+ gcc_assert (TYPE_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
+
+ template_type
+ = (TYPE_FAT_POINTER_P (thin_fat_ptr_type)
+ ? TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
+ : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
+ return build_unc_object_type (template_type, object_type, name);
+}
+
+/* Shift the component offsets within an unconstrained object TYPE to make it
+ suitable for use as a designated type for thin pointers. */
+
+void
+shift_unc_components_for_thin_pointers (tree type)
+{
+ /* Thin pointer values designate the ARRAY data of an unconstrained object,
+ allocated past the BOUNDS template. The designated type is adjusted to
+ have ARRAY at position zero and the template at a negative offset, so
+ that COMPONENT_REFs on (*thin_ptr) designate the proper location. */
+
+ tree bounds_field = TYPE_FIELDS (type);
+ tree array_field = TREE_CHAIN (TYPE_FIELDS (type));
+
+ DECL_FIELD_OFFSET (bounds_field)
+ = size_binop (MINUS_EXPR, size_zero_node, byte_position (array_field));
+
+ DECL_FIELD_OFFSET (array_field) = size_zero_node;
+ DECL_FIELD_BIT_OFFSET (array_field) = bitsize_zero_node;
+}
+
+/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In
+ the normal case this is just two adjustments, but we have more to do
+ if NEW is an UNCONSTRAINED_ARRAY_TYPE. */
+
+void
+update_pointer_to (tree old_type, tree new_type)
+{
+ tree ptr = TYPE_POINTER_TO (old_type);
+ tree ref = TYPE_REFERENCE_TO (old_type);
+ tree ptr1, ref1;
+ tree type;
+
+ /* If this is the main variant, process all the other variants first. */
+ if (TYPE_MAIN_VARIANT (old_type) == old_type)
+ for (type = TYPE_NEXT_VARIANT (old_type); type;
+ type = TYPE_NEXT_VARIANT (type))
+ update_pointer_to (type, new_type);
+
+ /* If no pointer or reference, we are done. */
+ if (!ptr && !ref)
+ return;
+
+ /* Merge the old type qualifiers in the new type.
+
+ Each old variant has qualifiers for specific reasons, and the new
+ designated type as well. Each set of qualifiers represents useful
+ information grabbed at some point, and merging the two simply unifies
+ these inputs into the final type description.
+
+ Consider for instance a volatile type frozen after an access to constant
+ type designating it. After the designated type freeze, we get here with a
+ volatile new_type and a dummy old_type with a readonly variant, created
+ when the access type was processed. We shall make a volatile and readonly
+ designated type, because that's what it really is.
+
+ We might also get here for a non-dummy old_type variant with different
+ qualifiers than the new_type ones, for instance in some cases of pointers
+ to private record type elaboration (see the comments around the call to
+ this routine from gnat_to_gnu_entity/E_Access_Type). We have to merge the
+ qualifiers in those cases too, to avoid accidentally discarding the
+ initial set, and will often end up with old_type == new_type then. */
+ new_type = build_qualified_type (new_type,
+ TYPE_QUALS (old_type)
+ | TYPE_QUALS (new_type));
+
+ /* If the new type and the old one are identical, there is nothing to
+ update. */
+ if (old_type == new_type)
+ return;
+
+ /* Otherwise, first handle the simple case. */
+ if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
+ {
+ TYPE_POINTER_TO (new_type) = ptr;
+ TYPE_REFERENCE_TO (new_type) = ref;
+
+ for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
+ for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1;
+ ptr1 = TYPE_NEXT_VARIANT (ptr1))
+ TREE_TYPE (ptr1) = new_type;
+
+ for (; ref; ref = TYPE_NEXT_REF_TO (ref))
+ for (ref1 = TYPE_MAIN_VARIANT (ref); ref1;
+ ref1 = TYPE_NEXT_VARIANT (ref1))
+ TREE_TYPE (ref1) = new_type;
+ }
+
+ /* Now deal with the unconstrained array case. In this case the "pointer"
+ is actually a RECORD_TYPE where both fields are pointers to dummy nodes.
+ Turn them into pointers to the correct types using update_pointer_to. */
+ else if (TREE_CODE (ptr) != RECORD_TYPE || !TYPE_IS_FAT_POINTER_P (ptr))
+ gcc_unreachable ();
+
+ else
+ {
+ tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
+ tree array_field = TYPE_FIELDS (ptr);
+ tree bounds_field = TREE_CHAIN (TYPE_FIELDS (ptr));
+ tree new_ptr = TYPE_POINTER_TO (new_type);
+ tree new_ref;
+ tree var;
+
+ /* Make pointers to the dummy template point to the real template. */
+ update_pointer_to
+ (TREE_TYPE (TREE_TYPE (bounds_field)),
+ TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_ptr)))));
+
+ /* The references to the template bounds present in the array type
+ are made through a PLACEHOLDER_EXPR of type new_ptr. Since we
+ are updating ptr to make it a full replacement for new_ptr as
+ pointer to new_type, we must rework the PLACEHOLDER_EXPR so as
+ to make it of type ptr. */
+ new_ref = build3 (COMPONENT_REF, TREE_TYPE (bounds_field),
+ build0 (PLACEHOLDER_EXPR, ptr),
+ bounds_field, NULL_TREE);
+
+ /* Create the new array for the new PLACEHOLDER_EXPR and make
+ pointers to the dummy array point to it.
+
+ ??? This is now the only use of substitute_in_type,
+ which is a very "heavy" routine to do this, so it
+ should be replaced at some point. */
+ update_pointer_to
+ (TREE_TYPE (TREE_TYPE (array_field)),
+ substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))),
+ TREE_CHAIN (TYPE_FIELDS (new_ptr)), new_ref));
+
+ /* Make ptr the pointer to new_type. */
+ TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
+ = TREE_TYPE (new_type) = ptr;
+
+ for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
+ SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);
+
+ /* Now handle updating the allocation record, what the thin pointer
+ points to. Update all pointers from the old record into the new
+ one, update the type of the array field, and recompute the size. */
+ update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
+
+ TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TREE_TYPE (TREE_TYPE (array_field));
+
+ /* The size recomputation needs to account for alignment constraints, so
+ we let layout_type work it out. This will reset the field offsets to
+ what they would be in a regular record, so we shift them back to what
+ we want them to be for a thin pointer designated type afterwards. */
+ DECL_SIZE (TYPE_FIELDS (new_obj_rec)) = 0;
+ DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))) = 0;
+ TYPE_SIZE (new_obj_rec) = 0;
+ layout_type (new_obj_rec);
+
+ shift_unc_components_for_thin_pointers (new_obj_rec);
+
+ /* We are done, at last. */
+ rest_of_record_type_compilation (ptr);
+ }
+}
+
+/* Convert EXPR, a pointer to a constrained array, into a pointer to an
+ unconstrained one. This involves making or finding a template. */
+
+static tree
+convert_to_fat_pointer (tree type, tree expr)
+{
+ tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
+ tree p_array_type = TREE_TYPE (TYPE_FIELDS (type));
+ tree etype = TREE_TYPE (expr);
+ tree template;
+
+ /* If EXPR is null, make a fat pointer that contains null pointers to the
+ template and array. */
+ if (integer_zerop (expr))
+ return
+ gnat_build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (p_array_type, expr),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ convert (build_pointer_type (template_type),
+ expr),
+ NULL_TREE)));
+
+ /* If EXPR is a thin pointer, make template and data from the record.. */
+ else if (TYPE_THIN_POINTER_P (etype))
+ {
+ tree fields = TYPE_FIELDS (TREE_TYPE (etype));
+
+ expr = save_expr (expr);
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+ else
+ expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);
+
+ template = build_component_ref (expr, NULL_TREE, fields, false);
+ expr = build_unary_op (ADDR_EXPR, NULL_TREE,
+ build_component_ref (expr, NULL_TREE,
+ TREE_CHAIN (fields), false));
+ }
+
+ /* Otherwise, build the constructor for the template. */
+ else
+ template = build_template (template_type, TREE_TYPE (etype), expr);
+
+ /* The final result is a constructor for the fat pointer.
+
+ If EXPR is an argument of a foreign convention subprogram, the type it
+ points to is directly the component type. In this case, the expression
+ type may not match the corresponding FIELD_DECL type at this point, so we
+ call "convert" here to fix that up if necessary. This type consistency is
+ required, for instance because it ensures that possible later folding of
+ COMPONENT_REFs against this constructor always yields something of the
+ same type as the initial reference.
+
+ Note that the call to "build_template" above is still fine because it
+ will only refer to the provided TEMPLATE_TYPE in this case. */
+ return
+ gnat_build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (p_array_type, expr),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ build_unary_op (ADDR_EXPR, NULL_TREE, template),
+ NULL_TREE)));
+}
+
+/* Convert to a thin pointer type, TYPE. The only thing we know how to convert
+ is something that is a fat pointer, so convert to it first if it EXPR
+ is not already a fat pointer. */
+
+static tree
+convert_to_thin_pointer (tree type, tree expr)
+{
+ if (!TYPE_FAT_POINTER_P (TREE_TYPE (expr)))
+ expr
+ = convert_to_fat_pointer
+ (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);
+
+ /* We get the pointer to the data and use a NOP_EXPR to make it the
+ proper GCC type. */
+ expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)),
+ false);
+ expr = build1 (NOP_EXPR, type, expr);
+
+ return expr;
+}
+
+/* Create an expression whose value is that of EXPR,
+ converted to type TYPE. The TREE_TYPE of the value
+ is always TYPE. This function implements all reasonable
+ conversions; callers should filter out those that are
+ not permitted by the language being compiled. */
+
+tree
+convert (tree type, tree expr)
+{
+ enum tree_code code = TREE_CODE (type);
+ tree etype = TREE_TYPE (expr);
+ enum tree_code ecode = TREE_CODE (etype);
+
+ /* If EXPR is already the right type, we are done. */
+ if (type == etype)
+ return expr;
+
+ /* If both input and output have padding and are of variable size, do this
+ as an unchecked conversion. Likewise if one is a mere variant of the
+ other, so we avoid a pointless unpad/repad sequence. */
+ else if (code == RECORD_TYPE && ecode == RECORD_TYPE
+ && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype)
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || !TREE_CONSTANT (TYPE_SIZE (etype))
+ || gnat_types_compatible_p (type, etype)
+ || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))
+ == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype)))))
+ ;
+
+ /* If the output type has padding, convert to the inner type and
+ make a constructor to build the record. */
+ else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type))
+ {
+ /* If we previously converted from another type and our type is
+ of variable size, remove the conversion to avoid the need for
+ variable-size temporaries. Likewise for a conversion between
+ original and packable version. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || (ecode == RECORD_TYPE
+ && TYPE_NAME (etype)
+ == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0))))))
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we are just removing the padding from expr, convert the original
+ object if we have variable size in order to avoid the need for some
+ variable-size temporaries. Likewise if the padding is a mere variant
+ of the other, so we avoid a pointless unpad/repad sequence. */
+ if (TREE_CODE (expr) == COMPONENT_REF
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || gnat_types_compatible_p (type,
+ TREE_TYPE (TREE_OPERAND (expr, 0)))
+ || (ecode == RECORD_TYPE
+ && TYPE_NAME (etype)
+ == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))))))
+ return convert (type, TREE_OPERAND (expr, 0));
+
+ /* If the result type is a padded type with a self-referentially-sized
+ field and the expression type is a record, do this as an
+ unchecked conversion. */
+ else if (TREE_CODE (etype) == RECORD_TYPE
+ && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
+ return unchecked_convert (type, expr, false);
+
+ else
+ return
+ gnat_build_constructor (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE
+ (TYPE_FIELDS (type)),
+ expr),
+ NULL_TREE));
+ }
+
+ /* If the input type has padding, remove it and convert to the output type.
+ The conditions ordering is arranged to ensure that the output type is not
+ a padding type here, as it is not clear whether the conversion would
+ always be correct if this was to happen. */
+ else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype))
+ {
+ tree unpadded;
+
+ /* If we have just converted to this padded type, just get the
+ inner expression. */
+ if (TREE_CODE (expr) == CONSTRUCTOR
+ && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (expr))
+ && VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->index
+ == TYPE_FIELDS (etype))
+ unpadded
+ = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->value;
+
+ /* Otherwise, build an explicit component reference. */
+ else
+ unpadded
+ = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false);
+
+ return convert (type, unpadded);
+ }
+
+ /* If the input is a biased type, adjust first. */
+ if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
+ return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype),
+ fold_convert (TREE_TYPE (etype),
+ expr),
+ TYPE_MIN_VALUE (etype)));
+
+ /* If the input is a justified modular type, we need to extract the actual
+ object before converting it to any other type with the exceptions of an
+ unconstrained array or of a mere type variant. It is useful to avoid the
+ extraction and conversion in the type variant case because it could end
+ up replacing a VAR_DECL expr by a constructor and we might be about the
+ take the address of the result. */
+ if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
+ && code != UNCONSTRAINED_ARRAY_TYPE
+ && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
+ return convert (type, build_component_ref (expr, NULL_TREE,
+ TYPE_FIELDS (etype), false));
+
+ /* If converting to a type that contains a template, convert to the data
+ type and then build the template. */
+ if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
+ {
+ tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));
+
+ /* If the source already has a template, get a reference to the
+ associated array only, as we are going to rebuild a template
+ for the target type anyway. */
+ expr = maybe_unconstrained_array (expr);
+
+ return
+ gnat_build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ build_template (TREE_TYPE (TYPE_FIELDS (type)),
+ obj_type, NULL_TREE),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ convert (obj_type, expr), NULL_TREE)));
+ }
+
+ /* There are some special cases of expressions that we process
+ specially. */
+ switch (TREE_CODE (expr))
+ {
+ case ERROR_MARK:
+ return expr;
+
+ case NULL_EXPR:
+ /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
+ conversion in gnat_expand_expr. NULL_EXPR does not represent
+ and actual value, so no conversion is needed. */
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+
+ case STRING_CST:
+ /* If we are converting a STRING_CST to another constrained array type,
+ just make a new one in the proper type. */
+ if (code == ecode && AGGREGATE_TYPE_P (etype)
+ && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+ }
+ break;
+
+ case CONSTRUCTOR:
+ /* If we are converting a CONSTRUCTOR to a mere variant type, just make
+ a new one in the proper type. */
+ if (code == ecode && gnat_types_compatible_p (type, etype))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+ }
+
+ /* Likewise for a conversion between original and packable version, but
+ we have to work harder in order to preserve type consistency. */
+ if (code == ecode
+ && code == RECORD_TYPE
+ && TYPE_NAME (type) == TYPE_NAME (etype))
+ {
+ VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr);
+ unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e);
+ VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, len);
+ tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type);
+ unsigned HOST_WIDE_INT idx;
+ tree index, value;
+
+ FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value)
+ {
+ constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
+ /* We expect only simple constructors. Otherwise, punt. */
+ if (!(index == efield || index == DECL_ORIGINAL_FIELD (efield)))
+ break;
+ elt->index = field;
+ elt->value = convert (TREE_TYPE (field), value);
+ efield = TREE_CHAIN (efield);
+ field = TREE_CHAIN (field);
+ }
+
+ if (idx == len)
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ CONSTRUCTOR_ELTS (expr) = v;
+ return expr;
+ }
+ }
+ break;
+
+ case UNCONSTRAINED_ARRAY_REF:
+ /* Convert this to the type of the inner array by getting the address of
+ the array from the template. */
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (expr, 0),
+ get_identifier ("P_ARRAY"),
+ NULL_TREE, false));
+ etype = TREE_TYPE (expr);
+ ecode = TREE_CODE (etype);
+ break;
+
+ case VIEW_CONVERT_EXPR:
+ {
+ /* GCC 4.x is very sensitive to type consistency overall, and view
+ conversions thus are very frequent. Even though just "convert"ing
+ the inner operand to the output type is fine in most cases, it
+ might expose unexpected input/output type mismatches in special
+ circumstances so we avoid such recursive calls when we can. */
+ tree op0 = TREE_OPERAND (expr, 0);
+
+ /* If we are converting back to the original type, we can just
+ lift the input conversion. This is a common occurrence with
+ switches back-and-forth amongst type variants. */
+ if (type == TREE_TYPE (op0))
+ return op0;
+
+ /* Otherwise, if we're converting between two aggregate types, we
+ might be allowed to substitute the VIEW_CONVERT_EXPR target type
+ in place or to just convert the inner expression. */
+ if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
+ {
+ /* If we are converting between mere variants, we can just
+ substitute the VIEW_CONVERT_EXPR in place. */
+ if (gnat_types_compatible_p (type, etype))
+ return build1 (VIEW_CONVERT_EXPR, type, op0);
+
+ /* Otherwise, we may just bypass the input view conversion unless
+ one of the types is a fat pointer, which is handled by
+ specialized code below which relies on exact type matching. */
+ else if (!TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
+ return convert (type, op0);
+ }
+ }
+ break;
+
+ case INDIRECT_REF:
+ /* If both types are record types, just convert the pointer and
+ make a new INDIRECT_REF.
+
+ ??? Disable this for now since it causes problems with the
+ code in build_binary_op for MODIFY_EXPR which wants to
+ strip off conversions. But that code really is a mess and
+ we need to do this a much better way some time. */
+ if (0
+ && (TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE)
+ && (TREE_CODE (etype) == RECORD_TYPE
+ || TREE_CODE (etype) == UNION_TYPE)
+ && !TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
+ return build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (build_pointer_type (type),
+ TREE_OPERAND (expr, 0)));
+ break;
+
+ default:
+ break;
+ }
+
+ /* Check for converting to a pointer to an unconstrained array. */
+ if (TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
+ return convert_to_fat_pointer (type, expr);
+
+ /* If we are converting between two aggregate types that are mere
+ variants, just make a VIEW_CONVERT_EXPR. */
+ else if (code == ecode
+ && AGGREGATE_TYPE_P (type)
+ && gnat_types_compatible_p (type, etype))
+ return build1 (VIEW_CONVERT_EXPR, type, expr);
+
+ /* In all other cases of related types, make a NOP_EXPR. */
+ else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
+ || (code == INTEGER_CST && ecode == INTEGER_CST
+ && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
+ return fold_convert (type, expr);
+
+ switch (code)
+ {
+ case VOID_TYPE:
+ return fold_build1 (CONVERT_EXPR, type, expr);
+
+ case INTEGER_TYPE:
+ if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
+ && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
+ return unchecked_convert (type, expr, false);
+ else if (TYPE_BIASED_REPRESENTATION_P (type))
+ return fold_convert (type,
+ fold_build2 (MINUS_EXPR, TREE_TYPE (type),
+ convert (TREE_TYPE (type), expr),
+ TYPE_MIN_VALUE (type)));
+
+ /* ... fall through ... */
+
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ /* If we are converting an additive expression to an integer type
+ with lower precision, be wary of the optimization that can be
+ applied by convert_to_integer. There are 2 problematic cases:
+ - if the first operand was originally of a biased type,
+ because we could be recursively called to convert it
+ to an intermediate type and thus rematerialize the
+ additive operator endlessly,
+ - if the expression contains a placeholder, because an
+ intermediate conversion that changes the sign could
+ be inserted and thus introduce an artificial overflow
+ at compile time when the placeholder is substituted. */
+ if (code == INTEGER_TYPE
+ && ecode == INTEGER_TYPE
+ && TYPE_PRECISION (type) < TYPE_PRECISION (etype)
+ && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR))
+ {
+ tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type);
+
+ if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0)))
+ || CONTAINS_PLACEHOLDER_P (expr))
+ return build1 (NOP_EXPR, type, expr);
+ }
+
+ return fold (convert_to_integer (type, expr));
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* If converting between two pointers to records denoting
+ both a template and type, adjust if needed to account
+ for any differing offsets, since one might be negative. */
+ if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type))
+ {
+ tree bit_diff
+ = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
+ bit_position (TYPE_FIELDS (TREE_TYPE (type))));
+ tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
+ sbitsize_int (BITS_PER_UNIT));
+
+ expr = build1 (NOP_EXPR, type, expr);
+ TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
+ if (integer_zerop (byte_diff))
+ return expr;
+
+ return build_binary_op (POINTER_PLUS_EXPR, type, expr,
+ fold (convert (sizetype, byte_diff)));
+ }
+
+ /* If converting to a thin pointer, handle specially. */
+ if (TYPE_THIN_POINTER_P (type)
+ && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
+ return convert_to_thin_pointer (type, expr);
+
+ /* If converting fat pointer to normal pointer, get the pointer to the
+ array and then convert it. */
+ else if (TYPE_FAT_POINTER_P (etype))
+ expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
+ NULL_TREE, false);
+
+ return fold (convert_to_pointer (type, expr));
+
+ case REAL_TYPE:
+ return fold (convert_to_real (type, expr));
+
+ case RECORD_TYPE:
+ if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
+ return
+ gnat_build_constructor
+ (type, tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
+ NULL_TREE));
+
+ /* ... fall through ... */
+
+ case ARRAY_TYPE:
+ /* In these cases, assume the front-end has validated the conversion.
+ If the conversion is valid, it will be a bit-wise conversion, so
+ it can be viewed as an unchecked conversion. */
+ return unchecked_convert (type, expr, false);
+
+ case UNION_TYPE:
+ /* This is a either a conversion between a tagged type and some
+ subtype, which we have to mark as a UNION_TYPE because of
+ overlapping fields or a conversion of an Unchecked_Union. */
+ return unchecked_convert (type, expr, false);
+
+ case UNCONSTRAINED_ARRAY_TYPE:
+ /* If EXPR is a constrained array, take its address, convert it to a
+ fat pointer, and then dereference it. Likewise if EXPR is a
+ record containing both a template and a constrained array.
+ Note that a record representing a justified modular type
+ always represents a packed constrained array. */
+ if (ecode == ARRAY_TYPE
+ || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
+ return
+ build_unary_op
+ (INDIRECT_REF, NULL_TREE,
+ convert_to_fat_pointer (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+
+ /* Do something very similar for converting one unconstrained
+ array to another. */
+ else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
+ return
+ build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+ else
+ gcc_unreachable ();
+
+ case COMPLEX_TYPE:
+ return fold (convert_to_complex (type, expr));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Remove all conversions that are done in EXP. This includes converting
+ from a padded type or to a justified modular type. If TRUE_ADDRESS
+ is true, always return the address of the containing object even if
+ the address is not bit-aligned. */
+
+tree
+remove_conversions (tree exp, bool true_address)
+{
+ switch (TREE_CODE (exp))
+ {
+ case CONSTRUCTOR:
+ if (true_address
+ && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
+ return
+ remove_conversions (VEC_index (constructor_elt,
+ CONSTRUCTOR_ELTS (exp), 0)->value,
+ true);
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
+ return remove_conversions (TREE_OPERAND (exp, 0), true_address);
+ break;
+
+ case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR:
+ CASE_CONVERT:
+ return remove_conversions (TREE_OPERAND (exp, 0), true_address);
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
+ refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P,
+ likewise return an expression pointing to the underlying array. */
+
+tree
+maybe_unconstrained_array (tree exp)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree new;
+
+ switch (TREE_CODE (TREE_TYPE (exp)))
+ {
+ case UNCONSTRAINED_ARRAY_TYPE:
+ if (code == UNCONSTRAINED_ARRAY_REF)
+ {
+ new
+ = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (exp, 0),
+ get_identifier ("P_ARRAY"),
+ NULL_TREE, false));
+ TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp);
+ return new;
+ }
+
+ else if (code == NULL_EXPR)
+ return build1 (NULL_EXPR,
+ TREE_TYPE (TREE_TYPE (TYPE_FIELDS
+ (TREE_TYPE (TREE_TYPE (exp))))),
+ TREE_OPERAND (exp, 0));
+
+ case RECORD_TYPE:
+ /* If this is a padded type, convert to the unpadded type and see if
+ it contains a template. */
+ if (TYPE_IS_PADDING_P (TREE_TYPE (exp)))
+ {
+ new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
+ if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE
+ && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new)))
+ return
+ build_component_ref (new, NULL_TREE,
+ TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new))),
+ 0);
+ }
+ else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
+ return
+ build_component_ref (exp, NULL_TREE,
+ TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0);
+ break;
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* Return true if EXPR is an expression that can be folded as an operand
+ of a VIEW_CONVERT_EXPR. See the head comment of unchecked_convert for
+ the rationale. */
+
+static bool
+can_fold_for_view_convert_p (tree expr)
+{
+ tree t1, t2;
+
+ /* The folder will fold NOP_EXPRs between integral types with the same
+ precision (in the middle-end's sense). We cannot allow it if the
+ types don't have the same precision in the Ada sense as well. */
+ if (TREE_CODE (expr) != NOP_EXPR)
+ return true;
+
+ t1 = TREE_TYPE (expr);
+ t2 = TREE_TYPE (TREE_OPERAND (expr, 0));
+
+ /* Defer to the folder for non-integral conversions. */
+ if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2)))
+ return true;
+
+ /* Only fold conversions that preserve both precisions. */
+ if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
+ && operand_equal_p (rm_size (t1), rm_size (t2), 0))
+ return true;
+
+ return false;
+}
+
+/* Return an expression that does an unchecked conversion of EXPR to TYPE.
+ If NOTRUNC_P is true, truncation operations should be suppressed.
+
+ Special care is required with (source or target) integral types whose
+ precision is not equal to their size, to make sure we fetch or assign
+ the value bits whose location might depend on the endianness, e.g.
+
+ Rmsize : constant := 8;
+ subtype Int is Integer range 0 .. 2 ** Rmsize - 1;
+
+ type Bit_Array is array (1 .. Rmsize) of Boolean;
+ pragma Pack (Bit_Array);
+
+ function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array);
+
+ Value : Int := 2#1000_0001#;
+ Vbits : Bit_Array := To_Bit_Array (Value);
+
+ we expect the 8 bits at Vbits'Address to always contain Value, while
+ their original location depends on the endianness, at Value'Address
+ on a little-endian architecture but not on a big-endian one.
+
+ ??? There is a problematic discrepancy between what is called precision
+ here (and more generally throughout gigi) for integral types and what is
+ called precision in the middle-end. In the former case it's the RM size
+ as given by TYPE_RM_SIZE (or rm_size) whereas it's TYPE_PRECISION in the
+ latter case, the hitch being that they are not equal when they matter,
+ that is when the number of value bits is not equal to the type's size:
+ TYPE_RM_SIZE does give the number of value bits but TYPE_PRECISION is set
+ to the size. The sole exception are BOOLEAN_TYPEs for which both are 1.
+
+ The consequence is that gigi must duplicate code bridging the gap between
+ the type's size and its precision that exists for TYPE_PRECISION in the
+ middle-end, because the latter knows nothing about TYPE_RM_SIZE, and be
+ wary of transformations applied in the middle-end based on TYPE_PRECISION
+ because this value doesn't reflect the actual precision for Ada. */
+
+tree
+unchecked_convert (tree type, tree expr, bool notrunc_p)
+{
+ tree etype = TREE_TYPE (expr);
+
+ /* If the expression is already the right type, we are done. */
+ if (etype == type)
+ return expr;
+
+ /* If both types types are integral just do a normal conversion.
+ Likewise for a conversion to an unconstrained array. */
+ if ((((INTEGRAL_TYPE_P (type)
+ && !(TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type)))
+ || (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type))
+ || (TREE_CODE (type) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (type)))
+ && ((INTEGRAL_TYPE_P (etype)
+ && !(TREE_CODE (etype) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (etype)))
+ || (POINTER_TYPE_P (etype) && !TYPE_THIN_POINTER_P (etype))
+ || (TREE_CODE (etype) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (etype))))
+ || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ {
+ if (TREE_CODE (etype) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (etype))
+ {
+ tree ntype = copy_type (etype);
+ TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
+ TYPE_MAIN_VARIANT (ntype) = ntype;
+ expr = build1 (NOP_EXPR, ntype, expr);
+ }
+
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ {
+ tree rtype = copy_type (type);
+ TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
+ TYPE_MAIN_VARIANT (rtype) = rtype;
+ expr = convert (rtype, expr);
+ expr = build1 (NOP_EXPR, type, expr);
+ }
+
+ /* We have another special case: if we are unchecked converting either
+ a subtype or a type with limited range into a base type, we need to
+ ensure that VRP doesn't propagate range information because this
+ conversion may be done precisely to validate that the object is
+ within the range it is supposed to have. */
+ else if (TREE_CODE (expr) != INTEGER_CST
+ && TREE_CODE (type) == INTEGER_TYPE && !TREE_TYPE (type)
+ && ((TREE_CODE (etype) == INTEGER_TYPE && TREE_TYPE (etype))
+ || TREE_CODE (etype) == ENUMERAL_TYPE
+ || TREE_CODE (etype) == BOOLEAN_TYPE))
+ {
+ /* The optimization barrier is a VIEW_CONVERT_EXPR node; moreover,
+ in order not to be deemed an useless type conversion, it must
+ be from subtype to base type.
+
+ Therefore we first do the bulk of the conversion to a subtype of
+ the final type. And this conversion must itself not be deemed
+ useless if the source type is not a subtype because, otherwise,
+ the final VIEW_CONVERT_EXPR will be deemed so as well. That's
+ why we toggle the unsigned flag in this conversion, which is
+ harmless since the final conversion is only a reinterpretation
+ of the bit pattern.
+
+ ??? This may raise addressability and/or aliasing issues because
+ VIEW_CONVERT_EXPR gets gimplified as an lvalue, thus causing the
+ address of its operand to be taken if it is deemed addressable
+ and not already in GIMPLE form. */
+ tree rtype
+ = gnat_type_for_mode (TYPE_MODE (type), !TYPE_UNSIGNED (etype));
+ rtype = copy_type (rtype);
+ TYPE_MAIN_VARIANT (rtype) = rtype;
+ TREE_TYPE (rtype) = type;
+ expr = convert (rtype, expr);
+ expr = build1 (VIEW_CONVERT_EXPR, type, expr);
+ }
+
+ else
+ expr = convert (type, expr);
+ }
+
+ /* If we are converting to an integral type whose precision is not equal
+ to its size, first unchecked convert to a record that contains an
+ object of the output type. Then extract the field. */
+ else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
+ && 0 != compare_tree_int (TYPE_RM_SIZE (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type))))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field = create_field_decl (get_identifier ("OBJ"), type,
+ rec_type, 1, 0, 0, 0);
+
+ TYPE_FIELDS (rec_type) = field;
+ layout_type (rec_type);
+
+ expr = unchecked_convert (rec_type, expr, notrunc_p);
+ expr = build_component_ref (expr, NULL_TREE, field, 0);
+ }
+
+ /* Similarly if we are converting from an integral type whose precision
+ is not equal to its size. */
+ else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype)
+ && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
+ GET_MODE_BITSIZE (TYPE_MODE (etype))))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field
+ = create_field_decl (get_identifier ("OBJ"), etype, rec_type,
+ 1, 0, 0, 0);
+
+ TYPE_FIELDS (rec_type) = field;
+ layout_type (rec_type);
+
+ expr = gnat_build_constructor (rec_type, build_tree_list (field, expr));
+ expr = unchecked_convert (type, expr, notrunc_p);
+ }
+
+ /* We have a special case when we are converting between two
+ unconstrained array types. In that case, take the address,
+ convert the fat pointer types, and dereference. */
+ else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
+ && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR, NULL_TREE,
+ expr)));
+ else
+ {
+ expr = maybe_unconstrained_array (expr);
+ etype = TREE_TYPE (expr);
+ if (can_fold_for_view_convert_p (expr))
+ expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr);
+ else
+ expr = build1 (VIEW_CONVERT_EXPR, type, expr);
+ }
+
+ /* If the result is an integral type whose precision is not equal to its
+ size, sign- or zero-extend the result. We need not do this if the input
+ is an integral type of the same precision and signedness or if the output
+ is a biased type or if both the input and output are unsigned. */
+ if (!notrunc_p
+ && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
+ && !(TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ && 0 != compare_tree_int (TYPE_RM_SIZE (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type)))
+ && !(INTEGRAL_TYPE_P (etype)
+ && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
+ && operand_equal_p (TYPE_RM_SIZE (type),
+ (TYPE_RM_SIZE (etype) != 0
+ ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
+ 0))
+ && !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
+ {
+ tree base_type = gnat_type_for_mode (TYPE_MODE (type),
+ TYPE_UNSIGNED (type));
+ tree shift_expr
+ = convert (base_type,
+ size_binop (MINUS_EXPR,
+ bitsize_int
+ (GET_MODE_BITSIZE (TYPE_MODE (type))),
+ TYPE_RM_SIZE (type)));
+ expr
+ = convert (type,
+ build_binary_op (RSHIFT_EXPR, base_type,
+ build_binary_op (LSHIFT_EXPR, base_type,
+ convert (base_type, expr),
+ shift_expr),
+ shift_expr));
+ }
+
+ /* An unchecked conversion should never raise Constraint_Error. The code
+ below assumes that GCC's conversion routines overflow the same way that
+ the underlying hardware does. This is probably true. In the rare case
+ when it is false, we can rely on the fact that such conversions are
+ erroneous anyway. */
+ if (TREE_CODE (expr) == INTEGER_CST)
+ TREE_OVERFLOW (expr) = 0;
+
+ /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
+ show no longer constant. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
+ OEP_ONLY_CONST))
+ TREE_CONSTANT (expr) = 0;
+
+ return expr;
+}
+
+/* Return the appropriate GCC tree code for the specified GNAT type,
+ the latter being a record type as predicated by Is_Record_Type. */
+
+enum tree_code
+tree_code_for_record_type (Entity_Id gnat_type)
+{
+ Node_Id component_list
+ = Component_List (Type_Definition
+ (Declaration_Node
+ (Implementation_Base_Type (gnat_type))));
+ Node_Id component;
+
+ /* Make this a UNION_TYPE unless it's either not an Unchecked_Union or
+ we have a non-discriminant field outside a variant. In either case,
+ it's a RECORD_TYPE. */
+
+ if (!Is_Unchecked_Union (gnat_type))
+ return RECORD_TYPE;
+
+ for (component = First_Non_Pragma (Component_Items (component_list));
+ Present (component);
+ component = Next_Non_Pragma (component))
+ if (Ekind (Defining_Entity (component)) == E_Component)
+ return RECORD_TYPE;
+
+ return UNION_TYPE;
+}
+
+/* Return true if GNU_TYPE is suitable as the type of a non-aliased
+ component of an aggregate type. */
+
+bool
+type_for_nonaliased_component_p (tree gnu_type)
+{
+ /* If the type is passed by reference, we may have pointers to the
+ component so it cannot be made non-aliased. */
+ if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type))
+ return false;
+
+ /* We used to say that any component of aggregate type is aliased
+ because the front-end may take 'Reference of it. The front-end
+ has been enhanced in the meantime so as to use a renaming instead
+ in most cases, but the back-end can probably take the address of
+ such a component too so we go for the conservative stance.
+
+ For instance, we might need the address of any array type, even
+ if normally passed by copy, to construct a fat pointer if the
+ component is used as an actual for an unconstrained formal.
+
+ Likewise for record types: even if a specific record subtype is
+ passed by copy, the parent type might be passed by ref (e.g. if
+ it's of variable size) and we might take the address of a child
+ component to pass to a parent formal. We have no way to check
+ for such conditions here. */
+ if (AGGREGATE_TYPE_P (gnu_type))
+ return false;
+
+ return true;
+}
+
+/* Perform final processing on global variables. */
+
+void
+gnat_write_global_declarations (void)
+{
+ /* Proceed to optimize and emit assembly.
+ FIXME: shouldn't be the front end's responsibility to call this. */
+ cgraph_optimize ();
+
+ /* Emit debug info for all global declarations. */
+ emit_debug_global_declarations (VEC_address (tree, global_decls),
+ VEC_length (tree, global_decls));
+}
+
+/* ************************************************************************
+ * * GCC builtins support *
+ * ************************************************************************ */
+
+/* The general scheme is fairly simple:
+
+ For each builtin function/type to be declared, gnat_install_builtins calls
+ internal facilities which eventually get to gnat_push_decl, which in turn
+ tracks the so declared builtin function decls in the 'builtin_decls' global
+ datastructure. When an Intrinsic subprogram declaration is processed, we
+ search this global datastructure to retrieve the associated BUILT_IN DECL
+ node. */
+
+/* Search the chain of currently available builtin declarations for a node
+ corresponding to function NAME (an IDENTIFIER_NODE). Return the first node
+ found, if any, or NULL_TREE otherwise. */
+tree
+builtin_decl_for (tree name)
+{
+ unsigned i;
+ tree decl;
+
+ for (i = 0; VEC_iterate(tree, builtin_decls, i, decl); i++)
+ if (DECL_NAME (decl) == name)
+ return decl;
+
+ return NULL_TREE;
+}
+
+/* The code below eventually exposes gnat_install_builtins, which declares
+ the builtin types and functions we might need, either internally or as
+ user accessible facilities.
+
+ ??? This is a first implementation shot, still in rough shape. It is
+ heavily inspired from the "C" family implementation, with chunks copied
+ verbatim from there.
+
+ Two obvious TODO candidates are
+ o Use a more efficient name/decl mapping scheme
+ o Devise a middle-end infrastructure to avoid having to copy
+ pieces between front-ends. */
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN ELEMENTARY TYPES *
+ * ----------------------------------------------------------------------- */
+
+/* Standard data types to be used in builtin argument declarations. */
+
+enum c_tree_index
+{
+ CTI_SIGNED_SIZE_TYPE, /* For format checking only. */
+ CTI_STRING_TYPE,
+ CTI_CONST_STRING_TYPE,
+
+ CTI_MAX
+};
+
+static tree c_global_trees[CTI_MAX];
+
+#define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE]
+#define string_type_node c_global_trees[CTI_STRING_TYPE]
+#define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE]
+
+/* ??? In addition some attribute handlers, we currently don't support a
+ (small) number of builtin-types, which in turns inhibits support for a
+ number of builtin functions. */
+#define wint_type_node void_type_node
+#define intmax_type_node void_type_node
+#define uintmax_type_node void_type_node
+
+/* Build the void_list_node (void_type_node having been created). */
+
+static tree
+build_void_list_node (void)
+{
+ tree t = build_tree_list (NULL_TREE, void_type_node);
+ return t;
+}
+
+/* Used to help initialize the builtin-types.def table. When a type of
+ the correct size doesn't exist, use error_mark_node instead of NULL.
+ The later results in segfaults even when a decl using the type doesn't
+ get invoked. */
+
+static tree
+builtin_type_for_size (int size, bool unsignedp)
+{
+ tree type = lang_hooks.types.type_for_size (size, unsignedp);
+ return type ? type : error_mark_node;
+}
+
+/* Build/push the elementary type decls that builtin functions/types
+ will need. */
+
+static void
+install_builtin_elementary_types (void)
+{
+ signed_size_type_node = size_type_node;
+ pid_type_node = integer_type_node;
+ void_list_node = build_void_list_node ();
+
+ string_type_node = build_pointer_type (char_type_node);
+ const_string_type_node
+ = build_pointer_type (build_qualified_type
+ (char_type_node, TYPE_QUAL_CONST));
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN FUNCTION TYPES *
+ * ----------------------------------------------------------------------- */
+
+/* Now, builtin function types per se. */
+
+enum c_builtin_type
+{
+#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
+#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
+#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
+#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
+#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
+#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
+#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
+#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
+#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
+#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
+#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
+#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
+#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
+#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
+#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \
+ NAME,
+#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
+#include "builtin-types.def"
+#undef DEF_PRIMITIVE_TYPE
+#undef DEF_FUNCTION_TYPE_0
+#undef DEF_FUNCTION_TYPE_1
+#undef DEF_FUNCTION_TYPE_2
+#undef DEF_FUNCTION_TYPE_3
+#undef DEF_FUNCTION_TYPE_4
+#undef DEF_FUNCTION_TYPE_5
+#undef DEF_FUNCTION_TYPE_6
+#undef DEF_FUNCTION_TYPE_7
+#undef DEF_FUNCTION_TYPE_VAR_0
+#undef DEF_FUNCTION_TYPE_VAR_1
+#undef DEF_FUNCTION_TYPE_VAR_2
+#undef DEF_FUNCTION_TYPE_VAR_3
+#undef DEF_FUNCTION_TYPE_VAR_4
+#undef DEF_FUNCTION_TYPE_VAR_5
+#undef DEF_POINTER_TYPE
+ BT_LAST
+};
+
+typedef enum c_builtin_type builtin_type;
+
+/* A temporary array used in communication with def_fn_type. */
+static GTY(()) tree builtin_types[(int) BT_LAST + 1];
+
+/* A helper function for install_builtin_types. Build function type
+ for DEF with return type RET and N arguments. If VAR is true, then the
+ function should be variadic after those N arguments.
+
+ Takes special care not to ICE if any of the types involved are
+ error_mark_node, which indicates that said type is not in fact available
+ (see builtin_type_for_size). In which case the function type as a whole
+ should be error_mark_node. */
+
+static void
+def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
+{
+ tree args = NULL, t;
+ va_list list;
+ int i;
+
+ va_start (list, n);
+ for (i = 0; i < n; ++i)
+ {
+ builtin_type a = va_arg (list, builtin_type);
+ t = builtin_types[a];
+ if (t == error_mark_node)
+ goto egress;
+ args = tree_cons (NULL_TREE, t, args);
+ }
+ va_end (list);
+
+ args = nreverse (args);
+ if (!var)
+ args = chainon (args, void_list_node);
+
+ t = builtin_types[ret];
+ if (t == error_mark_node)
+ goto egress;
+ t = build_function_type (t, args);
+
+ egress:
+ builtin_types[def] = t;
+}
+
+/* Build the builtin function types and install them in the builtin_types
+ array for later use in builtin function decls. */
+
+static void
+install_builtin_function_types (void)
+{
+ tree va_list_ref_type_node;
+ tree va_list_arg_type_node;
+
+ if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
+ {
+ va_list_arg_type_node = va_list_ref_type_node =
+ build_pointer_type (TREE_TYPE (va_list_type_node));
+ }
+ else
+ {
+ va_list_arg_type_node = va_list_type_node;
+ va_list_ref_type_node = build_reference_type (va_list_type_node);
+ }
+
+#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
+ builtin_types[ENUM] = VALUE;
+#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
+ def_fn_type (ENUM, RETURN, 0, 0);
+#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
+ def_fn_type (ENUM, RETURN, 0, 1, ARG1);
+#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
+ def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
+#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
+ def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
+#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
+ def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
+#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
+ def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
+#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6) \
+ def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
+#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
+ ARG6, ARG7) \
+ def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
+#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
+ def_fn_type (ENUM, RETURN, 1, 0);
+#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
+ def_fn_type (ENUM, RETURN, 1, 1, ARG1);
+#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
+ def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
+#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
+ def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
+#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
+ def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
+#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
+ def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
+#define DEF_POINTER_TYPE(ENUM, TYPE) \
+ builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
+
+#include "builtin-types.def"
+
+#undef DEF_PRIMITIVE_TYPE
+#undef DEF_FUNCTION_TYPE_1
+#undef DEF_FUNCTION_TYPE_2
+#undef DEF_FUNCTION_TYPE_3
+#undef DEF_FUNCTION_TYPE_4
+#undef DEF_FUNCTION_TYPE_5
+#undef DEF_FUNCTION_TYPE_6
+#undef DEF_FUNCTION_TYPE_VAR_0
+#undef DEF_FUNCTION_TYPE_VAR_1
+#undef DEF_FUNCTION_TYPE_VAR_2
+#undef DEF_FUNCTION_TYPE_VAR_3
+#undef DEF_FUNCTION_TYPE_VAR_4
+#undef DEF_FUNCTION_TYPE_VAR_5
+#undef DEF_POINTER_TYPE
+ builtin_types[(int) BT_LAST] = NULL_TREE;
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN ATTRIBUTES *
+ * ----------------------------------------------------------------------- */
+
+enum built_in_attribute
+{
+#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
+#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
+#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
+#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
+#include "builtin-attrs.def"
+#undef DEF_ATTR_NULL_TREE
+#undef DEF_ATTR_INT
+#undef DEF_ATTR_IDENT
+#undef DEF_ATTR_TREE_LIST
+ ATTR_LAST
+};
+
+static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
+
+static void
+install_builtin_attributes (void)
+{
+ /* Fill in the built_in_attributes array. */
+#define DEF_ATTR_NULL_TREE(ENUM) \
+ built_in_attributes[(int) ENUM] = NULL_TREE;
+#define DEF_ATTR_INT(ENUM, VALUE) \
+ built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
+#define DEF_ATTR_IDENT(ENUM, STRING) \
+ built_in_attributes[(int) ENUM] = get_identifier (STRING);
+#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
+ built_in_attributes[(int) ENUM] \
+ = tree_cons (built_in_attributes[(int) PURPOSE], \
+ built_in_attributes[(int) VALUE], \
+ built_in_attributes[(int) CHAIN]);
+#include "builtin-attrs.def"
+#undef DEF_ATTR_NULL_TREE
+#undef DEF_ATTR_INT
+#undef DEF_ATTR_IDENT
+#undef DEF_ATTR_TREE_LIST
+}
+
+/* Handle a "const" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_const_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_READONLY (*node) = 1;
+ else
+ *no_add_attrs = true;
+
+ return NULL_TREE;
+}
+
+/* Handle a "nothrow" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_NOTHROW (*node) = 1;
+ else
+ *no_add_attrs = true;
+
+ return NULL_TREE;
+}
+
+/* Handle a "pure" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ DECL_PURE_P (*node) = 1;
+ /* ??? TODO: Support types. */
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "no vops" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *ARG_UNUSED (no_add_attrs))
+{
+ gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
+ DECL_IS_NOVOPS (*node) = 1;
+ return NULL_TREE;
+}
+
+/* Helper for nonnull attribute handling; fetch the operand number
+ from the attribute argument list. */
+
+static bool
+get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
+{
+ /* Verify the arg number is a constant. */
+ if (TREE_CODE (arg_num_expr) != INTEGER_CST
+ || TREE_INT_CST_HIGH (arg_num_expr) != 0)
+ return false;
+
+ *valp = TREE_INT_CST_LOW (arg_num_expr);
+ return true;
+}
+
+/* Handle the "nonnull" attribute. */
+static tree
+handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
+ tree args, int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ tree type = *node;
+ unsigned HOST_WIDE_INT attr_arg_num;
+
+ /* If no arguments are specified, all pointer arguments should be
+ non-null. Verify a full prototype is given so that the arguments
+ will have the correct types when we actually check them later. */
+ if (!args)
+ {
+ if (!TYPE_ARG_TYPES (type))
+ {
+ error ("nonnull attribute without arguments on a non-prototype");
+ *no_add_attrs = true;
+ }
+ return NULL_TREE;
+ }
+
+ /* Argument list specified. Verify that each argument number references
+ a pointer argument. */
+ for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
+ {
+ tree argument;
+ unsigned HOST_WIDE_INT arg_num = 0, ck_num;
+
+ if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
+ {
+ error ("nonnull argument has invalid operand number (argument %lu)",
+ (unsigned long) attr_arg_num);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ argument = TYPE_ARG_TYPES (type);
+ if (argument)
+ {
+ for (ck_num = 1; ; ck_num++)
+ {
+ if (!argument || ck_num == arg_num)
+ break;
+ argument = TREE_CHAIN (argument);
+ }
+
+ if (!argument
+ || TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
+ {
+ error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)",
+ (unsigned long) attr_arg_num, (unsigned long) arg_num);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
+ {
+ error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)",
+ (unsigned long) attr_arg_num, (unsigned long) arg_num);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "sentinel" attribute. */
+
+static tree
+handle_sentinel_attribute (tree *node, tree name, tree args,
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ tree params = TYPE_ARG_TYPES (*node);
+
+ if (!params)
+ {
+ warning (OPT_Wattributes,
+ "%qE attribute requires prototypes with named arguments", name);
+ *no_add_attrs = true;
+ }
+ else
+ {
+ while (TREE_CHAIN (params))
+ params = TREE_CHAIN (params);
+
+ if (VOID_TYPE_P (TREE_VALUE (params)))
+ {
+ warning (OPT_Wattributes,
+ "%qE attribute only applies to variadic functions", name);
+ *no_add_attrs = true;
+ }
+ }
+
+ if (args)
+ {
+ tree position = TREE_VALUE (args);
+
+ if (TREE_CODE (position) != INTEGER_CST)
+ {
+ warning (0, "requested position is not an integer constant");
+ *no_add_attrs = true;
+ }
+ else
+ {
+ if (tree_int_cst_lt (position, integer_zero_node))
+ {
+ warning (0, "requested position is less than zero");
+ *no_add_attrs = true;
+ }
+ }
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "noreturn" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ tree type = TREE_TYPE (*node);
+
+ /* See FIXME comment in c_common_attribute_table. */
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_THIS_VOLATILE (*node) = 1;
+ else if (TREE_CODE (type) == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
+ TREE_TYPE (*node)
+ = build_pointer_type
+ (build_type_variant (TREE_TYPE (type),
+ TYPE_READONLY (TREE_TYPE (type)), 1));
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Handle a "malloc" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags), bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
+ DECL_IS_MALLOC (*node) = 1;
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored", name);
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* Fake handler for attributes we don't properly support. */
+
+tree
+fake_attribute_handler (tree * ARG_UNUSED (node),
+ tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args),
+ int ARG_UNUSED (flags),
+ bool * ARG_UNUSED (no_add_attrs))
+{
+ return NULL_TREE;
+}
+
+/* Handle a "type_generic" attribute. */
+
+static tree
+handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool * ARG_UNUSED (no_add_attrs))
+{
+ tree params;
+
+ /* Ensure we have a function type. */
+ gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE);
+
+ params = TYPE_ARG_TYPES (*node);
+ while (params && ! VOID_TYPE_P (TREE_VALUE (params)))
+ params = TREE_CHAIN (params);
+
+ /* Ensure we have a variadic function. */
+ gcc_assert (!params);
+
+ return NULL_TREE;
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN FUNCTIONS *
+ * ----------------------------------------------------------------------- */
+
+/* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two
+ names. Does not declare a non-__builtin_ function if flag_no_builtin, or
+ if nonansi_p and flag_no_nonansi_builtin. */
+
+static void
+def_builtin_1 (enum built_in_function fncode,
+ const char *name,
+ enum built_in_class fnclass,
+ tree fntype, tree libtype,
+ bool both_p, bool fallback_p,
+ bool nonansi_p ATTRIBUTE_UNUSED,
+ tree fnattrs, bool implicit_p)
+{
+ tree decl;
+ const char *libname;
+
+ /* Preserve an already installed decl. It most likely was setup in advance
+ (e.g. as part of the internal builtins) for specific reasons. */
+ if (built_in_decls[(int) fncode] != NULL_TREE)
+ return;
+
+ gcc_assert ((!both_p && !fallback_p)
+ || !strncmp (name, "__builtin_",
+ strlen ("__builtin_")));
+
+ libname = name + strlen ("__builtin_");
+ decl = add_builtin_function (name, fntype, fncode, fnclass,
+ (fallback_p ? libname : NULL),
+ fnattrs);
+ if (both_p)
+ /* ??? This is normally further controlled by command-line options
+ like -fno-builtin, but we don't have them for Ada. */
+ add_builtin_function (libname, libtype, fncode, fnclass,
+ NULL, fnattrs);
+
+ built_in_decls[(int) fncode] = decl;
+ if (implicit_p)
+ implicit_built_in_decls[(int) fncode] = decl;
+}
+
+static int flag_isoc94 = 0;
+static int flag_isoc99 = 0;
+
+/* Install what the common builtins.def offers. */
+
+static void
+install_builtin_functions (void)
+{
+#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
+ NONANSI_P, ATTRS, IMPLICIT, COND) \
+ if (NAME && COND) \
+ def_builtin_1 (ENUM, NAME, CLASS, \
+ builtin_types[(int) TYPE], \
+ builtin_types[(int) LIBTYPE], \
+ BOTH_P, FALLBACK_P, NONANSI_P, \
+ built_in_attributes[(int) ATTRS], IMPLICIT);
+#include "builtins.def"
+#undef DEF_BUILTIN
+}
+
+/* ----------------------------------------------------------------------- *
+ * BUILTIN FUNCTIONS *
+ * ----------------------------------------------------------------------- */
+
+/* Install the builtin functions we might need. */
+
+void
+gnat_install_builtins (void)
+{
+ install_builtin_elementary_types ();
+ install_builtin_function_types ();
+ install_builtin_attributes ();
+
+ /* Install builtins used by generic middle-end pieces first. Some of these
+ know about internal specificities and control attributes accordingly, for
+ instance __builtin_alloca vs no-throw and -fstack-check. We will ignore
+ the generic definition from builtins.def. */
+ build_common_builtin_nodes ();
+
+ /* Now, install the target specific builtins, such as the AltiVec family on
+ ppc, and the common set as exposed by builtins.def. */
+ targetm.init_builtins ();
+ install_builtin_functions ();
+}
+
+#include "gt-ada-utils.h"
+#include "gtype-ada.h"