aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/exp_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/exp_util.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/exp_util.adb5321
1 files changed, 0 insertions, 5321 deletions
diff --git a/gcc-4.4.3/gcc/ada/exp_util.adb b/gcc-4.4.3/gcc/ada/exp_util.adb
deleted file mode 100644
index b36f80d46..000000000
--- a/gcc-4.4.3/gcc/ada/exp_util.adb
+++ /dev/null
@@ -1,5321 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ U T I L --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Exp_Aggr; use Exp_Aggr;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Inline; use Inline;
-with Itypes; use Itypes;
-with Lib; use Lib;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Sem; use Sem;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Snames; use Snames;
-with Stand; use Stand;
-with Stringt; use Stringt;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Uintp; use Uintp;
-with Urealp; use Urealp;
-with Validsw; use Validsw;
-
-package body Exp_Util is
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Build_Task_Array_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- A_Type : Entity_Id;
- Dyn : Boolean := False) return Node_Id;
- -- Build function to generate the image string for a task that is an
- -- array component, concatenating the images of each index. To avoid
- -- storage leaks, the string is built with successive slice assignments.
- -- The flag Dyn indicates whether this is called for the initialization
- -- procedure of an array of tasks, or for the name of a dynamically
- -- created task that is assigned to an indexed component.
-
- function Build_Task_Image_Function
- (Loc : Source_Ptr;
- Decls : List_Id;
- Stats : List_Id;
- Res : Entity_Id) return Node_Id;
- -- Common processing for Task_Array_Image and Task_Record_Image.
- -- Build function body that computes image.
-
- procedure Build_Task_Image_Prefix
- (Loc : Source_Ptr;
- Len : out Entity_Id;
- Res : out Entity_Id;
- Pos : out Entity_Id;
- Prefix : Entity_Id;
- Sum : Node_Id;
- Decls : List_Id;
- Stats : List_Id);
- -- Common processing for Task_Array_Image and Task_Record_Image.
- -- Create local variables and assign prefix of name to result string.
-
- function Build_Task_Record_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- Dyn : Boolean := False) return Node_Id;
- -- Build function to generate the image string for a task that is a
- -- record component. Concatenate name of variable with that of selector.
- -- The flag Dyn indicates whether this is called for the initialization
- -- procedure of record with task components, or for a dynamically
- -- created task that is assigned to a selected component.
-
- function Make_CW_Equivalent_Type
- (T : Entity_Id;
- E : Node_Id) return Entity_Id;
- -- T is a class-wide type entity, E is the initial expression node that
- -- constrains T in case such as: " X: T := E" or "new T'(E)"
- -- This function returns the entity of the Equivalent type and inserts
- -- on the fly the necessary declaration such as:
- --
- -- type anon is record
- -- _parent : Root_Type (T); constrained with E discriminants (if any)
- -- Extension : String (1 .. expr to match size of E);
- -- end record;
- --
- -- This record is compatible with any object of the class of T thanks
- -- to the first field and has the same size as E thanks to the second.
-
- function Make_Literal_Range
- (Loc : Source_Ptr;
- Literal_Typ : Entity_Id) return Node_Id;
- -- Produce a Range node whose bounds are:
- -- Low_Bound (Literal_Type) ..
- -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
- -- this is used for expanding declarations like X : String := "sdfgdfg";
- --
- -- If the index type of the target array is not integer, we generate:
- -- Low_Bound (Literal_Type) ..
- -- Literal_Type'Val
- -- (Literal_Type'Pos (Low_Bound (Literal_Type))
- -- + (Length (Literal_Typ) -1))
-
- function New_Class_Wide_Subtype
- (CW_Typ : Entity_Id;
- N : Node_Id) return Entity_Id;
- -- Create an implicit subtype of CW_Typ attached to node N
-
- ----------------------
- -- Adjust_Condition --
- ----------------------
-
- procedure Adjust_Condition (N : Node_Id) is
- begin
- if No (N) then
- return;
- end if;
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- T : constant Entity_Id := Etype (N);
- Ti : Entity_Id;
-
- begin
- -- For now, we simply ignore a call where the argument has no
- -- type (probably case of unanalyzed condition), or has a type
- -- that is not Boolean. This is because this is a pretty marginal
- -- piece of functionality, and violations of these rules are
- -- likely to be truly marginal (how much code uses Fortran Logical
- -- as the barrier to a protected entry?) and we do not want to
- -- blow up existing programs. We can change this to an assertion
- -- after 3.12a is released ???
-
- if No (T) or else not Is_Boolean_Type (T) then
- return;
- end if;
-
- -- Apply validity checking if needed
-
- if Validity_Checks_On and Validity_Check_Tests then
- Ensure_Valid (N);
- end if;
-
- -- Immediate return if standard boolean, the most common case,
- -- where nothing needs to be done.
-
- if Base_Type (T) = Standard_Boolean then
- return;
- end if;
-
- -- Case of zero/non-zero semantics or non-standard enumeration
- -- representation. In each case, we rewrite the node as:
-
- -- ityp!(N) /= False'Enum_Rep
-
- -- where ityp is an integer type with large enough size to hold
- -- any value of type T.
-
- if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
- if Esize (T) <= Esize (Standard_Integer) then
- Ti := Standard_Integer;
- else
- Ti := Standard_Long_Long_Integer;
- end if;
-
- Rewrite (N,
- Make_Op_Ne (Loc,
- Left_Opnd => Unchecked_Convert_To (Ti, N),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Enum_Rep,
- Prefix =>
- New_Occurrence_Of (First_Literal (T), Loc))));
- Analyze_And_Resolve (N, Standard_Boolean);
-
- else
- Rewrite (N, Convert_To (Standard_Boolean, N));
- Analyze_And_Resolve (N, Standard_Boolean);
- end if;
- end;
- end Adjust_Condition;
-
- ------------------------
- -- Adjust_Result_Type --
- ------------------------
-
- procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
- begin
- -- Ignore call if current type is not Standard.Boolean
-
- if Etype (N) /= Standard_Boolean then
- return;
- end if;
-
- -- If result is already of correct type, nothing to do. Note that
- -- this will get the most common case where everything has a type
- -- of Standard.Boolean.
-
- if Base_Type (T) = Standard_Boolean then
- return;
-
- else
- declare
- KP : constant Node_Kind := Nkind (Parent (N));
-
- begin
- -- If result is to be used as a Condition in the syntax, no need
- -- to convert it back, since if it was changed to Standard.Boolean
- -- using Adjust_Condition, that is just fine for this usage.
-
- if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
- return;
-
- -- If result is an operand of another logical operation, no need
- -- to reset its type, since Standard.Boolean is just fine, and
- -- such operations always do Adjust_Condition on their operands.
-
- elsif KP in N_Op_Boolean
- or else KP = N_And_Then
- or else KP = N_Or_Else
- or else KP = N_Op_Not
- then
- return;
-
- -- Otherwise we perform a conversion from the current type,
- -- which must be Standard.Boolean, to the desired type.
-
- else
- Set_Analyzed (N);
- Rewrite (N, Convert_To (T, N));
- Analyze_And_Resolve (N, T);
- end if;
- end;
- end if;
- end Adjust_Result_Type;
-
- --------------------------
- -- Append_Freeze_Action --
- --------------------------
-
- procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
- Fnode : Node_Id;
-
- begin
- Ensure_Freeze_Node (T);
- Fnode := Freeze_Node (T);
-
- if No (Actions (Fnode)) then
- Set_Actions (Fnode, New_List);
- end if;
-
- Append (N, Actions (Fnode));
- end Append_Freeze_Action;
-
- ---------------------------
- -- Append_Freeze_Actions --
- ---------------------------
-
- procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
- Fnode : constant Node_Id := Freeze_Node (T);
-
- begin
- if No (L) then
- return;
-
- else
- if No (Actions (Fnode)) then
- Set_Actions (Fnode, L);
-
- else
- Append_List (L, Actions (Fnode));
- end if;
-
- end if;
- end Append_Freeze_Actions;
-
- ------------------------
- -- Build_Runtime_Call --
- ------------------------
-
- function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
- begin
- -- If entity is not available, we can skip making the call (this avoids
- -- junk duplicated error messages in a number of cases).
-
- if not RTE_Available (RE) then
- return Make_Null_Statement (Loc);
- else
- return
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (RTE (RE), Loc));
- end if;
- end Build_Runtime_Call;
-
- ----------------------------
- -- Build_Task_Array_Image --
- ----------------------------
-
- -- This function generates the body for a function that constructs the
- -- image string for a task that is an array component. The function is
- -- local to the init proc for the array type, and is called for each one
- -- of the components. The constructed image has the form of an indexed
- -- component, whose prefix is the outer variable of the array type.
- -- The n-dimensional array type has known indices Index, Index2...
- -- Id_Ref is an indexed component form created by the enclosing init proc.
- -- Its successive indices are Val1, Val2, ... which are the loop variables
- -- in the loops that call the individual task init proc on each component.
-
- -- The generated function has the following structure:
-
- -- function F return String is
- -- Pref : string renames Task_Name;
- -- T1 : String := Index1'Image (Val1);
- -- ...
- -- Tn : String := indexn'image (Valn);
- -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
- -- -- Len includes commas and the end parentheses.
- -- Res : String (1..Len);
- -- Pos : Integer := Pref'Length;
- --
- -- begin
- -- Res (1 .. Pos) := Pref;
- -- Pos := Pos + 1;
- -- Res (Pos) := '(';
- -- Pos := Pos + 1;
- -- Res (Pos .. Pos + T1'Length - 1) := T1;
- -- Pos := Pos + T1'Length;
- -- Res (Pos) := '.';
- -- Pos := Pos + 1;
- -- ...
- -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
- -- Res (Len) := ')';
- --
- -- return Res;
- -- end F;
- --
- -- Needless to say, multidimensional arrays of tasks are rare enough
- -- that the bulkiness of this code is not really a concern.
-
- function Build_Task_Array_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- A_Type : Entity_Id;
- Dyn : Boolean := False) return Node_Id
- is
- Dims : constant Nat := Number_Dimensions (A_Type);
- -- Number of dimensions for array of tasks
-
- Temps : array (1 .. Dims) of Entity_Id;
- -- Array of temporaries to hold string for each index
-
- Indx : Node_Id;
- -- Index expression
-
- Len : Entity_Id;
- -- Total length of generated name
-
- Pos : Entity_Id;
- -- Running index for substring assignments
-
- Pref : Entity_Id;
- -- Name of enclosing variable, prefix of resulting name
-
- Res : Entity_Id;
- -- String to hold result
-
- Val : Node_Id;
- -- Value of successive indices
-
- Sum : Node_Id;
- -- Expression to compute total size of string
-
- T : Entity_Id;
- -- Entity for name at one index position
-
- Decls : constant List_Id := New_List;
- Stats : constant List_Id := New_List;
-
- begin
- Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- -- For a dynamic task, the name comes from the target variable.
- -- For a static one it is a formal of the enclosing init proc.
-
- if Dyn then
- Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pref,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- else
- Append_To (Decls,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Pref,
- Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
- Name => Make_Identifier (Loc, Name_uTask_Name)));
- end if;
-
- Indx := First_Index (A_Type);
- Val := First (Expressions (Id_Ref));
-
- for J in 1 .. Dims loop
- T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
- Temps (J) := T;
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => T,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Image,
- Prefix =>
- New_Occurrence_Of (Etype (Indx), Loc),
- Expressions => New_List (
- New_Copy_Tree (Val)))));
-
- Next_Index (Indx);
- Next (Val);
- end loop;
-
- Sum := Make_Integer_Literal (Loc, Dims + 1);
-
- Sum :=
- Make_Op_Add (Loc,
- Left_Opnd => Sum,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Pref, Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1))));
-
- for J in 1 .. Dims loop
- Sum :=
- Make_Op_Add (Loc,
- Left_Opnd => Sum,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Temps (J), Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1))));
- end loop;
-
- Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
-
- Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value =>
- UI_From_Int (Character'Pos ('(')))));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
-
- for J in 1 .. Dims loop
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Slice (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Discrete_Range =>
- Make_Range (Loc,
- Low_Bound => New_Occurrence_Of (Pos, Loc),
- High_Bound => Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Temps (J), Loc),
- Expressions =>
- New_List (Make_Integer_Literal (Loc, 1)))),
- Right_Opnd => Make_Integer_Literal (Loc, 1)))),
-
- Expression => New_Occurrence_Of (Temps (J), Loc)));
-
- if J < Dims then
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix => New_Occurrence_Of (Temps (J), Loc),
- Expressions =>
- New_List (Make_Integer_Literal (Loc, 1))))));
-
- Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value =>
- UI_From_Int (Character'Pos (',')))));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
- end if;
- end loop;
-
- Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Len, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value =>
- UI_From_Int (Character'Pos (')')))));
- return Build_Task_Image_Function (Loc, Decls, Stats, Res);
- end Build_Task_Array_Image;
-
- ----------------------------
- -- Build_Task_Image_Decls --
- ----------------------------
-
- function Build_Task_Image_Decls
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- A_Type : Entity_Id;
- In_Init_Proc : Boolean := False) return List_Id
- is
- Decls : constant List_Id := New_List;
- T_Id : Entity_Id := Empty;
- Decl : Node_Id;
- Expr : Node_Id := Empty;
- Fun : Node_Id := Empty;
- Is_Dyn : constant Boolean :=
- Nkind (Parent (Id_Ref)) = N_Assignment_Statement
- and then
- Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
-
- begin
- -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
- -- generate a dummy declaration only.
-
- if Restriction_Active (No_Implicit_Heap_Allocations)
- or else Global_Discard_Names
- then
- T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
- Name_Len := 0;
-
- return
- New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => T_Id,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- else
- if Nkind (Id_Ref) = N_Identifier
- or else Nkind (Id_Ref) = N_Defining_Identifier
- then
- -- For a simple variable, the image of the task is built from
- -- the name of the variable. To avoid possible conflict with
- -- the anonymous type created for a single protected object,
- -- add a numeric suffix.
-
- T_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (Id_Ref), 'T', 1));
-
- Get_Name_String (Chars (Id_Ref));
-
- Expr :=
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer);
-
- elsif Nkind (Id_Ref) = N_Selected_Component then
- T_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
- Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
-
- elsif Nkind (Id_Ref) = N_Indexed_Component then
- T_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (A_Type), 'N'));
-
- Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
- end if;
- end if;
-
- if Present (Fun) then
- Append (Fun, Decls);
- Expr := Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
-
- if not In_Init_Proc and then VM_Target = No_VM then
- Set_Uses_Sec_Stack (Defining_Entity (Fun));
- end if;
- end if;
-
- Decl := Make_Object_Declaration (Loc,
- Defining_Identifier => T_Id,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Constant_Present => True,
- Expression => Expr);
-
- Append (Decl, Decls);
- return Decls;
- end Build_Task_Image_Decls;
-
- -------------------------------
- -- Build_Task_Image_Function --
- -------------------------------
-
- function Build_Task_Image_Function
- (Loc : Source_Ptr;
- Decls : List_Id;
- Stats : List_Id;
- Res : Entity_Id) return Node_Id
- is
- Spec : Node_Id;
-
- begin
- Append_To (Stats,
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Res, Loc)));
-
- Spec := Make_Function_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
- Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-
- -- Calls to 'Image use the secondary stack, which must be cleaned
- -- up after the task name is built.
-
- return Make_Subprogram_Body (Loc,
- Specification => Spec,
- Declarations => Decls,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
- end Build_Task_Image_Function;
-
- -----------------------------
- -- Build_Task_Image_Prefix --
- -----------------------------
-
- procedure Build_Task_Image_Prefix
- (Loc : Source_Ptr;
- Len : out Entity_Id;
- Res : out Entity_Id;
- Pos : out Entity_Id;
- Prefix : Entity_Id;
- Sum : Node_Id;
- Decls : List_Id;
- Stats : List_Id)
- is
- begin
- Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Len,
- Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
- Expression => Sum));
-
- Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Res,
- Object_Definition =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints =>
- New_List (
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound => New_Occurrence_Of (Len, Loc)))))));
-
- Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pos,
- Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-
- -- Pos := Prefix'Length;
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix => New_Occurrence_Of (Prefix, Loc),
- Expressions =>
- New_List (Make_Integer_Literal (Loc, 1)))));
-
- -- Res (1 .. Pos) := Prefix;
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Slice (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Discrete_Range =>
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound => New_Occurrence_Of (Pos, Loc))),
-
- Expression => New_Occurrence_Of (Prefix, Loc)));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
- end Build_Task_Image_Prefix;
-
- -----------------------------
- -- Build_Task_Record_Image --
- -----------------------------
-
- function Build_Task_Record_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- Dyn : Boolean := False) return Node_Id
- is
- Len : Entity_Id;
- -- Total length of generated name
-
- Pos : Entity_Id;
- -- Index into result
-
- Res : Entity_Id;
- -- String to hold result
-
- Pref : Entity_Id;
- -- Name of enclosing variable, prefix of resulting name
-
- Sum : Node_Id;
- -- Expression to compute total size of string
-
- Sel : Entity_Id;
- -- Entity for selector name
-
- Decls : constant List_Id := New_List;
- Stats : constant List_Id := New_List;
-
- begin
- Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- -- For a dynamic task, the name comes from the target variable.
- -- For a static one it is a formal of the enclosing init proc.
-
- if Dyn then
- Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pref,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- else
- Append_To (Decls,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Pref,
- Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
- Name => Make_Identifier (Loc, Name_uTask_Name)));
- end if;
-
- Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
-
- Get_Name_String (Chars (Selector_Name (Id_Ref)));
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Sel,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
-
- Sum :=
- Make_Op_Add (Loc,
- Left_Opnd => Sum,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Pref, Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1))));
-
- Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
-
- Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
-
- -- Res (Pos) := '.';
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value =>
- UI_From_Int (Character'Pos ('.')))));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
-
- -- Res (Pos .. Len) := Selector;
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Slice (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Discrete_Range =>
- Make_Range (Loc,
- Low_Bound => New_Occurrence_Of (Pos, Loc),
- High_Bound => New_Occurrence_Of (Len, Loc))),
- Expression => New_Occurrence_Of (Sel, Loc)));
-
- return Build_Task_Image_Function (Loc, Decls, Stats, Res);
- end Build_Task_Record_Image;
-
- ----------------------------------
- -- Component_May_Be_Bit_Aligned --
- ----------------------------------
-
- function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
- begin
- -- If no component clause, then everything is fine, since the back end
- -- never bit-misaligns by default, even if there is a pragma Packed for
- -- the record.
-
- if No (Component_Clause (Comp)) then
- return False;
- end if;
-
- -- It is only array and record types that cause trouble
-
- if not Is_Record_Type (Etype (Comp))
- and then not Is_Array_Type (Etype (Comp))
- then
- return False;
-
- -- If we know that we have a small (64 bits or less) record
- -- or bit-packed array, then everything is fine, since the
- -- back end can handle these cases correctly.
-
- elsif Esize (Comp) <= 64
- and then (Is_Record_Type (Etype (Comp))
- or else Is_Bit_Packed_Array (Etype (Comp)))
- then
- return False;
-
- -- Otherwise if the component is not byte aligned, we know we have the
- -- nasty unaligned case.
-
- elsif Normalized_First_Bit (Comp) /= Uint_0
- or else Esize (Comp) mod System_Storage_Unit /= Uint_0
- then
- return True;
-
- -- If we are large and byte aligned, then OK at this level
-
- else
- return False;
- end if;
- end Component_May_Be_Bit_Aligned;
-
- -----------------------------------
- -- Corresponding_Runtime_Package --
- -----------------------------------
-
- function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
- Pkg_Id : RTU_Id := RTU_Null;
-
- begin
- pragma Assert (Is_Concurrent_Type (Typ));
-
- if Ekind (Typ) in Protected_Kind then
- if Has_Entries (Typ)
- or else Has_Interrupt_Handler (Typ)
- or else (Has_Attach_Handler (Typ)
- and then not Restricted_Profile)
-
- -- A protected type without entries that covers an interface and
- -- overrides the abstract routines with protected procedures is
- -- considered equivalent to a protected type with entries in the
- -- context of dispatching select statements. It is sufficient to
- -- check for the presence of an interface list in the declaration
- -- node to recognize this case.
-
- or else Present (Interface_List (Parent (Typ)))
- then
- if Abort_Allowed
- or else Restriction_Active (No_Entry_Queue) = False
- or else Number_Entries (Typ) > 1
- or else (Has_Attach_Handler (Typ)
- and then not Restricted_Profile)
- then
- Pkg_Id := System_Tasking_Protected_Objects_Entries;
- else
- Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
- end if;
-
- else
- Pkg_Id := System_Tasking_Protected_Objects;
- end if;
- end if;
-
- return Pkg_Id;
- end Corresponding_Runtime_Package;
-
- -------------------------------
- -- Convert_To_Actual_Subtype --
- -------------------------------
-
- procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
- Act_ST : Entity_Id;
-
- begin
- Act_ST := Get_Actual_Subtype (Exp);
-
- if Act_ST = Etype (Exp) then
- return;
-
- else
- Rewrite (Exp,
- Convert_To (Act_ST, Relocate_Node (Exp)));
- Analyze_And_Resolve (Exp, Act_ST);
- end if;
- end Convert_To_Actual_Subtype;
-
- -----------------------------------
- -- Current_Sem_Unit_Declarations --
- -----------------------------------
-
- function Current_Sem_Unit_Declarations return List_Id is
- U : Node_Id := Unit (Cunit (Current_Sem_Unit));
- Decls : List_Id;
-
- begin
- -- If the current unit is a package body, locate the visible
- -- declarations of the package spec.
-
- if Nkind (U) = N_Package_Body then
- U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
- end if;
-
- if Nkind (U) = N_Package_Declaration then
- U := Specification (U);
- Decls := Visible_Declarations (U);
-
- if No (Decls) then
- Decls := New_List;
- Set_Visible_Declarations (U, Decls);
- end if;
-
- else
- Decls := Declarations (U);
-
- if No (Decls) then
- Decls := New_List;
- Set_Declarations (U, Decls);
- end if;
- end if;
-
- return Decls;
- end Current_Sem_Unit_Declarations;
-
- -----------------------
- -- Duplicate_Subexpr --
- -----------------------
-
- function Duplicate_Subexpr
- (Exp : Node_Id;
- Name_Req : Boolean := False) return Node_Id
- is
- begin
- Remove_Side_Effects (Exp, Name_Req);
- return New_Copy_Tree (Exp);
- end Duplicate_Subexpr;
-
- ---------------------------------
- -- Duplicate_Subexpr_No_Checks --
- ---------------------------------
-
- function Duplicate_Subexpr_No_Checks
- (Exp : Node_Id;
- Name_Req : Boolean := False) return Node_Id
- is
- New_Exp : Node_Id;
-
- begin
- Remove_Side_Effects (Exp, Name_Req);
- New_Exp := New_Copy_Tree (Exp);
- Remove_Checks (New_Exp);
- return New_Exp;
- end Duplicate_Subexpr_No_Checks;
-
- -----------------------------------
- -- Duplicate_Subexpr_Move_Checks --
- -----------------------------------
-
- function Duplicate_Subexpr_Move_Checks
- (Exp : Node_Id;
- Name_Req : Boolean := False) return Node_Id
- is
- New_Exp : Node_Id;
-
- begin
- Remove_Side_Effects (Exp, Name_Req);
- New_Exp := New_Copy_Tree (Exp);
- Remove_Checks (Exp);
- return New_Exp;
- end Duplicate_Subexpr_Move_Checks;
-
- --------------------
- -- Ensure_Defined --
- --------------------
-
- procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
- IR : Node_Id;
-
- begin
- -- An itype reference must only be created if this is a local
- -- itype, so that gigi can elaborate it on the proper objstack.
-
- if Is_Itype (Typ)
- and then Scope (Typ) = Current_Scope
- then
- IR := Make_Itype_Reference (Sloc (N));
- Set_Itype (IR, Typ);
- Insert_Action (N, IR);
- end if;
- end Ensure_Defined;
-
- --------------------
- -- Entry_Names_OK --
- --------------------
-
- function Entry_Names_OK return Boolean is
- begin
- return
- not Restricted_Profile
- and then not Global_Discard_Names
- and then not Restriction_Active (No_Implicit_Heap_Allocations)
- and then not Restriction_Active (No_Local_Allocators);
- end Entry_Names_OK;
-
- ---------------------
- -- Evolve_And_Then --
- ---------------------
-
- procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
- begin
- if No (Cond) then
- Cond := Cond1;
- else
- Cond :=
- Make_And_Then (Sloc (Cond1),
- Left_Opnd => Cond,
- Right_Opnd => Cond1);
- end if;
- end Evolve_And_Then;
-
- --------------------
- -- Evolve_Or_Else --
- --------------------
-
- procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
- begin
- if No (Cond) then
- Cond := Cond1;
- else
- Cond :=
- Make_Or_Else (Sloc (Cond1),
- Left_Opnd => Cond,
- Right_Opnd => Cond1);
- end if;
- end Evolve_Or_Else;
-
- ------------------------------
- -- Expand_Subtype_From_Expr --
- ------------------------------
-
- -- This function is applicable for both static and dynamic allocation of
- -- objects which are constrained by an initial expression. Basically it
- -- transforms an unconstrained subtype indication into a constrained one.
- -- The expression may also be transformed in certain cases in order to
- -- avoid multiple evaluation. In the static allocation case, the general
- -- scheme is:
-
- -- Val : T := Expr;
-
- -- is transformed into
-
- -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
- --
- -- Here are the main cases :
- --
- -- <if Expr is a Slice>
- -- Val : T ([Index_Subtype (Expr)]) := Expr;
- --
- -- <elsif Expr is a String Literal>
- -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
- --
- -- <elsif Expr is Constrained>
- -- subtype T is Type_Of_Expr
- -- Val : T := Expr;
- --
- -- <elsif Expr is an entity_name>
- -- Val : T (constraints taken from Expr) := Expr;
- --
- -- <else>
- -- type Axxx is access all T;
- -- Rval : Axxx := Expr'ref;
- -- Val : T (constraints taken from Rval) := Rval.all;
-
- -- ??? note: when the Expression is allocated in the secondary stack
- -- we could use it directly instead of copying it by declaring
- -- Val : T (...) renames Rval.all
-
- procedure Expand_Subtype_From_Expr
- (N : Node_Id;
- Unc_Type : Entity_Id;
- Subtype_Indic : Node_Id;
- Exp : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Exp_Typ : constant Entity_Id := Etype (Exp);
- T : Entity_Id;
-
- begin
- -- In general we cannot build the subtype if expansion is disabled,
- -- because internal entities may not have been defined. However, to
- -- avoid some cascaded errors, we try to continue when the expression
- -- is an array (or string), because it is safe to compute the bounds.
- -- It is in fact required to do so even in a generic context, because
- -- there may be constants that depend on bounds of string literal.
-
- if not Expander_Active
- and then (No (Etype (Exp))
- or else Base_Type (Etype (Exp)) /= Standard_String)
- then
- return;
- end if;
-
- if Nkind (Exp) = N_Slice then
- declare
- Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
-
- begin
- Rewrite (Subtype_Indic,
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Unc_Type, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => New_List
- (New_Reference_To (Slice_Type, Loc)))));
-
- -- This subtype indication may be used later for constraint checks
- -- we better make sure that if a variable was used as a bound of
- -- of the original slice, its value is frozen.
-
- Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
- Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
- end;
-
- elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
- Rewrite (Subtype_Indic,
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Unc_Type, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => New_List (
- Make_Literal_Range (Loc,
- Literal_Typ => Exp_Typ)))));
-
- elsif Is_Constrained (Exp_Typ)
- and then not Is_Class_Wide_Type (Unc_Type)
- then
- if Is_Itype (Exp_Typ) then
-
- -- Within an initialization procedure, a selected component
- -- denotes a component of the enclosing record, and it appears
- -- as an actual in a call to its own initialization procedure.
- -- If this component depends on the outer discriminant, we must
- -- generate the proper actual subtype for it.
-
- if Nkind (Exp) = N_Selected_Component
- and then Within_Init_Proc
- then
- declare
- Decl : constant Node_Id :=
- Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
- begin
- if Present (Decl) then
- Insert_Action (N, Decl);
- T := Defining_Identifier (Decl);
- else
- T := Exp_Typ;
- end if;
- end;
-
- -- No need to generate a new one (new what???)
-
- else
- T := Exp_Typ;
- end if;
-
- else
- T :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('T'));
-
- Insert_Action (N,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => T,
- Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
-
- -- This type is marked as an itype even though it has an
- -- explicit declaration because otherwise it can be marked
- -- with Is_Generic_Actual_Type and generate spurious errors.
- -- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
-
- Set_Is_Itype (T);
- Set_Associated_Node_For_Itype (T, Exp);
- end if;
-
- Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
-
- -- nothing needs to be done for private types with unknown discriminants
- -- if the underlying type is not an unconstrained composite type.
-
- elsif Is_Private_Type (Unc_Type)
- and then Has_Unknown_Discriminants (Unc_Type)
- and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
- or else Is_Constrained (Underlying_Type (Unc_Type)))
- then
- null;
-
- -- Nothing to be done for derived types with unknown discriminants if
- -- the parent type also has unknown discriminants.
-
- elsif Is_Record_Type (Unc_Type)
- and then not Is_Class_Wide_Type (Unc_Type)
- and then Has_Unknown_Discriminants (Unc_Type)
- and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
- then
- null;
-
- -- In Ada95, Nothing to be done if the type of the expression is
- -- limited, because in this case the expression cannot be copied,
- -- and its use can only be by reference.
-
- -- In Ada2005, the context can be an object declaration whose expression
- -- is a function that returns in place. If the nominal subtype has
- -- unknown discriminants, the call still provides constraints on the
- -- object, and we have to create an actual subtype from it.
-
- -- If the type is class-wide, the expression is dynamically tagged and
- -- we do not create an actual subtype either. Ditto for an interface.
-
- elsif Is_Limited_Type (Exp_Typ)
- and then
- (Is_Class_Wide_Type (Exp_Typ)
- or else Is_Interface (Exp_Typ)
- or else not Has_Unknown_Discriminants (Exp_Typ)
- or else not Is_Composite_Type (Unc_Type))
- then
- null;
-
- -- For limited interfaces, nothing to be done
-
- -- This branch may be redundant once the limited interface issue is
- -- sorted out???
-
- elsif Is_Interface (Exp_Typ)
- and then Is_Limited_Interface (Exp_Typ)
- then
- null;
-
- -- For limited objects initialized with build in place function calls,
- -- nothing to be done; otherwise we prematurely introduce an N_Reference
- -- node in the expression initializing the object, which breaks the
- -- circuitry that detects and adds the additional arguments to the
- -- called function.
-
- elsif Is_Build_In_Place_Function_Call (Exp) then
- null;
-
- else
- Remove_Side_Effects (Exp);
- Rewrite (Subtype_Indic,
- Make_Subtype_From_Expr (Exp, Unc_Type));
- end if;
- end Expand_Subtype_From_Expr;
-
- ------------------------
- -- Find_Interface_ADT --
- ------------------------
-
- function Find_Interface_ADT
- (T : Entity_Id;
- Iface : Entity_Id) return Elmt_Id
- is
- ADT : Elmt_Id;
- Typ : Entity_Id := T;
-
- begin
- pragma Assert (Is_Interface (Iface));
-
- -- Handle private types
-
- if Has_Private_Declaration (Typ)
- and then Present (Full_View (Typ))
- then
- Typ := Full_View (Typ);
- end if;
-
- -- Handle access types
-
- if Is_Access_Type (Typ) then
- Typ := Directly_Designated_Type (Typ);
- end if;
-
- -- Handle task and protected types implementing interfaces
-
- if Is_Concurrent_Type (Typ) then
- Typ := Corresponding_Record_Type (Typ);
- end if;
-
- pragma Assert
- (not Is_Class_Wide_Type (Typ)
- and then Ekind (Typ) /= E_Incomplete_Type);
-
- if Is_Ancestor (Iface, Typ) then
- return First_Elmt (Access_Disp_Table (Typ));
-
- else
- ADT :=
- Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
- while Present (ADT)
- and then Present (Related_Type (Node (ADT)))
- and then Related_Type (Node (ADT)) /= Iface
- and then not Is_Ancestor (Iface, Related_Type (Node (ADT)))
- loop
- Next_Elmt (ADT);
- end loop;
-
- pragma Assert (Present (Related_Type (Node (ADT))));
- return ADT;
- end if;
- end Find_Interface_ADT;
-
- ------------------------
- -- Find_Interface_Tag --
- ------------------------
-
- function Find_Interface_Tag
- (T : Entity_Id;
- Iface : Entity_Id) return Entity_Id
- is
- AI_Tag : Entity_Id;
- Found : Boolean := False;
- Typ : Entity_Id := T;
-
- procedure Find_Tag (Typ : Entity_Id);
- -- Internal subprogram used to recursively climb to the ancestors
-
- --------------
- -- Find_Tag --
- --------------
-
- procedure Find_Tag (Typ : Entity_Id) is
- AI_Elmt : Elmt_Id;
- AI : Node_Id;
-
- begin
- -- Check if the interface is an immediate ancestor of the type and
- -- therefore shares the main tag.
-
- if Typ = Iface then
- pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
- AI_Tag := First_Tag_Component (Typ);
- Found := True;
- return;
- end if;
-
- -- Climb to the root type handling private types
-
- if Present (Full_View (Etype (Typ))) then
- if Full_View (Etype (Typ)) /= Typ then
- Find_Tag (Full_View (Etype (Typ)));
- end if;
-
- elsif Etype (Typ) /= Typ then
- Find_Tag (Etype (Typ));
- end if;
-
- -- Traverse the list of interfaces implemented by the type
-
- if not Found
- and then Present (Interfaces (Typ))
- and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
- then
- -- Skip the tag associated with the primary table
-
- pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
- AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
- pragma Assert (Present (AI_Tag));
-
- AI_Elmt := First_Elmt (Interfaces (Typ));
- while Present (AI_Elmt) loop
- AI := Node (AI_Elmt);
-
- if AI = Iface or else Is_Ancestor (Iface, AI) then
- Found := True;
- return;
- end if;
-
- AI_Tag := Next_Tag_Component (AI_Tag);
- Next_Elmt (AI_Elmt);
- end loop;
- end if;
- end Find_Tag;
-
- -- Start of processing for Find_Interface_Tag
-
- begin
- pragma Assert (Is_Interface (Iface));
-
- -- Handle private types
-
- if Has_Private_Declaration (Typ)
- and then Present (Full_View (Typ))
- then
- Typ := Full_View (Typ);
- end if;
-
- -- Handle access types
-
- if Is_Access_Type (Typ) then
- Typ := Directly_Designated_Type (Typ);
- end if;
-
- -- Handle task and protected types implementing interfaces
-
- if Is_Concurrent_Type (Typ) then
- Typ := Corresponding_Record_Type (Typ);
- end if;
-
- if Is_Class_Wide_Type (Typ) then
- Typ := Etype (Typ);
- end if;
-
- -- Handle entities from the limited view
-
- if Ekind (Typ) = E_Incomplete_Type then
- pragma Assert (Present (Non_Limited_View (Typ)));
- Typ := Non_Limited_View (Typ);
- end if;
-
- Find_Tag (Typ);
- pragma Assert (Found);
- return AI_Tag;
- end Find_Interface_Tag;
-
- ------------------
- -- Find_Prim_Op --
- ------------------
-
- function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
- Prim : Elmt_Id;
- Typ : Entity_Id := T;
- Op : Entity_Id;
-
- begin
- if Is_Class_Wide_Type (Typ) then
- Typ := Root_Type (Typ);
- end if;
-
- Typ := Underlying_Type (Typ);
-
- -- Loop through primitive operations
-
- Prim := First_Elmt (Primitive_Operations (Typ));
- while Present (Prim) loop
- Op := Node (Prim);
-
- -- We can retrieve primitive operations by name if it is an internal
- -- name. For equality we must check that both of its operands have
- -- the same type, to avoid confusion with user-defined equalities
- -- than may have a non-symmetric signature.
-
- exit when Chars (Op) = Name
- and then
- (Name /= Name_Op_Eq
- or else Etype (First_Entity (Op)) = Etype (Last_Entity (Op)));
-
- Next_Elmt (Prim);
-
- -- Raise Program_Error if no primitive found
-
- if No (Prim) then
- raise Program_Error;
- end if;
- end loop;
-
- return Node (Prim);
- end Find_Prim_Op;
-
- ------------------
- -- Find_Prim_Op --
- ------------------
-
- function Find_Prim_Op
- (T : Entity_Id;
- Name : TSS_Name_Type) return Entity_Id
- is
- Prim : Elmt_Id;
- Typ : Entity_Id := T;
-
- begin
- if Is_Class_Wide_Type (Typ) then
- Typ := Root_Type (Typ);
- end if;
-
- Typ := Underlying_Type (Typ);
-
- Prim := First_Elmt (Primitive_Operations (Typ));
- while not Is_TSS (Node (Prim), Name) loop
- Next_Elmt (Prim);
-
- -- Raise program error if no primitive found
-
- if No (Prim) then
- raise Program_Error;
- end if;
- end loop;
-
- return Node (Prim);
- end Find_Prim_Op;
-
- ----------------------------
- -- Find_Protection_Object --
- ----------------------------
-
- function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
- S : Entity_Id;
-
- begin
- S := Scop;
- while Present (S) loop
- if (Ekind (S) = E_Entry
- or else Ekind (S) = E_Entry_Family
- or else Ekind (S) = E_Function
- or else Ekind (S) = E_Procedure)
- and then Present (Protection_Object (S))
- then
- return Protection_Object (S);
- end if;
-
- S := Scope (S);
- end loop;
-
- -- If we do not find a Protection object in the scope chain, then
- -- something has gone wrong, most likely the object was never created.
-
- raise Program_Error;
- end Find_Protection_Object;
-
- ----------------------
- -- Force_Evaluation --
- ----------------------
-
- procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
- begin
- Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
- end Force_Evaluation;
-
- ------------------------
- -- Generate_Poll_Call --
- ------------------------
-
- procedure Generate_Poll_Call (N : Node_Id) is
- begin
- -- No poll call if polling not active
-
- if not Polling_Required then
- return;
-
- -- Otherwise generate require poll call
-
- else
- Insert_Before_And_Analyze (N,
- Make_Procedure_Call_Statement (Sloc (N),
- Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
- end if;
- end Generate_Poll_Call;
-
- ---------------------------------
- -- Get_Current_Value_Condition --
- ---------------------------------
-
- -- Note: the implementation of this procedure is very closely tied to the
- -- implementation of Set_Current_Value_Condition. In the Get procedure, we
- -- interpret Current_Value fields set by the Set procedure, so the two
- -- procedures need to be closely coordinated.
-
- procedure Get_Current_Value_Condition
- (Var : Node_Id;
- Op : out Node_Kind;
- Val : out Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Var);
- Ent : constant Entity_Id := Entity (Var);
-
- procedure Process_Current_Value_Condition
- (N : Node_Id;
- S : Boolean);
- -- N is an expression which holds either True (S = True) or False (S =
- -- False) in the condition. This procedure digs out the expression and
- -- if it refers to Ent, sets Op and Val appropriately.
-
- -------------------------------------
- -- Process_Current_Value_Condition --
- -------------------------------------
-
- procedure Process_Current_Value_Condition
- (N : Node_Id;
- S : Boolean)
- is
- Cond : Node_Id;
- Sens : Boolean;
-
- begin
- Cond := N;
- Sens := S;
-
- -- Deal with NOT operators, inverting sense
-
- while Nkind (Cond) = N_Op_Not loop
- Cond := Right_Opnd (Cond);
- Sens := not Sens;
- end loop;
-
- -- Deal with AND THEN and AND cases
-
- if Nkind (Cond) = N_And_Then
- or else Nkind (Cond) = N_Op_And
- then
- -- Don't ever try to invert a condition that is of the form
- -- of an AND or AND THEN (since we are not doing sufficiently
- -- general processing to allow this).
-
- if Sens = False then
- Op := N_Empty;
- Val := Empty;
- return;
- end if;
-
- -- Recursively process AND and AND THEN branches
-
- Process_Current_Value_Condition (Left_Opnd (Cond), True);
-
- if Op /= N_Empty then
- return;
- end if;
-
- Process_Current_Value_Condition (Right_Opnd (Cond), True);
- return;
-
- -- Case of relational operator
-
- elsif Nkind (Cond) in N_Op_Compare then
- Op := Nkind (Cond);
-
- -- Invert sense of test if inverted test
-
- if Sens = False then
- case Op is
- when N_Op_Eq => Op := N_Op_Ne;
- when N_Op_Ne => Op := N_Op_Eq;
- when N_Op_Lt => Op := N_Op_Ge;
- when N_Op_Gt => Op := N_Op_Le;
- when N_Op_Le => Op := N_Op_Gt;
- when N_Op_Ge => Op := N_Op_Lt;
- when others => raise Program_Error;
- end case;
- end if;
-
- -- Case of entity op value
-
- if Is_Entity_Name (Left_Opnd (Cond))
- and then Ent = Entity (Left_Opnd (Cond))
- and then Compile_Time_Known_Value (Right_Opnd (Cond))
- then
- Val := Right_Opnd (Cond);
-
- -- Case of value op entity
-
- elsif Is_Entity_Name (Right_Opnd (Cond))
- and then Ent = Entity (Right_Opnd (Cond))
- and then Compile_Time_Known_Value (Left_Opnd (Cond))
- then
- Val := Left_Opnd (Cond);
-
- -- We are effectively swapping operands
-
- case Op is
- when N_Op_Eq => null;
- when N_Op_Ne => null;
- when N_Op_Lt => Op := N_Op_Gt;
- when N_Op_Gt => Op := N_Op_Lt;
- when N_Op_Le => Op := N_Op_Ge;
- when N_Op_Ge => Op := N_Op_Le;
- when others => raise Program_Error;
- end case;
-
- else
- Op := N_Empty;
- end if;
-
- return;
-
- -- Case of Boolean variable reference, return as though the
- -- reference had said var = True.
-
- else
- if Is_Entity_Name (Cond)
- and then Ent = Entity (Cond)
- then
- Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
-
- if Sens = False then
- Op := N_Op_Ne;
- else
- Op := N_Op_Eq;
- end if;
- end if;
- end if;
- end Process_Current_Value_Condition;
-
- -- Start of processing for Get_Current_Value_Condition
-
- begin
- Op := N_Empty;
- Val := Empty;
-
- -- Immediate return, nothing doing, if this is not an object
-
- if Ekind (Ent) not in Object_Kind then
- return;
- end if;
-
- -- Otherwise examine current value
-
- declare
- CV : constant Node_Id := Current_Value (Ent);
- Sens : Boolean;
- Stm : Node_Id;
-
- begin
- -- If statement. Condition is known true in THEN section, known False
- -- in any ELSIF or ELSE part, and unknown outside the IF statement.
-
- if Nkind (CV) = N_If_Statement then
-
- -- Before start of IF statement
-
- if Loc < Sloc (CV) then
- return;
-
- -- After end of IF statement
-
- elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
- return;
- end if;
-
- -- At this stage we know that we are within the IF statement, but
- -- unfortunately, the tree does not record the SLOC of the ELSE so
- -- we cannot use a simple SLOC comparison to distinguish between
- -- the then/else statements, so we have to climb the tree.
-
- declare
- N : Node_Id;
-
- begin
- N := Parent (Var);
- while Parent (N) /= CV loop
- N := Parent (N);
-
- -- If we fall off the top of the tree, then that's odd, but
- -- perhaps it could occur in some error situation, and the
- -- safest response is simply to assume that the outcome of
- -- the condition is unknown. No point in bombing during an
- -- attempt to optimize things.
-
- if No (N) then
- return;
- end if;
- end loop;
-
- -- Now we have N pointing to a node whose parent is the IF
- -- statement in question, so now we can tell if we are within
- -- the THEN statements.
-
- if Is_List_Member (N)
- and then List_Containing (N) = Then_Statements (CV)
- then
- Sens := True;
-
- -- If the variable reference does not come from source, we
- -- cannot reliably tell whether it appears in the else part.
- -- In particular, if it appears in generated code for a node
- -- that requires finalization, it may be attached to a list
- -- that has not been yet inserted into the code. For now,
- -- treat it as unknown.
-
- elsif not Comes_From_Source (N) then
- return;
-
- -- Otherwise we must be in ELSIF or ELSE part
-
- else
- Sens := False;
- end if;
- end;
-
- -- ELSIF part. Condition is known true within the referenced
- -- ELSIF, known False in any subsequent ELSIF or ELSE part, and
- -- unknown before the ELSE part or after the IF statement.
-
- elsif Nkind (CV) = N_Elsif_Part then
- Stm := Parent (CV);
-
- -- Before start of ELSIF part
-
- if Loc < Sloc (CV) then
- return;
-
- -- After end of IF statement
-
- elsif Loc >= Sloc (Stm) +
- Text_Ptr (UI_To_Int (End_Span (Stm)))
- then
- return;
- end if;
-
- -- Again we lack the SLOC of the ELSE, so we need to climb the
- -- tree to see if we are within the ELSIF part in question.
-
- declare
- N : Node_Id;
-
- begin
- N := Parent (Var);
- while Parent (N) /= Stm loop
- N := Parent (N);
-
- -- If we fall off the top of the tree, then that's odd, but
- -- perhaps it could occur in some error situation, and the
- -- safest response is simply to assume that the outcome of
- -- the condition is unknown. No point in bombing during an
- -- attempt to optimize things.
-
- if No (N) then
- return;
- end if;
- end loop;
-
- -- Now we have N pointing to a node whose parent is the IF
- -- statement in question, so see if is the ELSIF part we want.
- -- the THEN statements.
-
- if N = CV then
- Sens := True;
-
- -- Otherwise we must be in subsequent ELSIF or ELSE part
-
- else
- Sens := False;
- end if;
- end;
-
- -- Iteration scheme of while loop. The condition is known to be
- -- true within the body of the loop.
-
- elsif Nkind (CV) = N_Iteration_Scheme then
- declare
- Loop_Stmt : constant Node_Id := Parent (CV);
-
- begin
- -- Before start of body of loop
-
- if Loc < Sloc (Loop_Stmt) then
- return;
-
- -- After end of LOOP statement
-
- elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
- return;
-
- -- We are within the body of the loop
-
- else
- Sens := True;
- end if;
- end;
-
- -- All other cases of Current_Value settings
-
- else
- return;
- end if;
-
- -- If we fall through here, then we have a reportable condition, Sens
- -- is True if the condition is true and False if it needs inverting.
-
- Process_Current_Value_Condition (Condition (CV), Sens);
- end;
- end Get_Current_Value_Condition;
-
- ---------------------------------
- -- Has_Controlled_Coextensions --
- ---------------------------------
-
- function Has_Controlled_Coextensions (Typ : Entity_Id) return Boolean is
- D_Typ : Entity_Id;
- Discr : Entity_Id;
-
- begin
- -- Only consider record types
-
- if Ekind (Typ) /= E_Record_Type
- and then Ekind (Typ) /= E_Record_Subtype
- then
- return False;
- end if;
-
- if Has_Discriminants (Typ) then
- Discr := First_Discriminant (Typ);
- while Present (Discr) loop
- D_Typ := Etype (Discr);
-
- if Ekind (D_Typ) = E_Anonymous_Access_Type
- and then
- (Is_Controlled (Directly_Designated_Type (D_Typ))
- or else
- Is_Concurrent_Type (Directly_Designated_Type (D_Typ)))
- then
- return True;
- end if;
-
- Next_Discriminant (Discr);
- end loop;
- end if;
-
- return False;
- end Has_Controlled_Coextensions;
-
- --------------------
- -- Homonym_Number --
- --------------------
-
- function Homonym_Number (Subp : Entity_Id) return Nat is
- Count : Nat;
- Hom : Entity_Id;
-
- begin
- Count := 1;
- Hom := Homonym (Subp);
- while Present (Hom) loop
- if Scope (Hom) = Scope (Subp) then
- Count := Count + 1;
- end if;
-
- Hom := Homonym (Hom);
- end loop;
-
- return Count;
- end Homonym_Number;
-
- ------------------------------
- -- In_Unconditional_Context --
- ------------------------------
-
- function In_Unconditional_Context (Node : Node_Id) return Boolean is
- P : Node_Id;
-
- begin
- P := Node;
- while Present (P) loop
- case Nkind (P) is
- when N_Subprogram_Body =>
- return True;
-
- when N_If_Statement =>
- return False;
-
- when N_Loop_Statement =>
- return False;
-
- when N_Case_Statement =>
- return False;
-
- when others =>
- P := Parent (P);
- end case;
- end loop;
-
- return False;
- end In_Unconditional_Context;
-
- -------------------
- -- Insert_Action --
- -------------------
-
- procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
- begin
- if Present (Ins_Action) then
- Insert_Actions (Assoc_Node, New_List (Ins_Action));
- end if;
- end Insert_Action;
-
- -- Version with check(s) suppressed
-
- procedure Insert_Action
- (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
- is
- begin
- Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
- end Insert_Action;
-
- --------------------
- -- Insert_Actions --
- --------------------
-
- procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
- N : Node_Id;
- P : Node_Id;
-
- Wrapped_Node : Node_Id := Empty;
-
- begin
- if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
- return;
- end if;
-
- -- Ignore insert of actions from inside default expression (or other
- -- similar "spec expression") in the special spec-expression analyze
- -- mode. Any insertions at this point have no relevance, since we are
- -- only doing the analyze to freeze the types of any static expressions.
- -- See section "Handling of Default Expressions" in the spec of package
- -- Sem for further details.
-
- if In_Spec_Expression then
- return;
- end if;
-
- -- If the action derives from stuff inside a record, then the actions
- -- are attached to the current scope, to be inserted and analyzed on
- -- exit from the scope. The reason for this is that we may also
- -- be generating freeze actions at the same time, and they must
- -- eventually be elaborated in the correct order.
-
- if Is_Record_Type (Current_Scope)
- and then not Is_Frozen (Current_Scope)
- then
- if No (Scope_Stack.Table
- (Scope_Stack.Last).Pending_Freeze_Actions)
- then
- Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
- Ins_Actions;
- else
- Append_List
- (Ins_Actions,
- Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
- end if;
-
- return;
- end if;
-
- -- We now intend to climb up the tree to find the right point to
- -- insert the actions. We start at Assoc_Node, unless this node is
- -- a subexpression in which case we start with its parent. We do this
- -- for two reasons. First it speeds things up. Second, if Assoc_Node
- -- is itself one of the special nodes like N_And_Then, then we assume
- -- that an initial request to insert actions for such a node does not
- -- expect the actions to get deposited in the node for later handling
- -- when the node is expanded, since clearly the node is being dealt
- -- with by the caller. Note that in the subexpression case, N is
- -- always the child we came from.
-
- -- N_Raise_xxx_Error is an annoying special case, it is a statement
- -- if it has type Standard_Void_Type, and a subexpression otherwise.
- -- otherwise. Procedure attribute references are also statements.
-
- if Nkind (Assoc_Node) in N_Subexpr
- and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
- or else Etype (Assoc_Node) /= Standard_Void_Type)
- and then (Nkind (Assoc_Node) /= N_Attribute_Reference
- or else
- not Is_Procedure_Attribute_Name
- (Attribute_Name (Assoc_Node)))
- then
- P := Assoc_Node; -- ??? does not agree with above!
- N := Parent (Assoc_Node);
-
- -- Non-subexpression case. Note that N is initially Empty in this
- -- case (N is only guaranteed Non-Empty in the subexpr case).
-
- else
- P := Assoc_Node;
- N := Empty;
- end if;
-
- -- Capture root of the transient scope
-
- if Scope_Is_Transient then
- Wrapped_Node := Node_To_Be_Wrapped;
- end if;
-
- loop
- pragma Assert (Present (P));
-
- case Nkind (P) is
-
- -- Case of right operand of AND THEN or OR ELSE. Put the actions
- -- in the Actions field of the right operand. They will be moved
- -- out further when the AND THEN or OR ELSE operator is expanded.
- -- Nothing special needs to be done for the left operand since
- -- in that case the actions are executed unconditionally.
-
- when N_And_Then | N_Or_Else =>
- if N = Right_Opnd (P) then
-
- -- We are now going to either append the actions to the
- -- actions field of the short-circuit operation. We will
- -- also analyze the actions now.
-
- -- This analysis is really too early, the proper thing would
- -- be to just park them there now, and only analyze them if
- -- we find we really need them, and to it at the proper
- -- final insertion point. However attempting to this proved
- -- tricky, so for now we just kill current values before and
- -- after the analyze call to make sure we avoid peculiar
- -- optimizations from this out of order insertion.
-
- Kill_Current_Values;
-
- if Present (Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Actions (P)), Ins_Actions);
- else
- Set_Actions (P, Ins_Actions);
- Analyze_List (Actions (P));
- end if;
-
- Kill_Current_Values;
-
- return;
- end if;
-
- -- Then or Else operand of conditional expression. Add actions to
- -- Then_Actions or Else_Actions field as appropriate. The actions
- -- will be moved further out when the conditional is expanded.
-
- when N_Conditional_Expression =>
- declare
- ThenX : constant Node_Id := Next (First (Expressions (P)));
- ElseX : constant Node_Id := Next (ThenX);
-
- begin
- -- Actions belong to the then expression, temporarily
- -- place them as Then_Actions of the conditional expr.
- -- They will be moved to the proper place later when
- -- the conditional expression is expanded.
-
- if N = ThenX then
- if Present (Then_Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Then_Actions (P)), Ins_Actions);
- else
- Set_Then_Actions (P, Ins_Actions);
- Analyze_List (Then_Actions (P));
- end if;
-
- return;
-
- -- Actions belong to the else expression, temporarily
- -- place them as Else_Actions of the conditional expr.
- -- They will be moved to the proper place later when
- -- the conditional expression is expanded.
-
- elsif N = ElseX then
- if Present (Else_Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Else_Actions (P)), Ins_Actions);
- else
- Set_Else_Actions (P, Ins_Actions);
- Analyze_List (Else_Actions (P));
- end if;
-
- return;
-
- -- Actions belong to the condition. In this case they are
- -- unconditionally executed, and so we can continue the
- -- search for the proper insert point.
-
- else
- null;
- end if;
- end;
-
- -- Case of appearing in the condition of a while expression or
- -- elsif. We insert the actions into the Condition_Actions field.
- -- They will be moved further out when the while loop or elsif
- -- is analyzed.
-
- when N_Iteration_Scheme |
- N_Elsif_Part
- =>
- if N = Condition (P) then
- if Present (Condition_Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Condition_Actions (P)), Ins_Actions);
- else
- Set_Condition_Actions (P, Ins_Actions);
-
- -- Set the parent of the insert actions explicitly.
- -- This is not a syntactic field, but we need the
- -- parent field set, in particular so that freeze
- -- can understand that it is dealing with condition
- -- actions, and properly insert the freezing actions.
-
- Set_Parent (Ins_Actions, P);
- Analyze_List (Condition_Actions (P));
- end if;
-
- return;
- end if;
-
- -- Statements, declarations, pragmas, representation clauses
-
- when
- -- Statements
-
- N_Procedure_Call_Statement |
- N_Statement_Other_Than_Procedure_Call |
-
- -- Pragmas
-
- N_Pragma |
-
- -- Representation_Clause
-
- N_At_Clause |
- N_Attribute_Definition_Clause |
- N_Enumeration_Representation_Clause |
- N_Record_Representation_Clause |
-
- -- Declarations
-
- N_Abstract_Subprogram_Declaration |
- N_Entry_Body |
- N_Exception_Declaration |
- N_Exception_Renaming_Declaration |
- N_Formal_Abstract_Subprogram_Declaration |
- N_Formal_Concrete_Subprogram_Declaration |
- N_Formal_Object_Declaration |
- N_Formal_Type_Declaration |
- N_Full_Type_Declaration |
- N_Function_Instantiation |
- N_Generic_Function_Renaming_Declaration |
- N_Generic_Package_Declaration |
- N_Generic_Package_Renaming_Declaration |
- N_Generic_Procedure_Renaming_Declaration |
- N_Generic_Subprogram_Declaration |
- N_Implicit_Label_Declaration |
- N_Incomplete_Type_Declaration |
- N_Number_Declaration |
- N_Object_Declaration |
- N_Object_Renaming_Declaration |
- N_Package_Body |
- N_Package_Body_Stub |
- N_Package_Declaration |
- N_Package_Instantiation |
- N_Package_Renaming_Declaration |
- N_Private_Extension_Declaration |
- N_Private_Type_Declaration |
- N_Procedure_Instantiation |
- N_Protected_Body |
- N_Protected_Body_Stub |
- N_Protected_Type_Declaration |
- N_Single_Task_Declaration |
- N_Subprogram_Body |
- N_Subprogram_Body_Stub |
- N_Subprogram_Declaration |
- N_Subprogram_Renaming_Declaration |
- N_Subtype_Declaration |
- N_Task_Body |
- N_Task_Body_Stub |
- N_Task_Type_Declaration |
-
- -- Freeze entity behaves like a declaration or statement
-
- N_Freeze_Entity
- =>
- -- Do not insert here if the item is not a list member (this
- -- happens for example with a triggering statement, and the
- -- proper approach is to insert before the entire select).
-
- if not Is_List_Member (P) then
- null;
-
- -- Do not insert if parent of P is an N_Component_Association
- -- node (i.e. we are in the context of an N_Aggregate or
- -- N_Extension_Aggregate node. In this case we want to insert
- -- before the entire aggregate.
-
- elsif Nkind (Parent (P)) = N_Component_Association then
- null;
-
- -- Do not insert if the parent of P is either an N_Variant
- -- node or an N_Record_Definition node, meaning in either
- -- case that P is a member of a component list, and that
- -- therefore the actions should be inserted outside the
- -- complete record declaration.
-
- elsif Nkind (Parent (P)) = N_Variant
- or else Nkind (Parent (P)) = N_Record_Definition
- then
- null;
-
- -- Do not insert freeze nodes within the loop generated for
- -- an aggregate, because they may be elaborated too late for
- -- subsequent use in the back end: within a package spec the
- -- loop is part of the elaboration procedure and is only
- -- elaborated during the second pass.
- -- If the loop comes from source, or the entity is local to
- -- the loop itself it must remain within.
-
- elsif Nkind (Parent (P)) = N_Loop_Statement
- and then not Comes_From_Source (Parent (P))
- and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
- and then
- Scope (Entity (First (Ins_Actions))) /= Current_Scope
- then
- null;
-
- -- Otherwise we can go ahead and do the insertion
-
- elsif P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- return;
-
- else
- Insert_List_Before_And_Analyze (P, Ins_Actions);
- return;
- end if;
-
- -- A special case, N_Raise_xxx_Error can act either as a
- -- statement or a subexpression. We tell the difference
- -- by looking at the Etype. It is set to Standard_Void_Type
- -- in the statement case.
-
- when
- N_Raise_xxx_Error =>
- if Etype (P) = Standard_Void_Type then
- if P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- else
- Insert_List_Before_And_Analyze (P, Ins_Actions);
- end if;
-
- return;
-
- -- In the subexpression case, keep climbing
-
- else
- null;
- end if;
-
- -- If a component association appears within a loop created for
- -- an array aggregate, attach the actions to the association so
- -- they can be subsequently inserted within the loop. For other
- -- component associations insert outside of the aggregate. For
- -- an association that will generate a loop, its Loop_Actions
- -- attribute is already initialized (see exp_aggr.adb).
-
- -- The list of loop_actions can in turn generate additional ones,
- -- that are inserted before the associated node. If the associated
- -- node is outside the aggregate, the new actions are collected
- -- at the end of the loop actions, to respect the order in which
- -- they are to be elaborated.
-
- when
- N_Component_Association =>
- if Nkind (Parent (P)) = N_Aggregate
- and then Present (Loop_Actions (P))
- then
- if Is_Empty_List (Loop_Actions (P)) then
- Set_Loop_Actions (P, Ins_Actions);
- Analyze_List (Ins_Actions);
-
- else
- declare
- Decl : Node_Id;
-
- begin
- -- Check whether these actions were generated
- -- by a declaration that is part of the loop_
- -- actions for the component_association.
-
- Decl := Assoc_Node;
- while Present (Decl) loop
- exit when Parent (Decl) = P
- and then Is_List_Member (Decl)
- and then
- List_Containing (Decl) = Loop_Actions (P);
- Decl := Parent (Decl);
- end loop;
-
- if Present (Decl) then
- Insert_List_Before_And_Analyze
- (Decl, Ins_Actions);
- else
- Insert_List_After_And_Analyze
- (Last (Loop_Actions (P)), Ins_Actions);
- end if;
- end;
- end if;
-
- return;
-
- else
- null;
- end if;
-
- -- Another special case, an attribute denoting a procedure call
-
- when
- N_Attribute_Reference =>
- if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
- if P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- else
- Insert_List_Before_And_Analyze (P, Ins_Actions);
- end if;
-
- return;
-
- -- In the subexpression case, keep climbing
-
- else
- null;
- end if;
-
- -- For all other node types, keep climbing tree
-
- when
- N_Abortable_Part |
- N_Accept_Alternative |
- N_Access_Definition |
- N_Access_Function_Definition |
- N_Access_Procedure_Definition |
- N_Access_To_Object_Definition |
- N_Aggregate |
- N_Allocator |
- N_Case_Statement_Alternative |
- N_Character_Literal |
- N_Compilation_Unit |
- N_Compilation_Unit_Aux |
- N_Component_Clause |
- N_Component_Declaration |
- N_Component_Definition |
- N_Component_List |
- N_Constrained_Array_Definition |
- N_Decimal_Fixed_Point_Definition |
- N_Defining_Character_Literal |
- N_Defining_Identifier |
- N_Defining_Operator_Symbol |
- N_Defining_Program_Unit_Name |
- N_Delay_Alternative |
- N_Delta_Constraint |
- N_Derived_Type_Definition |
- N_Designator |
- N_Digits_Constraint |
- N_Discriminant_Association |
- N_Discriminant_Specification |
- N_Empty |
- N_Entry_Body_Formal_Part |
- N_Entry_Call_Alternative |
- N_Entry_Declaration |
- N_Entry_Index_Specification |
- N_Enumeration_Type_Definition |
- N_Error |
- N_Exception_Handler |
- N_Expanded_Name |
- N_Explicit_Dereference |
- N_Extension_Aggregate |
- N_Floating_Point_Definition |
- N_Formal_Decimal_Fixed_Point_Definition |
- N_Formal_Derived_Type_Definition |
- N_Formal_Discrete_Type_Definition |
- N_Formal_Floating_Point_Definition |
- N_Formal_Modular_Type_Definition |
- N_Formal_Ordinary_Fixed_Point_Definition |
- N_Formal_Package_Declaration |
- N_Formal_Private_Type_Definition |
- N_Formal_Signed_Integer_Type_Definition |
- N_Function_Call |
- N_Function_Specification |
- N_Generic_Association |
- N_Handled_Sequence_Of_Statements |
- N_Identifier |
- N_In |
- N_Index_Or_Discriminant_Constraint |
- N_Indexed_Component |
- N_Integer_Literal |
- N_Itype_Reference |
- N_Label |
- N_Loop_Parameter_Specification |
- N_Mod_Clause |
- N_Modular_Type_Definition |
- N_Not_In |
- N_Null |
- N_Op_Abs |
- N_Op_Add |
- N_Op_And |
- N_Op_Concat |
- N_Op_Divide |
- N_Op_Eq |
- N_Op_Expon |
- N_Op_Ge |
- N_Op_Gt |
- N_Op_Le |
- N_Op_Lt |
- N_Op_Minus |
- N_Op_Mod |
- N_Op_Multiply |
- N_Op_Ne |
- N_Op_Not |
- N_Op_Or |
- N_Op_Plus |
- N_Op_Rem |
- N_Op_Rotate_Left |
- N_Op_Rotate_Right |
- N_Op_Shift_Left |
- N_Op_Shift_Right |
- N_Op_Shift_Right_Arithmetic |
- N_Op_Subtract |
- N_Op_Xor |
- N_Operator_Symbol |
- N_Ordinary_Fixed_Point_Definition |
- N_Others_Choice |
- N_Package_Specification |
- N_Parameter_Association |
- N_Parameter_Specification |
- N_Pop_Constraint_Error_Label |
- N_Pop_Program_Error_Label |
- N_Pop_Storage_Error_Label |
- N_Pragma_Argument_Association |
- N_Procedure_Specification |
- N_Protected_Definition |
- N_Push_Constraint_Error_Label |
- N_Push_Program_Error_Label |
- N_Push_Storage_Error_Label |
- N_Qualified_Expression |
- N_Range |
- N_Range_Constraint |
- N_Real_Literal |
- N_Real_Range_Specification |
- N_Record_Definition |
- N_Reference |
- N_Selected_Component |
- N_Signed_Integer_Type_Definition |
- N_Single_Protected_Declaration |
- N_Slice |
- N_String_Literal |
- N_Subprogram_Info |
- N_Subtype_Indication |
- N_Subunit |
- N_Task_Definition |
- N_Terminate_Alternative |
- N_Triggering_Alternative |
- N_Type_Conversion |
- N_Unchecked_Expression |
- N_Unchecked_Type_Conversion |
- N_Unconstrained_Array_Definition |
- N_Unused_At_End |
- N_Unused_At_Start |
- N_Use_Package_Clause |
- N_Use_Type_Clause |
- N_Variant |
- N_Variant_Part |
- N_Validate_Unchecked_Conversion |
- N_With_Clause
- =>
- null;
-
- end case;
-
- -- Make sure that inserted actions stay in the transient scope
-
- if P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- return;
- end if;
-
- -- If we fall through above tests, keep climbing tree
-
- N := P;
-
- if Nkind (Parent (N)) = N_Subunit then
-
- -- This is the proper body corresponding to a stub. Insertion
- -- must be done at the point of the stub, which is in the decla-
- -- rative part of the parent unit.
-
- P := Corresponding_Stub (Parent (N));
-
- else
- P := Parent (N);
- end if;
- end loop;
- end Insert_Actions;
-
- -- Version with check(s) suppressed
-
- procedure Insert_Actions
- (Assoc_Node : Node_Id;
- Ins_Actions : List_Id;
- Suppress : Check_Id)
- is
- begin
- if Suppress = All_Checks then
- declare
- Svg : constant Suppress_Array := Scope_Suppress;
- begin
- Scope_Suppress := (others => True);
- Insert_Actions (Assoc_Node, Ins_Actions);
- Scope_Suppress := Svg;
- end;
-
- else
- declare
- Svg : constant Boolean := Scope_Suppress (Suppress);
- begin
- Scope_Suppress (Suppress) := True;
- Insert_Actions (Assoc_Node, Ins_Actions);
- Scope_Suppress (Suppress) := Svg;
- end;
- end if;
- end Insert_Actions;
-
- --------------------------
- -- Insert_Actions_After --
- --------------------------
-
- procedure Insert_Actions_After
- (Assoc_Node : Node_Id;
- Ins_Actions : List_Id)
- is
- begin
- if Scope_Is_Transient
- and then Assoc_Node = Node_To_Be_Wrapped
- then
- Store_After_Actions_In_Scope (Ins_Actions);
- else
- Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
- end if;
- end Insert_Actions_After;
-
- ---------------------------------
- -- Insert_Library_Level_Action --
- ---------------------------------
-
- procedure Insert_Library_Level_Action (N : Node_Id) is
- Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
-
- begin
- Push_Scope (Cunit_Entity (Main_Unit));
- -- ??? should this be Current_Sem_Unit instead of Main_Unit?
-
- if No (Actions (Aux)) then
- Set_Actions (Aux, New_List (N));
- else
- Append (N, Actions (Aux));
- end if;
-
- Analyze (N);
- Pop_Scope;
- end Insert_Library_Level_Action;
-
- ----------------------------------
- -- Insert_Library_Level_Actions --
- ----------------------------------
-
- procedure Insert_Library_Level_Actions (L : List_Id) is
- Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
-
- begin
- if Is_Non_Empty_List (L) then
- Push_Scope (Cunit_Entity (Main_Unit));
- -- ??? should this be Current_Sem_Unit instead of Main_Unit?
-
- if No (Actions (Aux)) then
- Set_Actions (Aux, L);
- Analyze_List (L);
- else
- Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
- end if;
-
- Pop_Scope;
- end if;
- end Insert_Library_Level_Actions;
-
- ----------------------
- -- Inside_Init_Proc --
- ----------------------
-
- function Inside_Init_Proc return Boolean is
- S : Entity_Id;
-
- begin
- S := Current_Scope;
- while Present (S)
- and then S /= Standard_Standard
- loop
- if Is_Init_Proc (S) then
- return True;
- else
- S := Scope (S);
- end if;
- end loop;
-
- return False;
- end Inside_Init_Proc;
-
- ----------------------------
- -- Is_All_Null_Statements --
- ----------------------------
-
- function Is_All_Null_Statements (L : List_Id) return Boolean is
- Stm : Node_Id;
-
- begin
- Stm := First (L);
- while Present (Stm) loop
- if Nkind (Stm) /= N_Null_Statement then
- return False;
- end if;
-
- Next (Stm);
- end loop;
-
- return True;
- end Is_All_Null_Statements;
-
- ----------------------------------
- -- Is_Library_Level_Tagged_Type --
- ----------------------------------
-
- function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
- begin
- return Is_Tagged_Type (Typ)
- and then Is_Library_Level_Entity (Typ);
- end Is_Library_Level_Tagged_Type;
-
- ----------------------------------
- -- Is_Possibly_Unaligned_Object --
- ----------------------------------
-
- function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
- T : constant Entity_Id := Etype (N);
-
- begin
- -- If renamed object, apply test to underlying object
-
- if Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
- end if;
-
- -- Tagged and controlled types and aliased types are always aligned,
- -- as are concurrent types.
-
- if Is_Aliased (T)
- or else Has_Controlled_Component (T)
- or else Is_Concurrent_Type (T)
- or else Is_Tagged_Type (T)
- or else Is_Controlled (T)
- then
- return False;
- end if;
-
- -- If this is an element of a packed array, may be unaligned
-
- if Is_Ref_To_Bit_Packed_Array (N) then
- return True;
- end if;
-
- -- Case of component reference
-
- if Nkind (N) = N_Selected_Component then
- declare
- P : constant Node_Id := Prefix (N);
- C : constant Entity_Id := Entity (Selector_Name (N));
- M : Nat;
- S : Nat;
-
- begin
- -- If component reference is for an array with non-static bounds,
- -- then it is always aligned: we can only process unaligned
- -- arrays with static bounds (more accurately bounds known at
- -- compile time).
-
- if Is_Array_Type (T)
- and then not Compile_Time_Known_Bounds (T)
- then
- return False;
- end if;
-
- -- If component is aliased, it is definitely properly aligned
-
- if Is_Aliased (C) then
- return False;
- end if;
-
- -- If component is for a type implemented as a scalar, and the
- -- record is packed, and the component is other than the first
- -- component of the record, then the component may be unaligned.
-
- if Is_Packed (Etype (P))
- and then Represented_As_Scalar (Etype (C))
- and then First_Entity (Scope (C)) /= C
- then
- return True;
- end if;
-
- -- Compute maximum possible alignment for T
-
- -- If alignment is known, then that settles things
-
- if Known_Alignment (T) then
- M := UI_To_Int (Alignment (T));
-
- -- If alignment is not known, tentatively set max alignment
-
- else
- M := Ttypes.Maximum_Alignment;
-
- -- We can reduce this if the Esize is known since the default
- -- alignment will never be more than the smallest power of 2
- -- that does not exceed this Esize value.
-
- if Known_Esize (T) then
- S := UI_To_Int (Esize (T));
-
- while (M / 2) >= S loop
- M := M / 2;
- end loop;
- end if;
- end if;
-
- -- If the component reference is for a record that has a specified
- -- alignment, and we either know it is too small, or cannot tell,
- -- then the component may be unaligned
-
- if Known_Alignment (Etype (P))
- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
- and then M > Alignment (Etype (P))
- then
- return True;
- end if;
-
- -- Case of component clause present which may specify an
- -- unaligned position.
-
- if Present (Component_Clause (C)) then
-
- -- Otherwise we can do a test to make sure that the actual
- -- start position in the record, and the length, are both
- -- consistent with the required alignment. If not, we know
- -- that we are unaligned.
-
- declare
- Align_In_Bits : constant Nat := M * System_Storage_Unit;
- begin
- if Component_Bit_Offset (C) mod Align_In_Bits /= 0
- or else Esize (C) mod Align_In_Bits /= 0
- then
- return True;
- end if;
- end;
- end if;
-
- -- Otherwise, for a component reference, test prefix
-
- return Is_Possibly_Unaligned_Object (P);
- end;
-
- -- If not a component reference, must be aligned
-
- else
- return False;
- end if;
- end Is_Possibly_Unaligned_Object;
-
- ---------------------------------
- -- Is_Possibly_Unaligned_Slice --
- ---------------------------------
-
- function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
- begin
- -- Go to renamed object
-
- if Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
- end if;
-
- -- The reference must be a slice
-
- if Nkind (N) /= N_Slice then
- return False;
- end if;
-
- -- Always assume the worst for a nested record component with a
- -- component clause, which gigi/gcc does not appear to handle well.
- -- It is not clear why this special test is needed at all ???
-
- if Nkind (Prefix (N)) = N_Selected_Component
- and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
- and then
- Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
- then
- return True;
- end if;
-
- -- We only need to worry if the target has strict alignment
-
- if not Target_Strict_Alignment then
- return False;
- end if;
-
- -- If it is a slice, then look at the array type being sliced
-
- declare
- Sarr : constant Node_Id := Prefix (N);
- -- Prefix of the slice, i.e. the array being sliced
-
- Styp : constant Entity_Id := Etype (Prefix (N));
- -- Type of the array being sliced
-
- Pref : Node_Id;
- Ptyp : Entity_Id;
-
- begin
- -- The problems arise if the array object that is being sliced
- -- is a component of a record or array, and we cannot guarantee
- -- the alignment of the array within its containing object.
-
- -- To investigate this, we look at successive prefixes to see
- -- if we have a worrisome indexed or selected component.
-
- Pref := Sarr;
- loop
- -- Case of array is part of an indexed component reference
-
- if Nkind (Pref) = N_Indexed_Component then
- Ptyp := Etype (Prefix (Pref));
-
- -- The only problematic case is when the array is packed,
- -- in which case we really know nothing about the alignment
- -- of individual components.
-
- if Is_Bit_Packed_Array (Ptyp) then
- return True;
- end if;
-
- -- Case of array is part of a selected component reference
-
- elsif Nkind (Pref) = N_Selected_Component then
- Ptyp := Etype (Prefix (Pref));
-
- -- We are definitely in trouble if the record in question
- -- has an alignment, and either we know this alignment is
- -- inconsistent with the alignment of the slice, or we
- -- don't know what the alignment of the slice should be.
-
- if Known_Alignment (Ptyp)
- and then (Unknown_Alignment (Styp)
- or else Alignment (Styp) > Alignment (Ptyp))
- then
- return True;
- end if;
-
- -- We are in potential trouble if the record type is packed.
- -- We could special case when we know that the array is the
- -- first component, but that's not such a simple case ???
-
- if Is_Packed (Ptyp) then
- return True;
- end if;
-
- -- We are in trouble if there is a component clause, and
- -- either we do not know the alignment of the slice, or
- -- the alignment of the slice is inconsistent with the
- -- bit position specified by the component clause.
-
- declare
- Field : constant Entity_Id := Entity (Selector_Name (Pref));
- begin
- if Present (Component_Clause (Field))
- and then
- (Unknown_Alignment (Styp)
- or else
- (Component_Bit_Offset (Field) mod
- (System_Storage_Unit * Alignment (Styp))) /= 0)
- then
- return True;
- end if;
- end;
-
- -- For cases other than selected or indexed components we
- -- know we are OK, since no issues arise over alignment.
-
- else
- return False;
- end if;
-
- -- We processed an indexed component or selected component
- -- reference that looked safe, so keep checking prefixes.
-
- Pref := Prefix (Pref);
- end loop;
- end;
- end Is_Possibly_Unaligned_Slice;
-
- --------------------------------
- -- Is_Ref_To_Bit_Packed_Array --
- --------------------------------
-
- function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
- Result : Boolean;
- Expr : Node_Id;
-
- begin
- if Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
- end if;
-
- if Nkind (N) = N_Indexed_Component
- or else
- Nkind (N) = N_Selected_Component
- then
- if Is_Bit_Packed_Array (Etype (Prefix (N))) then
- Result := True;
- else
- Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
- end if;
-
- if Result and then Nkind (N) = N_Indexed_Component then
- Expr := First (Expressions (N));
- while Present (Expr) loop
- Force_Evaluation (Expr);
- Next (Expr);
- end loop;
- end if;
-
- return Result;
-
- else
- return False;
- end if;
- end Is_Ref_To_Bit_Packed_Array;
-
- --------------------------------
- -- Is_Ref_To_Bit_Packed_Slice --
- --------------------------------
-
- function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
- begin
- if Nkind (N) = N_Type_Conversion then
- return Is_Ref_To_Bit_Packed_Slice (Expression (N));
-
- elsif Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
-
- elsif Nkind (N) = N_Slice
- and then Is_Bit_Packed_Array (Etype (Prefix (N)))
- then
- return True;
-
- elsif Nkind (N) = N_Indexed_Component
- or else
- Nkind (N) = N_Selected_Component
- then
- return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
-
- else
- return False;
- end if;
- end Is_Ref_To_Bit_Packed_Slice;
-
- -----------------------
- -- Is_Renamed_Object --
- -----------------------
-
- function Is_Renamed_Object (N : Node_Id) return Boolean is
- Pnod : constant Node_Id := Parent (N);
- Kind : constant Node_Kind := Nkind (Pnod);
-
- begin
- if Kind = N_Object_Renaming_Declaration then
- return True;
-
- elsif Kind = N_Indexed_Component
- or else Kind = N_Selected_Component
- then
- return Is_Renamed_Object (Pnod);
-
- else
- return False;
- end if;
- end Is_Renamed_Object;
-
- ----------------------------
- -- Is_Untagged_Derivation --
- ----------------------------
-
- function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
- begin
- return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
- or else
- (Is_Private_Type (T) and then Present (Full_View (T))
- and then not Is_Tagged_Type (Full_View (T))
- and then Is_Derived_Type (Full_View (T))
- and then Etype (Full_View (T)) /= T);
- end Is_Untagged_Derivation;
-
- ---------------------------
- -- Is_Volatile_Reference --
- ---------------------------
-
- function Is_Volatile_Reference (N : Node_Id) return Boolean is
- begin
- if Nkind (N) in N_Has_Etype
- and then Present (Etype (N))
- and then Treat_As_Volatile (Etype (N))
- then
- return True;
-
- elsif Is_Entity_Name (N) then
- return Treat_As_Volatile (Entity (N));
-
- elsif Nkind (N) = N_Slice then
- return Is_Volatile_Reference (Prefix (N));
-
- elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
- if (Is_Entity_Name (Prefix (N))
- and then Has_Volatile_Components (Entity (Prefix (N))))
- or else (Present (Etype (Prefix (N)))
- and then Has_Volatile_Components (Etype (Prefix (N))))
- then
- return True;
- else
- return Is_Volatile_Reference (Prefix (N));
- end if;
-
- else
- return False;
- end if;
- end Is_Volatile_Reference;
-
- --------------------
- -- Kill_Dead_Code --
- --------------------
-
- procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
- begin
- if Present (N) then
- Remove_Warning_Messages (N);
-
- if Warn then
- Error_Msg_F
- ("?this code can never be executed and has been deleted!", N);
- end if;
-
- -- Recurse into block statements and bodies to process declarations
- -- and statements
-
- if Nkind (N) = N_Block_Statement
- or else Nkind (N) = N_Subprogram_Body
- or else Nkind (N) = N_Package_Body
- then
- Kill_Dead_Code (Declarations (N), False);
- Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
-
- if Nkind (N) = N_Subprogram_Body then
- Set_Is_Eliminated (Defining_Entity (N));
- end if;
-
- elsif Nkind (N) = N_Package_Declaration then
- Kill_Dead_Code (Visible_Declarations (Specification (N)));
- Kill_Dead_Code (Private_Declarations (Specification (N)));
-
- -- ??? After this point, Delete_Tree has been called on all
- -- declarations in Specification (N), so references to
- -- entities therein look suspicious.
-
- declare
- E : Entity_Id := First_Entity (Defining_Entity (N));
- begin
- while Present (E) loop
- if Ekind (E) = E_Operator then
- Set_Is_Eliminated (E);
- end if;
-
- Next_Entity (E);
- end loop;
- end;
-
- -- Recurse into composite statement to kill individual statements,
- -- in particular instantiations.
-
- elsif Nkind (N) = N_If_Statement then
- Kill_Dead_Code (Then_Statements (N));
- Kill_Dead_Code (Elsif_Parts (N));
- Kill_Dead_Code (Else_Statements (N));
-
- elsif Nkind (N) = N_Loop_Statement then
- Kill_Dead_Code (Statements (N));
-
- elsif Nkind (N) = N_Case_Statement then
- declare
- Alt : Node_Id;
- begin
- Alt := First (Alternatives (N));
- while Present (Alt) loop
- Kill_Dead_Code (Statements (Alt));
- Next (Alt);
- end loop;
- end;
-
- elsif Nkind (N) = N_Case_Statement_Alternative then
- Kill_Dead_Code (Statements (N));
-
- -- Deal with dead instances caused by deleting instantiations
-
- elsif Nkind (N) in N_Generic_Instantiation then
- Remove_Dead_Instance (N);
- end if;
- end if;
- end Kill_Dead_Code;
-
- -- Case where argument is a list of nodes to be killed
-
- procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
- N : Node_Id;
- W : Boolean;
- begin
- W := Warn;
- if Is_Non_Empty_List (L) then
- N := First (L);
- while Present (N) loop
- Kill_Dead_Code (N, W);
- W := False;
- Next (N);
- end loop;
- end if;
- end Kill_Dead_Code;
-
- ------------------------
- -- Known_Non_Negative --
- ------------------------
-
- function Known_Non_Negative (Opnd : Node_Id) return Boolean is
- begin
- if Is_OK_Static_Expression (Opnd)
- and then Expr_Value (Opnd) >= 0
- then
- return True;
-
- else
- declare
- Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
-
- begin
- return
- Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
- end;
- end if;
- end Known_Non_Negative;
-
- --------------------
- -- Known_Non_Null --
- --------------------
-
- function Known_Non_Null (N : Node_Id) return Boolean is
- begin
- -- Checks for case where N is an entity reference
-
- if Is_Entity_Name (N) and then Present (Entity (N)) then
- declare
- E : constant Entity_Id := Entity (N);
- Op : Node_Kind;
- Val : Node_Id;
-
- begin
- -- First check if we are in decisive conditional
-
- Get_Current_Value_Condition (N, Op, Val);
-
- if Known_Null (Val) then
- if Op = N_Op_Eq then
- return False;
- elsif Op = N_Op_Ne then
- return True;
- end if;
- end if;
-
- -- If OK to do replacement, test Is_Known_Non_Null flag
-
- if OK_To_Do_Constant_Replacement (E) then
- return Is_Known_Non_Null (E);
-
- -- Otherwise if not safe to do replacement, then say so
-
- else
- return False;
- end if;
- end;
-
- -- True if access attribute
-
- elsif Nkind (N) = N_Attribute_Reference
- and then (Attribute_Name (N) = Name_Access
- or else
- Attribute_Name (N) = Name_Unchecked_Access
- or else
- Attribute_Name (N) = Name_Unrestricted_Access)
- then
- return True;
-
- -- True if allocator
-
- elsif Nkind (N) = N_Allocator then
- return True;
-
- -- For a conversion, true if expression is known non-null
-
- elsif Nkind (N) = N_Type_Conversion then
- return Known_Non_Null (Expression (N));
-
- -- Above are all cases where the value could be determined to be
- -- non-null. In all other cases, we don't know, so return False.
-
- else
- return False;
- end if;
- end Known_Non_Null;
-
- ----------------
- -- Known_Null --
- ----------------
-
- function Known_Null (N : Node_Id) return Boolean is
- begin
- -- Checks for case where N is an entity reference
-
- if Is_Entity_Name (N) and then Present (Entity (N)) then
- declare
- E : constant Entity_Id := Entity (N);
- Op : Node_Kind;
- Val : Node_Id;
-
- begin
- -- Constant null value is for sure null
-
- if Ekind (E) = E_Constant
- and then Known_Null (Constant_Value (E))
- then
- return True;
- end if;
-
- -- First check if we are in decisive conditional
-
- Get_Current_Value_Condition (N, Op, Val);
-
- if Known_Null (Val) then
- if Op = N_Op_Eq then
- return True;
- elsif Op = N_Op_Ne then
- return False;
- end if;
- end if;
-
- -- If OK to do replacement, test Is_Known_Null flag
-
- if OK_To_Do_Constant_Replacement (E) then
- return Is_Known_Null (E);
-
- -- Otherwise if not safe to do replacement, then say so
-
- else
- return False;
- end if;
- end;
-
- -- True if explicit reference to null
-
- elsif Nkind (N) = N_Null then
- return True;
-
- -- For a conversion, true if expression is known null
-
- elsif Nkind (N) = N_Type_Conversion then
- return Known_Null (Expression (N));
-
- -- Above are all cases where the value could be determined to be null.
- -- In all other cases, we don't know, so return False.
-
- else
- return False;
- end if;
- end Known_Null;
-
- -----------------------------
- -- Make_CW_Equivalent_Type --
- -----------------------------
-
- -- Create a record type used as an equivalent of any member
- -- of the class which takes its size from exp.
-
- -- Generate the following code:
-
- -- type Equiv_T is record
- -- _parent : T (List of discriminant constraints taken from Exp);
- -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
- -- end Equiv_T;
- --
- -- ??? Note that this type does not guarantee same alignment as all
- -- derived types
-
- function Make_CW_Equivalent_Type
- (T : Entity_Id;
- E : Node_Id) return Entity_Id
- is
- Loc : constant Source_Ptr := Sloc (E);
- Root_Typ : constant Entity_Id := Root_Type (T);
- List_Def : constant List_Id := Empty_List;
- Comp_List : constant List_Id := New_List;
- Equiv_Type : Entity_Id;
- Range_Type : Entity_Id;
- Str_Type : Entity_Id;
- Constr_Root : Entity_Id;
- Sizexpr : Node_Id;
-
- begin
- if not Has_Discriminants (Root_Typ) then
- Constr_Root := Root_Typ;
- else
- Constr_Root :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
-
- -- subtype cstr__n is T (List of discr constraints taken from Exp)
-
- Append_To (List_Def,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Constr_Root,
- Subtype_Indication =>
- Make_Subtype_From_Expr (E, Root_Typ)));
- end if;
-
- -- Generate the range subtype declaration
-
- Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
-
- if not Is_Interface (Root_Typ) then
- -- subtype rg__xx is
- -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
-
- Sizexpr :=
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
- Attribute_Name => Name_Size),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Constr_Root, Loc),
- Attribute_Name => Name_Object_Size));
- else
- -- subtype rg__xx is
- -- Storage_Offset range 1 .. Expr'size / Storage_Unit
-
- Sizexpr :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
- Attribute_Name => Name_Size);
- end if;
-
- Set_Paren_Count (Sizexpr, 1);
-
- Append_To (List_Def,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Range_Type,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
- Constraint => Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound =>
- Make_Op_Divide (Loc,
- Left_Opnd => Sizexpr,
- Right_Opnd => Make_Integer_Literal (Loc,
- Intval => System_Storage_Unit)))))));
-
- -- subtype str__nn is Storage_Array (rg__x);
-
- Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
- Append_To (List_Def,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Str_Type,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints =>
- New_List (New_Reference_To (Range_Type, Loc))))));
-
- -- type Equiv_T is record
- -- [ _parent : Tnn; ]
- -- E : Str_Type;
- -- end Equiv_T;
-
- Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
-
- -- When the target requires front-end layout, it's necessary to allow
- -- the equivalent type to be frozen so that layout can occur (when the
- -- associated class-wide subtype is frozen, the equivalent type will
- -- be frozen, see freeze.adb). For other targets, Gigi wants to have
- -- the equivalent type marked as frozen and deals with this type itself.
- -- In the Gigi case this will also avoid the generation of an init
- -- procedure for the type.
-
- if not Frontend_Layout_On_Target then
- Set_Is_Frozen (Equiv_Type);
- end if;
-
- Set_Ekind (Equiv_Type, E_Record_Type);
- Set_Parent_Subtype (Equiv_Type, Constr_Root);
-
- if not Is_Interface (Root_Typ) then
- Append_To (Comp_List,
- Make_Component_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uParent),
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
- end if;
-
- Append_To (Comp_List,
- Make_Component_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('C')),
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Str_Type, Loc))));
-
- Append_To (List_Def,
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Equiv_Type,
- Type_Definition =>
- Make_Record_Definition (Loc,
- Component_List =>
- Make_Component_List (Loc,
- Component_Items => Comp_List,
- Variant_Part => Empty))));
-
- -- Suppress all checks during the analysis of the expanded code
- -- to avoid the generation of spurious warnings under ZFP run-time.
-
- Insert_Actions (E, List_Def, Suppress => All_Checks);
- return Equiv_Type;
- end Make_CW_Equivalent_Type;
-
- ------------------------
- -- Make_Literal_Range --
- ------------------------
-
- function Make_Literal_Range
- (Loc : Source_Ptr;
- Literal_Typ : Entity_Id) return Node_Id
- is
- Lo : constant Node_Id :=
- New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
- Index : constant Entity_Id := Etype (Lo);
-
- Hi : Node_Id;
- Length_Expr : constant Node_Id :=
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => String_Literal_Length (Literal_Typ)),
- Right_Opnd =>
- Make_Integer_Literal (Loc, 1));
-
- begin
- Set_Analyzed (Lo, False);
-
- if Is_Integer_Type (Index) then
- Hi :=
- Make_Op_Add (Loc,
- Left_Opnd => New_Copy_Tree (Lo),
- Right_Opnd => Length_Expr);
- else
- Hi :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Val,
- Prefix => New_Occurrence_Of (Index, Loc),
- Expressions => New_List (
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Pos,
- Prefix => New_Occurrence_Of (Index, Loc),
- Expressions => New_List (New_Copy_Tree (Lo))),
- Right_Opnd => Length_Expr)));
- end if;
-
- return
- Make_Range (Loc,
- Low_Bound => Lo,
- High_Bound => Hi);
- end Make_Literal_Range;
-
- ----------------------------
- -- Make_Subtype_From_Expr --
- ----------------------------
-
- -- 1. If Expr is an unconstrained array expression, creates
- -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-
- -- 2. If Expr is a unconstrained discriminated type expression, creates
- -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-
- -- 3. If Expr is class-wide, creates an implicit class wide subtype
-
- function Make_Subtype_From_Expr
- (E : Node_Id;
- Unc_Typ : Entity_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (E);
- List_Constr : constant List_Id := New_List;
- D : Entity_Id;
-
- Full_Subtyp : Entity_Id;
- Priv_Subtyp : Entity_Id;
- Utyp : Entity_Id;
- Full_Exp : Node_Id;
-
- begin
- if Is_Private_Type (Unc_Typ)
- and then Has_Unknown_Discriminants (Unc_Typ)
- then
- -- Prepare the subtype completion, Go to base type to
- -- find underlying type, because the type may be a generic
- -- actual or an explicit subtype.
-
- Utyp := Underlying_Type (Base_Type (Unc_Typ));
- Full_Subtyp := Make_Defining_Identifier (Loc,
- New_Internal_Name ('C'));
- Full_Exp :=
- Unchecked_Convert_To
- (Utyp, Duplicate_Subexpr_No_Checks (E));
- Set_Parent (Full_Exp, Parent (E));
-
- Priv_Subtyp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- Insert_Action (E,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Full_Subtyp,
- Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-
- -- Define the dummy private subtype
-
- Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
- Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
- Set_Scope (Priv_Subtyp, Full_Subtyp);
- Set_Is_Constrained (Priv_Subtyp);
- Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
- Set_Is_Itype (Priv_Subtyp);
- Set_Associated_Node_For_Itype (Priv_Subtyp, E);
-
- if Is_Tagged_Type (Priv_Subtyp) then
- Set_Class_Wide_Type
- (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
- Set_Primitive_Operations (Priv_Subtyp,
- Primitive_Operations (Unc_Typ));
- end if;
-
- Set_Full_View (Priv_Subtyp, Full_Subtyp);
-
- return New_Reference_To (Priv_Subtyp, Loc);
-
- elsif Is_Array_Type (Unc_Typ) then
- for J in 1 .. Number_Dimensions (Unc_Typ) loop
- Append_To (List_Constr,
- Make_Range (Loc,
- Low_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (E),
- Attribute_Name => Name_First,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J))),
-
- High_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (E),
- Attribute_Name => Name_Last,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J)))));
- end loop;
-
- elsif Is_Class_Wide_Type (Unc_Typ) then
- declare
- CW_Subtype : Entity_Id;
- EQ_Typ : Entity_Id := Empty;
-
- begin
- -- A class-wide equivalent type is not needed when VM_Target
- -- because the VM back-ends handle the class-wide object
- -- initialization itself (and doesn't need or want the
- -- additional intermediate type to handle the assignment).
-
- if Expander_Active and then VM_Target = No_VM then
- EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
- end if;
-
- CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
- Set_Equivalent_Type (CW_Subtype, EQ_Typ);
-
- if Present (EQ_Typ) then
- Set_Is_Class_Wide_Equivalent_Type (EQ_Typ);
- end if;
-
- Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
-
- return New_Occurrence_Of (CW_Subtype, Loc);
- end;
-
- -- Indefinite record type with discriminants
-
- else
- D := First_Discriminant (Unc_Typ);
- while Present (D) loop
- Append_To (List_Constr,
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (E),
- Selector_Name => New_Reference_To (D, Loc)));
-
- Next_Discriminant (D);
- end loop;
- end if;
-
- return
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => List_Constr));
- end Make_Subtype_From_Expr;
-
- -----------------------------
- -- May_Generate_Large_Temp --
- -----------------------------
-
- -- At the current time, the only types that we return False for (i.e.
- -- where we decide we know they cannot generate large temps) are ones
- -- where we know the size is 256 bits or less at compile time, and we
- -- are still not doing a thorough job on arrays and records ???
-
- function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
- begin
- if not Size_Known_At_Compile_Time (Typ) then
- return False;
-
- elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
- return False;
-
- elsif Is_Array_Type (Typ)
- and then Present (Packed_Array_Type (Typ))
- then
- return May_Generate_Large_Temp (Packed_Array_Type (Typ));
-
- -- We could do more here to find other small types ???
-
- else
- return True;
- end if;
- end May_Generate_Large_Temp;
-
- ----------------------------
- -- New_Class_Wide_Subtype --
- ----------------------------
-
- function New_Class_Wide_Subtype
- (CW_Typ : Entity_Id;
- N : Node_Id) return Entity_Id
- is
- Res : constant Entity_Id := Create_Itype (E_Void, N);
- Res_Name : constant Name_Id := Chars (Res);
- Res_Scope : constant Entity_Id := Scope (Res);
-
- begin
- Copy_Node (CW_Typ, Res);
- Set_Comes_From_Source (Res, False);
- Set_Sloc (Res, Sloc (N));
- Set_Is_Itype (Res);
- Set_Associated_Node_For_Itype (Res, N);
- Set_Is_Public (Res, False); -- By default, may be changed below.
- Set_Public_Status (Res);
- Set_Chars (Res, Res_Name);
- Set_Scope (Res, Res_Scope);
- Set_Ekind (Res, E_Class_Wide_Subtype);
- Set_Next_Entity (Res, Empty);
- Set_Etype (Res, Base_Type (CW_Typ));
-
- -- For targets where front-end layout is required, reset the Is_Frozen
- -- status of the subtype to False (it can be implicitly set to true
- -- from the copy of the class-wide type). For other targets, Gigi
- -- doesn't want the class-wide subtype to go through the freezing
- -- process (though it's unclear why that causes problems and it would
- -- be nice to allow freezing to occur normally for all targets ???).
-
- if Frontend_Layout_On_Target then
- Set_Is_Frozen (Res, False);
- end if;
-
- Set_Freeze_Node (Res, Empty);
- return (Res);
- end New_Class_Wide_Subtype;
-
- --------------------------------
- -- Non_Limited_Designated_Type --
- ---------------------------------
-
- function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
- Desig : constant Entity_Id := Designated_Type (T);
- begin
- if Ekind (Desig) = E_Incomplete_Type
- and then Present (Non_Limited_View (Desig))
- then
- return Non_Limited_View (Desig);
- else
- return Desig;
- end if;
- end Non_Limited_Designated_Type;
-
- -----------------------------------
- -- OK_To_Do_Constant_Replacement --
- -----------------------------------
-
- function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
- ES : constant Entity_Id := Scope (E);
- CS : Entity_Id;
-
- begin
- -- Do not replace statically allocated objects, because they may be
- -- modified outside the current scope.
-
- if Is_Statically_Allocated (E) then
- return False;
-
- -- Do not replace aliased or volatile objects, since we don't know what
- -- else might change the value.
-
- elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
- return False;
-
- -- Debug flag -gnatdM disconnects this optimization
-
- elsif Debug_Flag_MM then
- return False;
-
- -- Otherwise check scopes
-
- else
- CS := Current_Scope;
-
- loop
- -- If we are in right scope, replacement is safe
-
- if CS = ES then
- return True;
-
- -- Packages do not affect the determination of safety
-
- elsif Ekind (CS) = E_Package then
- exit when CS = Standard_Standard;
- CS := Scope (CS);
-
- -- Blocks do not affect the determination of safety
-
- elsif Ekind (CS) = E_Block then
- CS := Scope (CS);
-
- -- Loops do not affect the determination of safety. Note that we
- -- kill all current values on entry to a loop, so we are just
- -- talking about processing within a loop here.
-
- elsif Ekind (CS) = E_Loop then
- CS := Scope (CS);
-
- -- Otherwise, the reference is dubious, and we cannot be sure that
- -- it is safe to do the replacement.
-
- else
- exit;
- end if;
- end loop;
-
- return False;
- end if;
- end OK_To_Do_Constant_Replacement;
-
- ------------------------------------
- -- Possible_Bit_Aligned_Component --
- ------------------------------------
-
- function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
- begin
- case Nkind (N) is
-
- -- Case of indexed component
-
- when N_Indexed_Component =>
- declare
- P : constant Node_Id := Prefix (N);
- Ptyp : constant Entity_Id := Etype (P);
-
- begin
- -- If we know the component size and it is less than 64, then
- -- we are definitely OK. The back end always does assignment of
- -- misaligned small objects correctly.
-
- if Known_Static_Component_Size (Ptyp)
- and then Component_Size (Ptyp) <= 64
- then
- return False;
-
- -- Otherwise, we need to test the prefix, to see if we are
- -- indexing from a possibly unaligned component.
-
- else
- return Possible_Bit_Aligned_Component (P);
- end if;
- end;
-
- -- Case of selected component
-
- when N_Selected_Component =>
- declare
- P : constant Node_Id := Prefix (N);
- Comp : constant Entity_Id := Entity (Selector_Name (N));
-
- begin
- -- If there is no component clause, then we are in the clear
- -- since the back end will never misalign a large component
- -- unless it is forced to do so. In the clear means we need
- -- only the recursive test on the prefix.
-
- if Component_May_Be_Bit_Aligned (Comp) then
- return True;
- else
- return Possible_Bit_Aligned_Component (P);
- end if;
- end;
-
- -- For a slice, test the prefix, if that is possibly misaligned,
- -- then for sure the slice is!
-
- when N_Slice =>
- return Possible_Bit_Aligned_Component (Prefix (N));
-
- -- If we have none of the above, it means that we have fallen off the
- -- top testing prefixes recursively, and we now have a stand alone
- -- object, where we don't have a problem.
-
- when others =>
- return False;
-
- end case;
- end Possible_Bit_Aligned_Component;
-
- -------------------------
- -- Remove_Side_Effects --
- -------------------------
-
- procedure Remove_Side_Effects
- (Exp : Node_Id;
- Name_Req : Boolean := False;
- Variable_Ref : Boolean := False)
- is
- Loc : constant Source_Ptr := Sloc (Exp);
- Exp_Type : constant Entity_Id := Etype (Exp);
- Svg_Suppress : constant Suppress_Array := Scope_Suppress;
- Def_Id : Entity_Id;
- Ref_Type : Entity_Id;
- Res : Node_Id;
- Ptr_Typ_Decl : Node_Id;
- New_Exp : Node_Id;
- E : Node_Id;
-
- function Side_Effect_Free (N : Node_Id) return Boolean;
- -- Determines if the tree N represents an expression that is known not
- -- to have side effects, and for which no processing is required.
-
- function Side_Effect_Free (L : List_Id) return Boolean;
- -- Determines if all elements of the list L are side effect free
-
- function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
- -- The argument N is a construct where the Prefix is dereferenced if it
- -- is an access type and the result is a variable. The call returns True
- -- if the construct is side effect free (not considering side effects in
- -- other than the prefix which are to be tested by the caller).
-
- function Within_In_Parameter (N : Node_Id) return Boolean;
- -- Determines if N is a subcomponent of a composite in-parameter. If so,
- -- N is not side-effect free when the actual is global and modifiable
- -- indirectly from within a subprogram, because it may be passed by
- -- reference. The front-end must be conservative here and assume that
- -- this may happen with any array or record type. On the other hand, we
- -- cannot create temporaries for all expressions for which this
- -- condition is true, for various reasons that might require clearing up
- -- ??? For example, discriminant references that appear out of place, or
- -- spurious type errors with class-wide expressions. As a result, we
- -- limit the transformation to loop bounds, which is so far the only
- -- case that requires it.
-
- -----------------------------
- -- Safe_Prefixed_Reference --
- -----------------------------
-
- function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
- begin
- -- If prefix is not side effect free, definitely not safe
-
- if not Side_Effect_Free (Prefix (N)) then
- return False;
-
- -- If the prefix is of an access type that is not access-to-constant,
- -- then this construct is a variable reference, which means it is to
- -- be considered to have side effects if Variable_Ref is set True
- -- Exception is an access to an entity that is a constant or an
- -- in-parameter which does not come from source, and is the result
- -- of a previous removal of side-effects.
-
- elsif Is_Access_Type (Etype (Prefix (N)))
- and then not Is_Access_Constant (Etype (Prefix (N)))
- and then Variable_Ref
- then
- if not Is_Entity_Name (Prefix (N)) then
- return False;
- else
- return Ekind (Entity (Prefix (N))) = E_Constant
- or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
- end if;
-
- -- The following test is the simplest way of solving a complex
- -- problem uncovered by BB08-010: Side effect on loop bound that
- -- is a subcomponent of a global variable:
- -- If a loop bound is a subcomponent of a global variable, a
- -- modification of that variable within the loop may incorrectly
- -- affect the execution of the loop.
-
- elsif not
- (Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
- or else not Within_In_Parameter (Prefix (N)))
- then
- return False;
-
- -- All other cases are side effect free
-
- else
- return True;
- end if;
- end Safe_Prefixed_Reference;
-
- ----------------------
- -- Side_Effect_Free --
- ----------------------
-
- function Side_Effect_Free (N : Node_Id) return Boolean is
- begin
- -- Note on checks that could raise Constraint_Error. Strictly, if
- -- we take advantage of 11.6, these checks do not count as side
- -- effects. However, we would just as soon consider that they are
- -- side effects, since the backend CSE does not work very well on
- -- expressions which can raise Constraint_Error. On the other
- -- hand, if we do not consider them to be side effect free, then
- -- we get some awkward expansions in -gnato mode, resulting in
- -- code insertions at a point where we do not have a clear model
- -- for performing the insertions.
-
- -- Special handling for entity names
-
- if Is_Entity_Name (N) then
-
- -- If the entity is a constant, it is definitely side effect
- -- free. Note that the test of Is_Variable (N) below might
- -- be expected to catch this case, but it does not, because
- -- this test goes to the original tree, and we may have
- -- already rewritten a variable node with a constant as
- -- a result of an earlier Force_Evaluation call.
-
- if Ekind (Entity (N)) = E_Constant
- or else Ekind (Entity (N)) = E_In_Parameter
- then
- return True;
-
- -- Functions are not side effect free
-
- elsif Ekind (Entity (N)) = E_Function then
- return False;
-
- -- Variables are considered to be a side effect if Variable_Ref
- -- is set or if we have a volatile reference and Name_Req is off.
- -- If Name_Req is True then we can't help returning a name which
- -- effectively allows multiple references in any case.
-
- elsif Is_Variable (N) then
- return not Variable_Ref
- and then (not Is_Volatile_Reference (N) or else Name_Req);
-
- -- Any other entity (e.g. a subtype name) is definitely side
- -- effect free.
-
- else
- return True;
- end if;
-
- -- A value known at compile time is always side effect free
-
- elsif Compile_Time_Known_Value (N) then
- return True;
-
- -- A variable renaming is not side-effect free, because the
- -- renaming will function like a macro in the front-end in
- -- some cases, and an assignment can modify the component
- -- designated by N, so we need to create a temporary for it.
-
- elsif Is_Entity_Name (Original_Node (N))
- and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
- and then Ekind (Entity (Original_Node (N))) /= E_Constant
- then
- return False;
- end if;
-
- -- For other than entity names and compile time known values,
- -- check the node kind for special processing.
-
- case Nkind (N) is
-
- -- An attribute reference is side effect free if its expressions
- -- are side effect free and its prefix is side effect free or
- -- is an entity reference.
-
- -- Is this right? what about x'first where x is a variable???
-
- when N_Attribute_Reference =>
- return Side_Effect_Free (Expressions (N))
- and then Attribute_Name (N) /= Name_Input
- and then (Is_Entity_Name (Prefix (N))
- or else Side_Effect_Free (Prefix (N)));
-
- -- A binary operator is side effect free if and both operands
- -- are side effect free. For this purpose binary operators
- -- include membership tests and short circuit forms
-
- when N_Binary_Op |
- N_Membership_Test |
- N_And_Then |
- N_Or_Else =>
- return Side_Effect_Free (Left_Opnd (N))
- and then Side_Effect_Free (Right_Opnd (N));
-
- -- An explicit dereference is side effect free only if it is
- -- a side effect free prefixed reference.
-
- when N_Explicit_Dereference =>
- return Safe_Prefixed_Reference (N);
-
- -- A call to _rep_to_pos is side effect free, since we generate
- -- this pure function call ourselves. Moreover it is critically
- -- important to make this exception, since otherwise we can
- -- have discriminants in array components which don't look
- -- side effect free in the case of an array whose index type
- -- is an enumeration type with an enumeration rep clause.
-
- -- All other function calls are not side effect free
-
- when N_Function_Call =>
- return Nkind (Name (N)) = N_Identifier
- and then Is_TSS (Name (N), TSS_Rep_To_Pos)
- and then
- Side_Effect_Free (First (Parameter_Associations (N)));
-
- -- An indexed component is side effect free if it is a side
- -- effect free prefixed reference and all the indexing
- -- expressions are side effect free.
-
- when N_Indexed_Component =>
- return Side_Effect_Free (Expressions (N))
- and then Safe_Prefixed_Reference (N);
-
- -- A type qualification is side effect free if the expression
- -- is side effect free.
-
- when N_Qualified_Expression =>
- return Side_Effect_Free (Expression (N));
-
- -- A selected component is side effect free only if it is a
- -- side effect free prefixed reference. If it designates a
- -- component with a rep. clause it must be treated has having
- -- a potential side effect, because it may be modified through
- -- a renaming, and a subsequent use of the renaming as a macro
- -- will yield the wrong value. This complex interaction between
- -- renaming and removing side effects is a reminder that the
- -- latter has become a headache to maintain, and that it should
- -- be removed in favor of the gcc mechanism to capture values ???
-
- when N_Selected_Component =>
- if Nkind (Parent (N)) = N_Explicit_Dereference
- and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
- then
- return False;
- else
- return Safe_Prefixed_Reference (N);
- end if;
-
- -- A range is side effect free if the bounds are side effect free
-
- when N_Range =>
- return Side_Effect_Free (Low_Bound (N))
- and then Side_Effect_Free (High_Bound (N));
-
- -- A slice is side effect free if it is a side effect free
- -- prefixed reference and the bounds are side effect free.
-
- when N_Slice =>
- return Side_Effect_Free (Discrete_Range (N))
- and then Safe_Prefixed_Reference (N);
-
- -- A type conversion is side effect free if the expression to be
- -- converted is side effect free.
-
- when N_Type_Conversion =>
- return Side_Effect_Free (Expression (N));
-
- -- A unary operator is side effect free if the operand
- -- is side effect free.
-
- when N_Unary_Op =>
- return Side_Effect_Free (Right_Opnd (N));
-
- -- An unchecked type conversion is side effect free only if it
- -- is safe and its argument is side effect free.
-
- when N_Unchecked_Type_Conversion =>
- return Safe_Unchecked_Type_Conversion (N)
- and then Side_Effect_Free (Expression (N));
-
- -- An unchecked expression is side effect free if its expression
- -- is side effect free.
-
- when N_Unchecked_Expression =>
- return Side_Effect_Free (Expression (N));
-
- -- A literal is side effect free
-
- when N_Character_Literal |
- N_Integer_Literal |
- N_Real_Literal |
- N_String_Literal =>
- return True;
-
- -- We consider that anything else has side effects. This is a bit
- -- crude, but we are pretty close for most common cases, and we
- -- are certainly correct (i.e. we never return True when the
- -- answer should be False).
-
- when others =>
- return False;
- end case;
- end Side_Effect_Free;
-
- -- A list is side effect free if all elements of the list are
- -- side effect free.
-
- function Side_Effect_Free (L : List_Id) return Boolean is
- N : Node_Id;
-
- begin
- if L = No_List or else L = Error_List then
- return True;
-
- else
- N := First (L);
- while Present (N) loop
- if not Side_Effect_Free (N) then
- return False;
- else
- Next (N);
- end if;
- end loop;
-
- return True;
- end if;
- end Side_Effect_Free;
-
- -------------------------
- -- Within_In_Parameter --
- -------------------------
-
- function Within_In_Parameter (N : Node_Id) return Boolean is
- begin
- if not Comes_From_Source (N) then
- return False;
-
- elsif Is_Entity_Name (N) then
- return Ekind (Entity (N)) = E_In_Parameter;
-
- elsif Nkind (N) = N_Indexed_Component
- or else Nkind (N) = N_Selected_Component
- then
- return Within_In_Parameter (Prefix (N));
- else
-
- return False;
- end if;
- end Within_In_Parameter;
-
- -- Start of processing for Remove_Side_Effects
-
- begin
- -- If we are side effect free already or expansion is disabled,
- -- there is nothing to do.
-
- if Side_Effect_Free (Exp) or else not Expander_Active then
- return;
- end if;
-
- -- All this must not have any checks
-
- Scope_Suppress := (others => True);
-
- -- If it is a scalar type and we need to capture the value, just make
- -- a copy. Likewise for a function call, an attribute reference or an
- -- operator. And if we have a volatile reference and Name_Req is not
- -- set (see comments above for Side_Effect_Free).
-
- if Is_Elementary_Type (Exp_Type)
- and then (Variable_Ref
- or else Nkind (Exp) = N_Function_Call
- or else Nkind (Exp) = N_Attribute_Reference
- or else Nkind (Exp) in N_Op
- or else (not Name_Req and then Is_Volatile_Reference (Exp)))
- then
- Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
- Set_Etype (Def_Id, Exp_Type);
- Res := New_Reference_To (Def_Id, Loc);
-
- E :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition => New_Reference_To (Exp_Type, Loc),
- Constant_Present => True,
- Expression => Relocate_Node (Exp));
-
- Set_Assignment_OK (E);
- Insert_Action (Exp, E);
-
- -- If the expression has the form v.all then we can just capture
- -- the pointer, and then do an explicit dereference on the result.
-
- elsif Nkind (Exp) = N_Explicit_Dereference then
- Def_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
- Res :=
- Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
-
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition =>
- New_Reference_To (Etype (Prefix (Exp)), Loc),
- Constant_Present => True,
- Expression => Relocate_Node (Prefix (Exp))));
-
- -- Similar processing for an unchecked conversion of an expression
- -- of the form v.all, where we want the same kind of treatment.
-
- elsif Nkind (Exp) = N_Unchecked_Type_Conversion
- and then Nkind (Expression (Exp)) = N_Explicit_Dereference
- then
- Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
- Scope_Suppress := Svg_Suppress;
- return;
-
- -- If this is a type conversion, leave the type conversion and remove
- -- the side effects in the expression. This is important in several
- -- circumstances: for change of representations, and also when this is
- -- a view conversion to a smaller object, where gigi can end up creating
- -- its own temporary of the wrong size.
-
- elsif Nkind (Exp) = N_Type_Conversion then
- Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
- Scope_Suppress := Svg_Suppress;
- return;
-
- -- If this is an unchecked conversion that Gigi can't handle, make
- -- a copy or a use a renaming to capture the value.
-
- elsif Nkind (Exp) = N_Unchecked_Type_Conversion
- and then not Safe_Unchecked_Type_Conversion (Exp)
- then
- if CW_Or_Has_Controlled_Part (Exp_Type) then
-
- -- Use a renaming to capture the expression, rather than create
- -- a controlled temporary.
-
- Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
- Res := New_Reference_To (Def_Id, Loc);
-
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Mark => New_Reference_To (Exp_Type, Loc),
- Name => Relocate_Node (Exp)));
-
- else
- Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
- Set_Etype (Def_Id, Exp_Type);
- Res := New_Reference_To (Def_Id, Loc);
-
- E :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition => New_Reference_To (Exp_Type, Loc),
- Constant_Present => not Is_Variable (Exp),
- Expression => Relocate_Node (Exp));
-
- Set_Assignment_OK (E);
- Insert_Action (Exp, E);
- end if;
-
- -- For expressions that denote objects, we can use a renaming scheme.
- -- We skip using this if we have a volatile reference and we do not
- -- have Name_Req set true (see comments above for Side_Effect_Free).
-
- elsif Is_Object_Reference (Exp)
- and then Nkind (Exp) /= N_Function_Call
- and then (Name_Req or else not Is_Volatile_Reference (Exp))
- then
- Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
-
- if Nkind (Exp) = N_Selected_Component
- and then Nkind (Prefix (Exp)) = N_Function_Call
- and then Is_Array_Type (Exp_Type)
- then
- -- Avoid generating a variable-sized temporary, by generating
- -- the renaming declaration just for the function call. The
- -- transformation could be refined to apply only when the array
- -- component is constrained by a discriminant???
-
- Res :=
- Make_Selected_Component (Loc,
- Prefix => New_Occurrence_Of (Def_Id, Loc),
- Selector_Name => Selector_Name (Exp));
-
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Mark =>
- New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
- Name => Relocate_Node (Prefix (Exp))));
-
- else
- Res := New_Reference_To (Def_Id, Loc);
-
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Mark => New_Reference_To (Exp_Type, Loc),
- Name => Relocate_Node (Exp)));
-
- end if;
-
- -- If this is a packed reference, or a selected component with a
- -- non-standard representation, a reference to the temporary will
- -- be replaced by a copy of the original expression (see
- -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
- -- elaborated by gigi, and is of course not to be replaced in-line
- -- by the expression it renames, which would defeat the purpose of
- -- removing the side-effect.
-
- if (Nkind (Exp) = N_Selected_Component
- or else Nkind (Exp) = N_Indexed_Component)
- and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
- then
- null;
- else
- Set_Is_Renaming_Of_Object (Def_Id, False);
- end if;
-
- -- Otherwise we generate a reference to the value
-
- else
- -- Special processing for function calls that return a task. We need
- -- to build a declaration that will enable build-in-place expansion
- -- of the call.
-
- -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
- -- to accommodate functions returning limited objects by reference.
-
- if Nkind (Exp) = N_Function_Call
- and then Is_Task_Type (Etype (Exp))
- and then Ada_Version >= Ada_05
- then
- declare
- Obj : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('F'));
- Decl : Node_Id;
-
- begin
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Obj,
- Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
- Expression => Relocate_Node (Exp));
- Insert_Action (Exp, Decl);
- Set_Etype (Obj, Exp_Type);
- Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
- return;
- end;
- end if;
-
- Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
-
- Ptr_Typ_Decl :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Ref_Type,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- All_Present => True,
- Subtype_Indication =>
- New_Reference_To (Exp_Type, Loc)));
-
- E := Exp;
- Insert_Action (Exp, Ptr_Typ_Decl);
-
- Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
- Set_Etype (Def_Id, Exp_Type);
-
- Res :=
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Def_Id, Loc));
-
- if Nkind (E) = N_Explicit_Dereference then
- New_Exp := Relocate_Node (Prefix (E));
- else
- E := Relocate_Node (E);
- New_Exp := Make_Reference (Loc, E);
- end if;
-
- if Is_Delayed_Aggregate (E) then
-
- -- The expansion of nested aggregates is delayed until the
- -- enclosing aggregate is expanded. As aggregates are often
- -- qualified, the predicate applies to qualified expressions
- -- as well, indicating that the enclosing aggregate has not
- -- been expanded yet. At this point the aggregate is part of
- -- a stand-alone declaration, and must be fully expanded.
-
- if Nkind (E) = N_Qualified_Expression then
- Set_Expansion_Delayed (Expression (E), False);
- Set_Analyzed (Expression (E), False);
- else
- Set_Expansion_Delayed (E, False);
- end if;
-
- Set_Analyzed (E, False);
- end if;
-
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition => New_Reference_To (Ref_Type, Loc),
- Expression => New_Exp));
- end if;
-
- -- Preserve the Assignment_OK flag in all copies, since at least
- -- one copy may be used in a context where this flag must be set
- -- (otherwise why would the flag be set in the first place).
-
- Set_Assignment_OK (Res, Assignment_OK (Exp));
-
- -- Finally rewrite the original expression and we are done
-
- Rewrite (Exp, Res);
- Analyze_And_Resolve (Exp, Exp_Type);
- Scope_Suppress := Svg_Suppress;
- end Remove_Side_Effects;
-
- ---------------------------
- -- Represented_As_Scalar --
- ---------------------------
-
- function Represented_As_Scalar (T : Entity_Id) return Boolean is
- UT : constant Entity_Id := Underlying_Type (T);
- begin
- return Is_Scalar_Type (UT)
- or else (Is_Bit_Packed_Array (UT)
- and then Is_Scalar_Type (Packed_Array_Type (UT)));
- end Represented_As_Scalar;
-
- ------------------------------------
- -- Safe_Unchecked_Type_Conversion --
- ------------------------------------
-
- -- Note: this function knows quite a bit about the exact requirements
- -- of Gigi with respect to unchecked type conversions, and its code
- -- must be coordinated with any changes in Gigi in this area.
-
- -- The above requirements should be documented in Sinfo ???
-
- function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
- Otyp : Entity_Id;
- Ityp : Entity_Id;
- Oalign : Uint;
- Ialign : Uint;
- Pexp : constant Node_Id := Parent (Exp);
-
- begin
- -- If the expression is the RHS of an assignment or object declaration
- -- we are always OK because there will always be a target.
-
- -- Object renaming declarations, (generated for view conversions of
- -- actuals in inlined calls), like object declarations, provide an
- -- explicit type, and are safe as well.
-
- if (Nkind (Pexp) = N_Assignment_Statement
- and then Expression (Pexp) = Exp)
- or else Nkind (Pexp) = N_Object_Declaration
- or else Nkind (Pexp) = N_Object_Renaming_Declaration
- then
- return True;
-
- -- If the expression is the prefix of an N_Selected_Component
- -- we should also be OK because GCC knows to look inside the
- -- conversion except if the type is discriminated. We assume
- -- that we are OK anyway if the type is not set yet or if it is
- -- controlled since we can't afford to introduce a temporary in
- -- this case.
-
- elsif Nkind (Pexp) = N_Selected_Component
- and then Prefix (Pexp) = Exp
- then
- if No (Etype (Pexp)) then
- return True;
- else
- return
- not Has_Discriminants (Etype (Pexp))
- or else Is_Constrained (Etype (Pexp));
- end if;
- end if;
-
- -- Set the output type, this comes from Etype if it is set, otherwise
- -- we take it from the subtype mark, which we assume was already
- -- fully analyzed.
-
- if Present (Etype (Exp)) then
- Otyp := Etype (Exp);
- else
- Otyp := Entity (Subtype_Mark (Exp));
- end if;
-
- -- The input type always comes from the expression, and we assume
- -- this is indeed always analyzed, so we can simply get the Etype.
-
- Ityp := Etype (Expression (Exp));
-
- -- Initialize alignments to unknown so far
-
- Oalign := No_Uint;
- Ialign := No_Uint;
-
- -- Replace a concurrent type by its corresponding record type
- -- and each type by its underlying type and do the tests on those.
- -- The original type may be a private type whose completion is a
- -- concurrent type, so find the underlying type first.
-
- if Present (Underlying_Type (Otyp)) then
- Otyp := Underlying_Type (Otyp);
- end if;
-
- if Present (Underlying_Type (Ityp)) then
- Ityp := Underlying_Type (Ityp);
- end if;
-
- if Is_Concurrent_Type (Otyp) then
- Otyp := Corresponding_Record_Type (Otyp);
- end if;
-
- if Is_Concurrent_Type (Ityp) then
- Ityp := Corresponding_Record_Type (Ityp);
- end if;
-
- -- If the base types are the same, we know there is no problem since
- -- this conversion will be a noop.
-
- if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
- return True;
-
- -- Same if this is an upwards conversion of an untagged type, and there
- -- are no constraints involved (could be more general???)
-
- elsif Etype (Ityp) = Otyp
- and then not Is_Tagged_Type (Ityp)
- and then not Has_Discriminants (Ityp)
- and then No (First_Rep_Item (Base_Type (Ityp)))
- then
- return True;
-
- -- If the size of output type is known at compile time, there is
- -- never a problem. Note that unconstrained records are considered
- -- to be of known size, but we can't consider them that way here,
- -- because we are talking about the actual size of the object.
-
- -- We also make sure that in addition to the size being known, we do
- -- not have a case which might generate an embarrassingly large temp
- -- in stack checking mode.
-
- elsif Size_Known_At_Compile_Time (Otyp)
- and then
- (not Stack_Checking_Enabled
- or else not May_Generate_Large_Temp (Otyp))
- and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
- then
- return True;
-
- -- If either type is tagged, then we know the alignment is OK so
- -- Gigi will be able to use pointer punning.
-
- elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
- return True;
-
- -- If either type is a limited record type, we cannot do a copy, so
- -- say safe since there's nothing else we can do.
-
- elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
- return True;
-
- -- Conversions to and from packed array types are always ignored and
- -- hence are safe.
-
- elsif Is_Packed_Array_Type (Otyp)
- or else Is_Packed_Array_Type (Ityp)
- then
- return True;
- end if;
-
- -- The only other cases known to be safe is if the input type's
- -- alignment is known to be at least the maximum alignment for the
- -- target or if both alignments are known and the output type's
- -- alignment is no stricter than the input's. We can use the alignment
- -- of the component type of an array if a type is an unpacked
- -- array type.
-
- if Present (Alignment_Clause (Otyp)) then
- Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
-
- elsif Is_Array_Type (Otyp)
- and then Present (Alignment_Clause (Component_Type (Otyp)))
- then
- Oalign := Expr_Value (Expression (Alignment_Clause
- (Component_Type (Otyp))));
- end if;
-
- if Present (Alignment_Clause (Ityp)) then
- Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
-
- elsif Is_Array_Type (Ityp)
- and then Present (Alignment_Clause (Component_Type (Ityp)))
- then
- Ialign := Expr_Value (Expression (Alignment_Clause
- (Component_Type (Ityp))));
- end if;
-
- if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
- return True;
-
- elsif Ialign /= No_Uint and then Oalign /= No_Uint
- and then Ialign <= Oalign
- then
- return True;
-
- -- Otherwise, Gigi cannot handle this and we must make a temporary
-
- else
- return False;
- end if;
- end Safe_Unchecked_Type_Conversion;
-
- ---------------------------------
- -- Set_Current_Value_Condition --
- ---------------------------------
-
- -- Note: the implementation of this procedure is very closely tied to the
- -- implementation of Get_Current_Value_Condition. Here we set required
- -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
- -- them, so they must have a consistent view.
-
- procedure Set_Current_Value_Condition (Cnode : Node_Id) is
-
- procedure Set_Entity_Current_Value (N : Node_Id);
- -- If N is an entity reference, where the entity is of an appropriate
- -- kind, then set the current value of this entity to Cnode, unless
- -- there is already a definite value set there.
-
- procedure Set_Expression_Current_Value (N : Node_Id);
- -- If N is of an appropriate form, sets an appropriate entry in current
- -- value fields of relevant entities. Multiple entities can be affected
- -- in the case of an AND or AND THEN.
-
- ------------------------------
- -- Set_Entity_Current_Value --
- ------------------------------
-
- procedure Set_Entity_Current_Value (N : Node_Id) is
- begin
- if Is_Entity_Name (N) then
- declare
- Ent : constant Entity_Id := Entity (N);
-
- begin
- -- Don't capture if not safe to do so
-
- if not Safe_To_Capture_Value (N, Ent, Cond => True) then
- return;
- end if;
-
- -- Here we have a case where the Current_Value field may
- -- need to be set. We set it if it is not already set to a
- -- compile time expression value.
-
- -- Note that this represents a decision that one condition
- -- blots out another previous one. That's certainly right
- -- if they occur at the same level. If the second one is
- -- nested, then the decision is neither right nor wrong (it
- -- would be equally OK to leave the outer one in place, or
- -- take the new inner one. Really we should record both, but
- -- our data structures are not that elaborate.
-
- if Nkind (Current_Value (Ent)) not in N_Subexpr then
- Set_Current_Value (Ent, Cnode);
- end if;
- end;
- end if;
- end Set_Entity_Current_Value;
-
- ----------------------------------
- -- Set_Expression_Current_Value --
- ----------------------------------
-
- procedure Set_Expression_Current_Value (N : Node_Id) is
- Cond : Node_Id;
-
- begin
- Cond := N;
-
- -- Loop to deal with (ignore for now) any NOT operators present. The
- -- presence of NOT operators will be handled properly when we call
- -- Get_Current_Value_Condition.
-
- while Nkind (Cond) = N_Op_Not loop
- Cond := Right_Opnd (Cond);
- end loop;
-
- -- For an AND or AND THEN, recursively process operands
-
- if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
- Set_Expression_Current_Value (Left_Opnd (Cond));
- Set_Expression_Current_Value (Right_Opnd (Cond));
- return;
- end if;
-
- -- Check possible relational operator
-
- if Nkind (Cond) in N_Op_Compare then
- if Compile_Time_Known_Value (Right_Opnd (Cond)) then
- Set_Entity_Current_Value (Left_Opnd (Cond));
- elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
- Set_Entity_Current_Value (Right_Opnd (Cond));
- end if;
-
- -- Check possible boolean variable reference
-
- else
- Set_Entity_Current_Value (Cond);
- end if;
- end Set_Expression_Current_Value;
-
- -- Start of processing for Set_Current_Value_Condition
-
- begin
- Set_Expression_Current_Value (Condition (Cnode));
- end Set_Current_Value_Condition;
-
- --------------------------
- -- Set_Elaboration_Flag --
- --------------------------
-
- procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
- Asn : Node_Id;
-
- begin
- if Present (Ent) then
-
- -- Nothing to do if at the compilation unit level, because in this
- -- case the flag is set by the binder generated elaboration routine.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- null;
-
- -- Here we do need to generate an assignment statement
-
- else
- Check_Restriction (No_Elaboration_Code, N);
- Asn :=
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Ent, Loc),
- Expression => New_Occurrence_Of (Standard_True, Loc));
-
- if Nkind (Parent (N)) = N_Subunit then
- Insert_After (Corresponding_Stub (Parent (N)), Asn);
- else
- Insert_After (N, Asn);
- end if;
-
- Analyze (Asn);
-
- -- Kill current value indication. This is necessary because the
- -- tests of this flag are inserted out of sequence and must not
- -- pick up bogus indications of the wrong constant value.
-
- Set_Current_Value (Ent, Empty);
- end if;
- end if;
- end Set_Elaboration_Flag;
-
- ----------------------------
- -- Set_Renamed_Subprogram --
- ----------------------------
-
- procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
- begin
- -- If input node is an identifier, we can just reset it
-
- if Nkind (N) = N_Identifier then
- Set_Chars (N, Chars (E));
- Set_Entity (N, E);
-
- -- Otherwise we have to do a rewrite, preserving Comes_From_Source
-
- else
- declare
- CS : constant Boolean := Comes_From_Source (N);
- begin
- Rewrite (N, Make_Identifier (Sloc (N), Chars => Chars (E)));
- Set_Entity (N, E);
- Set_Comes_From_Source (N, CS);
- Set_Analyzed (N, True);
- end;
- end if;
- end Set_Renamed_Subprogram;
-
- ----------------------------------
- -- Silly_Boolean_Array_Not_Test --
- ----------------------------------
-
- -- This procedure implements an odd and silly test. We explicitly check
- -- for the case where the 'First of the component type is equal to the
- -- 'Last of this component type, and if this is the case, we make sure
- -- that constraint error is raised. The reason is that the NOT is bound
- -- to cause CE in this case, and we will not otherwise catch it.
-
- -- Believe it or not, this was reported as a bug. Note that nearly
- -- always, the test will evaluate statically to False, so the code will
- -- be statically removed, and no extra overhead caused.
-
- procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- CT : constant Entity_Id := Component_Type (T);
-
- begin
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_First),
-
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_Last)),
- Reason => CE_Range_Check_Failed));
- end Silly_Boolean_Array_Not_Test;
-
- ----------------------------------
- -- Silly_Boolean_Array_Xor_Test --
- ----------------------------------
-
- -- This procedure implements an odd and silly test. We explicitly check
- -- for the XOR case where the component type is True .. True, since this
- -- will raise constraint error. A special check is required since CE
- -- will not be required otherwise (cf Expand_Packed_Not).
-
- -- No such check is required for AND and OR, since for both these cases
- -- False op False = False, and True op True = True.
-
- procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- CT : constant Entity_Id := Component_Type (T);
- BT : constant Entity_Id := Base_Type (CT);
-
- begin
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_And (Loc,
- Left_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_First),
-
- Right_Opnd =>
- Convert_To (BT,
- New_Occurrence_Of (Standard_True, Loc))),
-
- Right_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_Last),
-
- Right_Opnd =>
- Convert_To (BT,
- New_Occurrence_Of (Standard_True, Loc)))),
- Reason => CE_Range_Check_Failed));
- end Silly_Boolean_Array_Xor_Test;
-
- --------------------------
- -- Target_Has_Fixed_Ops --
- --------------------------
-
- Integer_Sized_Small : Ureal;
- -- Set to 2.0 ** -(Integer'Size - 1) the first time that this
- -- function is called (we don't want to compute it more than once!)
-
- Long_Integer_Sized_Small : Ureal;
- -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
- -- function is called (we don't want to compute it more than once)
-
- First_Time_For_THFO : Boolean := True;
- -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
-
- function Target_Has_Fixed_Ops
- (Left_Typ : Entity_Id;
- Right_Typ : Entity_Id;
- Result_Typ : Entity_Id) return Boolean
- is
- function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
- -- Return True if the given type is a fixed-point type with a small
- -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
- -- an absolute value less than 1.0. This is currently limited
- -- to fixed-point types that map to Integer or Long_Integer.
-
- ------------------------
- -- Is_Fractional_Type --
- ------------------------
-
- function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
- begin
- if Esize (Typ) = Standard_Integer_Size then
- return Small_Value (Typ) = Integer_Sized_Small;
-
- elsif Esize (Typ) = Standard_Long_Integer_Size then
- return Small_Value (Typ) = Long_Integer_Sized_Small;
-
- else
- return False;
- end if;
- end Is_Fractional_Type;
-
- -- Start of processing for Target_Has_Fixed_Ops
-
- begin
- -- Return False if Fractional_Fixed_Ops_On_Target is false
-
- if not Fractional_Fixed_Ops_On_Target then
- return False;
- end if;
-
- -- Here the target has Fractional_Fixed_Ops, if first time, compute
- -- standard constants used by Is_Fractional_Type.
-
- if First_Time_For_THFO then
- First_Time_For_THFO := False;
-
- Integer_Sized_Small :=
- UR_From_Components
- (Num => Uint_1,
- Den => UI_From_Int (Standard_Integer_Size - 1),
- Rbase => 2);
-
- Long_Integer_Sized_Small :=
- UR_From_Components
- (Num => Uint_1,
- Den => UI_From_Int (Standard_Long_Integer_Size - 1),
- Rbase => 2);
- end if;
-
- -- Return True if target supports fixed-by-fixed multiply/divide
- -- for fractional fixed-point types (see Is_Fractional_Type) and
- -- the operand and result types are equivalent fractional types.
-
- return Is_Fractional_Type (Base_Type (Left_Typ))
- and then Is_Fractional_Type (Base_Type (Right_Typ))
- and then Is_Fractional_Type (Base_Type (Result_Typ))
- and then Esize (Left_Typ) = Esize (Right_Typ)
- and then Esize (Left_Typ) = Esize (Result_Typ);
- end Target_Has_Fixed_Ops;
-
- ------------------------------------------
- -- Type_May_Have_Bit_Aligned_Components --
- ------------------------------------------
-
- function Type_May_Have_Bit_Aligned_Components
- (Typ : Entity_Id) return Boolean
- is
- begin
- -- Array type, check component type
-
- if Is_Array_Type (Typ) then
- return
- Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-
- -- Record type, check components
-
- elsif Is_Record_Type (Typ) then
- declare
- E : Entity_Id;
-
- begin
- E := First_Component_Or_Discriminant (Typ);
- while Present (E) loop
- if Component_May_Be_Bit_Aligned (E)
- or else Type_May_Have_Bit_Aligned_Components (Etype (E))
- then
- return True;
- end if;
-
- Next_Component_Or_Discriminant (E);
- end loop;
-
- return False;
- end;
-
- -- Type other than array or record is always OK
-
- else
- return False;
- end if;
- end Type_May_Have_Bit_Aligned_Components;
-
- ----------------------------
- -- Wrap_Cleanup_Procedure --
- ----------------------------
-
- procedure Wrap_Cleanup_Procedure (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Stseq : constant Node_Id := Handled_Statement_Sequence (N);
- Stmts : constant List_Id := Statements (Stseq);
-
- begin
- if Abort_Allowed then
- Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
- Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
- end if;
- end Wrap_Cleanup_Procedure;
-
-end Exp_Util;