aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/exp_ch4.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/exp_ch4.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/exp_ch4.adb9343
1 files changed, 0 insertions, 9343 deletions
diff --git a/gcc-4.4.3/gcc/ada/exp_ch4.adb b/gcc-4.4.3/gcc/ada/exp_ch4.adb
deleted file mode 100644
index 9309c4850..000000000
--- a/gcc-4.4.3/gcc/ada/exp_ch4.adb
+++ /dev/null
@@ -1,9343 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ C H 4 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Exp_Aggr; use Exp_Aggr;
-with Exp_Atag; use Exp_Atag;
-with Exp_Ch3; use Exp_Ch3;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Ch9; use Exp_Ch9;
-with Exp_Disp; use Exp_Disp;
-with Exp_Fixd; use Exp_Fixd;
-with Exp_Pakd; use Exp_Pakd;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Exp_VFpt; use Exp_VFpt;
-with Freeze; use Freeze;
-with Inline; use Inline;
-with Namet; use Namet;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Ch13; use Sem_Ch13;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Sem_Warn; use Sem_Warn;
-with Sinfo; use Sinfo;
-with Snames; use Snames;
-with Stand; use Stand;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Uintp; use Uintp;
-with Urealp; use Urealp;
-with Validsw; use Validsw;
-
-package body Exp_Ch4 is
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Binary_Op_Validity_Checks (N : Node_Id);
- pragma Inline (Binary_Op_Validity_Checks);
- -- Performs validity checks for a binary operator
-
- procedure Build_Boolean_Array_Proc_Call
- (N : Node_Id;
- Op1 : Node_Id;
- Op2 : Node_Id);
- -- If a boolean array assignment can be done in place, build call to
- -- corresponding library procedure.
-
- procedure Displace_Allocator_Pointer (N : Node_Id);
- -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
- -- Expand_Allocator_Expression. Allocating class-wide interface objects
- -- this routine displaces the pointer to the allocated object to reference
- -- the component referencing the corresponding secondary dispatch table.
-
- procedure Expand_Allocator_Expression (N : Node_Id);
- -- Subsidiary to Expand_N_Allocator, for the case when the expression
- -- is a qualified expression or an aggregate.
-
- procedure Expand_Array_Comparison (N : Node_Id);
- -- This routine handles expansion of the comparison operators (N_Op_Lt,
- -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
- -- code for these operators is similar, differing only in the details of
- -- the actual comparison call that is made. Special processing (call a
- -- run-time routine)
-
- function Expand_Array_Equality
- (Nod : Node_Id;
- Lhs : Node_Id;
- Rhs : Node_Id;
- Bodies : List_Id;
- Typ : Entity_Id) return Node_Id;
- -- Expand an array equality into a call to a function implementing this
- -- equality, and a call to it. Loc is the location for the generated nodes.
- -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
- -- on which to attach bodies of local functions that are created in the
- -- process. It is the responsibility of the caller to insert those bodies
- -- at the right place. Nod provides the Sloc value for the generated code.
- -- Normally the types used for the generated equality routine are taken
- -- from Lhs and Rhs. However, in some situations of generated code, the
- -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
- -- the type to be used for the formal parameters.
-
- procedure Expand_Boolean_Operator (N : Node_Id);
- -- Common expansion processing for Boolean operators (And, Or, Xor) for the
- -- case of array type arguments.
-
- function Expand_Composite_Equality
- (Nod : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id;
- Rhs : Node_Id;
- Bodies : List_Id) return Node_Id;
- -- Local recursive function used to expand equality for nested composite
- -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
- -- to attach bodies of local functions that are created in the process.
- -- This is the responsibility of the caller to insert those bodies at the
- -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
- -- are the left and right sides for the comparison, and Typ is the type of
- -- the arrays to compare.
-
- procedure Expand_Concatenate_Other (Cnode : Node_Id; Opnds : List_Id);
- -- This routine handles expansion of concatenation operations, where N is
- -- the N_Op_Concat node being expanded and Operands is the list of operands
- -- (at least two are present). The caller has dealt with converting any
- -- singleton operands into singleton aggregates.
-
- procedure Expand_Concatenate_String (Cnode : Node_Id; Opnds : List_Id);
- -- Routine to expand concatenation of 2-5 operands (in the list Operands)
- -- and replace node Cnode with the result of the concatenation. If there
- -- are two operands, they can be string or character. If there are more
- -- than two operands, then are always of type string (i.e. the caller has
- -- already converted character operands to strings in this case).
-
- procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
- -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
- -- fixed. We do not have such a type at runtime, so the purpose of this
- -- routine is to find the real type by looking up the tree. We also
- -- determine if the operation must be rounded.
-
- function Get_Allocator_Final_List
- (N : Node_Id;
- T : Entity_Id;
- PtrT : Entity_Id) return Entity_Id;
- -- If the designated type is controlled, build final_list expression for
- -- created object. If context is an access parameter, create a local access
- -- type to have a usable finalization list.
-
- function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
- -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
- -- discriminants if it has a constrained nominal type, unless the object
- -- is a component of an enclosing Unchecked_Union object that is subject
- -- to a per-object constraint and the enclosing object lacks inferable
- -- discriminants.
- --
- -- An expression of an Unchecked_Union type has inferable discriminants
- -- if it is either a name of an object with inferable discriminants or a
- -- qualified expression whose subtype mark denotes a constrained subtype.
-
- procedure Insert_Dereference_Action (N : Node_Id);
- -- N is an expression whose type is an access. When the type of the
- -- associated storage pool is derived from Checked_Pool, generate a
- -- call to the 'Dereference' primitive operation.
-
- function Make_Array_Comparison_Op
- (Typ : Entity_Id;
- Nod : Node_Id) return Node_Id;
- -- Comparisons between arrays are expanded in line. This function produces
- -- the body of the implementation of (a > b), where a and b are one-
- -- dimensional arrays of some discrete type. The original node is then
- -- expanded into the appropriate call to this function. Nod provides the
- -- Sloc value for the generated code.
-
- function Make_Boolean_Array_Op
- (Typ : Entity_Id;
- N : Node_Id) return Node_Id;
- -- Boolean operations on boolean arrays are expanded in line. This function
- -- produce the body for the node N, which is (a and b), (a or b), or (a xor
- -- b). It is used only the normal case and not the packed case. The type
- -- involved, Typ, is the Boolean array type, and the logical operations in
- -- the body are simple boolean operations. Note that Typ is always a
- -- constrained type (the caller has ensured this by using
- -- Convert_To_Actual_Subtype if necessary).
-
- procedure Rewrite_Comparison (N : Node_Id);
- -- If N is the node for a comparison whose outcome can be determined at
- -- compile time, then the node N can be rewritten with True or False. If
- -- the outcome cannot be determined at compile time, the call has no
- -- effect. If N is a type conversion, then this processing is applied to
- -- its expression. If N is neither comparison nor a type conversion, the
- -- call has no effect.
-
- function Tagged_Membership (N : Node_Id) return Node_Id;
- -- Construct the expression corresponding to the tagged membership test.
- -- Deals with a second operand being (or not) a class-wide type.
-
- function Safe_In_Place_Array_Op
- (Lhs : Node_Id;
- Op1 : Node_Id;
- Op2 : Node_Id) return Boolean;
- -- In the context of an assignment, where the right-hand side is a boolean
- -- operation on arrays, check whether operation can be performed in place.
-
- procedure Unary_Op_Validity_Checks (N : Node_Id);
- pragma Inline (Unary_Op_Validity_Checks);
- -- Performs validity checks for a unary operator
-
- -------------------------------
- -- Binary_Op_Validity_Checks --
- -------------------------------
-
- procedure Binary_Op_Validity_Checks (N : Node_Id) is
- begin
- if Validity_Checks_On and Validity_Check_Operands then
- Ensure_Valid (Left_Opnd (N));
- Ensure_Valid (Right_Opnd (N));
- end if;
- end Binary_Op_Validity_Checks;
-
- ------------------------------------
- -- Build_Boolean_Array_Proc_Call --
- ------------------------------------
-
- procedure Build_Boolean_Array_Proc_Call
- (N : Node_Id;
- Op1 : Node_Id;
- Op2 : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Kind : constant Node_Kind := Nkind (Expression (N));
- Target : constant Node_Id :=
- Make_Attribute_Reference (Loc,
- Prefix => Name (N),
- Attribute_Name => Name_Address);
-
- Arg1 : constant Node_Id := Op1;
- Arg2 : Node_Id := Op2;
- Call_Node : Node_Id;
- Proc_Name : Entity_Id;
-
- begin
- if Kind = N_Op_Not then
- if Nkind (Op1) in N_Binary_Op then
-
- -- Use negated version of the binary operators
-
- if Nkind (Op1) = N_Op_And then
- Proc_Name := RTE (RE_Vector_Nand);
-
- elsif Nkind (Op1) = N_Op_Or then
- Proc_Name := RTE (RE_Vector_Nor);
-
- else pragma Assert (Nkind (Op1) = N_Op_Xor);
- Proc_Name := RTE (RE_Vector_Xor);
- end if;
-
- Call_Node :=
- Make_Procedure_Call_Statement (Loc,
- Name => New_Occurrence_Of (Proc_Name, Loc),
-
- Parameter_Associations => New_List (
- Target,
- Make_Attribute_Reference (Loc,
- Prefix => Left_Opnd (Op1),
- Attribute_Name => Name_Address),
-
- Make_Attribute_Reference (Loc,
- Prefix => Right_Opnd (Op1),
- Attribute_Name => Name_Address),
-
- Make_Attribute_Reference (Loc,
- Prefix => Left_Opnd (Op1),
- Attribute_Name => Name_Length)));
-
- else
- Proc_Name := RTE (RE_Vector_Not);
-
- Call_Node :=
- Make_Procedure_Call_Statement (Loc,
- Name => New_Occurrence_Of (Proc_Name, Loc),
- Parameter_Associations => New_List (
- Target,
-
- Make_Attribute_Reference (Loc,
- Prefix => Op1,
- Attribute_Name => Name_Address),
-
- Make_Attribute_Reference (Loc,
- Prefix => Op1,
- Attribute_Name => Name_Length)));
- end if;
-
- else
- -- We use the following equivalences:
-
- -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
- -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
- -- (not X) xor (not Y) = X xor Y
- -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
-
- if Nkind (Op1) = N_Op_Not then
- if Kind = N_Op_And then
- Proc_Name := RTE (RE_Vector_Nor);
-
- elsif Kind = N_Op_Or then
- Proc_Name := RTE (RE_Vector_Nand);
-
- else
- Proc_Name := RTE (RE_Vector_Xor);
- end if;
-
- else
- if Kind = N_Op_And then
- Proc_Name := RTE (RE_Vector_And);
-
- elsif Kind = N_Op_Or then
- Proc_Name := RTE (RE_Vector_Or);
-
- elsif Nkind (Op2) = N_Op_Not then
- Proc_Name := RTE (RE_Vector_Nxor);
- Arg2 := Right_Opnd (Op2);
-
- else
- Proc_Name := RTE (RE_Vector_Xor);
- end if;
- end if;
-
- Call_Node :=
- Make_Procedure_Call_Statement (Loc,
- Name => New_Occurrence_Of (Proc_Name, Loc),
- Parameter_Associations => New_List (
- Target,
- Make_Attribute_Reference (Loc,
- Prefix => Arg1,
- Attribute_Name => Name_Address),
- Make_Attribute_Reference (Loc,
- Prefix => Arg2,
- Attribute_Name => Name_Address),
- Make_Attribute_Reference (Loc,
- Prefix => Op1,
- Attribute_Name => Name_Length)));
- end if;
-
- Rewrite (N, Call_Node);
- Analyze (N);
-
- exception
- when RE_Not_Available =>
- return;
- end Build_Boolean_Array_Proc_Call;
-
- --------------------------------
- -- Displace_Allocator_Pointer --
- --------------------------------
-
- procedure Displace_Allocator_Pointer (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Orig_Node : constant Node_Id := Original_Node (N);
- Dtyp : Entity_Id;
- Etyp : Entity_Id;
- PtrT : Entity_Id;
-
- begin
- -- Do nothing in case of VM targets: the virtual machine will handle
- -- interfaces directly.
-
- if VM_Target /= No_VM then
- return;
- end if;
-
- pragma Assert (Nkind (N) = N_Identifier
- and then Nkind (Orig_Node) = N_Allocator);
-
- PtrT := Etype (Orig_Node);
- Dtyp := Designated_Type (PtrT);
- Etyp := Etype (Expression (Orig_Node));
-
- if Is_Class_Wide_Type (Dtyp)
- and then Is_Interface (Dtyp)
- then
- -- If the type of the allocator expression is not an interface type
- -- we can generate code to reference the record component containing
- -- the pointer to the secondary dispatch table.
-
- if not Is_Interface (Etyp) then
- declare
- Saved_Typ : constant Entity_Id := Etype (Orig_Node);
-
- begin
- -- 1) Get access to the allocated object
-
- Rewrite (N,
- Make_Explicit_Dereference (Loc,
- Relocate_Node (N)));
- Set_Etype (N, Etyp);
- Set_Analyzed (N);
-
- -- 2) Add the conversion to displace the pointer to reference
- -- the secondary dispatch table.
-
- Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
- Analyze_And_Resolve (N, Dtyp);
-
- -- 3) The 'access to the secondary dispatch table will be used
- -- as the value returned by the allocator.
-
- Rewrite (N,
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (N),
- Attribute_Name => Name_Access));
- Set_Etype (N, Saved_Typ);
- Set_Analyzed (N);
- end;
-
- -- If the type of the allocator expression is an interface type we
- -- generate a run-time call to displace "this" to reference the
- -- component containing the pointer to the secondary dispatch table
- -- or else raise Constraint_Error if the actual object does not
- -- implement the target interface. This case corresponds with the
- -- following example:
-
- -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
- -- begin
- -- return new Iface_2'Class'(Obj);
- -- end Op;
-
- else
- Rewrite (N,
- Unchecked_Convert_To (PtrT,
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (RE_Displace), Loc),
- Parameter_Associations => New_List (
- Unchecked_Convert_To (RTE (RE_Address),
- Relocate_Node (N)),
-
- New_Occurrence_Of
- (Elists.Node
- (First_Elmt
- (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
- Loc)))));
- Analyze_And_Resolve (N, PtrT);
- end if;
- end if;
- end Displace_Allocator_Pointer;
-
- ---------------------------------
- -- Expand_Allocator_Expression --
- ---------------------------------
-
- procedure Expand_Allocator_Expression (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Exp : constant Node_Id := Expression (Expression (N));
- PtrT : constant Entity_Id := Etype (N);
- DesigT : constant Entity_Id := Designated_Type (PtrT);
-
- procedure Apply_Accessibility_Check
- (Ref : Node_Id;
- Built_In_Place : Boolean := False);
- -- Ada 2005 (AI-344): For an allocator with a class-wide designated
- -- type, generate an accessibility check to verify that the level of the
- -- type of the created object is not deeper than the level of the access
- -- type. If the type of the qualified expression is class- wide, then
- -- always generate the check (except in the case where it is known to be
- -- unnecessary, see comment below). Otherwise, only generate the check
- -- if the level of the qualified expression type is statically deeper
- -- than the access type.
- --
- -- Although the static accessibility will generally have been performed
- -- as a legality check, it won't have been done in cases where the
- -- allocator appears in generic body, so a run-time check is needed in
- -- general. One special case is when the access type is declared in the
- -- same scope as the class-wide allocator, in which case the check can
- -- never fail, so it need not be generated.
- --
- -- As an open issue, there seem to be cases where the static level
- -- associated with the class-wide object's underlying type is not
- -- sufficient to perform the proper accessibility check, such as for
- -- allocators in nested subprograms or accept statements initialized by
- -- class-wide formals when the actual originates outside at a deeper
- -- static level. The nested subprogram case might require passing
- -- accessibility levels along with class-wide parameters, and the task
- -- case seems to be an actual gap in the language rules that needs to
- -- be fixed by the ARG. ???
-
- -------------------------------
- -- Apply_Accessibility_Check --
- -------------------------------
-
- procedure Apply_Accessibility_Check
- (Ref : Node_Id;
- Built_In_Place : Boolean := False)
- is
- Ref_Node : Node_Id;
-
- begin
- -- Note: we skip the accessibility check for the VM case, since
- -- there does not seem to be any practical way of implementing it.
-
- if Ada_Version >= Ada_05
- and then VM_Target = No_VM
- and then Is_Class_Wide_Type (DesigT)
- and then not Scope_Suppress (Accessibility_Check)
- and then
- (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
- or else
- (Is_Class_Wide_Type (Etype (Exp))
- and then Scope (PtrT) /= Current_Scope))
- then
- -- If the allocator was built in place Ref is already a reference
- -- to the access object initialized to the result of the allocator
- -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
- -- it is the entity associated with the object containing the
- -- address of the allocated object.
-
- if Built_In_Place then
- Ref_Node := New_Copy (Ref);
- else
- Ref_Node := New_Reference_To (Ref, Loc);
- end if;
-
- Insert_Action (N,
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Build_Get_Access_Level (Loc,
- Make_Attribute_Reference (Loc,
- Prefix => Ref_Node,
- Attribute_Name => Name_Tag)),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Type_Access_Level (PtrT))),
- Reason => PE_Accessibility_Check_Failed));
- end if;
- end Apply_Accessibility_Check;
-
- -- Local variables
-
- Indic : constant Node_Id := Subtype_Mark (Expression (N));
- T : constant Entity_Id := Entity (Indic);
- Flist : Node_Id;
- Node : Node_Id;
- Temp : Entity_Id;
-
- TagT : Entity_Id := Empty;
- -- Type used as source for tag assignment
-
- TagR : Node_Id := Empty;
- -- Target reference for tag assignment
-
- Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
-
- Tag_Assign : Node_Id;
- Tmp_Node : Node_Id;
-
- -- Start of processing for Expand_Allocator_Expression
-
- begin
- if Is_Tagged_Type (T) or else Needs_Finalization (T) then
-
- -- Ada 2005 (AI-318-02): If the initialization expression is a call
- -- to a build-in-place function, then access to the allocated object
- -- must be passed to the function. Currently we limit such functions
- -- to those with constrained limited result subtypes, but eventually
- -- we plan to expand the allowed forms of functions that are treated
- -- as build-in-place.
-
- if Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (Exp)
- then
- Make_Build_In_Place_Call_In_Allocator (N, Exp);
- Apply_Accessibility_Check (N, Built_In_Place => True);
- return;
- end if;
-
- -- Actions inserted before:
- -- Temp : constant ptr_T := new T'(Expression);
- -- <no CW> Temp._tag := T'tag;
- -- <CTRL> Adjust (Finalizable (Temp.all));
- -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
-
- -- We analyze by hand the new internal allocator to avoid
- -- any recursion and inappropriate call to Initialize
-
- -- We don't want to remove side effects when the expression must be
- -- built in place. In the case of a build-in-place function call,
- -- that could lead to a duplication of the call, which was already
- -- substituted for the allocator.
-
- if not Aggr_In_Place then
- Remove_Side_Effects (Exp);
- end if;
-
- Temp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- -- For a class wide allocation generate the following code:
-
- -- type Equiv_Record is record ... end record;
- -- implicit subtype CW is <Class_Wide_Subytpe>;
- -- temp : PtrT := new CW'(CW!(expr));
-
- if Is_Class_Wide_Type (T) then
- Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
-
- -- Ada 2005 (AI-251): If the expression is a class-wide interface
- -- object we generate code to move up "this" to reference the
- -- base of the object before allocating the new object.
-
- -- Note that Exp'Address is recursively expanded into a call
- -- to Base_Address (Exp.Tag)
-
- if Is_Class_Wide_Type (Etype (Exp))
- and then Is_Interface (Etype (Exp))
- and then VM_Target = No_VM
- then
- Set_Expression
- (Expression (N),
- Unchecked_Convert_To (Entity (Indic),
- Make_Explicit_Dereference (Loc,
- Unchecked_Convert_To (RTE (RE_Tag_Ptr),
- Make_Attribute_Reference (Loc,
- Prefix => Exp,
- Attribute_Name => Name_Address)))));
-
- else
- Set_Expression
- (Expression (N),
- Unchecked_Convert_To (Entity (Indic), Exp));
- end if;
-
- Analyze_And_Resolve (Expression (N), Entity (Indic));
- end if;
-
- -- Keep separate the management of allocators returning interfaces
-
- if not Is_Interface (Directly_Designated_Type (PtrT)) then
- if Aggr_In_Place then
- Tmp_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression =>
- Make_Allocator (Loc,
- New_Reference_To (Etype (Exp), Loc)));
-
- Set_Comes_From_Source
- (Expression (Tmp_Node), Comes_From_Source (N));
-
- Set_No_Initialization (Expression (Tmp_Node));
- Insert_Action (N, Tmp_Node);
-
- if Needs_Finalization (T)
- and then Ekind (PtrT) = E_Anonymous_Access_Type
- then
- -- Create local finalization list for access parameter
-
- Flist := Get_Allocator_Final_List (N, Base_Type (T), PtrT);
- end if;
-
- Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
- else
- Node := Relocate_Node (N);
- Set_Analyzed (Node);
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Constant_Present => True,
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression => Node));
- end if;
-
- -- Ada 2005 (AI-251): Handle allocators whose designated type is an
- -- interface type. In this case we use the type of the qualified
- -- expression to allocate the object.
-
- else
- declare
- Def_Id : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('T'));
- New_Decl : Node_Id;
-
- begin
- New_Decl :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- All_Present => True,
- Null_Exclusion_Present => False,
- Constant_Present => False,
- Subtype_Indication =>
- New_Reference_To (Etype (Exp), Loc)));
-
- Insert_Action (N, New_Decl);
-
- -- Inherit the final chain to ensure that the expansion of the
- -- aggregate is correct in case of controlled types
-
- if Needs_Finalization (Directly_Designated_Type (PtrT)) then
- Set_Associated_Final_Chain (Def_Id,
- Associated_Final_Chain (PtrT));
- end if;
-
- -- Declare the object using the previous type declaration
-
- if Aggr_In_Place then
- Tmp_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Reference_To (Def_Id, Loc),
- Expression =>
- Make_Allocator (Loc,
- New_Reference_To (Etype (Exp), Loc)));
-
- Set_Comes_From_Source
- (Expression (Tmp_Node), Comes_From_Source (N));
-
- Set_No_Initialization (Expression (Tmp_Node));
- Insert_Action (N, Tmp_Node);
-
- if Needs_Finalization (T)
- and then Ekind (PtrT) = E_Anonymous_Access_Type
- then
- -- Create local finalization list for access parameter
-
- Flist :=
- Get_Allocator_Final_List (N, Base_Type (T), PtrT);
- end if;
-
- Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
- else
- Node := Relocate_Node (N);
- Set_Analyzed (Node);
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Constant_Present => True,
- Object_Definition => New_Reference_To (Def_Id, Loc),
- Expression => Node));
- end if;
-
- -- Generate an additional object containing the address of the
- -- returned object. The type of this second object declaration
- -- is the correct type required for the common processing that
- -- is still performed by this subprogram. The displacement of
- -- this pointer to reference the component associated with the
- -- interface type will be done at the end of common processing.
-
- New_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc,
- New_Internal_Name ('P')),
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression => Unchecked_Convert_To (PtrT,
- New_Reference_To (Temp, Loc)));
-
- Insert_Action (N, New_Decl);
-
- Tmp_Node := New_Decl;
- Temp := Defining_Identifier (New_Decl);
- end;
- end if;
-
- Apply_Accessibility_Check (Temp);
-
- -- Generate the tag assignment
-
- -- Suppress the tag assignment when VM_Target because VM tags are
- -- represented implicitly in objects.
-
- if VM_Target /= No_VM then
- null;
-
- -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
- -- interface objects because in this case the tag does not change.
-
- elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
- pragma Assert (Is_Class_Wide_Type
- (Directly_Designated_Type (Etype (N))));
- null;
-
- elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
- TagT := T;
- TagR := New_Reference_To (Temp, Loc);
-
- elsif Is_Private_Type (T)
- and then Is_Tagged_Type (Underlying_Type (T))
- then
- TagT := Underlying_Type (T);
- TagR :=
- Unchecked_Convert_To (Underlying_Type (T),
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Temp, Loc)));
- end if;
-
- if Present (TagT) then
- Tag_Assign :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => TagR,
- Selector_Name =>
- New_Reference_To (First_Tag_Component (TagT), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Elists.Node (First_Elmt (Access_Disp_Table (TagT))),
- Loc)));
-
- -- The previous assignment has to be done in any case
-
- Set_Assignment_OK (Name (Tag_Assign));
- Insert_Action (N, Tag_Assign);
- end if;
-
- if Needs_Finalization (DesigT)
- and then Needs_Finalization (T)
- then
- declare
- Attach : Node_Id;
- Apool : constant Entity_Id :=
- Associated_Storage_Pool (PtrT);
-
- begin
- -- If it is an allocation on the secondary stack (i.e. a value
- -- returned from a function), the object is attached on the
- -- caller side as soon as the call is completed (see
- -- Expand_Ctrl_Function_Call)
-
- if Is_RTE (Apool, RE_SS_Pool) then
- declare
- F : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('F'));
- begin
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => F,
- Object_Definition => New_Reference_To (RTE
- (RE_Finalizable_Ptr), Loc)));
-
- Flist := New_Reference_To (F, Loc);
- Attach := Make_Integer_Literal (Loc, 1);
- end;
-
- -- Normal case, not a secondary stack allocation
-
- else
- if Needs_Finalization (T)
- and then Ekind (PtrT) = E_Anonymous_Access_Type
- then
- -- Create local finalization list for access parameter
-
- Flist :=
- Get_Allocator_Final_List (N, Base_Type (T), PtrT);
- else
- Flist := Find_Final_List (PtrT);
- end if;
-
- Attach := Make_Integer_Literal (Loc, 2);
- end if;
-
- -- Generate an Adjust call if the object will be moved. In Ada
- -- 2005, the object may be inherently limited, in which case
- -- there is no Adjust procedure, and the object is built in
- -- place. In Ada 95, the object can be limited but not
- -- inherently limited if this allocator came from a return
- -- statement (we're allocating the result on the secondary
- -- stack). In that case, the object will be moved, so we _do_
- -- want to Adjust.
-
- if not Aggr_In_Place
- and then not Is_Inherently_Limited_Type (T)
- then
- Insert_Actions (N,
- Make_Adjust_Call (
- Ref =>
-
- -- An unchecked conversion is needed in the classwide
- -- case because the designated type can be an ancestor of
- -- the subtype mark of the allocator.
-
- Unchecked_Convert_To (T,
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Temp, Loc))),
-
- Typ => T,
- Flist_Ref => Flist,
- With_Attach => Attach,
- Allocator => True));
- end if;
- end;
- end if;
-
- Rewrite (N, New_Reference_To (Temp, Loc));
- Analyze_And_Resolve (N, PtrT);
-
- -- Ada 2005 (AI-251): Displace the pointer to reference the record
- -- component containing the secondary dispatch table of the interface
- -- type.
-
- if Is_Interface (Directly_Designated_Type (PtrT)) then
- Displace_Allocator_Pointer (N);
- end if;
-
- elsif Aggr_In_Place then
- Temp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
- Tmp_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Reference_To (PtrT, Loc),
- Expression => Make_Allocator (Loc,
- New_Reference_To (Etype (Exp), Loc)));
-
- Set_Comes_From_Source
- (Expression (Tmp_Node), Comes_From_Source (N));
-
- Set_No_Initialization (Expression (Tmp_Node));
- Insert_Action (N, Tmp_Node);
- Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
- Rewrite (N, New_Reference_To (Temp, Loc));
- Analyze_And_Resolve (N, PtrT);
-
- elsif Is_Access_Type (T)
- and then Can_Never_Be_Null (T)
- then
- Install_Null_Excluding_Check (Exp);
-
- elsif Is_Access_Type (DesigT)
- and then Nkind (Exp) = N_Allocator
- and then Nkind (Expression (Exp)) /= N_Qualified_Expression
- then
- -- Apply constraint to designated subtype indication
-
- Apply_Constraint_Check (Expression (Exp),
- Designated_Type (DesigT),
- No_Sliding => True);
-
- if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
-
- -- Propagate constraint_error to enclosing allocator
-
- Rewrite (Exp, New_Copy (Expression (Exp)));
- end if;
- else
- -- First check against the type of the qualified expression
- --
- -- NOTE: The commented call should be correct, but for some reason
- -- causes the compiler to bomb (sigsegv) on ACVC test c34007g, so for
- -- now we just perform the old (incorrect) test against the
- -- designated subtype with no sliding in the else part of the if
- -- statement below. ???
- --
- -- Apply_Constraint_Check (Exp, T, No_Sliding => True);
-
- -- A check is also needed in cases where the designated subtype is
- -- constrained and differs from the subtype given in the qualified
- -- expression. Note that the check on the qualified expression does
- -- not allow sliding, but this check does (a relaxation from Ada 83).
-
- if Is_Constrained (DesigT)
- and then not Subtypes_Statically_Match (T, DesigT)
- then
- Apply_Constraint_Check
- (Exp, DesigT, No_Sliding => False);
-
- -- The nonsliding check should really be performed (unconditionally)
- -- against the subtype of the qualified expression, but that causes a
- -- problem with c34007g (see above), so for now we retain this.
-
- else
- Apply_Constraint_Check
- (Exp, DesigT, No_Sliding => True);
- end if;
-
- -- For an access to unconstrained packed array, GIGI needs to see an
- -- expression with a constrained subtype in order to compute the
- -- proper size for the allocator.
-
- if Is_Array_Type (T)
- and then not Is_Constrained (T)
- and then Is_Packed (T)
- then
- declare
- ConstrT : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('A'));
- Internal_Exp : constant Node_Id := Relocate_Node (Exp);
- begin
- Insert_Action (Exp,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => ConstrT,
- Subtype_Indication =>
- Make_Subtype_From_Expr (Exp, T)));
- Freeze_Itype (ConstrT, Exp);
- Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
- end;
- end if;
-
- -- Ada 2005 (AI-318-02): If the initialization expression is a call
- -- to a build-in-place function, then access to the allocated object
- -- must be passed to the function. Currently we limit such functions
- -- to those with constrained limited result subtypes, but eventually
- -- we plan to expand the allowed forms of functions that are treated
- -- as build-in-place.
-
- if Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (Exp)
- then
- Make_Build_In_Place_Call_In_Allocator (N, Exp);
- end if;
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Allocator_Expression;
-
- -----------------------------
- -- Expand_Array_Comparison --
- -----------------------------
-
- -- Expansion is only required in the case of array types. For the unpacked
- -- case, an appropriate runtime routine is called. For packed cases, and
- -- also in some other cases where a runtime routine cannot be called, the
- -- form of the expansion is:
-
- -- [body for greater_nn; boolean_expression]
-
- -- The body is built by Make_Array_Comparison_Op, and the form of the
- -- Boolean expression depends on the operator involved.
-
- procedure Expand_Array_Comparison (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Op1 : Node_Id := Left_Opnd (N);
- Op2 : Node_Id := Right_Opnd (N);
- Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
- Ctyp : constant Entity_Id := Component_Type (Typ1);
-
- Expr : Node_Id;
- Func_Body : Node_Id;
- Func_Name : Entity_Id;
-
- Comp : RE_Id;
-
- Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
- -- True for byte addressable target
-
- function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
- -- Returns True if the length of the given operand is known to be less
- -- than 4. Returns False if this length is known to be four or greater
- -- or is not known at compile time.
-
- ------------------------
- -- Length_Less_Than_4 --
- ------------------------
-
- function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
- Otyp : constant Entity_Id := Etype (Opnd);
-
- begin
- if Ekind (Otyp) = E_String_Literal_Subtype then
- return String_Literal_Length (Otyp) < 4;
-
- else
- declare
- Ityp : constant Entity_Id := Etype (First_Index (Otyp));
- Lo : constant Node_Id := Type_Low_Bound (Ityp);
- Hi : constant Node_Id := Type_High_Bound (Ityp);
- Lov : Uint;
- Hiv : Uint;
-
- begin
- if Compile_Time_Known_Value (Lo) then
- Lov := Expr_Value (Lo);
- else
- return False;
- end if;
-
- if Compile_Time_Known_Value (Hi) then
- Hiv := Expr_Value (Hi);
- else
- return False;
- end if;
-
- return Hiv < Lov + 3;
- end;
- end if;
- end Length_Less_Than_4;
-
- -- Start of processing for Expand_Array_Comparison
-
- begin
- -- Deal first with unpacked case, where we can call a runtime routine
- -- except that we avoid this for targets for which are not addressable
- -- by bytes, and for the JVM/CIL, since they do not support direct
- -- addressing of array components.
-
- if not Is_Bit_Packed_Array (Typ1)
- and then Byte_Addressable
- and then VM_Target = No_VM
- then
- -- The call we generate is:
-
- -- Compare_Array_xn[_Unaligned]
- -- (left'address, right'address, left'length, right'length) <op> 0
-
- -- x = U for unsigned, S for signed
- -- n = 8,16,32,64 for component size
- -- Add _Unaligned if length < 4 and component size is 8.
- -- <op> is the standard comparison operator
-
- if Component_Size (Typ1) = 8 then
- if Length_Less_Than_4 (Op1)
- or else
- Length_Less_Than_4 (Op2)
- then
- if Is_Unsigned_Type (Ctyp) then
- Comp := RE_Compare_Array_U8_Unaligned;
- else
- Comp := RE_Compare_Array_S8_Unaligned;
- end if;
-
- else
- if Is_Unsigned_Type (Ctyp) then
- Comp := RE_Compare_Array_U8;
- else
- Comp := RE_Compare_Array_S8;
- end if;
- end if;
-
- elsif Component_Size (Typ1) = 16 then
- if Is_Unsigned_Type (Ctyp) then
- Comp := RE_Compare_Array_U16;
- else
- Comp := RE_Compare_Array_S16;
- end if;
-
- elsif Component_Size (Typ1) = 32 then
- if Is_Unsigned_Type (Ctyp) then
- Comp := RE_Compare_Array_U32;
- else
- Comp := RE_Compare_Array_S32;
- end if;
-
- else pragma Assert (Component_Size (Typ1) = 64);
- if Is_Unsigned_Type (Ctyp) then
- Comp := RE_Compare_Array_U64;
- else
- Comp := RE_Compare_Array_S64;
- end if;
- end if;
-
- Remove_Side_Effects (Op1, Name_Req => True);
- Remove_Side_Effects (Op2, Name_Req => True);
-
- Rewrite (Op1,
- Make_Function_Call (Sloc (Op1),
- Name => New_Occurrence_Of (RTE (Comp), Loc),
-
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Op1),
- Attribute_Name => Name_Address),
-
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Op2),
- Attribute_Name => Name_Address),
-
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Op1),
- Attribute_Name => Name_Length),
-
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Op2),
- Attribute_Name => Name_Length))));
-
- Rewrite (Op2,
- Make_Integer_Literal (Sloc (Op2),
- Intval => Uint_0));
-
- Analyze_And_Resolve (Op1, Standard_Integer);
- Analyze_And_Resolve (Op2, Standard_Integer);
- return;
- end if;
-
- -- Cases where we cannot make runtime call
-
- -- For (a <= b) we convert to not (a > b)
-
- if Chars (N) = Name_Op_Le then
- Rewrite (N,
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => Op1,
- Right_Opnd => Op2)));
- Analyze_And_Resolve (N, Standard_Boolean);
- return;
-
- -- For < the Boolean expression is
- -- greater__nn (op2, op1)
-
- elsif Chars (N) = Name_Op_Lt then
- Func_Body := Make_Array_Comparison_Op (Typ1, N);
-
- -- Switch operands
-
- Op1 := Right_Opnd (N);
- Op2 := Left_Opnd (N);
-
- -- For (a >= b) we convert to not (a < b)
-
- elsif Chars (N) = Name_Op_Ge then
- Rewrite (N,
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Op1,
- Right_Opnd => Op2)));
- Analyze_And_Resolve (N, Standard_Boolean);
- return;
-
- -- For > the Boolean expression is
- -- greater__nn (op1, op2)
-
- else
- pragma Assert (Chars (N) = Name_Op_Gt);
- Func_Body := Make_Array_Comparison_Op (Typ1, N);
- end if;
-
- Func_Name := Defining_Unit_Name (Specification (Func_Body));
- Expr :=
- Make_Function_Call (Loc,
- Name => New_Reference_To (Func_Name, Loc),
- Parameter_Associations => New_List (Op1, Op2));
-
- Insert_Action (N, Func_Body);
- Rewrite (N, Expr);
- Analyze_And_Resolve (N, Standard_Boolean);
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Array_Comparison;
-
- ---------------------------
- -- Expand_Array_Equality --
- ---------------------------
-
- -- Expand an equality function for multi-dimensional arrays. Here is an
- -- example of such a function for Nb_Dimension = 2
-
- -- function Enn (A : atyp; B : btyp) return boolean is
- -- begin
- -- if (A'length (1) = 0 or else A'length (2) = 0)
- -- and then
- -- (B'length (1) = 0 or else B'length (2) = 0)
- -- then
- -- return True; -- RM 4.5.2(22)
- -- end if;
-
- -- if A'length (1) /= B'length (1)
- -- or else
- -- A'length (2) /= B'length (2)
- -- then
- -- return False; -- RM 4.5.2(23)
- -- end if;
-
- -- declare
- -- A1 : Index_T1 := A'first (1);
- -- B1 : Index_T1 := B'first (1);
- -- begin
- -- loop
- -- declare
- -- A2 : Index_T2 := A'first (2);
- -- B2 : Index_T2 := B'first (2);
- -- begin
- -- loop
- -- if A (A1, A2) /= B (B1, B2) then
- -- return False;
- -- end if;
-
- -- exit when A2 = A'last (2);
- -- A2 := Index_T2'succ (A2);
- -- B2 := Index_T2'succ (B2);
- -- end loop;
- -- end;
-
- -- exit when A1 = A'last (1);
- -- A1 := Index_T1'succ (A1);
- -- B1 := Index_T1'succ (B1);
- -- end loop;
- -- end;
-
- -- return true;
- -- end Enn;
-
- -- Note on the formal types used (atyp and btyp). If either of the arrays
- -- is of a private type, we use the underlying type, and do an unchecked
- -- conversion of the actual. If either of the arrays has a bound depending
- -- on a discriminant, then we use the base type since otherwise we have an
- -- escaped discriminant in the function.
-
- -- If both arrays are constrained and have the same bounds, we can generate
- -- a loop with an explicit iteration scheme using a 'Range attribute over
- -- the first array.
-
- function Expand_Array_Equality
- (Nod : Node_Id;
- Lhs : Node_Id;
- Rhs : Node_Id;
- Bodies : List_Id;
- Typ : Entity_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (Nod);
- Decls : constant List_Id := New_List;
- Index_List1 : constant List_Id := New_List;
- Index_List2 : constant List_Id := New_List;
-
- Actuals : List_Id;
- Formals : List_Id;
- Func_Name : Entity_Id;
- Func_Body : Node_Id;
-
- A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
- B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
-
- Ltyp : Entity_Id;
- Rtyp : Entity_Id;
- -- The parameter types to be used for the formals
-
- function Arr_Attr
- (Arr : Entity_Id;
- Nam : Name_Id;
- Num : Int) return Node_Id;
- -- This builds the attribute reference Arr'Nam (Expr)
-
- function Component_Equality (Typ : Entity_Id) return Node_Id;
- -- Create one statement to compare corresponding components, designated
- -- by a full set of indices.
-
- function Get_Arg_Type (N : Node_Id) return Entity_Id;
- -- Given one of the arguments, computes the appropriate type to be used
- -- for that argument in the corresponding function formal
-
- function Handle_One_Dimension
- (N : Int;
- Index : Node_Id) return Node_Id;
- -- This procedure returns the following code
- --
- -- declare
- -- Bn : Index_T := B'First (N);
- -- begin
- -- loop
- -- xxx
- -- exit when An = A'Last (N);
- -- An := Index_T'Succ (An)
- -- Bn := Index_T'Succ (Bn)
- -- end loop;
- -- end;
- --
- -- If both indices are constrained and identical, the procedure
- -- returns a simpler loop:
- --
- -- for An in A'Range (N) loop
- -- xxx
- -- end loop
- --
- -- N is the dimension for which we are generating a loop. Index is the
- -- N'th index node, whose Etype is Index_Type_n in the above code. The
- -- xxx statement is either the loop or declare for the next dimension
- -- or if this is the last dimension the comparison of corresponding
- -- components of the arrays.
- --
- -- The actual way the code works is to return the comparison of
- -- corresponding components for the N+1 call. That's neater!
-
- function Test_Empty_Arrays return Node_Id;
- -- This function constructs the test for both arrays being empty
- -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
- -- and then
- -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
-
- function Test_Lengths_Correspond return Node_Id;
- -- This function constructs the test for arrays having different lengths
- -- in at least one index position, in which case the resulting code is:
-
- -- A'length (1) /= B'length (1)
- -- or else
- -- A'length (2) /= B'length (2)
- -- or else
- -- ...
-
- --------------
- -- Arr_Attr --
- --------------
-
- function Arr_Attr
- (Arr : Entity_Id;
- Nam : Name_Id;
- Num : Int) return Node_Id
- is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Nam,
- Prefix => New_Reference_To (Arr, Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, Num)));
- end Arr_Attr;
-
- ------------------------
- -- Component_Equality --
- ------------------------
-
- function Component_Equality (Typ : Entity_Id) return Node_Id is
- Test : Node_Id;
- L, R : Node_Id;
-
- begin
- -- if a(i1...) /= b(j1...) then return false; end if;
-
- L :=
- Make_Indexed_Component (Loc,
- Prefix => Make_Identifier (Loc, Chars (A)),
- Expressions => Index_List1);
-
- R :=
- Make_Indexed_Component (Loc,
- Prefix => Make_Identifier (Loc, Chars (B)),
- Expressions => Index_List2);
-
- Test := Expand_Composite_Equality
- (Nod, Component_Type (Typ), L, R, Decls);
-
- -- If some (sub)component is an unchecked_union, the whole operation
- -- will raise program error.
-
- if Nkind (Test) = N_Raise_Program_Error then
-
- -- This node is going to be inserted at a location where a
- -- statement is expected: clear its Etype so analysis will set
- -- it to the expected Standard_Void_Type.
-
- Set_Etype (Test, Empty);
- return Test;
-
- else
- return
- Make_Implicit_If_Statement (Nod,
- Condition => Make_Op_Not (Loc, Right_Opnd => Test),
- Then_Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Standard_False, Loc))));
- end if;
- end Component_Equality;
-
- ------------------
- -- Get_Arg_Type --
- ------------------
-
- function Get_Arg_Type (N : Node_Id) return Entity_Id is
- T : Entity_Id;
- X : Node_Id;
-
- begin
- T := Etype (N);
-
- if No (T) then
- return Typ;
-
- else
- T := Underlying_Type (T);
-
- X := First_Index (T);
- while Present (X) loop
- if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
- or else
- Denotes_Discriminant (Type_High_Bound (Etype (X)))
- then
- T := Base_Type (T);
- exit;
- end if;
-
- Next_Index (X);
- end loop;
-
- return T;
- end if;
- end Get_Arg_Type;
-
- --------------------------
- -- Handle_One_Dimension --
- ---------------------------
-
- function Handle_One_Dimension
- (N : Int;
- Index : Node_Id) return Node_Id
- is
- Need_Separate_Indexes : constant Boolean :=
- Ltyp /= Rtyp
- or else not Is_Constrained (Ltyp);
- -- If the index types are identical, and we are working with
- -- constrained types, then we can use the same index for both
- -- of the arrays.
-
- An : constant Entity_Id := Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('A'));
-
- Bn : Entity_Id;
- Index_T : Entity_Id;
- Stm_List : List_Id;
- Loop_Stm : Node_Id;
-
- begin
- if N > Number_Dimensions (Ltyp) then
- return Component_Equality (Ltyp);
- end if;
-
- -- Case where we generate a loop
-
- Index_T := Base_Type (Etype (Index));
-
- if Need_Separate_Indexes then
- Bn :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('B'));
- else
- Bn := An;
- end if;
-
- Append (New_Reference_To (An, Loc), Index_List1);
- Append (New_Reference_To (Bn, Loc), Index_List2);
-
- Stm_List := New_List (
- Handle_One_Dimension (N + 1, Next_Index (Index)));
-
- if Need_Separate_Indexes then
-
- -- Generate guard for loop, followed by increments of indices
-
- Append_To (Stm_List,
- Make_Exit_Statement (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => New_Reference_To (An, Loc),
- Right_Opnd => Arr_Attr (A, Name_Last, N))));
-
- Append_To (Stm_List,
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (An, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Index_T, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (New_Reference_To (An, Loc)))));
-
- Append_To (Stm_List,
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (Bn, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Index_T, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (New_Reference_To (Bn, Loc)))));
- end if;
-
- -- If separate indexes, we need a declare block for An and Bn, and a
- -- loop without an iteration scheme.
-
- if Need_Separate_Indexes then
- Loop_Stm :=
- Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
-
- return
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => An,
- Object_Definition => New_Reference_To (Index_T, Loc),
- Expression => Arr_Attr (A, Name_First, N)),
-
- Make_Object_Declaration (Loc,
- Defining_Identifier => Bn,
- Object_Definition => New_Reference_To (Index_T, Loc),
- Expression => Arr_Attr (B, Name_First, N))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (Loop_Stm)));
-
- -- If no separate indexes, return loop statement with explicit
- -- iteration scheme on its own
-
- else
- Loop_Stm :=
- Make_Implicit_Loop_Statement (Nod,
- Statements => Stm_List,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => An,
- Discrete_Subtype_Definition =>
- Arr_Attr (A, Name_Range, N))));
- return Loop_Stm;
- end if;
- end Handle_One_Dimension;
-
- -----------------------
- -- Test_Empty_Arrays --
- -----------------------
-
- function Test_Empty_Arrays return Node_Id is
- Alist : Node_Id;
- Blist : Node_Id;
-
- Atest : Node_Id;
- Btest : Node_Id;
-
- begin
- Alist := Empty;
- Blist := Empty;
- for J in 1 .. Number_Dimensions (Ltyp) loop
- Atest :=
- Make_Op_Eq (Loc,
- Left_Opnd => Arr_Attr (A, Name_Length, J),
- Right_Opnd => Make_Integer_Literal (Loc, 0));
-
- Btest :=
- Make_Op_Eq (Loc,
- Left_Opnd => Arr_Attr (B, Name_Length, J),
- Right_Opnd => Make_Integer_Literal (Loc, 0));
-
- if No (Alist) then
- Alist := Atest;
- Blist := Btest;
-
- else
- Alist :=
- Make_Or_Else (Loc,
- Left_Opnd => Relocate_Node (Alist),
- Right_Opnd => Atest);
-
- Blist :=
- Make_Or_Else (Loc,
- Left_Opnd => Relocate_Node (Blist),
- Right_Opnd => Btest);
- end if;
- end loop;
-
- return
- Make_And_Then (Loc,
- Left_Opnd => Alist,
- Right_Opnd => Blist);
- end Test_Empty_Arrays;
-
- -----------------------------
- -- Test_Lengths_Correspond --
- -----------------------------
-
- function Test_Lengths_Correspond return Node_Id is
- Result : Node_Id;
- Rtest : Node_Id;
-
- begin
- Result := Empty;
- for J in 1 .. Number_Dimensions (Ltyp) loop
- Rtest :=
- Make_Op_Ne (Loc,
- Left_Opnd => Arr_Attr (A, Name_Length, J),
- Right_Opnd => Arr_Attr (B, Name_Length, J));
-
- if No (Result) then
- Result := Rtest;
- else
- Result :=
- Make_Or_Else (Loc,
- Left_Opnd => Relocate_Node (Result),
- Right_Opnd => Rtest);
- end if;
- end loop;
-
- return Result;
- end Test_Lengths_Correspond;
-
- -- Start of processing for Expand_Array_Equality
-
- begin
- Ltyp := Get_Arg_Type (Lhs);
- Rtyp := Get_Arg_Type (Rhs);
-
- -- For now, if the argument types are not the same, go to the base type,
- -- since the code assumes that the formals have the same type. This is
- -- fixable in future ???
-
- if Ltyp /= Rtyp then
- Ltyp := Base_Type (Ltyp);
- Rtyp := Base_Type (Rtyp);
- pragma Assert (Ltyp = Rtyp);
- end if;
-
- -- Build list of formals for function
-
- Formals := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => A,
- Parameter_Type => New_Reference_To (Ltyp, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => B,
- Parameter_Type => New_Reference_To (Rtyp, Loc)));
-
- Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
-
- -- Build statement sequence for function
-
- Func_Body :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Func_Name,
- Parameter_Specifications => Formals,
- Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
-
- Declarations => Decls,
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
-
- Make_Implicit_If_Statement (Nod,
- Condition => Test_Empty_Arrays,
- Then_Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- New_Occurrence_Of (Standard_True, Loc)))),
-
- Make_Implicit_If_Statement (Nod,
- Condition => Test_Lengths_Correspond,
- Then_Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- New_Occurrence_Of (Standard_False, Loc)))),
-
- Handle_One_Dimension (1, First_Index (Ltyp)),
-
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Standard_True, Loc)))));
-
- Set_Has_Completion (Func_Name, True);
- Set_Is_Inlined (Func_Name);
-
- -- If the array type is distinct from the type of the arguments, it
- -- is the full view of a private type. Apply an unchecked conversion
- -- to insure that analysis of the call succeeds.
-
- declare
- L, R : Node_Id;
-
- begin
- L := Lhs;
- R := Rhs;
-
- if No (Etype (Lhs))
- or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
- then
- L := OK_Convert_To (Ltyp, Lhs);
- end if;
-
- if No (Etype (Rhs))
- or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
- then
- R := OK_Convert_To (Rtyp, Rhs);
- end if;
-
- Actuals := New_List (L, R);
- end;
-
- Append_To (Bodies, Func_Body);
-
- return
- Make_Function_Call (Loc,
- Name => New_Reference_To (Func_Name, Loc),
- Parameter_Associations => Actuals);
- end Expand_Array_Equality;
-
- -----------------------------
- -- Expand_Boolean_Operator --
- -----------------------------
-
- -- Note that we first get the actual subtypes of the operands, since we
- -- always want to deal with types that have bounds.
-
- procedure Expand_Boolean_Operator (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- -- Special case of bit packed array where both operands are known to be
- -- properly aligned. In this case we use an efficient run time routine
- -- to carry out the operation (see System.Bit_Ops).
-
- if Is_Bit_Packed_Array (Typ)
- and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
- and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
- then
- Expand_Packed_Boolean_Operator (N);
- return;
- end if;
-
- -- For the normal non-packed case, the general expansion is to build
- -- function for carrying out the comparison (use Make_Boolean_Array_Op)
- -- and then inserting it into the tree. The original operator node is
- -- then rewritten as a call to this function. We also use this in the
- -- packed case if either operand is a possibly unaligned object.
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- L : constant Node_Id := Relocate_Node (Left_Opnd (N));
- R : constant Node_Id := Relocate_Node (Right_Opnd (N));
- Func_Body : Node_Id;
- Func_Name : Entity_Id;
-
- begin
- Convert_To_Actual_Subtype (L);
- Convert_To_Actual_Subtype (R);
- Ensure_Defined (Etype (L), N);
- Ensure_Defined (Etype (R), N);
- Apply_Length_Check (R, Etype (L));
-
- if Nkind (N) = N_Op_Xor then
- Silly_Boolean_Array_Xor_Test (N, Etype (L));
- end if;
-
- if Nkind (Parent (N)) = N_Assignment_Statement
- and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
- then
- Build_Boolean_Array_Proc_Call (Parent (N), L, R);
-
- elsif Nkind (Parent (N)) = N_Op_Not
- and then Nkind (N) = N_Op_And
- and then
- Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
- then
- return;
- else
-
- Func_Body := Make_Boolean_Array_Op (Etype (L), N);
- Func_Name := Defining_Unit_Name (Specification (Func_Body));
- Insert_Action (N, Func_Body);
-
- -- Now rewrite the expression with a call
-
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Reference_To (Func_Name, Loc),
- Parameter_Associations =>
- New_List (
- L,
- Make_Type_Conversion
- (Loc, New_Reference_To (Etype (L), Loc), R))));
-
- Analyze_And_Resolve (N, Typ);
- end if;
- end;
- end Expand_Boolean_Operator;
-
- -------------------------------
- -- Expand_Composite_Equality --
- -------------------------------
-
- -- This function is only called for comparing internal fields of composite
- -- types when these fields are themselves composites. This is a special
- -- case because it is not possible to respect normal Ada visibility rules.
-
- function Expand_Composite_Equality
- (Nod : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id;
- Rhs : Node_Id;
- Bodies : List_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (Nod);
- Full_Type : Entity_Id;
- Prim : Elmt_Id;
- Eq_Op : Entity_Id;
-
- begin
- if Is_Private_Type (Typ) then
- Full_Type := Underlying_Type (Typ);
- else
- Full_Type := Typ;
- end if;
-
- -- Defense against malformed private types with no completion the error
- -- will be diagnosed later by check_completion
-
- if No (Full_Type) then
- return New_Reference_To (Standard_False, Loc);
- end if;
-
- Full_Type := Base_Type (Full_Type);
-
- if Is_Array_Type (Full_Type) then
-
- -- If the operand is an elementary type other than a floating-point
- -- type, then we can simply use the built-in block bitwise equality,
- -- since the predefined equality operators always apply and bitwise
- -- equality is fine for all these cases.
-
- if Is_Elementary_Type (Component_Type (Full_Type))
- and then not Is_Floating_Point_Type (Component_Type (Full_Type))
- then
- return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
-
- -- For composite component types, and floating-point types, use the
- -- expansion. This deals with tagged component types (where we use
- -- the applicable equality routine) and floating-point, (where we
- -- need to worry about negative zeroes), and also the case of any
- -- composite type recursively containing such fields.
-
- else
- return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
- end if;
-
- elsif Is_Tagged_Type (Full_Type) then
-
- -- Call the primitive operation "=" of this type
-
- if Is_Class_Wide_Type (Full_Type) then
- Full_Type := Root_Type (Full_Type);
- end if;
-
- -- If this is derived from an untagged private type completed with a
- -- tagged type, it does not have a full view, so we use the primitive
- -- operations of the private type. This check should no longer be
- -- necessary when these types receive their full views ???
-
- if Is_Private_Type (Typ)
- and then not Is_Tagged_Type (Typ)
- and then not Is_Controlled (Typ)
- and then Is_Derived_Type (Typ)
- and then No (Full_View (Typ))
- then
- Prim := First_Elmt (Collect_Primitive_Operations (Typ));
- else
- Prim := First_Elmt (Primitive_Operations (Full_Type));
- end if;
-
- loop
- Eq_Op := Node (Prim);
- exit when Chars (Eq_Op) = Name_Op_Eq
- and then Etype (First_Formal (Eq_Op)) =
- Etype (Next_Formal (First_Formal (Eq_Op)))
- and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
- Next_Elmt (Prim);
- pragma Assert (Present (Prim));
- end loop;
-
- Eq_Op := Node (Prim);
-
- return
- Make_Function_Call (Loc,
- Name => New_Reference_To (Eq_Op, Loc),
- Parameter_Associations =>
- New_List
- (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
- Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
-
- elsif Is_Record_Type (Full_Type) then
- Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
-
- if Present (Eq_Op) then
- if Etype (First_Formal (Eq_Op)) /= Full_Type then
-
- -- Inherited equality from parent type. Convert the actuals to
- -- match signature of operation.
-
- declare
- T : constant Entity_Id := Etype (First_Formal (Eq_Op));
-
- begin
- return
- Make_Function_Call (Loc,
- Name => New_Reference_To (Eq_Op, Loc),
- Parameter_Associations =>
- New_List (OK_Convert_To (T, Lhs),
- OK_Convert_To (T, Rhs)));
- end;
-
- else
- -- Comparison between Unchecked_Union components
-
- if Is_Unchecked_Union (Full_Type) then
- declare
- Lhs_Type : Node_Id := Full_Type;
- Rhs_Type : Node_Id := Full_Type;
- Lhs_Discr_Val : Node_Id;
- Rhs_Discr_Val : Node_Id;
-
- begin
- -- Lhs subtype
-
- if Nkind (Lhs) = N_Selected_Component then
- Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
- end if;
-
- -- Rhs subtype
-
- if Nkind (Rhs) = N_Selected_Component then
- Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
- end if;
-
- -- Lhs of the composite equality
-
- if Is_Constrained (Lhs_Type) then
-
- -- Since the enclosing record type can never be an
- -- Unchecked_Union (this code is executed for records
- -- that do not have variants), we may reference its
- -- discriminant(s).
-
- if Nkind (Lhs) = N_Selected_Component
- and then Has_Per_Object_Constraint (
- Entity (Selector_Name (Lhs)))
- then
- Lhs_Discr_Val :=
- Make_Selected_Component (Loc,
- Prefix => Prefix (Lhs),
- Selector_Name =>
- New_Copy (
- Get_Discriminant_Value (
- First_Discriminant (Lhs_Type),
- Lhs_Type,
- Stored_Constraint (Lhs_Type))));
-
- else
- Lhs_Discr_Val := New_Copy (
- Get_Discriminant_Value (
- First_Discriminant (Lhs_Type),
- Lhs_Type,
- Stored_Constraint (Lhs_Type)));
-
- end if;
- else
- -- It is not possible to infer the discriminant since
- -- the subtype is not constrained.
-
- return
- Make_Raise_Program_Error (Loc,
- Reason => PE_Unchecked_Union_Restriction);
- end if;
-
- -- Rhs of the composite equality
-
- if Is_Constrained (Rhs_Type) then
- if Nkind (Rhs) = N_Selected_Component
- and then Has_Per_Object_Constraint (
- Entity (Selector_Name (Rhs)))
- then
- Rhs_Discr_Val :=
- Make_Selected_Component (Loc,
- Prefix => Prefix (Rhs),
- Selector_Name =>
- New_Copy (
- Get_Discriminant_Value (
- First_Discriminant (Rhs_Type),
- Rhs_Type,
- Stored_Constraint (Rhs_Type))));
-
- else
- Rhs_Discr_Val := New_Copy (
- Get_Discriminant_Value (
- First_Discriminant (Rhs_Type),
- Rhs_Type,
- Stored_Constraint (Rhs_Type)));
-
- end if;
- else
- return
- Make_Raise_Program_Error (Loc,
- Reason => PE_Unchecked_Union_Restriction);
- end if;
-
- -- Call the TSS equality function with the inferred
- -- discriminant values.
-
- return
- Make_Function_Call (Loc,
- Name => New_Reference_To (Eq_Op, Loc),
- Parameter_Associations => New_List (
- Lhs,
- Rhs,
- Lhs_Discr_Val,
- Rhs_Discr_Val));
- end;
- end if;
-
- -- Shouldn't this be an else, we can't fall through the above
- -- IF, right???
-
- return
- Make_Function_Call (Loc,
- Name => New_Reference_To (Eq_Op, Loc),
- Parameter_Associations => New_List (Lhs, Rhs));
- end if;
-
- else
- return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
- end if;
-
- else
- -- It can be a simple record or the full view of a scalar private
-
- return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
- end if;
- end Expand_Composite_Equality;
-
- ------------------------------
- -- Expand_Concatenate_Other --
- ------------------------------
-
- -- Let n be the number of array operands to be concatenated, Base_Typ their
- -- base type, Ind_Typ their index type, and Arr_Typ the original array type
- -- to which the concatenation operator applies, then the following
- -- subprogram is constructed:
-
- -- [function Cnn (S1 : Base_Typ; ...; Sn : Base_Typ) return Base_Typ is
- -- L : Ind_Typ;
- -- begin
- -- if S1'Length /= 0 then
- -- L := XXX; --> XXX = S1'First if Arr_Typ is unconstrained
- -- XXX = Arr_Typ'First otherwise
- -- elsif S2'Length /= 0 then
- -- L := YYY; --> YYY = S2'First if Arr_Typ is unconstrained
- -- YYY = Arr_Typ'First otherwise
- -- ...
- -- elsif Sn-1'Length /= 0 then
- -- L := ZZZ; --> ZZZ = Sn-1'First if Arr_Typ is unconstrained
- -- ZZZ = Arr_Typ'First otherwise
- -- else
- -- return Sn;
- -- end if;
-
- -- declare
- -- P : Ind_Typ;
- -- H : Ind_Typ :=
- -- Ind_Typ'Val ((((S1'Length - 1) + S2'Length) + ... + Sn'Length)
- -- + Ind_Typ'Pos (L));
- -- R : Base_Typ (L .. H);
- -- begin
- -- if S1'Length /= 0 then
- -- P := S1'First;
- -- loop
- -- R (L) := S1 (P);
- -- L := Ind_Typ'Succ (L);
- -- exit when P = S1'Last;
- -- P := Ind_Typ'Succ (P);
- -- end loop;
- -- end if;
- --
- -- if S2'Length /= 0 then
- -- L := Ind_Typ'Succ (L);
- -- loop
- -- R (L) := S2 (P);
- -- L := Ind_Typ'Succ (L);
- -- exit when P = S2'Last;
- -- P := Ind_Typ'Succ (P);
- -- end loop;
- -- end if;
-
- -- ...
-
- -- if Sn'Length /= 0 then
- -- P := Sn'First;
- -- loop
- -- R (L) := Sn (P);
- -- L := Ind_Typ'Succ (L);
- -- exit when P = Sn'Last;
- -- P := Ind_Typ'Succ (P);
- -- end loop;
- -- end if;
-
- -- return R;
- -- end;
- -- end Cnn;]
-
- procedure Expand_Concatenate_Other (Cnode : Node_Id; Opnds : List_Id) is
- Loc : constant Source_Ptr := Sloc (Cnode);
- Nb_Opnds : constant Nat := List_Length (Opnds);
-
- Arr_Typ : constant Entity_Id := Etype (Entity (Cnode));
- Base_Typ : constant Entity_Id := Base_Type (Etype (Cnode));
- Ind_Typ : constant Entity_Id := Etype (First_Index (Base_Typ));
-
- Func_Id : Node_Id;
- Func_Spec : Node_Id;
- Param_Specs : List_Id;
-
- Func_Body : Node_Id;
- Func_Decls : List_Id;
- Func_Stmts : List_Id;
-
- L_Decl : Node_Id;
-
- If_Stmt : Node_Id;
- Elsif_List : List_Id;
-
- Declare_Block : Node_Id;
- Declare_Decls : List_Id;
- Declare_Stmts : List_Id;
-
- H_Decl : Node_Id;
- I_Decl : Node_Id;
- H_Init : Node_Id;
- P_Decl : Node_Id;
- R_Decl : Node_Id;
- R_Constr : Node_Id;
- R_Range : Node_Id;
-
- Params : List_Id;
- Operand : Node_Id;
-
- function Copy_Into_R_S (I : Nat; Last : Boolean) return List_Id;
- -- Builds the sequence of statement:
- -- P := Si'First;
- -- loop
- -- R (L) := Si (P);
- -- L := Ind_Typ'Succ (L);
- -- exit when P = Si'Last;
- -- P := Ind_Typ'Succ (P);
- -- end loop;
- --
- -- where i is the input parameter I given.
- -- If the flag Last is true, the exit statement is emitted before
- -- incrementing the lower bound, to prevent the creation out of
- -- bound values.
-
- function Init_L (I : Nat) return Node_Id;
- -- Builds the statement:
- -- L := Arr_Typ'First; If Arr_Typ is constrained
- -- L := Si'First; otherwise (where I is the input param given)
-
- function H return Node_Id;
- -- Builds reference to identifier H
-
- function Ind_Val (E : Node_Id) return Node_Id;
- -- Builds expression Ind_Typ'Val (E);
-
- function L return Node_Id;
- -- Builds reference to identifier L
-
- function L_Pos return Node_Id;
- -- Builds expression Integer_Type'(Ind_Typ'Pos (L)). We qualify the
- -- expression to avoid universal_integer computations whenever possible,
- -- in the expression for the upper bound H.
-
- function L_Succ return Node_Id;
- -- Builds expression Ind_Typ'Succ (L)
-
- function One return Node_Id;
- -- Builds integer literal one
-
- function P return Node_Id;
- -- Builds reference to identifier P
-
- function P_Succ return Node_Id;
- -- Builds expression Ind_Typ'Succ (P)
-
- function R return Node_Id;
- -- Builds reference to identifier R
-
- function S (I : Nat) return Node_Id;
- -- Builds reference to identifier Si, where I is the value given
-
- function S_First (I : Nat) return Node_Id;
- -- Builds expression Si'First, where I is the value given
-
- function S_Last (I : Nat) return Node_Id;
- -- Builds expression Si'Last, where I is the value given
-
- function S_Length (I : Nat) return Node_Id;
- -- Builds expression Si'Length, where I is the value given
-
- function S_Length_Test (I : Nat) return Node_Id;
- -- Builds expression Si'Length /= 0, where I is the value given
-
- -------------------
- -- Copy_Into_R_S --
- -------------------
-
- function Copy_Into_R_S (I : Nat; Last : Boolean) return List_Id is
- Stmts : constant List_Id := New_List;
- P_Start : Node_Id;
- Loop_Stmt : Node_Id;
- R_Copy : Node_Id;
- Exit_Stmt : Node_Id;
- L_Inc : Node_Id;
- P_Inc : Node_Id;
-
- begin
- -- First construct the initializations
-
- P_Start := Make_Assignment_Statement (Loc,
- Name => P,
- Expression => S_First (I));
- Append_To (Stmts, P_Start);
-
- -- Then build the loop
-
- R_Copy := Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => R,
- Expressions => New_List (L)),
- Expression => Make_Indexed_Component (Loc,
- Prefix => S (I),
- Expressions => New_List (P)));
-
- L_Inc := Make_Assignment_Statement (Loc,
- Name => L,
- Expression => L_Succ);
-
- Exit_Stmt := Make_Exit_Statement (Loc,
- Condition => Make_Op_Eq (Loc, P, S_Last (I)));
-
- P_Inc := Make_Assignment_Statement (Loc,
- Name => P,
- Expression => P_Succ);
-
- if Last then
- Loop_Stmt :=
- Make_Implicit_Loop_Statement (Cnode,
- Statements => New_List (R_Copy, Exit_Stmt, L_Inc, P_Inc));
- else
- Loop_Stmt :=
- Make_Implicit_Loop_Statement (Cnode,
- Statements => New_List (R_Copy, L_Inc, Exit_Stmt, P_Inc));
- end if;
-
- Append_To (Stmts, Loop_Stmt);
-
- return Stmts;
- end Copy_Into_R_S;
-
- -------
- -- H --
- -------
-
- function H return Node_Id is
- begin
- return Make_Identifier (Loc, Name_uH);
- end H;
-
- -------------
- -- Ind_Val --
- -------------
-
- function Ind_Val (E : Node_Id) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Val,
- Expressions => New_List (E));
- end Ind_Val;
-
- ------------
- -- Init_L --
- ------------
-
- function Init_L (I : Nat) return Node_Id is
- E : Node_Id;
-
- begin
- if Is_Constrained (Arr_Typ) then
- E := Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Arr_Typ, Loc),
- Attribute_Name => Name_First);
-
- else
- E := S_First (I);
- end if;
-
- return Make_Assignment_Statement (Loc, Name => L, Expression => E);
- end Init_L;
-
- -------
- -- L --
- -------
-
- function L return Node_Id is
- begin
- return Make_Identifier (Loc, Name_uL);
- end L;
-
- -----------
- -- L_Pos --
- -----------
-
- function L_Pos return Node_Id is
- Target_Type : Entity_Id;
-
- begin
- -- If the index type is an enumeration type, the computation can be
- -- done in standard integer. Otherwise, choose a large enough integer
- -- type to accommodate the index type computation.
-
- if Is_Enumeration_Type (Ind_Typ)
- or else Root_Type (Ind_Typ) = Standard_Integer
- or else Root_Type (Ind_Typ) = Standard_Short_Integer
- or else Root_Type (Ind_Typ) = Standard_Short_Short_Integer
- or else Is_Modular_Integer_Type (Ind_Typ)
- then
- Target_Type := Standard_Integer;
- else
- Target_Type := Root_Type (Ind_Typ);
- end if;
-
- return
- Make_Qualified_Expression (Loc,
- Subtype_Mark => New_Reference_To (Target_Type, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Pos,
- Expressions => New_List (L)));
- end L_Pos;
-
- ------------
- -- L_Succ --
- ------------
-
- function L_Succ return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (L));
- end L_Succ;
-
- ---------
- -- One --
- ---------
-
- function One return Node_Id is
- begin
- return Make_Integer_Literal (Loc, 1);
- end One;
-
- -------
- -- P --
- -------
-
- function P return Node_Id is
- begin
- return Make_Identifier (Loc, Name_uP);
- end P;
-
- ------------
- -- P_Succ --
- ------------
-
- function P_Succ return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (P));
- end P_Succ;
-
- -------
- -- R --
- -------
-
- function R return Node_Id is
- begin
- return Make_Identifier (Loc, Name_uR);
- end R;
-
- -------
- -- S --
- -------
-
- function S (I : Nat) return Node_Id is
- begin
- return Make_Identifier (Loc, New_External_Name ('S', I));
- end S;
-
- -------------
- -- S_First --
- -------------
-
- function S_First (I : Nat) return Node_Id is
- begin
- return Make_Attribute_Reference (Loc,
- Prefix => S (I),
- Attribute_Name => Name_First);
- end S_First;
-
- ------------
- -- S_Last --
- ------------
-
- function S_Last (I : Nat) return Node_Id is
- begin
- return Make_Attribute_Reference (Loc,
- Prefix => S (I),
- Attribute_Name => Name_Last);
- end S_Last;
-
- --------------
- -- S_Length --
- --------------
-
- function S_Length (I : Nat) return Node_Id is
- begin
- return Make_Attribute_Reference (Loc,
- Prefix => S (I),
- Attribute_Name => Name_Length);
- end S_Length;
-
- -------------------
- -- S_Length_Test --
- -------------------
-
- function S_Length_Test (I : Nat) return Node_Id is
- begin
- return
- Make_Op_Ne (Loc,
- Left_Opnd => S_Length (I),
- Right_Opnd => Make_Integer_Literal (Loc, 0));
- end S_Length_Test;
-
- -- Start of processing for Expand_Concatenate_Other
-
- begin
- -- Construct the parameter specs and the overall function spec
-
- Param_Specs := New_List;
- for I in 1 .. Nb_Opnds loop
- Append_To
- (Param_Specs,
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, New_External_Name ('S', I)),
- Parameter_Type => New_Reference_To (Base_Typ, Loc)));
- end loop;
-
- Func_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
- Func_Spec :=
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Func_Id,
- Parameter_Specifications => Param_Specs,
- Result_Definition => New_Reference_To (Base_Typ, Loc));
-
- -- Construct L's object declaration
-
- L_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_uL),
- Object_Definition => New_Reference_To (Ind_Typ, Loc));
-
- Func_Decls := New_List (L_Decl);
-
- -- Construct the if-then-elsif statements
-
- Elsif_List := New_List;
- for I in 2 .. Nb_Opnds - 1 loop
- Append_To (Elsif_List, Make_Elsif_Part (Loc,
- Condition => S_Length_Test (I),
- Then_Statements => New_List (Init_L (I))));
- end loop;
-
- If_Stmt :=
- Make_Implicit_If_Statement (Cnode,
- Condition => S_Length_Test (1),
- Then_Statements => New_List (Init_L (1)),
- Elsif_Parts => Elsif_List,
- Else_Statements => New_List (Make_Simple_Return_Statement (Loc,
- Expression => S (Nb_Opnds))));
-
- -- Construct the declaration for H
-
- P_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_uP),
- Object_Definition => New_Reference_To (Ind_Typ, Loc));
-
- H_Init := Make_Op_Subtract (Loc, S_Length (1), One);
- for I in 2 .. Nb_Opnds loop
- H_Init := Make_Op_Add (Loc, H_Init, S_Length (I));
- end loop;
-
- -- If the index type is small modular type, we need to perform an
- -- additional check that the upper bound fits in the index type.
- -- Otherwise the computation of the upper bound can wrap around
- -- and yield meaningless results. The constraint check has to be
- -- explicit in the code, because the generated function is compiled
- -- with checks disabled, for efficiency.
-
- if Is_Modular_Integer_Type (Ind_Typ)
- and then Esize (Ind_Typ) < Esize (Standard_Integer)
- then
- I_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_uI),
- Object_Definition => New_Reference_To (Standard_Integer, Loc),
- Expression =>
- Make_Type_Conversion (Loc,
- New_Reference_To (Standard_Integer, Loc),
- Make_Op_Add (Loc, H_Init, L_Pos)));
-
- H_Init :=
- Ind_Val (
- Make_Type_Conversion (Loc,
- New_Reference_To (Ind_Typ, Loc),
- New_Reference_To (Defining_Identifier (I_Decl), Loc)));
-
- -- For other index types, computation is safe
-
- else
- H_Init := Ind_Val (Make_Op_Add (Loc, H_Init, L_Pos));
- end if;
-
- H_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_uH),
- Object_Definition => New_Reference_To (Ind_Typ, Loc),
- Expression => H_Init);
-
- -- Construct the declaration for R
-
- R_Range := Make_Range (Loc, Low_Bound => L, High_Bound => H);
- R_Constr :=
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => New_List (R_Range));
-
- R_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_uR),
- Object_Definition =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Base_Typ, Loc),
- Constraint => R_Constr));
-
- -- Construct the declarations for the declare block
-
- Declare_Decls := New_List (P_Decl, H_Decl, R_Decl);
-
- -- Add constraint check for the modular index case
-
- if Is_Modular_Integer_Type (Ind_Typ)
- and then Esize (Ind_Typ) < Esize (Standard_Integer)
- then
- Insert_After (P_Decl, I_Decl);
-
- Insert_After (I_Decl,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- New_Reference_To (Defining_Identifier (I_Decl), Loc),
- Right_Opnd =>
- Make_Type_Conversion (Loc,
- New_Reference_To (Standard_Integer, Loc),
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Last))),
- Reason => CE_Range_Check_Failed));
- end if;
-
- -- Construct list of statements for the declare block
-
- Declare_Stmts := New_List;
- for I in 1 .. Nb_Opnds loop
- Append_To (Declare_Stmts,
- Make_Implicit_If_Statement (Cnode,
- Condition => S_Length_Test (I),
- Then_Statements => Copy_Into_R_S (I, I = Nb_Opnds)));
- end loop;
-
- Append_To
- (Declare_Stmts, Make_Simple_Return_Statement (Loc, Expression => R));
-
- -- Construct the declare block
-
- Declare_Block := Make_Block_Statement (Loc,
- Declarations => Declare_Decls,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, Declare_Stmts));
-
- -- Construct the list of function statements
-
- Func_Stmts := New_List (If_Stmt, Declare_Block);
-
- -- Construct the function body
-
- Func_Body :=
- Make_Subprogram_Body (Loc,
- Specification => Func_Spec,
- Declarations => Func_Decls,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, Func_Stmts));
-
- -- Insert the newly generated function in the code. This is analyzed
- -- with all checks off, since we have completed all the checks.
-
- -- Note that this does *not* fix the array concatenation bug when the
- -- low bound is Integer'first sibce that bug comes from the pointer
- -- dereferencing an unconstrained array. And there we need a constraint
- -- check to make sure the length of the concatenated array is ok. ???
-
- Insert_Action (Cnode, Func_Body, Suppress => All_Checks);
-
- -- Construct list of arguments for the function call
-
- Params := New_List;
- Operand := First (Opnds);
- for I in 1 .. Nb_Opnds loop
- Append_To (Params, Relocate_Node (Operand));
- Next (Operand);
- end loop;
-
- -- Insert the function call
-
- Rewrite
- (Cnode,
- Make_Function_Call (Loc, New_Reference_To (Func_Id, Loc), Params));
-
- Analyze_And_Resolve (Cnode, Base_Typ);
- Set_Is_Inlined (Func_Id);
- end Expand_Concatenate_Other;
-
- -------------------------------
- -- Expand_Concatenate_String --
- -------------------------------
-
- procedure Expand_Concatenate_String (Cnode : Node_Id; Opnds : List_Id) is
- Loc : constant Source_Ptr := Sloc (Cnode);
- Opnd1 : constant Node_Id := First (Opnds);
- Opnd2 : constant Node_Id := Next (Opnd1);
- Typ1 : constant Entity_Id := Base_Type (Etype (Opnd1));
- Typ2 : constant Entity_Id := Base_Type (Etype (Opnd2));
-
- R : RE_Id;
- -- RE_Id value for function to be called
-
- begin
- -- In all cases, we build a call to a routine giving the list of
- -- arguments as the parameter list to the routine.
-
- case List_Length (Opnds) is
- when 2 =>
- if Typ1 = Standard_Character then
- if Typ2 = Standard_Character then
- R := RE_Str_Concat_CC;
-
- else
- pragma Assert (Typ2 = Standard_String);
- R := RE_Str_Concat_CS;
- end if;
-
- elsif Typ1 = Standard_String then
- if Typ2 = Standard_Character then
- R := RE_Str_Concat_SC;
-
- else
- pragma Assert (Typ2 = Standard_String);
- R := RE_Str_Concat;
- end if;
-
- -- If we have anything other than Standard_Character or
- -- Standard_String, then we must have had a serious error
- -- earlier, so we just abandon the attempt at expansion.
-
- else
- pragma Assert (Serious_Errors_Detected > 0);
- return;
- end if;
-
- when 3 =>
- R := RE_Str_Concat_3;
-
- when 4 =>
- R := RE_Str_Concat_4;
-
- when 5 =>
- R := RE_Str_Concat_5;
-
- when others =>
- R := RE_Null;
- raise Program_Error;
- end case;
-
- -- Now generate the appropriate call
-
- Rewrite (Cnode,
- Make_Function_Call (Sloc (Cnode),
- Name => New_Occurrence_Of (RTE (R), Loc),
- Parameter_Associations => Opnds));
-
- Analyze_And_Resolve (Cnode, Standard_String);
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Concatenate_String;
-
- ------------------------
- -- Expand_N_Allocator --
- ------------------------
-
- procedure Expand_N_Allocator (N : Node_Id) is
- PtrT : constant Entity_Id := Etype (N);
- Dtyp : constant Entity_Id := Designated_Type (PtrT);
- Etyp : constant Entity_Id := Etype (Expression (N));
- Loc : constant Source_Ptr := Sloc (N);
- Desig : Entity_Id;
- Temp : Entity_Id;
- Nod : Node_Id;
-
- procedure Complete_Coextension_Finalization;
- -- Generate finalization calls for all nested coextensions of N. This
- -- routine may allocate list controllers if necessary.
-
- procedure Rewrite_Coextension (N : Node_Id);
- -- Static coextensions have the same lifetime as the entity they
- -- constrain. Such occurrences can be rewritten as aliased objects
- -- and their unrestricted access used instead of the coextension.
-
- ---------------------------------------
- -- Complete_Coextension_Finalization --
- ---------------------------------------
-
- procedure Complete_Coextension_Finalization is
- Coext : Node_Id;
- Coext_Elmt : Elmt_Id;
- Flist : Node_Id;
- Ref : Node_Id;
-
- function Inside_A_Return_Statement (N : Node_Id) return Boolean;
- -- Determine whether node N is part of a return statement
-
- function Needs_Initialization_Call (N : Node_Id) return Boolean;
- -- Determine whether node N is a subtype indicator allocator which
- -- acts a coextension. Such coextensions need initialization.
-
- -------------------------------
- -- Inside_A_Return_Statement --
- -------------------------------
-
- function Inside_A_Return_Statement (N : Node_Id) return Boolean is
- P : Node_Id;
-
- begin
- P := Parent (N);
- while Present (P) loop
- if Nkind_In
- (P, N_Extended_Return_Statement, N_Simple_Return_Statement)
- then
- return True;
-
- -- Stop the traversal when we reach a subprogram body
-
- elsif Nkind (P) = N_Subprogram_Body then
- return False;
- end if;
-
- P := Parent (P);
- end loop;
-
- return False;
- end Inside_A_Return_Statement;
-
- -------------------------------
- -- Needs_Initialization_Call --
- -------------------------------
-
- function Needs_Initialization_Call (N : Node_Id) return Boolean is
- Obj_Decl : Node_Id;
-
- begin
- if Nkind (N) = N_Explicit_Dereference
- and then Nkind (Prefix (N)) = N_Identifier
- and then Nkind (Parent (Entity (Prefix (N)))) =
- N_Object_Declaration
- then
- Obj_Decl := Parent (Entity (Prefix (N)));
-
- return
- Present (Expression (Obj_Decl))
- and then Nkind (Expression (Obj_Decl)) = N_Allocator
- and then Nkind (Expression (Expression (Obj_Decl))) /=
- N_Qualified_Expression;
- end if;
-
- return False;
- end Needs_Initialization_Call;
-
- -- Start of processing for Complete_Coextension_Finalization
-
- begin
- -- When a coextension root is inside a return statement, we need to
- -- use the finalization chain of the function's scope. This does not
- -- apply for controlled named access types because in those cases we
- -- can use the finalization chain of the type itself.
-
- if Inside_A_Return_Statement (N)
- and then
- (Ekind (PtrT) = E_Anonymous_Access_Type
- or else
- (Ekind (PtrT) = E_Access_Type
- and then No (Associated_Final_Chain (PtrT))))
- then
- declare
- Decl : Node_Id;
- Outer_S : Entity_Id;
- S : Entity_Id := Current_Scope;
-
- begin
- while Present (S) and then S /= Standard_Standard loop
- if Ekind (S) = E_Function then
- Outer_S := Scope (S);
-
- -- Retrieve the declaration of the body
-
- Decl := Parent (Parent (
- Corresponding_Body (Parent (Parent (S)))));
- exit;
- end if;
-
- S := Scope (S);
- end loop;
-
- -- Push the scope of the function body since we are inserting
- -- the list before the body, but we are currently in the body
- -- itself. Override the finalization list of PtrT since the
- -- finalization context is now different.
-
- Push_Scope (Outer_S);
- Build_Final_List (Decl, PtrT);
- Pop_Scope;
- end;
-
- -- The root allocator may not be controlled, but it still needs a
- -- finalization list for all nested coextensions.
-
- elsif No (Associated_Final_Chain (PtrT)) then
- Build_Final_List (N, PtrT);
- end if;
-
- Flist :=
- Make_Selected_Component (Loc,
- Prefix =>
- New_Reference_To (Associated_Final_Chain (PtrT), Loc),
- Selector_Name =>
- Make_Identifier (Loc, Name_F));
-
- Coext_Elmt := First_Elmt (Coextensions (N));
- while Present (Coext_Elmt) loop
- Coext := Node (Coext_Elmt);
-
- -- Generate:
- -- typ! (coext.all)
-
- if Nkind (Coext) = N_Identifier then
- Ref :=
- Make_Unchecked_Type_Conversion (Loc,
- Subtype_Mark => New_Reference_To (Etype (Coext), Loc),
- Expression =>
- Make_Explicit_Dereference (Loc,
- Prefix => New_Copy_Tree (Coext)));
- else
- Ref := New_Copy_Tree (Coext);
- end if;
-
- -- No initialization call if not allowed
-
- Check_Restriction (No_Default_Initialization, N);
-
- if not Restriction_Active (No_Default_Initialization) then
-
- -- Generate:
- -- initialize (Ref)
- -- attach_to_final_list (Ref, Flist, 2)
-
- if Needs_Initialization_Call (Coext) then
- Insert_Actions (N,
- Make_Init_Call (
- Ref => Ref,
- Typ => Etype (Coext),
- Flist_Ref => Flist,
- With_Attach => Make_Integer_Literal (Loc, Uint_2)));
-
- -- Generate:
- -- attach_to_final_list (Ref, Flist, 2)
-
- else
- Insert_Action (N,
- Make_Attach_Call (
- Obj_Ref => Ref,
- Flist_Ref => New_Copy_Tree (Flist),
- With_Attach => Make_Integer_Literal (Loc, Uint_2)));
- end if;
- end if;
-
- Next_Elmt (Coext_Elmt);
- end loop;
- end Complete_Coextension_Finalization;
-
- -------------------------
- -- Rewrite_Coextension --
- -------------------------
-
- procedure Rewrite_Coextension (N : Node_Id) is
- Temp : constant Node_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('C'));
-
- -- Generate:
- -- Cnn : aliased Etyp;
-
- Decl : constant Node_Id :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Aliased_Present => True,
- Object_Definition =>
- New_Occurrence_Of (Etyp, Loc));
- Nod : Node_Id;
-
- begin
- if Nkind (Expression (N)) = N_Qualified_Expression then
- Set_Expression (Decl, Expression (Expression (N)));
- end if;
-
- -- Find the proper insertion node for the declaration
-
- Nod := Parent (N);
- while Present (Nod) loop
- exit when Nkind (Nod) in N_Statement_Other_Than_Procedure_Call
- or else Nkind (Nod) = N_Procedure_Call_Statement
- or else Nkind (Nod) in N_Declaration;
- Nod := Parent (Nod);
- end loop;
-
- Insert_Before (Nod, Decl);
- Analyze (Decl);
-
- Rewrite (N,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Temp, Loc),
- Attribute_Name => Name_Unrestricted_Access));
-
- Analyze_And_Resolve (N, PtrT);
- end Rewrite_Coextension;
-
- -- Start of processing for Expand_N_Allocator
-
- begin
- -- RM E.2.3(22). We enforce that the expected type of an allocator
- -- shall not be a remote access-to-class-wide-limited-private type
-
- -- Why is this being done at expansion time, seems clearly wrong ???
-
- Validate_Remote_Access_To_Class_Wide_Type (N);
-
- -- Set the Storage Pool
-
- Set_Storage_Pool (N, Associated_Storage_Pool (Root_Type (PtrT)));
-
- if Present (Storage_Pool (N)) then
- if Is_RTE (Storage_Pool (N), RE_SS_Pool) then
- if VM_Target = No_VM then
- Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
- end if;
-
- elsif Is_Class_Wide_Type (Etype (Storage_Pool (N))) then
- Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
-
- else
- Set_Procedure_To_Call (N,
- Find_Prim_Op (Etype (Storage_Pool (N)), Name_Allocate));
- end if;
- end if;
-
- -- Under certain circumstances we can replace an allocator by an access
- -- to statically allocated storage. The conditions, as noted in AARM
- -- 3.10 (10c) are as follows:
-
- -- Size and initial value is known at compile time
- -- Access type is access-to-constant
-
- -- The allocator is not part of a constraint on a record component,
- -- because in that case the inserted actions are delayed until the
- -- record declaration is fully analyzed, which is too late for the
- -- analysis of the rewritten allocator.
-
- if Is_Access_Constant (PtrT)
- and then Nkind (Expression (N)) = N_Qualified_Expression
- and then Compile_Time_Known_Value (Expression (Expression (N)))
- and then Size_Known_At_Compile_Time (Etype (Expression
- (Expression (N))))
- and then not Is_Record_Type (Current_Scope)
- then
- -- Here we can do the optimization. For the allocator
-
- -- new x'(y)
-
- -- We insert an object declaration
-
- -- Tnn : aliased x := y;
-
- -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
- -- marked as requiring static allocation.
-
- Temp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
-
- Desig := Subtype_Mark (Expression (N));
-
- -- If context is constrained, use constrained subtype directly,
- -- so that the constant is not labelled as having a nominally
- -- unconstrained subtype.
-
- if Entity (Desig) = Base_Type (Dtyp) then
- Desig := New_Occurrence_Of (Dtyp, Loc);
- end if;
-
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Aliased_Present => True,
- Constant_Present => Is_Access_Constant (PtrT),
- Object_Definition => Desig,
- Expression => Expression (Expression (N))));
-
- Rewrite (N,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Temp, Loc),
- Attribute_Name => Name_Unrestricted_Access));
-
- Analyze_And_Resolve (N, PtrT);
-
- -- We set the variable as statically allocated, since we don't want
- -- it going on the stack of the current procedure!
-
- Set_Is_Statically_Allocated (Temp);
- return;
- end if;
-
- -- Same if the allocator is an access discriminant for a local object:
- -- instead of an allocator we create a local value and constrain the
- -- the enclosing object with the corresponding access attribute.
-
- if Is_Static_Coextension (N) then
- Rewrite_Coextension (N);
- return;
- end if;
-
- -- The current allocator creates an object which may contain nested
- -- coextensions. Use the current allocator's finalization list to
- -- generate finalization call for all nested coextensions.
-
- if Is_Coextension_Root (N) then
- Complete_Coextension_Finalization;
- end if;
-
- -- Handle case of qualified expression (other than optimization above)
-
- if Nkind (Expression (N)) = N_Qualified_Expression then
- Expand_Allocator_Expression (N);
- return;
- end if;
-
- -- If the allocator is for a type which requires initialization, and
- -- there is no initial value (i.e. operand is a subtype indication
- -- rather than a qualified expression), then we must generate a call to
- -- the initialization routine using an expressions action node:
-
- -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
-
- -- Here ptr_T is the pointer type for the allocator, and T is the
- -- subtype of the allocator. A special case arises if the designated
- -- type of the access type is a task or contains tasks. In this case
- -- the call to Init (Temp.all ...) is replaced by code that ensures
- -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
- -- for details). In addition, if the type T is a task T, then the
- -- first argument to Init must be converted to the task record type.
-
- declare
- T : constant Entity_Id := Entity (Expression (N));
- Init : Entity_Id;
- Arg1 : Node_Id;
- Args : List_Id;
- Decls : List_Id;
- Decl : Node_Id;
- Discr : Elmt_Id;
- Flist : Node_Id;
- Temp_Decl : Node_Id;
- Temp_Type : Entity_Id;
- Attach_Level : Uint;
-
- begin
- if No_Initialization (N) then
- null;
-
- -- Case of no initialization procedure present
-
- elsif not Has_Non_Null_Base_Init_Proc (T) then
-
- -- Case of simple initialization required
-
- if Needs_Simple_Initialization (T) then
- Check_Restriction (No_Default_Initialization, N);
- Rewrite (Expression (N),
- Make_Qualified_Expression (Loc,
- Subtype_Mark => New_Occurrence_Of (T, Loc),
- Expression => Get_Simple_Init_Val (T, N)));
-
- Analyze_And_Resolve (Expression (Expression (N)), T);
- Analyze_And_Resolve (Expression (N), T);
- Set_Paren_Count (Expression (Expression (N)), 1);
- Expand_N_Allocator (N);
-
- -- No initialization required
-
- else
- null;
- end if;
-
- -- Case of initialization procedure present, must be called
-
- else
- Check_Restriction (No_Default_Initialization, N);
-
- if not Restriction_Active (No_Default_Initialization) then
- Init := Base_Init_Proc (T);
- Nod := N;
- Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
-
- -- Construct argument list for the initialization routine call
-
- Arg1 :=
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Temp, Loc));
- Set_Assignment_OK (Arg1);
- Temp_Type := PtrT;
-
- -- The initialization procedure expects a specific type. if the
- -- context is access to class wide, indicate that the object
- -- being allocated has the right specific type.
-
- if Is_Class_Wide_Type (Dtyp) then
- Arg1 := Unchecked_Convert_To (T, Arg1);
- end if;
-
- -- If designated type is a concurrent type or if it is private
- -- type whose definition is a concurrent type, the first
- -- argument in the Init routine has to be unchecked conversion
- -- to the corresponding record type. If the designated type is
- -- a derived type, we also convert the argument to its root
- -- type.
-
- if Is_Concurrent_Type (T) then
- Arg1 :=
- Unchecked_Convert_To (Corresponding_Record_Type (T), Arg1);
-
- elsif Is_Private_Type (T)
- and then Present (Full_View (T))
- and then Is_Concurrent_Type (Full_View (T))
- then
- Arg1 :=
- Unchecked_Convert_To
- (Corresponding_Record_Type (Full_View (T)), Arg1);
-
- elsif Etype (First_Formal (Init)) /= Base_Type (T) then
- declare
- Ftyp : constant Entity_Id := Etype (First_Formal (Init));
- begin
- Arg1 := OK_Convert_To (Etype (Ftyp), Arg1);
- Set_Etype (Arg1, Ftyp);
- end;
- end if;
-
- Args := New_List (Arg1);
-
- -- For the task case, pass the Master_Id of the access type as
- -- the value of the _Master parameter, and _Chain as the value
- -- of the _Chain parameter (_Chain will be defined as part of
- -- the generated code for the allocator).
-
- -- In Ada 2005, the context may be a function that returns an
- -- anonymous access type. In that case the Master_Id has been
- -- created when expanding the function declaration.
-
- if Has_Task (T) then
- if No (Master_Id (Base_Type (PtrT))) then
-
- -- If we have a non-library level task with restriction
- -- No_Task_Hierarchy set, then no point in expanding.
-
- if not Is_Library_Level_Entity (T)
- and then Restriction_Active (No_Task_Hierarchy)
- then
- return;
- end if;
-
- -- The designated type was an incomplete type, and the
- -- access type did not get expanded. Salvage it now.
-
- pragma Assert (Present (Parent (Base_Type (PtrT))));
- Expand_N_Full_Type_Declaration
- (Parent (Base_Type (PtrT)));
- end if;
-
- -- If the context of the allocator is a declaration or an
- -- assignment, we can generate a meaningful image for it,
- -- even though subsequent assignments might remove the
- -- connection between task and entity. We build this image
- -- when the left-hand side is a simple variable, a simple
- -- indexed assignment or a simple selected component.
-
- if Nkind (Parent (N)) = N_Assignment_Statement then
- declare
- Nam : constant Node_Id := Name (Parent (N));
-
- begin
- if Is_Entity_Name (Nam) then
- Decls :=
- Build_Task_Image_Decls
- (Loc,
- New_Occurrence_Of
- (Entity (Nam), Sloc (Nam)), T);
-
- elsif Nkind_In
- (Nam, N_Indexed_Component, N_Selected_Component)
- and then Is_Entity_Name (Prefix (Nam))
- then
- Decls :=
- Build_Task_Image_Decls
- (Loc, Nam, Etype (Prefix (Nam)));
- else
- Decls := Build_Task_Image_Decls (Loc, T, T);
- end if;
- end;
-
- elsif Nkind (Parent (N)) = N_Object_Declaration then
- Decls :=
- Build_Task_Image_Decls
- (Loc, Defining_Identifier (Parent (N)), T);
-
- else
- Decls := Build_Task_Image_Decls (Loc, T, T);
- end if;
-
- Append_To (Args,
- New_Reference_To
- (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
- Append_To (Args, Make_Identifier (Loc, Name_uChain));
-
- Decl := Last (Decls);
- Append_To (Args,
- New_Occurrence_Of (Defining_Identifier (Decl), Loc));
-
- -- Has_Task is false, Decls not used
-
- else
- Decls := No_List;
- end if;
-
- -- Add discriminants if discriminated type
-
- declare
- Dis : Boolean := False;
- Typ : Entity_Id;
-
- begin
- if Has_Discriminants (T) then
- Dis := True;
- Typ := T;
-
- elsif Is_Private_Type (T)
- and then Present (Full_View (T))
- and then Has_Discriminants (Full_View (T))
- then
- Dis := True;
- Typ := Full_View (T);
- end if;
-
- if Dis then
-
- -- If the allocated object will be constrained by the
- -- default values for discriminants, then build a subtype
- -- with those defaults, and change the allocated subtype
- -- to that. Note that this happens in fewer cases in Ada
- -- 2005 (AI-363).
-
- if not Is_Constrained (Typ)
- and then Present (Discriminant_Default_Value
- (First_Discriminant (Typ)))
- and then (Ada_Version < Ada_05
- or else
- not Has_Constrained_Partial_View (Typ))
- then
- Typ := Build_Default_Subtype (Typ, N);
- Set_Expression (N, New_Reference_To (Typ, Loc));
- end if;
-
- Discr := First_Elmt (Discriminant_Constraint (Typ));
- while Present (Discr) loop
- Nod := Node (Discr);
- Append (New_Copy_Tree (Node (Discr)), Args);
-
- -- AI-416: when the discriminant constraint is an
- -- anonymous access type make sure an accessibility
- -- check is inserted if necessary (3.10.2(22.q/2))
-
- if Ada_Version >= Ada_05
- and then
- Ekind (Etype (Nod)) = E_Anonymous_Access_Type
- then
- Apply_Accessibility_Check
- (Nod, Typ, Insert_Node => Nod);
- end if;
-
- Next_Elmt (Discr);
- end loop;
- end if;
- end;
-
- -- We set the allocator as analyzed so that when we analyze the
- -- expression actions node, we do not get an unwanted recursive
- -- expansion of the allocator expression.
-
- Set_Analyzed (N, True);
- Nod := Relocate_Node (N);
-
- -- Here is the transformation:
- -- input: new T
- -- output: Temp : constant ptr_T := new T;
- -- Init (Temp.all, ...);
- -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
- -- <CTRL> Initialize (Finalizable (Temp.all));
-
- -- Here ptr_T is the pointer type for the allocator, and is the
- -- subtype of the allocator.
-
- Temp_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Constant_Present => True,
- Object_Definition => New_Reference_To (Temp_Type, Loc),
- Expression => Nod);
-
- Set_Assignment_OK (Temp_Decl);
- Insert_Action (N, Temp_Decl, Suppress => All_Checks);
-
- -- If the designated type is a task type or contains tasks,
- -- create block to activate created tasks, and insert
- -- declaration for Task_Image variable ahead of call.
-
- if Has_Task (T) then
- declare
- L : constant List_Id := New_List;
- Blk : Node_Id;
- begin
- Build_Task_Allocate_Block (L, Nod, Args);
- Blk := Last (L);
- Insert_List_Before (First (Declarations (Blk)), Decls);
- Insert_Actions (N, L);
- end;
-
- else
- Insert_Action (N,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Init, Loc),
- Parameter_Associations => Args));
- end if;
-
- if Needs_Finalization (T) then
-
- -- Postpone the generation of a finalization call for the
- -- current allocator if it acts as a coextension.
-
- if Is_Dynamic_Coextension (N) then
- if No (Coextensions (N)) then
- Set_Coextensions (N, New_Elmt_List);
- end if;
-
- Append_Elmt (New_Copy_Tree (Arg1), Coextensions (N));
-
- else
- Flist :=
- Get_Allocator_Final_List (N, Base_Type (T), PtrT);
-
- -- Anonymous access types created for access parameters
- -- are attached to an explicitly constructed controller,
- -- which ensures that they can be finalized properly,
- -- even if their deallocation might not happen. The list
- -- associated with the controller is doubly-linked. For
- -- other anonymous access types, the object may end up
- -- on the global final list which is singly-linked.
- -- Work needed for access discriminants in Ada 2005 ???
-
- if Ekind (PtrT) = E_Anonymous_Access_Type
- and then
- Nkind (Associated_Node_For_Itype (PtrT))
- not in N_Subprogram_Specification
- then
- Attach_Level := Uint_1;
- else
- Attach_Level := Uint_2;
- end if;
-
- Insert_Actions (N,
- Make_Init_Call (
- Ref => New_Copy_Tree (Arg1),
- Typ => T,
- Flist_Ref => Flist,
- With_Attach => Make_Integer_Literal (Loc,
- Intval => Attach_Level)));
- end if;
- end if;
-
- Rewrite (N, New_Reference_To (Temp, Loc));
- Analyze_And_Resolve (N, PtrT);
- end if;
- end if;
- end;
-
- -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
- -- object that has been rewritten as a reference, we displace "this"
- -- to reference properly its secondary dispatch table.
-
- if Nkind (N) = N_Identifier
- and then Is_Interface (Dtyp)
- then
- Displace_Allocator_Pointer (N);
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Allocator;
-
- -----------------------
- -- Expand_N_And_Then --
- -----------------------
-
- -- Expand into conditional expression if Actions present, and also deal
- -- with optimizing case of arguments being True or False.
-
- procedure Expand_N_And_Then (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Actlist : List_Id;
-
- begin
- -- Deal with non-standard booleans
-
- if Is_Boolean_Type (Typ) then
- Adjust_Condition (Left);
- Adjust_Condition (Right);
- Set_Etype (N, Standard_Boolean);
- end if;
-
- -- Check for cases where left argument is known to be True or False
-
- if Compile_Time_Known_Value (Left) then
-
- -- If left argument is True, change (True and then Right) to Right.
- -- Any actions associated with Right will be executed unconditionally
- -- and can thus be inserted into the tree unconditionally.
-
- if Expr_Value_E (Left) = Standard_True then
- if Present (Actions (N)) then
- Insert_Actions (N, Actions (N));
- end if;
-
- Rewrite (N, Right);
-
- -- If left argument is False, change (False and then Right) to False.
- -- In this case we can forget the actions associated with Right,
- -- since they will never be executed.
-
- else pragma Assert (Expr_Value_E (Left) = Standard_False);
- Kill_Dead_Code (Right);
- Kill_Dead_Code (Actions (N));
- Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
- end if;
-
- Adjust_Result_Type (N, Typ);
- return;
- end if;
-
- -- If Actions are present, we expand
-
- -- left and then right
-
- -- into
-
- -- if left then right else false end
-
- -- with the actions becoming the Then_Actions of the conditional
- -- expression. This conditional expression is then further expanded
- -- (and will eventually disappear)
-
- if Present (Actions (N)) then
- Actlist := Actions (N);
- Rewrite (N,
- Make_Conditional_Expression (Loc,
- Expressions => New_List (
- Left,
- Right,
- New_Occurrence_Of (Standard_False, Loc))));
-
- Set_Then_Actions (N, Actlist);
- Analyze_And_Resolve (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- return;
- end if;
-
- -- No actions present, check for cases of right argument True/False
-
- if Compile_Time_Known_Value (Right) then
-
- -- Change (Left and then True) to Left. Note that we know there are
- -- no actions associated with the True operand, since we just checked
- -- for this case above.
-
- if Expr_Value_E (Right) = Standard_True then
- Rewrite (N, Left);
-
- -- Change (Left and then False) to False, making sure to preserve any
- -- side effects associated with the Left operand.
-
- else pragma Assert (Expr_Value_E (Right) = Standard_False);
- Remove_Side_Effects (Left);
- Rewrite
- (N, New_Occurrence_Of (Standard_False, Loc));
- end if;
- end if;
-
- Adjust_Result_Type (N, Typ);
- end Expand_N_And_Then;
-
- -------------------------------------
- -- Expand_N_Conditional_Expression --
- -------------------------------------
-
- -- Expand into expression actions if then/else actions present
-
- procedure Expand_N_Conditional_Expression (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Cond : constant Node_Id := First (Expressions (N));
- Thenx : constant Node_Id := Next (Cond);
- Elsex : constant Node_Id := Next (Thenx);
- Typ : constant Entity_Id := Etype (N);
- Cnn : Entity_Id;
- New_If : Node_Id;
-
- begin
- -- If either then or else actions are present, then given:
-
- -- if cond then then-expr else else-expr end
-
- -- we insert the following sequence of actions (using Insert_Actions):
-
- -- Cnn : typ;
- -- if cond then
- -- <<then actions>>
- -- Cnn := then-expr;
- -- else
- -- <<else actions>>
- -- Cnn := else-expr
- -- end if;
-
- -- and replace the conditional expression by a reference to Cnn
-
- if Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
- Cnn := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
-
- New_If :=
- Make_Implicit_If_Statement (N,
- Condition => Relocate_Node (Cond),
-
- Then_Statements => New_List (
- Make_Assignment_Statement (Sloc (Thenx),
- Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
- Expression => Relocate_Node (Thenx))),
-
- Else_Statements => New_List (
- Make_Assignment_Statement (Sloc (Elsex),
- Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
- Expression => Relocate_Node (Elsex))));
-
- Set_Assignment_OK (Name (First (Then_Statements (New_If))));
- Set_Assignment_OK (Name (First (Else_Statements (New_If))));
-
- if Present (Then_Actions (N)) then
- Insert_List_Before
- (First (Then_Statements (New_If)), Then_Actions (N));
- end if;
-
- if Present (Else_Actions (N)) then
- Insert_List_Before
- (First (Else_Statements (New_If)), Else_Actions (N));
- end if;
-
- Rewrite (N, New_Occurrence_Of (Cnn, Loc));
-
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Cnn,
- Object_Definition => New_Occurrence_Of (Typ, Loc)));
-
- Insert_Action (N, New_If);
- Analyze_And_Resolve (N, Typ);
- end if;
- end Expand_N_Conditional_Expression;
-
- -----------------------------------
- -- Expand_N_Explicit_Dereference --
- -----------------------------------
-
- procedure Expand_N_Explicit_Dereference (N : Node_Id) is
- begin
- -- Insert explicit dereference call for the checked storage pool case
-
- Insert_Dereference_Action (Prefix (N));
- end Expand_N_Explicit_Dereference;
-
- -----------------
- -- Expand_N_In --
- -----------------
-
- procedure Expand_N_In (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Rtyp : constant Entity_Id := Etype (N);
- Lop : constant Node_Id := Left_Opnd (N);
- Rop : constant Node_Id := Right_Opnd (N);
- Static : constant Boolean := Is_OK_Static_Expression (N);
-
- procedure Substitute_Valid_Check;
- -- Replaces node N by Lop'Valid. This is done when we have an explicit
- -- test for the left operand being in range of its subtype.
-
- ----------------------------
- -- Substitute_Valid_Check --
- ----------------------------
-
- procedure Substitute_Valid_Check is
- begin
- Rewrite (N,
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Lop),
- Attribute_Name => Name_Valid));
-
- Analyze_And_Resolve (N, Rtyp);
-
- Error_Msg_N ("?explicit membership test may be optimized away", N);
- Error_Msg_N ("\?use ''Valid attribute instead", N);
- return;
- end Substitute_Valid_Check;
-
- -- Start of processing for Expand_N_In
-
- begin
- -- Check case of explicit test for an expression in range of its
- -- subtype. This is suspicious usage and we replace it with a 'Valid
- -- test and give a warning.
-
- if Is_Scalar_Type (Etype (Lop))
- and then Nkind (Rop) in N_Has_Entity
- and then Etype (Lop) = Entity (Rop)
- and then Comes_From_Source (N)
- and then VM_Target = No_VM
- then
- Substitute_Valid_Check;
- return;
- end if;
-
- -- Do validity check on operands
-
- if Validity_Checks_On and Validity_Check_Operands then
- Ensure_Valid (Left_Opnd (N));
- Validity_Check_Range (Right_Opnd (N));
- end if;
-
- -- Case of explicit range
-
- if Nkind (Rop) = N_Range then
- declare
- Lo : constant Node_Id := Low_Bound (Rop);
- Hi : constant Node_Id := High_Bound (Rop);
-
- Ltyp : constant Entity_Id := Etype (Lop);
-
- Lo_Orig : constant Node_Id := Original_Node (Lo);
- Hi_Orig : constant Node_Id := Original_Node (Hi);
-
- Lcheck : constant Compare_Result :=
- Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
- Ucheck : constant Compare_Result :=
- Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
-
- Warn1 : constant Boolean :=
- Constant_Condition_Warnings
- and then Comes_From_Source (N);
- -- This must be true for any of the optimization warnings, we
- -- clearly want to give them only for source with the flag on.
-
- Warn2 : constant Boolean :=
- Warn1
- and then Nkind (Original_Node (Rop)) = N_Range
- and then Is_Integer_Type (Etype (Lo));
- -- For the case where only one bound warning is elided, we also
- -- insist on an explicit range and an integer type. The reason is
- -- that the use of enumeration ranges including an end point is
- -- common, as is the use of a subtype name, one of whose bounds
- -- is the same as the type of the expression.
-
- begin
- -- If test is explicit x'first .. x'last, replace by valid check
-
- if Is_Scalar_Type (Ltyp)
- and then Nkind (Lo_Orig) = N_Attribute_Reference
- and then Attribute_Name (Lo_Orig) = Name_First
- and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
- and then Entity (Prefix (Lo_Orig)) = Ltyp
- and then Nkind (Hi_Orig) = N_Attribute_Reference
- and then Attribute_Name (Hi_Orig) = Name_Last
- and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
- and then Entity (Prefix (Hi_Orig)) = Ltyp
- and then Comes_From_Source (N)
- and then VM_Target = No_VM
- then
- Substitute_Valid_Check;
- return;
- end if;
-
- -- If bounds of type are known at compile time, and the end points
- -- are known at compile time and identical, this is another case
- -- for substituting a valid test. We only do this for discrete
- -- types, since it won't arise in practice for float types.
-
- if Comes_From_Source (N)
- and then Is_Discrete_Type (Ltyp)
- and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
- and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
- and then Compile_Time_Known_Value (Lo)
- and then Compile_Time_Known_Value (Hi)
- and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
- and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
-
- -- Kill warnings in instances, since they may be cases where we
- -- have a test in the generic that makes sense with some types
- -- and not with other types.
-
- and then not In_Instance
- then
- Substitute_Valid_Check;
- return;
- end if;
-
- -- If we have an explicit range, do a bit of optimization based
- -- on range analysis (we may be able to kill one or both checks).
-
- -- If either check is known to fail, replace result by False since
- -- the other check does not matter. Preserve the static flag for
- -- legality checks, because we are constant-folding beyond RM 4.9.
-
- if Lcheck = LT or else Ucheck = GT then
- if Warn1 and then not In_Instance then
- Error_Msg_N ("?range test optimized away", N);
- Error_Msg_N ("\?value is known to be out of range", N);
- end if;
-
- Rewrite (N,
- New_Reference_To (Standard_False, Loc));
- Analyze_And_Resolve (N, Rtyp);
- Set_Is_Static_Expression (N, Static);
-
- return;
-
- -- If both checks are known to succeed, replace result by True,
- -- since we know we are in range.
-
- elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
- if Warn1 and then not In_Instance then
- Error_Msg_N ("?range test optimized away", N);
- Error_Msg_N ("\?value is known to be in range", N);
- end if;
-
- Rewrite (N,
- New_Reference_To (Standard_True, Loc));
- Analyze_And_Resolve (N, Rtyp);
- Set_Is_Static_Expression (N, Static);
-
- return;
-
- -- If lower bound check succeeds and upper bound check is not
- -- known to succeed or fail, then replace the range check with
- -- a comparison against the upper bound.
-
- elsif Lcheck in Compare_GE then
- if Warn2 and then not In_Instance then
- Error_Msg_N ("?lower bound test optimized away", Lo);
- Error_Msg_N ("\?value is known to be in range", Lo);
- end if;
-
- Rewrite (N,
- Make_Op_Le (Loc,
- Left_Opnd => Lop,
- Right_Opnd => High_Bound (Rop)));
- Analyze_And_Resolve (N, Rtyp);
-
- return;
-
- -- If upper bound check succeeds and lower bound check is not
- -- known to succeed or fail, then replace the range check with
- -- a comparison against the lower bound.
-
- elsif Ucheck in Compare_LE then
- if Warn2 and then not In_Instance then
- Error_Msg_N ("?upper bound test optimized away", Hi);
- Error_Msg_N ("\?value is known to be in range", Hi);
- end if;
-
- Rewrite (N,
- Make_Op_Ge (Loc,
- Left_Opnd => Lop,
- Right_Opnd => Low_Bound (Rop)));
- Analyze_And_Resolve (N, Rtyp);
-
- return;
- end if;
- end;
-
- -- For all other cases of an explicit range, nothing to be done
-
- return;
-
- -- Here right operand is a subtype mark
-
- else
- declare
- Typ : Entity_Id := Etype (Rop);
- Is_Acc : constant Boolean := Is_Access_Type (Typ);
- Obj : Node_Id := Lop;
- Cond : Node_Id := Empty;
-
- begin
- Remove_Side_Effects (Obj);
-
- -- For tagged type, do tagged membership operation
-
- if Is_Tagged_Type (Typ) then
-
- -- No expansion will be performed when VM_Target, as the VM
- -- back-ends will handle the membership tests directly (tags
- -- are not explicitly represented in Java objects, so the
- -- normal tagged membership expansion is not what we want).
-
- if VM_Target = No_VM then
- Rewrite (N, Tagged_Membership (N));
- Analyze_And_Resolve (N, Rtyp);
- end if;
-
- return;
-
- -- If type is scalar type, rewrite as x in t'first .. t'last.
- -- This reason we do this is that the bounds may have the wrong
- -- type if they come from the original type definition.
-
- elsif Is_Scalar_Type (Typ) then
- Rewrite (Rop,
- Make_Range (Loc,
- Low_Bound =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_First,
- Prefix => New_Reference_To (Typ, Loc)),
-
- High_Bound =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Last,
- Prefix => New_Reference_To (Typ, Loc))));
- Analyze_And_Resolve (N, Rtyp);
- return;
-
- -- Ada 2005 (AI-216): Program_Error is raised when evaluating
- -- a membership test if the subtype mark denotes a constrained
- -- Unchecked_Union subtype and the expression lacks inferable
- -- discriminants.
-
- elsif Is_Unchecked_Union (Base_Type (Typ))
- and then Is_Constrained (Typ)
- and then not Has_Inferable_Discriminants (Lop)
- then
- Insert_Action (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Unchecked_Union_Restriction));
-
- -- Prevent Gigi from generating incorrect code by rewriting
- -- the test as a standard False.
-
- Rewrite (N,
- New_Occurrence_Of (Standard_False, Loc));
-
- return;
- end if;
-
- -- Here we have a non-scalar type
-
- if Is_Acc then
- Typ := Designated_Type (Typ);
- end if;
-
- if not Is_Constrained (Typ) then
- Rewrite (N,
- New_Reference_To (Standard_True, Loc));
- Analyze_And_Resolve (N, Rtyp);
-
- -- For the constrained array case, we have to check the subscripts
- -- for an exact match if the lengths are non-zero (the lengths
- -- must match in any case).
-
- elsif Is_Array_Type (Typ) then
-
- Check_Subscripts : declare
- function Construct_Attribute_Reference
- (E : Node_Id;
- Nam : Name_Id;
- Dim : Nat) return Node_Id;
- -- Build attribute reference E'Nam(Dim)
-
- -----------------------------------
- -- Construct_Attribute_Reference --
- -----------------------------------
-
- function Construct_Attribute_Reference
- (E : Node_Id;
- Nam : Name_Id;
- Dim : Nat) return Node_Id
- is
- begin
- return
- Make_Attribute_Reference (Loc,
- Prefix => E,
- Attribute_Name => Nam,
- Expressions => New_List (
- Make_Integer_Literal (Loc, Dim)));
- end Construct_Attribute_Reference;
-
- -- Start processing for Check_Subscripts
-
- begin
- for J in 1 .. Number_Dimensions (Typ) loop
- Evolve_And_Then (Cond,
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Construct_Attribute_Reference
- (Duplicate_Subexpr_No_Checks (Obj),
- Name_First, J),
- Right_Opnd =>
- Construct_Attribute_Reference
- (New_Occurrence_Of (Typ, Loc), Name_First, J)));
-
- Evolve_And_Then (Cond,
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Construct_Attribute_Reference
- (Duplicate_Subexpr_No_Checks (Obj),
- Name_Last, J),
- Right_Opnd =>
- Construct_Attribute_Reference
- (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
- end loop;
-
- if Is_Acc then
- Cond :=
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd => Obj,
- Right_Opnd => Make_Null (Loc)),
- Right_Opnd => Cond);
- end if;
-
- Rewrite (N, Cond);
- Analyze_And_Resolve (N, Rtyp);
- end Check_Subscripts;
-
- -- These are the cases where constraint checks may be required,
- -- e.g. records with possible discriminants
-
- else
- -- Expand the test into a series of discriminant comparisons.
- -- The expression that is built is the negation of the one that
- -- is used for checking discriminant constraints.
-
- Obj := Relocate_Node (Left_Opnd (N));
-
- if Has_Discriminants (Typ) then
- Cond := Make_Op_Not (Loc,
- Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
-
- if Is_Acc then
- Cond := Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd => Obj,
- Right_Opnd => Make_Null (Loc)),
- Right_Opnd => Cond);
- end if;
-
- else
- Cond := New_Occurrence_Of (Standard_True, Loc);
- end if;
-
- Rewrite (N, Cond);
- Analyze_And_Resolve (N, Rtyp);
- end if;
- end;
- end if;
- end Expand_N_In;
-
- --------------------------------
- -- Expand_N_Indexed_Component --
- --------------------------------
-
- procedure Expand_N_Indexed_Component (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- P : constant Node_Id := Prefix (N);
- T : constant Entity_Id := Etype (P);
-
- begin
- -- A special optimization, if we have an indexed component that is
- -- selecting from a slice, then we can eliminate the slice, since, for
- -- example, x (i .. j)(k) is identical to x(k). The only difference is
- -- the range check required by the slice. The range check for the slice
- -- itself has already been generated. The range check for the
- -- subscripting operation is ensured by converting the subject to
- -- the subtype of the slice.
-
- -- This optimization not only generates better code, avoiding slice
- -- messing especially in the packed case, but more importantly bypasses
- -- some problems in handling this peculiar case, for example, the issue
- -- of dealing specially with object renamings.
-
- if Nkind (P) = N_Slice then
- Rewrite (N,
- Make_Indexed_Component (Loc,
- Prefix => Prefix (P),
- Expressions => New_List (
- Convert_To
- (Etype (First_Index (Etype (P))),
- First (Expressions (N))))));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
- -- function, then additional actuals must be passed.
-
- if Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (P)
- then
- Make_Build_In_Place_Call_In_Anonymous_Context (P);
- end if;
-
- -- If the prefix is an access type, then we unconditionally rewrite if
- -- as an explicit deference. This simplifies processing for several
- -- cases, including packed array cases and certain cases in which checks
- -- must be generated. We used to try to do this only when it was
- -- necessary, but it cleans up the code to do it all the time.
-
- if Is_Access_Type (T) then
- Insert_Explicit_Dereference (P);
- Analyze_And_Resolve (P, Designated_Type (T));
- end if;
-
- -- Generate index and validity checks
-
- Generate_Index_Checks (N);
-
- if Validity_Checks_On and then Validity_Check_Subscripts then
- Apply_Subscript_Validity_Checks (N);
- end if;
-
- -- All done for the non-packed case
-
- if not Is_Packed (Etype (Prefix (N))) then
- return;
- end if;
-
- -- For packed arrays that are not bit-packed (i.e. the case of an array
- -- with one or more index types with a non-contiguous enumeration type),
- -- we can always use the normal packed element get circuit.
-
- if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
- Expand_Packed_Element_Reference (N);
- return;
- end if;
-
- -- For a reference to a component of a bit packed array, we have to
- -- convert it to a reference to the corresponding Packed_Array_Type.
- -- We only want to do this for simple references, and not for:
-
- -- Left side of assignment, or prefix of left side of assignment, or
- -- prefix of the prefix, to handle packed arrays of packed arrays,
- -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
-
- -- Renaming objects in renaming associations
- -- This case is handled when a use of the renamed variable occurs
-
- -- Actual parameters for a procedure call
- -- This case is handled in Exp_Ch6.Expand_Actuals
-
- -- The second expression in a 'Read attribute reference
-
- -- The prefix of an address or size attribute reference
-
- -- The following circuit detects these exceptions
-
- declare
- Child : Node_Id := N;
- Parnt : Node_Id := Parent (N);
-
- begin
- loop
- if Nkind (Parnt) = N_Unchecked_Expression then
- null;
-
- elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
- N_Procedure_Call_Statement)
- or else (Nkind (Parnt) = N_Parameter_Association
- and then
- Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
- then
- return;
-
- elsif Nkind (Parnt) = N_Attribute_Reference
- and then (Attribute_Name (Parnt) = Name_Address
- or else
- Attribute_Name (Parnt) = Name_Size)
- and then Prefix (Parnt) = Child
- then
- return;
-
- elsif Nkind (Parnt) = N_Assignment_Statement
- and then Name (Parnt) = Child
- then
- return;
-
- -- If the expression is an index of an indexed component, it must
- -- be expanded regardless of context.
-
- elsif Nkind (Parnt) = N_Indexed_Component
- and then Child /= Prefix (Parnt)
- then
- Expand_Packed_Element_Reference (N);
- return;
-
- elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
- and then Name (Parent (Parnt)) = Parnt
- then
- return;
-
- elsif Nkind (Parnt) = N_Attribute_Reference
- and then Attribute_Name (Parnt) = Name_Read
- and then Next (First (Expressions (Parnt))) = Child
- then
- return;
-
- elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
- and then Prefix (Parnt) = Child
- then
- null;
-
- else
- Expand_Packed_Element_Reference (N);
- return;
- end if;
-
- -- Keep looking up tree for unchecked expression, or if we are the
- -- prefix of a possible assignment left side.
-
- Child := Parnt;
- Parnt := Parent (Child);
- end loop;
- end;
- end Expand_N_Indexed_Component;
-
- ---------------------
- -- Expand_N_Not_In --
- ---------------------
-
- -- Replace a not in b by not (a in b) so that the expansions for (a in b)
- -- can be done. This avoids needing to duplicate this expansion code.
-
- procedure Expand_N_Not_In (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Cfs : constant Boolean := Comes_From_Source (N);
-
- begin
- Rewrite (N,
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_In (Loc,
- Left_Opnd => Left_Opnd (N),
- Right_Opnd => Right_Opnd (N))));
-
- -- We want this to appear as coming from source if original does (see
- -- transformations in Expand_N_In).
-
- Set_Comes_From_Source (N, Cfs);
- Set_Comes_From_Source (Right_Opnd (N), Cfs);
-
- -- Now analyze transformed node
-
- Analyze_And_Resolve (N, Typ);
- end Expand_N_Not_In;
-
- -------------------
- -- Expand_N_Null --
- -------------------
-
- -- The only replacement required is for the case of a null of type that is
- -- an access to protected subprogram. We represent such access values as a
- -- record, and so we must replace the occurrence of null by the equivalent
- -- record (with a null address and a null pointer in it), so that the
- -- backend creates the proper value.
-
- procedure Expand_N_Null (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Agg : Node_Id;
-
- begin
- if Is_Access_Protected_Subprogram_Type (Typ) then
- Agg :=
- Make_Aggregate (Loc,
- Expressions => New_List (
- New_Occurrence_Of (RTE (RE_Null_Address), Loc),
- Make_Null (Loc)));
-
- Rewrite (N, Agg);
- Analyze_And_Resolve (N, Equivalent_Type (Typ));
-
- -- For subsequent semantic analysis, the node must retain its type.
- -- Gigi in any case replaces this type by the corresponding record
- -- type before processing the node.
-
- Set_Etype (N, Typ);
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Null;
-
- ---------------------
- -- Expand_N_Op_Abs --
- ---------------------
-
- procedure Expand_N_Op_Abs (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Expr : constant Node_Id := Right_Opnd (N);
-
- begin
- Unary_Op_Validity_Checks (N);
-
- -- Deal with software overflow checking
-
- if not Backend_Overflow_Checks_On_Target
- and then Is_Signed_Integer_Type (Etype (N))
- and then Do_Overflow_Check (N)
- then
- -- The only case to worry about is when the argument is equal to the
- -- largest negative number, so what we do is to insert the check:
-
- -- [constraint_error when Expr = typ'Base'First]
-
- -- with the usual Duplicate_Subexpr use coding for expr
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr (Expr),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
- Attribute_Name => Name_First)),
- Reason => CE_Overflow_Check_Failed));
- end if;
-
- -- Vax floating-point types case
-
- if Vax_Float (Etype (N)) then
- Expand_Vax_Arith (N);
- end if;
- end Expand_N_Op_Abs;
-
- ---------------------
- -- Expand_N_Op_Add --
- ---------------------
-
- procedure Expand_N_Op_Add (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- -- N + 0 = 0 + N = N for integer types
-
- if Is_Integer_Type (Typ) then
- if Compile_Time_Known_Value (Right_Opnd (N))
- and then Expr_Value (Right_Opnd (N)) = Uint_0
- then
- Rewrite (N, Left_Opnd (N));
- return;
-
- elsif Compile_Time_Known_Value (Left_Opnd (N))
- and then Expr_Value (Left_Opnd (N)) = Uint_0
- then
- Rewrite (N, Right_Opnd (N));
- return;
- end if;
- end if;
-
- -- Arithmetic overflow checks for signed integer/fixed point types
-
- if Is_Signed_Integer_Type (Typ)
- or else Is_Fixed_Point_Type (Typ)
- then
- Apply_Arithmetic_Overflow_Check (N);
- return;
-
- -- Vax floating-point types case
-
- elsif Vax_Float (Typ) then
- Expand_Vax_Arith (N);
- end if;
- end Expand_N_Op_Add;
-
- ---------------------
- -- Expand_N_Op_And --
- ---------------------
-
- procedure Expand_N_Op_And (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Etype (N)) then
- Expand_Boolean_Operator (N);
-
- elsif Is_Boolean_Type (Etype (N)) then
- Adjust_Condition (Left_Opnd (N));
- Adjust_Condition (Right_Opnd (N));
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
- end Expand_N_Op_And;
-
- ------------------------
- -- Expand_N_Op_Concat --
- ------------------------
-
- Max_Available_String_Operands : Int := -1;
- -- This is initialized the first time this routine is called. It records
- -- a value of 0,2,3,4,5 depending on what Str_Concat_n procedures are
- -- available in the run-time:
- --
- -- 0 None available
- -- 2 RE_Str_Concat available, RE_Str_Concat_3 not available
- -- 3 RE_Str_Concat/Concat_2 available, RE_Str_Concat_4 not available
- -- 4 RE_Str_Concat/Concat_2/3 available, RE_Str_Concat_5 not available
- -- 5 All routines including RE_Str_Concat_5 available
-
- Char_Concat_Available : Boolean;
- -- Records if the routines RE_Str_Concat_CC/CS/SC are available. True if
- -- all three are available, False if any one of these is unavailable.
-
- procedure Expand_N_Op_Concat (N : Node_Id) is
- Opnds : List_Id;
- -- List of operands to be concatenated
-
- Opnd : Node_Id;
- -- Single operand for concatenation
-
- Cnode : Node_Id;
- -- Node which is to be replaced by the result of concatenating the nodes
- -- in the list Opnds.
-
- Atyp : Entity_Id;
- -- Array type of concatenation result type
-
- Ctyp : Entity_Id;
- -- Component type of concatenation represented by Cnode
-
- begin
- -- Initialize global variables showing run-time status
-
- if Max_Available_String_Operands < 1 then
-
- -- See what routines are available and set max operand count
- -- according to the highest count available in the run-time.
-
- if not RTE_Available (RE_Str_Concat) then
- Max_Available_String_Operands := 0;
-
- elsif not RTE_Available (RE_Str_Concat_3) then
- Max_Available_String_Operands := 2;
-
- elsif not RTE_Available (RE_Str_Concat_4) then
- Max_Available_String_Operands := 3;
-
- elsif not RTE_Available (RE_Str_Concat_5) then
- Max_Available_String_Operands := 4;
-
- else
- Max_Available_String_Operands := 5;
- end if;
-
- Char_Concat_Available :=
- RTE_Available (RE_Str_Concat_CC)
- and then
- RTE_Available (RE_Str_Concat_CS)
- and then
- RTE_Available (RE_Str_Concat_SC);
- end if;
-
- -- Ensure validity of both operands
-
- Binary_Op_Validity_Checks (N);
-
- -- If we are the left operand of a concatenation higher up the tree,
- -- then do nothing for now, since we want to deal with a series of
- -- concatenations as a unit.
-
- if Nkind (Parent (N)) = N_Op_Concat
- and then N = Left_Opnd (Parent (N))
- then
- return;
- end if;
-
- -- We get here with a concatenation whose left operand may be a
- -- concatenation itself with a consistent type. We need to process
- -- these concatenation operands from left to right, which means
- -- from the deepest node in the tree to the highest node.
-
- Cnode := N;
- while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
- Cnode := Left_Opnd (Cnode);
- end loop;
-
- -- Now Opnd is the deepest Opnd, and its parents are the concatenation
- -- nodes above, so now we process bottom up, doing the operations. We
- -- gather a string that is as long as possible up to five operands
-
- -- The outer loop runs more than once if there are more than five
- -- concatenations of type Standard.String, the most we handle for
- -- this case, or if more than one concatenation type is involved.
-
- Outer : loop
- Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
- Set_Parent (Opnds, N);
-
- -- The inner loop gathers concatenation operands. We gather any
- -- number of these in the non-string case, or if no concatenation
- -- routines are available for string (since in that case we will
- -- treat string like any other non-string case). Otherwise we only
- -- gather as many operands as can be handled by the available
- -- procedures in the run-time library (normally 5, but may be
- -- less for the configurable run-time case).
-
- Inner : while Cnode /= N
- and then (Base_Type (Etype (Cnode)) /= Standard_String
- or else
- Max_Available_String_Operands = 0
- or else
- List_Length (Opnds) <
- Max_Available_String_Operands)
- and then Base_Type (Etype (Cnode)) =
- Base_Type (Etype (Parent (Cnode)))
- loop
- Cnode := Parent (Cnode);
- Append (Right_Opnd (Cnode), Opnds);
- end loop Inner;
-
- -- Here we process the collected operands. First we convert singleton
- -- operands to singleton aggregates. This is skipped however for the
- -- case of two operands of type String since we have special routines
- -- for these cases.
-
- Atyp := Base_Type (Etype (Cnode));
- Ctyp := Base_Type (Component_Type (Etype (Cnode)));
-
- if (List_Length (Opnds) > 2 or else Atyp /= Standard_String)
- or else not Char_Concat_Available
- then
- Opnd := First (Opnds);
- loop
- if Base_Type (Etype (Opnd)) = Ctyp then
- Rewrite (Opnd,
- Make_Aggregate (Sloc (Cnode),
- Expressions => New_List (Relocate_Node (Opnd))));
- Analyze_And_Resolve (Opnd, Atyp);
- end if;
-
- Next (Opnd);
- exit when No (Opnd);
- end loop;
- end if;
-
- -- Now call appropriate continuation routine
-
- if Atyp = Standard_String
- and then Max_Available_String_Operands > 0
- then
- Expand_Concatenate_String (Cnode, Opnds);
- else
- Expand_Concatenate_Other (Cnode, Opnds);
- end if;
-
- exit Outer when Cnode = N;
- Cnode := Parent (Cnode);
- end loop Outer;
- end Expand_N_Op_Concat;
-
- ------------------------
- -- Expand_N_Op_Divide --
- ------------------------
-
- procedure Expand_N_Op_Divide (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Lopnd : constant Node_Id := Left_Opnd (N);
- Ropnd : constant Node_Id := Right_Opnd (N);
- Ltyp : constant Entity_Id := Etype (Lopnd);
- Rtyp : constant Entity_Id := Etype (Ropnd);
- Typ : Entity_Id := Etype (N);
- Rknow : constant Boolean := Is_Integer_Type (Typ)
- and then
- Compile_Time_Known_Value (Ropnd);
- Rval : Uint;
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Rknow then
- Rval := Expr_Value (Ropnd);
- end if;
-
- -- N / 1 = N for integer types
-
- if Rknow and then Rval = Uint_1 then
- Rewrite (N, Lopnd);
- return;
- end if;
-
- -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
- -- Is_Power_Of_2_For_Shift is set means that we know that our left
- -- operand is an unsigned integer, as required for this to work.
-
- if Nkind (Ropnd) = N_Op_Expon
- and then Is_Power_Of_2_For_Shift (Ropnd)
-
- -- We cannot do this transformation in configurable run time mode if we
- -- have 64-bit -- integers and long shifts are not available.
-
- and then
- (Esize (Ltyp) <= 32
- or else Support_Long_Shifts_On_Target)
- then
- Rewrite (N,
- Make_Op_Shift_Right (Loc,
- Left_Opnd => Lopnd,
- Right_Opnd =>
- Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Do required fixup of universal fixed operation
-
- if Typ = Universal_Fixed then
- Fixup_Universal_Fixed_Operation (N);
- Typ := Etype (N);
- end if;
-
- -- Divisions with fixed-point results
-
- if Is_Fixed_Point_Type (Typ) then
-
- -- No special processing if Treat_Fixed_As_Integer is set, since
- -- from a semantic point of view such operations are simply integer
- -- operations and will be treated that way.
-
- if not Treat_Fixed_As_Integer (N) then
- if Is_Integer_Type (Rtyp) then
- Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
- else
- Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
- end if;
- end if;
-
- -- Other cases of division of fixed-point operands. Again we exclude the
- -- case where Treat_Fixed_As_Integer is set.
-
- elsif (Is_Fixed_Point_Type (Ltyp) or else
- Is_Fixed_Point_Type (Rtyp))
- and then not Treat_Fixed_As_Integer (N)
- then
- if Is_Integer_Type (Typ) then
- Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
- else
- pragma Assert (Is_Floating_Point_Type (Typ));
- Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
- end if;
-
- -- Mixed-mode operations can appear in a non-static universal context,
- -- in which case the integer argument must be converted explicitly.
-
- elsif Typ = Universal_Real
- and then Is_Integer_Type (Rtyp)
- then
- Rewrite (Ropnd,
- Convert_To (Universal_Real, Relocate_Node (Ropnd)));
-
- Analyze_And_Resolve (Ropnd, Universal_Real);
-
- elsif Typ = Universal_Real
- and then Is_Integer_Type (Ltyp)
- then
- Rewrite (Lopnd,
- Convert_To (Universal_Real, Relocate_Node (Lopnd)));
-
- Analyze_And_Resolve (Lopnd, Universal_Real);
-
- -- Non-fixed point cases, do integer zero divide and overflow checks
-
- elsif Is_Integer_Type (Typ) then
- Apply_Divide_Check (N);
-
- -- Check for 64-bit division available, or long shifts if the divisor
- -- is a small power of 2 (since such divides will be converted into
- -- long shifts.
-
- if Esize (Ltyp) > 32
- and then not Support_64_Bit_Divides_On_Target
- and then
- (not Rknow
- or else not Support_Long_Shifts_On_Target
- or else (Rval /= Uint_2 and then
- Rval /= Uint_4 and then
- Rval /= Uint_8 and then
- Rval /= Uint_16 and then
- Rval /= Uint_32 and then
- Rval /= Uint_64))
- then
- Error_Msg_CRT ("64-bit division", N);
- end if;
-
- -- Deal with Vax_Float
-
- elsif Vax_Float (Typ) then
- Expand_Vax_Arith (N);
- return;
- end if;
- end Expand_N_Op_Divide;
-
- --------------------
- -- Expand_N_Op_Eq --
- --------------------
-
- procedure Expand_N_Op_Eq (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Lhs : constant Node_Id := Left_Opnd (N);
- Rhs : constant Node_Id := Right_Opnd (N);
- Bodies : constant List_Id := New_List;
- A_Typ : constant Entity_Id := Etype (Lhs);
-
- Typl : Entity_Id := A_Typ;
- Op_Name : Entity_Id;
- Prim : Elmt_Id;
-
- procedure Build_Equality_Call (Eq : Entity_Id);
- -- If a constructed equality exists for the type or for its parent,
- -- build and analyze call, adding conversions if the operation is
- -- inherited.
-
- function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
- -- Determines whether a type has a subcomponent of an unconstrained
- -- Unchecked_Union subtype. Typ is a record type.
-
- -------------------------
- -- Build_Equality_Call --
- -------------------------
-
- procedure Build_Equality_Call (Eq : Entity_Id) is
- Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
- L_Exp : Node_Id := Relocate_Node (Lhs);
- R_Exp : Node_Id := Relocate_Node (Rhs);
-
- begin
- if Base_Type (Op_Type) /= Base_Type (A_Typ)
- and then not Is_Class_Wide_Type (A_Typ)
- then
- L_Exp := OK_Convert_To (Op_Type, L_Exp);
- R_Exp := OK_Convert_To (Op_Type, R_Exp);
- end if;
-
- -- If we have an Unchecked_Union, we need to add the inferred
- -- discriminant values as actuals in the function call. At this
- -- point, the expansion has determined that both operands have
- -- inferable discriminants.
-
- if Is_Unchecked_Union (Op_Type) then
- declare
- Lhs_Type : constant Node_Id := Etype (L_Exp);
- Rhs_Type : constant Node_Id := Etype (R_Exp);
- Lhs_Discr_Val : Node_Id;
- Rhs_Discr_Val : Node_Id;
-
- begin
- -- Per-object constrained selected components require special
- -- attention. If the enclosing scope of the component is an
- -- Unchecked_Union, we cannot reference its discriminants
- -- directly. This is why we use the two extra parameters of
- -- the equality function of the enclosing Unchecked_Union.
-
- -- type UU_Type (Discr : Integer := 0) is
- -- . . .
- -- end record;
- -- pragma Unchecked_Union (UU_Type);
-
- -- 1. Unchecked_Union enclosing record:
-
- -- type Enclosing_UU_Type (Discr : Integer := 0) is record
- -- . . .
- -- Comp : UU_Type (Discr);
- -- . . .
- -- end Enclosing_UU_Type;
- -- pragma Unchecked_Union (Enclosing_UU_Type);
-
- -- Obj1 : Enclosing_UU_Type;
- -- Obj2 : Enclosing_UU_Type (1);
-
- -- [. . .] Obj1 = Obj2 [. . .]
-
- -- Generated code:
-
- -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
-
- -- A and B are the formal parameters of the equality function
- -- of Enclosing_UU_Type. The function always has two extra
- -- formals to capture the inferred discriminant values.
-
- -- 2. Non-Unchecked_Union enclosing record:
-
- -- type
- -- Enclosing_Non_UU_Type (Discr : Integer := 0)
- -- is record
- -- . . .
- -- Comp : UU_Type (Discr);
- -- . . .
- -- end Enclosing_Non_UU_Type;
-
- -- Obj1 : Enclosing_Non_UU_Type;
- -- Obj2 : Enclosing_Non_UU_Type (1);
-
- -- ... Obj1 = Obj2 ...
-
- -- Generated code:
-
- -- if not (uu_typeEQ (obj1.comp, obj2.comp,
- -- obj1.discr, obj2.discr)) then
-
- -- In this case we can directly reference the discriminants of
- -- the enclosing record.
-
- -- Lhs of equality
-
- if Nkind (Lhs) = N_Selected_Component
- and then Has_Per_Object_Constraint
- (Entity (Selector_Name (Lhs)))
- then
- -- Enclosing record is an Unchecked_Union, use formal A
-
- if Is_Unchecked_Union (Scope
- (Entity (Selector_Name (Lhs))))
- then
- Lhs_Discr_Val :=
- Make_Identifier (Loc,
- Chars => Name_A);
-
- -- Enclosing record is of a non-Unchecked_Union type, it is
- -- possible to reference the discriminant.
-
- else
- Lhs_Discr_Val :=
- Make_Selected_Component (Loc,
- Prefix => Prefix (Lhs),
- Selector_Name =>
- New_Copy
- (Get_Discriminant_Value
- (First_Discriminant (Lhs_Type),
- Lhs_Type,
- Stored_Constraint (Lhs_Type))));
- end if;
-
- -- Comment needed here ???
-
- else
- -- Infer the discriminant value
-
- Lhs_Discr_Val :=
- New_Copy
- (Get_Discriminant_Value
- (First_Discriminant (Lhs_Type),
- Lhs_Type,
- Stored_Constraint (Lhs_Type)));
- end if;
-
- -- Rhs of equality
-
- if Nkind (Rhs) = N_Selected_Component
- and then Has_Per_Object_Constraint
- (Entity (Selector_Name (Rhs)))
- then
- if Is_Unchecked_Union
- (Scope (Entity (Selector_Name (Rhs))))
- then
- Rhs_Discr_Val :=
- Make_Identifier (Loc,
- Chars => Name_B);
-
- else
- Rhs_Discr_Val :=
- Make_Selected_Component (Loc,
- Prefix => Prefix (Rhs),
- Selector_Name =>
- New_Copy (Get_Discriminant_Value (
- First_Discriminant (Rhs_Type),
- Rhs_Type,
- Stored_Constraint (Rhs_Type))));
-
- end if;
- else
- Rhs_Discr_Val :=
- New_Copy (Get_Discriminant_Value (
- First_Discriminant (Rhs_Type),
- Rhs_Type,
- Stored_Constraint (Rhs_Type)));
-
- end if;
-
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Reference_To (Eq, Loc),
- Parameter_Associations => New_List (
- L_Exp,
- R_Exp,
- Lhs_Discr_Val,
- Rhs_Discr_Val)));
- end;
-
- -- Normal case, not an unchecked union
-
- else
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Reference_To (Eq, Loc),
- Parameter_Associations => New_List (L_Exp, R_Exp)));
- end if;
-
- Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
- end Build_Equality_Call;
-
- ------------------------------------
- -- Has_Unconstrained_UU_Component --
- ------------------------------------
-
- function Has_Unconstrained_UU_Component
- (Typ : Node_Id) return Boolean
- is
- Tdef : constant Node_Id :=
- Type_Definition (Declaration_Node (Base_Type (Typ)));
- Clist : Node_Id;
- Vpart : Node_Id;
-
- function Component_Is_Unconstrained_UU
- (Comp : Node_Id) return Boolean;
- -- Determines whether the subtype of the component is an
- -- unconstrained Unchecked_Union.
-
- function Variant_Is_Unconstrained_UU
- (Variant : Node_Id) return Boolean;
- -- Determines whether a component of the variant has an unconstrained
- -- Unchecked_Union subtype.
-
- -----------------------------------
- -- Component_Is_Unconstrained_UU --
- -----------------------------------
-
- function Component_Is_Unconstrained_UU
- (Comp : Node_Id) return Boolean
- is
- begin
- if Nkind (Comp) /= N_Component_Declaration then
- return False;
- end if;
-
- declare
- Sindic : constant Node_Id :=
- Subtype_Indication (Component_Definition (Comp));
-
- begin
- -- Unconstrained nominal type. In the case of a constraint
- -- present, the node kind would have been N_Subtype_Indication.
-
- if Nkind (Sindic) = N_Identifier then
- return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
- end if;
-
- return False;
- end;
- end Component_Is_Unconstrained_UU;
-
- ---------------------------------
- -- Variant_Is_Unconstrained_UU --
- ---------------------------------
-
- function Variant_Is_Unconstrained_UU
- (Variant : Node_Id) return Boolean
- is
- Clist : constant Node_Id := Component_List (Variant);
-
- begin
- if Is_Empty_List (Component_Items (Clist)) then
- return False;
- end if;
-
- -- We only need to test one component
-
- declare
- Comp : Node_Id := First (Component_Items (Clist));
-
- begin
- while Present (Comp) loop
- if Component_Is_Unconstrained_UU (Comp) then
- return True;
- end if;
-
- Next (Comp);
- end loop;
- end;
-
- -- None of the components withing the variant were of
- -- unconstrained Unchecked_Union type.
-
- return False;
- end Variant_Is_Unconstrained_UU;
-
- -- Start of processing for Has_Unconstrained_UU_Component
-
- begin
- if Null_Present (Tdef) then
- return False;
- end if;
-
- Clist := Component_List (Tdef);
- Vpart := Variant_Part (Clist);
-
- -- Inspect available components
-
- if Present (Component_Items (Clist)) then
- declare
- Comp : Node_Id := First (Component_Items (Clist));
-
- begin
- while Present (Comp) loop
-
- -- One component is sufficient
-
- if Component_Is_Unconstrained_UU (Comp) then
- return True;
- end if;
-
- Next (Comp);
- end loop;
- end;
- end if;
-
- -- Inspect available components withing variants
-
- if Present (Vpart) then
- declare
- Variant : Node_Id := First (Variants (Vpart));
-
- begin
- while Present (Variant) loop
-
- -- One component within a variant is sufficient
-
- if Variant_Is_Unconstrained_UU (Variant) then
- return True;
- end if;
-
- Next (Variant);
- end loop;
- end;
- end if;
-
- -- Neither the available components, nor the components inside the
- -- variant parts were of an unconstrained Unchecked_Union subtype.
-
- return False;
- end Has_Unconstrained_UU_Component;
-
- -- Start of processing for Expand_N_Op_Eq
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Ekind (Typl) = E_Private_Type then
- Typl := Underlying_Type (Typl);
- elsif Ekind (Typl) = E_Private_Subtype then
- Typl := Underlying_Type (Base_Type (Typl));
- else
- null;
- end if;
-
- -- It may happen in error situations that the underlying type is not
- -- set. The error will be detected later, here we just defend the
- -- expander code.
-
- if No (Typl) then
- return;
- end if;
-
- Typl := Base_Type (Typl);
-
- -- Boolean types (requiring handling of non-standard case)
-
- if Is_Boolean_Type (Typl) then
- Adjust_Condition (Left_Opnd (N));
- Adjust_Condition (Right_Opnd (N));
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
-
- -- Array types
-
- elsif Is_Array_Type (Typl) then
-
- -- If we are doing full validity checking, and it is possible for the
- -- array elements to be invalid then expand out array comparisons to
- -- make sure that we check the array elements.
-
- if Validity_Check_Operands
- and then not Is_Known_Valid (Component_Type (Typl))
- then
- declare
- Save_Force_Validity_Checks : constant Boolean :=
- Force_Validity_Checks;
- begin
- Force_Validity_Checks := True;
- Rewrite (N,
- Expand_Array_Equality
- (N,
- Relocate_Node (Lhs),
- Relocate_Node (Rhs),
- Bodies,
- Typl));
- Insert_Actions (N, Bodies);
- Analyze_And_Resolve (N, Standard_Boolean);
- Force_Validity_Checks := Save_Force_Validity_Checks;
- end;
-
- -- Packed case where both operands are known aligned
-
- elsif Is_Bit_Packed_Array (Typl)
- and then not Is_Possibly_Unaligned_Object (Lhs)
- and then not Is_Possibly_Unaligned_Object (Rhs)
- then
- Expand_Packed_Eq (N);
-
- -- Where the component type is elementary we can use a block bit
- -- comparison (if supported on the target) exception in the case
- -- of floating-point (negative zero issues require element by
- -- element comparison), and atomic types (where we must be sure
- -- to load elements independently) and possibly unaligned arrays.
-
- elsif Is_Elementary_Type (Component_Type (Typl))
- and then not Is_Floating_Point_Type (Component_Type (Typl))
- and then not Is_Atomic (Component_Type (Typl))
- and then not Is_Possibly_Unaligned_Object (Lhs)
- and then not Is_Possibly_Unaligned_Object (Rhs)
- and then Support_Composite_Compare_On_Target
- then
- null;
-
- -- For composite and floating-point cases, expand equality loop to
- -- make sure of using proper comparisons for tagged types, and
- -- correctly handling the floating-point case.
-
- else
- Rewrite (N,
- Expand_Array_Equality
- (N,
- Relocate_Node (Lhs),
- Relocate_Node (Rhs),
- Bodies,
- Typl));
- Insert_Actions (N, Bodies, Suppress => All_Checks);
- Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
- end if;
-
- -- Record Types
-
- elsif Is_Record_Type (Typl) then
-
- -- For tagged types, use the primitive "="
-
- if Is_Tagged_Type (Typl) then
-
- -- No need to do anything else compiling under restriction
- -- No_Dispatching_Calls. During the semantic analysis we
- -- already notified such violation.
-
- if Restriction_Active (No_Dispatching_Calls) then
- return;
- end if;
-
- -- If this is derived from an untagged private type completed with
- -- a tagged type, it does not have a full view, so we use the
- -- primitive operations of the private type. This check should no
- -- longer be necessary when these types get their full views???
-
- if Is_Private_Type (A_Typ)
- and then not Is_Tagged_Type (A_Typ)
- and then Is_Derived_Type (A_Typ)
- and then No (Full_View (A_Typ))
- then
- -- Search for equality operation, checking that the operands
- -- have the same type. Note that we must find a matching entry,
- -- or something is very wrong!
-
- Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
-
- while Present (Prim) loop
- exit when Chars (Node (Prim)) = Name_Op_Eq
- and then Etype (First_Formal (Node (Prim))) =
- Etype (Next_Formal (First_Formal (Node (Prim))))
- and then
- Base_Type (Etype (Node (Prim))) = Standard_Boolean;
-
- Next_Elmt (Prim);
- end loop;
-
- pragma Assert (Present (Prim));
- Op_Name := Node (Prim);
-
- -- Find the type's predefined equality or an overriding
- -- user- defined equality. The reason for not simply calling
- -- Find_Prim_Op here is that there may be a user-defined
- -- overloaded equality op that precedes the equality that we want,
- -- so we have to explicitly search (e.g., there could be an
- -- equality with two different parameter types).
-
- else
- if Is_Class_Wide_Type (Typl) then
- Typl := Root_Type (Typl);
- end if;
-
- Prim := First_Elmt (Primitive_Operations (Typl));
- while Present (Prim) loop
- exit when Chars (Node (Prim)) = Name_Op_Eq
- and then Etype (First_Formal (Node (Prim))) =
- Etype (Next_Formal (First_Formal (Node (Prim))))
- and then
- Base_Type (Etype (Node (Prim))) = Standard_Boolean;
-
- Next_Elmt (Prim);
- end loop;
-
- pragma Assert (Present (Prim));
- Op_Name := Node (Prim);
- end if;
-
- Build_Equality_Call (Op_Name);
-
- -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
- -- predefined equality operator for a type which has a subcomponent
- -- of an Unchecked_Union type whose nominal subtype is unconstrained.
-
- elsif Has_Unconstrained_UU_Component (Typl) then
- Insert_Action (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Unchecked_Union_Restriction));
-
- -- Prevent Gigi from generating incorrect code by rewriting the
- -- equality as a standard False.
-
- Rewrite (N,
- New_Occurrence_Of (Standard_False, Loc));
-
- elsif Is_Unchecked_Union (Typl) then
-
- -- If we can infer the discriminants of the operands, we make a
- -- call to the TSS equality function.
-
- if Has_Inferable_Discriminants (Lhs)
- and then
- Has_Inferable_Discriminants (Rhs)
- then
- Build_Equality_Call
- (TSS (Root_Type (Typl), TSS_Composite_Equality));
-
- else
- -- Ada 2005 (AI-216): Program_Error is raised when evaluating
- -- the predefined equality operator for an Unchecked_Union type
- -- if either of the operands lack inferable discriminants.
-
- Insert_Action (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Unchecked_Union_Restriction));
-
- -- Prevent Gigi from generating incorrect code by rewriting
- -- the equality as a standard False.
-
- Rewrite (N,
- New_Occurrence_Of (Standard_False, Loc));
-
- end if;
-
- -- If a type support function is present (for complex cases), use it
-
- elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
- Build_Equality_Call
- (TSS (Root_Type (Typl), TSS_Composite_Equality));
-
- -- Otherwise expand the component by component equality. Note that
- -- we never use block-bit comparisons for records, because of the
- -- problems with gaps. The backend will often be able to recombine
- -- the separate comparisons that we generate here.
-
- else
- Remove_Side_Effects (Lhs);
- Remove_Side_Effects (Rhs);
- Rewrite (N,
- Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
-
- Insert_Actions (N, Bodies, Suppress => All_Checks);
- Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
- end if;
- end if;
-
- -- Test if result is known at compile time
-
- Rewrite_Comparison (N);
-
- -- If we still have comparison for Vax_Float, process it
-
- if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
- Expand_Vax_Comparison (N);
- return;
- end if;
- end Expand_N_Op_Eq;
-
- -----------------------
- -- Expand_N_Op_Expon --
- -----------------------
-
- procedure Expand_N_Op_Expon (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Rtyp : constant Entity_Id := Root_Type (Typ);
- Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
- Bastyp : constant Node_Id := Etype (Base);
- Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
- Exptyp : constant Entity_Id := Etype (Exp);
- Ovflo : constant Boolean := Do_Overflow_Check (N);
- Expv : Uint;
- Xnode : Node_Id;
- Temp : Node_Id;
- Rent : RE_Id;
- Ent : Entity_Id;
- Etyp : Entity_Id;
-
- begin
- Binary_Op_Validity_Checks (N);
-
- -- If either operand is of a private type, then we have the use of an
- -- intrinsic operator, and we get rid of the privateness, by using root
- -- types of underlying types for the actual operation. Otherwise the
- -- private types will cause trouble if we expand multiplications or
- -- shifts etc. We also do this transformation if the result type is
- -- different from the base type.
-
- if Is_Private_Type (Etype (Base))
- or else
- Is_Private_Type (Typ)
- or else
- Is_Private_Type (Exptyp)
- or else
- Rtyp /= Root_Type (Bastyp)
- then
- declare
- Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
- Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
-
- begin
- Rewrite (N,
- Unchecked_Convert_To (Typ,
- Make_Op_Expon (Loc,
- Left_Opnd => Unchecked_Convert_To (Bt, Base),
- Right_Opnd => Unchecked_Convert_To (Et, Exp))));
- Analyze_And_Resolve (N, Typ);
- return;
- end;
- end if;
-
- -- Test for case of known right argument
-
- if Compile_Time_Known_Value (Exp) then
- Expv := Expr_Value (Exp);
-
- -- We only fold small non-negative exponents. You might think we
- -- could fold small negative exponents for the real case, but we
- -- can't because we are required to raise Constraint_Error for
- -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
- -- See ACVC test C4A012B.
-
- if Expv >= 0 and then Expv <= 4 then
-
- -- X ** 0 = 1 (or 1.0)
-
- if Expv = 0 then
-
- -- Call Remove_Side_Effects to ensure that any side effects
- -- in the ignored left operand (in particular function calls
- -- to user defined functions) are properly executed.
-
- Remove_Side_Effects (Base);
-
- if Ekind (Typ) in Integer_Kind then
- Xnode := Make_Integer_Literal (Loc, Intval => 1);
- else
- Xnode := Make_Real_Literal (Loc, Ureal_1);
- end if;
-
- -- X ** 1 = X
-
- elsif Expv = 1 then
- Xnode := Base;
-
- -- X ** 2 = X * X
-
- elsif Expv = 2 then
- Xnode :=
- Make_Op_Multiply (Loc,
- Left_Opnd => Duplicate_Subexpr (Base),
- Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
-
- -- X ** 3 = X * X * X
-
- elsif Expv = 3 then
- Xnode :=
- Make_Op_Multiply (Loc,
- Left_Opnd =>
- Make_Op_Multiply (Loc,
- Left_Opnd => Duplicate_Subexpr (Base),
- Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
- Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
-
- -- X ** 4 ->
- -- En : constant base'type := base * base;
- -- ...
- -- En * En
-
- else -- Expv = 4
- Temp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
-
- Insert_Actions (N, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Constant_Present => True,
- Object_Definition => New_Reference_To (Typ, Loc),
- Expression =>
- Make_Op_Multiply (Loc,
- Left_Opnd => Duplicate_Subexpr (Base),
- Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
-
- Xnode :=
- Make_Op_Multiply (Loc,
- Left_Opnd => New_Reference_To (Temp, Loc),
- Right_Opnd => New_Reference_To (Temp, Loc));
- end if;
-
- Rewrite (N, Xnode);
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
- end if;
-
- -- Case of (2 ** expression) appearing as an argument of an integer
- -- multiplication, or as the right argument of a division of a non-
- -- negative integer. In such cases we leave the node untouched, setting
- -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
- -- of the higher level node converts it into a shift.
-
- -- Note: this transformation is not applicable for a modular type with
- -- a non-binary modulus in the multiplication case, since we get a wrong
- -- result if the shift causes an overflow before the modular reduction.
-
- if Nkind (Base) = N_Integer_Literal
- and then Intval (Base) = 2
- and then Is_Integer_Type (Root_Type (Exptyp))
- and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
- and then Is_Unsigned_Type (Exptyp)
- and then not Ovflo
- and then Nkind (Parent (N)) in N_Binary_Op
- then
- declare
- P : constant Node_Id := Parent (N);
- L : constant Node_Id := Left_Opnd (P);
- R : constant Node_Id := Right_Opnd (P);
-
- begin
- if (Nkind (P) = N_Op_Multiply
- and then not Non_Binary_Modulus (Typ)
- and then
- ((Is_Integer_Type (Etype (L)) and then R = N)
- or else
- (Is_Integer_Type (Etype (R)) and then L = N))
- and then not Do_Overflow_Check (P))
-
- or else
- (Nkind (P) = N_Op_Divide
- and then Is_Integer_Type (Etype (L))
- and then Is_Unsigned_Type (Etype (L))
- and then R = N
- and then not Do_Overflow_Check (P))
- then
- Set_Is_Power_Of_2_For_Shift (N);
- return;
- end if;
- end;
- end if;
-
- -- Fall through if exponentiation must be done using a runtime routine
-
- -- First deal with modular case
-
- if Is_Modular_Integer_Type (Rtyp) then
-
- -- Non-binary case, we call the special exponentiation routine for
- -- the non-binary case, converting the argument to Long_Long_Integer
- -- and passing the modulus value. Then the result is converted back
- -- to the base type.
-
- if Non_Binary_Modulus (Rtyp) then
- Rewrite (N,
- Convert_To (Typ,
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
- Parameter_Associations => New_List (
- Convert_To (Standard_Integer, Base),
- Make_Integer_Literal (Loc, Modulus (Rtyp)),
- Exp))));
-
- -- Binary case, in this case, we call one of two routines, either the
- -- unsigned integer case, or the unsigned long long integer case,
- -- with a final "and" operation to do the required mod.
-
- else
- if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
- Ent := RTE (RE_Exp_Unsigned);
- else
- Ent := RTE (RE_Exp_Long_Long_Unsigned);
- end if;
-
- Rewrite (N,
- Convert_To (Typ,
- Make_Op_And (Loc,
- Left_Opnd =>
- Make_Function_Call (Loc,
- Name => New_Reference_To (Ent, Loc),
- Parameter_Associations => New_List (
- Convert_To (Etype (First_Formal (Ent)), Base),
- Exp)),
- Right_Opnd =>
- Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
-
- end if;
-
- -- Common exit point for modular type case
-
- Analyze_And_Resolve (N, Typ);
- return;
-
- -- Signed integer cases, done using either Integer or Long_Long_Integer.
- -- It is not worth having routines for Short_[Short_]Integer, since for
- -- most machines it would not help, and it would generate more code that
- -- might need certification when a certified run time is required.
-
- -- In the integer cases, we have two routines, one for when overflow
- -- checks are required, and one when they are not required, since there
- -- is a real gain in omitting checks on many machines.
-
- elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
- or else (Rtyp = Base_Type (Standard_Long_Integer)
- and then
- Esize (Standard_Long_Integer) > Esize (Standard_Integer))
- or else (Rtyp = Universal_Integer)
- then
- Etyp := Standard_Long_Long_Integer;
-
- if Ovflo then
- Rent := RE_Exp_Long_Long_Integer;
- else
- Rent := RE_Exn_Long_Long_Integer;
- end if;
-
- elsif Is_Signed_Integer_Type (Rtyp) then
- Etyp := Standard_Integer;
-
- if Ovflo then
- Rent := RE_Exp_Integer;
- else
- Rent := RE_Exn_Integer;
- end if;
-
- -- Floating-point cases, always done using Long_Long_Float. We do not
- -- need separate routines for the overflow case here, since in the case
- -- of floating-point, we generate infinities anyway as a rule (either
- -- that or we automatically trap overflow), and if there is an infinity
- -- generated and a range check is required, the check will fail anyway.
-
- else
- pragma Assert (Is_Floating_Point_Type (Rtyp));
- Etyp := Standard_Long_Long_Float;
- Rent := RE_Exn_Long_Long_Float;
- end if;
-
- -- Common processing for integer cases and floating-point cases.
- -- If we are in the right type, we can call runtime routine directly
-
- if Typ = Etyp
- and then Rtyp /= Universal_Integer
- and then Rtyp /= Universal_Real
- then
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (Rent), Loc),
- Parameter_Associations => New_List (Base, Exp)));
-
- -- Otherwise we have to introduce conversions (conversions are also
- -- required in the universal cases, since the runtime routine is
- -- typed using one of the standard types.
-
- else
- Rewrite (N,
- Convert_To (Typ,
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (Rent), Loc),
- Parameter_Associations => New_List (
- Convert_To (Etyp, Base),
- Exp))));
- end if;
-
- Analyze_And_Resolve (N, Typ);
- return;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Op_Expon;
-
- --------------------
- -- Expand_N_Op_Ge --
- --------------------
-
- procedure Expand_N_Op_Ge (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
- Op1 : constant Node_Id := Left_Opnd (N);
- Op2 : constant Node_Id := Right_Opnd (N);
- Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Typ1) then
- Expand_Array_Comparison (N);
- return;
- end if;
-
- if Is_Boolean_Type (Typ1) then
- Adjust_Condition (Op1);
- Adjust_Condition (Op2);
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
-
- Rewrite_Comparison (N);
-
- -- If we still have comparison, and Vax_Float type, process it
-
- if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
- Expand_Vax_Comparison (N);
- return;
- end if;
- end Expand_N_Op_Ge;
-
- --------------------
- -- Expand_N_Op_Gt --
- --------------------
-
- procedure Expand_N_Op_Gt (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
- Op1 : constant Node_Id := Left_Opnd (N);
- Op2 : constant Node_Id := Right_Opnd (N);
- Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Typ1) then
- Expand_Array_Comparison (N);
- return;
- end if;
-
- if Is_Boolean_Type (Typ1) then
- Adjust_Condition (Op1);
- Adjust_Condition (Op2);
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
-
- Rewrite_Comparison (N);
-
- -- If we still have comparison, and Vax_Float type, process it
-
- if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
- Expand_Vax_Comparison (N);
- return;
- end if;
- end Expand_N_Op_Gt;
-
- --------------------
- -- Expand_N_Op_Le --
- --------------------
-
- procedure Expand_N_Op_Le (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
- Op1 : constant Node_Id := Left_Opnd (N);
- Op2 : constant Node_Id := Right_Opnd (N);
- Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Typ1) then
- Expand_Array_Comparison (N);
- return;
- end if;
-
- if Is_Boolean_Type (Typ1) then
- Adjust_Condition (Op1);
- Adjust_Condition (Op2);
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
-
- Rewrite_Comparison (N);
-
- -- If we still have comparison, and Vax_Float type, process it
-
- if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
- Expand_Vax_Comparison (N);
- return;
- end if;
- end Expand_N_Op_Le;
-
- --------------------
- -- Expand_N_Op_Lt --
- --------------------
-
- procedure Expand_N_Op_Lt (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
- Op1 : constant Node_Id := Left_Opnd (N);
- Op2 : constant Node_Id := Right_Opnd (N);
- Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Typ1) then
- Expand_Array_Comparison (N);
- return;
- end if;
-
- if Is_Boolean_Type (Typ1) then
- Adjust_Condition (Op1);
- Adjust_Condition (Op2);
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
-
- Rewrite_Comparison (N);
-
- -- If we still have comparison, and Vax_Float type, process it
-
- if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
- Expand_Vax_Comparison (N);
- return;
- end if;
- end Expand_N_Op_Lt;
-
- -----------------------
- -- Expand_N_Op_Minus --
- -----------------------
-
- procedure Expand_N_Op_Minus (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Unary_Op_Validity_Checks (N);
-
- if not Backend_Overflow_Checks_On_Target
- and then Is_Signed_Integer_Type (Etype (N))
- and then Do_Overflow_Check (N)
- then
- -- Software overflow checking expands -expr into (0 - expr)
-
- Rewrite (N,
- Make_Op_Subtract (Loc,
- Left_Opnd => Make_Integer_Literal (Loc, 0),
- Right_Opnd => Right_Opnd (N)));
-
- Analyze_And_Resolve (N, Typ);
-
- -- Vax floating-point types case
-
- elsif Vax_Float (Etype (N)) then
- Expand_Vax_Arith (N);
- end if;
- end Expand_N_Op_Minus;
-
- ---------------------
- -- Expand_N_Op_Mod --
- ---------------------
-
- procedure Expand_N_Op_Mod (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- DOC : constant Boolean := Do_Overflow_Check (N);
- DDC : constant Boolean := Do_Division_Check (N);
-
- LLB : Uint;
- Llo : Uint;
- Lhi : Uint;
- LOK : Boolean;
- Rlo : Uint;
- Rhi : Uint;
- ROK : Boolean;
-
- pragma Warnings (Off, Lhi);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- Determine_Range (Right, ROK, Rlo, Rhi);
- Determine_Range (Left, LOK, Llo, Lhi);
-
- -- Convert mod to rem if operands are known non-negative. We do this
- -- since it is quite likely that this will improve the quality of code,
- -- (the operation now corresponds to the hardware remainder), and it
- -- does not seem likely that it could be harmful.
-
- if LOK and then Llo >= 0
- and then
- ROK and then Rlo >= 0
- then
- Rewrite (N,
- Make_Op_Rem (Sloc (N),
- Left_Opnd => Left_Opnd (N),
- Right_Opnd => Right_Opnd (N)));
-
- -- Instead of reanalyzing the node we do the analysis manually. This
- -- avoids anomalies when the replacement is done in an instance and
- -- is epsilon more efficient.
-
- Set_Entity (N, Standard_Entity (S_Op_Rem));
- Set_Etype (N, Typ);
- Set_Do_Overflow_Check (N, DOC);
- Set_Do_Division_Check (N, DDC);
- Expand_N_Op_Rem (N);
- Set_Analyzed (N);
-
- -- Otherwise, normal mod processing
-
- else
- if Is_Integer_Type (Etype (N)) then
- Apply_Divide_Check (N);
- end if;
-
- -- Apply optimization x mod 1 = 0. We don't really need that with
- -- gcc, but it is useful with other back ends (e.g. AAMP), and is
- -- certainly harmless.
-
- if Is_Integer_Type (Etype (N))
- and then Compile_Time_Known_Value (Right)
- and then Expr_Value (Right) = Uint_1
- then
- -- Call Remove_Side_Effects to ensure that any side effects in
- -- the ignored left operand (in particular function calls to
- -- user defined functions) are properly executed.
-
- Remove_Side_Effects (Left);
-
- Rewrite (N, Make_Integer_Literal (Loc, 0));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Deal with annoying case of largest negative number remainder
- -- minus one. Gigi does not handle this case correctly, because
- -- it generates a divide instruction which may trap in this case.
-
- -- In fact the check is quite easy, if the right operand is -1, then
- -- the mod value is always 0, and we can just ignore the left operand
- -- completely in this case.
-
- -- The operand type may be private (e.g. in the expansion of an
- -- intrinsic operation) so we must use the underlying type to get the
- -- bounds, and convert the literals explicitly.
-
- LLB :=
- Expr_Value
- (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
-
- if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
- and then
- ((not LOK) or else (Llo = LLB))
- then
- Rewrite (N,
- Make_Conditional_Expression (Loc,
- Expressions => New_List (
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr (Right),
- Right_Opnd =>
- Unchecked_Convert_To (Typ,
- Make_Integer_Literal (Loc, -1))),
- Unchecked_Convert_To (Typ,
- Make_Integer_Literal (Loc, Uint_0)),
- Relocate_Node (N))));
-
- Set_Analyzed (Next (Next (First (Expressions (N)))));
- Analyze_And_Resolve (N, Typ);
- end if;
- end if;
- end Expand_N_Op_Mod;
-
- --------------------------
- -- Expand_N_Op_Multiply --
- --------------------------
-
- procedure Expand_N_Op_Multiply (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Lop : constant Node_Id := Left_Opnd (N);
- Rop : constant Node_Id := Right_Opnd (N);
-
- Lp2 : constant Boolean :=
- Nkind (Lop) = N_Op_Expon
- and then Is_Power_Of_2_For_Shift (Lop);
-
- Rp2 : constant Boolean :=
- Nkind (Rop) = N_Op_Expon
- and then Is_Power_Of_2_For_Shift (Rop);
-
- Ltyp : constant Entity_Id := Etype (Lop);
- Rtyp : constant Entity_Id := Etype (Rop);
- Typ : Entity_Id := Etype (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- -- Special optimizations for integer types
-
- if Is_Integer_Type (Typ) then
-
- -- N * 0 = 0 for integer types
-
- if Compile_Time_Known_Value (Rop)
- and then Expr_Value (Rop) = Uint_0
- then
- -- Call Remove_Side_Effects to ensure that any side effects in
- -- the ignored left operand (in particular function calls to
- -- user defined functions) are properly executed.
-
- Remove_Side_Effects (Lop);
-
- Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Similar handling for 0 * N = 0
-
- if Compile_Time_Known_Value (Lop)
- and then Expr_Value (Lop) = Uint_0
- then
- Remove_Side_Effects (Rop);
- Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- N * 1 = 1 * N = N for integer types
-
- -- This optimisation is not done if we are going to
- -- rewrite the product 1 * 2 ** N to a shift.
-
- if Compile_Time_Known_Value (Rop)
- and then Expr_Value (Rop) = Uint_1
- and then not Lp2
- then
- Rewrite (N, Lop);
- return;
-
- elsif Compile_Time_Known_Value (Lop)
- and then Expr_Value (Lop) = Uint_1
- and then not Rp2
- then
- Rewrite (N, Rop);
- return;
- end if;
- end if;
-
- -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
- -- Is_Power_Of_2_For_Shift is set means that we know that our left
- -- operand is an integer, as required for this to work.
-
- if Rp2 then
- if Lp2 then
-
- -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
-
- Rewrite (N,
- Make_Op_Expon (Loc,
- Left_Opnd => Make_Integer_Literal (Loc, 2),
- Right_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd => Right_Opnd (Lop),
- Right_Opnd => Right_Opnd (Rop))));
- Analyze_And_Resolve (N, Typ);
- return;
-
- else
- Rewrite (N,
- Make_Op_Shift_Left (Loc,
- Left_Opnd => Lop,
- Right_Opnd =>
- Convert_To (Standard_Natural, Right_Opnd (Rop))));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Same processing for the operands the other way round
-
- elsif Lp2 then
- Rewrite (N,
- Make_Op_Shift_Left (Loc,
- Left_Opnd => Rop,
- Right_Opnd =>
- Convert_To (Standard_Natural, Right_Opnd (Lop))));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Do required fixup of universal fixed operation
-
- if Typ = Universal_Fixed then
- Fixup_Universal_Fixed_Operation (N);
- Typ := Etype (N);
- end if;
-
- -- Multiplications with fixed-point results
-
- if Is_Fixed_Point_Type (Typ) then
-
- -- No special processing if Treat_Fixed_As_Integer is set, since from
- -- a semantic point of view such operations are simply integer
- -- operations and will be treated that way.
-
- if not Treat_Fixed_As_Integer (N) then
-
- -- Case of fixed * integer => fixed
-
- if Is_Integer_Type (Rtyp) then
- Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
-
- -- Case of integer * fixed => fixed
-
- elsif Is_Integer_Type (Ltyp) then
- Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
-
- -- Case of fixed * fixed => fixed
-
- else
- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
- end if;
- end if;
-
- -- Other cases of multiplication of fixed-point operands. Again we
- -- exclude the cases where Treat_Fixed_As_Integer flag is set.
-
- elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
- and then not Treat_Fixed_As_Integer (N)
- then
- if Is_Integer_Type (Typ) then
- Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
- else
- pragma Assert (Is_Floating_Point_Type (Typ));
- Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
- end if;
-
- -- Mixed-mode operations can appear in a non-static universal context,
- -- in which case the integer argument must be converted explicitly.
-
- elsif Typ = Universal_Real
- and then Is_Integer_Type (Rtyp)
- then
- Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
-
- Analyze_And_Resolve (Rop, Universal_Real);
-
- elsif Typ = Universal_Real
- and then Is_Integer_Type (Ltyp)
- then
- Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
-
- Analyze_And_Resolve (Lop, Universal_Real);
-
- -- Non-fixed point cases, check software overflow checking required
-
- elsif Is_Signed_Integer_Type (Etype (N)) then
- Apply_Arithmetic_Overflow_Check (N);
-
- -- Deal with VAX float case
-
- elsif Vax_Float (Typ) then
- Expand_Vax_Arith (N);
- return;
- end if;
- end Expand_N_Op_Multiply;
-
- --------------------
- -- Expand_N_Op_Ne --
- --------------------
-
- procedure Expand_N_Op_Ne (N : Node_Id) is
- Typ : constant Entity_Id := Etype (Left_Opnd (N));
-
- begin
- -- Case of elementary type with standard operator
-
- if Is_Elementary_Type (Typ)
- and then Sloc (Entity (N)) = Standard_Location
- then
- Binary_Op_Validity_Checks (N);
-
- -- Boolean types (requiring handling of non-standard case)
-
- if Is_Boolean_Type (Typ) then
- Adjust_Condition (Left_Opnd (N));
- Adjust_Condition (Right_Opnd (N));
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
-
- Rewrite_Comparison (N);
-
- -- If we still have comparison for Vax_Float, process it
-
- if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
- Expand_Vax_Comparison (N);
- return;
- end if;
-
- -- For all cases other than elementary types, we rewrite node as the
- -- negation of an equality operation, and reanalyze. The equality to be
- -- used is defined in the same scope and has the same signature. This
- -- signature must be set explicitly since in an instance it may not have
- -- the same visibility as in the generic unit. This avoids duplicating
- -- or factoring the complex code for record/array equality tests etc.
-
- else
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Neg : Node_Id;
- Ne : constant Entity_Id := Entity (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- Neg :=
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd => Left_Opnd (N),
- Right_Opnd => Right_Opnd (N)));
- Set_Paren_Count (Right_Opnd (Neg), 1);
-
- if Scope (Ne) /= Standard_Standard then
- Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
- end if;
-
- -- For navigation purposes, the inequality is treated as an
- -- implicit reference to the corresponding equality. Preserve the
- -- Comes_From_ source flag so that the proper Xref entry is
- -- generated.
-
- Preserve_Comes_From_Source (Neg, N);
- Preserve_Comes_From_Source (Right_Opnd (Neg), N);
- Rewrite (N, Neg);
- Analyze_And_Resolve (N, Standard_Boolean);
- end;
- end if;
- end Expand_N_Op_Ne;
-
- ---------------------
- -- Expand_N_Op_Not --
- ---------------------
-
- -- If the argument is other than a Boolean array type, there is no special
- -- expansion required.
-
- -- For the packed case, we call the special routine in Exp_Pakd, except
- -- that if the component size is greater than one, we use the standard
- -- routine generating a gruesome loop (it is so peculiar to have packed
- -- arrays with non-standard Boolean representations anyway, so it does not
- -- matter that we do not handle this case efficiently).
-
- -- For the unpacked case (and for the special packed case where we have non
- -- standard Booleans, as discussed above), we generate and insert into the
- -- tree the following function definition:
-
- -- function Nnnn (A : arr) is
- -- B : arr;
- -- begin
- -- for J in a'range loop
- -- B (J) := not A (J);
- -- end loop;
- -- return B;
- -- end Nnnn;
-
- -- Here arr is the actual subtype of the parameter (and hence always
- -- constrained). Then we replace the not with a call to this function.
-
- procedure Expand_N_Op_Not (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Opnd : Node_Id;
- Arr : Entity_Id;
- A : Entity_Id;
- B : Entity_Id;
- J : Entity_Id;
- A_J : Node_Id;
- B_J : Node_Id;
-
- Func_Name : Entity_Id;
- Loop_Statement : Node_Id;
-
- begin
- Unary_Op_Validity_Checks (N);
-
- -- For boolean operand, deal with non-standard booleans
-
- if Is_Boolean_Type (Typ) then
- Adjust_Condition (Right_Opnd (N));
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- return;
- end if;
-
- -- Only array types need any other processing
-
- if not Is_Array_Type (Typ) then
- return;
- end if;
-
- -- Case of array operand. If bit packed with a component size of 1,
- -- handle it in Exp_Pakd if the operand is known to be aligned.
-
- if Is_Bit_Packed_Array (Typ)
- and then Component_Size (Typ) = 1
- and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
- then
- Expand_Packed_Not (N);
- return;
- end if;
-
- -- Case of array operand which is not bit-packed. If the context is
- -- a safe assignment, call in-place operation, If context is a larger
- -- boolean expression in the context of a safe assignment, expansion is
- -- done by enclosing operation.
-
- Opnd := Relocate_Node (Right_Opnd (N));
- Convert_To_Actual_Subtype (Opnd);
- Arr := Etype (Opnd);
- Ensure_Defined (Arr, N);
- Silly_Boolean_Array_Not_Test (N, Arr);
-
- if Nkind (Parent (N)) = N_Assignment_Statement then
- if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
- Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
- return;
-
- -- Special case the negation of a binary operation
-
- elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
- and then Safe_In_Place_Array_Op
- (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
- then
- Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
- return;
- end if;
-
- elsif Nkind (Parent (N)) in N_Binary_Op
- and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
- then
- declare
- Op1 : constant Node_Id := Left_Opnd (Parent (N));
- Op2 : constant Node_Id := Right_Opnd (Parent (N));
- Lhs : constant Node_Id := Name (Parent (Parent (N)));
-
- begin
- if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
- if N = Op1
- and then Nkind (Op2) = N_Op_Not
- then
- -- (not A) op (not B) can be reduced to a single call
-
- return;
-
- elsif N = Op2
- and then Nkind (Parent (N)) = N_Op_Xor
- then
- -- A xor (not B) can also be special-cased
-
- return;
- end if;
- end if;
- end;
- end if;
-
- A := Make_Defining_Identifier (Loc, Name_uA);
- B := Make_Defining_Identifier (Loc, Name_uB);
- J := Make_Defining_Identifier (Loc, Name_uJ);
-
- A_J :=
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (A, Loc),
- Expressions => New_List (New_Reference_To (J, Loc)));
-
- B_J :=
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (B, Loc),
- Expressions => New_List (New_Reference_To (J, Loc)));
-
- Loop_Statement :=
- Make_Implicit_Loop_Statement (N,
- Identifier => Empty,
-
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => J,
- Discrete_Subtype_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix => Make_Identifier (Loc, Chars (A)),
- Attribute_Name => Name_Range))),
-
- Statements => New_List (
- Make_Assignment_Statement (Loc,
- Name => B_J,
- Expression => Make_Op_Not (Loc, A_J))));
-
- Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
- Set_Is_Inlined (Func_Name);
-
- Insert_Action (N,
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Func_Name,
- Parameter_Specifications => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => A,
- Parameter_Type => New_Reference_To (Typ, Loc))),
- Result_Definition => New_Reference_To (Typ, Loc)),
-
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => B,
- Object_Definition => New_Reference_To (Arr, Loc))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Loop_Statement,
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Identifier (Loc, Chars (B)))))));
-
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Reference_To (Func_Name, Loc),
- Parameter_Associations => New_List (Opnd)));
-
- Analyze_And_Resolve (N, Typ);
- end Expand_N_Op_Not;
-
- --------------------
- -- Expand_N_Op_Or --
- --------------------
-
- procedure Expand_N_Op_Or (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Etype (N)) then
- Expand_Boolean_Operator (N);
-
- elsif Is_Boolean_Type (Etype (N)) then
- Adjust_Condition (Left_Opnd (N));
- Adjust_Condition (Right_Opnd (N));
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
- end Expand_N_Op_Or;
-
- ----------------------
- -- Expand_N_Op_Plus --
- ----------------------
-
- procedure Expand_N_Op_Plus (N : Node_Id) is
- begin
- Unary_Op_Validity_Checks (N);
- end Expand_N_Op_Plus;
-
- ---------------------
- -- Expand_N_Op_Rem --
- ---------------------
-
- procedure Expand_N_Op_Rem (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
-
- LLB : Uint;
- Llo : Uint;
- Lhi : Uint;
- LOK : Boolean;
- Rlo : Uint;
- Rhi : Uint;
- ROK : Boolean;
-
- pragma Warnings (Off, Lhi);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Integer_Type (Etype (N)) then
- Apply_Divide_Check (N);
- end if;
-
- -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
- -- but it is useful with other back ends (e.g. AAMP), and is certainly
- -- harmless.
-
- if Is_Integer_Type (Etype (N))
- and then Compile_Time_Known_Value (Right)
- and then Expr_Value (Right) = Uint_1
- then
- -- Call Remove_Side_Effects to ensure that any side effects in the
- -- ignored left operand (in particular function calls to user defined
- -- functions) are properly executed.
-
- Remove_Side_Effects (Left);
-
- Rewrite (N, Make_Integer_Literal (Loc, 0));
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- Deal with annoying case of largest negative number remainder minus
- -- one. Gigi does not handle this case correctly, because it generates
- -- a divide instruction which may trap in this case.
-
- -- In fact the check is quite easy, if the right operand is -1, then
- -- the remainder is always 0, and we can just ignore the left operand
- -- completely in this case.
-
- Determine_Range (Right, ROK, Rlo, Rhi);
- Determine_Range (Left, LOK, Llo, Lhi);
-
- -- The operand type may be private (e.g. in the expansion of an
- -- intrinsic operation) so we must use the underlying type to get the
- -- bounds, and convert the literals explicitly.
-
- LLB :=
- Expr_Value
- (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
-
- -- Now perform the test, generating code only if needed
-
- if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
- and then
- ((not LOK) or else (Llo = LLB))
- then
- Rewrite (N,
- Make_Conditional_Expression (Loc,
- Expressions => New_List (
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr (Right),
- Right_Opnd =>
- Unchecked_Convert_To (Typ,
- Make_Integer_Literal (Loc, -1))),
-
- Unchecked_Convert_To (Typ,
- Make_Integer_Literal (Loc, Uint_0)),
-
- Relocate_Node (N))));
-
- Set_Analyzed (Next (Next (First (Expressions (N)))));
- Analyze_And_Resolve (N, Typ);
- end if;
- end Expand_N_Op_Rem;
-
- -----------------------------
- -- Expand_N_Op_Rotate_Left --
- -----------------------------
-
- procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
- begin
- Binary_Op_Validity_Checks (N);
- end Expand_N_Op_Rotate_Left;
-
- ------------------------------
- -- Expand_N_Op_Rotate_Right --
- ------------------------------
-
- procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
- begin
- Binary_Op_Validity_Checks (N);
- end Expand_N_Op_Rotate_Right;
-
- ----------------------------
- -- Expand_N_Op_Shift_Left --
- ----------------------------
-
- procedure Expand_N_Op_Shift_Left (N : Node_Id) is
- begin
- Binary_Op_Validity_Checks (N);
- end Expand_N_Op_Shift_Left;
-
- -----------------------------
- -- Expand_N_Op_Shift_Right --
- -----------------------------
-
- procedure Expand_N_Op_Shift_Right (N : Node_Id) is
- begin
- Binary_Op_Validity_Checks (N);
- end Expand_N_Op_Shift_Right;
-
- ----------------------------------------
- -- Expand_N_Op_Shift_Right_Arithmetic --
- ----------------------------------------
-
- procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
- begin
- Binary_Op_Validity_Checks (N);
- end Expand_N_Op_Shift_Right_Arithmetic;
-
- --------------------------
- -- Expand_N_Op_Subtract --
- --------------------------
-
- procedure Expand_N_Op_Subtract (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- -- N - 0 = N for integer types
-
- if Is_Integer_Type (Typ)
- and then Compile_Time_Known_Value (Right_Opnd (N))
- and then Expr_Value (Right_Opnd (N)) = 0
- then
- Rewrite (N, Left_Opnd (N));
- return;
- end if;
-
- -- Arithmetic overflow checks for signed integer/fixed point types
-
- if Is_Signed_Integer_Type (Typ)
- or else Is_Fixed_Point_Type (Typ)
- then
- Apply_Arithmetic_Overflow_Check (N);
-
- -- Vax floating-point types case
-
- elsif Vax_Float (Typ) then
- Expand_Vax_Arith (N);
- end if;
- end Expand_N_Op_Subtract;
-
- ---------------------
- -- Expand_N_Op_Xor --
- ---------------------
-
- procedure Expand_N_Op_Xor (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Binary_Op_Validity_Checks (N);
-
- if Is_Array_Type (Etype (N)) then
- Expand_Boolean_Operator (N);
-
- elsif Is_Boolean_Type (Etype (N)) then
- Adjust_Condition (Left_Opnd (N));
- Adjust_Condition (Right_Opnd (N));
- Set_Etype (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- end if;
- end Expand_N_Op_Xor;
-
- ----------------------
- -- Expand_N_Or_Else --
- ----------------------
-
- -- Expand into conditional expression if Actions present, and also
- -- deal with optimizing case of arguments being True or False.
-
- procedure Expand_N_Or_Else (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Actlist : List_Id;
-
- begin
- -- Deal with non-standard booleans
-
- if Is_Boolean_Type (Typ) then
- Adjust_Condition (Left);
- Adjust_Condition (Right);
- Set_Etype (N, Standard_Boolean);
- end if;
-
- -- Check for cases where left argument is known to be True or False
-
- if Compile_Time_Known_Value (Left) then
-
- -- If left argument is False, change (False or else Right) to Right.
- -- Any actions associated with Right will be executed unconditionally
- -- and can thus be inserted into the tree unconditionally.
-
- if Expr_Value_E (Left) = Standard_False then
- if Present (Actions (N)) then
- Insert_Actions (N, Actions (N));
- end if;
-
- Rewrite (N, Right);
-
- -- If left argument is True, change (True and then Right) to True. In
- -- this case we can forget the actions associated with Right, since
- -- they will never be executed.
-
- else pragma Assert (Expr_Value_E (Left) = Standard_True);
- Kill_Dead_Code (Right);
- Kill_Dead_Code (Actions (N));
- Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
- end if;
-
- Adjust_Result_Type (N, Typ);
- return;
- end if;
-
- -- If Actions are present, we expand
-
- -- left or else right
-
- -- into
-
- -- if left then True else right end
-
- -- with the actions becoming the Else_Actions of the conditional
- -- expression. This conditional expression is then further expanded
- -- (and will eventually disappear)
-
- if Present (Actions (N)) then
- Actlist := Actions (N);
- Rewrite (N,
- Make_Conditional_Expression (Loc,
- Expressions => New_List (
- Left,
- New_Occurrence_Of (Standard_True, Loc),
- Right)));
-
- Set_Else_Actions (N, Actlist);
- Analyze_And_Resolve (N, Standard_Boolean);
- Adjust_Result_Type (N, Typ);
- return;
- end if;
-
- -- No actions present, check for cases of right argument True/False
-
- if Compile_Time_Known_Value (Right) then
-
- -- Change (Left or else False) to Left. Note that we know there are
- -- no actions associated with the True operand, since we just checked
- -- for this case above.
-
- if Expr_Value_E (Right) = Standard_False then
- Rewrite (N, Left);
-
- -- Change (Left or else True) to True, making sure to preserve any
- -- side effects associated with the Left operand.
-
- else pragma Assert (Expr_Value_E (Right) = Standard_True);
- Remove_Side_Effects (Left);
- Rewrite
- (N, New_Occurrence_Of (Standard_True, Loc));
- end if;
- end if;
-
- Adjust_Result_Type (N, Typ);
- end Expand_N_Or_Else;
-
- -----------------------------------
- -- Expand_N_Qualified_Expression --
- -----------------------------------
-
- procedure Expand_N_Qualified_Expression (N : Node_Id) is
- Operand : constant Node_Id := Expression (N);
- Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
-
- begin
- -- Do validity check if validity checking operands
-
- if Validity_Checks_On
- and then Validity_Check_Operands
- then
- Ensure_Valid (Operand);
- end if;
-
- -- Apply possible constraint check
-
- Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
- end Expand_N_Qualified_Expression;
-
- ---------------------------------
- -- Expand_N_Selected_Component --
- ---------------------------------
-
- -- If the selector is a discriminant of a concurrent object, rewrite the
- -- prefix to denote the corresponding record type.
-
- procedure Expand_N_Selected_Component (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Par : constant Node_Id := Parent (N);
- P : constant Node_Id := Prefix (N);
- Ptyp : Entity_Id := Underlying_Type (Etype (P));
- Disc : Entity_Id;
- New_N : Node_Id;
- Dcon : Elmt_Id;
-
- function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
- -- Gigi needs a temporary for prefixes that depend on a discriminant,
- -- unless the context of an assignment can provide size information.
- -- Don't we have a general routine that does this???
-
- -----------------------
- -- In_Left_Hand_Side --
- -----------------------
-
- function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
- begin
- return (Nkind (Parent (Comp)) = N_Assignment_Statement
- and then Comp = Name (Parent (Comp)))
- or else (Present (Parent (Comp))
- and then Nkind (Parent (Comp)) in N_Subexpr
- and then In_Left_Hand_Side (Parent (Comp)));
- end In_Left_Hand_Side;
-
- -- Start of processing for Expand_N_Selected_Component
-
- begin
- -- Insert explicit dereference if required
-
- if Is_Access_Type (Ptyp) then
- Insert_Explicit_Dereference (P);
- Analyze_And_Resolve (P, Designated_Type (Ptyp));
-
- if Ekind (Etype (P)) = E_Private_Subtype
- and then Is_For_Access_Subtype (Etype (P))
- then
- Set_Etype (P, Base_Type (Etype (P)));
- end if;
-
- Ptyp := Etype (P);
- end if;
-
- -- Deal with discriminant check required
-
- if Do_Discriminant_Check (N) then
-
- -- Present the discriminant checking function to the backend, so that
- -- it can inline the call to the function.
-
- Add_Inlined_Body
- (Discriminant_Checking_Func
- (Original_Record_Component (Entity (Selector_Name (N)))));
-
- -- Now reset the flag and generate the call
-
- Set_Do_Discriminant_Check (N, False);
- Generate_Discriminant_Check (N);
- end if;
-
- -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
- -- function, then additional actuals must be passed.
-
- if Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (P)
- then
- Make_Build_In_Place_Call_In_Anonymous_Context (P);
- end if;
-
- -- Gigi cannot handle unchecked conversions that are the prefix of a
- -- selected component with discriminants. This must be checked during
- -- expansion, because during analysis the type of the selector is not
- -- known at the point the prefix is analyzed. If the conversion is the
- -- target of an assignment, then we cannot force the evaluation.
-
- if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
- and then Has_Discriminants (Etype (N))
- and then not In_Left_Hand_Side (N)
- then
- Force_Evaluation (Prefix (N));
- end if;
-
- -- Remaining processing applies only if selector is a discriminant
-
- if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
-
- -- If the selector is a discriminant of a constrained record type,
- -- we may be able to rewrite the expression with the actual value
- -- of the discriminant, a useful optimization in some cases.
-
- if Is_Record_Type (Ptyp)
- and then Has_Discriminants (Ptyp)
- and then Is_Constrained (Ptyp)
- then
- -- Do this optimization for discrete types only, and not for
- -- access types (access discriminants get us into trouble!)
-
- if not Is_Discrete_Type (Etype (N)) then
- null;
-
- -- Don't do this on the left hand of an assignment statement.
- -- Normally one would think that references like this would
- -- not occur, but they do in generated code, and mean that
- -- we really do want to assign the discriminant!
-
- elsif Nkind (Par) = N_Assignment_Statement
- and then Name (Par) = N
- then
- null;
-
- -- Don't do this optimization for the prefix of an attribute or
- -- the operand of an object renaming declaration since these are
- -- contexts where we do not want the value anyway.
-
- elsif (Nkind (Par) = N_Attribute_Reference
- and then Prefix (Par) = N)
- or else Is_Renamed_Object (N)
- then
- null;
-
- -- Don't do this optimization if we are within the code for a
- -- discriminant check, since the whole point of such a check may
- -- be to verify the condition on which the code below depends!
-
- elsif Is_In_Discriminant_Check (N) then
- null;
-
- -- Green light to see if we can do the optimization. There is
- -- still one condition that inhibits the optimization below but
- -- now is the time to check the particular discriminant.
-
- else
- -- Loop through discriminants to find the matching discriminant
- -- constraint to see if we can copy it.
-
- Disc := First_Discriminant (Ptyp);
- Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
- Discr_Loop : while Present (Dcon) loop
-
- -- Check if this is the matching discriminant
-
- if Disc = Entity (Selector_Name (N)) then
-
- -- Here we have the matching discriminant. Check for
- -- the case of a discriminant of a component that is
- -- constrained by an outer discriminant, which cannot
- -- be optimized away.
-
- if
- Denotes_Discriminant
- (Node (Dcon), Check_Concurrent => True)
- then
- exit Discr_Loop;
-
- -- In the context of a case statement, the expression may
- -- have the base type of the discriminant, and we need to
- -- preserve the constraint to avoid spurious errors on
- -- missing cases.
-
- elsif Nkind (Parent (N)) = N_Case_Statement
- and then Etype (Node (Dcon)) /= Etype (Disc)
- then
- Rewrite (N,
- Make_Qualified_Expression (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Etype (Disc), Loc),
- Expression =>
- New_Copy_Tree (Node (Dcon))));
- Analyze_And_Resolve (N, Etype (Disc));
-
- -- In case that comes out as a static expression,
- -- reset it (a selected component is never static).
-
- Set_Is_Static_Expression (N, False);
- return;
-
- -- Otherwise we can just copy the constraint, but the
- -- result is certainly not static! In some cases the
- -- discriminant constraint has been analyzed in the
- -- context of the original subtype indication, but for
- -- itypes the constraint might not have been analyzed
- -- yet, and this must be done now.
-
- else
- Rewrite (N, New_Copy_Tree (Node (Dcon)));
- Analyze_And_Resolve (N);
- Set_Is_Static_Expression (N, False);
- return;
- end if;
- end if;
-
- Next_Elmt (Dcon);
- Next_Discriminant (Disc);
- end loop Discr_Loop;
-
- -- Note: the above loop should always find a matching
- -- discriminant, but if it does not, we just missed an
- -- optimization due to some glitch (perhaps a previous error),
- -- so ignore.
-
- end if;
- end if;
-
- -- The only remaining processing is in the case of a discriminant of
- -- a concurrent object, where we rewrite the prefix to denote the
- -- corresponding record type. If the type is derived and has renamed
- -- discriminants, use corresponding discriminant, which is the one
- -- that appears in the corresponding record.
-
- if not Is_Concurrent_Type (Ptyp) then
- return;
- end if;
-
- Disc := Entity (Selector_Name (N));
-
- if Is_Derived_Type (Ptyp)
- and then Present (Corresponding_Discriminant (Disc))
- then
- Disc := Corresponding_Discriminant (Disc);
- end if;
-
- New_N :=
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
- New_Copy_Tree (P)),
- Selector_Name => Make_Identifier (Loc, Chars (Disc)));
-
- Rewrite (N, New_N);
- Analyze (N);
- end if;
- end Expand_N_Selected_Component;
-
- --------------------
- -- Expand_N_Slice --
- --------------------
-
- procedure Expand_N_Slice (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Pfx : constant Node_Id := Prefix (N);
- Ptp : Entity_Id := Etype (Pfx);
-
- function Is_Procedure_Actual (N : Node_Id) return Boolean;
- -- Check whether the argument is an actual for a procedure call, in
- -- which case the expansion of a bit-packed slice is deferred until the
- -- call itself is expanded. The reason this is required is that we might
- -- have an IN OUT or OUT parameter, and the copy out is essential, and
- -- that copy out would be missed if we created a temporary here in
- -- Expand_N_Slice. Note that we don't bother to test specifically for an
- -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
- -- is harmless to defer expansion in the IN case, since the call
- -- processing will still generate the appropriate copy in operation,
- -- which will take care of the slice.
-
- procedure Make_Temporary;
- -- Create a named variable for the value of the slice, in cases where
- -- the back-end cannot handle it properly, e.g. when packed types or
- -- unaligned slices are involved.
-
- -------------------------
- -- Is_Procedure_Actual --
- -------------------------
-
- function Is_Procedure_Actual (N : Node_Id) return Boolean is
- Par : Node_Id := Parent (N);
-
- begin
- loop
- -- If our parent is a procedure call we can return
-
- if Nkind (Par) = N_Procedure_Call_Statement then
- return True;
-
- -- If our parent is a type conversion, keep climbing the tree,
- -- since a type conversion can be a procedure actual. Also keep
- -- climbing if parameter association or a qualified expression,
- -- since these are additional cases that do can appear on
- -- procedure actuals.
-
- elsif Nkind_In (Par, N_Type_Conversion,
- N_Parameter_Association,
- N_Qualified_Expression)
- then
- Par := Parent (Par);
-
- -- Any other case is not what we are looking for
-
- else
- return False;
- end if;
- end loop;
- end Is_Procedure_Actual;
-
- --------------------
- -- Make_Temporary --
- --------------------
-
- procedure Make_Temporary is
- Decl : Node_Id;
- Ent : constant Entity_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
- begin
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Ent,
- Object_Definition => New_Occurrence_Of (Typ, Loc));
-
- Set_No_Initialization (Decl);
-
- Insert_Actions (N, New_List (
- Decl,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Ent, Loc),
- Expression => Relocate_Node (N))));
-
- Rewrite (N, New_Occurrence_Of (Ent, Loc));
- Analyze_And_Resolve (N, Typ);
- end Make_Temporary;
-
- -- Start of processing for Expand_N_Slice
-
- begin
- -- Special handling for access types
-
- if Is_Access_Type (Ptp) then
-
- Ptp := Designated_Type (Ptp);
-
- Rewrite (Pfx,
- Make_Explicit_Dereference (Sloc (N),
- Prefix => Relocate_Node (Pfx)));
-
- Analyze_And_Resolve (Pfx, Ptp);
- end if;
-
- -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
- -- function, then additional actuals must be passed.
-
- if Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (Pfx)
- then
- Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
- end if;
-
- -- Range checks are potentially also needed for cases involving a slice
- -- indexed by a subtype indication, but Do_Range_Check can currently
- -- only be set for expressions ???
-
- if not Index_Checks_Suppressed (Ptp)
- and then (not Is_Entity_Name (Pfx)
- or else not Index_Checks_Suppressed (Entity (Pfx)))
- and then Nkind (Discrete_Range (N)) /= N_Subtype_Indication
-
- -- Do not enable range check to nodes associated with the frontend
- -- expansion of the dispatch table. We first check if Ada.Tags is
- -- already loaded to avoid the addition of an undesired dependence
- -- on such run-time unit.
-
- and then
- (VM_Target /= No_VM
- or else not
- (RTU_Loaded (Ada_Tags)
- and then Nkind (Prefix (N)) = N_Selected_Component
- and then Present (Entity (Selector_Name (Prefix (N))))
- and then Entity (Selector_Name (Prefix (N))) =
- RTE_Record_Component (RE_Prims_Ptr)))
- then
- Enable_Range_Check (Discrete_Range (N));
- end if;
-
- -- The remaining case to be handled is packed slices. We can leave
- -- packed slices as they are in the following situations:
-
- -- 1. Right or left side of an assignment (we can handle this
- -- situation correctly in the assignment statement expansion).
-
- -- 2. Prefix of indexed component (the slide is optimized away in this
- -- case, see the start of Expand_N_Slice.)
-
- -- 3. Object renaming declaration, since we want the name of the
- -- slice, not the value.
-
- -- 4. Argument to procedure call, since copy-in/copy-out handling may
- -- be required, and this is handled in the expansion of call
- -- itself.
-
- -- 5. Prefix of an address attribute (this is an error which is caught
- -- elsewhere, and the expansion would interfere with generating the
- -- error message).
-
- if not Is_Packed (Typ) then
-
- -- Apply transformation for actuals of a function call, where
- -- Expand_Actuals is not used.
-
- if Nkind (Parent (N)) = N_Function_Call
- and then Is_Possibly_Unaligned_Slice (N)
- then
- Make_Temporary;
- end if;
-
- elsif Nkind (Parent (N)) = N_Assignment_Statement
- or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
- and then Parent (N) = Name (Parent (Parent (N))))
- then
- return;
-
- elsif Nkind (Parent (N)) = N_Indexed_Component
- or else Is_Renamed_Object (N)
- or else Is_Procedure_Actual (N)
- then
- return;
-
- elsif Nkind (Parent (N)) = N_Attribute_Reference
- and then Attribute_Name (Parent (N)) = Name_Address
- then
- return;
-
- else
- Make_Temporary;
- end if;
- end Expand_N_Slice;
-
- ------------------------------
- -- Expand_N_Type_Conversion --
- ------------------------------
-
- procedure Expand_N_Type_Conversion (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Operand : constant Node_Id := Expression (N);
- Target_Type : constant Entity_Id := Etype (N);
- Operand_Type : Entity_Id := Etype (Operand);
-
- procedure Handle_Changed_Representation;
- -- This is called in the case of record and array type conversions to
- -- see if there is a change of representation to be handled. Change of
- -- representation is actually handled at the assignment statement level,
- -- and what this procedure does is rewrite node N conversion as an
- -- assignment to temporary. If there is no change of representation,
- -- then the conversion node is unchanged.
-
- procedure Real_Range_Check;
- -- Handles generation of range check for real target value
-
- -----------------------------------
- -- Handle_Changed_Representation --
- -----------------------------------
-
- procedure Handle_Changed_Representation is
- Temp : Entity_Id;
- Decl : Node_Id;
- Odef : Node_Id;
- Disc : Node_Id;
- N_Ix : Node_Id;
- Cons : List_Id;
-
- begin
- -- Nothing else to do if no change of representation
-
- if Same_Representation (Operand_Type, Target_Type) then
- return;
-
- -- The real change of representation work is done by the assignment
- -- statement processing. So if this type conversion is appearing as
- -- the expression of an assignment statement, nothing needs to be
- -- done to the conversion.
-
- elsif Nkind (Parent (N)) = N_Assignment_Statement then
- return;
-
- -- Otherwise we need to generate a temporary variable, and do the
- -- change of representation assignment into that temporary variable.
- -- The conversion is then replaced by a reference to this variable.
-
- else
- Cons := No_List;
-
- -- If type is unconstrained we have to add a constraint, copied
- -- from the actual value of the left hand side.
-
- if not Is_Constrained (Target_Type) then
- if Has_Discriminants (Operand_Type) then
- Disc := First_Discriminant (Operand_Type);
-
- if Disc /= First_Stored_Discriminant (Operand_Type) then
- Disc := First_Stored_Discriminant (Operand_Type);
- end if;
-
- Cons := New_List;
- while Present (Disc) loop
- Append_To (Cons,
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_Move_Checks (Operand),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Disc))));
- Next_Discriminant (Disc);
- end loop;
-
- elsif Is_Array_Type (Operand_Type) then
- N_Ix := First_Index (Target_Type);
- Cons := New_List;
-
- for J in 1 .. Number_Dimensions (Operand_Type) loop
-
- -- We convert the bounds explicitly. We use an unchecked
- -- conversion because bounds checks are done elsewhere.
-
- Append_To (Cons,
- Make_Range (Loc,
- Low_Bound =>
- Unchecked_Convert_To (Etype (N_Ix),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks
- (Operand, Name_Req => True),
- Attribute_Name => Name_First,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J)))),
-
- High_Bound =>
- Unchecked_Convert_To (Etype (N_Ix),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks
- (Operand, Name_Req => True),
- Attribute_Name => Name_Last,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J))))));
-
- Next_Index (N_Ix);
- end loop;
- end if;
- end if;
-
- Odef := New_Occurrence_Of (Target_Type, Loc);
-
- if Present (Cons) then
- Odef :=
- Make_Subtype_Indication (Loc,
- Subtype_Mark => Odef,
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => Cons));
- end if;
-
- Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => Odef);
-
- Set_No_Initialization (Decl, True);
-
- -- Insert required actions. It is essential to suppress checks
- -- since we have suppressed default initialization, which means
- -- that the variable we create may have no discriminants.
-
- Insert_Actions (N,
- New_List (
- Decl,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Temp, Loc),
- Expression => Relocate_Node (N))),
- Suppress => All_Checks);
-
- Rewrite (N, New_Occurrence_Of (Temp, Loc));
- return;
- end if;
- end Handle_Changed_Representation;
-
- ----------------------
- -- Real_Range_Check --
- ----------------------
-
- -- Case of conversions to floating-point or fixed-point. If range checks
- -- are enabled and the target type has a range constraint, we convert:
-
- -- typ (x)
-
- -- to
-
- -- Tnn : typ'Base := typ'Base (x);
- -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
- -- Tnn
-
- -- This is necessary when there is a conversion of integer to float or
- -- to fixed-point to ensure that the correct checks are made. It is not
- -- necessary for float to float where it is enough to simply set the
- -- Do_Range_Check flag.
-
- procedure Real_Range_Check is
- Btyp : constant Entity_Id := Base_Type (Target_Type);
- Lo : constant Node_Id := Type_Low_Bound (Target_Type);
- Hi : constant Node_Id := Type_High_Bound (Target_Type);
- Xtyp : constant Entity_Id := Etype (Operand);
- Conv : Node_Id;
- Tnn : Entity_Id;
-
- begin
- -- Nothing to do if conversion was rewritten
-
- if Nkind (N) /= N_Type_Conversion then
- return;
- end if;
-
- -- Nothing to do if range checks suppressed, or target has the same
- -- range as the base type (or is the base type).
-
- if Range_Checks_Suppressed (Target_Type)
- or else (Lo = Type_Low_Bound (Btyp)
- and then
- Hi = Type_High_Bound (Btyp))
- then
- return;
- end if;
-
- -- Nothing to do if expression is an entity on which checks have been
- -- suppressed.
-
- if Is_Entity_Name (Operand)
- and then Range_Checks_Suppressed (Entity (Operand))
- then
- return;
- end if;
-
- -- Nothing to do if bounds are all static and we can tell that the
- -- expression is within the bounds of the target. Note that if the
- -- operand is of an unconstrained floating-point type, then we do
- -- not trust it to be in range (might be infinite)
-
- declare
- S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
- S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
-
- begin
- if (not Is_Floating_Point_Type (Xtyp)
- or else Is_Constrained (Xtyp))
- and then Compile_Time_Known_Value (S_Lo)
- and then Compile_Time_Known_Value (S_Hi)
- and then Compile_Time_Known_Value (Hi)
- and then Compile_Time_Known_Value (Lo)
- then
- declare
- D_Lov : constant Ureal := Expr_Value_R (Lo);
- D_Hiv : constant Ureal := Expr_Value_R (Hi);
- S_Lov : Ureal;
- S_Hiv : Ureal;
-
- begin
- if Is_Real_Type (Xtyp) then
- S_Lov := Expr_Value_R (S_Lo);
- S_Hiv := Expr_Value_R (S_Hi);
- else
- S_Lov := UR_From_Uint (Expr_Value (S_Lo));
- S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
- end if;
-
- if D_Hiv > D_Lov
- and then S_Lov >= D_Lov
- and then S_Hiv <= D_Hiv
- then
- Set_Do_Range_Check (Operand, False);
- return;
- end if;
- end;
- end if;
- end;
-
- -- For float to float conversions, we are done
-
- if Is_Floating_Point_Type (Xtyp)
- and then
- Is_Floating_Point_Type (Btyp)
- then
- return;
- end if;
-
- -- Otherwise rewrite the conversion as described above
-
- Conv := Relocate_Node (N);
- Rewrite
- (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
- Set_Etype (Conv, Btyp);
-
- -- Enable overflow except for case of integer to float conversions,
- -- where it is never required, since we can never have overflow in
- -- this case.
-
- if not Is_Integer_Type (Etype (Operand)) then
- Enable_Overflow_Check (Conv);
- end if;
-
- Tnn :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('T'));
-
- Insert_Actions (N, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition => New_Occurrence_Of (Btyp, Loc),
- Expression => Conv),
-
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => New_Occurrence_Of (Tnn, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_First,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc))),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => New_Occurrence_Of (Tnn, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Last,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc)))),
- Reason => CE_Range_Check_Failed)));
-
- Rewrite (N, New_Occurrence_Of (Tnn, Loc));
- Analyze_And_Resolve (N, Btyp);
- end Real_Range_Check;
-
- -- Start of processing for Expand_N_Type_Conversion
-
- begin
- -- Nothing at all to do if conversion is to the identical type so remove
- -- the conversion completely, it is useless.
-
- if Operand_Type = Target_Type then
- Rewrite (N, Relocate_Node (Operand));
- return;
- end if;
-
- -- Nothing to do if this is the second argument of read. This is a
- -- "backwards" conversion that will be handled by the specialized code
- -- in attribute processing.
-
- if Nkind (Parent (N)) = N_Attribute_Reference
- and then Attribute_Name (Parent (N)) = Name_Read
- and then Next (First (Expressions (Parent (N)))) = N
- then
- return;
- end if;
-
- -- Here if we may need to expand conversion
-
- -- Do validity check if validity checking operands
-
- if Validity_Checks_On
- and then Validity_Check_Operands
- then
- Ensure_Valid (Operand);
- end if;
-
- -- Special case of converting from non-standard boolean type
-
- if Is_Boolean_Type (Operand_Type)
- and then (Nonzero_Is_True (Operand_Type))
- then
- Adjust_Condition (Operand);
- Set_Etype (Operand, Standard_Boolean);
- Operand_Type := Standard_Boolean;
- end if;
-
- -- Case of converting to an access type
-
- if Is_Access_Type (Target_Type) then
-
- -- Apply an accessibility check when the conversion operand is an
- -- access parameter (or a renaming thereof), unless conversion was
- -- expanded from an Unchecked_ or Unrestricted_Access attribute.
- -- Note that other checks may still need to be applied below (such
- -- as tagged type checks).
-
- if Is_Entity_Name (Operand)
- and then
- (Is_Formal (Entity (Operand))
- or else
- (Present (Renamed_Object (Entity (Operand)))
- and then Is_Entity_Name (Renamed_Object (Entity (Operand)))
- and then Is_Formal
- (Entity (Renamed_Object (Entity (Operand))))))
- and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
- and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
- or else Attribute_Name (Original_Node (N)) = Name_Access)
- then
- Apply_Accessibility_Check
- (Operand, Target_Type, Insert_Node => Operand);
-
- -- If the level of the operand type is statically deeper than the
- -- level of the target type, then force Program_Error. Note that this
- -- can only occur for cases where the attribute is within the body of
- -- an instantiation (otherwise the conversion will already have been
- -- rejected as illegal). Note: warnings are issued by the analyzer
- -- for the instance cases.
-
- elsif In_Instance_Body
- and then Type_Access_Level (Operand_Type) >
- Type_Access_Level (Target_Type)
- then
- Rewrite (N,
- Make_Raise_Program_Error (Sloc (N),
- Reason => PE_Accessibility_Check_Failed));
- Set_Etype (N, Target_Type);
-
- -- When the operand is a selected access discriminant the check needs
- -- to be made against the level of the object denoted by the prefix
- -- of the selected name. Force Program_Error for this case as well
- -- (this accessibility violation can only happen if within the body
- -- of an instantiation).
-
- elsif In_Instance_Body
- and then Ekind (Operand_Type) = E_Anonymous_Access_Type
- and then Nkind (Operand) = N_Selected_Component
- and then Object_Access_Level (Operand) >
- Type_Access_Level (Target_Type)
- then
- Rewrite (N,
- Make_Raise_Program_Error (Sloc (N),
- Reason => PE_Accessibility_Check_Failed));
- Set_Etype (N, Target_Type);
- end if;
- end if;
-
- -- Case of conversions of tagged types and access to tagged types
-
- -- When needed, that is to say when the expression is class-wide, Add
- -- runtime a tag check for (strict) downward conversion by using the
- -- membership test, generating:
-
- -- [constraint_error when Operand not in Target_Type'Class]
-
- -- or in the access type case
-
- -- [constraint_error
- -- when Operand /= null
- -- and then Operand.all not in
- -- Designated_Type (Target_Type)'Class]
-
- if (Is_Access_Type (Target_Type)
- and then Is_Tagged_Type (Designated_Type (Target_Type)))
- or else Is_Tagged_Type (Target_Type)
- then
- -- Do not do any expansion in the access type case if the parent is a
- -- renaming, since this is an error situation which will be caught by
- -- Sem_Ch8, and the expansion can interfere with this error check.
-
- if Is_Access_Type (Target_Type)
- and then Is_Renamed_Object (N)
- then
- return;
- end if;
-
- -- Otherwise, proceed with processing tagged conversion
-
- declare
- Actual_Op_Typ : Entity_Id;
- Actual_Targ_Typ : Entity_Id;
- Make_Conversion : Boolean := False;
- Root_Op_Typ : Entity_Id;
-
- procedure Make_Tag_Check (Targ_Typ : Entity_Id);
- -- Create a membership check to test whether Operand is a member
- -- of Targ_Typ. If the original Target_Type is an access, include
- -- a test for null value. The check is inserted at N.
-
- --------------------
- -- Make_Tag_Check --
- --------------------
-
- procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
- Cond : Node_Id;
-
- begin
- -- Generate:
- -- [Constraint_Error
- -- when Operand /= null
- -- and then Operand.all not in Targ_Typ]
-
- if Is_Access_Type (Target_Type) then
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
- Right_Opnd => Make_Null (Loc)),
-
- Right_Opnd =>
- Make_Not_In (Loc,
- Left_Opnd =>
- Make_Explicit_Dereference (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (Operand)),
- Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
-
- -- Generate:
- -- [Constraint_Error when Operand not in Targ_Typ]
-
- else
- Cond :=
- Make_Not_In (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
- Right_Opnd => New_Reference_To (Targ_Typ, Loc));
- end if;
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Tag_Check_Failed));
- end Make_Tag_Check;
-
- -- Start of processing
-
- begin
- if Is_Access_Type (Target_Type) then
- Actual_Op_Typ := Designated_Type (Operand_Type);
- Actual_Targ_Typ := Designated_Type (Target_Type);
-
- else
- Actual_Op_Typ := Operand_Type;
- Actual_Targ_Typ := Target_Type;
- end if;
-
- Root_Op_Typ := Root_Type (Actual_Op_Typ);
-
- -- Ada 2005 (AI-251): Handle interface type conversion
-
- if Is_Interface (Actual_Op_Typ) then
- Expand_Interface_Conversion (N, Is_Static => False);
- return;
- end if;
-
- if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
-
- -- Create a runtime tag check for a downward class-wide type
- -- conversion.
-
- if Is_Class_Wide_Type (Actual_Op_Typ)
- and then Root_Op_Typ /= Actual_Targ_Typ
- and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ)
- then
- Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
- Make_Conversion := True;
- end if;
-
- -- AI05-0073: If the result subtype of the function is defined
- -- by an access_definition designating a specific tagged type
- -- T, a check is made that the result value is null or the tag
- -- of the object designated by the result value identifies T.
- -- Constraint_Error is raised if this check fails.
-
- if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
- declare
- Func : Entity_Id;
- Func_Typ : Entity_Id;
-
- begin
- -- Climb scope stack looking for the enclosing function
-
- Func := Current_Scope;
- while Present (Func)
- and then Ekind (Func) /= E_Function
- loop
- Func := Scope (Func);
- end loop;
-
- -- The function's return subtype must be defined using
- -- an access definition.
-
- if Nkind (Result_Definition (Parent (Func))) =
- N_Access_Definition
- then
- Func_Typ := Directly_Designated_Type (Etype (Func));
-
- -- The return subtype denotes a specific tagged type,
- -- in other words, a non class-wide type.
-
- if Is_Tagged_Type (Func_Typ)
- and then not Is_Class_Wide_Type (Func_Typ)
- then
- Make_Tag_Check (Actual_Targ_Typ);
- Make_Conversion := True;
- end if;
- end if;
- end;
- end if;
-
- -- We have generated a tag check for either a class-wide type
- -- conversion or for AI05-0073.
-
- if Make_Conversion then
- declare
- Conv : Node_Id;
- begin
- Conv :=
- Make_Unchecked_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
- Expression => Relocate_Node (Expression (N)));
- Rewrite (N, Conv);
- Analyze_And_Resolve (N, Target_Type);
- end;
- end if;
- end if;
- end;
-
- -- Case of other access type conversions
-
- elsif Is_Access_Type (Target_Type) then
- Apply_Constraint_Check (Operand, Target_Type);
-
- -- Case of conversions from a fixed-point type
-
- -- These conversions require special expansion and processing, found in
- -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
- -- since from a semantic point of view, these are simple integer
- -- conversions, which do not need further processing.
-
- elsif Is_Fixed_Point_Type (Operand_Type)
- and then not Conversion_OK (N)
- then
- -- We should never see universal fixed at this case, since the
- -- expansion of the constituent divide or multiply should have
- -- eliminated the explicit mention of universal fixed.
-
- pragma Assert (Operand_Type /= Universal_Fixed);
-
- -- Check for special case of the conversion to universal real that
- -- occurs as a result of the use of a round attribute. In this case,
- -- the real type for the conversion is taken from the target type of
- -- the Round attribute and the result must be marked as rounded.
-
- if Target_Type = Universal_Real
- and then Nkind (Parent (N)) = N_Attribute_Reference
- and then Attribute_Name (Parent (N)) = Name_Round
- then
- Set_Rounded_Result (N);
- Set_Etype (N, Etype (Parent (N)));
- end if;
-
- -- Otherwise do correct fixed-conversion, but skip these if the
- -- Conversion_OK flag is set, because from a semantic point of
- -- view these are simple integer conversions needing no further
- -- processing (the backend will simply treat them as integers)
-
- if not Conversion_OK (N) then
- if Is_Fixed_Point_Type (Etype (N)) then
- Expand_Convert_Fixed_To_Fixed (N);
- Real_Range_Check;
-
- elsif Is_Integer_Type (Etype (N)) then
- Expand_Convert_Fixed_To_Integer (N);
-
- else
- pragma Assert (Is_Floating_Point_Type (Etype (N)));
- Expand_Convert_Fixed_To_Float (N);
- Real_Range_Check;
- end if;
- end if;
-
- -- Case of conversions to a fixed-point type
-
- -- These conversions require special expansion and processing, found in
- -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
- -- since from a semantic point of view, these are simple integer
- -- conversions, which do not need further processing.
-
- elsif Is_Fixed_Point_Type (Target_Type)
- and then not Conversion_OK (N)
- then
- if Is_Integer_Type (Operand_Type) then
- Expand_Convert_Integer_To_Fixed (N);
- Real_Range_Check;
- else
- pragma Assert (Is_Floating_Point_Type (Operand_Type));
- Expand_Convert_Float_To_Fixed (N);
- Real_Range_Check;
- end if;
-
- -- Case of float-to-integer conversions
-
- -- We also handle float-to-fixed conversions with Conversion_OK set
- -- since semantically the fixed-point target is treated as though it
- -- were an integer in such cases.
-
- elsif Is_Floating_Point_Type (Operand_Type)
- and then
- (Is_Integer_Type (Target_Type)
- or else
- (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
- then
- -- One more check here, gcc is still not able to do conversions of
- -- this type with proper overflow checking, and so gigi is doing an
- -- approximation of what is required by doing floating-point compares
- -- with the end-point. But that can lose precision in some cases, and
- -- give a wrong result. Converting the operand to Universal_Real is
- -- helpful, but still does not catch all cases with 64-bit integers
- -- on targets with only 64-bit floats
-
- -- The above comment seems obsoleted by Apply_Float_Conversion_Check
- -- Can this code be removed ???
-
- if Do_Range_Check (Operand) then
- Rewrite (Operand,
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Universal_Real, Loc),
- Expression =>
- Relocate_Node (Operand)));
-
- Set_Etype (Operand, Universal_Real);
- Enable_Range_Check (Operand);
- Set_Do_Range_Check (Expression (Operand), False);
- end if;
-
- -- Case of array conversions
-
- -- Expansion of array conversions, add required length/range checks but
- -- only do this if there is no change of representation. For handling of
- -- this case, see Handle_Changed_Representation.
-
- elsif Is_Array_Type (Target_Type) then
-
- if Is_Constrained (Target_Type) then
- Apply_Length_Check (Operand, Target_Type);
- else
- Apply_Range_Check (Operand, Target_Type);
- end if;
-
- Handle_Changed_Representation;
-
- -- Case of conversions of discriminated types
-
- -- Add required discriminant checks if target is constrained. Again this
- -- change is skipped if we have a change of representation.
-
- elsif Has_Discriminants (Target_Type)
- and then Is_Constrained (Target_Type)
- then
- Apply_Discriminant_Check (Operand, Target_Type);
- Handle_Changed_Representation;
-
- -- Case of all other record conversions. The only processing required
- -- is to check for a change of representation requiring the special
- -- assignment processing.
-
- elsif Is_Record_Type (Target_Type) then
-
- -- Ada 2005 (AI-216): Program_Error is raised when converting from
- -- a derived Unchecked_Union type to an unconstrained type that is
- -- not Unchecked_Union if the operand lacks inferable discriminants.
-
- if Is_Derived_Type (Operand_Type)
- and then Is_Unchecked_Union (Base_Type (Operand_Type))
- and then not Is_Constrained (Target_Type)
- and then not Is_Unchecked_Union (Base_Type (Target_Type))
- and then not Has_Inferable_Discriminants (Operand)
- then
- -- To prevent Gigi from generating illegal code, we generate a
- -- Program_Error node, but we give it the target type of the
- -- conversion.
-
- declare
- PE : constant Node_Id := Make_Raise_Program_Error (Loc,
- Reason => PE_Unchecked_Union_Restriction);
-
- begin
- Set_Etype (PE, Target_Type);
- Rewrite (N, PE);
-
- end;
- else
- Handle_Changed_Representation;
- end if;
-
- -- Case of conversions of enumeration types
-
- elsif Is_Enumeration_Type (Target_Type) then
-
- -- Special processing is required if there is a change of
- -- representation (from enumeration representation clauses)
-
- if not Same_Representation (Target_Type, Operand_Type) then
-
- -- Convert: x(y) to x'val (ytyp'val (y))
-
- Rewrite (N,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Val,
- Expressions => New_List (
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Operand_Type, Loc),
- Attribute_Name => Name_Pos,
- Expressions => New_List (Operand)))));
-
- Analyze_And_Resolve (N, Target_Type);
- end if;
-
- -- Case of conversions to floating-point
-
- elsif Is_Floating_Point_Type (Target_Type) then
- Real_Range_Check;
- end if;
-
- -- At this stage, either the conversion node has been transformed into
- -- some other equivalent expression, or left as a conversion that can
- -- be handled by Gigi. The conversions that Gigi can handle are the
- -- following:
-
- -- Conversions with no change of representation or type
-
- -- Numeric conversions involving integer, floating- and fixed-point
- -- values. Fixed-point values are allowed only if Conversion_OK is
- -- set, i.e. if the fixed-point values are to be treated as integers.
-
- -- No other conversions should be passed to Gigi
-
- -- Check: are these rules stated in sinfo??? if so, why restate here???
-
- -- The only remaining step is to generate a range check if we still have
- -- a type conversion at this stage and Do_Range_Check is set. For now we
- -- do this only for conversions of discrete types.
-
- if Nkind (N) = N_Type_Conversion
- and then Is_Discrete_Type (Etype (N))
- then
- declare
- Expr : constant Node_Id := Expression (N);
- Ftyp : Entity_Id;
- Ityp : Entity_Id;
-
- begin
- if Do_Range_Check (Expr)
- and then Is_Discrete_Type (Etype (Expr))
- then
- Set_Do_Range_Check (Expr, False);
-
- -- Before we do a range check, we have to deal with treating a
- -- fixed-point operand as an integer. The way we do this is
- -- simply to do an unchecked conversion to an appropriate
- -- integer type large enough to hold the result.
-
- -- This code is not active yet, because we are only dealing
- -- with discrete types so far ???
-
- if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
- and then Treat_Fixed_As_Integer (Expr)
- then
- Ftyp := Base_Type (Etype (Expr));
-
- if Esize (Ftyp) >= Esize (Standard_Integer) then
- Ityp := Standard_Long_Long_Integer;
- else
- Ityp := Standard_Integer;
- end if;
-
- Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
- end if;
-
- -- Reset overflow flag, since the range check will include
- -- dealing with possible overflow, and generate the check If
- -- Address is either a source type or target type, suppress
- -- range check to avoid typing anomalies when it is a visible
- -- integer type.
-
- Set_Do_Overflow_Check (N, False);
- if not Is_Descendent_Of_Address (Etype (Expr))
- and then not Is_Descendent_Of_Address (Target_Type)
- then
- Generate_Range_Check
- (Expr, Target_Type, CE_Range_Check_Failed);
- end if;
- end if;
- end;
- end if;
-
- -- Final step, if the result is a type conversion involving Vax_Float
- -- types, then it is subject for further special processing.
-
- if Nkind (N) = N_Type_Conversion
- and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
- then
- Expand_Vax_Conversion (N);
- return;
- end if;
- end Expand_N_Type_Conversion;
-
- -----------------------------------
- -- Expand_N_Unchecked_Expression --
- -----------------------------------
-
- -- Remove the unchecked expression node from the tree. It's job was simply
- -- to make sure that its constituent expression was handled with checks
- -- off, and now that that is done, we can remove it from the tree, and
- -- indeed must, since gigi does not expect to see these nodes.
-
- procedure Expand_N_Unchecked_Expression (N : Node_Id) is
- Exp : constant Node_Id := Expression (N);
-
- begin
- Set_Assignment_OK (Exp, Assignment_OK (N) or Assignment_OK (Exp));
- Rewrite (N, Exp);
- end Expand_N_Unchecked_Expression;
-
- ----------------------------------------
- -- Expand_N_Unchecked_Type_Conversion --
- ----------------------------------------
-
- -- If this cannot be handled by Gigi and we haven't already made a
- -- temporary for it, do it now.
-
- procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
- Target_Type : constant Entity_Id := Etype (N);
- Operand : constant Node_Id := Expression (N);
- Operand_Type : constant Entity_Id := Etype (Operand);
-
- begin
- -- If we have a conversion of a compile time known value to a target
- -- type and the value is in range of the target type, then we can simply
- -- replace the construct by an integer literal of the correct type. We
- -- only apply this to integer types being converted. Possibly it may
- -- apply in other cases, but it is too much trouble to worry about.
-
- -- Note that we do not do this transformation if the Kill_Range_Check
- -- flag is set, since then the value may be outside the expected range.
- -- This happens in the Normalize_Scalars case.
-
- -- We also skip this if either the target or operand type is biased
- -- because in this case, the unchecked conversion is supposed to
- -- preserve the bit pattern, not the integer value.
-
- if Is_Integer_Type (Target_Type)
- and then not Has_Biased_Representation (Target_Type)
- and then Is_Integer_Type (Operand_Type)
- and then not Has_Biased_Representation (Operand_Type)
- and then Compile_Time_Known_Value (Operand)
- and then not Kill_Range_Check (N)
- then
- declare
- Val : constant Uint := Expr_Value (Operand);
-
- begin
- if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
- and then
- Compile_Time_Known_Value (Type_High_Bound (Target_Type))
- and then
- Val >= Expr_Value (Type_Low_Bound (Target_Type))
- and then
- Val <= Expr_Value (Type_High_Bound (Target_Type))
- then
- Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
-
- -- If Address is the target type, just set the type to avoid a
- -- spurious type error on the literal when Address is a visible
- -- integer type.
-
- if Is_Descendent_Of_Address (Target_Type) then
- Set_Etype (N, Target_Type);
- else
- Analyze_And_Resolve (N, Target_Type);
- end if;
-
- return;
- end if;
- end;
- end if;
-
- -- Nothing to do if conversion is safe
-
- if Safe_Unchecked_Type_Conversion (N) then
- return;
- end if;
-
- -- Otherwise force evaluation unless Assignment_OK flag is set (this
- -- flag indicates ??? -- more comments needed here)
-
- if Assignment_OK (N) then
- null;
- else
- Force_Evaluation (N);
- end if;
- end Expand_N_Unchecked_Type_Conversion;
-
- ----------------------------
- -- Expand_Record_Equality --
- ----------------------------
-
- -- For non-variant records, Equality is expanded when needed into:
-
- -- and then Lhs.Discr1 = Rhs.Discr1
- -- and then ...
- -- and then Lhs.Discrn = Rhs.Discrn
- -- and then Lhs.Cmp1 = Rhs.Cmp1
- -- and then ...
- -- and then Lhs.Cmpn = Rhs.Cmpn
-
- -- The expression is folded by the back-end for adjacent fields. This
- -- function is called for tagged record in only one occasion: for imple-
- -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
- -- otherwise the primitive "=" is used directly.
-
- function Expand_Record_Equality
- (Nod : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id;
- Rhs : Node_Id;
- Bodies : List_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (Nod);
-
- Result : Node_Id;
- C : Entity_Id;
-
- First_Time : Boolean := True;
-
- function Suitable_Element (C : Entity_Id) return Entity_Id;
- -- Return the first field to compare beginning with C, skipping the
- -- inherited components.
-
- ----------------------
- -- Suitable_Element --
- ----------------------
-
- function Suitable_Element (C : Entity_Id) return Entity_Id is
- begin
- if No (C) then
- return Empty;
-
- elsif Ekind (C) /= E_Discriminant
- and then Ekind (C) /= E_Component
- then
- return Suitable_Element (Next_Entity (C));
-
- elsif Is_Tagged_Type (Typ)
- and then C /= Original_Record_Component (C)
- then
- return Suitable_Element (Next_Entity (C));
-
- elsif Chars (C) = Name_uController
- or else Chars (C) = Name_uTag
- then
- return Suitable_Element (Next_Entity (C));
-
- elsif Is_Interface (Etype (C)) then
- return Suitable_Element (Next_Entity (C));
-
- else
- return C;
- end if;
- end Suitable_Element;
-
- -- Start of processing for Expand_Record_Equality
-
- begin
- -- Generates the following code: (assuming that Typ has one Discr and
- -- component C2 is also a record)
-
- -- True
- -- and then Lhs.Discr1 = Rhs.Discr1
- -- and then Lhs.C1 = Rhs.C1
- -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
- -- and then ...
- -- and then Lhs.Cmpn = Rhs.Cmpn
-
- Result := New_Reference_To (Standard_True, Loc);
- C := Suitable_Element (First_Entity (Typ));
-
- while Present (C) loop
- declare
- New_Lhs : Node_Id;
- New_Rhs : Node_Id;
- Check : Node_Id;
-
- begin
- if First_Time then
- First_Time := False;
- New_Lhs := Lhs;
- New_Rhs := Rhs;
- else
- New_Lhs := New_Copy_Tree (Lhs);
- New_Rhs := New_Copy_Tree (Rhs);
- end if;
-
- Check :=
- Expand_Composite_Equality (Nod, Etype (C),
- Lhs =>
- Make_Selected_Component (Loc,
- Prefix => New_Lhs,
- Selector_Name => New_Reference_To (C, Loc)),
- Rhs =>
- Make_Selected_Component (Loc,
- Prefix => New_Rhs,
- Selector_Name => New_Reference_To (C, Loc)),
- Bodies => Bodies);
-
- -- If some (sub)component is an unchecked_union, the whole
- -- operation will raise program error.
-
- if Nkind (Check) = N_Raise_Program_Error then
- Result := Check;
- Set_Etype (Result, Standard_Boolean);
- exit;
- else
- Result :=
- Make_And_Then (Loc,
- Left_Opnd => Result,
- Right_Opnd => Check);
- end if;
- end;
-
- C := Suitable_Element (Next_Entity (C));
- end loop;
-
- return Result;
- end Expand_Record_Equality;
-
- -------------------------------------
- -- Fixup_Universal_Fixed_Operation --
- -------------------------------------
-
- procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
- Conv : constant Node_Id := Parent (N);
-
- begin
- -- We must have a type conversion immediately above us
-
- pragma Assert (Nkind (Conv) = N_Type_Conversion);
-
- -- Normally the type conversion gives our target type. The exception
- -- occurs in the case of the Round attribute, where the conversion
- -- will be to universal real, and our real type comes from the Round
- -- attribute (as well as an indication that we must round the result)
-
- if Nkind (Parent (Conv)) = N_Attribute_Reference
- and then Attribute_Name (Parent (Conv)) = Name_Round
- then
- Set_Etype (N, Etype (Parent (Conv)));
- Set_Rounded_Result (N);
-
- -- Normal case where type comes from conversion above us
-
- else
- Set_Etype (N, Etype (Conv));
- end if;
- end Fixup_Universal_Fixed_Operation;
-
- ------------------------------
- -- Get_Allocator_Final_List --
- ------------------------------
-
- function Get_Allocator_Final_List
- (N : Node_Id;
- T : Entity_Id;
- PtrT : Entity_Id) return Entity_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
-
- Owner : Entity_Id := PtrT;
- -- The entity whose finalization list must be used to attach the
- -- allocated object.
-
- begin
- if Ekind (PtrT) = E_Anonymous_Access_Type then
-
- -- If the context is an access parameter, we need to create a
- -- non-anonymous access type in order to have a usable final list,
- -- because there is otherwise no pool to which the allocated object
- -- can belong. We create both the type and the finalization chain
- -- here, because freezing an internal type does not create such a
- -- chain. The Final_Chain that is thus created is shared by the
- -- access parameter. The access type is tested against the result
- -- type of the function to exclude allocators whose type is an
- -- anonymous access result type. We freeze the type at once to
- -- ensure that it is properly decorated for the back-end, even
- -- if the context and current scope is a loop.
-
- if Nkind (Associated_Node_For_Itype (PtrT))
- in N_Subprogram_Specification
- and then
- PtrT /=
- Etype (Defining_Unit_Name (Associated_Node_For_Itype (PtrT)))
- then
- Owner := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
- Insert_Action (N,
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Owner,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- Subtype_Indication =>
- New_Occurrence_Of (T, Loc))));
-
- Freeze_Before (N, Owner);
- Build_Final_List (N, Owner);
- Set_Associated_Final_Chain (PtrT, Associated_Final_Chain (Owner));
-
- -- Ada 2005 (AI-318-02): If the context is a return object
- -- declaration, then the anonymous return subtype is defined to have
- -- the same accessibility level as that of the function's result
- -- subtype, which means that we want the scope where the function is
- -- declared.
-
- elsif Nkind (Associated_Node_For_Itype (PtrT)) = N_Object_Declaration
- and then Ekind (Scope (PtrT)) = E_Return_Statement
- then
- Owner := Scope (Return_Applies_To (Scope (PtrT)));
-
- -- Case of an access discriminant, or (Ada 2005), of an anonymous
- -- access component or anonymous access function result: find the
- -- final list associated with the scope of the type. (In the
- -- anonymous access component kind, a list controller will have
- -- been allocated when freezing the record type, and PtrT has an
- -- Associated_Final_Chain attribute designating it.)
-
- elsif No (Associated_Final_Chain (PtrT)) then
- Owner := Scope (PtrT);
- end if;
- end if;
-
- return Find_Final_List (Owner);
- end Get_Allocator_Final_List;
-
- ---------------------------------
- -- Has_Inferable_Discriminants --
- ---------------------------------
-
- function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
-
- function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
- -- Determines whether the left-most prefix of a selected component is a
- -- formal parameter in a subprogram. Assumes N is a selected component.
-
- --------------------------------
- -- Prefix_Is_Formal_Parameter --
- --------------------------------
-
- function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
- Sel_Comp : Node_Id := N;
-
- begin
- -- Move to the left-most prefix by climbing up the tree
-
- while Present (Parent (Sel_Comp))
- and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
- loop
- Sel_Comp := Parent (Sel_Comp);
- end loop;
-
- return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
- end Prefix_Is_Formal_Parameter;
-
- -- Start of processing for Has_Inferable_Discriminants
-
- begin
- -- For identifiers and indexed components, it is sufficient to have a
- -- constrained Unchecked_Union nominal subtype.
-
- if Nkind_In (N, N_Identifier, N_Indexed_Component) then
- return Is_Unchecked_Union (Base_Type (Etype (N)))
- and then
- Is_Constrained (Etype (N));
-
- -- For selected components, the subtype of the selector must be a
- -- constrained Unchecked_Union. If the component is subject to a
- -- per-object constraint, then the enclosing object must have inferable
- -- discriminants.
-
- elsif Nkind (N) = N_Selected_Component then
- if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
-
- -- A small hack. If we have a per-object constrained selected
- -- component of a formal parameter, return True since we do not
- -- know the actual parameter association yet.
-
- if Prefix_Is_Formal_Parameter (N) then
- return True;
- end if;
-
- -- Otherwise, check the enclosing object and the selector
-
- return Has_Inferable_Discriminants (Prefix (N))
- and then
- Has_Inferable_Discriminants (Selector_Name (N));
- end if;
-
- -- The call to Has_Inferable_Discriminants will determine whether
- -- the selector has a constrained Unchecked_Union nominal type.
-
- return Has_Inferable_Discriminants (Selector_Name (N));
-
- -- A qualified expression has inferable discriminants if its subtype
- -- mark is a constrained Unchecked_Union subtype.
-
- elsif Nkind (N) = N_Qualified_Expression then
- return Is_Unchecked_Union (Subtype_Mark (N))
- and then
- Is_Constrained (Subtype_Mark (N));
-
- end if;
-
- return False;
- end Has_Inferable_Discriminants;
-
- -------------------------------
- -- Insert_Dereference_Action --
- -------------------------------
-
- procedure Insert_Dereference_Action (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
- Pnod : constant Node_Id := Parent (N);
-
- function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
- -- Return true if type of P is derived from Checked_Pool;
-
- -----------------------------
- -- Is_Checked_Storage_Pool --
- -----------------------------
-
- function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
- T : Entity_Id;
-
- begin
- if No (P) then
- return False;
- end if;
-
- T := Etype (P);
- while T /= Etype (T) loop
- if Is_RTE (T, RE_Checked_Pool) then
- return True;
- else
- T := Etype (T);
- end if;
- end loop;
-
- return False;
- end Is_Checked_Storage_Pool;
-
- -- Start of processing for Insert_Dereference_Action
-
- begin
- pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
-
- if not (Is_Checked_Storage_Pool (Pool)
- and then Comes_From_Source (Original_Node (Pnod)))
- then
- return;
- end if;
-
- Insert_Action (N,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (
- Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
-
- Parameter_Associations => New_List (
-
- -- Pool
-
- New_Reference_To (Pool, Loc),
-
- -- Storage_Address. We use the attribute Pool_Address, which uses
- -- the pointer itself to find the address of the object, and which
- -- handles unconstrained arrays properly by computing the address
- -- of the template. i.e. the correct address of the corresponding
- -- allocation.
-
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr_Move_Checks (N),
- Attribute_Name => Name_Pool_Address),
-
- -- Size_In_Storage_Elements
-
- Make_Op_Divide (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Explicit_Dereference (Loc,
- Duplicate_Subexpr_Move_Checks (N)),
- Attribute_Name => Name_Size),
- Right_Opnd =>
- Make_Integer_Literal (Loc, System_Storage_Unit)),
-
- -- Alignment
-
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Explicit_Dereference (Loc,
- Duplicate_Subexpr_Move_Checks (N)),
- Attribute_Name => Name_Alignment))));
-
- exception
- when RE_Not_Available =>
- return;
- end Insert_Dereference_Action;
-
- ------------------------------
- -- Make_Array_Comparison_Op --
- ------------------------------
-
- -- This is a hand-coded expansion of the following generic function:
-
- -- generic
- -- type elem is (<>);
- -- type index is (<>);
- -- type a is array (index range <>) of elem;
-
- -- function Gnnn (X : a; Y: a) return boolean is
- -- J : index := Y'first;
-
- -- begin
- -- if X'length = 0 then
- -- return false;
-
- -- elsif Y'length = 0 then
- -- return true;
-
- -- else
- -- for I in X'range loop
- -- if X (I) = Y (J) then
- -- if J = Y'last then
- -- exit;
- -- else
- -- J := index'succ (J);
- -- end if;
-
- -- else
- -- return X (I) > Y (J);
- -- end if;
- -- end loop;
-
- -- return X'length > Y'length;
- -- end if;
- -- end Gnnn;
-
- -- Note that since we are essentially doing this expansion by hand, we
- -- do not need to generate an actual or formal generic part, just the
- -- instantiated function itself.
-
- function Make_Array_Comparison_Op
- (Typ : Entity_Id;
- Nod : Node_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (Nod);
-
- X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
- Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
- I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
- J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
-
- Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
-
- Loop_Statement : Node_Id;
- Loop_Body : Node_Id;
- If_Stat : Node_Id;
- Inner_If : Node_Id;
- Final_Expr : Node_Id;
- Func_Body : Node_Id;
- Func_Name : Entity_Id;
- Formals : List_Id;
- Length1 : Node_Id;
- Length2 : Node_Id;
-
- begin
- -- if J = Y'last then
- -- exit;
- -- else
- -- J := index'succ (J);
- -- end if;
-
- Inner_If :=
- Make_Implicit_If_Statement (Nod,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => New_Reference_To (J, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Y, Loc),
- Attribute_Name => Name_Last)),
-
- Then_Statements => New_List (
- Make_Exit_Statement (Loc)),
-
- Else_Statements =>
- New_List (
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (J, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Index, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (New_Reference_To (J, Loc))))));
-
- -- if X (I) = Y (J) then
- -- if ... end if;
- -- else
- -- return X (I) > Y (J);
- -- end if;
-
- Loop_Body :=
- Make_Implicit_If_Statement (Nod,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (X, Loc),
- Expressions => New_List (New_Reference_To (I, Loc))),
-
- Right_Opnd =>
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (Y, Loc),
- Expressions => New_List (New_Reference_To (J, Loc)))),
-
- Then_Statements => New_List (Inner_If),
-
- Else_Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (X, Loc),
- Expressions => New_List (New_Reference_To (I, Loc))),
-
- Right_Opnd =>
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (Y, Loc),
- Expressions => New_List (
- New_Reference_To (J, Loc)))))));
-
- -- for I in X'range loop
- -- if ... end if;
- -- end loop;
-
- Loop_Statement :=
- Make_Implicit_Loop_Statement (Nod,
- Identifier => Empty,
-
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => I,
- Discrete_Subtype_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (X, Loc),
- Attribute_Name => Name_Range))),
-
- Statements => New_List (Loop_Body));
-
- -- if X'length = 0 then
- -- return false;
- -- elsif Y'length = 0 then
- -- return true;
- -- else
- -- for ... loop ... end loop;
- -- return X'length > Y'length;
- -- end if;
-
- Length1 :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (X, Loc),
- Attribute_Name => Name_Length);
-
- Length2 :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Y, Loc),
- Attribute_Name => Name_Length);
-
- Final_Expr :=
- Make_Op_Gt (Loc,
- Left_Opnd => Length1,
- Right_Opnd => Length2);
-
- If_Stat :=
- Make_Implicit_If_Statement (Nod,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (X, Loc),
- Attribute_Name => Name_Length),
- Right_Opnd =>
- Make_Integer_Literal (Loc, 0)),
-
- Then_Statements =>
- New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => New_Reference_To (Standard_False, Loc))),
-
- Elsif_Parts => New_List (
- Make_Elsif_Part (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Y, Loc),
- Attribute_Name => Name_Length),
- Right_Opnd =>
- Make_Integer_Literal (Loc, 0)),
-
- Then_Statements =>
- New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => New_Reference_To (Standard_True, Loc))))),
-
- Else_Statements => New_List (
- Loop_Statement,
- Make_Simple_Return_Statement (Loc,
- Expression => Final_Expr)));
-
- -- (X : a; Y: a)
-
- Formals := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => X,
- Parameter_Type => New_Reference_To (Typ, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Y,
- Parameter_Type => New_Reference_To (Typ, Loc)));
-
- -- function Gnnn (...) return boolean is
- -- J : index := Y'first;
- -- begin
- -- if ... end if;
- -- end Gnnn;
-
- Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
-
- Func_Body :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Func_Name,
- Parameter_Specifications => Formals,
- Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
-
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => J,
- Object_Definition => New_Reference_To (Index, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Y, Loc),
- Attribute_Name => Name_First))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (If_Stat)));
-
- return Func_Body;
- end Make_Array_Comparison_Op;
-
- ---------------------------
- -- Make_Boolean_Array_Op --
- ---------------------------
-
- -- For logical operations on boolean arrays, expand in line the following,
- -- replacing 'and' with 'or' or 'xor' where needed:
-
- -- function Annn (A : typ; B: typ) return typ is
- -- C : typ;
- -- begin
- -- for J in A'range loop
- -- C (J) := A (J) op B (J);
- -- end loop;
- -- return C;
- -- end Annn;
-
- -- Here typ is the boolean array type
-
- function Make_Boolean_Array_Op
- (Typ : Entity_Id;
- N : Node_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
-
- A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
- B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
- C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
- J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
-
- A_J : Node_Id;
- B_J : Node_Id;
- C_J : Node_Id;
- Op : Node_Id;
-
- Formals : List_Id;
- Func_Name : Entity_Id;
- Func_Body : Node_Id;
- Loop_Statement : Node_Id;
-
- begin
- A_J :=
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (A, Loc),
- Expressions => New_List (New_Reference_To (J, Loc)));
-
- B_J :=
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (B, Loc),
- Expressions => New_List (New_Reference_To (J, Loc)));
-
- C_J :=
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (C, Loc),
- Expressions => New_List (New_Reference_To (J, Loc)));
-
- if Nkind (N) = N_Op_And then
- Op :=
- Make_Op_And (Loc,
- Left_Opnd => A_J,
- Right_Opnd => B_J);
-
- elsif Nkind (N) = N_Op_Or then
- Op :=
- Make_Op_Or (Loc,
- Left_Opnd => A_J,
- Right_Opnd => B_J);
-
- else
- Op :=
- Make_Op_Xor (Loc,
- Left_Opnd => A_J,
- Right_Opnd => B_J);
- end if;
-
- Loop_Statement :=
- Make_Implicit_Loop_Statement (N,
- Identifier => Empty,
-
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => J,
- Discrete_Subtype_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (A, Loc),
- Attribute_Name => Name_Range))),
-
- Statements => New_List (
- Make_Assignment_Statement (Loc,
- Name => C_J,
- Expression => Op)));
-
- Formals := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => A,
- Parameter_Type => New_Reference_To (Typ, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => B,
- Parameter_Type => New_Reference_To (Typ, Loc)));
-
- Func_Name :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
- Set_Is_Inlined (Func_Name);
-
- Func_Body :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Func_Name,
- Parameter_Specifications => Formals,
- Result_Definition => New_Reference_To (Typ, Loc)),
-
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => C,
- Object_Definition => New_Reference_To (Typ, Loc))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Loop_Statement,
- Make_Simple_Return_Statement (Loc,
- Expression => New_Reference_To (C, Loc)))));
-
- return Func_Body;
- end Make_Boolean_Array_Op;
-
- ------------------------
- -- Rewrite_Comparison --
- ------------------------
-
- procedure Rewrite_Comparison (N : Node_Id) is
- begin
- if Nkind (N) = N_Type_Conversion then
- Rewrite_Comparison (Expression (N));
- return;
-
- elsif Nkind (N) not in N_Op_Compare then
- return;
- end if;
-
- declare
- Typ : constant Entity_Id := Etype (N);
- Op1 : constant Node_Id := Left_Opnd (N);
- Op2 : constant Node_Id := Right_Opnd (N);
-
- Res : constant Compare_Result :=
- Compile_Time_Compare (Op1, Op2, Assume_Valid => True);
- -- Res indicates if compare outcome can be compile time determined
-
- True_Result : Boolean;
- False_Result : Boolean;
-
- begin
- case N_Op_Compare (Nkind (N)) is
- when N_Op_Eq =>
- True_Result := Res = EQ;
- False_Result := Res = LT or else Res = GT or else Res = NE;
-
- when N_Op_Ge =>
- True_Result := Res in Compare_GE;
- False_Result := Res = LT;
-
- if Res = LE
- and then Constant_Condition_Warnings
- and then Comes_From_Source (Original_Node (N))
- and then Nkind (Original_Node (N)) = N_Op_Ge
- and then not In_Instance
- and then Is_Integer_Type (Etype (Left_Opnd (N)))
- and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
- then
- Error_Msg_N
- ("can never be greater than, could replace by ""'=""?", N);
- end if;
-
- when N_Op_Gt =>
- True_Result := Res = GT;
- False_Result := Res in Compare_LE;
-
- when N_Op_Lt =>
- True_Result := Res = LT;
- False_Result := Res in Compare_GE;
-
- when N_Op_Le =>
- True_Result := Res in Compare_LE;
- False_Result := Res = GT;
-
- if Res = GE
- and then Constant_Condition_Warnings
- and then Comes_From_Source (Original_Node (N))
- and then Nkind (Original_Node (N)) = N_Op_Le
- and then not In_Instance
- and then Is_Integer_Type (Etype (Left_Opnd (N)))
- and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
- then
- Error_Msg_N
- ("can never be less than, could replace by ""'=""?", N);
- end if;
-
- when N_Op_Ne =>
- True_Result := Res = NE or else Res = GT or else Res = LT;
- False_Result := Res = EQ;
- end case;
-
- if True_Result then
- Rewrite (N,
- Convert_To (Typ,
- New_Occurrence_Of (Standard_True, Sloc (N))));
- Analyze_And_Resolve (N, Typ);
- Warn_On_Known_Condition (N);
-
- elsif False_Result then
- Rewrite (N,
- Convert_To (Typ,
- New_Occurrence_Of (Standard_False, Sloc (N))));
- Analyze_And_Resolve (N, Typ);
- Warn_On_Known_Condition (N);
- end if;
- end;
- end Rewrite_Comparison;
-
- ----------------------------
- -- Safe_In_Place_Array_Op --
- ----------------------------
-
- function Safe_In_Place_Array_Op
- (Lhs : Node_Id;
- Op1 : Node_Id;
- Op2 : Node_Id) return Boolean
- is
- Target : Entity_Id;
-
- function Is_Safe_Operand (Op : Node_Id) return Boolean;
- -- Operand is safe if it cannot overlap part of the target of the
- -- operation. If the operand and the target are identical, the operand
- -- is safe. The operand can be empty in the case of negation.
-
- function Is_Unaliased (N : Node_Id) return Boolean;
- -- Check that N is a stand-alone entity
-
- ------------------
- -- Is_Unaliased --
- ------------------
-
- function Is_Unaliased (N : Node_Id) return Boolean is
- begin
- return
- Is_Entity_Name (N)
- and then No (Address_Clause (Entity (N)))
- and then No (Renamed_Object (Entity (N)));
- end Is_Unaliased;
-
- ---------------------
- -- Is_Safe_Operand --
- ---------------------
-
- function Is_Safe_Operand (Op : Node_Id) return Boolean is
- begin
- if No (Op) then
- return True;
-
- elsif Is_Entity_Name (Op) then
- return Is_Unaliased (Op);
-
- elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
- return Is_Unaliased (Prefix (Op));
-
- elsif Nkind (Op) = N_Slice then
- return
- Is_Unaliased (Prefix (Op))
- and then Entity (Prefix (Op)) /= Target;
-
- elsif Nkind (Op) = N_Op_Not then
- return Is_Safe_Operand (Right_Opnd (Op));
-
- else
- return False;
- end if;
- end Is_Safe_Operand;
-
- -- Start of processing for Is_Safe_In_Place_Array_Op
-
- begin
- -- Skip this processing if the component size is different from system
- -- storage unit (since at least for NOT this would cause problems).
-
- if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
- return False;
-
- -- Cannot do in place stuff on VM_Target since cannot pass addresses
-
- elsif VM_Target /= No_VM then
- return False;
-
- -- Cannot do in place stuff if non-standard Boolean representation
-
- elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
- return False;
-
- elsif not Is_Unaliased (Lhs) then
- return False;
- else
- Target := Entity (Lhs);
-
- return
- Is_Safe_Operand (Op1)
- and then Is_Safe_Operand (Op2);
- end if;
- end Safe_In_Place_Array_Op;
-
- -----------------------
- -- Tagged_Membership --
- -----------------------
-
- -- There are two different cases to consider depending on whether the right
- -- operand is a class-wide type or not. If not we just compare the actual
- -- tag of the left expr to the target type tag:
- --
- -- Left_Expr.Tag = Right_Type'Tag;
- --
- -- If it is a class-wide type we use the RT function CW_Membership which is
- -- usually implemented by looking in the ancestor tables contained in the
- -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
-
- -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
- -- function IW_Membership which is usually implemented by looking in the
- -- table of abstract interface types plus the ancestor table contained in
- -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
-
- function Tagged_Membership (N : Node_Id) return Node_Id is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Loc : constant Source_Ptr := Sloc (N);
-
- Left_Type : Entity_Id;
- Right_Type : Entity_Id;
- Obj_Tag : Node_Id;
-
- begin
- Left_Type := Etype (Left);
- Right_Type := Etype (Right);
-
- if Is_Class_Wide_Type (Left_Type) then
- Left_Type := Root_Type (Left_Type);
- end if;
-
- Obj_Tag :=
- Make_Selected_Component (Loc,
- Prefix => Relocate_Node (Left),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (Left_Type), Loc));
-
- if Is_Class_Wide_Type (Right_Type) then
-
- -- No need to issue a run-time check if we statically know that the
- -- result of this membership test is always true. For example,
- -- considering the following declarations:
-
- -- type Iface is interface;
- -- type T is tagged null record;
- -- type DT is new T and Iface with null record;
-
- -- Obj1 : T;
- -- Obj2 : DT;
-
- -- These membership tests are always true:
-
- -- Obj1 in T'Class
- -- Obj2 in T'Class;
- -- Obj2 in Iface'Class;
-
- -- We do not need to handle cases where the membership is illegal.
- -- For example:
-
- -- Obj1 in DT'Class; -- Compile time error
- -- Obj1 in Iface'Class; -- Compile time error
-
- if not Is_Class_Wide_Type (Left_Type)
- and then (Is_Ancestor (Etype (Right_Type), Left_Type)
- or else (Is_Interface (Etype (Right_Type))
- and then Interface_Present_In_Ancestor
- (Typ => Left_Type,
- Iface => Etype (Right_Type))))
- then
- return New_Reference_To (Standard_True, Loc);
- end if;
-
- -- Ada 2005 (AI-251): Class-wide applied to interfaces
-
- if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
-
- -- Support to: "Iface_CW_Typ in Typ'Class"
-
- or else Is_Interface (Left_Type)
- then
- -- Issue error if IW_Membership operation not available in a
- -- configurable run time setting.
-
- if not RTE_Available (RE_IW_Membership) then
- Error_Msg_CRT
- ("dynamic membership test on interface types", N);
- return Empty;
- end if;
-
- return
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix => Obj_Tag,
- Attribute_Name => Name_Address),
- New_Reference_To (
- Node (First_Elmt
- (Access_Disp_Table (Root_Type (Right_Type)))),
- Loc)));
-
- -- Ada 95: Normal case
-
- else
- return
- Build_CW_Membership (Loc,
- Obj_Tag_Node => Obj_Tag,
- Typ_Tag_Node =>
- New_Reference_To (
- Node (First_Elmt
- (Access_Disp_Table (Root_Type (Right_Type)))),
- Loc));
- end if;
-
- -- Right_Type is not a class-wide type
-
- else
- -- No need to check the tag of the object if Right_Typ is abstract
-
- if Is_Abstract_Type (Right_Type) then
- return New_Reference_To (Standard_False, Loc);
-
- else
- return
- Make_Op_Eq (Loc,
- Left_Opnd => Obj_Tag,
- Right_Opnd =>
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Right_Type))), Loc));
- end if;
- end if;
- end Tagged_Membership;
-
- ------------------------------
- -- Unary_Op_Validity_Checks --
- ------------------------------
-
- procedure Unary_Op_Validity_Checks (N : Node_Id) is
- begin
- if Validity_Checks_On and Validity_Check_Operands then
- Ensure_Valid (Right_Opnd (N));
- end if;
- end Unary_Op_Validity_Checks;
-
-end Exp_Ch4;