aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/exp_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/exp_util.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/exp_util.adb5321
1 files changed, 5321 insertions, 0 deletions
diff --git a/gcc-4.4.3/gcc/ada/exp_util.adb b/gcc-4.4.3/gcc/ada/exp_util.adb
new file mode 100644
index 000000000..b36f80d46
--- /dev/null
+++ b/gcc-4.4.3/gcc/ada/exp_util.adb
@@ -0,0 +1,5321 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ U T I L --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Aggr; use Exp_Aggr;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Inline; use Inline;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Sem; use Sem;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Snames; use Snames;
+with Stand; use Stand;
+with Stringt; use Stringt;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Exp_Util is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Build_Task_Array_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id;
+ Dyn : Boolean := False) return Node_Id;
+ -- Build function to generate the image string for a task that is an
+ -- array component, concatenating the images of each index. To avoid
+ -- storage leaks, the string is built with successive slice assignments.
+ -- The flag Dyn indicates whether this is called for the initialization
+ -- procedure of an array of tasks, or for the name of a dynamically
+ -- created task that is assigned to an indexed component.
+
+ function Build_Task_Image_Function
+ (Loc : Source_Ptr;
+ Decls : List_Id;
+ Stats : List_Id;
+ Res : Entity_Id) return Node_Id;
+ -- Common processing for Task_Array_Image and Task_Record_Image.
+ -- Build function body that computes image.
+
+ procedure Build_Task_Image_Prefix
+ (Loc : Source_Ptr;
+ Len : out Entity_Id;
+ Res : out Entity_Id;
+ Pos : out Entity_Id;
+ Prefix : Entity_Id;
+ Sum : Node_Id;
+ Decls : List_Id;
+ Stats : List_Id);
+ -- Common processing for Task_Array_Image and Task_Record_Image.
+ -- Create local variables and assign prefix of name to result string.
+
+ function Build_Task_Record_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ Dyn : Boolean := False) return Node_Id;
+ -- Build function to generate the image string for a task that is a
+ -- record component. Concatenate name of variable with that of selector.
+ -- The flag Dyn indicates whether this is called for the initialization
+ -- procedure of record with task components, or for a dynamically
+ -- created task that is assigned to a selected component.
+
+ function Make_CW_Equivalent_Type
+ (T : Entity_Id;
+ E : Node_Id) return Entity_Id;
+ -- T is a class-wide type entity, E is the initial expression node that
+ -- constrains T in case such as: " X: T := E" or "new T'(E)"
+ -- This function returns the entity of the Equivalent type and inserts
+ -- on the fly the necessary declaration such as:
+ --
+ -- type anon is record
+ -- _parent : Root_Type (T); constrained with E discriminants (if any)
+ -- Extension : String (1 .. expr to match size of E);
+ -- end record;
+ --
+ -- This record is compatible with any object of the class of T thanks
+ -- to the first field and has the same size as E thanks to the second.
+
+ function Make_Literal_Range
+ (Loc : Source_Ptr;
+ Literal_Typ : Entity_Id) return Node_Id;
+ -- Produce a Range node whose bounds are:
+ -- Low_Bound (Literal_Type) ..
+ -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
+ -- this is used for expanding declarations like X : String := "sdfgdfg";
+ --
+ -- If the index type of the target array is not integer, we generate:
+ -- Low_Bound (Literal_Type) ..
+ -- Literal_Type'Val
+ -- (Literal_Type'Pos (Low_Bound (Literal_Type))
+ -- + (Length (Literal_Typ) -1))
+
+ function New_Class_Wide_Subtype
+ (CW_Typ : Entity_Id;
+ N : Node_Id) return Entity_Id;
+ -- Create an implicit subtype of CW_Typ attached to node N
+
+ ----------------------
+ -- Adjust_Condition --
+ ----------------------
+
+ procedure Adjust_Condition (N : Node_Id) is
+ begin
+ if No (N) then
+ return;
+ end if;
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ T : constant Entity_Id := Etype (N);
+ Ti : Entity_Id;
+
+ begin
+ -- For now, we simply ignore a call where the argument has no
+ -- type (probably case of unanalyzed condition), or has a type
+ -- that is not Boolean. This is because this is a pretty marginal
+ -- piece of functionality, and violations of these rules are
+ -- likely to be truly marginal (how much code uses Fortran Logical
+ -- as the barrier to a protected entry?) and we do not want to
+ -- blow up existing programs. We can change this to an assertion
+ -- after 3.12a is released ???
+
+ if No (T) or else not Is_Boolean_Type (T) then
+ return;
+ end if;
+
+ -- Apply validity checking if needed
+
+ if Validity_Checks_On and Validity_Check_Tests then
+ Ensure_Valid (N);
+ end if;
+
+ -- Immediate return if standard boolean, the most common case,
+ -- where nothing needs to be done.
+
+ if Base_Type (T) = Standard_Boolean then
+ return;
+ end if;
+
+ -- Case of zero/non-zero semantics or non-standard enumeration
+ -- representation. In each case, we rewrite the node as:
+
+ -- ityp!(N) /= False'Enum_Rep
+
+ -- where ityp is an integer type with large enough size to hold
+ -- any value of type T.
+
+ if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
+ if Esize (T) <= Esize (Standard_Integer) then
+ Ti := Standard_Integer;
+ else
+ Ti := Standard_Long_Long_Integer;
+ end if;
+
+ Rewrite (N,
+ Make_Op_Ne (Loc,
+ Left_Opnd => Unchecked_Convert_To (Ti, N),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Enum_Rep,
+ Prefix =>
+ New_Occurrence_Of (First_Literal (T), Loc))));
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ else
+ Rewrite (N, Convert_To (Standard_Boolean, N));
+ Analyze_And_Resolve (N, Standard_Boolean);
+ end if;
+ end;
+ end Adjust_Condition;
+
+ ------------------------
+ -- Adjust_Result_Type --
+ ------------------------
+
+ procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
+ begin
+ -- Ignore call if current type is not Standard.Boolean
+
+ if Etype (N) /= Standard_Boolean then
+ return;
+ end if;
+
+ -- If result is already of correct type, nothing to do. Note that
+ -- this will get the most common case where everything has a type
+ -- of Standard.Boolean.
+
+ if Base_Type (T) = Standard_Boolean then
+ return;
+
+ else
+ declare
+ KP : constant Node_Kind := Nkind (Parent (N));
+
+ begin
+ -- If result is to be used as a Condition in the syntax, no need
+ -- to convert it back, since if it was changed to Standard.Boolean
+ -- using Adjust_Condition, that is just fine for this usage.
+
+ if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
+ return;
+
+ -- If result is an operand of another logical operation, no need
+ -- to reset its type, since Standard.Boolean is just fine, and
+ -- such operations always do Adjust_Condition on their operands.
+
+ elsif KP in N_Op_Boolean
+ or else KP = N_And_Then
+ or else KP = N_Or_Else
+ or else KP = N_Op_Not
+ then
+ return;
+
+ -- Otherwise we perform a conversion from the current type,
+ -- which must be Standard.Boolean, to the desired type.
+
+ else
+ Set_Analyzed (N);
+ Rewrite (N, Convert_To (T, N));
+ Analyze_And_Resolve (N, T);
+ end if;
+ end;
+ end if;
+ end Adjust_Result_Type;
+
+ --------------------------
+ -- Append_Freeze_Action --
+ --------------------------
+
+ procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
+ Fnode : Node_Id;
+
+ begin
+ Ensure_Freeze_Node (T);
+ Fnode := Freeze_Node (T);
+
+ if No (Actions (Fnode)) then
+ Set_Actions (Fnode, New_List);
+ end if;
+
+ Append (N, Actions (Fnode));
+ end Append_Freeze_Action;
+
+ ---------------------------
+ -- Append_Freeze_Actions --
+ ---------------------------
+
+ procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
+ Fnode : constant Node_Id := Freeze_Node (T);
+
+ begin
+ if No (L) then
+ return;
+
+ else
+ if No (Actions (Fnode)) then
+ Set_Actions (Fnode, L);
+
+ else
+ Append_List (L, Actions (Fnode));
+ end if;
+
+ end if;
+ end Append_Freeze_Actions;
+
+ ------------------------
+ -- Build_Runtime_Call --
+ ------------------------
+
+ function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
+ begin
+ -- If entity is not available, we can skip making the call (this avoids
+ -- junk duplicated error messages in a number of cases).
+
+ if not RTE_Available (RE) then
+ return Make_Null_Statement (Loc);
+ else
+ return
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To (RTE (RE), Loc));
+ end if;
+ end Build_Runtime_Call;
+
+ ----------------------------
+ -- Build_Task_Array_Image --
+ ----------------------------
+
+ -- This function generates the body for a function that constructs the
+ -- image string for a task that is an array component. The function is
+ -- local to the init proc for the array type, and is called for each one
+ -- of the components. The constructed image has the form of an indexed
+ -- component, whose prefix is the outer variable of the array type.
+ -- The n-dimensional array type has known indices Index, Index2...
+ -- Id_Ref is an indexed component form created by the enclosing init proc.
+ -- Its successive indices are Val1, Val2, ... which are the loop variables
+ -- in the loops that call the individual task init proc on each component.
+
+ -- The generated function has the following structure:
+
+ -- function F return String is
+ -- Pref : string renames Task_Name;
+ -- T1 : String := Index1'Image (Val1);
+ -- ...
+ -- Tn : String := indexn'image (Valn);
+ -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
+ -- -- Len includes commas and the end parentheses.
+ -- Res : String (1..Len);
+ -- Pos : Integer := Pref'Length;
+ --
+ -- begin
+ -- Res (1 .. Pos) := Pref;
+ -- Pos := Pos + 1;
+ -- Res (Pos) := '(';
+ -- Pos := Pos + 1;
+ -- Res (Pos .. Pos + T1'Length - 1) := T1;
+ -- Pos := Pos + T1'Length;
+ -- Res (Pos) := '.';
+ -- Pos := Pos + 1;
+ -- ...
+ -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
+ -- Res (Len) := ')';
+ --
+ -- return Res;
+ -- end F;
+ --
+ -- Needless to say, multidimensional arrays of tasks are rare enough
+ -- that the bulkiness of this code is not really a concern.
+
+ function Build_Task_Array_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id;
+ Dyn : Boolean := False) return Node_Id
+ is
+ Dims : constant Nat := Number_Dimensions (A_Type);
+ -- Number of dimensions for array of tasks
+
+ Temps : array (1 .. Dims) of Entity_Id;
+ -- Array of temporaries to hold string for each index
+
+ Indx : Node_Id;
+ -- Index expression
+
+ Len : Entity_Id;
+ -- Total length of generated name
+
+ Pos : Entity_Id;
+ -- Running index for substring assignments
+
+ Pref : Entity_Id;
+ -- Name of enclosing variable, prefix of resulting name
+
+ Res : Entity_Id;
+ -- String to hold result
+
+ Val : Node_Id;
+ -- Value of successive indices
+
+ Sum : Node_Id;
+ -- Expression to compute total size of string
+
+ T : Entity_Id;
+ -- Entity for name at one index position
+
+ Decls : constant List_Id := New_List;
+ Stats : constant List_Id := New_List;
+
+ begin
+ Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ -- For a dynamic task, the name comes from the target variable.
+ -- For a static one it is a formal of the enclosing init proc.
+
+ if Dyn then
+ Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ else
+ Append_To (Decls,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Name => Make_Identifier (Loc, Name_uTask_Name)));
+ end if;
+
+ Indx := First_Index (A_Type);
+ Val := First (Expressions (Id_Ref));
+
+ for J in 1 .. Dims loop
+ T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+ Temps (J) := T;
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Image,
+ Prefix =>
+ New_Occurrence_Of (Etype (Indx), Loc),
+ Expressions => New_List (
+ New_Copy_Tree (Val)))));
+
+ Next_Index (Indx);
+ Next (Val);
+ end loop;
+
+ Sum := Make_Integer_Literal (Loc, Dims + 1);
+
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Pref, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+
+ for J in 1 .. Dims loop
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Temps (J), Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+ end loop;
+
+ Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos ('(')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+
+ for J in 1 .. Dims loop
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => New_Occurrence_Of (Pos, Loc),
+ High_Bound => Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Temps (J), Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1)))),
+ Right_Opnd => Make_Integer_Literal (Loc, 1)))),
+
+ Expression => New_Occurrence_Of (Temps (J), Loc)));
+
+ if J < Dims then
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Temps (J), Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1))))));
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos (',')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+ end if;
+ end loop;
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Len, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos (')')))));
+ return Build_Task_Image_Function (Loc, Decls, Stats, Res);
+ end Build_Task_Array_Image;
+
+ ----------------------------
+ -- Build_Task_Image_Decls --
+ ----------------------------
+
+ function Build_Task_Image_Decls
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ A_Type : Entity_Id;
+ In_Init_Proc : Boolean := False) return List_Id
+ is
+ Decls : constant List_Id := New_List;
+ T_Id : Entity_Id := Empty;
+ Decl : Node_Id;
+ Expr : Node_Id := Empty;
+ Fun : Node_Id := Empty;
+ Is_Dyn : constant Boolean :=
+ Nkind (Parent (Id_Ref)) = N_Assignment_Statement
+ and then
+ Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
+
+ begin
+ -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
+ -- generate a dummy declaration only.
+
+ if Restriction_Active (No_Implicit_Heap_Allocations)
+ or else Global_Discard_Names
+ then
+ T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
+ Name_Len := 0;
+
+ return
+ New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => T_Id,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ else
+ if Nkind (Id_Ref) = N_Identifier
+ or else Nkind (Id_Ref) = N_Defining_Identifier
+ then
+ -- For a simple variable, the image of the task is built from
+ -- the name of the variable. To avoid possible conflict with
+ -- the anonymous type created for a single protected object,
+ -- add a numeric suffix.
+
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Id_Ref), 'T', 1));
+
+ Get_Name_String (Chars (Id_Ref));
+
+ Expr :=
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer);
+
+ elsif Nkind (Id_Ref) = N_Selected_Component then
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
+ Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
+
+ elsif Nkind (Id_Ref) = N_Indexed_Component then
+ T_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (A_Type), 'N'));
+
+ Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
+ end if;
+ end if;
+
+ if Present (Fun) then
+ Append (Fun, Decls);
+ Expr := Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
+
+ if not In_Init_Proc and then VM_Target = No_VM then
+ Set_Uses_Sec_Stack (Defining_Entity (Fun));
+ end if;
+ end if;
+
+ Decl := Make_Object_Declaration (Loc,
+ Defining_Identifier => T_Id,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Constant_Present => True,
+ Expression => Expr);
+
+ Append (Decl, Decls);
+ return Decls;
+ end Build_Task_Image_Decls;
+
+ -------------------------------
+ -- Build_Task_Image_Function --
+ -------------------------------
+
+ function Build_Task_Image_Function
+ (Loc : Source_Ptr;
+ Decls : List_Id;
+ Stats : List_Id;
+ Res : Entity_Id) return Node_Id
+ is
+ Spec : Node_Id;
+
+ begin
+ Append_To (Stats,
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Res, Loc)));
+
+ Spec := Make_Function_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
+ Result_Definition => New_Occurrence_Of (Standard_String, Loc));
+
+ -- Calls to 'Image use the secondary stack, which must be cleaned
+ -- up after the task name is built.
+
+ return Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
+ end Build_Task_Image_Function;
+
+ -----------------------------
+ -- Build_Task_Image_Prefix --
+ -----------------------------
+
+ procedure Build_Task_Image_Prefix
+ (Loc : Source_Ptr;
+ Len : out Entity_Id;
+ Res : out Entity_Id;
+ Pos : out Entity_Id;
+ Prefix : Entity_Id;
+ Sum : Node_Id;
+ Decls : List_Id;
+ Stats : List_Id)
+ is
+ begin
+ Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Len,
+ Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
+ Expression => Sum));
+
+ Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Res,
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints =>
+ New_List (
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => New_Occurrence_Of (Len, Loc)))))));
+
+ Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pos,
+ Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
+
+ -- Pos := Prefix'Length;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix => New_Occurrence_Of (Prefix, Loc),
+ Expressions =>
+ New_List (Make_Integer_Literal (Loc, 1)))));
+
+ -- Res (1 .. Pos) := Prefix;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => New_Occurrence_Of (Pos, Loc))),
+
+ Expression => New_Occurrence_Of (Prefix, Loc)));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+ end Build_Task_Image_Prefix;
+
+ -----------------------------
+ -- Build_Task_Record_Image --
+ -----------------------------
+
+ function Build_Task_Record_Image
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ Dyn : Boolean := False) return Node_Id
+ is
+ Len : Entity_Id;
+ -- Total length of generated name
+
+ Pos : Entity_Id;
+ -- Index into result
+
+ Res : Entity_Id;
+ -- String to hold result
+
+ Pref : Entity_Id;
+ -- Name of enclosing variable, prefix of resulting name
+
+ Sum : Node_Id;
+ -- Expression to compute total size of string
+
+ Sel : Entity_Id;
+ -- Entity for selector name
+
+ Decls : constant List_Id := New_List;
+ Stats : constant List_Id := New_List;
+
+ begin
+ Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ -- For a dynamic task, the name comes from the target variable.
+ -- For a static one it is a formal of the enclosing init proc.
+
+ if Dyn then
+ Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ else
+ Append_To (Decls,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Pref,
+ Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
+ Name => Make_Identifier (Loc, Name_uTask_Name)));
+ end if;
+
+ Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+
+ Get_Name_String (Chars (Selector_Name (Id_Ref)));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Sel,
+ Object_Definition => New_Occurrence_Of (Standard_String, Loc),
+ Expression =>
+ Make_String_Literal (Loc,
+ Strval => String_From_Name_Buffer)));
+
+ Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
+
+ Sum :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Sum,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (Pref, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, 1))));
+
+ Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
+
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
+
+ -- Res (Pos) := '.';
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
+ Expression =>
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos ('.')))));
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Pos, Loc),
+ Expression =>
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Occurrence_Of (Pos, Loc),
+ Right_Opnd => Make_Integer_Literal (Loc, 1))));
+
+ -- Res (Pos .. Len) := Selector;
+
+ Append_To (Stats,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Slice (Loc,
+ Prefix => New_Occurrence_Of (Res, Loc),
+ Discrete_Range =>
+ Make_Range (Loc,
+ Low_Bound => New_Occurrence_Of (Pos, Loc),
+ High_Bound => New_Occurrence_Of (Len, Loc))),
+ Expression => New_Occurrence_Of (Sel, Loc)));
+
+ return Build_Task_Image_Function (Loc, Decls, Stats, Res);
+ end Build_Task_Record_Image;
+
+ ----------------------------------
+ -- Component_May_Be_Bit_Aligned --
+ ----------------------------------
+
+ function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
+ begin
+ -- If no component clause, then everything is fine, since the back end
+ -- never bit-misaligns by default, even if there is a pragma Packed for
+ -- the record.
+
+ if No (Component_Clause (Comp)) then
+ return False;
+ end if;
+
+ -- It is only array and record types that cause trouble
+
+ if not Is_Record_Type (Etype (Comp))
+ and then not Is_Array_Type (Etype (Comp))
+ then
+ return False;
+
+ -- If we know that we have a small (64 bits or less) record
+ -- or bit-packed array, then everything is fine, since the
+ -- back end can handle these cases correctly.
+
+ elsif Esize (Comp) <= 64
+ and then (Is_Record_Type (Etype (Comp))
+ or else Is_Bit_Packed_Array (Etype (Comp)))
+ then
+ return False;
+
+ -- Otherwise if the component is not byte aligned, we know we have the
+ -- nasty unaligned case.
+
+ elsif Normalized_First_Bit (Comp) /= Uint_0
+ or else Esize (Comp) mod System_Storage_Unit /= Uint_0
+ then
+ return True;
+
+ -- If we are large and byte aligned, then OK at this level
+
+ else
+ return False;
+ end if;
+ end Component_May_Be_Bit_Aligned;
+
+ -----------------------------------
+ -- Corresponding_Runtime_Package --
+ -----------------------------------
+
+ function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
+ Pkg_Id : RTU_Id := RTU_Null;
+
+ begin
+ pragma Assert (Is_Concurrent_Type (Typ));
+
+ if Ekind (Typ) in Protected_Kind then
+ if Has_Entries (Typ)
+ or else Has_Interrupt_Handler (Typ)
+ or else (Has_Attach_Handler (Typ)
+ and then not Restricted_Profile)
+
+ -- A protected type without entries that covers an interface and
+ -- overrides the abstract routines with protected procedures is
+ -- considered equivalent to a protected type with entries in the
+ -- context of dispatching select statements. It is sufficient to
+ -- check for the presence of an interface list in the declaration
+ -- node to recognize this case.
+
+ or else Present (Interface_List (Parent (Typ)))
+ then
+ if Abort_Allowed
+ or else Restriction_Active (No_Entry_Queue) = False
+ or else Number_Entries (Typ) > 1
+ or else (Has_Attach_Handler (Typ)
+ and then not Restricted_Profile)
+ then
+ Pkg_Id := System_Tasking_Protected_Objects_Entries;
+ else
+ Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
+ end if;
+
+ else
+ Pkg_Id := System_Tasking_Protected_Objects;
+ end if;
+ end if;
+
+ return Pkg_Id;
+ end Corresponding_Runtime_Package;
+
+ -------------------------------
+ -- Convert_To_Actual_Subtype --
+ -------------------------------
+
+ procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
+ Act_ST : Entity_Id;
+
+ begin
+ Act_ST := Get_Actual_Subtype (Exp);
+
+ if Act_ST = Etype (Exp) then
+ return;
+
+ else
+ Rewrite (Exp,
+ Convert_To (Act_ST, Relocate_Node (Exp)));
+ Analyze_And_Resolve (Exp, Act_ST);
+ end if;
+ end Convert_To_Actual_Subtype;
+
+ -----------------------------------
+ -- Current_Sem_Unit_Declarations --
+ -----------------------------------
+
+ function Current_Sem_Unit_Declarations return List_Id is
+ U : Node_Id := Unit (Cunit (Current_Sem_Unit));
+ Decls : List_Id;
+
+ begin
+ -- If the current unit is a package body, locate the visible
+ -- declarations of the package spec.
+
+ if Nkind (U) = N_Package_Body then
+ U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
+ end if;
+
+ if Nkind (U) = N_Package_Declaration then
+ U := Specification (U);
+ Decls := Visible_Declarations (U);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Visible_Declarations (U, Decls);
+ end if;
+
+ else
+ Decls := Declarations (U);
+
+ if No (Decls) then
+ Decls := New_List;
+ Set_Declarations (U, Decls);
+ end if;
+ end if;
+
+ return Decls;
+ end Current_Sem_Unit_Declarations;
+
+ -----------------------
+ -- Duplicate_Subexpr --
+ -----------------------
+
+ function Duplicate_Subexpr
+ (Exp : Node_Id;
+ Name_Req : Boolean := False) return Node_Id
+ is
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ return New_Copy_Tree (Exp);
+ end Duplicate_Subexpr;
+
+ ---------------------------------
+ -- Duplicate_Subexpr_No_Checks --
+ ---------------------------------
+
+ function Duplicate_Subexpr_No_Checks
+ (Exp : Node_Id;
+ Name_Req : Boolean := False) return Node_Id
+ is
+ New_Exp : Node_Id;
+
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ New_Exp := New_Copy_Tree (Exp);
+ Remove_Checks (New_Exp);
+ return New_Exp;
+ end Duplicate_Subexpr_No_Checks;
+
+ -----------------------------------
+ -- Duplicate_Subexpr_Move_Checks --
+ -----------------------------------
+
+ function Duplicate_Subexpr_Move_Checks
+ (Exp : Node_Id;
+ Name_Req : Boolean := False) return Node_Id
+ is
+ New_Exp : Node_Id;
+
+ begin
+ Remove_Side_Effects (Exp, Name_Req);
+ New_Exp := New_Copy_Tree (Exp);
+ Remove_Checks (Exp);
+ return New_Exp;
+ end Duplicate_Subexpr_Move_Checks;
+
+ --------------------
+ -- Ensure_Defined --
+ --------------------
+
+ procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
+ IR : Node_Id;
+
+ begin
+ -- An itype reference must only be created if this is a local
+ -- itype, so that gigi can elaborate it on the proper objstack.
+
+ if Is_Itype (Typ)
+ and then Scope (Typ) = Current_Scope
+ then
+ IR := Make_Itype_Reference (Sloc (N));
+ Set_Itype (IR, Typ);
+ Insert_Action (N, IR);
+ end if;
+ end Ensure_Defined;
+
+ --------------------
+ -- Entry_Names_OK --
+ --------------------
+
+ function Entry_Names_OK return Boolean is
+ begin
+ return
+ not Restricted_Profile
+ and then not Global_Discard_Names
+ and then not Restriction_Active (No_Implicit_Heap_Allocations)
+ and then not Restriction_Active (No_Local_Allocators);
+ end Entry_Names_OK;
+
+ ---------------------
+ -- Evolve_And_Then --
+ ---------------------
+
+ procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
+ begin
+ if No (Cond) then
+ Cond := Cond1;
+ else
+ Cond :=
+ Make_And_Then (Sloc (Cond1),
+ Left_Opnd => Cond,
+ Right_Opnd => Cond1);
+ end if;
+ end Evolve_And_Then;
+
+ --------------------
+ -- Evolve_Or_Else --
+ --------------------
+
+ procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
+ begin
+ if No (Cond) then
+ Cond := Cond1;
+ else
+ Cond :=
+ Make_Or_Else (Sloc (Cond1),
+ Left_Opnd => Cond,
+ Right_Opnd => Cond1);
+ end if;
+ end Evolve_Or_Else;
+
+ ------------------------------
+ -- Expand_Subtype_From_Expr --
+ ------------------------------
+
+ -- This function is applicable for both static and dynamic allocation of
+ -- objects which are constrained by an initial expression. Basically it
+ -- transforms an unconstrained subtype indication into a constrained one.
+ -- The expression may also be transformed in certain cases in order to
+ -- avoid multiple evaluation. In the static allocation case, the general
+ -- scheme is:
+
+ -- Val : T := Expr;
+
+ -- is transformed into
+
+ -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
+ --
+ -- Here are the main cases :
+ --
+ -- <if Expr is a Slice>
+ -- Val : T ([Index_Subtype (Expr)]) := Expr;
+ --
+ -- <elsif Expr is a String Literal>
+ -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
+ --
+ -- <elsif Expr is Constrained>
+ -- subtype T is Type_Of_Expr
+ -- Val : T := Expr;
+ --
+ -- <elsif Expr is an entity_name>
+ -- Val : T (constraints taken from Expr) := Expr;
+ --
+ -- <else>
+ -- type Axxx is access all T;
+ -- Rval : Axxx := Expr'ref;
+ -- Val : T (constraints taken from Rval) := Rval.all;
+
+ -- ??? note: when the Expression is allocated in the secondary stack
+ -- we could use it directly instead of copying it by declaring
+ -- Val : T (...) renames Rval.all
+
+ procedure Expand_Subtype_From_Expr
+ (N : Node_Id;
+ Unc_Type : Entity_Id;
+ Subtype_Indic : Node_Id;
+ Exp : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Exp_Typ : constant Entity_Id := Etype (Exp);
+ T : Entity_Id;
+
+ begin
+ -- In general we cannot build the subtype if expansion is disabled,
+ -- because internal entities may not have been defined. However, to
+ -- avoid some cascaded errors, we try to continue when the expression
+ -- is an array (or string), because it is safe to compute the bounds.
+ -- It is in fact required to do so even in a generic context, because
+ -- there may be constants that depend on bounds of string literal.
+
+ if not Expander_Active
+ and then (No (Etype (Exp))
+ or else Base_Type (Etype (Exp)) /= Standard_String)
+ then
+ return;
+ end if;
+
+ if Nkind (Exp) = N_Slice then
+ declare
+ Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
+
+ begin
+ Rewrite (Subtype_Indic,
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Unc_Type, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List
+ (New_Reference_To (Slice_Type, Loc)))));
+
+ -- This subtype indication may be used later for constraint checks
+ -- we better make sure that if a variable was used as a bound of
+ -- of the original slice, its value is frozen.
+
+ Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
+ Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
+ end;
+
+ elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
+ Rewrite (Subtype_Indic,
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Unc_Type, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+ Make_Literal_Range (Loc,
+ Literal_Typ => Exp_Typ)))));
+
+ elsif Is_Constrained (Exp_Typ)
+ and then not Is_Class_Wide_Type (Unc_Type)
+ then
+ if Is_Itype (Exp_Typ) then
+
+ -- Within an initialization procedure, a selected component
+ -- denotes a component of the enclosing record, and it appears
+ -- as an actual in a call to its own initialization procedure.
+ -- If this component depends on the outer discriminant, we must
+ -- generate the proper actual subtype for it.
+
+ if Nkind (Exp) = N_Selected_Component
+ and then Within_Init_Proc
+ then
+ declare
+ Decl : constant Node_Id :=
+ Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
+ begin
+ if Present (Decl) then
+ Insert_Action (N, Decl);
+ T := Defining_Identifier (Decl);
+ else
+ T := Exp_Typ;
+ end if;
+ end;
+
+ -- No need to generate a new one (new what???)
+
+ else
+ T := Exp_Typ;
+ end if;
+
+ else
+ T :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ Insert_Action (N,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => T,
+ Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
+
+ -- This type is marked as an itype even though it has an
+ -- explicit declaration because otherwise it can be marked
+ -- with Is_Generic_Actual_Type and generate spurious errors.
+ -- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
+
+ Set_Is_Itype (T);
+ Set_Associated_Node_For_Itype (T, Exp);
+ end if;
+
+ Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
+
+ -- nothing needs to be done for private types with unknown discriminants
+ -- if the underlying type is not an unconstrained composite type.
+
+ elsif Is_Private_Type (Unc_Type)
+ and then Has_Unknown_Discriminants (Unc_Type)
+ and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
+ or else Is_Constrained (Underlying_Type (Unc_Type)))
+ then
+ null;
+
+ -- Nothing to be done for derived types with unknown discriminants if
+ -- the parent type also has unknown discriminants.
+
+ elsif Is_Record_Type (Unc_Type)
+ and then not Is_Class_Wide_Type (Unc_Type)
+ and then Has_Unknown_Discriminants (Unc_Type)
+ and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
+ then
+ null;
+
+ -- In Ada95, Nothing to be done if the type of the expression is
+ -- limited, because in this case the expression cannot be copied,
+ -- and its use can only be by reference.
+
+ -- In Ada2005, the context can be an object declaration whose expression
+ -- is a function that returns in place. If the nominal subtype has
+ -- unknown discriminants, the call still provides constraints on the
+ -- object, and we have to create an actual subtype from it.
+
+ -- If the type is class-wide, the expression is dynamically tagged and
+ -- we do not create an actual subtype either. Ditto for an interface.
+
+ elsif Is_Limited_Type (Exp_Typ)
+ and then
+ (Is_Class_Wide_Type (Exp_Typ)
+ or else Is_Interface (Exp_Typ)
+ or else not Has_Unknown_Discriminants (Exp_Typ)
+ or else not Is_Composite_Type (Unc_Type))
+ then
+ null;
+
+ -- For limited interfaces, nothing to be done
+
+ -- This branch may be redundant once the limited interface issue is
+ -- sorted out???
+
+ elsif Is_Interface (Exp_Typ)
+ and then Is_Limited_Interface (Exp_Typ)
+ then
+ null;
+
+ -- For limited objects initialized with build in place function calls,
+ -- nothing to be done; otherwise we prematurely introduce an N_Reference
+ -- node in the expression initializing the object, which breaks the
+ -- circuitry that detects and adds the additional arguments to the
+ -- called function.
+
+ elsif Is_Build_In_Place_Function_Call (Exp) then
+ null;
+
+ else
+ Remove_Side_Effects (Exp);
+ Rewrite (Subtype_Indic,
+ Make_Subtype_From_Expr (Exp, Unc_Type));
+ end if;
+ end Expand_Subtype_From_Expr;
+
+ ------------------------
+ -- Find_Interface_ADT --
+ ------------------------
+
+ function Find_Interface_ADT
+ (T : Entity_Id;
+ Iface : Entity_Id) return Elmt_Id
+ is
+ ADT : Elmt_Id;
+ Typ : Entity_Id := T;
+
+ begin
+ pragma Assert (Is_Interface (Iface));
+
+ -- Handle private types
+
+ if Has_Private_Declaration (Typ)
+ and then Present (Full_View (Typ))
+ then
+ Typ := Full_View (Typ);
+ end if;
+
+ -- Handle access types
+
+ if Is_Access_Type (Typ) then
+ Typ := Directly_Designated_Type (Typ);
+ end if;
+
+ -- Handle task and protected types implementing interfaces
+
+ if Is_Concurrent_Type (Typ) then
+ Typ := Corresponding_Record_Type (Typ);
+ end if;
+
+ pragma Assert
+ (not Is_Class_Wide_Type (Typ)
+ and then Ekind (Typ) /= E_Incomplete_Type);
+
+ if Is_Ancestor (Iface, Typ) then
+ return First_Elmt (Access_Disp_Table (Typ));
+
+ else
+ ADT :=
+ Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
+ while Present (ADT)
+ and then Present (Related_Type (Node (ADT)))
+ and then Related_Type (Node (ADT)) /= Iface
+ and then not Is_Ancestor (Iface, Related_Type (Node (ADT)))
+ loop
+ Next_Elmt (ADT);
+ end loop;
+
+ pragma Assert (Present (Related_Type (Node (ADT))));
+ return ADT;
+ end if;
+ end Find_Interface_ADT;
+
+ ------------------------
+ -- Find_Interface_Tag --
+ ------------------------
+
+ function Find_Interface_Tag
+ (T : Entity_Id;
+ Iface : Entity_Id) return Entity_Id
+ is
+ AI_Tag : Entity_Id;
+ Found : Boolean := False;
+ Typ : Entity_Id := T;
+
+ procedure Find_Tag (Typ : Entity_Id);
+ -- Internal subprogram used to recursively climb to the ancestors
+
+ --------------
+ -- Find_Tag --
+ --------------
+
+ procedure Find_Tag (Typ : Entity_Id) is
+ AI_Elmt : Elmt_Id;
+ AI : Node_Id;
+
+ begin
+ -- Check if the interface is an immediate ancestor of the type and
+ -- therefore shares the main tag.
+
+ if Typ = Iface then
+ pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
+ AI_Tag := First_Tag_Component (Typ);
+ Found := True;
+ return;
+ end if;
+
+ -- Climb to the root type handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ if Full_View (Etype (Typ)) /= Typ then
+ Find_Tag (Full_View (Etype (Typ)));
+ end if;
+
+ elsif Etype (Typ) /= Typ then
+ Find_Tag (Etype (Typ));
+ end if;
+
+ -- Traverse the list of interfaces implemented by the type
+
+ if not Found
+ and then Present (Interfaces (Typ))
+ and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
+ then
+ -- Skip the tag associated with the primary table
+
+ pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
+ AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
+ pragma Assert (Present (AI_Tag));
+
+ AI_Elmt := First_Elmt (Interfaces (Typ));
+ while Present (AI_Elmt) loop
+ AI := Node (AI_Elmt);
+
+ if AI = Iface or else Is_Ancestor (Iface, AI) then
+ Found := True;
+ return;
+ end if;
+
+ AI_Tag := Next_Tag_Component (AI_Tag);
+ Next_Elmt (AI_Elmt);
+ end loop;
+ end if;
+ end Find_Tag;
+
+ -- Start of processing for Find_Interface_Tag
+
+ begin
+ pragma Assert (Is_Interface (Iface));
+
+ -- Handle private types
+
+ if Has_Private_Declaration (Typ)
+ and then Present (Full_View (Typ))
+ then
+ Typ := Full_View (Typ);
+ end if;
+
+ -- Handle access types
+
+ if Is_Access_Type (Typ) then
+ Typ := Directly_Designated_Type (Typ);
+ end if;
+
+ -- Handle task and protected types implementing interfaces
+
+ if Is_Concurrent_Type (Typ) then
+ Typ := Corresponding_Record_Type (Typ);
+ end if;
+
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Etype (Typ);
+ end if;
+
+ -- Handle entities from the limited view
+
+ if Ekind (Typ) = E_Incomplete_Type then
+ pragma Assert (Present (Non_Limited_View (Typ)));
+ Typ := Non_Limited_View (Typ);
+ end if;
+
+ Find_Tag (Typ);
+ pragma Assert (Found);
+ return AI_Tag;
+ end Find_Interface_Tag;
+
+ ------------------
+ -- Find_Prim_Op --
+ ------------------
+
+ function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
+ Prim : Elmt_Id;
+ Typ : Entity_Id := T;
+ Op : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ Typ := Underlying_Type (Typ);
+
+ -- Loop through primitive operations
+
+ Prim := First_Elmt (Primitive_Operations (Typ));
+ while Present (Prim) loop
+ Op := Node (Prim);
+
+ -- We can retrieve primitive operations by name if it is an internal
+ -- name. For equality we must check that both of its operands have
+ -- the same type, to avoid confusion with user-defined equalities
+ -- than may have a non-symmetric signature.
+
+ exit when Chars (Op) = Name
+ and then
+ (Name /= Name_Op_Eq
+ or else Etype (First_Entity (Op)) = Etype (Last_Entity (Op)));
+
+ Next_Elmt (Prim);
+
+ -- Raise Program_Error if no primitive found
+
+ if No (Prim) then
+ raise Program_Error;
+ end if;
+ end loop;
+
+ return Node (Prim);
+ end Find_Prim_Op;
+
+ ------------------
+ -- Find_Prim_Op --
+ ------------------
+
+ function Find_Prim_Op
+ (T : Entity_Id;
+ Name : TSS_Name_Type) return Entity_Id
+ is
+ Prim : Elmt_Id;
+ Typ : Entity_Id := T;
+
+ begin
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ Typ := Underlying_Type (Typ);
+
+ Prim := First_Elmt (Primitive_Operations (Typ));
+ while not Is_TSS (Node (Prim), Name) loop
+ Next_Elmt (Prim);
+
+ -- Raise program error if no primitive found
+
+ if No (Prim) then
+ raise Program_Error;
+ end if;
+ end loop;
+
+ return Node (Prim);
+ end Find_Prim_Op;
+
+ ----------------------------
+ -- Find_Protection_Object --
+ ----------------------------
+
+ function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
+ S : Entity_Id;
+
+ begin
+ S := Scop;
+ while Present (S) loop
+ if (Ekind (S) = E_Entry
+ or else Ekind (S) = E_Entry_Family
+ or else Ekind (S) = E_Function
+ or else Ekind (S) = E_Procedure)
+ and then Present (Protection_Object (S))
+ then
+ return Protection_Object (S);
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ -- If we do not find a Protection object in the scope chain, then
+ -- something has gone wrong, most likely the object was never created.
+
+ raise Program_Error;
+ end Find_Protection_Object;
+
+ ----------------------
+ -- Force_Evaluation --
+ ----------------------
+
+ procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
+ begin
+ Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
+ end Force_Evaluation;
+
+ ------------------------
+ -- Generate_Poll_Call --
+ ------------------------
+
+ procedure Generate_Poll_Call (N : Node_Id) is
+ begin
+ -- No poll call if polling not active
+
+ if not Polling_Required then
+ return;
+
+ -- Otherwise generate require poll call
+
+ else
+ Insert_Before_And_Analyze (N,
+ Make_Procedure_Call_Statement (Sloc (N),
+ Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
+ end if;
+ end Generate_Poll_Call;
+
+ ---------------------------------
+ -- Get_Current_Value_Condition --
+ ---------------------------------
+
+ -- Note: the implementation of this procedure is very closely tied to the
+ -- implementation of Set_Current_Value_Condition. In the Get procedure, we
+ -- interpret Current_Value fields set by the Set procedure, so the two
+ -- procedures need to be closely coordinated.
+
+ procedure Get_Current_Value_Condition
+ (Var : Node_Id;
+ Op : out Node_Kind;
+ Val : out Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Var);
+ Ent : constant Entity_Id := Entity (Var);
+
+ procedure Process_Current_Value_Condition
+ (N : Node_Id;
+ S : Boolean);
+ -- N is an expression which holds either True (S = True) or False (S =
+ -- False) in the condition. This procedure digs out the expression and
+ -- if it refers to Ent, sets Op and Val appropriately.
+
+ -------------------------------------
+ -- Process_Current_Value_Condition --
+ -------------------------------------
+
+ procedure Process_Current_Value_Condition
+ (N : Node_Id;
+ S : Boolean)
+ is
+ Cond : Node_Id;
+ Sens : Boolean;
+
+ begin
+ Cond := N;
+ Sens := S;
+
+ -- Deal with NOT operators, inverting sense
+
+ while Nkind (Cond) = N_Op_Not loop
+ Cond := Right_Opnd (Cond);
+ Sens := not Sens;
+ end loop;
+
+ -- Deal with AND THEN and AND cases
+
+ if Nkind (Cond) = N_And_Then
+ or else Nkind (Cond) = N_Op_And
+ then
+ -- Don't ever try to invert a condition that is of the form
+ -- of an AND or AND THEN (since we are not doing sufficiently
+ -- general processing to allow this).
+
+ if Sens = False then
+ Op := N_Empty;
+ Val := Empty;
+ return;
+ end if;
+
+ -- Recursively process AND and AND THEN branches
+
+ Process_Current_Value_Condition (Left_Opnd (Cond), True);
+
+ if Op /= N_Empty then
+ return;
+ end if;
+
+ Process_Current_Value_Condition (Right_Opnd (Cond), True);
+ return;
+
+ -- Case of relational operator
+
+ elsif Nkind (Cond) in N_Op_Compare then
+ Op := Nkind (Cond);
+
+ -- Invert sense of test if inverted test
+
+ if Sens = False then
+ case Op is
+ when N_Op_Eq => Op := N_Op_Ne;
+ when N_Op_Ne => Op := N_Op_Eq;
+ when N_Op_Lt => Op := N_Op_Ge;
+ when N_Op_Gt => Op := N_Op_Le;
+ when N_Op_Le => Op := N_Op_Gt;
+ when N_Op_Ge => Op := N_Op_Lt;
+ when others => raise Program_Error;
+ end case;
+ end if;
+
+ -- Case of entity op value
+
+ if Is_Entity_Name (Left_Opnd (Cond))
+ and then Ent = Entity (Left_Opnd (Cond))
+ and then Compile_Time_Known_Value (Right_Opnd (Cond))
+ then
+ Val := Right_Opnd (Cond);
+
+ -- Case of value op entity
+
+ elsif Is_Entity_Name (Right_Opnd (Cond))
+ and then Ent = Entity (Right_Opnd (Cond))
+ and then Compile_Time_Known_Value (Left_Opnd (Cond))
+ then
+ Val := Left_Opnd (Cond);
+
+ -- We are effectively swapping operands
+
+ case Op is
+ when N_Op_Eq => null;
+ when N_Op_Ne => null;
+ when N_Op_Lt => Op := N_Op_Gt;
+ when N_Op_Gt => Op := N_Op_Lt;
+ when N_Op_Le => Op := N_Op_Ge;
+ when N_Op_Ge => Op := N_Op_Le;
+ when others => raise Program_Error;
+ end case;
+
+ else
+ Op := N_Empty;
+ end if;
+
+ return;
+
+ -- Case of Boolean variable reference, return as though the
+ -- reference had said var = True.
+
+ else
+ if Is_Entity_Name (Cond)
+ and then Ent = Entity (Cond)
+ then
+ Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
+
+ if Sens = False then
+ Op := N_Op_Ne;
+ else
+ Op := N_Op_Eq;
+ end if;
+ end if;
+ end if;
+ end Process_Current_Value_Condition;
+
+ -- Start of processing for Get_Current_Value_Condition
+
+ begin
+ Op := N_Empty;
+ Val := Empty;
+
+ -- Immediate return, nothing doing, if this is not an object
+
+ if Ekind (Ent) not in Object_Kind then
+ return;
+ end if;
+
+ -- Otherwise examine current value
+
+ declare
+ CV : constant Node_Id := Current_Value (Ent);
+ Sens : Boolean;
+ Stm : Node_Id;
+
+ begin
+ -- If statement. Condition is known true in THEN section, known False
+ -- in any ELSIF or ELSE part, and unknown outside the IF statement.
+
+ if Nkind (CV) = N_If_Statement then
+
+ -- Before start of IF statement
+
+ if Loc < Sloc (CV) then
+ return;
+
+ -- After end of IF statement
+
+ elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
+ return;
+ end if;
+
+ -- At this stage we know that we are within the IF statement, but
+ -- unfortunately, the tree does not record the SLOC of the ELSE so
+ -- we cannot use a simple SLOC comparison to distinguish between
+ -- the then/else statements, so we have to climb the tree.
+
+ declare
+ N : Node_Id;
+
+ begin
+ N := Parent (Var);
+ while Parent (N) /= CV loop
+ N := Parent (N);
+
+ -- If we fall off the top of the tree, then that's odd, but
+ -- perhaps it could occur in some error situation, and the
+ -- safest response is simply to assume that the outcome of
+ -- the condition is unknown. No point in bombing during an
+ -- attempt to optimize things.
+
+ if No (N) then
+ return;
+ end if;
+ end loop;
+
+ -- Now we have N pointing to a node whose parent is the IF
+ -- statement in question, so now we can tell if we are within
+ -- the THEN statements.
+
+ if Is_List_Member (N)
+ and then List_Containing (N) = Then_Statements (CV)
+ then
+ Sens := True;
+
+ -- If the variable reference does not come from source, we
+ -- cannot reliably tell whether it appears in the else part.
+ -- In particular, if it appears in generated code for a node
+ -- that requires finalization, it may be attached to a list
+ -- that has not been yet inserted into the code. For now,
+ -- treat it as unknown.
+
+ elsif not Comes_From_Source (N) then
+ return;
+
+ -- Otherwise we must be in ELSIF or ELSE part
+
+ else
+ Sens := False;
+ end if;
+ end;
+
+ -- ELSIF part. Condition is known true within the referenced
+ -- ELSIF, known False in any subsequent ELSIF or ELSE part, and
+ -- unknown before the ELSE part or after the IF statement.
+
+ elsif Nkind (CV) = N_Elsif_Part then
+ Stm := Parent (CV);
+
+ -- Before start of ELSIF part
+
+ if Loc < Sloc (CV) then
+ return;
+
+ -- After end of IF statement
+
+ elsif Loc >= Sloc (Stm) +
+ Text_Ptr (UI_To_Int (End_Span (Stm)))
+ then
+ return;
+ end if;
+
+ -- Again we lack the SLOC of the ELSE, so we need to climb the
+ -- tree to see if we are within the ELSIF part in question.
+
+ declare
+ N : Node_Id;
+
+ begin
+ N := Parent (Var);
+ while Parent (N) /= Stm loop
+ N := Parent (N);
+
+ -- If we fall off the top of the tree, then that's odd, but
+ -- perhaps it could occur in some error situation, and the
+ -- safest response is simply to assume that the outcome of
+ -- the condition is unknown. No point in bombing during an
+ -- attempt to optimize things.
+
+ if No (N) then
+ return;
+ end if;
+ end loop;
+
+ -- Now we have N pointing to a node whose parent is the IF
+ -- statement in question, so see if is the ELSIF part we want.
+ -- the THEN statements.
+
+ if N = CV then
+ Sens := True;
+
+ -- Otherwise we must be in subsequent ELSIF or ELSE part
+
+ else
+ Sens := False;
+ end if;
+ end;
+
+ -- Iteration scheme of while loop. The condition is known to be
+ -- true within the body of the loop.
+
+ elsif Nkind (CV) = N_Iteration_Scheme then
+ declare
+ Loop_Stmt : constant Node_Id := Parent (CV);
+
+ begin
+ -- Before start of body of loop
+
+ if Loc < Sloc (Loop_Stmt) then
+ return;
+
+ -- After end of LOOP statement
+
+ elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
+ return;
+
+ -- We are within the body of the loop
+
+ else
+ Sens := True;
+ end if;
+ end;
+
+ -- All other cases of Current_Value settings
+
+ else
+ return;
+ end if;
+
+ -- If we fall through here, then we have a reportable condition, Sens
+ -- is True if the condition is true and False if it needs inverting.
+
+ Process_Current_Value_Condition (Condition (CV), Sens);
+ end;
+ end Get_Current_Value_Condition;
+
+ ---------------------------------
+ -- Has_Controlled_Coextensions --
+ ---------------------------------
+
+ function Has_Controlled_Coextensions (Typ : Entity_Id) return Boolean is
+ D_Typ : Entity_Id;
+ Discr : Entity_Id;
+
+ begin
+ -- Only consider record types
+
+ if Ekind (Typ) /= E_Record_Type
+ and then Ekind (Typ) /= E_Record_Subtype
+ then
+ return False;
+ end if;
+
+ if Has_Discriminants (Typ) then
+ Discr := First_Discriminant (Typ);
+ while Present (Discr) loop
+ D_Typ := Etype (Discr);
+
+ if Ekind (D_Typ) = E_Anonymous_Access_Type
+ and then
+ (Is_Controlled (Directly_Designated_Type (D_Typ))
+ or else
+ Is_Concurrent_Type (Directly_Designated_Type (D_Typ)))
+ then
+ return True;
+ end if;
+
+ Next_Discriminant (Discr);
+ end loop;
+ end if;
+
+ return False;
+ end Has_Controlled_Coextensions;
+
+ --------------------
+ -- Homonym_Number --
+ --------------------
+
+ function Homonym_Number (Subp : Entity_Id) return Nat is
+ Count : Nat;
+ Hom : Entity_Id;
+
+ begin
+ Count := 1;
+ Hom := Homonym (Subp);
+ while Present (Hom) loop
+ if Scope (Hom) = Scope (Subp) then
+ Count := Count + 1;
+ end if;
+
+ Hom := Homonym (Hom);
+ end loop;
+
+ return Count;
+ end Homonym_Number;
+
+ ------------------------------
+ -- In_Unconditional_Context --
+ ------------------------------
+
+ function In_Unconditional_Context (Node : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ P := Node;
+ while Present (P) loop
+ case Nkind (P) is
+ when N_Subprogram_Body =>
+ return True;
+
+ when N_If_Statement =>
+ return False;
+
+ when N_Loop_Statement =>
+ return False;
+
+ when N_Case_Statement =>
+ return False;
+
+ when others =>
+ P := Parent (P);
+ end case;
+ end loop;
+
+ return False;
+ end In_Unconditional_Context;
+
+ -------------------
+ -- Insert_Action --
+ -------------------
+
+ procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
+ begin
+ if Present (Ins_Action) then
+ Insert_Actions (Assoc_Node, New_List (Ins_Action));
+ end if;
+ end Insert_Action;
+
+ -- Version with check(s) suppressed
+
+ procedure Insert_Action
+ (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
+ is
+ begin
+ Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
+ end Insert_Action;
+
+ --------------------
+ -- Insert_Actions --
+ --------------------
+
+ procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
+ N : Node_Id;
+ P : Node_Id;
+
+ Wrapped_Node : Node_Id := Empty;
+
+ begin
+ if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
+ return;
+ end if;
+
+ -- Ignore insert of actions from inside default expression (or other
+ -- similar "spec expression") in the special spec-expression analyze
+ -- mode. Any insertions at this point have no relevance, since we are
+ -- only doing the analyze to freeze the types of any static expressions.
+ -- See section "Handling of Default Expressions" in the spec of package
+ -- Sem for further details.
+
+ if In_Spec_Expression then
+ return;
+ end if;
+
+ -- If the action derives from stuff inside a record, then the actions
+ -- are attached to the current scope, to be inserted and analyzed on
+ -- exit from the scope. The reason for this is that we may also
+ -- be generating freeze actions at the same time, and they must
+ -- eventually be elaborated in the correct order.
+
+ if Is_Record_Type (Current_Scope)
+ and then not Is_Frozen (Current_Scope)
+ then
+ if No (Scope_Stack.Table
+ (Scope_Stack.Last).Pending_Freeze_Actions)
+ then
+ Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
+ Ins_Actions;
+ else
+ Append_List
+ (Ins_Actions,
+ Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
+ end if;
+
+ return;
+ end if;
+
+ -- We now intend to climb up the tree to find the right point to
+ -- insert the actions. We start at Assoc_Node, unless this node is
+ -- a subexpression in which case we start with its parent. We do this
+ -- for two reasons. First it speeds things up. Second, if Assoc_Node
+ -- is itself one of the special nodes like N_And_Then, then we assume
+ -- that an initial request to insert actions for such a node does not
+ -- expect the actions to get deposited in the node for later handling
+ -- when the node is expanded, since clearly the node is being dealt
+ -- with by the caller. Note that in the subexpression case, N is
+ -- always the child we came from.
+
+ -- N_Raise_xxx_Error is an annoying special case, it is a statement
+ -- if it has type Standard_Void_Type, and a subexpression otherwise.
+ -- otherwise. Procedure attribute references are also statements.
+
+ if Nkind (Assoc_Node) in N_Subexpr
+ and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
+ or else Etype (Assoc_Node) /= Standard_Void_Type)
+ and then (Nkind (Assoc_Node) /= N_Attribute_Reference
+ or else
+ not Is_Procedure_Attribute_Name
+ (Attribute_Name (Assoc_Node)))
+ then
+ P := Assoc_Node; -- ??? does not agree with above!
+ N := Parent (Assoc_Node);
+
+ -- Non-subexpression case. Note that N is initially Empty in this
+ -- case (N is only guaranteed Non-Empty in the subexpr case).
+
+ else
+ P := Assoc_Node;
+ N := Empty;
+ end if;
+
+ -- Capture root of the transient scope
+
+ if Scope_Is_Transient then
+ Wrapped_Node := Node_To_Be_Wrapped;
+ end if;
+
+ loop
+ pragma Assert (Present (P));
+
+ case Nkind (P) is
+
+ -- Case of right operand of AND THEN or OR ELSE. Put the actions
+ -- in the Actions field of the right operand. They will be moved
+ -- out further when the AND THEN or OR ELSE operator is expanded.
+ -- Nothing special needs to be done for the left operand since
+ -- in that case the actions are executed unconditionally.
+
+ when N_And_Then | N_Or_Else =>
+ if N = Right_Opnd (P) then
+
+ -- We are now going to either append the actions to the
+ -- actions field of the short-circuit operation. We will
+ -- also analyze the actions now.
+
+ -- This analysis is really too early, the proper thing would
+ -- be to just park them there now, and only analyze them if
+ -- we find we really need them, and to it at the proper
+ -- final insertion point. However attempting to this proved
+ -- tricky, so for now we just kill current values before and
+ -- after the analyze call to make sure we avoid peculiar
+ -- optimizations from this out of order insertion.
+
+ Kill_Current_Values;
+
+ if Present (Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Actions (P)), Ins_Actions);
+ else
+ Set_Actions (P, Ins_Actions);
+ Analyze_List (Actions (P));
+ end if;
+
+ Kill_Current_Values;
+
+ return;
+ end if;
+
+ -- Then or Else operand of conditional expression. Add actions to
+ -- Then_Actions or Else_Actions field as appropriate. The actions
+ -- will be moved further out when the conditional is expanded.
+
+ when N_Conditional_Expression =>
+ declare
+ ThenX : constant Node_Id := Next (First (Expressions (P)));
+ ElseX : constant Node_Id := Next (ThenX);
+
+ begin
+ -- Actions belong to the then expression, temporarily
+ -- place them as Then_Actions of the conditional expr.
+ -- They will be moved to the proper place later when
+ -- the conditional expression is expanded.
+
+ if N = ThenX then
+ if Present (Then_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Then_Actions (P)), Ins_Actions);
+ else
+ Set_Then_Actions (P, Ins_Actions);
+ Analyze_List (Then_Actions (P));
+ end if;
+
+ return;
+
+ -- Actions belong to the else expression, temporarily
+ -- place them as Else_Actions of the conditional expr.
+ -- They will be moved to the proper place later when
+ -- the conditional expression is expanded.
+
+ elsif N = ElseX then
+ if Present (Else_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Else_Actions (P)), Ins_Actions);
+ else
+ Set_Else_Actions (P, Ins_Actions);
+ Analyze_List (Else_Actions (P));
+ end if;
+
+ return;
+
+ -- Actions belong to the condition. In this case they are
+ -- unconditionally executed, and so we can continue the
+ -- search for the proper insert point.
+
+ else
+ null;
+ end if;
+ end;
+
+ -- Case of appearing in the condition of a while expression or
+ -- elsif. We insert the actions into the Condition_Actions field.
+ -- They will be moved further out when the while loop or elsif
+ -- is analyzed.
+
+ when N_Iteration_Scheme |
+ N_Elsif_Part
+ =>
+ if N = Condition (P) then
+ if Present (Condition_Actions (P)) then
+ Insert_List_After_And_Analyze
+ (Last (Condition_Actions (P)), Ins_Actions);
+ else
+ Set_Condition_Actions (P, Ins_Actions);
+
+ -- Set the parent of the insert actions explicitly.
+ -- This is not a syntactic field, but we need the
+ -- parent field set, in particular so that freeze
+ -- can understand that it is dealing with condition
+ -- actions, and properly insert the freezing actions.
+
+ Set_Parent (Ins_Actions, P);
+ Analyze_List (Condition_Actions (P));
+ end if;
+
+ return;
+ end if;
+
+ -- Statements, declarations, pragmas, representation clauses
+
+ when
+ -- Statements
+
+ N_Procedure_Call_Statement |
+ N_Statement_Other_Than_Procedure_Call |
+
+ -- Pragmas
+
+ N_Pragma |
+
+ -- Representation_Clause
+
+ N_At_Clause |
+ N_Attribute_Definition_Clause |
+ N_Enumeration_Representation_Clause |
+ N_Record_Representation_Clause |
+
+ -- Declarations
+
+ N_Abstract_Subprogram_Declaration |
+ N_Entry_Body |
+ N_Exception_Declaration |
+ N_Exception_Renaming_Declaration |
+ N_Formal_Abstract_Subprogram_Declaration |
+ N_Formal_Concrete_Subprogram_Declaration |
+ N_Formal_Object_Declaration |
+ N_Formal_Type_Declaration |
+ N_Full_Type_Declaration |
+ N_Function_Instantiation |
+ N_Generic_Function_Renaming_Declaration |
+ N_Generic_Package_Declaration |
+ N_Generic_Package_Renaming_Declaration |
+ N_Generic_Procedure_Renaming_Declaration |
+ N_Generic_Subprogram_Declaration |
+ N_Implicit_Label_Declaration |
+ N_Incomplete_Type_Declaration |
+ N_Number_Declaration |
+ N_Object_Declaration |
+ N_Object_Renaming_Declaration |
+ N_Package_Body |
+ N_Package_Body_Stub |
+ N_Package_Declaration |
+ N_Package_Instantiation |
+ N_Package_Renaming_Declaration |
+ N_Private_Extension_Declaration |
+ N_Private_Type_Declaration |
+ N_Procedure_Instantiation |
+ N_Protected_Body |
+ N_Protected_Body_Stub |
+ N_Protected_Type_Declaration |
+ N_Single_Task_Declaration |
+ N_Subprogram_Body |
+ N_Subprogram_Body_Stub |
+ N_Subprogram_Declaration |
+ N_Subprogram_Renaming_Declaration |
+ N_Subtype_Declaration |
+ N_Task_Body |
+ N_Task_Body_Stub |
+ N_Task_Type_Declaration |
+
+ -- Freeze entity behaves like a declaration or statement
+
+ N_Freeze_Entity
+ =>
+ -- Do not insert here if the item is not a list member (this
+ -- happens for example with a triggering statement, and the
+ -- proper approach is to insert before the entire select).
+
+ if not Is_List_Member (P) then
+ null;
+
+ -- Do not insert if parent of P is an N_Component_Association
+ -- node (i.e. we are in the context of an N_Aggregate or
+ -- N_Extension_Aggregate node. In this case we want to insert
+ -- before the entire aggregate.
+
+ elsif Nkind (Parent (P)) = N_Component_Association then
+ null;
+
+ -- Do not insert if the parent of P is either an N_Variant
+ -- node or an N_Record_Definition node, meaning in either
+ -- case that P is a member of a component list, and that
+ -- therefore the actions should be inserted outside the
+ -- complete record declaration.
+
+ elsif Nkind (Parent (P)) = N_Variant
+ or else Nkind (Parent (P)) = N_Record_Definition
+ then
+ null;
+
+ -- Do not insert freeze nodes within the loop generated for
+ -- an aggregate, because they may be elaborated too late for
+ -- subsequent use in the back end: within a package spec the
+ -- loop is part of the elaboration procedure and is only
+ -- elaborated during the second pass.
+ -- If the loop comes from source, or the entity is local to
+ -- the loop itself it must remain within.
+
+ elsif Nkind (Parent (P)) = N_Loop_Statement
+ and then not Comes_From_Source (Parent (P))
+ and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
+ and then
+ Scope (Entity (First (Ins_Actions))) /= Current_Scope
+ then
+ null;
+
+ -- Otherwise we can go ahead and do the insertion
+
+ elsif P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ return;
+
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ return;
+ end if;
+
+ -- A special case, N_Raise_xxx_Error can act either as a
+ -- statement or a subexpression. We tell the difference
+ -- by looking at the Etype. It is set to Standard_Void_Type
+ -- in the statement case.
+
+ when
+ N_Raise_xxx_Error =>
+ if Etype (P) = Standard_Void_Type then
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ end if;
+
+ return;
+
+ -- In the subexpression case, keep climbing
+
+ else
+ null;
+ end if;
+
+ -- If a component association appears within a loop created for
+ -- an array aggregate, attach the actions to the association so
+ -- they can be subsequently inserted within the loop. For other
+ -- component associations insert outside of the aggregate. For
+ -- an association that will generate a loop, its Loop_Actions
+ -- attribute is already initialized (see exp_aggr.adb).
+
+ -- The list of loop_actions can in turn generate additional ones,
+ -- that are inserted before the associated node. If the associated
+ -- node is outside the aggregate, the new actions are collected
+ -- at the end of the loop actions, to respect the order in which
+ -- they are to be elaborated.
+
+ when
+ N_Component_Association =>
+ if Nkind (Parent (P)) = N_Aggregate
+ and then Present (Loop_Actions (P))
+ then
+ if Is_Empty_List (Loop_Actions (P)) then
+ Set_Loop_Actions (P, Ins_Actions);
+ Analyze_List (Ins_Actions);
+
+ else
+ declare
+ Decl : Node_Id;
+
+ begin
+ -- Check whether these actions were generated
+ -- by a declaration that is part of the loop_
+ -- actions for the component_association.
+
+ Decl := Assoc_Node;
+ while Present (Decl) loop
+ exit when Parent (Decl) = P
+ and then Is_List_Member (Decl)
+ and then
+ List_Containing (Decl) = Loop_Actions (P);
+ Decl := Parent (Decl);
+ end loop;
+
+ if Present (Decl) then
+ Insert_List_Before_And_Analyze
+ (Decl, Ins_Actions);
+ else
+ Insert_List_After_And_Analyze
+ (Last (Loop_Actions (P)), Ins_Actions);
+ end if;
+ end;
+ end if;
+
+ return;
+
+ else
+ null;
+ end if;
+
+ -- Another special case, an attribute denoting a procedure call
+
+ when
+ N_Attribute_Reference =>
+ if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_Before_And_Analyze (P, Ins_Actions);
+ end if;
+
+ return;
+
+ -- In the subexpression case, keep climbing
+
+ else
+ null;
+ end if;
+
+ -- For all other node types, keep climbing tree
+
+ when
+ N_Abortable_Part |
+ N_Accept_Alternative |
+ N_Access_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition |
+ N_Access_To_Object_Definition |
+ N_Aggregate |
+ N_Allocator |
+ N_Case_Statement_Alternative |
+ N_Character_Literal |
+ N_Compilation_Unit |
+ N_Compilation_Unit_Aux |
+ N_Component_Clause |
+ N_Component_Declaration |
+ N_Component_Definition |
+ N_Component_List |
+ N_Constrained_Array_Definition |
+ N_Decimal_Fixed_Point_Definition |
+ N_Defining_Character_Literal |
+ N_Defining_Identifier |
+ N_Defining_Operator_Symbol |
+ N_Defining_Program_Unit_Name |
+ N_Delay_Alternative |
+ N_Delta_Constraint |
+ N_Derived_Type_Definition |
+ N_Designator |
+ N_Digits_Constraint |
+ N_Discriminant_Association |
+ N_Discriminant_Specification |
+ N_Empty |
+ N_Entry_Body_Formal_Part |
+ N_Entry_Call_Alternative |
+ N_Entry_Declaration |
+ N_Entry_Index_Specification |
+ N_Enumeration_Type_Definition |
+ N_Error |
+ N_Exception_Handler |
+ N_Expanded_Name |
+ N_Explicit_Dereference |
+ N_Extension_Aggregate |
+ N_Floating_Point_Definition |
+ N_Formal_Decimal_Fixed_Point_Definition |
+ N_Formal_Derived_Type_Definition |
+ N_Formal_Discrete_Type_Definition |
+ N_Formal_Floating_Point_Definition |
+ N_Formal_Modular_Type_Definition |
+ N_Formal_Ordinary_Fixed_Point_Definition |
+ N_Formal_Package_Declaration |
+ N_Formal_Private_Type_Definition |
+ N_Formal_Signed_Integer_Type_Definition |
+ N_Function_Call |
+ N_Function_Specification |
+ N_Generic_Association |
+ N_Handled_Sequence_Of_Statements |
+ N_Identifier |
+ N_In |
+ N_Index_Or_Discriminant_Constraint |
+ N_Indexed_Component |
+ N_Integer_Literal |
+ N_Itype_Reference |
+ N_Label |
+ N_Loop_Parameter_Specification |
+ N_Mod_Clause |
+ N_Modular_Type_Definition |
+ N_Not_In |
+ N_Null |
+ N_Op_Abs |
+ N_Op_Add |
+ N_Op_And |
+ N_Op_Concat |
+ N_Op_Divide |
+ N_Op_Eq |
+ N_Op_Expon |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Minus |
+ N_Op_Mod |
+ N_Op_Multiply |
+ N_Op_Ne |
+ N_Op_Not |
+ N_Op_Or |
+ N_Op_Plus |
+ N_Op_Rem |
+ N_Op_Rotate_Left |
+ N_Op_Rotate_Right |
+ N_Op_Shift_Left |
+ N_Op_Shift_Right |
+ N_Op_Shift_Right_Arithmetic |
+ N_Op_Subtract |
+ N_Op_Xor |
+ N_Operator_Symbol |
+ N_Ordinary_Fixed_Point_Definition |
+ N_Others_Choice |
+ N_Package_Specification |
+ N_Parameter_Association |
+ N_Parameter_Specification |
+ N_Pop_Constraint_Error_Label |
+ N_Pop_Program_Error_Label |
+ N_Pop_Storage_Error_Label |
+ N_Pragma_Argument_Association |
+ N_Procedure_Specification |
+ N_Protected_Definition |
+ N_Push_Constraint_Error_Label |
+ N_Push_Program_Error_Label |
+ N_Push_Storage_Error_Label |
+ N_Qualified_Expression |
+ N_Range |
+ N_Range_Constraint |
+ N_Real_Literal |
+ N_Real_Range_Specification |
+ N_Record_Definition |
+ N_Reference |
+ N_Selected_Component |
+ N_Signed_Integer_Type_Definition |
+ N_Single_Protected_Declaration |
+ N_Slice |
+ N_String_Literal |
+ N_Subprogram_Info |
+ N_Subtype_Indication |
+ N_Subunit |
+ N_Task_Definition |
+ N_Terminate_Alternative |
+ N_Triggering_Alternative |
+ N_Type_Conversion |
+ N_Unchecked_Expression |
+ N_Unchecked_Type_Conversion |
+ N_Unconstrained_Array_Definition |
+ N_Unused_At_End |
+ N_Unused_At_Start |
+ N_Use_Package_Clause |
+ N_Use_Type_Clause |
+ N_Variant |
+ N_Variant_Part |
+ N_Validate_Unchecked_Conversion |
+ N_With_Clause
+ =>
+ null;
+
+ end case;
+
+ -- Make sure that inserted actions stay in the transient scope
+
+ if P = Wrapped_Node then
+ Store_Before_Actions_In_Scope (Ins_Actions);
+ return;
+ end if;
+
+ -- If we fall through above tests, keep climbing tree
+
+ N := P;
+
+ if Nkind (Parent (N)) = N_Subunit then
+
+ -- This is the proper body corresponding to a stub. Insertion
+ -- must be done at the point of the stub, which is in the decla-
+ -- rative part of the parent unit.
+
+ P := Corresponding_Stub (Parent (N));
+
+ else
+ P := Parent (N);
+ end if;
+ end loop;
+ end Insert_Actions;
+
+ -- Version with check(s) suppressed
+
+ procedure Insert_Actions
+ (Assoc_Node : Node_Id;
+ Ins_Actions : List_Id;
+ Suppress : Check_Id)
+ is
+ begin
+ if Suppress = All_Checks then
+ declare
+ Svg : constant Suppress_Array := Scope_Suppress;
+ begin
+ Scope_Suppress := (others => True);
+ Insert_Actions (Assoc_Node, Ins_Actions);
+ Scope_Suppress := Svg;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress (Suppress);
+ begin
+ Scope_Suppress (Suppress) := True;
+ Insert_Actions (Assoc_Node, Ins_Actions);
+ Scope_Suppress (Suppress) := Svg;
+ end;
+ end if;
+ end Insert_Actions;
+
+ --------------------------
+ -- Insert_Actions_After --
+ --------------------------
+
+ procedure Insert_Actions_After
+ (Assoc_Node : Node_Id;
+ Ins_Actions : List_Id)
+ is
+ begin
+ if Scope_Is_Transient
+ and then Assoc_Node = Node_To_Be_Wrapped
+ then
+ Store_After_Actions_In_Scope (Ins_Actions);
+ else
+ Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
+ end if;
+ end Insert_Actions_After;
+
+ ---------------------------------
+ -- Insert_Library_Level_Action --
+ ---------------------------------
+
+ procedure Insert_Library_Level_Action (N : Node_Id) is
+ Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
+
+ begin
+ Push_Scope (Cunit_Entity (Main_Unit));
+ -- ??? should this be Current_Sem_Unit instead of Main_Unit?
+
+ if No (Actions (Aux)) then
+ Set_Actions (Aux, New_List (N));
+ else
+ Append (N, Actions (Aux));
+ end if;
+
+ Analyze (N);
+ Pop_Scope;
+ end Insert_Library_Level_Action;
+
+ ----------------------------------
+ -- Insert_Library_Level_Actions --
+ ----------------------------------
+
+ procedure Insert_Library_Level_Actions (L : List_Id) is
+ Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
+
+ begin
+ if Is_Non_Empty_List (L) then
+ Push_Scope (Cunit_Entity (Main_Unit));
+ -- ??? should this be Current_Sem_Unit instead of Main_Unit?
+
+ if No (Actions (Aux)) then
+ Set_Actions (Aux, L);
+ Analyze_List (L);
+ else
+ Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
+ end if;
+
+ Pop_Scope;
+ end if;
+ end Insert_Library_Level_Actions;
+
+ ----------------------
+ -- Inside_Init_Proc --
+ ----------------------
+
+ function Inside_Init_Proc return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Init_Proc (S) then
+ return True;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return False;
+ end Inside_Init_Proc;
+
+ ----------------------------
+ -- Is_All_Null_Statements --
+ ----------------------------
+
+ function Is_All_Null_Statements (L : List_Id) return Boolean is
+ Stm : Node_Id;
+
+ begin
+ Stm := First (L);
+ while Present (Stm) loop
+ if Nkind (Stm) /= N_Null_Statement then
+ return False;
+ end if;
+
+ Next (Stm);
+ end loop;
+
+ return True;
+ end Is_All_Null_Statements;
+
+ ----------------------------------
+ -- Is_Library_Level_Tagged_Type --
+ ----------------------------------
+
+ function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
+ begin
+ return Is_Tagged_Type (Typ)
+ and then Is_Library_Level_Entity (Typ);
+ end Is_Library_Level_Tagged_Type;
+
+ ----------------------------------
+ -- Is_Possibly_Unaligned_Object --
+ ----------------------------------
+
+ function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
+ T : constant Entity_Id := Etype (N);
+
+ begin
+ -- If renamed object, apply test to underlying object
+
+ if Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
+ end if;
+
+ -- Tagged and controlled types and aliased types are always aligned,
+ -- as are concurrent types.
+
+ if Is_Aliased (T)
+ or else Has_Controlled_Component (T)
+ or else Is_Concurrent_Type (T)
+ or else Is_Tagged_Type (T)
+ or else Is_Controlled (T)
+ then
+ return False;
+ end if;
+
+ -- If this is an element of a packed array, may be unaligned
+
+ if Is_Ref_To_Bit_Packed_Array (N) then
+ return True;
+ end if;
+
+ -- Case of component reference
+
+ if Nkind (N) = N_Selected_Component then
+ declare
+ P : constant Node_Id := Prefix (N);
+ C : constant Entity_Id := Entity (Selector_Name (N));
+ M : Nat;
+ S : Nat;
+
+ begin
+ -- If component reference is for an array with non-static bounds,
+ -- then it is always aligned: we can only process unaligned
+ -- arrays with static bounds (more accurately bounds known at
+ -- compile time).
+
+ if Is_Array_Type (T)
+ and then not Compile_Time_Known_Bounds (T)
+ then
+ return False;
+ end if;
+
+ -- If component is aliased, it is definitely properly aligned
+
+ if Is_Aliased (C) then
+ return False;
+ end if;
+
+ -- If component is for a type implemented as a scalar, and the
+ -- record is packed, and the component is other than the first
+ -- component of the record, then the component may be unaligned.
+
+ if Is_Packed (Etype (P))
+ and then Represented_As_Scalar (Etype (C))
+ and then First_Entity (Scope (C)) /= C
+ then
+ return True;
+ end if;
+
+ -- Compute maximum possible alignment for T
+
+ -- If alignment is known, then that settles things
+
+ if Known_Alignment (T) then
+ M := UI_To_Int (Alignment (T));
+
+ -- If alignment is not known, tentatively set max alignment
+
+ else
+ M := Ttypes.Maximum_Alignment;
+
+ -- We can reduce this if the Esize is known since the default
+ -- alignment will never be more than the smallest power of 2
+ -- that does not exceed this Esize value.
+
+ if Known_Esize (T) then
+ S := UI_To_Int (Esize (T));
+
+ while (M / 2) >= S loop
+ M := M / 2;
+ end loop;
+ end if;
+ end if;
+
+ -- If the component reference is for a record that has a specified
+ -- alignment, and we either know it is too small, or cannot tell,
+ -- then the component may be unaligned
+
+ if Known_Alignment (Etype (P))
+ and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
+ and then M > Alignment (Etype (P))
+ then
+ return True;
+ end if;
+
+ -- Case of component clause present which may specify an
+ -- unaligned position.
+
+ if Present (Component_Clause (C)) then
+
+ -- Otherwise we can do a test to make sure that the actual
+ -- start position in the record, and the length, are both
+ -- consistent with the required alignment. If not, we know
+ -- that we are unaligned.
+
+ declare
+ Align_In_Bits : constant Nat := M * System_Storage_Unit;
+ begin
+ if Component_Bit_Offset (C) mod Align_In_Bits /= 0
+ or else Esize (C) mod Align_In_Bits /= 0
+ then
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- Otherwise, for a component reference, test prefix
+
+ return Is_Possibly_Unaligned_Object (P);
+ end;
+
+ -- If not a component reference, must be aligned
+
+ else
+ return False;
+ end if;
+ end Is_Possibly_Unaligned_Object;
+
+ ---------------------------------
+ -- Is_Possibly_Unaligned_Slice --
+ ---------------------------------
+
+ function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
+ begin
+ -- Go to renamed object
+
+ if Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
+ end if;
+
+ -- The reference must be a slice
+
+ if Nkind (N) /= N_Slice then
+ return False;
+ end if;
+
+ -- Always assume the worst for a nested record component with a
+ -- component clause, which gigi/gcc does not appear to handle well.
+ -- It is not clear why this special test is needed at all ???
+
+ if Nkind (Prefix (N)) = N_Selected_Component
+ and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
+ and then
+ Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
+ then
+ return True;
+ end if;
+
+ -- We only need to worry if the target has strict alignment
+
+ if not Target_Strict_Alignment then
+ return False;
+ end if;
+
+ -- If it is a slice, then look at the array type being sliced
+
+ declare
+ Sarr : constant Node_Id := Prefix (N);
+ -- Prefix of the slice, i.e. the array being sliced
+
+ Styp : constant Entity_Id := Etype (Prefix (N));
+ -- Type of the array being sliced
+
+ Pref : Node_Id;
+ Ptyp : Entity_Id;
+
+ begin
+ -- The problems arise if the array object that is being sliced
+ -- is a component of a record or array, and we cannot guarantee
+ -- the alignment of the array within its containing object.
+
+ -- To investigate this, we look at successive prefixes to see
+ -- if we have a worrisome indexed or selected component.
+
+ Pref := Sarr;
+ loop
+ -- Case of array is part of an indexed component reference
+
+ if Nkind (Pref) = N_Indexed_Component then
+ Ptyp := Etype (Prefix (Pref));
+
+ -- The only problematic case is when the array is packed,
+ -- in which case we really know nothing about the alignment
+ -- of individual components.
+
+ if Is_Bit_Packed_Array (Ptyp) then
+ return True;
+ end if;
+
+ -- Case of array is part of a selected component reference
+
+ elsif Nkind (Pref) = N_Selected_Component then
+ Ptyp := Etype (Prefix (Pref));
+
+ -- We are definitely in trouble if the record in question
+ -- has an alignment, and either we know this alignment is
+ -- inconsistent with the alignment of the slice, or we
+ -- don't know what the alignment of the slice should be.
+
+ if Known_Alignment (Ptyp)
+ and then (Unknown_Alignment (Styp)
+ or else Alignment (Styp) > Alignment (Ptyp))
+ then
+ return True;
+ end if;
+
+ -- We are in potential trouble if the record type is packed.
+ -- We could special case when we know that the array is the
+ -- first component, but that's not such a simple case ???
+
+ if Is_Packed (Ptyp) then
+ return True;
+ end if;
+
+ -- We are in trouble if there is a component clause, and
+ -- either we do not know the alignment of the slice, or
+ -- the alignment of the slice is inconsistent with the
+ -- bit position specified by the component clause.
+
+ declare
+ Field : constant Entity_Id := Entity (Selector_Name (Pref));
+ begin
+ if Present (Component_Clause (Field))
+ and then
+ (Unknown_Alignment (Styp)
+ or else
+ (Component_Bit_Offset (Field) mod
+ (System_Storage_Unit * Alignment (Styp))) /= 0)
+ then
+ return True;
+ end if;
+ end;
+
+ -- For cases other than selected or indexed components we
+ -- know we are OK, since no issues arise over alignment.
+
+ else
+ return False;
+ end if;
+
+ -- We processed an indexed component or selected component
+ -- reference that looked safe, so keep checking prefixes.
+
+ Pref := Prefix (Pref);
+ end loop;
+ end;
+ end Is_Possibly_Unaligned_Slice;
+
+ --------------------------------
+ -- Is_Ref_To_Bit_Packed_Array --
+ --------------------------------
+
+ function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
+ Result : Boolean;
+ Expr : Node_Id;
+
+ begin
+ if Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
+ end if;
+
+ if Nkind (N) = N_Indexed_Component
+ or else
+ Nkind (N) = N_Selected_Component
+ then
+ if Is_Bit_Packed_Array (Etype (Prefix (N))) then
+ Result := True;
+ else
+ Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
+ end if;
+
+ if Result and then Nkind (N) = N_Indexed_Component then
+ Expr := First (Expressions (N));
+ while Present (Expr) loop
+ Force_Evaluation (Expr);
+ Next (Expr);
+ end loop;
+ end if;
+
+ return Result;
+
+ else
+ return False;
+ end if;
+ end Is_Ref_To_Bit_Packed_Array;
+
+ --------------------------------
+ -- Is_Ref_To_Bit_Packed_Slice --
+ --------------------------------
+
+ function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) = N_Type_Conversion then
+ return Is_Ref_To_Bit_Packed_Slice (Expression (N));
+
+ elsif Is_Entity_Name (N)
+ and then Is_Object (Entity (N))
+ and then Present (Renamed_Object (Entity (N)))
+ then
+ return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
+
+ elsif Nkind (N) = N_Slice
+ and then Is_Bit_Packed_Array (Etype (Prefix (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else
+ Nkind (N) = N_Selected_Component
+ then
+ return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Is_Ref_To_Bit_Packed_Slice;
+
+ -----------------------
+ -- Is_Renamed_Object --
+ -----------------------
+
+ function Is_Renamed_Object (N : Node_Id) return Boolean is
+ Pnod : constant Node_Id := Parent (N);
+ Kind : constant Node_Kind := Nkind (Pnod);
+
+ begin
+ if Kind = N_Object_Renaming_Declaration then
+ return True;
+
+ elsif Kind = N_Indexed_Component
+ or else Kind = N_Selected_Component
+ then
+ return Is_Renamed_Object (Pnod);
+
+ else
+ return False;
+ end if;
+ end Is_Renamed_Object;
+
+ ----------------------------
+ -- Is_Untagged_Derivation --
+ ----------------------------
+
+ function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
+ begin
+ return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
+ or else
+ (Is_Private_Type (T) and then Present (Full_View (T))
+ and then not Is_Tagged_Type (Full_View (T))
+ and then Is_Derived_Type (Full_View (T))
+ and then Etype (Full_View (T)) /= T);
+ end Is_Untagged_Derivation;
+
+ ---------------------------
+ -- Is_Volatile_Reference --
+ ---------------------------
+
+ function Is_Volatile_Reference (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) in N_Has_Etype
+ and then Present (Etype (N))
+ and then Treat_As_Volatile (Etype (N))
+ then
+ return True;
+
+ elsif Is_Entity_Name (N) then
+ return Treat_As_Volatile (Entity (N));
+
+ elsif Nkind (N) = N_Slice then
+ return Is_Volatile_Reference (Prefix (N));
+
+ elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
+ if (Is_Entity_Name (Prefix (N))
+ and then Has_Volatile_Components (Entity (Prefix (N))))
+ or else (Present (Etype (Prefix (N)))
+ and then Has_Volatile_Components (Etype (Prefix (N))))
+ then
+ return True;
+ else
+ return Is_Volatile_Reference (Prefix (N));
+ end if;
+
+ else
+ return False;
+ end if;
+ end Is_Volatile_Reference;
+
+ --------------------
+ -- Kill_Dead_Code --
+ --------------------
+
+ procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
+ begin
+ if Present (N) then
+ Remove_Warning_Messages (N);
+
+ if Warn then
+ Error_Msg_F
+ ("?this code can never be executed and has been deleted!", N);
+ end if;
+
+ -- Recurse into block statements and bodies to process declarations
+ -- and statements
+
+ if Nkind (N) = N_Block_Statement
+ or else Nkind (N) = N_Subprogram_Body
+ or else Nkind (N) = N_Package_Body
+ then
+ Kill_Dead_Code (Declarations (N), False);
+ Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
+
+ if Nkind (N) = N_Subprogram_Body then
+ Set_Is_Eliminated (Defining_Entity (N));
+ end if;
+
+ elsif Nkind (N) = N_Package_Declaration then
+ Kill_Dead_Code (Visible_Declarations (Specification (N)));
+ Kill_Dead_Code (Private_Declarations (Specification (N)));
+
+ -- ??? After this point, Delete_Tree has been called on all
+ -- declarations in Specification (N), so references to
+ -- entities therein look suspicious.
+
+ declare
+ E : Entity_Id := First_Entity (Defining_Entity (N));
+ begin
+ while Present (E) loop
+ if Ekind (E) = E_Operator then
+ Set_Is_Eliminated (E);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end;
+
+ -- Recurse into composite statement to kill individual statements,
+ -- in particular instantiations.
+
+ elsif Nkind (N) = N_If_Statement then
+ Kill_Dead_Code (Then_Statements (N));
+ Kill_Dead_Code (Elsif_Parts (N));
+ Kill_Dead_Code (Else_Statements (N));
+
+ elsif Nkind (N) = N_Loop_Statement then
+ Kill_Dead_Code (Statements (N));
+
+ elsif Nkind (N) = N_Case_Statement then
+ declare
+ Alt : Node_Id;
+ begin
+ Alt := First (Alternatives (N));
+ while Present (Alt) loop
+ Kill_Dead_Code (Statements (Alt));
+ Next (Alt);
+ end loop;
+ end;
+
+ elsif Nkind (N) = N_Case_Statement_Alternative then
+ Kill_Dead_Code (Statements (N));
+
+ -- Deal with dead instances caused by deleting instantiations
+
+ elsif Nkind (N) in N_Generic_Instantiation then
+ Remove_Dead_Instance (N);
+ end if;
+ end if;
+ end Kill_Dead_Code;
+
+ -- Case where argument is a list of nodes to be killed
+
+ procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
+ N : Node_Id;
+ W : Boolean;
+ begin
+ W := Warn;
+ if Is_Non_Empty_List (L) then
+ N := First (L);
+ while Present (N) loop
+ Kill_Dead_Code (N, W);
+ W := False;
+ Next (N);
+ end loop;
+ end if;
+ end Kill_Dead_Code;
+
+ ------------------------
+ -- Known_Non_Negative --
+ ------------------------
+
+ function Known_Non_Negative (Opnd : Node_Id) return Boolean is
+ begin
+ if Is_OK_Static_Expression (Opnd)
+ and then Expr_Value (Opnd) >= 0
+ then
+ return True;
+
+ else
+ declare
+ Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
+
+ begin
+ return
+ Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
+ end;
+ end if;
+ end Known_Non_Negative;
+
+ --------------------
+ -- Known_Non_Null --
+ --------------------
+
+ function Known_Non_Null (N : Node_Id) return Boolean is
+ begin
+ -- Checks for case where N is an entity reference
+
+ if Is_Entity_Name (N) and then Present (Entity (N)) then
+ declare
+ E : constant Entity_Id := Entity (N);
+ Op : Node_Kind;
+ Val : Node_Id;
+
+ begin
+ -- First check if we are in decisive conditional
+
+ Get_Current_Value_Condition (N, Op, Val);
+
+ if Known_Null (Val) then
+ if Op = N_Op_Eq then
+ return False;
+ elsif Op = N_Op_Ne then
+ return True;
+ end if;
+ end if;
+
+ -- If OK to do replacement, test Is_Known_Non_Null flag
+
+ if OK_To_Do_Constant_Replacement (E) then
+ return Is_Known_Non_Null (E);
+
+ -- Otherwise if not safe to do replacement, then say so
+
+ else
+ return False;
+ end if;
+ end;
+
+ -- True if access attribute
+
+ elsif Nkind (N) = N_Attribute_Reference
+ and then (Attribute_Name (N) = Name_Access
+ or else
+ Attribute_Name (N) = Name_Unchecked_Access
+ or else
+ Attribute_Name (N) = Name_Unrestricted_Access)
+ then
+ return True;
+
+ -- True if allocator
+
+ elsif Nkind (N) = N_Allocator then
+ return True;
+
+ -- For a conversion, true if expression is known non-null
+
+ elsif Nkind (N) = N_Type_Conversion then
+ return Known_Non_Null (Expression (N));
+
+ -- Above are all cases where the value could be determined to be
+ -- non-null. In all other cases, we don't know, so return False.
+
+ else
+ return False;
+ end if;
+ end Known_Non_Null;
+
+ ----------------
+ -- Known_Null --
+ ----------------
+
+ function Known_Null (N : Node_Id) return Boolean is
+ begin
+ -- Checks for case where N is an entity reference
+
+ if Is_Entity_Name (N) and then Present (Entity (N)) then
+ declare
+ E : constant Entity_Id := Entity (N);
+ Op : Node_Kind;
+ Val : Node_Id;
+
+ begin
+ -- Constant null value is for sure null
+
+ if Ekind (E) = E_Constant
+ and then Known_Null (Constant_Value (E))
+ then
+ return True;
+ end if;
+
+ -- First check if we are in decisive conditional
+
+ Get_Current_Value_Condition (N, Op, Val);
+
+ if Known_Null (Val) then
+ if Op = N_Op_Eq then
+ return True;
+ elsif Op = N_Op_Ne then
+ return False;
+ end if;
+ end if;
+
+ -- If OK to do replacement, test Is_Known_Null flag
+
+ if OK_To_Do_Constant_Replacement (E) then
+ return Is_Known_Null (E);
+
+ -- Otherwise if not safe to do replacement, then say so
+
+ else
+ return False;
+ end if;
+ end;
+
+ -- True if explicit reference to null
+
+ elsif Nkind (N) = N_Null then
+ return True;
+
+ -- For a conversion, true if expression is known null
+
+ elsif Nkind (N) = N_Type_Conversion then
+ return Known_Null (Expression (N));
+
+ -- Above are all cases where the value could be determined to be null.
+ -- In all other cases, we don't know, so return False.
+
+ else
+ return False;
+ end if;
+ end Known_Null;
+
+ -----------------------------
+ -- Make_CW_Equivalent_Type --
+ -----------------------------
+
+ -- Create a record type used as an equivalent of any member
+ -- of the class which takes its size from exp.
+
+ -- Generate the following code:
+
+ -- type Equiv_T is record
+ -- _parent : T (List of discriminant constraints taken from Exp);
+ -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
+ -- end Equiv_T;
+ --
+ -- ??? Note that this type does not guarantee same alignment as all
+ -- derived types
+
+ function Make_CW_Equivalent_Type
+ (T : Entity_Id;
+ E : Node_Id) return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ Root_Typ : constant Entity_Id := Root_Type (T);
+ List_Def : constant List_Id := Empty_List;
+ Comp_List : constant List_Id := New_List;
+ Equiv_Type : Entity_Id;
+ Range_Type : Entity_Id;
+ Str_Type : Entity_Id;
+ Constr_Root : Entity_Id;
+ Sizexpr : Node_Id;
+
+ begin
+ if not Has_Discriminants (Root_Typ) then
+ Constr_Root := Root_Typ;
+ else
+ Constr_Root :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ -- subtype cstr__n is T (List of discr constraints taken from Exp)
+
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Constr_Root,
+ Subtype_Indication =>
+ Make_Subtype_From_Expr (E, Root_Typ)));
+ end if;
+
+ -- Generate the range subtype declaration
+
+ Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
+
+ if not Is_Interface (Root_Typ) then
+ -- subtype rg__xx is
+ -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
+
+ Sizexpr :=
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
+ Attribute_Name => Name_Size),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Constr_Root, Loc),
+ Attribute_Name => Name_Object_Size));
+ else
+ -- subtype rg__xx is
+ -- Storage_Offset range 1 .. Expr'size / Storage_Unit
+
+ Sizexpr :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
+ Attribute_Name => Name_Size);
+ end if;
+
+ Set_Paren_Count (Sizexpr, 1);
+
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Range_Type,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
+ Constraint => Make_Range_Constraint (Loc,
+ Range_Expression =>
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound =>
+ Make_Op_Divide (Loc,
+ Left_Opnd => Sizexpr,
+ Right_Opnd => Make_Integer_Literal (Loc,
+ Intval => System_Storage_Unit)))))));
+
+ -- subtype str__nn is Storage_Array (rg__x);
+
+ Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+ Append_To (List_Def,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Str_Type,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints =>
+ New_List (New_Reference_To (Range_Type, Loc))))));
+
+ -- type Equiv_T is record
+ -- [ _parent : Tnn; ]
+ -- E : Str_Type;
+ -- end Equiv_T;
+
+ Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+
+ -- When the target requires front-end layout, it's necessary to allow
+ -- the equivalent type to be frozen so that layout can occur (when the
+ -- associated class-wide subtype is frozen, the equivalent type will
+ -- be frozen, see freeze.adb). For other targets, Gigi wants to have
+ -- the equivalent type marked as frozen and deals with this type itself.
+ -- In the Gigi case this will also avoid the generation of an init
+ -- procedure for the type.
+
+ if not Frontend_Layout_On_Target then
+ Set_Is_Frozen (Equiv_Type);
+ end if;
+
+ Set_Ekind (Equiv_Type, E_Record_Type);
+ Set_Parent_Subtype (Equiv_Type, Constr_Root);
+
+ if not Is_Interface (Root_Typ) then
+ Append_To (Comp_List,
+ Make_Component_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uParent),
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
+ end if;
+
+ Append_To (Comp_List,
+ Make_Component_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('C')),
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Reference_To (Str_Type, Loc))));
+
+ Append_To (List_Def,
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Equiv_Type,
+ Type_Definition =>
+ Make_Record_Definition (Loc,
+ Component_List =>
+ Make_Component_List (Loc,
+ Component_Items => Comp_List,
+ Variant_Part => Empty))));
+
+ -- Suppress all checks during the analysis of the expanded code
+ -- to avoid the generation of spurious warnings under ZFP run-time.
+
+ Insert_Actions (E, List_Def, Suppress => All_Checks);
+ return Equiv_Type;
+ end Make_CW_Equivalent_Type;
+
+ ------------------------
+ -- Make_Literal_Range --
+ ------------------------
+
+ function Make_Literal_Range
+ (Loc : Source_Ptr;
+ Literal_Typ : Entity_Id) return Node_Id
+ is
+ Lo : constant Node_Id :=
+ New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
+ Index : constant Entity_Id := Etype (Lo);
+
+ Hi : Node_Id;
+ Length_Expr : constant Node_Id :=
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval => String_Literal_Length (Literal_Typ)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, 1));
+
+ begin
+ Set_Analyzed (Lo, False);
+
+ if Is_Integer_Type (Index) then
+ Hi :=
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Copy_Tree (Lo),
+ Right_Opnd => Length_Expr);
+ else
+ Hi :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Val,
+ Prefix => New_Occurrence_Of (Index, Loc),
+ Expressions => New_List (
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Pos,
+ Prefix => New_Occurrence_Of (Index, Loc),
+ Expressions => New_List (New_Copy_Tree (Lo))),
+ Right_Opnd => Length_Expr)));
+ end if;
+
+ return
+ Make_Range (Loc,
+ Low_Bound => Lo,
+ High_Bound => Hi);
+ end Make_Literal_Range;
+
+ ----------------------------
+ -- Make_Subtype_From_Expr --
+ ----------------------------
+
+ -- 1. If Expr is an unconstrained array expression, creates
+ -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
+
+ -- 2. If Expr is a unconstrained discriminated type expression, creates
+ -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
+
+ -- 3. If Expr is class-wide, creates an implicit class wide subtype
+
+ function Make_Subtype_From_Expr
+ (E : Node_Id;
+ Unc_Typ : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ List_Constr : constant List_Id := New_List;
+ D : Entity_Id;
+
+ Full_Subtyp : Entity_Id;
+ Priv_Subtyp : Entity_Id;
+ Utyp : Entity_Id;
+ Full_Exp : Node_Id;
+
+ begin
+ if Is_Private_Type (Unc_Typ)
+ and then Has_Unknown_Discriminants (Unc_Typ)
+ then
+ -- Prepare the subtype completion, Go to base type to
+ -- find underlying type, because the type may be a generic
+ -- actual or an explicit subtype.
+
+ Utyp := Underlying_Type (Base_Type (Unc_Typ));
+ Full_Subtyp := Make_Defining_Identifier (Loc,
+ New_Internal_Name ('C'));
+ Full_Exp :=
+ Unchecked_Convert_To
+ (Utyp, Duplicate_Subexpr_No_Checks (E));
+ Set_Parent (Full_Exp, Parent (E));
+
+ Priv_Subtyp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Insert_Action (E,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Full_Subtyp,
+ Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
+
+ -- Define the dummy private subtype
+
+ Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
+ Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
+ Set_Scope (Priv_Subtyp, Full_Subtyp);
+ Set_Is_Constrained (Priv_Subtyp);
+ Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
+ Set_Is_Itype (Priv_Subtyp);
+ Set_Associated_Node_For_Itype (Priv_Subtyp, E);
+
+ if Is_Tagged_Type (Priv_Subtyp) then
+ Set_Class_Wide_Type
+ (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
+ Set_Primitive_Operations (Priv_Subtyp,
+ Primitive_Operations (Unc_Typ));
+ end if;
+
+ Set_Full_View (Priv_Subtyp, Full_Subtyp);
+
+ return New_Reference_To (Priv_Subtyp, Loc);
+
+ elsif Is_Array_Type (Unc_Typ) then
+ for J in 1 .. Number_Dimensions (Unc_Typ) loop
+ Append_To (List_Constr,
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (E),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))),
+
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (E),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)))));
+ end loop;
+
+ elsif Is_Class_Wide_Type (Unc_Typ) then
+ declare
+ CW_Subtype : Entity_Id;
+ EQ_Typ : Entity_Id := Empty;
+
+ begin
+ -- A class-wide equivalent type is not needed when VM_Target
+ -- because the VM back-ends handle the class-wide object
+ -- initialization itself (and doesn't need or want the
+ -- additional intermediate type to handle the assignment).
+
+ if Expander_Active and then VM_Target = No_VM then
+ EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
+ end if;
+
+ CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
+ Set_Equivalent_Type (CW_Subtype, EQ_Typ);
+
+ if Present (EQ_Typ) then
+ Set_Is_Class_Wide_Equivalent_Type (EQ_Typ);
+ end if;
+
+ Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
+
+ return New_Occurrence_Of (CW_Subtype, Loc);
+ end;
+
+ -- Indefinite record type with discriminants
+
+ else
+ D := First_Discriminant (Unc_Typ);
+ while Present (D) loop
+ Append_To (List_Constr,
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (E),
+ Selector_Name => New_Reference_To (D, Loc)));
+
+ Next_Discriminant (D);
+ end loop;
+ end if;
+
+ return
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => List_Constr));
+ end Make_Subtype_From_Expr;
+
+ -----------------------------
+ -- May_Generate_Large_Temp --
+ -----------------------------
+
+ -- At the current time, the only types that we return False for (i.e.
+ -- where we decide we know they cannot generate large temps) are ones
+ -- where we know the size is 256 bits or less at compile time, and we
+ -- are still not doing a thorough job on arrays and records ???
+
+ function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
+ begin
+ if not Size_Known_At_Compile_Time (Typ) then
+ return False;
+
+ elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
+ return False;
+
+ elsif Is_Array_Type (Typ)
+ and then Present (Packed_Array_Type (Typ))
+ then
+ return May_Generate_Large_Temp (Packed_Array_Type (Typ));
+
+ -- We could do more here to find other small types ???
+
+ else
+ return True;
+ end if;
+ end May_Generate_Large_Temp;
+
+ ----------------------------
+ -- New_Class_Wide_Subtype --
+ ----------------------------
+
+ function New_Class_Wide_Subtype
+ (CW_Typ : Entity_Id;
+ N : Node_Id) return Entity_Id
+ is
+ Res : constant Entity_Id := Create_Itype (E_Void, N);
+ Res_Name : constant Name_Id := Chars (Res);
+ Res_Scope : constant Entity_Id := Scope (Res);
+
+ begin
+ Copy_Node (CW_Typ, Res);
+ Set_Comes_From_Source (Res, False);
+ Set_Sloc (Res, Sloc (N));
+ Set_Is_Itype (Res);
+ Set_Associated_Node_For_Itype (Res, N);
+ Set_Is_Public (Res, False); -- By default, may be changed below.
+ Set_Public_Status (Res);
+ Set_Chars (Res, Res_Name);
+ Set_Scope (Res, Res_Scope);
+ Set_Ekind (Res, E_Class_Wide_Subtype);
+ Set_Next_Entity (Res, Empty);
+ Set_Etype (Res, Base_Type (CW_Typ));
+
+ -- For targets where front-end layout is required, reset the Is_Frozen
+ -- status of the subtype to False (it can be implicitly set to true
+ -- from the copy of the class-wide type). For other targets, Gigi
+ -- doesn't want the class-wide subtype to go through the freezing
+ -- process (though it's unclear why that causes problems and it would
+ -- be nice to allow freezing to occur normally for all targets ???).
+
+ if Frontend_Layout_On_Target then
+ Set_Is_Frozen (Res, False);
+ end if;
+
+ Set_Freeze_Node (Res, Empty);
+ return (Res);
+ end New_Class_Wide_Subtype;
+
+ --------------------------------
+ -- Non_Limited_Designated_Type --
+ ---------------------------------
+
+ function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
+ Desig : constant Entity_Id := Designated_Type (T);
+ begin
+ if Ekind (Desig) = E_Incomplete_Type
+ and then Present (Non_Limited_View (Desig))
+ then
+ return Non_Limited_View (Desig);
+ else
+ return Desig;
+ end if;
+ end Non_Limited_Designated_Type;
+
+ -----------------------------------
+ -- OK_To_Do_Constant_Replacement --
+ -----------------------------------
+
+ function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
+ ES : constant Entity_Id := Scope (E);
+ CS : Entity_Id;
+
+ begin
+ -- Do not replace statically allocated objects, because they may be
+ -- modified outside the current scope.
+
+ if Is_Statically_Allocated (E) then
+ return False;
+
+ -- Do not replace aliased or volatile objects, since we don't know what
+ -- else might change the value.
+
+ elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
+ return False;
+
+ -- Debug flag -gnatdM disconnects this optimization
+
+ elsif Debug_Flag_MM then
+ return False;
+
+ -- Otherwise check scopes
+
+ else
+ CS := Current_Scope;
+
+ loop
+ -- If we are in right scope, replacement is safe
+
+ if CS = ES then
+ return True;
+
+ -- Packages do not affect the determination of safety
+
+ elsif Ekind (CS) = E_Package then
+ exit when CS = Standard_Standard;
+ CS := Scope (CS);
+
+ -- Blocks do not affect the determination of safety
+
+ elsif Ekind (CS) = E_Block then
+ CS := Scope (CS);
+
+ -- Loops do not affect the determination of safety. Note that we
+ -- kill all current values on entry to a loop, so we are just
+ -- talking about processing within a loop here.
+
+ elsif Ekind (CS) = E_Loop then
+ CS := Scope (CS);
+
+ -- Otherwise, the reference is dubious, and we cannot be sure that
+ -- it is safe to do the replacement.
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ return False;
+ end if;
+ end OK_To_Do_Constant_Replacement;
+
+ ------------------------------------
+ -- Possible_Bit_Aligned_Component --
+ ------------------------------------
+
+ function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
+ begin
+ case Nkind (N) is
+
+ -- Case of indexed component
+
+ when N_Indexed_Component =>
+ declare
+ P : constant Node_Id := Prefix (N);
+ Ptyp : constant Entity_Id := Etype (P);
+
+ begin
+ -- If we know the component size and it is less than 64, then
+ -- we are definitely OK. The back end always does assignment of
+ -- misaligned small objects correctly.
+
+ if Known_Static_Component_Size (Ptyp)
+ and then Component_Size (Ptyp) <= 64
+ then
+ return False;
+
+ -- Otherwise, we need to test the prefix, to see if we are
+ -- indexing from a possibly unaligned component.
+
+ else
+ return Possible_Bit_Aligned_Component (P);
+ end if;
+ end;
+
+ -- Case of selected component
+
+ when N_Selected_Component =>
+ declare
+ P : constant Node_Id := Prefix (N);
+ Comp : constant Entity_Id := Entity (Selector_Name (N));
+
+ begin
+ -- If there is no component clause, then we are in the clear
+ -- since the back end will never misalign a large component
+ -- unless it is forced to do so. In the clear means we need
+ -- only the recursive test on the prefix.
+
+ if Component_May_Be_Bit_Aligned (Comp) then
+ return True;
+ else
+ return Possible_Bit_Aligned_Component (P);
+ end if;
+ end;
+
+ -- For a slice, test the prefix, if that is possibly misaligned,
+ -- then for sure the slice is!
+
+ when N_Slice =>
+ return Possible_Bit_Aligned_Component (Prefix (N));
+
+ -- If we have none of the above, it means that we have fallen off the
+ -- top testing prefixes recursively, and we now have a stand alone
+ -- object, where we don't have a problem.
+
+ when others =>
+ return False;
+
+ end case;
+ end Possible_Bit_Aligned_Component;
+
+ -------------------------
+ -- Remove_Side_Effects --
+ -------------------------
+
+ procedure Remove_Side_Effects
+ (Exp : Node_Id;
+ Name_Req : Boolean := False;
+ Variable_Ref : Boolean := False)
+ is
+ Loc : constant Source_Ptr := Sloc (Exp);
+ Exp_Type : constant Entity_Id := Etype (Exp);
+ Svg_Suppress : constant Suppress_Array := Scope_Suppress;
+ Def_Id : Entity_Id;
+ Ref_Type : Entity_Id;
+ Res : Node_Id;
+ Ptr_Typ_Decl : Node_Id;
+ New_Exp : Node_Id;
+ E : Node_Id;
+
+ function Side_Effect_Free (N : Node_Id) return Boolean;
+ -- Determines if the tree N represents an expression that is known not
+ -- to have side effects, and for which no processing is required.
+
+ function Side_Effect_Free (L : List_Id) return Boolean;
+ -- Determines if all elements of the list L are side effect free
+
+ function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
+ -- The argument N is a construct where the Prefix is dereferenced if it
+ -- is an access type and the result is a variable. The call returns True
+ -- if the construct is side effect free (not considering side effects in
+ -- other than the prefix which are to be tested by the caller).
+
+ function Within_In_Parameter (N : Node_Id) return Boolean;
+ -- Determines if N is a subcomponent of a composite in-parameter. If so,
+ -- N is not side-effect free when the actual is global and modifiable
+ -- indirectly from within a subprogram, because it may be passed by
+ -- reference. The front-end must be conservative here and assume that
+ -- this may happen with any array or record type. On the other hand, we
+ -- cannot create temporaries for all expressions for which this
+ -- condition is true, for various reasons that might require clearing up
+ -- ??? For example, discriminant references that appear out of place, or
+ -- spurious type errors with class-wide expressions. As a result, we
+ -- limit the transformation to loop bounds, which is so far the only
+ -- case that requires it.
+
+ -----------------------------
+ -- Safe_Prefixed_Reference --
+ -----------------------------
+
+ function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
+ begin
+ -- If prefix is not side effect free, definitely not safe
+
+ if not Side_Effect_Free (Prefix (N)) then
+ return False;
+
+ -- If the prefix is of an access type that is not access-to-constant,
+ -- then this construct is a variable reference, which means it is to
+ -- be considered to have side effects if Variable_Ref is set True
+ -- Exception is an access to an entity that is a constant or an
+ -- in-parameter which does not come from source, and is the result
+ -- of a previous removal of side-effects.
+
+ elsif Is_Access_Type (Etype (Prefix (N)))
+ and then not Is_Access_Constant (Etype (Prefix (N)))
+ and then Variable_Ref
+ then
+ if not Is_Entity_Name (Prefix (N)) then
+ return False;
+ else
+ return Ekind (Entity (Prefix (N))) = E_Constant
+ or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
+ end if;
+
+ -- The following test is the simplest way of solving a complex
+ -- problem uncovered by BB08-010: Side effect on loop bound that
+ -- is a subcomponent of a global variable:
+ -- If a loop bound is a subcomponent of a global variable, a
+ -- modification of that variable within the loop may incorrectly
+ -- affect the execution of the loop.
+
+ elsif not
+ (Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
+ or else not Within_In_Parameter (Prefix (N)))
+ then
+ return False;
+
+ -- All other cases are side effect free
+
+ else
+ return True;
+ end if;
+ end Safe_Prefixed_Reference;
+
+ ----------------------
+ -- Side_Effect_Free --
+ ----------------------
+
+ function Side_Effect_Free (N : Node_Id) return Boolean is
+ begin
+ -- Note on checks that could raise Constraint_Error. Strictly, if
+ -- we take advantage of 11.6, these checks do not count as side
+ -- effects. However, we would just as soon consider that they are
+ -- side effects, since the backend CSE does not work very well on
+ -- expressions which can raise Constraint_Error. On the other
+ -- hand, if we do not consider them to be side effect free, then
+ -- we get some awkward expansions in -gnato mode, resulting in
+ -- code insertions at a point where we do not have a clear model
+ -- for performing the insertions.
+
+ -- Special handling for entity names
+
+ if Is_Entity_Name (N) then
+
+ -- If the entity is a constant, it is definitely side effect
+ -- free. Note that the test of Is_Variable (N) below might
+ -- be expected to catch this case, but it does not, because
+ -- this test goes to the original tree, and we may have
+ -- already rewritten a variable node with a constant as
+ -- a result of an earlier Force_Evaluation call.
+
+ if Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_In_Parameter
+ then
+ return True;
+
+ -- Functions are not side effect free
+
+ elsif Ekind (Entity (N)) = E_Function then
+ return False;
+
+ -- Variables are considered to be a side effect if Variable_Ref
+ -- is set or if we have a volatile reference and Name_Req is off.
+ -- If Name_Req is True then we can't help returning a name which
+ -- effectively allows multiple references in any case.
+
+ elsif Is_Variable (N) then
+ return not Variable_Ref
+ and then (not Is_Volatile_Reference (N) or else Name_Req);
+
+ -- Any other entity (e.g. a subtype name) is definitely side
+ -- effect free.
+
+ else
+ return True;
+ end if;
+
+ -- A value known at compile time is always side effect free
+
+ elsif Compile_Time_Known_Value (N) then
+ return True;
+
+ -- A variable renaming is not side-effect free, because the
+ -- renaming will function like a macro in the front-end in
+ -- some cases, and an assignment can modify the component
+ -- designated by N, so we need to create a temporary for it.
+
+ elsif Is_Entity_Name (Original_Node (N))
+ and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
+ and then Ekind (Entity (Original_Node (N))) /= E_Constant
+ then
+ return False;
+ end if;
+
+ -- For other than entity names and compile time known values,
+ -- check the node kind for special processing.
+
+ case Nkind (N) is
+
+ -- An attribute reference is side effect free if its expressions
+ -- are side effect free and its prefix is side effect free or
+ -- is an entity reference.
+
+ -- Is this right? what about x'first where x is a variable???
+
+ when N_Attribute_Reference =>
+ return Side_Effect_Free (Expressions (N))
+ and then Attribute_Name (N) /= Name_Input
+ and then (Is_Entity_Name (Prefix (N))
+ or else Side_Effect_Free (Prefix (N)));
+
+ -- A binary operator is side effect free if and both operands
+ -- are side effect free. For this purpose binary operators
+ -- include membership tests and short circuit forms
+
+ when N_Binary_Op |
+ N_Membership_Test |
+ N_And_Then |
+ N_Or_Else =>
+ return Side_Effect_Free (Left_Opnd (N))
+ and then Side_Effect_Free (Right_Opnd (N));
+
+ -- An explicit dereference is side effect free only if it is
+ -- a side effect free prefixed reference.
+
+ when N_Explicit_Dereference =>
+ return Safe_Prefixed_Reference (N);
+
+ -- A call to _rep_to_pos is side effect free, since we generate
+ -- this pure function call ourselves. Moreover it is critically
+ -- important to make this exception, since otherwise we can
+ -- have discriminants in array components which don't look
+ -- side effect free in the case of an array whose index type
+ -- is an enumeration type with an enumeration rep clause.
+
+ -- All other function calls are not side effect free
+
+ when N_Function_Call =>
+ return Nkind (Name (N)) = N_Identifier
+ and then Is_TSS (Name (N), TSS_Rep_To_Pos)
+ and then
+ Side_Effect_Free (First (Parameter_Associations (N)));
+
+ -- An indexed component is side effect free if it is a side
+ -- effect free prefixed reference and all the indexing
+ -- expressions are side effect free.
+
+ when N_Indexed_Component =>
+ return Side_Effect_Free (Expressions (N))
+ and then Safe_Prefixed_Reference (N);
+
+ -- A type qualification is side effect free if the expression
+ -- is side effect free.
+
+ when N_Qualified_Expression =>
+ return Side_Effect_Free (Expression (N));
+
+ -- A selected component is side effect free only if it is a
+ -- side effect free prefixed reference. If it designates a
+ -- component with a rep. clause it must be treated has having
+ -- a potential side effect, because it may be modified through
+ -- a renaming, and a subsequent use of the renaming as a macro
+ -- will yield the wrong value. This complex interaction between
+ -- renaming and removing side effects is a reminder that the
+ -- latter has become a headache to maintain, and that it should
+ -- be removed in favor of the gcc mechanism to capture values ???
+
+ when N_Selected_Component =>
+ if Nkind (Parent (N)) = N_Explicit_Dereference
+ and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
+ then
+ return False;
+ else
+ return Safe_Prefixed_Reference (N);
+ end if;
+
+ -- A range is side effect free if the bounds are side effect free
+
+ when N_Range =>
+ return Side_Effect_Free (Low_Bound (N))
+ and then Side_Effect_Free (High_Bound (N));
+
+ -- A slice is side effect free if it is a side effect free
+ -- prefixed reference and the bounds are side effect free.
+
+ when N_Slice =>
+ return Side_Effect_Free (Discrete_Range (N))
+ and then Safe_Prefixed_Reference (N);
+
+ -- A type conversion is side effect free if the expression to be
+ -- converted is side effect free.
+
+ when N_Type_Conversion =>
+ return Side_Effect_Free (Expression (N));
+
+ -- A unary operator is side effect free if the operand
+ -- is side effect free.
+
+ when N_Unary_Op =>
+ return Side_Effect_Free (Right_Opnd (N));
+
+ -- An unchecked type conversion is side effect free only if it
+ -- is safe and its argument is side effect free.
+
+ when N_Unchecked_Type_Conversion =>
+ return Safe_Unchecked_Type_Conversion (N)
+ and then Side_Effect_Free (Expression (N));
+
+ -- An unchecked expression is side effect free if its expression
+ -- is side effect free.
+
+ when N_Unchecked_Expression =>
+ return Side_Effect_Free (Expression (N));
+
+ -- A literal is side effect free
+
+ when N_Character_Literal |
+ N_Integer_Literal |
+ N_Real_Literal |
+ N_String_Literal =>
+ return True;
+
+ -- We consider that anything else has side effects. This is a bit
+ -- crude, but we are pretty close for most common cases, and we
+ -- are certainly correct (i.e. we never return True when the
+ -- answer should be False).
+
+ when others =>
+ return False;
+ end case;
+ end Side_Effect_Free;
+
+ -- A list is side effect free if all elements of the list are
+ -- side effect free.
+
+ function Side_Effect_Free (L : List_Id) return Boolean is
+ N : Node_Id;
+
+ begin
+ if L = No_List or else L = Error_List then
+ return True;
+
+ else
+ N := First (L);
+ while Present (N) loop
+ if not Side_Effect_Free (N) then
+ return False;
+ else
+ Next (N);
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end Side_Effect_Free;
+
+ -------------------------
+ -- Within_In_Parameter --
+ -------------------------
+
+ function Within_In_Parameter (N : Node_Id) return Boolean is
+ begin
+ if not Comes_From_Source (N) then
+ return False;
+
+ elsif Is_Entity_Name (N) then
+ return Ekind (Entity (N)) = E_In_Parameter;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Within_In_Parameter (Prefix (N));
+ else
+
+ return False;
+ end if;
+ end Within_In_Parameter;
+
+ -- Start of processing for Remove_Side_Effects
+
+ begin
+ -- If we are side effect free already or expansion is disabled,
+ -- there is nothing to do.
+
+ if Side_Effect_Free (Exp) or else not Expander_Active then
+ return;
+ end if;
+
+ -- All this must not have any checks
+
+ Scope_Suppress := (others => True);
+
+ -- If it is a scalar type and we need to capture the value, just make
+ -- a copy. Likewise for a function call, an attribute reference or an
+ -- operator. And if we have a volatile reference and Name_Req is not
+ -- set (see comments above for Side_Effect_Free).
+
+ if Is_Elementary_Type (Exp_Type)
+ and then (Variable_Ref
+ or else Nkind (Exp) = N_Function_Call
+ or else Nkind (Exp) = N_Attribute_Reference
+ or else Nkind (Exp) in N_Op
+ or else (not Name_Req and then Is_Volatile_Reference (Exp)))
+ then
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Exp_Type);
+ Res := New_Reference_To (Def_Id, Loc);
+
+ E :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Exp_Type, Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (E);
+ Insert_Action (Exp, E);
+
+ -- If the expression has the form v.all then we can just capture
+ -- the pointer, and then do an explicit dereference on the result.
+
+ elsif Nkind (Exp) = N_Explicit_Dereference then
+ Def_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Res :=
+ Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
+
+ Insert_Action (Exp,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition =>
+ New_Reference_To (Etype (Prefix (Exp)), Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (Prefix (Exp))));
+
+ -- Similar processing for an unchecked conversion of an expression
+ -- of the form v.all, where we want the same kind of treatment.
+
+ elsif Nkind (Exp) = N_Unchecked_Type_Conversion
+ and then Nkind (Expression (Exp)) = N_Explicit_Dereference
+ then
+ Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
+ Scope_Suppress := Svg_Suppress;
+ return;
+
+ -- If this is a type conversion, leave the type conversion and remove
+ -- the side effects in the expression. This is important in several
+ -- circumstances: for change of representations, and also when this is
+ -- a view conversion to a smaller object, where gigi can end up creating
+ -- its own temporary of the wrong size.
+
+ elsif Nkind (Exp) = N_Type_Conversion then
+ Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
+ Scope_Suppress := Svg_Suppress;
+ return;
+
+ -- If this is an unchecked conversion that Gigi can't handle, make
+ -- a copy or a use a renaming to capture the value.
+
+ elsif Nkind (Exp) = N_Unchecked_Type_Conversion
+ and then not Safe_Unchecked_Type_Conversion (Exp)
+ then
+ if CW_Or_Has_Controlled_Part (Exp_Type) then
+
+ -- Use a renaming to capture the expression, rather than create
+ -- a controlled temporary.
+
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Res := New_Reference_To (Def_Id, Loc);
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark => New_Reference_To (Exp_Type, Loc),
+ Name => Relocate_Node (Exp)));
+
+ else
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Exp_Type);
+ Res := New_Reference_To (Def_Id, Loc);
+
+ E :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Exp_Type, Loc),
+ Constant_Present => not Is_Variable (Exp),
+ Expression => Relocate_Node (Exp));
+
+ Set_Assignment_OK (E);
+ Insert_Action (Exp, E);
+ end if;
+
+ -- For expressions that denote objects, we can use a renaming scheme.
+ -- We skip using this if we have a volatile reference and we do not
+ -- have Name_Req set true (see comments above for Side_Effect_Free).
+
+ elsif Is_Object_Reference (Exp)
+ and then Nkind (Exp) /= N_Function_Call
+ and then (Name_Req or else not Is_Volatile_Reference (Exp))
+ then
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ if Nkind (Exp) = N_Selected_Component
+ and then Nkind (Prefix (Exp)) = N_Function_Call
+ and then Is_Array_Type (Exp_Type)
+ then
+ -- Avoid generating a variable-sized temporary, by generating
+ -- the renaming declaration just for the function call. The
+ -- transformation could be refined to apply only when the array
+ -- component is constrained by a discriminant???
+
+ Res :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Def_Id, Loc),
+ Selector_Name => Selector_Name (Exp));
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark =>
+ New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
+ Name => Relocate_Node (Prefix (Exp))));
+
+ else
+ Res := New_Reference_To (Def_Id, Loc);
+
+ Insert_Action (Exp,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Mark => New_Reference_To (Exp_Type, Loc),
+ Name => Relocate_Node (Exp)));
+
+ end if;
+
+ -- If this is a packed reference, or a selected component with a
+ -- non-standard representation, a reference to the temporary will
+ -- be replaced by a copy of the original expression (see
+ -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
+ -- elaborated by gigi, and is of course not to be replaced in-line
+ -- by the expression it renames, which would defeat the purpose of
+ -- removing the side-effect.
+
+ if (Nkind (Exp) = N_Selected_Component
+ or else Nkind (Exp) = N_Indexed_Component)
+ and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
+ then
+ null;
+ else
+ Set_Is_Renaming_Of_Object (Def_Id, False);
+ end if;
+
+ -- Otherwise we generate a reference to the value
+
+ else
+ -- Special processing for function calls that return a task. We need
+ -- to build a declaration that will enable build-in-place expansion
+ -- of the call.
+
+ -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
+ -- to accommodate functions returning limited objects by reference.
+
+ if Nkind (Exp) = N_Function_Call
+ and then Is_Task_Type (Etype (Exp))
+ and then Ada_Version >= Ada_05
+ then
+ declare
+ Obj : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('F'));
+ Decl : Node_Id;
+
+ begin
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Obj,
+ Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
+ Expression => Relocate_Node (Exp));
+ Insert_Action (Exp, Decl);
+ Set_Etype (Obj, Exp_Type);
+ Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
+ return;
+ end;
+ end if;
+
+ Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+
+ Ptr_Typ_Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Ref_Type,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ All_Present => True,
+ Subtype_Indication =>
+ New_Reference_To (Exp_Type, Loc)));
+
+ E := Exp;
+ Insert_Action (Exp, Ptr_Typ_Decl);
+
+ Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Exp_Type);
+
+ Res :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Def_Id, Loc));
+
+ if Nkind (E) = N_Explicit_Dereference then
+ New_Exp := Relocate_Node (Prefix (E));
+ else
+ E := Relocate_Node (E);
+ New_Exp := Make_Reference (Loc, E);
+ end if;
+
+ if Is_Delayed_Aggregate (E) then
+
+ -- The expansion of nested aggregates is delayed until the
+ -- enclosing aggregate is expanded. As aggregates are often
+ -- qualified, the predicate applies to qualified expressions
+ -- as well, indicating that the enclosing aggregate has not
+ -- been expanded yet. At this point the aggregate is part of
+ -- a stand-alone declaration, and must be fully expanded.
+
+ if Nkind (E) = N_Qualified_Expression then
+ Set_Expansion_Delayed (Expression (E), False);
+ Set_Analyzed (Expression (E), False);
+ else
+ Set_Expansion_Delayed (E, False);
+ end if;
+
+ Set_Analyzed (E, False);
+ end if;
+
+ Insert_Action (Exp,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Ref_Type, Loc),
+ Expression => New_Exp));
+ end if;
+
+ -- Preserve the Assignment_OK flag in all copies, since at least
+ -- one copy may be used in a context where this flag must be set
+ -- (otherwise why would the flag be set in the first place).
+
+ Set_Assignment_OK (Res, Assignment_OK (Exp));
+
+ -- Finally rewrite the original expression and we are done
+
+ Rewrite (Exp, Res);
+ Analyze_And_Resolve (Exp, Exp_Type);
+ Scope_Suppress := Svg_Suppress;
+ end Remove_Side_Effects;
+
+ ---------------------------
+ -- Represented_As_Scalar --
+ ---------------------------
+
+ function Represented_As_Scalar (T : Entity_Id) return Boolean is
+ UT : constant Entity_Id := Underlying_Type (T);
+ begin
+ return Is_Scalar_Type (UT)
+ or else (Is_Bit_Packed_Array (UT)
+ and then Is_Scalar_Type (Packed_Array_Type (UT)));
+ end Represented_As_Scalar;
+
+ ------------------------------------
+ -- Safe_Unchecked_Type_Conversion --
+ ------------------------------------
+
+ -- Note: this function knows quite a bit about the exact requirements
+ -- of Gigi with respect to unchecked type conversions, and its code
+ -- must be coordinated with any changes in Gigi in this area.
+
+ -- The above requirements should be documented in Sinfo ???
+
+ function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
+ Otyp : Entity_Id;
+ Ityp : Entity_Id;
+ Oalign : Uint;
+ Ialign : Uint;
+ Pexp : constant Node_Id := Parent (Exp);
+
+ begin
+ -- If the expression is the RHS of an assignment or object declaration
+ -- we are always OK because there will always be a target.
+
+ -- Object renaming declarations, (generated for view conversions of
+ -- actuals in inlined calls), like object declarations, provide an
+ -- explicit type, and are safe as well.
+
+ if (Nkind (Pexp) = N_Assignment_Statement
+ and then Expression (Pexp) = Exp)
+ or else Nkind (Pexp) = N_Object_Declaration
+ or else Nkind (Pexp) = N_Object_Renaming_Declaration
+ then
+ return True;
+
+ -- If the expression is the prefix of an N_Selected_Component
+ -- we should also be OK because GCC knows to look inside the
+ -- conversion except if the type is discriminated. We assume
+ -- that we are OK anyway if the type is not set yet or if it is
+ -- controlled since we can't afford to introduce a temporary in
+ -- this case.
+
+ elsif Nkind (Pexp) = N_Selected_Component
+ and then Prefix (Pexp) = Exp
+ then
+ if No (Etype (Pexp)) then
+ return True;
+ else
+ return
+ not Has_Discriminants (Etype (Pexp))
+ or else Is_Constrained (Etype (Pexp));
+ end if;
+ end if;
+
+ -- Set the output type, this comes from Etype if it is set, otherwise
+ -- we take it from the subtype mark, which we assume was already
+ -- fully analyzed.
+
+ if Present (Etype (Exp)) then
+ Otyp := Etype (Exp);
+ else
+ Otyp := Entity (Subtype_Mark (Exp));
+ end if;
+
+ -- The input type always comes from the expression, and we assume
+ -- this is indeed always analyzed, so we can simply get the Etype.
+
+ Ityp := Etype (Expression (Exp));
+
+ -- Initialize alignments to unknown so far
+
+ Oalign := No_Uint;
+ Ialign := No_Uint;
+
+ -- Replace a concurrent type by its corresponding record type
+ -- and each type by its underlying type and do the tests on those.
+ -- The original type may be a private type whose completion is a
+ -- concurrent type, so find the underlying type first.
+
+ if Present (Underlying_Type (Otyp)) then
+ Otyp := Underlying_Type (Otyp);
+ end if;
+
+ if Present (Underlying_Type (Ityp)) then
+ Ityp := Underlying_Type (Ityp);
+ end if;
+
+ if Is_Concurrent_Type (Otyp) then
+ Otyp := Corresponding_Record_Type (Otyp);
+ end if;
+
+ if Is_Concurrent_Type (Ityp) then
+ Ityp := Corresponding_Record_Type (Ityp);
+ end if;
+
+ -- If the base types are the same, we know there is no problem since
+ -- this conversion will be a noop.
+
+ if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
+ return True;
+
+ -- Same if this is an upwards conversion of an untagged type, and there
+ -- are no constraints involved (could be more general???)
+
+ elsif Etype (Ityp) = Otyp
+ and then not Is_Tagged_Type (Ityp)
+ and then not Has_Discriminants (Ityp)
+ and then No (First_Rep_Item (Base_Type (Ityp)))
+ then
+ return True;
+
+ -- If the size of output type is known at compile time, there is
+ -- never a problem. Note that unconstrained records are considered
+ -- to be of known size, but we can't consider them that way here,
+ -- because we are talking about the actual size of the object.
+
+ -- We also make sure that in addition to the size being known, we do
+ -- not have a case which might generate an embarrassingly large temp
+ -- in stack checking mode.
+
+ elsif Size_Known_At_Compile_Time (Otyp)
+ and then
+ (not Stack_Checking_Enabled
+ or else not May_Generate_Large_Temp (Otyp))
+ and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
+ then
+ return True;
+
+ -- If either type is tagged, then we know the alignment is OK so
+ -- Gigi will be able to use pointer punning.
+
+ elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
+ return True;
+
+ -- If either type is a limited record type, we cannot do a copy, so
+ -- say safe since there's nothing else we can do.
+
+ elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
+ return True;
+
+ -- Conversions to and from packed array types are always ignored and
+ -- hence are safe.
+
+ elsif Is_Packed_Array_Type (Otyp)
+ or else Is_Packed_Array_Type (Ityp)
+ then
+ return True;
+ end if;
+
+ -- The only other cases known to be safe is if the input type's
+ -- alignment is known to be at least the maximum alignment for the
+ -- target or if both alignments are known and the output type's
+ -- alignment is no stricter than the input's. We can use the alignment
+ -- of the component type of an array if a type is an unpacked
+ -- array type.
+
+ if Present (Alignment_Clause (Otyp)) then
+ Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
+
+ elsif Is_Array_Type (Otyp)
+ and then Present (Alignment_Clause (Component_Type (Otyp)))
+ then
+ Oalign := Expr_Value (Expression (Alignment_Clause
+ (Component_Type (Otyp))));
+ end if;
+
+ if Present (Alignment_Clause (Ityp)) then
+ Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
+
+ elsif Is_Array_Type (Ityp)
+ and then Present (Alignment_Clause (Component_Type (Ityp)))
+ then
+ Ialign := Expr_Value (Expression (Alignment_Clause
+ (Component_Type (Ityp))));
+ end if;
+
+ if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
+ return True;
+
+ elsif Ialign /= No_Uint and then Oalign /= No_Uint
+ and then Ialign <= Oalign
+ then
+ return True;
+
+ -- Otherwise, Gigi cannot handle this and we must make a temporary
+
+ else
+ return False;
+ end if;
+ end Safe_Unchecked_Type_Conversion;
+
+ ---------------------------------
+ -- Set_Current_Value_Condition --
+ ---------------------------------
+
+ -- Note: the implementation of this procedure is very closely tied to the
+ -- implementation of Get_Current_Value_Condition. Here we set required
+ -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
+ -- them, so they must have a consistent view.
+
+ procedure Set_Current_Value_Condition (Cnode : Node_Id) is
+
+ procedure Set_Entity_Current_Value (N : Node_Id);
+ -- If N is an entity reference, where the entity is of an appropriate
+ -- kind, then set the current value of this entity to Cnode, unless
+ -- there is already a definite value set there.
+
+ procedure Set_Expression_Current_Value (N : Node_Id);
+ -- If N is of an appropriate form, sets an appropriate entry in current
+ -- value fields of relevant entities. Multiple entities can be affected
+ -- in the case of an AND or AND THEN.
+
+ ------------------------------
+ -- Set_Entity_Current_Value --
+ ------------------------------
+
+ procedure Set_Entity_Current_Value (N : Node_Id) is
+ begin
+ if Is_Entity_Name (N) then
+ declare
+ Ent : constant Entity_Id := Entity (N);
+
+ begin
+ -- Don't capture if not safe to do so
+
+ if not Safe_To_Capture_Value (N, Ent, Cond => True) then
+ return;
+ end if;
+
+ -- Here we have a case where the Current_Value field may
+ -- need to be set. We set it if it is not already set to a
+ -- compile time expression value.
+
+ -- Note that this represents a decision that one condition
+ -- blots out another previous one. That's certainly right
+ -- if they occur at the same level. If the second one is
+ -- nested, then the decision is neither right nor wrong (it
+ -- would be equally OK to leave the outer one in place, or
+ -- take the new inner one. Really we should record both, but
+ -- our data structures are not that elaborate.
+
+ if Nkind (Current_Value (Ent)) not in N_Subexpr then
+ Set_Current_Value (Ent, Cnode);
+ end if;
+ end;
+ end if;
+ end Set_Entity_Current_Value;
+
+ ----------------------------------
+ -- Set_Expression_Current_Value --
+ ----------------------------------
+
+ procedure Set_Expression_Current_Value (N : Node_Id) is
+ Cond : Node_Id;
+
+ begin
+ Cond := N;
+
+ -- Loop to deal with (ignore for now) any NOT operators present. The
+ -- presence of NOT operators will be handled properly when we call
+ -- Get_Current_Value_Condition.
+
+ while Nkind (Cond) = N_Op_Not loop
+ Cond := Right_Opnd (Cond);
+ end loop;
+
+ -- For an AND or AND THEN, recursively process operands
+
+ if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
+ Set_Expression_Current_Value (Left_Opnd (Cond));
+ Set_Expression_Current_Value (Right_Opnd (Cond));
+ return;
+ end if;
+
+ -- Check possible relational operator
+
+ if Nkind (Cond) in N_Op_Compare then
+ if Compile_Time_Known_Value (Right_Opnd (Cond)) then
+ Set_Entity_Current_Value (Left_Opnd (Cond));
+ elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
+ Set_Entity_Current_Value (Right_Opnd (Cond));
+ end if;
+
+ -- Check possible boolean variable reference
+
+ else
+ Set_Entity_Current_Value (Cond);
+ end if;
+ end Set_Expression_Current_Value;
+
+ -- Start of processing for Set_Current_Value_Condition
+
+ begin
+ Set_Expression_Current_Value (Condition (Cnode));
+ end Set_Current_Value_Condition;
+
+ --------------------------
+ -- Set_Elaboration_Flag --
+ --------------------------
+
+ procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
+ Asn : Node_Id;
+
+ begin
+ if Present (Ent) then
+
+ -- Nothing to do if at the compilation unit level, because in this
+ -- case the flag is set by the binder generated elaboration routine.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ null;
+
+ -- Here we do need to generate an assignment statement
+
+ else
+ Check_Restriction (No_Elaboration_Code, N);
+ Asn :=
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Ent, Loc),
+ Expression => New_Occurrence_Of (Standard_True, Loc));
+
+ if Nkind (Parent (N)) = N_Subunit then
+ Insert_After (Corresponding_Stub (Parent (N)), Asn);
+ else
+ Insert_After (N, Asn);
+ end if;
+
+ Analyze (Asn);
+
+ -- Kill current value indication. This is necessary because the
+ -- tests of this flag are inserted out of sequence and must not
+ -- pick up bogus indications of the wrong constant value.
+
+ Set_Current_Value (Ent, Empty);
+ end if;
+ end if;
+ end Set_Elaboration_Flag;
+
+ ----------------------------
+ -- Set_Renamed_Subprogram --
+ ----------------------------
+
+ procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
+ begin
+ -- If input node is an identifier, we can just reset it
+
+ if Nkind (N) = N_Identifier then
+ Set_Chars (N, Chars (E));
+ Set_Entity (N, E);
+
+ -- Otherwise we have to do a rewrite, preserving Comes_From_Source
+
+ else
+ declare
+ CS : constant Boolean := Comes_From_Source (N);
+ begin
+ Rewrite (N, Make_Identifier (Sloc (N), Chars => Chars (E)));
+ Set_Entity (N, E);
+ Set_Comes_From_Source (N, CS);
+ Set_Analyzed (N, True);
+ end;
+ end if;
+ end Set_Renamed_Subprogram;
+
+ ----------------------------------
+ -- Silly_Boolean_Array_Not_Test --
+ ----------------------------------
+
+ -- This procedure implements an odd and silly test. We explicitly check
+ -- for the case where the 'First of the component type is equal to the
+ -- 'Last of this component type, and if this is the case, we make sure
+ -- that constraint error is raised. The reason is that the NOT is bound
+ -- to cause CE in this case, and we will not otherwise catch it.
+
+ -- Believe it or not, this was reported as a bug. Note that nearly
+ -- always, the test will evaluate statically to False, so the code will
+ -- be statically removed, and no extra overhead caused.
+
+ procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ CT : constant Entity_Id := Component_Type (T);
+
+ begin
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_First),
+
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_Last)),
+ Reason => CE_Range_Check_Failed));
+ end Silly_Boolean_Array_Not_Test;
+
+ ----------------------------------
+ -- Silly_Boolean_Array_Xor_Test --
+ ----------------------------------
+
+ -- This procedure implements an odd and silly test. We explicitly check
+ -- for the XOR case where the component type is True .. True, since this
+ -- will raise constraint error. A special check is required since CE
+ -- will not be required otherwise (cf Expand_Packed_Not).
+
+ -- No such check is required for AND and OR, since for both these cases
+ -- False op False = False, and True op True = True.
+
+ procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ CT : constant Entity_Id := Component_Type (T);
+ BT : constant Entity_Id := Base_Type (CT);
+
+ begin
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_And (Loc,
+ Left_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_First),
+
+ Right_Opnd =>
+ Convert_To (BT,
+ New_Occurrence_Of (Standard_True, Loc))),
+
+ Right_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (CT, Loc),
+ Attribute_Name => Name_Last),
+
+ Right_Opnd =>
+ Convert_To (BT,
+ New_Occurrence_Of (Standard_True, Loc)))),
+ Reason => CE_Range_Check_Failed));
+ end Silly_Boolean_Array_Xor_Test;
+
+ --------------------------
+ -- Target_Has_Fixed_Ops --
+ --------------------------
+
+ Integer_Sized_Small : Ureal;
+ -- Set to 2.0 ** -(Integer'Size - 1) the first time that this
+ -- function is called (we don't want to compute it more than once!)
+
+ Long_Integer_Sized_Small : Ureal;
+ -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
+ -- function is called (we don't want to compute it more than once)
+
+ First_Time_For_THFO : Boolean := True;
+ -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
+
+ function Target_Has_Fixed_Ops
+ (Left_Typ : Entity_Id;
+ Right_Typ : Entity_Id;
+ Result_Typ : Entity_Id) return Boolean
+ is
+ function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
+ -- Return True if the given type is a fixed-point type with a small
+ -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
+ -- an absolute value less than 1.0. This is currently limited
+ -- to fixed-point types that map to Integer or Long_Integer.
+
+ ------------------------
+ -- Is_Fractional_Type --
+ ------------------------
+
+ function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
+ begin
+ if Esize (Typ) = Standard_Integer_Size then
+ return Small_Value (Typ) = Integer_Sized_Small;
+
+ elsif Esize (Typ) = Standard_Long_Integer_Size then
+ return Small_Value (Typ) = Long_Integer_Sized_Small;
+
+ else
+ return False;
+ end if;
+ end Is_Fractional_Type;
+
+ -- Start of processing for Target_Has_Fixed_Ops
+
+ begin
+ -- Return False if Fractional_Fixed_Ops_On_Target is false
+
+ if not Fractional_Fixed_Ops_On_Target then
+ return False;
+ end if;
+
+ -- Here the target has Fractional_Fixed_Ops, if first time, compute
+ -- standard constants used by Is_Fractional_Type.
+
+ if First_Time_For_THFO then
+ First_Time_For_THFO := False;
+
+ Integer_Sized_Small :=
+ UR_From_Components
+ (Num => Uint_1,
+ Den => UI_From_Int (Standard_Integer_Size - 1),
+ Rbase => 2);
+
+ Long_Integer_Sized_Small :=
+ UR_From_Components
+ (Num => Uint_1,
+ Den => UI_From_Int (Standard_Long_Integer_Size - 1),
+ Rbase => 2);
+ end if;
+
+ -- Return True if target supports fixed-by-fixed multiply/divide
+ -- for fractional fixed-point types (see Is_Fractional_Type) and
+ -- the operand and result types are equivalent fractional types.
+
+ return Is_Fractional_Type (Base_Type (Left_Typ))
+ and then Is_Fractional_Type (Base_Type (Right_Typ))
+ and then Is_Fractional_Type (Base_Type (Result_Typ))
+ and then Esize (Left_Typ) = Esize (Right_Typ)
+ and then Esize (Left_Typ) = Esize (Result_Typ);
+ end Target_Has_Fixed_Ops;
+
+ ------------------------------------------
+ -- Type_May_Have_Bit_Aligned_Components --
+ ------------------------------------------
+
+ function Type_May_Have_Bit_Aligned_Components
+ (Typ : Entity_Id) return Boolean
+ is
+ begin
+ -- Array type, check component type
+
+ if Is_Array_Type (Typ) then
+ return
+ Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
+
+ -- Record type, check components
+
+ elsif Is_Record_Type (Typ) then
+ declare
+ E : Entity_Id;
+
+ begin
+ E := First_Component_Or_Discriminant (Typ);
+ while Present (E) loop
+ if Component_May_Be_Bit_Aligned (E)
+ or else Type_May_Have_Bit_Aligned_Components (Etype (E))
+ then
+ return True;
+ end if;
+
+ Next_Component_Or_Discriminant (E);
+ end loop;
+
+ return False;
+ end;
+
+ -- Type other than array or record is always OK
+
+ else
+ return False;
+ end if;
+ end Type_May_Have_Bit_Aligned_Components;
+
+ ----------------------------
+ -- Wrap_Cleanup_Procedure --
+ ----------------------------
+
+ procedure Wrap_Cleanup_Procedure (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Stseq : constant Node_Id := Handled_Statement_Sequence (N);
+ Stmts : constant List_Id := Statements (Stseq);
+
+ begin
+ if Abort_Allowed then
+ Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
+ Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
+ end if;
+ end Wrap_Cleanup_Procedure;
+
+end Exp_Util;