aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/exp_aggr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/exp_aggr.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/exp_aggr.adb6468
1 files changed, 0 insertions, 6468 deletions
diff --git a/gcc-4.4.3/gcc/ada/exp_aggr.adb b/gcc-4.4.3/gcc/ada/exp_aggr.adb
deleted file mode 100644
index 21a0fd83a..000000000
--- a/gcc-4.4.3/gcc/ada/exp_aggr.adb
+++ /dev/null
@@ -1,6468 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ A G G R --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Expander; use Expander;
-with Exp_Util; use Exp_Util;
-with Exp_Ch3; use Exp_Ch3;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Ch9; use Exp_Ch9;
-with Exp_Tss; use Exp_Tss;
-with Freeze; use Freeze;
-with Itypes; use Itypes;
-with Lib; use Lib;
-with Namet; use Namet;
-with Nmake; use Nmake;
-with Nlists; use Nlists;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Ttypes; use Ttypes;
-with Sem; use Sem;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sinfo; use Sinfo;
-with Snames; use Snames;
-with Stand; use Stand;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Uintp; use Uintp;
-
-package body Exp_Aggr is
-
- type Case_Bounds is record
- Choice_Lo : Node_Id;
- Choice_Hi : Node_Id;
- Choice_Node : Node_Id;
- end record;
-
- type Case_Table_Type is array (Nat range <>) of Case_Bounds;
- -- Table type used by Check_Case_Choices procedure
-
- function Must_Slide
- (Obj_Type : Entity_Id;
- Typ : Entity_Id) return Boolean;
- -- A static array aggregate in an object declaration can in most cases be
- -- expanded in place. The one exception is when the aggregate is given
- -- with component associations that specify different bounds from those of
- -- the type definition in the object declaration. In this pathological
- -- case the aggregate must slide, and we must introduce an intermediate
- -- temporary to hold it.
- --
- -- The same holds in an assignment to one-dimensional array of arrays,
- -- when a component may be given with bounds that differ from those of the
- -- component type.
-
- procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
- -- Sort the Case Table using the Lower Bound of each Choice as the key.
- -- A simple insertion sort is used since the number of choices in a case
- -- statement of variant part will usually be small and probably in near
- -- sorted order.
-
- function Has_Default_Init_Comps (N : Node_Id) return Boolean;
- -- N is an aggregate (record or array). Checks the presence of default
- -- initialization (<>) in any component (Ada 2005: AI-287)
-
- function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
- -- Returns true if N is an aggregate used to initialize the components
- -- of an statically allocated dispatch table.
-
- ------------------------------------------------------
- -- Local subprograms for Record Aggregate Expansion --
- ------------------------------------------------------
-
- procedure Expand_Record_Aggregate
- (N : Node_Id;
- Orig_Tag : Node_Id := Empty;
- Parent_Expr : Node_Id := Empty);
- -- This is the top level procedure for record aggregate expansion.
- -- Expansion for record aggregates needs expand aggregates for tagged
- -- record types. Specifically Expand_Record_Aggregate adds the Tag
- -- field in front of the Component_Association list that was created
- -- during resolution by Resolve_Record_Aggregate.
- --
- -- N is the record aggregate node.
- -- Orig_Tag is the value of the Tag that has to be provided for this
- -- specific aggregate. It carries the tag corresponding to the type
- -- of the outermost aggregate during the recursive expansion
- -- Parent_Expr is the ancestor part of the original extension
- -- aggregate
-
- procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
- -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
- -- aggregate (which can only be a record type, this procedure is only used
- -- for record types). Transform the given aggregate into a sequence of
- -- assignments performed component by component.
-
- function Build_Record_Aggr_Code
- (N : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id;
- Flist : Node_Id := Empty;
- Obj : Entity_Id := Empty;
- Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
- -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
- -- aggregate. Target is an expression containing the location on which the
- -- component by component assignments will take place. Returns the list of
- -- assignments plus all other adjustments needed for tagged and controlled
- -- types. Flist is an expression representing the finalization list on
- -- which to attach the controlled components if any. Obj is present in the
- -- object declaration and dynamic allocation cases, it contains an entity
- -- that allows to know if the value being created needs to be attached to
- -- the final list in case of pragma Finalize_Storage_Only.
- --
- -- ???
- -- The meaning of the Obj formal is extremely unclear. *What* entity
- -- should be passed? For the object declaration case we may guess that
- -- this is the object being declared, but what about the allocator case?
- --
- -- Is_Limited_Ancestor_Expansion indicates that the function has been
- -- called recursively to expand the limited ancestor to avoid copying it.
-
- function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
- -- Return true if one of the component is of a discriminated type with
- -- defaults. An aggregate for a type with mutable components must be
- -- expanded into individual assignments.
-
- procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
- -- If the type of the aggregate is a type extension with renamed discrimi-
- -- nants, we must initialize the hidden discriminants of the parent.
- -- Otherwise, the target object must not be initialized. The discriminants
- -- are initialized by calling the initialization procedure for the type.
- -- This is incorrect if the initialization of other components has any
- -- side effects. We restrict this call to the case where the parent type
- -- has a variant part, because this is the only case where the hidden
- -- discriminants are accessed, namely when calling discriminant checking
- -- functions of the parent type, and when applying a stream attribute to
- -- an object of the derived type.
-
- -----------------------------------------------------
- -- Local Subprograms for Array Aggregate Expansion --
- -----------------------------------------------------
-
- function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
- -- Very large static aggregates present problems to the back-end, and
- -- are transformed into assignments and loops. This function verifies
- -- that the total number of components of an aggregate is acceptable
- -- for transformation into a purely positional static form. It is called
- -- prior to calling Flatten.
- -- This function also detects and warns about one-component aggregates
- -- that appear in a non-static context. Even if the component value is
- -- static, such an aggregate must be expanded into an assignment.
-
- procedure Convert_Array_Aggr_In_Allocator
- (Decl : Node_Id;
- Aggr : Node_Id;
- Target : Node_Id);
- -- If the aggregate appears within an allocator and can be expanded in
- -- place, this routine generates the individual assignments to components
- -- of the designated object. This is an optimization over the general
- -- case, where a temporary is first created on the stack and then used to
- -- construct the allocated object on the heap.
-
- procedure Convert_To_Positional
- (N : Node_Id;
- Max_Others_Replicate : Nat := 5;
- Handle_Bit_Packed : Boolean := False);
- -- If possible, convert named notation to positional notation. This
- -- conversion is possible only in some static cases. If the conversion is
- -- possible, then N is rewritten with the analyzed converted aggregate.
- -- The parameter Max_Others_Replicate controls the maximum number of
- -- values corresponding to an others choice that will be converted to
- -- positional notation (the default of 5 is the normal limit, and reflects
- -- the fact that normally the loop is better than a lot of separate
- -- assignments). Note that this limit gets overridden in any case if
- -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
- -- set. The parameter Handle_Bit_Packed is usually set False (since we do
- -- not expect the back end to handle bit packed arrays, so the normal case
- -- of conversion is pointless), but in the special case of a call from
- -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
- -- these are cases we handle in there.
-
- procedure Expand_Array_Aggregate (N : Node_Id);
- -- This is the top-level routine to perform array aggregate expansion.
- -- N is the N_Aggregate node to be expanded.
-
- function Backend_Processing_Possible (N : Node_Id) return Boolean;
- -- This function checks if array aggregate N can be processed directly
- -- by Gigi. If this is the case True is returned.
-
- function Build_Array_Aggr_Code
- (N : Node_Id;
- Ctype : Entity_Id;
- Index : Node_Id;
- Into : Node_Id;
- Scalar_Comp : Boolean;
- Indices : List_Id := No_List;
- Flist : Node_Id := Empty) return List_Id;
- -- This recursive routine returns a list of statements containing the
- -- loops and assignments that are needed for the expansion of the array
- -- aggregate N.
- --
- -- N is the (sub-)aggregate node to be expanded into code. This node
- -- has been fully analyzed, and its Etype is properly set.
- --
- -- Index is the index node corresponding to the array sub-aggregate N.
- --
- -- Into is the target expression into which we are copying the aggregate.
- -- Note that this node may not have been analyzed yet, and so the Etype
- -- field may not be set.
- --
- -- Scalar_Comp is True if the component type of the aggregate is scalar.
- --
- -- Indices is the current list of expressions used to index the
- -- object we are writing into.
- --
- -- Flist is an expression representing the finalization list on which
- -- to attach the controlled components if any.
-
- function Number_Of_Choices (N : Node_Id) return Nat;
- -- Returns the number of discrete choices (not including the others choice
- -- if present) contained in (sub-)aggregate N.
-
- function Late_Expansion
- (N : Node_Id;
- Typ : Entity_Id;
- Target : Node_Id;
- Flist : Node_Id := Empty;
- Obj : Entity_Id := Empty) return List_Id;
- -- N is a nested (record or array) aggregate that has been marked with
- -- 'Delay_Expansion'. Typ is the expected type of the aggregate and Target
- -- is a (duplicable) expression that will hold the result of the aggregate
- -- expansion. Flist is the finalization list to be used to attach
- -- controlled components. 'Obj' when non empty, carries the original
- -- object being initialized in order to know if it needs to be attached to
- -- the previous parameter which may not be the case in the case where
- -- Finalize_Storage_Only is set. Basically this procedure is used to
- -- implement top-down expansions of nested aggregates. This is necessary
- -- for avoiding temporaries at each level as well as for propagating the
- -- right internal finalization list.
-
- function Make_OK_Assignment_Statement
- (Sloc : Source_Ptr;
- Name : Node_Id;
- Expression : Node_Id) return Node_Id;
- -- This is like Make_Assignment_Statement, except that Assignment_OK
- -- is set in the left operand. All assignments built by this unit
- -- use this routine. This is needed to deal with assignments to
- -- initialized constants that are done in place.
-
- function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
- -- Given an array aggregate, this function handles the case of a packed
- -- array aggregate with all constant values, where the aggregate can be
- -- evaluated at compile time. If this is possible, then N is rewritten
- -- to be its proper compile time value with all the components properly
- -- assembled. The expression is analyzed and resolved and True is
- -- returned. If this transformation is not possible, N is unchanged
- -- and False is returned
-
- function Safe_Slice_Assignment (N : Node_Id) return Boolean;
- -- If a slice assignment has an aggregate with a single others_choice,
- -- the assignment can be done in place even if bounds are not static,
- -- by converting it into a loop over the discrete range of the slice.
-
- ------------------
- -- Aggr_Size_OK --
- ------------------
-
- function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
- Lo : Node_Id;
- Hi : Node_Id;
- Indx : Node_Id;
- Siz : Int;
- Lov : Uint;
- Hiv : Uint;
-
- -- The following constant determines the maximum size of an
- -- array aggregate produced by converting named to positional
- -- notation (e.g. from others clauses). This avoids running
- -- away with attempts to convert huge aggregates, which hit
- -- memory limits in the backend.
-
- -- The normal limit is 5000, but we increase this limit to
- -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code)
- -- or Restrictions (No_Implicit_Loops) is specified, since in
- -- either case, we are at risk of declaring the program illegal
- -- because of this limit.
-
- Max_Aggr_Size : constant Nat :=
- 5000 + (2 ** 24 - 5000) *
- Boolean'Pos
- (Restriction_Active (No_Elaboration_Code)
- or else
- Restriction_Active (No_Implicit_Loops));
-
- function Component_Count (T : Entity_Id) return Int;
- -- The limit is applied to the total number of components that the
- -- aggregate will have, which is the number of static expressions
- -- that will appear in the flattened array. This requires a recursive
- -- computation of the number of scalar components of the structure.
-
- ---------------------
- -- Component_Count --
- ---------------------
-
- function Component_Count (T : Entity_Id) return Int is
- Res : Int := 0;
- Comp : Entity_Id;
-
- begin
- if Is_Scalar_Type (T) then
- return 1;
-
- elsif Is_Record_Type (T) then
- Comp := First_Component (T);
- while Present (Comp) loop
- Res := Res + Component_Count (Etype (Comp));
- Next_Component (Comp);
- end loop;
-
- return Res;
-
- elsif Is_Array_Type (T) then
- declare
- Lo : constant Node_Id :=
- Type_Low_Bound (Etype (First_Index (T)));
- Hi : constant Node_Id :=
- Type_High_Bound (Etype (First_Index (T)));
-
- Siz : constant Int := Component_Count (Component_Type (T));
-
- begin
- if not Compile_Time_Known_Value (Lo)
- or else not Compile_Time_Known_Value (Hi)
- then
- return 0;
- else
- return
- Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
- end if;
- end;
-
- else
- -- Can only be a null for an access type
-
- return 1;
- end if;
- end Component_Count;
-
- -- Start of processing for Aggr_Size_OK
-
- begin
- Siz := Component_Count (Component_Type (Typ));
-
- Indx := First_Index (Typ);
- while Present (Indx) loop
- Lo := Type_Low_Bound (Etype (Indx));
- Hi := Type_High_Bound (Etype (Indx));
-
- -- Bounds need to be known at compile time
-
- if not Compile_Time_Known_Value (Lo)
- or else not Compile_Time_Known_Value (Hi)
- then
- return False;
- end if;
-
- Lov := Expr_Value (Lo);
- Hiv := Expr_Value (Hi);
-
- -- A flat array is always safe
-
- if Hiv < Lov then
- return True;
- end if;
-
- -- One-component aggregates are suspicious, and if the context type
- -- is an object declaration with non-static bounds it will trip gcc;
- -- such an aggregate must be expanded into a single assignment.
-
- if Hiv = Lov
- and then Nkind (Parent (N)) = N_Object_Declaration
- then
- declare
- Index_Type : constant Entity_Id :=
- Etype
- (First_Index
- (Etype (Defining_Identifier (Parent (N)))));
- Indx : Node_Id;
-
- begin
- if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
- or else not Compile_Time_Known_Value
- (Type_High_Bound (Index_Type))
- then
- if Present (Component_Associations (N)) then
- Indx :=
- First (Choices (First (Component_Associations (N))));
- if Is_Entity_Name (Indx)
- and then not Is_Type (Entity (Indx))
- then
- Error_Msg_N
- ("single component aggregate in non-static context?",
- Indx);
- Error_Msg_N ("\maybe subtype name was meant?", Indx);
- end if;
- end if;
-
- return False;
- end if;
- end;
- end if;
-
- declare
- Rng : constant Uint := Hiv - Lov + 1;
-
- begin
- -- Check if size is too large
-
- if not UI_Is_In_Int_Range (Rng) then
- return False;
- end if;
-
- Siz := Siz * UI_To_Int (Rng);
- end;
-
- if Siz <= 0
- or else Siz > Max_Aggr_Size
- then
- return False;
- end if;
-
- -- Bounds must be in integer range, for later array construction
-
- if not UI_Is_In_Int_Range (Lov)
- or else
- not UI_Is_In_Int_Range (Hiv)
- then
- return False;
- end if;
-
- Next_Index (Indx);
- end loop;
-
- return True;
- end Aggr_Size_OK;
-
- ---------------------------------
- -- Backend_Processing_Possible --
- ---------------------------------
-
- -- Backend processing by Gigi/gcc is possible only if all the following
- -- conditions are met:
-
- -- 1. N is fully positional
-
- -- 2. N is not a bit-packed array aggregate;
-
- -- 3. The size of N's array type must be known at compile time. Note
- -- that this implies that the component size is also known
-
- -- 4. The array type of N does not follow the Fortran layout convention
- -- or if it does it must be 1 dimensional.
-
- -- 5. The array component type may not be tagged (which could necessitate
- -- reassignment of proper tags).
-
- -- 6. The array component type must not have unaligned bit components
-
- -- 7. None of the components of the aggregate may be bit unaligned
- -- components.
-
- -- 8. There cannot be delayed components, since we do not know enough
- -- at this stage to know if back end processing is possible.
-
- -- 9. There cannot be any discriminated record components, since the
- -- back end cannot handle this complex case.
-
- function Backend_Processing_Possible (N : Node_Id) return Boolean is
- Typ : constant Entity_Id := Etype (N);
- -- Typ is the correct constrained array subtype of the aggregate
-
- function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
- -- This routine checks components of aggregate N, enforcing checks
- -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
- -- performed on subaggregates. The Index value is the current index
- -- being checked in the multi-dimensional case.
-
- ---------------------
- -- Component_Check --
- ---------------------
-
- function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
- Expr : Node_Id;
-
- begin
- -- Checks 1: (no component associations)
-
- if Present (Component_Associations (N)) then
- return False;
- end if;
-
- -- Checks on components
-
- -- Recurse to check subaggregates, which may appear in qualified
- -- expressions. If delayed, the front-end will have to expand.
- -- If the component is a discriminated record, treat as non-static,
- -- as the back-end cannot handle this properly.
-
- Expr := First (Expressions (N));
- while Present (Expr) loop
-
- -- Checks 8: (no delayed components)
-
- if Is_Delayed_Aggregate (Expr) then
- return False;
- end if;
-
- -- Checks 9: (no discriminated records)
-
- if Present (Etype (Expr))
- and then Is_Record_Type (Etype (Expr))
- and then Has_Discriminants (Etype (Expr))
- then
- return False;
- end if;
-
- -- Checks 7. Component must not be bit aligned component
-
- if Possible_Bit_Aligned_Component (Expr) then
- return False;
- end if;
-
- -- Recursion to following indexes for multiple dimension case
-
- if Present (Next_Index (Index))
- and then not Component_Check (Expr, Next_Index (Index))
- then
- return False;
- end if;
-
- -- All checks for that component finished, on to next
-
- Next (Expr);
- end loop;
-
- return True;
- end Component_Check;
-
- -- Start of processing for Backend_Processing_Possible
-
- begin
- -- Checks 2 (array must not be bit packed)
-
- if Is_Bit_Packed_Array (Typ) then
- return False;
- end if;
-
- -- If component is limited, aggregate must be expanded because each
- -- component assignment must be built in place.
-
- if Is_Inherently_Limited_Type (Component_Type (Typ)) then
- return False;
- end if;
-
- -- Checks 4 (array must not be multi-dimensional Fortran case)
-
- if Convention (Typ) = Convention_Fortran
- and then Number_Dimensions (Typ) > 1
- then
- return False;
- end if;
-
- -- Checks 3 (size of array must be known at compile time)
-
- if not Size_Known_At_Compile_Time (Typ) then
- return False;
- end if;
-
- -- Checks on components
-
- if not Component_Check (N, First_Index (Typ)) then
- return False;
- end if;
-
- -- Checks 5 (if the component type is tagged, then we may need to do
- -- tag adjustments. Perhaps this should be refined to check for any
- -- component associations that actually need tag adjustment, similar
- -- to the test in Component_Not_OK_For_Backend for record aggregates
- -- with tagged components, but not clear whether it's worthwhile ???;
- -- in the case of the JVM, object tags are handled implicitly)
-
- if Is_Tagged_Type (Component_Type (Typ)) and then VM_Target = No_VM then
- return False;
- end if;
-
- -- Checks 6 (component type must not have bit aligned components)
-
- if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
- return False;
- end if;
-
- -- Backend processing is possible
-
- Set_Size_Known_At_Compile_Time (Etype (N), True);
- return True;
- end Backend_Processing_Possible;
-
- ---------------------------
- -- Build_Array_Aggr_Code --
- ---------------------------
-
- -- The code that we generate from a one dimensional aggregate is
-
- -- 1. If the sub-aggregate contains discrete choices we
-
- -- (a) Sort the discrete choices
-
- -- (b) Otherwise for each discrete choice that specifies a range we
- -- emit a loop. If a range specifies a maximum of three values, or
- -- we are dealing with an expression we emit a sequence of
- -- assignments instead of a loop.
-
- -- (c) Generate the remaining loops to cover the others choice if any
-
- -- 2. If the aggregate contains positional elements we
-
- -- (a) translate the positional elements in a series of assignments
-
- -- (b) Generate a final loop to cover the others choice if any.
- -- Note that this final loop has to be a while loop since the case
-
- -- L : Integer := Integer'Last;
- -- H : Integer := Integer'Last;
- -- A : array (L .. H) := (1, others =>0);
-
- -- cannot be handled by a for loop. Thus for the following
-
- -- array (L .. H) := (.. positional elements.., others =>E);
-
- -- we always generate something like:
-
- -- J : Index_Type := Index_Of_Last_Positional_Element;
- -- while J < H loop
- -- J := Index_Base'Succ (J)
- -- Tmp (J) := E;
- -- end loop;
-
- function Build_Array_Aggr_Code
- (N : Node_Id;
- Ctype : Entity_Id;
- Index : Node_Id;
- Into : Node_Id;
- Scalar_Comp : Boolean;
- Indices : List_Id := No_List;
- Flist : Node_Id := Empty) return List_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
- Index_Base : constant Entity_Id := Base_Type (Etype (Index));
- Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
- Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
-
- function Add (Val : Int; To : Node_Id) return Node_Id;
- -- Returns an expression where Val is added to expression To, unless
- -- To+Val is provably out of To's base type range. To must be an
- -- already analyzed expression.
-
- function Empty_Range (L, H : Node_Id) return Boolean;
- -- Returns True if the range defined by L .. H is certainly empty
-
- function Equal (L, H : Node_Id) return Boolean;
- -- Returns True if L = H for sure
-
- function Index_Base_Name return Node_Id;
- -- Returns a new reference to the index type name
-
- function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
- -- Ind must be a side-effect free expression. If the input aggregate
- -- N to Build_Loop contains no sub-aggregates, then this function
- -- returns the assignment statement:
- --
- -- Into (Indices, Ind) := Expr;
- --
- -- Otherwise we call Build_Code recursively
- --
- -- Ada 2005 (AI-287): In case of default initialized component, Expr
- -- is empty and we generate a call to the corresponding IP subprogram.
-
- function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
- -- Nodes L and H must be side-effect free expressions.
- -- If the input aggregate N to Build_Loop contains no sub-aggregates,
- -- This routine returns the for loop statement
- --
- -- for J in Index_Base'(L) .. Index_Base'(H) loop
- -- Into (Indices, J) := Expr;
- -- end loop;
- --
- -- Otherwise we call Build_Code recursively.
- -- As an optimization if the loop covers 3 or less scalar elements we
- -- generate a sequence of assignments.
-
- function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
- -- Nodes L and H must be side-effect free expressions.
- -- If the input aggregate N to Build_Loop contains no sub-aggregates,
- -- This routine returns the while loop statement
- --
- -- J : Index_Base := L;
- -- while J < H loop
- -- J := Index_Base'Succ (J);
- -- Into (Indices, J) := Expr;
- -- end loop;
- --
- -- Otherwise we call Build_Code recursively
-
- function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
- function Local_Expr_Value (E : Node_Id) return Uint;
- -- These two Local routines are used to replace the corresponding ones
- -- in sem_eval because while processing the bounds of an aggregate with
- -- discrete choices whose index type is an enumeration, we build static
- -- expressions not recognized by Compile_Time_Known_Value as such since
- -- they have not yet been analyzed and resolved. All the expressions in
- -- question are things like Index_Base_Name'Val (Const) which we can
- -- easily recognize as being constant.
-
- ---------
- -- Add --
- ---------
-
- function Add (Val : Int; To : Node_Id) return Node_Id is
- Expr_Pos : Node_Id;
- Expr : Node_Id;
- To_Pos : Node_Id;
- U_To : Uint;
- U_Val : constant Uint := UI_From_Int (Val);
-
- begin
- -- Note: do not try to optimize the case of Val = 0, because
- -- we need to build a new node with the proper Sloc value anyway.
-
- -- First test if we can do constant folding
-
- if Local_Compile_Time_Known_Value (To) then
- U_To := Local_Expr_Value (To) + Val;
-
- -- Determine if our constant is outside the range of the index.
- -- If so return an Empty node. This empty node will be caught
- -- by Empty_Range below.
-
- if Compile_Time_Known_Value (Index_Base_L)
- and then U_To < Expr_Value (Index_Base_L)
- then
- return Empty;
-
- elsif Compile_Time_Known_Value (Index_Base_H)
- and then U_To > Expr_Value (Index_Base_H)
- then
- return Empty;
- end if;
-
- Expr_Pos := Make_Integer_Literal (Loc, U_To);
- Set_Is_Static_Expression (Expr_Pos);
-
- if not Is_Enumeration_Type (Index_Base) then
- Expr := Expr_Pos;
-
- -- If we are dealing with enumeration return
- -- Index_Base'Val (Expr_Pos)
-
- else
- Expr :=
- Make_Attribute_Reference
- (Loc,
- Prefix => Index_Base_Name,
- Attribute_Name => Name_Val,
- Expressions => New_List (Expr_Pos));
- end if;
-
- return Expr;
- end if;
-
- -- If we are here no constant folding possible
-
- if not Is_Enumeration_Type (Index_Base) then
- Expr :=
- Make_Op_Add (Loc,
- Left_Opnd => Duplicate_Subexpr (To),
- Right_Opnd => Make_Integer_Literal (Loc, U_Val));
-
- -- If we are dealing with enumeration return
- -- Index_Base'Val (Index_Base'Pos (To) + Val)
-
- else
- To_Pos :=
- Make_Attribute_Reference
- (Loc,
- Prefix => Index_Base_Name,
- Attribute_Name => Name_Pos,
- Expressions => New_List (Duplicate_Subexpr (To)));
-
- Expr_Pos :=
- Make_Op_Add (Loc,
- Left_Opnd => To_Pos,
- Right_Opnd => Make_Integer_Literal (Loc, U_Val));
-
- Expr :=
- Make_Attribute_Reference
- (Loc,
- Prefix => Index_Base_Name,
- Attribute_Name => Name_Val,
- Expressions => New_List (Expr_Pos));
- end if;
-
- return Expr;
- end Add;
-
- -----------------
- -- Empty_Range --
- -----------------
-
- function Empty_Range (L, H : Node_Id) return Boolean is
- Is_Empty : Boolean := False;
- Low : Node_Id;
- High : Node_Id;
-
- begin
- -- First check if L or H were already detected as overflowing the
- -- index base range type by function Add above. If this is so Add
- -- returns the empty node.
-
- if No (L) or else No (H) then
- return True;
- end if;
-
- for J in 1 .. 3 loop
- case J is
-
- -- L > H range is empty
-
- when 1 =>
- Low := L;
- High := H;
-
- -- B_L > H range must be empty
-
- when 2 =>
- Low := Index_Base_L;
- High := H;
-
- -- L > B_H range must be empty
-
- when 3 =>
- Low := L;
- High := Index_Base_H;
- end case;
-
- if Local_Compile_Time_Known_Value (Low)
- and then Local_Compile_Time_Known_Value (High)
- then
- Is_Empty :=
- UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
- end if;
-
- exit when Is_Empty;
- end loop;
-
- return Is_Empty;
- end Empty_Range;
-
- -----------
- -- Equal --
- -----------
-
- function Equal (L, H : Node_Id) return Boolean is
- begin
- if L = H then
- return True;
-
- elsif Local_Compile_Time_Known_Value (L)
- and then Local_Compile_Time_Known_Value (H)
- then
- return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
- end if;
-
- return False;
- end Equal;
-
- ----------------
- -- Gen_Assign --
- ----------------
-
- function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
- L : constant List_Id := New_List;
- F : Entity_Id;
- A : Node_Id;
-
- New_Indices : List_Id;
- Indexed_Comp : Node_Id;
- Expr_Q : Node_Id;
- Comp_Type : Entity_Id := Empty;
-
- function Add_Loop_Actions (Lis : List_Id) return List_Id;
- -- Collect insert_actions generated in the construction of a
- -- loop, and prepend them to the sequence of assignments to
- -- complete the eventual body of the loop.
-
- ----------------------
- -- Add_Loop_Actions --
- ----------------------
-
- function Add_Loop_Actions (Lis : List_Id) return List_Id is
- Res : List_Id;
-
- begin
- -- Ada 2005 (AI-287): Do nothing else in case of default
- -- initialized component.
-
- if No (Expr) then
- return Lis;
-
- elsif Nkind (Parent (Expr)) = N_Component_Association
- and then Present (Loop_Actions (Parent (Expr)))
- then
- Append_List (Lis, Loop_Actions (Parent (Expr)));
- Res := Loop_Actions (Parent (Expr));
- Set_Loop_Actions (Parent (Expr), No_List);
- return Res;
-
- else
- return Lis;
- end if;
- end Add_Loop_Actions;
-
- -- Start of processing for Gen_Assign
-
- begin
- if No (Indices) then
- New_Indices := New_List;
- else
- New_Indices := New_Copy_List_Tree (Indices);
- end if;
-
- Append_To (New_Indices, Ind);
-
- if Present (Flist) then
- F := New_Copy_Tree (Flist);
-
- elsif Present (Etype (N)) and then Needs_Finalization (Etype (N)) then
- if Is_Entity_Name (Into)
- and then Present (Scope (Entity (Into)))
- then
- F := Find_Final_List (Scope (Entity (Into)));
- else
- F := Find_Final_List (Current_Scope);
- end if;
- else
- F := Empty;
- end if;
-
- if Present (Next_Index (Index)) then
- return
- Add_Loop_Actions (
- Build_Array_Aggr_Code
- (N => Expr,
- Ctype => Ctype,
- Index => Next_Index (Index),
- Into => Into,
- Scalar_Comp => Scalar_Comp,
- Indices => New_Indices,
- Flist => F));
- end if;
-
- -- If we get here then we are at a bottom-level (sub-)aggregate
-
- Indexed_Comp :=
- Checks_Off
- (Make_Indexed_Component (Loc,
- Prefix => New_Copy_Tree (Into),
- Expressions => New_Indices));
-
- Set_Assignment_OK (Indexed_Comp);
-
- -- Ada 2005 (AI-287): In case of default initialized component, Expr
- -- is not present (and therefore we also initialize Expr_Q to empty).
-
- if No (Expr) then
- Expr_Q := Empty;
- elsif Nkind (Expr) = N_Qualified_Expression then
- Expr_Q := Expression (Expr);
- else
- Expr_Q := Expr;
- end if;
-
- if Present (Etype (N))
- and then Etype (N) /= Any_Composite
- then
- Comp_Type := Component_Type (Etype (N));
- pragma Assert (Comp_Type = Ctype); -- AI-287
-
- elsif Present (Next (First (New_Indices))) then
-
- -- Ada 2005 (AI-287): Do nothing in case of default initialized
- -- component because we have received the component type in
- -- the formal parameter Ctype.
-
- -- ??? Some assert pragmas have been added to check if this new
- -- formal can be used to replace this code in all cases.
-
- if Present (Expr) then
-
- -- This is a multidimensional array. Recover the component
- -- type from the outermost aggregate, because subaggregates
- -- do not have an assigned type.
-
- declare
- P : Node_Id;
-
- begin
- P := Parent (Expr);
- while Present (P) loop
- if Nkind (P) = N_Aggregate
- and then Present (Etype (P))
- then
- Comp_Type := Component_Type (Etype (P));
- exit;
-
- else
- P := Parent (P);
- end if;
- end loop;
-
- pragma Assert (Comp_Type = Ctype); -- AI-287
- end;
- end if;
- end if;
-
- -- Ada 2005 (AI-287): We only analyze the expression in case of non-
- -- default initialized components (otherwise Expr_Q is not present).
-
- if Present (Expr_Q)
- and then (Nkind (Expr_Q) = N_Aggregate
- or else Nkind (Expr_Q) = N_Extension_Aggregate)
- then
- -- At this stage the Expression may not have been
- -- analyzed yet because the array aggregate code has not
- -- been updated to use the Expansion_Delayed flag and
- -- avoid analysis altogether to solve the same problem
- -- (see Resolve_Aggr_Expr). So let us do the analysis of
- -- non-array aggregates now in order to get the value of
- -- Expansion_Delayed flag for the inner aggregate ???
-
- if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
- Analyze_And_Resolve (Expr_Q, Comp_Type);
- end if;
-
- if Is_Delayed_Aggregate (Expr_Q) then
-
- -- This is either a subaggregate of a multidimentional array,
- -- or a component of an array type whose component type is
- -- also an array. In the latter case, the expression may have
- -- component associations that provide different bounds from
- -- those of the component type, and sliding must occur. Instead
- -- of decomposing the current aggregate assignment, force the
- -- re-analysis of the assignment, so that a temporary will be
- -- generated in the usual fashion, and sliding will take place.
-
- if Nkind (Parent (N)) = N_Assignment_Statement
- and then Is_Array_Type (Comp_Type)
- and then Present (Component_Associations (Expr_Q))
- and then Must_Slide (Comp_Type, Etype (Expr_Q))
- then
- Set_Expansion_Delayed (Expr_Q, False);
- Set_Analyzed (Expr_Q, False);
-
- else
- return
- Add_Loop_Actions (
- Late_Expansion (
- Expr_Q, Etype (Expr_Q), Indexed_Comp, F));
- end if;
- end if;
- end if;
-
- -- Ada 2005 (AI-287): In case of default initialized component, call
- -- the initialization subprogram associated with the component type.
- -- If the component type is an access type, add an explicit null
- -- assignment, because for the back-end there is an initialization
- -- present for the whole aggregate, and no default initialization
- -- will take place.
-
- -- In addition, if the component type is controlled, we must call
- -- its Initialize procedure explicitly, because there is no explicit
- -- object creation that will invoke it otherwise.
-
- if No (Expr) then
- if Present (Base_Init_Proc (Base_Type (Ctype)))
- or else Has_Task (Base_Type (Ctype))
- then
- Append_List_To (L,
- Build_Initialization_Call (Loc,
- Id_Ref => Indexed_Comp,
- Typ => Ctype,
- With_Default_Init => True));
-
- elsif Is_Access_Type (Ctype) then
- Append_To (L,
- Make_Assignment_Statement (Loc,
- Name => Indexed_Comp,
- Expression => Make_Null (Loc)));
- end if;
-
- if Needs_Finalization (Ctype) then
- Append_List_To (L,
- Make_Init_Call (
- Ref => New_Copy_Tree (Indexed_Comp),
- Typ => Ctype,
- Flist_Ref => Find_Final_List (Current_Scope),
- With_Attach => Make_Integer_Literal (Loc, 1)));
- end if;
-
- else
- -- Now generate the assignment with no associated controlled
- -- actions since the target of the assignment may not have been
- -- initialized, it is not possible to Finalize it as expected by
- -- normal controlled assignment. The rest of the controlled
- -- actions are done manually with the proper finalization list
- -- coming from the context.
-
- A :=
- Make_OK_Assignment_Statement (Loc,
- Name => Indexed_Comp,
- Expression => New_Copy_Tree (Expr));
-
- if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
- Set_No_Ctrl_Actions (A);
-
- -- If this is an aggregate for an array of arrays, each
- -- sub-aggregate will be expanded as well, and even with
- -- No_Ctrl_Actions the assignments of inner components will
- -- require attachment in their assignments to temporaries.
- -- These temporaries must be finalized for each subaggregate,
- -- to prevent multiple attachments of the same temporary
- -- location to same finalization chain (and consequently
- -- circular lists). To ensure that finalization takes place
- -- for each subaggregate we wrap the assignment in a block.
-
- if Is_Array_Type (Comp_Type)
- and then Nkind (Expr) = N_Aggregate
- then
- A :=
- Make_Block_Statement (Loc,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (A)));
- end if;
- end if;
-
- Append_To (L, A);
-
- -- Adjust the tag if tagged (because of possible view
- -- conversions), unless compiling for the Java VM where
- -- tags are implicit.
-
- if Present (Comp_Type)
- and then Is_Tagged_Type (Comp_Type)
- and then VM_Target = No_VM
- then
- A :=
- Make_OK_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Indexed_Comp),
- Selector_Name =>
- New_Reference_To
- (First_Tag_Component (Comp_Type), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
- Loc)));
-
- Append_To (L, A);
- end if;
-
- -- Adjust and attach the component to the proper final list, which
- -- can be the controller of the outer record object or the final
- -- list associated with the scope.
-
- -- If the component is itself an array of controlled types, whose
- -- value is given by a sub-aggregate, then the attach calls have
- -- been generated when individual subcomponent are assigned, and
- -- must not be done again to prevent malformed finalization chains
- -- (see comments above, concerning the creation of a block to hold
- -- inner finalization actions).
-
- if Present (Comp_Type)
- and then Needs_Finalization (Comp_Type)
- and then not Is_Limited_Type (Comp_Type)
- and then
- (not Is_Array_Type (Comp_Type)
- or else not Is_Controlled (Component_Type (Comp_Type))
- or else Nkind (Expr) /= N_Aggregate)
- then
- Append_List_To (L,
- Make_Adjust_Call (
- Ref => New_Copy_Tree (Indexed_Comp),
- Typ => Comp_Type,
- Flist_Ref => F,
- With_Attach => Make_Integer_Literal (Loc, 1)));
- end if;
- end if;
-
- return Add_Loop_Actions (L);
- end Gen_Assign;
-
- --------------
- -- Gen_Loop --
- --------------
-
- function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
- L_J : Node_Id;
-
- L_Range : Node_Id;
- -- Index_Base'(L) .. Index_Base'(H)
-
- L_Iteration_Scheme : Node_Id;
- -- L_J in Index_Base'(L) .. Index_Base'(H)
-
- L_Body : List_Id;
- -- The statements to execute in the loop
-
- S : constant List_Id := New_List;
- -- List of statements
-
- Tcopy : Node_Id;
- -- Copy of expression tree, used for checking purposes
-
- begin
- -- If loop bounds define an empty range return the null statement
-
- if Empty_Range (L, H) then
- Append_To (S, Make_Null_Statement (Loc));
-
- -- Ada 2005 (AI-287): Nothing else need to be done in case of
- -- default initialized component.
-
- if No (Expr) then
- null;
-
- else
- -- The expression must be type-checked even though no component
- -- of the aggregate will have this value. This is done only for
- -- actual components of the array, not for subaggregates. Do
- -- the check on a copy, because the expression may be shared
- -- among several choices, some of which might be non-null.
-
- if Present (Etype (N))
- and then Is_Array_Type (Etype (N))
- and then No (Next_Index (Index))
- then
- Expander_Mode_Save_And_Set (False);
- Tcopy := New_Copy_Tree (Expr);
- Set_Parent (Tcopy, N);
- Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
- Expander_Mode_Restore;
- end if;
- end if;
-
- return S;
-
- -- If loop bounds are the same then generate an assignment
-
- elsif Equal (L, H) then
- return Gen_Assign (New_Copy_Tree (L), Expr);
-
- -- If H - L <= 2 then generate a sequence of assignments when we are
- -- processing the bottom most aggregate and it contains scalar
- -- components.
-
- elsif No (Next_Index (Index))
- and then Scalar_Comp
- and then Local_Compile_Time_Known_Value (L)
- and then Local_Compile_Time_Known_Value (H)
- and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
- then
-
- Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
- Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
-
- if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
- Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
- end if;
-
- return S;
- end if;
-
- -- Otherwise construct the loop, starting with the loop index L_J
-
- L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
-
- -- Construct "L .. H"
-
- L_Range :=
- Make_Range
- (Loc,
- Low_Bound => Make_Qualified_Expression
- (Loc,
- Subtype_Mark => Index_Base_Name,
- Expression => L),
- High_Bound => Make_Qualified_Expression
- (Loc,
- Subtype_Mark => Index_Base_Name,
- Expression => H));
-
- -- Construct "for L_J in Index_Base range L .. H"
-
- L_Iteration_Scheme :=
- Make_Iteration_Scheme
- (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification
- (Loc,
- Defining_Identifier => L_J,
- Discrete_Subtype_Definition => L_Range));
-
- -- Construct the statements to execute in the loop body
-
- L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
-
- -- Construct the final loop
-
- Append_To (S, Make_Implicit_Loop_Statement
- (Node => N,
- Identifier => Empty,
- Iteration_Scheme => L_Iteration_Scheme,
- Statements => L_Body));
-
- -- A small optimization: if the aggregate is initialized with a box
- -- and the component type has no initialization procedure, remove the
- -- useless empty loop.
-
- if Nkind (First (S)) = N_Loop_Statement
- and then Is_Empty_List (Statements (First (S)))
- then
- return New_List (Make_Null_Statement (Loc));
- else
- return S;
- end if;
- end Gen_Loop;
-
- ---------------
- -- Gen_While --
- ---------------
-
- -- The code built is
-
- -- W_J : Index_Base := L;
- -- while W_J < H loop
- -- W_J := Index_Base'Succ (W);
- -- L_Body;
- -- end loop;
-
- function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
- W_J : Node_Id;
-
- W_Decl : Node_Id;
- -- W_J : Base_Type := L;
-
- W_Iteration_Scheme : Node_Id;
- -- while W_J < H
-
- W_Index_Succ : Node_Id;
- -- Index_Base'Succ (J)
-
- W_Increment : Node_Id;
- -- W_J := Index_Base'Succ (W)
-
- W_Body : constant List_Id := New_List;
- -- The statements to execute in the loop
-
- S : constant List_Id := New_List;
- -- list of statement
-
- begin
- -- If loop bounds define an empty range or are equal return null
-
- if Empty_Range (L, H) or else Equal (L, H) then
- Append_To (S, Make_Null_Statement (Loc));
- return S;
- end if;
-
- -- Build the decl of W_J
-
- W_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
- W_Decl :=
- Make_Object_Declaration
- (Loc,
- Defining_Identifier => W_J,
- Object_Definition => Index_Base_Name,
- Expression => L);
-
- -- Theoretically we should do a New_Copy_Tree (L) here, but we know
- -- that in this particular case L is a fresh Expr generated by
- -- Add which we are the only ones to use.
-
- Append_To (S, W_Decl);
-
- -- Construct " while W_J < H"
-
- W_Iteration_Scheme :=
- Make_Iteration_Scheme
- (Loc,
- Condition => Make_Op_Lt
- (Loc,
- Left_Opnd => New_Reference_To (W_J, Loc),
- Right_Opnd => New_Copy_Tree (H)));
-
- -- Construct the statements to execute in the loop body
-
- W_Index_Succ :=
- Make_Attribute_Reference
- (Loc,
- Prefix => Index_Base_Name,
- Attribute_Name => Name_Succ,
- Expressions => New_List (New_Reference_To (W_J, Loc)));
-
- W_Increment :=
- Make_OK_Assignment_Statement
- (Loc,
- Name => New_Reference_To (W_J, Loc),
- Expression => W_Index_Succ);
-
- Append_To (W_Body, W_Increment);
- Append_List_To (W_Body,
- Gen_Assign (New_Reference_To (W_J, Loc), Expr));
-
- -- Construct the final loop
-
- Append_To (S, Make_Implicit_Loop_Statement
- (Node => N,
- Identifier => Empty,
- Iteration_Scheme => W_Iteration_Scheme,
- Statements => W_Body));
-
- return S;
- end Gen_While;
-
- ---------------------
- -- Index_Base_Name --
- ---------------------
-
- function Index_Base_Name return Node_Id is
- begin
- return New_Reference_To (Index_Base, Sloc (N));
- end Index_Base_Name;
-
- ------------------------------------
- -- Local_Compile_Time_Known_Value --
- ------------------------------------
-
- function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
- begin
- return Compile_Time_Known_Value (E)
- or else
- (Nkind (E) = N_Attribute_Reference
- and then Attribute_Name (E) = Name_Val
- and then Compile_Time_Known_Value (First (Expressions (E))));
- end Local_Compile_Time_Known_Value;
-
- ----------------------
- -- Local_Expr_Value --
- ----------------------
-
- function Local_Expr_Value (E : Node_Id) return Uint is
- begin
- if Compile_Time_Known_Value (E) then
- return Expr_Value (E);
- else
- return Expr_Value (First (Expressions (E)));
- end if;
- end Local_Expr_Value;
-
- -- Build_Array_Aggr_Code Variables
-
- Assoc : Node_Id;
- Choice : Node_Id;
- Expr : Node_Id;
- Typ : Entity_Id;
-
- Others_Expr : Node_Id := Empty;
- Others_Box_Present : Boolean := False;
-
- Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
- Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
- -- The aggregate bounds of this specific sub-aggregate. Note that if
- -- the code generated by Build_Array_Aggr_Code is executed then these
- -- bounds are OK. Otherwise a Constraint_Error would have been raised.
-
- Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
- Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
- -- After Duplicate_Subexpr these are side-effect free
-
- Low : Node_Id;
- High : Node_Id;
-
- Nb_Choices : Nat := 0;
- Table : Case_Table_Type (1 .. Number_Of_Choices (N));
- -- Used to sort all the different choice values
-
- Nb_Elements : Int;
- -- Number of elements in the positional aggregate
-
- New_Code : constant List_Id := New_List;
-
- -- Start of processing for Build_Array_Aggr_Code
-
- begin
- -- First before we start, a special case. if we have a bit packed
- -- array represented as a modular type, then clear the value to
- -- zero first, to ensure that unused bits are properly cleared.
-
- Typ := Etype (N);
-
- if Present (Typ)
- and then Is_Bit_Packed_Array (Typ)
- and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
- then
- Append_To (New_Code,
- Make_Assignment_Statement (Loc,
- Name => New_Copy_Tree (Into),
- Expression =>
- Unchecked_Convert_To (Typ,
- Make_Integer_Literal (Loc, Uint_0))));
- end if;
-
- -- If the component type contains tasks, we need to build a Master
- -- entity in the current scope, because it will be needed if build-
- -- in-place functions are called in the expanded code.
-
- if Nkind (Parent (N)) = N_Object_Declaration
- and then Has_Task (Typ)
- then
- Build_Master_Entity (Defining_Identifier (Parent (N)));
- end if;
-
- -- STEP 1: Process component associations
-
- -- For those associations that may generate a loop, initialize
- -- Loop_Actions to collect inserted actions that may be crated.
-
- -- Skip this if no component associations
-
- if No (Expressions (N)) then
-
- -- STEP 1 (a): Sort the discrete choices
-
- Assoc := First (Component_Associations (N));
- while Present (Assoc) loop
- Choice := First (Choices (Assoc));
- while Present (Choice) loop
- if Nkind (Choice) = N_Others_Choice then
- Set_Loop_Actions (Assoc, New_List);
-
- if Box_Present (Assoc) then
- Others_Box_Present := True;
- else
- Others_Expr := Expression (Assoc);
- end if;
- exit;
- end if;
-
- Get_Index_Bounds (Choice, Low, High);
-
- if Low /= High then
- Set_Loop_Actions (Assoc, New_List);
- end if;
-
- Nb_Choices := Nb_Choices + 1;
- if Box_Present (Assoc) then
- Table (Nb_Choices) := (Choice_Lo => Low,
- Choice_Hi => High,
- Choice_Node => Empty);
- else
- Table (Nb_Choices) := (Choice_Lo => Low,
- Choice_Hi => High,
- Choice_Node => Expression (Assoc));
- end if;
- Next (Choice);
- end loop;
-
- Next (Assoc);
- end loop;
-
- -- If there is more than one set of choices these must be static
- -- and we can therefore sort them. Remember that Nb_Choices does not
- -- account for an others choice.
-
- if Nb_Choices > 1 then
- Sort_Case_Table (Table);
- end if;
-
- -- STEP 1 (b): take care of the whole set of discrete choices
-
- for J in 1 .. Nb_Choices loop
- Low := Table (J).Choice_Lo;
- High := Table (J).Choice_Hi;
- Expr := Table (J).Choice_Node;
- Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
- end loop;
-
- -- STEP 1 (c): generate the remaining loops to cover others choice
- -- We don't need to generate loops over empty gaps, but if there is
- -- a single empty range we must analyze the expression for semantics
-
- if Present (Others_Expr) or else Others_Box_Present then
- declare
- First : Boolean := True;
-
- begin
- for J in 0 .. Nb_Choices loop
- if J = 0 then
- Low := Aggr_Low;
- else
- Low := Add (1, To => Table (J).Choice_Hi);
- end if;
-
- if J = Nb_Choices then
- High := Aggr_High;
- else
- High := Add (-1, To => Table (J + 1).Choice_Lo);
- end if;
-
- -- If this is an expansion within an init proc, make
- -- sure that discriminant references are replaced by
- -- the corresponding discriminal.
-
- if Inside_Init_Proc then
- if Is_Entity_Name (Low)
- and then Ekind (Entity (Low)) = E_Discriminant
- then
- Set_Entity (Low, Discriminal (Entity (Low)));
- end if;
-
- if Is_Entity_Name (High)
- and then Ekind (Entity (High)) = E_Discriminant
- then
- Set_Entity (High, Discriminal (Entity (High)));
- end if;
- end if;
-
- if First
- or else not Empty_Range (Low, High)
- then
- First := False;
- Append_List
- (Gen_Loop (Low, High, Others_Expr), To => New_Code);
- end if;
- end loop;
- end;
- end if;
-
- -- STEP 2: Process positional components
-
- else
- -- STEP 2 (a): Generate the assignments for each positional element
- -- Note that here we have to use Aggr_L rather than Aggr_Low because
- -- Aggr_L is analyzed and Add wants an analyzed expression.
-
- Expr := First (Expressions (N));
- Nb_Elements := -1;
- while Present (Expr) loop
- Nb_Elements := Nb_Elements + 1;
- Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
- To => New_Code);
- Next (Expr);
- end loop;
-
- -- STEP 2 (b): Generate final loop if an others choice is present
- -- Here Nb_Elements gives the offset of the last positional element.
-
- if Present (Component_Associations (N)) then
- Assoc := Last (Component_Associations (N));
-
- -- Ada 2005 (AI-287)
-
- if Box_Present (Assoc) then
- Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
- Aggr_High,
- Empty),
- To => New_Code);
- else
- Expr := Expression (Assoc);
-
- Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
- Aggr_High,
- Expr), -- AI-287
- To => New_Code);
- end if;
- end if;
- end if;
-
- return New_Code;
- end Build_Array_Aggr_Code;
-
- ----------------------------
- -- Build_Record_Aggr_Code --
- ----------------------------
-
- function Build_Record_Aggr_Code
- (N : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id;
- Flist : Node_Id := Empty;
- Obj : Entity_Id := Empty;
- Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
- L : constant List_Id := New_List;
- N_Typ : constant Entity_Id := Etype (N);
-
- Comp : Node_Id;
- Instr : Node_Id;
- Ref : Node_Id;
- Target : Entity_Id;
- F : Node_Id;
- Comp_Type : Entity_Id;
- Selector : Entity_Id;
- Comp_Expr : Node_Id;
- Expr_Q : Node_Id;
-
- Internal_Final_List : Node_Id := Empty;
-
- -- If this is an internal aggregate, the External_Final_List is an
- -- expression for the controller record of the enclosing type.
-
- -- If the current aggregate has several controlled components, this
- -- expression will appear in several calls to attach to the finali-
- -- zation list, and it must not be shared.
-
- External_Final_List : Node_Id;
- Ancestor_Is_Expression : Boolean := False;
- Ancestor_Is_Subtype_Mark : Boolean := False;
-
- Init_Typ : Entity_Id := Empty;
- Attach : Node_Id;
-
- Ctrl_Stuff_Done : Boolean := False;
- -- True if Gen_Ctrl_Actions_For_Aggr has already been called; calls
- -- after the first do nothing.
-
- function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
- -- Returns the value that the given discriminant of an ancestor type
- -- should receive (in the absence of a conflict with the value provided
- -- by an ancestor part of an extension aggregate).
-
- procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
- -- Check that each of the discriminant values defined by the ancestor
- -- part of an extension aggregate match the corresponding values
- -- provided by either an association of the aggregate or by the
- -- constraint imposed by a parent type (RM95-4.3.2(8)).
-
- function Compatible_Int_Bounds
- (Agg_Bounds : Node_Id;
- Typ_Bounds : Node_Id) return Boolean;
- -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
- -- assumed that both bounds are integer ranges.
-
- procedure Gen_Ctrl_Actions_For_Aggr;
- -- Deal with the various controlled type data structure initializations
- -- (but only if it hasn't been done already).
-
- function Get_Constraint_Association (T : Entity_Id) return Node_Id;
- -- Returns the first discriminant association in the constraint
- -- associated with T, if any, otherwise returns Empty.
-
- function Init_Controller
- (Target : Node_Id;
- Typ : Entity_Id;
- F : Node_Id;
- Attach : Node_Id;
- Init_Pr : Boolean) return List_Id;
- -- Returns the list of statements necessary to initialize the internal
- -- controller of the (possible) ancestor typ into target and attach it
- -- to finalization list F. Init_Pr conditions the call to the init proc
- -- since it may already be done due to ancestor initialization.
-
- function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
- -- Check whether Bounds is a range node and its lower and higher bounds
- -- are integers literals.
-
- ---------------------------------
- -- Ancestor_Discriminant_Value --
- ---------------------------------
-
- function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
- Assoc : Node_Id;
- Assoc_Elmt : Elmt_Id;
- Aggr_Comp : Entity_Id;
- Corresp_Disc : Entity_Id;
- Current_Typ : Entity_Id := Base_Type (Typ);
- Parent_Typ : Entity_Id;
- Parent_Disc : Entity_Id;
- Save_Assoc : Node_Id := Empty;
-
- begin
- -- First check any discriminant associations to see if any of them
- -- provide a value for the discriminant.
-
- if Present (Discriminant_Specifications (Parent (Current_Typ))) then
- Assoc := First (Component_Associations (N));
- while Present (Assoc) loop
- Aggr_Comp := Entity (First (Choices (Assoc)));
-
- if Ekind (Aggr_Comp) = E_Discriminant then
- Save_Assoc := Expression (Assoc);
-
- Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
- while Present (Corresp_Disc) loop
-
- -- If found a corresponding discriminant then return the
- -- value given in the aggregate. (Note: this is not
- -- correct in the presence of side effects. ???)
-
- if Disc = Corresp_Disc then
- return Duplicate_Subexpr (Expression (Assoc));
- end if;
-
- Corresp_Disc :=
- Corresponding_Discriminant (Corresp_Disc);
- end loop;
- end if;
-
- Next (Assoc);
- end loop;
- end if;
-
- -- No match found in aggregate, so chain up parent types to find
- -- a constraint that defines the value of the discriminant.
-
- Parent_Typ := Etype (Current_Typ);
- while Current_Typ /= Parent_Typ loop
- if Has_Discriminants (Parent_Typ) then
- Parent_Disc := First_Discriminant (Parent_Typ);
-
- -- We either get the association from the subtype indication
- -- of the type definition itself, or from the discriminant
- -- constraint associated with the type entity (which is
- -- preferable, but it's not always present ???)
-
- if Is_Empty_Elmt_List (
- Discriminant_Constraint (Current_Typ))
- then
- Assoc := Get_Constraint_Association (Current_Typ);
- Assoc_Elmt := No_Elmt;
- else
- Assoc_Elmt :=
- First_Elmt (Discriminant_Constraint (Current_Typ));
- Assoc := Node (Assoc_Elmt);
- end if;
-
- -- Traverse the discriminants of the parent type looking
- -- for one that corresponds.
-
- while Present (Parent_Disc) and then Present (Assoc) loop
- Corresp_Disc := Parent_Disc;
- while Present (Corresp_Disc)
- and then Disc /= Corresp_Disc
- loop
- Corresp_Disc :=
- Corresponding_Discriminant (Corresp_Disc);
- end loop;
-
- if Disc = Corresp_Disc then
- if Nkind (Assoc) = N_Discriminant_Association then
- Assoc := Expression (Assoc);
- end if;
-
- -- If the located association directly denotes a
- -- discriminant, then use the value of a saved
- -- association of the aggregate. This is a kludge to
- -- handle certain cases involving multiple discriminants
- -- mapped to a single discriminant of a descendant. It's
- -- not clear how to locate the appropriate discriminant
- -- value for such cases. ???
-
- if Is_Entity_Name (Assoc)
- and then Ekind (Entity (Assoc)) = E_Discriminant
- then
- Assoc := Save_Assoc;
- end if;
-
- return Duplicate_Subexpr (Assoc);
- end if;
-
- Next_Discriminant (Parent_Disc);
-
- if No (Assoc_Elmt) then
- Next (Assoc);
- else
- Next_Elmt (Assoc_Elmt);
- if Present (Assoc_Elmt) then
- Assoc := Node (Assoc_Elmt);
- else
- Assoc := Empty;
- end if;
- end if;
- end loop;
- end if;
-
- Current_Typ := Parent_Typ;
- Parent_Typ := Etype (Current_Typ);
- end loop;
-
- -- In some cases there's no ancestor value to locate (such as
- -- when an ancestor part given by an expression defines the
- -- discriminant value).
-
- return Empty;
- end Ancestor_Discriminant_Value;
-
- ----------------------------------
- -- Check_Ancestor_Discriminants --
- ----------------------------------
-
- procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
- Discr : Entity_Id;
- Disc_Value : Node_Id;
- Cond : Node_Id;
-
- begin
- Discr := First_Discriminant (Base_Type (Anc_Typ));
- while Present (Discr) loop
- Disc_Value := Ancestor_Discriminant_Value (Discr);
-
- if Present (Disc_Value) then
- Cond := Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Occurrence_Of (Discr, Loc)),
- Right_Opnd => Disc_Value);
-
- Append_To (L,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Discriminant_Check_Failed));
- end if;
-
- Next_Discriminant (Discr);
- end loop;
- end Check_Ancestor_Discriminants;
-
- ---------------------------
- -- Compatible_Int_Bounds --
- ---------------------------
-
- function Compatible_Int_Bounds
- (Agg_Bounds : Node_Id;
- Typ_Bounds : Node_Id) return Boolean
- is
- Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
- Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
- Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
- Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
- begin
- return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
- end Compatible_Int_Bounds;
-
- --------------------------------
- -- Get_Constraint_Association --
- --------------------------------
-
- function Get_Constraint_Association (T : Entity_Id) return Node_Id is
- Typ_Def : constant Node_Id := Type_Definition (Parent (T));
- Indic : constant Node_Id := Subtype_Indication (Typ_Def);
-
- begin
- -- ??? Also need to cover case of a type mark denoting a subtype
- -- with constraint.
-
- if Nkind (Indic) = N_Subtype_Indication
- and then Present (Constraint (Indic))
- then
- return First (Constraints (Constraint (Indic)));
- end if;
-
- return Empty;
- end Get_Constraint_Association;
-
- ---------------------
- -- Init_Controller --
- ---------------------
-
- function Init_Controller
- (Target : Node_Id;
- Typ : Entity_Id;
- F : Node_Id;
- Attach : Node_Id;
- Init_Pr : Boolean) return List_Id
- is
- L : constant List_Id := New_List;
- Ref : Node_Id;
- RC : RE_Id;
- Target_Type : Entity_Id;
-
- begin
- -- Generate:
- -- init-proc (target._controller);
- -- initialize (target._controller);
- -- Attach_to_Final_List (target._controller, F);
-
- Ref :=
- Make_Selected_Component (Loc,
- Prefix => Convert_To (Typ, New_Copy_Tree (Target)),
- Selector_Name => Make_Identifier (Loc, Name_uController));
- Set_Assignment_OK (Ref);
-
- -- Ada 2005 (AI-287): Give support to aggregates of limited types.
- -- If the type is intrinsically limited the controller is limited as
- -- well. If it is tagged and limited then so is the controller.
- -- Otherwise an untagged type may have limited components without its
- -- full view being limited, so the controller is not limited.
-
- if Nkind (Target) = N_Identifier then
- Target_Type := Etype (Target);
-
- elsif Nkind (Target) = N_Selected_Component then
- Target_Type := Etype (Selector_Name (Target));
-
- elsif Nkind (Target) = N_Unchecked_Type_Conversion then
- Target_Type := Etype (Target);
-
- elsif Nkind (Target) = N_Unchecked_Expression
- and then Nkind (Expression (Target)) = N_Indexed_Component
- then
- Target_Type := Etype (Prefix (Expression (Target)));
-
- else
- Target_Type := Etype (Target);
- end if;
-
- -- If the target has not been analyzed yet, as will happen with
- -- delayed expansion, use the given type (either the aggregate type
- -- or an ancestor) to determine limitedness.
-
- if No (Target_Type) then
- Target_Type := Typ;
- end if;
-
- if (Is_Tagged_Type (Target_Type))
- and then Is_Limited_Type (Target_Type)
- then
- RC := RE_Limited_Record_Controller;
-
- elsif Is_Inherently_Limited_Type (Target_Type) then
- RC := RE_Limited_Record_Controller;
-
- else
- RC := RE_Record_Controller;
- end if;
-
- if Init_Pr then
- Append_List_To (L,
- Build_Initialization_Call (Loc,
- Id_Ref => Ref,
- Typ => RTE (RC),
- In_Init_Proc => Within_Init_Proc));
- end if;
-
- Append_To (L,
- Make_Procedure_Call_Statement (Loc,
- Name =>
- New_Reference_To (
- Find_Prim_Op (RTE (RC), Name_Initialize), Loc),
- Parameter_Associations =>
- New_List (New_Copy_Tree (Ref))));
-
- Append_To (L,
- Make_Attach_Call (
- Obj_Ref => New_Copy_Tree (Ref),
- Flist_Ref => F,
- With_Attach => Attach));
-
- return L;
- end Init_Controller;
-
- -------------------------
- -- Is_Int_Range_Bounds --
- -------------------------
-
- function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
- begin
- return Nkind (Bounds) = N_Range
- and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
- and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
- end Is_Int_Range_Bounds;
-
- -------------------------------
- -- Gen_Ctrl_Actions_For_Aggr --
- -------------------------------
-
- procedure Gen_Ctrl_Actions_For_Aggr is
- Alloc : Node_Id := Empty;
-
- begin
- -- Do the work only the first time this is called
-
- if Ctrl_Stuff_Done then
- return;
- end if;
-
- Ctrl_Stuff_Done := True;
-
- if Present (Obj)
- and then Finalize_Storage_Only (Typ)
- and then
- (Is_Library_Level_Entity (Obj)
- or else Entity (Constant_Value (RTE (RE_Garbage_Collected))) =
- Standard_True)
-
- -- why not Is_True (Expr_Value (RTE (RE_Garbaage_Collected) ???
- then
- Attach := Make_Integer_Literal (Loc, 0);
-
- elsif Nkind (Parent (N)) = N_Qualified_Expression
- and then Nkind (Parent (Parent (N))) = N_Allocator
- then
- Alloc := Parent (Parent (N));
- Attach := Make_Integer_Literal (Loc, 2);
-
- else
- Attach := Make_Integer_Literal (Loc, 1);
- end if;
-
- -- Determine the external finalization list. It is either the
- -- finalization list of the outer-scope or the one coming from
- -- an outer aggregate. When the target is not a temporary, the
- -- proper scope is the scope of the target rather than the
- -- potentially transient current scope.
-
- if Needs_Finalization (Typ) then
-
- -- The current aggregate belongs to an allocator which creates
- -- an object through an anonymous access type or acts as the root
- -- of a coextension chain.
-
- if Present (Alloc)
- and then
- (Is_Coextension_Root (Alloc)
- or else Ekind (Etype (Alloc)) = E_Anonymous_Access_Type)
- then
- if No (Associated_Final_Chain (Etype (Alloc))) then
- Build_Final_List (Alloc, Etype (Alloc));
- end if;
-
- External_Final_List :=
- Make_Selected_Component (Loc,
- Prefix =>
- New_Reference_To (
- Associated_Final_Chain (Etype (Alloc)), Loc),
- Selector_Name =>
- Make_Identifier (Loc, Name_F));
-
- elsif Present (Flist) then
- External_Final_List := New_Copy_Tree (Flist);
-
- elsif Is_Entity_Name (Target)
- and then Present (Scope (Entity (Target)))
- then
- External_Final_List :=
- Find_Final_List (Scope (Entity (Target)));
-
- else
- External_Final_List := Find_Final_List (Current_Scope);
- end if;
- else
- External_Final_List := Empty;
- end if;
-
- -- Initialize and attach the outer object in the is_controlled case
-
- if Is_Controlled (Typ) then
- if Ancestor_Is_Subtype_Mark then
- Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
- Set_Assignment_OK (Ref);
- Append_To (L,
- Make_Procedure_Call_Statement (Loc,
- Name =>
- New_Reference_To
- (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
- Parameter_Associations => New_List (New_Copy_Tree (Ref))));
- end if;
-
- if not Has_Controlled_Component (Typ) then
- Ref := New_Copy_Tree (Target);
- Set_Assignment_OK (Ref);
-
- -- This is an aggregate of a coextension. Do not produce a
- -- finalization call, but rather attach the reference of the
- -- aggregate to its coextension chain.
-
- if Present (Alloc)
- and then Is_Dynamic_Coextension (Alloc)
- then
- if No (Coextensions (Alloc)) then
- Set_Coextensions (Alloc, New_Elmt_List);
- end if;
-
- Append_Elmt (Ref, Coextensions (Alloc));
- else
- Append_To (L,
- Make_Attach_Call (
- Obj_Ref => Ref,
- Flist_Ref => New_Copy_Tree (External_Final_List),
- With_Attach => Attach));
- end if;
- end if;
- end if;
-
- -- In the Has_Controlled component case, all the intermediate
- -- controllers must be initialized.
-
- if Has_Controlled_Component (Typ)
- and not Is_Limited_Ancestor_Expansion
- then
- declare
- Inner_Typ : Entity_Id;
- Outer_Typ : Entity_Id;
- At_Root : Boolean;
-
- begin
- -- Find outer type with a controller
-
- Outer_Typ := Base_Type (Typ);
- while Outer_Typ /= Init_Typ
- and then not Has_New_Controlled_Component (Outer_Typ)
- loop
- Outer_Typ := Etype (Outer_Typ);
- end loop;
-
- -- Attach it to the outer record controller to the external
- -- final list.
-
- if Outer_Typ = Init_Typ then
- Append_List_To (L,
- Init_Controller (
- Target => Target,
- Typ => Outer_Typ,
- F => External_Final_List,
- Attach => Attach,
- Init_Pr => False));
-
- At_Root := True;
- Inner_Typ := Init_Typ;
-
- else
- Append_List_To (L,
- Init_Controller (
- Target => Target,
- Typ => Outer_Typ,
- F => External_Final_List,
- Attach => Attach,
- Init_Pr => True));
-
- Inner_Typ := Etype (Outer_Typ);
- At_Root :=
- not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ;
- end if;
-
- -- The outer object has to be attached as well
-
- if Is_Controlled (Typ) then
- Ref := New_Copy_Tree (Target);
- Set_Assignment_OK (Ref);
- Append_To (L,
- Make_Attach_Call (
- Obj_Ref => Ref,
- Flist_Ref => New_Copy_Tree (External_Final_List),
- With_Attach => New_Copy_Tree (Attach)));
- end if;
-
- -- Initialize the internal controllers for tagged types with
- -- more than one controller.
-
- while not At_Root and then Inner_Typ /= Init_Typ loop
- if Has_New_Controlled_Component (Inner_Typ) then
- F :=
- Make_Selected_Component (Loc,
- Prefix =>
- Convert_To (Outer_Typ, New_Copy_Tree (Target)),
- Selector_Name =>
- Make_Identifier (Loc, Name_uController));
- F :=
- Make_Selected_Component (Loc,
- Prefix => F,
- Selector_Name => Make_Identifier (Loc, Name_F));
-
- Append_List_To (L,
- Init_Controller (
- Target => Target,
- Typ => Inner_Typ,
- F => F,
- Attach => Make_Integer_Literal (Loc, 1),
- Init_Pr => True));
- Outer_Typ := Inner_Typ;
- end if;
-
- -- Stop at the root
-
- At_Root := Inner_Typ = Etype (Inner_Typ);
- Inner_Typ := Etype (Inner_Typ);
- end loop;
-
- -- If not done yet attach the controller of the ancestor part
-
- if Outer_Typ /= Init_Typ
- and then Inner_Typ = Init_Typ
- and then Has_Controlled_Component (Init_Typ)
- then
- F :=
- Make_Selected_Component (Loc,
- Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
- Selector_Name =>
- Make_Identifier (Loc, Name_uController));
- F :=
- Make_Selected_Component (Loc,
- Prefix => F,
- Selector_Name => Make_Identifier (Loc, Name_F));
-
- Attach := Make_Integer_Literal (Loc, 1);
- Append_List_To (L,
- Init_Controller (
- Target => Target,
- Typ => Init_Typ,
- F => F,
- Attach => Attach,
- Init_Pr => False));
-
- -- Note: Init_Pr is False because the ancestor part has
- -- already been initialized either way (by default, if
- -- given by a type name, otherwise from the expression).
-
- end if;
- end;
- end if;
- end Gen_Ctrl_Actions_For_Aggr;
-
- function Replace_Type (Expr : Node_Id) return Traverse_Result;
- -- If the aggregate contains a self-reference, traverse each expression
- -- to replace a possible self-reference with a reference to the proper
- -- component of the target of the assignment.
-
- ------------------
- -- Replace_Type --
- ------------------
-
- function Replace_Type (Expr : Node_Id) return Traverse_Result is
- begin
- -- Note regarding the Root_Type test below: Aggregate components for
- -- self-referential types include attribute references to the current
- -- instance, of the form: Typ'access, etc.. These references are
- -- rewritten as references to the target of the aggregate: the
- -- left-hand side of an assignment, the entity in a declaration,
- -- or a temporary. Without this test, we would improperly extended
- -- this rewriting to attribute references whose prefix was not the
- -- type of the aggregate.
-
- if Nkind (Expr) = N_Attribute_Reference
- and then Is_Entity_Name (Prefix (Expr))
- and then Is_Type (Entity (Prefix (Expr)))
- and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
- then
- if Is_Entity_Name (Lhs) then
- Rewrite (Prefix (Expr),
- New_Occurrence_Of (Entity (Lhs), Loc));
-
- elsif Nkind (Lhs) = N_Selected_Component then
- Rewrite (Expr,
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Unrestricted_Access,
- Prefix => New_Copy_Tree (Prefix (Lhs))));
- Set_Analyzed (Parent (Expr), False);
-
- else
- Rewrite (Expr,
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Unrestricted_Access,
- Prefix => New_Copy_Tree (Lhs)));
- Set_Analyzed (Parent (Expr), False);
- end if;
- end if;
-
- return OK;
- end Replace_Type;
-
- procedure Replace_Self_Reference is
- new Traverse_Proc (Replace_Type);
-
- -- Start of processing for Build_Record_Aggr_Code
-
- begin
- if Has_Self_Reference (N) then
- Replace_Self_Reference (N);
- end if;
-
- -- If the target of the aggregate is class-wide, we must convert it
- -- to the actual type of the aggregate, so that the proper components
- -- are visible. We know already that the types are compatible.
-
- -- There should also be a comment here explaining why the conversion
- -- is needed in the case of interfaces.???
-
- if Present (Etype (Lhs))
- and then (Is_Interface (Etype (Lhs))
- or else Is_Class_Wide_Type (Etype (Lhs)))
- then
- Target := Unchecked_Convert_To (Typ, Lhs);
- else
- Target := Lhs;
- end if;
-
- -- Deal with the ancestor part of extension aggregates or with the
- -- discriminants of the root type.
-
- if Nkind (N) = N_Extension_Aggregate then
- declare
- A : constant Node_Id := Ancestor_Part (N);
- Assign : List_Id;
-
- begin
- -- If the ancestor part is a subtype mark "T", we generate
-
- -- init-proc (T(tmp)); if T is constrained and
- -- init-proc (S(tmp)); where S applies an appropriate
- -- constraint if T is unconstrained
-
- if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
- Ancestor_Is_Subtype_Mark := True;
-
- if Is_Constrained (Entity (A)) then
- Init_Typ := Entity (A);
-
- -- For an ancestor part given by an unconstrained type mark,
- -- create a subtype constrained by appropriate corresponding
- -- discriminant values coming from either associations of the
- -- aggregate or a constraint on a parent type. The subtype will
- -- be used to generate the correct default value for the
- -- ancestor part.
-
- elsif Has_Discriminants (Entity (A)) then
- declare
- Anc_Typ : constant Entity_Id := Entity (A);
- Anc_Constr : constant List_Id := New_List;
- Discrim : Entity_Id;
- Disc_Value : Node_Id;
- New_Indic : Node_Id;
- Subt_Decl : Node_Id;
-
- begin
- Discrim := First_Discriminant (Anc_Typ);
- while Present (Discrim) loop
- Disc_Value := Ancestor_Discriminant_Value (Discrim);
- Append_To (Anc_Constr, Disc_Value);
- Next_Discriminant (Discrim);
- end loop;
-
- New_Indic :=
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => Anc_Constr));
-
- Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
-
- Subt_Decl :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Init_Typ,
- Subtype_Indication => New_Indic);
-
- -- Itypes must be analyzed with checks off Declaration
- -- must have a parent for proper handling of subsidiary
- -- actions.
-
- Set_Parent (Subt_Decl, N);
- Analyze (Subt_Decl, Suppress => All_Checks);
- end;
- end if;
-
- Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
- Set_Assignment_OK (Ref);
-
- if Has_Default_Init_Comps (N)
- or else Has_Task (Base_Type (Init_Typ))
- then
- Append_List_To (L,
- Build_Initialization_Call (Loc,
- Id_Ref => Ref,
- Typ => Init_Typ,
- In_Init_Proc => Within_Init_Proc,
- With_Default_Init => True));
- else
- Append_List_To (L,
- Build_Initialization_Call (Loc,
- Id_Ref => Ref,
- Typ => Init_Typ,
- In_Init_Proc => Within_Init_Proc));
- end if;
-
- if Is_Constrained (Entity (A))
- and then Has_Discriminants (Entity (A))
- then
- Check_Ancestor_Discriminants (Entity (A));
- end if;
-
- -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
- -- limited type, a recursive call expands the ancestor. Note that
- -- in the limited case, the ancestor part must be either a
- -- function call (possibly qualified, or wrapped in an unchecked
- -- conversion) or aggregate (definitely qualified).
-
- elsif Is_Limited_Type (Etype (A))
- and then Nkind (Unqualify (A)) /= N_Function_Call -- aggregate?
- and then
- (Nkind (Unqualify (A)) /= N_Unchecked_Type_Conversion
- or else
- Nkind (Expression (Unqualify (A))) /= N_Function_Call)
- then
- Ancestor_Is_Expression := True;
-
- -- Set up finalization data for enclosing record, because
- -- controlled subcomponents of the ancestor part will be
- -- attached to it.
-
- Gen_Ctrl_Actions_For_Aggr;
-
- Append_List_To (L,
- Build_Record_Aggr_Code (
- N => Unqualify (A),
- Typ => Etype (Unqualify (A)),
- Lhs => Target,
- Flist => Flist,
- Obj => Obj,
- Is_Limited_Ancestor_Expansion => True));
-
- -- If the ancestor part is an expression "E", we generate
-
- -- T(tmp) := E;
-
- -- In Ada 2005, this includes the case of a (possibly qualified)
- -- limited function call. The assignment will turn into a
- -- build-in-place function call (for further details, see
- -- Make_Build_In_Place_Call_In_Assignment).
-
- else
- Ancestor_Is_Expression := True;
- Init_Typ := Etype (A);
-
- -- If the ancestor part is an aggregate, force its full
- -- expansion, which was delayed.
-
- if Nkind (Unqualify (A)) = N_Aggregate
- or else Nkind (Unqualify (A)) = N_Extension_Aggregate
- then
- Set_Analyzed (A, False);
- Set_Analyzed (Expression (A), False);
- end if;
-
- Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
- Set_Assignment_OK (Ref);
-
- -- Make the assignment without usual controlled actions since
- -- we only want the post adjust but not the pre finalize here
- -- Add manual adjust when necessary.
-
- Assign := New_List (
- Make_OK_Assignment_Statement (Loc,
- Name => Ref,
- Expression => A));
- Set_No_Ctrl_Actions (First (Assign));
-
- -- Assign the tag now to make sure that the dispatching call in
- -- the subsequent deep_adjust works properly (unless VM_Target,
- -- where tags are implicit).
-
- if VM_Target = No_VM then
- Instr :=
- Make_OK_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name =>
- New_Reference_To
- (First_Tag_Component (Base_Type (Typ)), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt
- (Access_Disp_Table (Base_Type (Typ)))),
- Loc)));
-
- Set_Assignment_OK (Name (Instr));
- Append_To (Assign, Instr);
-
- -- Ada 2005 (AI-251): If tagged type has progenitors we must
- -- also initialize tags of the secondary dispatch tables.
-
- if Has_Interfaces (Base_Type (Typ)) then
- Init_Secondary_Tags
- (Typ => Base_Type (Typ),
- Target => Target,
- Stmts_List => Assign);
- end if;
- end if;
-
- -- Call Adjust manually
-
- if Needs_Finalization (Etype (A))
- and then not Is_Limited_Type (Etype (A))
- then
- Append_List_To (Assign,
- Make_Adjust_Call (
- Ref => New_Copy_Tree (Ref),
- Typ => Etype (A),
- Flist_Ref => New_Reference_To (
- RTE (RE_Global_Final_List), Loc),
- With_Attach => Make_Integer_Literal (Loc, 0)));
- end if;
-
- Append_To (L,
- Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
-
- if Has_Discriminants (Init_Typ) then
- Check_Ancestor_Discriminants (Init_Typ);
- end if;
- end if;
- end;
-
- -- Normal case (not an extension aggregate)
-
- else
- -- Generate the discriminant expressions, component by component.
- -- If the base type is an unchecked union, the discriminants are
- -- unknown to the back-end and absent from a value of the type, so
- -- assignments for them are not emitted.
-
- if Has_Discriminants (Typ)
- and then not Is_Unchecked_Union (Base_Type (Typ))
- then
- -- If the type is derived, and constrains discriminants of the
- -- parent type, these discriminants are not components of the
- -- aggregate, and must be initialized explicitly. They are not
- -- visible components of the object, but can become visible with
- -- a view conversion to the ancestor.
-
- declare
- Btype : Entity_Id;
- Parent_Type : Entity_Id;
- Disc : Entity_Id;
- Discr_Val : Elmt_Id;
-
- begin
- Btype := Base_Type (Typ);
- while Is_Derived_Type (Btype)
- and then Present (Stored_Constraint (Btype))
- loop
- Parent_Type := Etype (Btype);
-
- Disc := First_Discriminant (Parent_Type);
- Discr_Val :=
- First_Elmt (Stored_Constraint (Base_Type (Typ)));
- while Present (Discr_Val) loop
-
- -- Only those discriminants of the parent that are not
- -- renamed by discriminants of the derived type need to
- -- be added explicitly.
-
- if not Is_Entity_Name (Node (Discr_Val))
- or else
- Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
- then
- Comp_Expr :=
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Occurrence_Of (Disc, Loc));
-
- Instr :=
- Make_OK_Assignment_Statement (Loc,
- Name => Comp_Expr,
- Expression => New_Copy_Tree (Node (Discr_Val)));
-
- Set_No_Ctrl_Actions (Instr);
- Append_To (L, Instr);
- end if;
-
- Next_Discriminant (Disc);
- Next_Elmt (Discr_Val);
- end loop;
-
- Btype := Base_Type (Parent_Type);
- end loop;
- end;
-
- -- Generate discriminant init values for the visible discriminants
-
- declare
- Discriminant : Entity_Id;
- Discriminant_Value : Node_Id;
-
- begin
- Discriminant := First_Stored_Discriminant (Typ);
- while Present (Discriminant) loop
- Comp_Expr :=
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Occurrence_Of (Discriminant, Loc));
-
- Discriminant_Value :=
- Get_Discriminant_Value (
- Discriminant,
- N_Typ,
- Discriminant_Constraint (N_Typ));
-
- Instr :=
- Make_OK_Assignment_Statement (Loc,
- Name => Comp_Expr,
- Expression => New_Copy_Tree (Discriminant_Value));
-
- Set_No_Ctrl_Actions (Instr);
- Append_To (L, Instr);
-
- Next_Stored_Discriminant (Discriminant);
- end loop;
- end;
- end if;
- end if;
-
- -- Generate the assignments, component by component
-
- -- tmp.comp1 := Expr1_From_Aggr;
- -- tmp.comp2 := Expr2_From_Aggr;
- -- ....
-
- Comp := First (Component_Associations (N));
- while Present (Comp) loop
- Selector := Entity (First (Choices (Comp)));
-
- -- Ada 2005 (AI-287): For each default-initialized component generate
- -- a call to the corresponding IP subprogram if available.
-
- if Box_Present (Comp)
- and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
- then
- if Ekind (Selector) /= E_Discriminant then
- Gen_Ctrl_Actions_For_Aggr;
- end if;
-
- -- Ada 2005 (AI-287): If the component type has tasks then
- -- generate the activation chain and master entities (except
- -- in case of an allocator because in that case these entities
- -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
-
- declare
- Ctype : constant Entity_Id := Etype (Selector);
- Inside_Allocator : Boolean := False;
- P : Node_Id := Parent (N);
-
- begin
- if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
- while Present (P) loop
- if Nkind (P) = N_Allocator then
- Inside_Allocator := True;
- exit;
- end if;
-
- P := Parent (P);
- end loop;
-
- if not Inside_Init_Proc and not Inside_Allocator then
- Build_Activation_Chain_Entity (N);
- end if;
- end if;
- end;
-
- Append_List_To (L,
- Build_Initialization_Call (Loc,
- Id_Ref => Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Occurrence_Of (Selector,
- Loc)),
- Typ => Etype (Selector),
- Enclos_Type => Typ,
- With_Default_Init => True));
-
- goto Next_Comp;
- end if;
-
- -- Prepare for component assignment
-
- if Ekind (Selector) /= E_Discriminant
- or else Nkind (N) = N_Extension_Aggregate
- then
- -- All the discriminants have now been assigned
-
- -- This is now a good moment to initialize and attach all the
- -- controllers. Their position may depend on the discriminants.
-
- if Ekind (Selector) /= E_Discriminant then
- Gen_Ctrl_Actions_For_Aggr;
- end if;
-
- Comp_Type := Etype (Selector);
- Comp_Expr :=
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Occurrence_Of (Selector, Loc));
-
- if Nkind (Expression (Comp)) = N_Qualified_Expression then
- Expr_Q := Expression (Expression (Comp));
- else
- Expr_Q := Expression (Comp);
- end if;
-
- -- The controller is the one of the parent type defining the
- -- component (in case of inherited components).
-
- if Needs_Finalization (Comp_Type) then
- Internal_Final_List :=
- Make_Selected_Component (Loc,
- Prefix => Convert_To (
- Scope (Original_Record_Component (Selector)),
- New_Copy_Tree (Target)),
- Selector_Name =>
- Make_Identifier (Loc, Name_uController));
-
- Internal_Final_List :=
- Make_Selected_Component (Loc,
- Prefix => Internal_Final_List,
- Selector_Name => Make_Identifier (Loc, Name_F));
-
- -- The internal final list can be part of a constant object
-
- Set_Assignment_OK (Internal_Final_List);
-
- else
- Internal_Final_List := Empty;
- end if;
-
- -- Now either create the assignment or generate the code for the
- -- inner aggregate top-down.
-
- if Is_Delayed_Aggregate (Expr_Q) then
-
- -- We have the following case of aggregate nesting inside
- -- an object declaration:
-
- -- type Arr_Typ is array (Integer range <>) of ...;
-
- -- type Rec_Typ (...) is record
- -- Obj_Arr_Typ : Arr_Typ (A .. B);
- -- end record;
-
- -- Obj_Rec_Typ : Rec_Typ := (...,
- -- Obj_Arr_Typ => (X => (...), Y => (...)));
-
- -- The length of the ranges of the aggregate and Obj_Add_Typ
- -- are equal (B - A = Y - X), but they do not coincide (X /=
- -- A and B /= Y). This case requires array sliding which is
- -- performed in the following manner:
-
- -- subtype Arr_Sub is Arr_Typ (X .. Y);
- -- Temp : Arr_Sub;
- -- Temp (X) := (...);
- -- ...
- -- Temp (Y) := (...);
- -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
-
- if Ekind (Comp_Type) = E_Array_Subtype
- and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
- and then Is_Int_Range_Bounds (First_Index (Comp_Type))
- and then not
- Compatible_Int_Bounds
- (Agg_Bounds => Aggregate_Bounds (Expr_Q),
- Typ_Bounds => First_Index (Comp_Type))
- then
- -- Create the array subtype with bounds equal to those of
- -- the corresponding aggregate.
-
- declare
- SubE : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('T'));
-
- SubD : constant Node_Id :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier =>
- SubE,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (
- Etype (Comp_Type), Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (
- Loc, Constraints => New_List (
- New_Copy_Tree (Aggregate_Bounds (
- Expr_Q))))));
-
- -- Create a temporary array of the above subtype which
- -- will be used to capture the aggregate assignments.
-
- TmpE : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('A'));
-
- TmpD : constant Node_Id :=
- Make_Object_Declaration (Loc,
- Defining_Identifier =>
- TmpE,
- Object_Definition =>
- New_Reference_To (SubE, Loc));
-
- begin
- Set_No_Initialization (TmpD);
- Append_To (L, SubD);
- Append_To (L, TmpD);
-
- -- Expand aggregate into assignments to the temp array
-
- Append_List_To (L,
- Late_Expansion (Expr_Q, Comp_Type,
- New_Reference_To (TmpE, Loc), Internal_Final_List));
-
- -- Slide
-
- Append_To (L,
- Make_Assignment_Statement (Loc,
- Name => New_Copy_Tree (Comp_Expr),
- Expression => New_Reference_To (TmpE, Loc)));
-
- -- Do not pass the original aggregate to Gigi as is,
- -- since it will potentially clobber the front or the end
- -- of the array. Setting the expression to empty is safe
- -- since all aggregates are expanded into assignments.
-
- if Present (Obj) then
- Set_Expression (Parent (Obj), Empty);
- end if;
- end;
-
- -- Normal case (sliding not required)
-
- else
- Append_List_To (L,
- Late_Expansion (Expr_Q, Comp_Type, Comp_Expr,
- Internal_Final_List));
- end if;
-
- -- Expr_Q is not delayed aggregate
-
- else
- Instr :=
- Make_OK_Assignment_Statement (Loc,
- Name => Comp_Expr,
- Expression => Expression (Comp));
-
- Set_No_Ctrl_Actions (Instr);
- Append_To (L, Instr);
-
- -- Adjust the tag if tagged (because of possible view
- -- conversions), unless compiling for a VM where tags are
- -- implicit.
-
- -- tmp.comp._tag := comp_typ'tag;
-
- if Is_Tagged_Type (Comp_Type) and then VM_Target = No_VM then
- Instr :=
- Make_OK_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Comp_Expr),
- Selector_Name =>
- New_Reference_To
- (First_Tag_Component (Comp_Type), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
- Loc)));
-
- Append_To (L, Instr);
- end if;
-
- -- Adjust and Attach the component to the proper controller
-
- -- Adjust (tmp.comp);
- -- Attach_To_Final_List (tmp.comp,
- -- comp_typ (tmp)._record_controller.f)
-
- if Needs_Finalization (Comp_Type)
- and then not Is_Limited_Type (Comp_Type)
- then
- Append_List_To (L,
- Make_Adjust_Call (
- Ref => New_Copy_Tree (Comp_Expr),
- Typ => Comp_Type,
- Flist_Ref => Internal_Final_List,
- With_Attach => Make_Integer_Literal (Loc, 1)));
- end if;
- end if;
-
- -- ???
-
- elsif Ekind (Selector) = E_Discriminant
- and then Nkind (N) /= N_Extension_Aggregate
- and then Nkind (Parent (N)) = N_Component_Association
- and then Is_Constrained (Typ)
- then
- -- We must check that the discriminant value imposed by the
- -- context is the same as the value given in the subaggregate,
- -- because after the expansion into assignments there is no
- -- record on which to perform a regular discriminant check.
-
- declare
- D_Val : Elmt_Id;
- Disc : Entity_Id;
-
- begin
- D_Val := First_Elmt (Discriminant_Constraint (Typ));
- Disc := First_Discriminant (Typ);
- while Chars (Disc) /= Chars (Selector) loop
- Next_Discriminant (Disc);
- Next_Elmt (D_Val);
- end loop;
-
- pragma Assert (Present (D_Val));
-
- -- This check cannot performed for components that are
- -- constrained by a current instance, because this is not a
- -- value that can be compared with the actual constraint.
-
- if Nkind (Node (D_Val)) /= N_Attribute_Reference
- or else not Is_Entity_Name (Prefix (Node (D_Val)))
- or else not Is_Type (Entity (Prefix (Node (D_Val))))
- then
- Append_To (L,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd => New_Copy_Tree (Node (D_Val)),
- Right_Opnd => Expression (Comp)),
- Reason => CE_Discriminant_Check_Failed));
-
- else
- -- Find self-reference in previous discriminant assignment,
- -- and replace with proper expression.
-
- declare
- Ass : Node_Id;
-
- begin
- Ass := First (L);
- while Present (Ass) loop
- if Nkind (Ass) = N_Assignment_Statement
- and then Nkind (Name (Ass)) = N_Selected_Component
- and then Chars (Selector_Name (Name (Ass))) =
- Chars (Disc)
- then
- Set_Expression
- (Ass, New_Copy_Tree (Expression (Comp)));
- exit;
- end if;
- Next (Ass);
- end loop;
- end;
- end if;
- end;
- end if;
-
- <<Next_Comp>>
-
- Next (Comp);
- end loop;
-
- -- If the type is tagged, the tag needs to be initialized (unless
- -- compiling for the Java VM where tags are implicit). It is done
- -- late in the initialization process because in some cases, we call
- -- the init proc of an ancestor which will not leave out the right tag
-
- if Ancestor_Is_Expression then
- null;
-
- elsif Is_Tagged_Type (Typ) and then VM_Target = No_VM then
- Instr :=
- Make_OK_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name =>
- New_Reference_To
- (First_Tag_Component (Base_Type (Typ)), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
- Loc)));
-
- Append_To (L, Instr);
-
- -- Ada 2005 (AI-251): If the tagged type has been derived from
- -- abstract interfaces we must also initialize the tags of the
- -- secondary dispatch tables.
-
- if Has_Interfaces (Base_Type (Typ)) then
- Init_Secondary_Tags
- (Typ => Base_Type (Typ),
- Target => Target,
- Stmts_List => L);
- end if;
- end if;
-
- -- If the controllers have not been initialized yet (by lack of non-
- -- discriminant components), let's do it now.
-
- Gen_Ctrl_Actions_For_Aggr;
-
- return L;
- end Build_Record_Aggr_Code;
-
- -------------------------------
- -- Convert_Aggr_In_Allocator --
- -------------------------------
-
- procedure Convert_Aggr_In_Allocator
- (Alloc : Node_Id;
- Decl : Node_Id;
- Aggr : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Aggr);
- Typ : constant Entity_Id := Etype (Aggr);
- Temp : constant Entity_Id := Defining_Identifier (Decl);
-
- Occ : constant Node_Id :=
- Unchecked_Convert_To (Typ,
- Make_Explicit_Dereference (Loc,
- New_Reference_To (Temp, Loc)));
-
- Access_Type : constant Entity_Id := Etype (Temp);
- Flist : Entity_Id;
-
- begin
- -- If the allocator is for an access discriminant, there is no
- -- finalization list for the anonymous access type, and the eventual
- -- finalization of the object is handled through the coextension
- -- mechanism. If the enclosing object is not dynamically allocated,
- -- the access discriminant is itself placed on the stack. Otherwise,
- -- some other finalization list is used (see exp_ch4.adb).
-
- -- Decl has been inserted in the code ahead of the allocator, using
- -- Insert_Actions. We use Insert_Actions below as well, to ensure that
- -- subsequent insertions are done in the proper order. Using (for
- -- example) Insert_Actions_After to place the expanded aggregate
- -- immediately after Decl may lead to out-of-order references if the
- -- allocator has generated a finalization list, as when the designated
- -- object is controlled and there is an open transient scope.
-
- if Ekind (Access_Type) = E_Anonymous_Access_Type
- and then Nkind (Associated_Node_For_Itype (Access_Type)) =
- N_Discriminant_Specification
- then
- Flist := Empty;
- else
- Flist := Find_Final_List (Access_Type);
- end if;
-
- if Is_Array_Type (Typ) then
- Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
-
- elsif Has_Default_Init_Comps (Aggr) then
- declare
- L : constant List_Id := New_List;
- Init_Stmts : List_Id;
-
- begin
- Init_Stmts :=
- Late_Expansion
- (Aggr, Typ, Occ,
- Flist,
- Associated_Final_Chain (Base_Type (Access_Type)));
-
- -- ??? Dubious actual for Obj: expect 'the original object being
- -- initialized'
-
- if Has_Task (Typ) then
- Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
- Insert_Actions (Alloc, L);
- else
- Insert_Actions (Alloc, Init_Stmts);
- end if;
- end;
-
- else
- Insert_Actions (Alloc,
- Late_Expansion
- (Aggr, Typ, Occ, Flist,
- Associated_Final_Chain (Base_Type (Access_Type))));
-
- -- ??? Dubious actual for Obj: expect 'the original object being
- -- initialized'
-
- end if;
- end Convert_Aggr_In_Allocator;
-
- --------------------------------
- -- Convert_Aggr_In_Assignment --
- --------------------------------
-
- procedure Convert_Aggr_In_Assignment (N : Node_Id) is
- Aggr : Node_Id := Expression (N);
- Typ : constant Entity_Id := Etype (Aggr);
- Occ : constant Node_Id := New_Copy_Tree (Name (N));
-
- begin
- if Nkind (Aggr) = N_Qualified_Expression then
- Aggr := Expression (Aggr);
- end if;
-
- Insert_Actions_After (N,
- Late_Expansion
- (Aggr, Typ, Occ,
- Find_Final_List (Typ, New_Copy_Tree (Occ))));
- end Convert_Aggr_In_Assignment;
-
- ---------------------------------
- -- Convert_Aggr_In_Object_Decl --
- ---------------------------------
-
- procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
- Obj : constant Entity_Id := Defining_Identifier (N);
- Aggr : Node_Id := Expression (N);
- Loc : constant Source_Ptr := Sloc (Aggr);
- Typ : constant Entity_Id := Etype (Aggr);
- Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
-
- function Discriminants_Ok return Boolean;
- -- If the object type is constrained, the discriminants in the
- -- aggregate must be checked against the discriminants of the subtype.
- -- This cannot be done using Apply_Discriminant_Checks because after
- -- expansion there is no aggregate left to check.
-
- ----------------------
- -- Discriminants_Ok --
- ----------------------
-
- function Discriminants_Ok return Boolean is
- Cond : Node_Id := Empty;
- Check : Node_Id;
- D : Entity_Id;
- Disc1 : Elmt_Id;
- Disc2 : Elmt_Id;
- Val1 : Node_Id;
- Val2 : Node_Id;
-
- begin
- D := First_Discriminant (Typ);
- Disc1 := First_Elmt (Discriminant_Constraint (Typ));
- Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
- while Present (Disc1) and then Present (Disc2) loop
- Val1 := Node (Disc1);
- Val2 := Node (Disc2);
-
- if not Is_OK_Static_Expression (Val1)
- or else not Is_OK_Static_Expression (Val2)
- then
- Check := Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr (Val1),
- Right_Opnd => Duplicate_Subexpr (Val2));
-
- if No (Cond) then
- Cond := Check;
-
- else
- Cond := Make_Or_Else (Loc,
- Left_Opnd => Cond,
- Right_Opnd => Check);
- end if;
-
- elsif Expr_Value (Val1) /= Expr_Value (Val2) then
- Apply_Compile_Time_Constraint_Error (Aggr,
- Msg => "incorrect value for discriminant&?",
- Reason => CE_Discriminant_Check_Failed,
- Ent => D);
- return False;
- end if;
-
- Next_Discriminant (D);
- Next_Elmt (Disc1);
- Next_Elmt (Disc2);
- end loop;
-
- -- If any discriminant constraint is non-static, emit a check
-
- if Present (Cond) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Discriminant_Check_Failed));
- end if;
-
- return True;
- end Discriminants_Ok;
-
- -- Start of processing for Convert_Aggr_In_Object_Decl
-
- begin
- Set_Assignment_OK (Occ);
-
- if Nkind (Aggr) = N_Qualified_Expression then
- Aggr := Expression (Aggr);
- end if;
-
- if Has_Discriminants (Typ)
- and then Typ /= Etype (Obj)
- and then Is_Constrained (Etype (Obj))
- and then not Discriminants_Ok
- then
- return;
- end if;
-
- -- If the context is an extended return statement, it has its own
- -- finalization machinery (i.e. works like a transient scope) and
- -- we do not want to create an additional one, because objects on
- -- the finalization list of the return must be moved to the caller's
- -- finalization list to complete the return.
-
- -- However, if the aggregate is limited, it is built in place, and the
- -- controlled components are not assigned to intermediate temporaries
- -- so there is no need for a transient scope in this case either.
-
- if Requires_Transient_Scope (Typ)
- and then Ekind (Current_Scope) /= E_Return_Statement
- and then not Is_Limited_Type (Typ)
- then
- Establish_Transient_Scope
- (Aggr,
- Sec_Stack =>
- Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
- end if;
-
- Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj));
- Set_No_Initialization (N);
- Initialize_Discriminants (N, Typ);
- end Convert_Aggr_In_Object_Decl;
-
- -------------------------------------
- -- Convert_Array_Aggr_In_Allocator --
- -------------------------------------
-
- procedure Convert_Array_Aggr_In_Allocator
- (Decl : Node_Id;
- Aggr : Node_Id;
- Target : Node_Id)
- is
- Aggr_Code : List_Id;
- Typ : constant Entity_Id := Etype (Aggr);
- Ctyp : constant Entity_Id := Component_Type (Typ);
-
- begin
- -- The target is an explicit dereference of the allocated object.
- -- Generate component assignments to it, as for an aggregate that
- -- appears on the right-hand side of an assignment statement.
-
- Aggr_Code :=
- Build_Array_Aggr_Code (Aggr,
- Ctype => Ctyp,
- Index => First_Index (Typ),
- Into => Target,
- Scalar_Comp => Is_Scalar_Type (Ctyp));
-
- Insert_Actions_After (Decl, Aggr_Code);
- end Convert_Array_Aggr_In_Allocator;
-
- ----------------------------
- -- Convert_To_Assignments --
- ----------------------------
-
- procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Temp : Entity_Id;
-
- Instr : Node_Id;
- Target_Expr : Node_Id;
- Parent_Kind : Node_Kind;
- Unc_Decl : Boolean := False;
- Parent_Node : Node_Id;
-
- begin
- pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
- pragma Assert (Is_Record_Type (Typ));
-
- Parent_Node := Parent (N);
- Parent_Kind := Nkind (Parent_Node);
-
- if Parent_Kind = N_Qualified_Expression then
-
- -- Check if we are in a unconstrained declaration because in this
- -- case the current delayed expansion mechanism doesn't work when
- -- the declared object size depend on the initializing expr.
-
- begin
- Parent_Node := Parent (Parent_Node);
- Parent_Kind := Nkind (Parent_Node);
-
- if Parent_Kind = N_Object_Declaration then
- Unc_Decl :=
- not Is_Entity_Name (Object_Definition (Parent_Node))
- or else Has_Discriminants
- (Entity (Object_Definition (Parent_Node)))
- or else Is_Class_Wide_Type
- (Entity (Object_Definition (Parent_Node)));
- end if;
- end;
- end if;
-
- -- Just set the Delay flag in the cases where the transformation will be
- -- done top down from above.
-
- if False
-
- -- Internal aggregate (transformed when expanding the parent)
-
- or else Parent_Kind = N_Aggregate
- or else Parent_Kind = N_Extension_Aggregate
- or else Parent_Kind = N_Component_Association
-
- -- Allocator (see Convert_Aggr_In_Allocator)
-
- or else Parent_Kind = N_Allocator
-
- -- Object declaration (see Convert_Aggr_In_Object_Decl)
-
- or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
-
- -- Safe assignment (see Convert_Aggr_Assignments). So far only the
- -- assignments in init procs are taken into account.
-
- or else (Parent_Kind = N_Assignment_Statement
- and then Inside_Init_Proc)
-
- -- (Ada 2005) An inherently limited type in a return statement,
- -- which will be handled in a build-in-place fashion, and may be
- -- rewritten as an extended return and have its own finalization
- -- machinery. In the case of a simple return, the aggregate needs
- -- to be delayed until the scope for the return statement has been
- -- created, so that any finalization chain will be associated with
- -- that scope. For extended returns, we delay expansion to avoid the
- -- creation of an unwanted transient scope that could result in
- -- premature finalization of the return object (which is built in
- -- in place within the caller's scope).
-
- or else
- (Is_Inherently_Limited_Type (Typ)
- and then
- (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
- or else Nkind (Parent_Node) = N_Simple_Return_Statement))
- then
- Set_Expansion_Delayed (N);
- return;
- end if;
-
- if Requires_Transient_Scope (Typ) then
- Establish_Transient_Scope
- (N, Sec_Stack =>
- Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
- end if;
-
- -- If the aggregate is non-limited, create a temporary. If it is
- -- limited and the context is an assignment, this is a subaggregate
- -- for an enclosing aggregate being expanded. It must be built in place,
- -- so use the target of the current assignment.
-
- if Is_Limited_Type (Typ)
- and then Nkind (Parent (N)) = N_Assignment_Statement
- then
- Target_Expr := New_Copy_Tree (Name (Parent (N)));
- Insert_Actions
- (Parent (N), Build_Record_Aggr_Code (N, Typ, Target_Expr));
- Rewrite (Parent (N), Make_Null_Statement (Loc));
-
- else
- Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
-
- Instr :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Occurrence_Of (Typ, Loc));
-
- Set_No_Initialization (Instr);
- Insert_Action (N, Instr);
- Initialize_Discriminants (Instr, Typ);
- Target_Expr := New_Occurrence_Of (Temp, Loc);
- Insert_Actions (N, Build_Record_Aggr_Code (N, Typ, Target_Expr));
- Rewrite (N, New_Occurrence_Of (Temp, Loc));
- Analyze_And_Resolve (N, Typ);
- end if;
- end Convert_To_Assignments;
-
- ---------------------------
- -- Convert_To_Positional --
- ---------------------------
-
- procedure Convert_To_Positional
- (N : Node_Id;
- Max_Others_Replicate : Nat := 5;
- Handle_Bit_Packed : Boolean := False)
- is
- Typ : constant Entity_Id := Etype (N);
-
- Static_Components : Boolean := True;
-
- procedure Check_Static_Components;
- -- Check whether all components of the aggregate are compile-time known
- -- values, and can be passed as is to the back-end without further
- -- expansion.
-
- function Flatten
- (N : Node_Id;
- Ix : Node_Id;
- Ixb : Node_Id) return Boolean;
- -- Convert the aggregate into a purely positional form if possible. On
- -- entry the bounds of all dimensions are known to be static, and the
- -- total number of components is safe enough to expand.
-
- function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
- -- Return True iff the array N is flat (which is not rivial in the case
- -- of multidimensionsl aggregates).
-
- -----------------------------
- -- Check_Static_Components --
- -----------------------------
-
- procedure Check_Static_Components is
- Expr : Node_Id;
-
- begin
- Static_Components := True;
-
- if Nkind (N) = N_String_Literal then
- null;
-
- elsif Present (Expressions (N)) then
- Expr := First (Expressions (N));
- while Present (Expr) loop
- if Nkind (Expr) /= N_Aggregate
- or else not Compile_Time_Known_Aggregate (Expr)
- or else Expansion_Delayed (Expr)
- then
- Static_Components := False;
- exit;
- end if;
-
- Next (Expr);
- end loop;
- end if;
-
- if Nkind (N) = N_Aggregate
- and then Present (Component_Associations (N))
- then
- Expr := First (Component_Associations (N));
- while Present (Expr) loop
- if Nkind (Expression (Expr)) = N_Integer_Literal then
- null;
-
- elsif Nkind (Expression (Expr)) /= N_Aggregate
- or else
- not Compile_Time_Known_Aggregate (Expression (Expr))
- or else Expansion_Delayed (Expression (Expr))
- then
- Static_Components := False;
- exit;
- end if;
-
- Next (Expr);
- end loop;
- end if;
- end Check_Static_Components;
-
- -------------
- -- Flatten --
- -------------
-
- function Flatten
- (N : Node_Id;
- Ix : Node_Id;
- Ixb : Node_Id) return Boolean
- is
- Loc : constant Source_Ptr := Sloc (N);
- Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
- Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
- Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
- Lov : Uint;
- Hiv : Uint;
-
- begin
- if Nkind (Original_Node (N)) = N_String_Literal then
- return True;
- end if;
-
- if not Compile_Time_Known_Value (Lo)
- or else not Compile_Time_Known_Value (Hi)
- then
- return False;
- end if;
-
- Lov := Expr_Value (Lo);
- Hiv := Expr_Value (Hi);
-
- if Hiv < Lov
- or else not Compile_Time_Known_Value (Blo)
- then
- return False;
- end if;
-
- -- Determine if set of alternatives is suitable for conversion and
- -- build an array containing the values in sequence.
-
- declare
- Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
- of Node_Id := (others => Empty);
- -- The values in the aggregate sorted appropriately
-
- Vlist : List_Id;
- -- Same data as Vals in list form
-
- Rep_Count : Nat;
- -- Used to validate Max_Others_Replicate limit
-
- Elmt : Node_Id;
- Num : Int := UI_To_Int (Lov);
- Choice : Node_Id;
- Lo, Hi : Node_Id;
-
- begin
- if Present (Expressions (N)) then
- Elmt := First (Expressions (N));
- while Present (Elmt) loop
- if Nkind (Elmt) = N_Aggregate
- and then Present (Next_Index (Ix))
- and then
- not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
- then
- return False;
- end if;
-
- Vals (Num) := Relocate_Node (Elmt);
- Num := Num + 1;
-
- Next (Elmt);
- end loop;
- end if;
-
- if No (Component_Associations (N)) then
- return True;
- end if;
-
- Elmt := First (Component_Associations (N));
-
- if Nkind (Expression (Elmt)) = N_Aggregate then
- if Present (Next_Index (Ix))
- and then
- not Flatten
- (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
- then
- return False;
- end if;
- end if;
-
- Component_Loop : while Present (Elmt) loop
- Choice := First (Choices (Elmt));
- Choice_Loop : while Present (Choice) loop
-
- -- If we have an others choice, fill in the missing elements
- -- subject to the limit established by Max_Others_Replicate.
-
- if Nkind (Choice) = N_Others_Choice then
- Rep_Count := 0;
-
- for J in Vals'Range loop
- if No (Vals (J)) then
- Vals (J) := New_Copy_Tree (Expression (Elmt));
- Rep_Count := Rep_Count + 1;
-
- -- Check for maximum others replication. Note that
- -- we skip this test if either of the restrictions
- -- No_Elaboration_Code or No_Implicit_Loops is
- -- active, or if this is a preelaborable unit.
-
- declare
- P : constant Entity_Id :=
- Cunit_Entity (Current_Sem_Unit);
-
- begin
- if Restriction_Active (No_Elaboration_Code)
- or else Restriction_Active (No_Implicit_Loops)
- or else Is_Preelaborated (P)
- or else (Ekind (P) = E_Package_Body
- and then
- Is_Preelaborated (Spec_Entity (P)))
- then
- null;
-
- elsif Rep_Count > Max_Others_Replicate then
- return False;
- end if;
- end;
- end if;
- end loop;
-
- exit Component_Loop;
-
- -- Case of a subtype mark
-
- elsif Nkind (Choice) = N_Identifier
- and then Is_Type (Entity (Choice))
- then
- Lo := Type_Low_Bound (Etype (Choice));
- Hi := Type_High_Bound (Etype (Choice));
-
- -- Case of subtype indication
-
- elsif Nkind (Choice) = N_Subtype_Indication then
- Lo := Low_Bound (Range_Expression (Constraint (Choice)));
- Hi := High_Bound (Range_Expression (Constraint (Choice)));
-
- -- Case of a range
-
- elsif Nkind (Choice) = N_Range then
- Lo := Low_Bound (Choice);
- Hi := High_Bound (Choice);
-
- -- Normal subexpression case
-
- else pragma Assert (Nkind (Choice) in N_Subexpr);
- if not Compile_Time_Known_Value (Choice) then
- return False;
-
- else
- Vals (UI_To_Int (Expr_Value (Choice))) :=
- New_Copy_Tree (Expression (Elmt));
- goto Continue;
- end if;
- end if;
-
- -- Range cases merge with Lo,Hi said
-
- if not Compile_Time_Known_Value (Lo)
- or else
- not Compile_Time_Known_Value (Hi)
- then
- return False;
- else
- for J in UI_To_Int (Expr_Value (Lo)) ..
- UI_To_Int (Expr_Value (Hi))
- loop
- Vals (J) := New_Copy_Tree (Expression (Elmt));
- end loop;
- end if;
-
- <<Continue>>
- Next (Choice);
- end loop Choice_Loop;
-
- Next (Elmt);
- end loop Component_Loop;
-
- -- If we get here the conversion is possible
-
- Vlist := New_List;
- for J in Vals'Range loop
- Append (Vals (J), Vlist);
- end loop;
-
- Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
- Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
- return True;
- end;
- end Flatten;
-
- -------------
- -- Is_Flat --
- -------------
-
- function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
- Elmt : Node_Id;
-
- begin
- if Dims = 0 then
- return True;
-
- elsif Nkind (N) = N_Aggregate then
- if Present (Component_Associations (N)) then
- return False;
-
- else
- Elmt := First (Expressions (N));
- while Present (Elmt) loop
- if not Is_Flat (Elmt, Dims - 1) then
- return False;
- end if;
-
- Next (Elmt);
- end loop;
-
- return True;
- end if;
- else
- return True;
- end if;
- end Is_Flat;
-
- -- Start of processing for Convert_To_Positional
-
- begin
- -- Ada 2005 (AI-287): Do not convert in case of default initialized
- -- components because in this case will need to call the corresponding
- -- IP procedure.
-
- if Has_Default_Init_Comps (N) then
- return;
- end if;
-
- if Is_Flat (N, Number_Dimensions (Typ)) then
- return;
- end if;
-
- if Is_Bit_Packed_Array (Typ)
- and then not Handle_Bit_Packed
- then
- return;
- end if;
-
- -- Do not convert to positional if controlled components are involved
- -- since these require special processing
-
- if Has_Controlled_Component (Typ) then
- return;
- end if;
-
- Check_Static_Components;
-
- -- If the size is known, or all the components are static, try to
- -- build a fully positional aggregate.
-
- -- The size of the type may not be known for an aggregate with
- -- discriminated array components, but if the components are static
- -- it is still possible to verify statically that the length is
- -- compatible with the upper bound of the type, and therefore it is
- -- worth flattening such aggregates as well.
-
- -- For now the back-end expands these aggregates into individual
- -- assignments to the target anyway, but it is conceivable that
- -- it will eventually be able to treat such aggregates statically???
-
- if Aggr_Size_OK (N, Typ)
- and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
- then
- if Static_Components then
- Set_Compile_Time_Known_Aggregate (N);
- Set_Expansion_Delayed (N, False);
- end if;
-
- Analyze_And_Resolve (N, Typ);
- end if;
- end Convert_To_Positional;
-
- ----------------------------
- -- Expand_Array_Aggregate --
- ----------------------------
-
- -- Array aggregate expansion proceeds as follows:
-
- -- 1. If requested we generate code to perform all the array aggregate
- -- bound checks, specifically
-
- -- (a) Check that the index range defined by aggregate bounds is
- -- compatible with corresponding index subtype.
-
- -- (b) If an others choice is present check that no aggregate
- -- index is outside the bounds of the index constraint.
-
- -- (c) For multidimensional arrays make sure that all subaggregates
- -- corresponding to the same dimension have the same bounds.
-
- -- 2. Check for packed array aggregate which can be converted to a
- -- constant so that the aggregate disappeares completely.
-
- -- 3. Check case of nested aggregate. Generally nested aggregates are
- -- handled during the processing of the parent aggregate.
-
- -- 4. Check if the aggregate can be statically processed. If this is the
- -- case pass it as is to Gigi. Note that a necessary condition for
- -- static processing is that the aggregate be fully positional.
-
- -- 5. If in place aggregate expansion is possible (i.e. no need to create
- -- a temporary) then mark the aggregate as such and return. Otherwise
- -- create a new temporary and generate the appropriate initialization
- -- code.
-
- procedure Expand_Array_Aggregate (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
-
- Typ : constant Entity_Id := Etype (N);
- Ctyp : constant Entity_Id := Component_Type (Typ);
- -- Typ is the correct constrained array subtype of the aggregate
- -- Ctyp is the corresponding component type.
-
- Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
- -- Number of aggregate index dimensions
-
- Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
- Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
- -- Low and High bounds of the constraint for each aggregate index
-
- Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
- -- The type of each index
-
- Maybe_In_Place_OK : Boolean;
- -- If the type is neither controlled nor packed and the aggregate
- -- is the expression in an assignment, assignment in place may be
- -- possible, provided other conditions are met on the LHS.
-
- Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
- (others => False);
- -- If Others_Present (J) is True, then there is an others choice
- -- in one of the sub-aggregates of N at dimension J.
-
- procedure Build_Constrained_Type (Positional : Boolean);
- -- If the subtype is not static or unconstrained, build a constrained
- -- type using the computable sizes of the aggregate and its sub-
- -- aggregates.
-
- procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
- -- Checks that the bounds of Aggr_Bounds are within the bounds defined
- -- by Index_Bounds.
-
- procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
- -- Checks that in a multi-dimensional array aggregate all subaggregates
- -- corresponding to the same dimension have the same bounds.
- -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
- -- corresponding to the sub-aggregate.
-
- procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
- -- Computes the values of array Others_Present. Sub_Aggr is the
- -- array sub-aggregate we start the computation from. Dim is the
- -- dimension corresponding to the sub-aggregate.
-
- function Has_Address_Clause (D : Node_Id) return Boolean;
- -- If the aggregate is the expression in an object declaration, it
- -- cannot be expanded in place. This function does a lookahead in the
- -- current declarative part to find an address clause for the object
- -- being declared.
-
- function In_Place_Assign_OK return Boolean;
- -- Simple predicate to determine whether an aggregate assignment can
- -- be done in place, because none of the new values can depend on the
- -- components of the target of the assignment.
-
- procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
- -- Checks that if an others choice is present in any sub-aggregate no
- -- aggregate index is outside the bounds of the index constraint.
- -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
- -- corresponding to the sub-aggregate.
-
- ----------------------------
- -- Build_Constrained_Type --
- ----------------------------
-
- procedure Build_Constrained_Type (Positional : Boolean) is
- Loc : constant Source_Ptr := Sloc (N);
- Agg_Type : Entity_Id;
- Comp : Node_Id;
- Decl : Node_Id;
- Typ : constant Entity_Id := Etype (N);
- Indices : constant List_Id := New_List;
- Num : Int;
- Sub_Agg : Node_Id;
-
- begin
- Agg_Type :=
- Make_Defining_Identifier (
- Loc, New_Internal_Name ('A'));
-
- -- If the aggregate is purely positional, all its subaggregates
- -- have the same size. We collect the dimensions from the first
- -- subaggregate at each level.
-
- if Positional then
- Sub_Agg := N;
-
- for D in 1 .. Number_Dimensions (Typ) loop
- Sub_Agg := First (Expressions (Sub_Agg));
-
- Comp := Sub_Agg;
- Num := 0;
- while Present (Comp) loop
- Num := Num + 1;
- Next (Comp);
- end loop;
-
- Append (
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound =>
- Make_Integer_Literal (Loc, Num)),
- Indices);
- end loop;
-
- else
- -- We know the aggregate type is unconstrained and the aggregate
- -- is not processable by the back end, therefore not necessarily
- -- positional. Retrieve each dimension bounds (computed earlier).
- -- earlier.
-
- for D in 1 .. Number_Dimensions (Typ) loop
- Append (
- Make_Range (Loc,
- Low_Bound => Aggr_Low (D),
- High_Bound => Aggr_High (D)),
- Indices);
- end loop;
- end if;
-
- Decl :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Agg_Type,
- Type_Definition =>
- Make_Constrained_Array_Definition (Loc,
- Discrete_Subtype_Definitions => Indices,
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication =>
- New_Occurrence_Of (Component_Type (Typ), Loc))));
-
- Insert_Action (N, Decl);
- Analyze (Decl);
- Set_Etype (N, Agg_Type);
- Set_Is_Itype (Agg_Type);
- Freeze_Itype (Agg_Type, N);
- end Build_Constrained_Type;
-
- ------------------
- -- Check_Bounds --
- ------------------
-
- procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
- Aggr_Lo : Node_Id;
- Aggr_Hi : Node_Id;
-
- Ind_Lo : Node_Id;
- Ind_Hi : Node_Id;
-
- Cond : Node_Id := Empty;
-
- begin
- Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
- Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
-
- -- Generate the following test:
- --
- -- [constraint_error when
- -- Aggr_Lo <= Aggr_Hi and then
- -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
-
- -- As an optimization try to see if some tests are trivially vacuous
- -- because we are comparing an expression against itself.
-
- if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
- Cond := Empty;
-
- elsif Aggr_Hi = Ind_Hi then
- Cond :=
- Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
-
- elsif Aggr_Lo = Ind_Lo then
- Cond :=
- Make_Op_Gt (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
-
- else
- Cond :=
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
- Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
- end if;
-
- if Present (Cond) then
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Le (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
-
- Right_Opnd => Cond);
-
- Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
- Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Length_Check_Failed));
- end if;
- end Check_Bounds;
-
- ----------------------------
- -- Check_Same_Aggr_Bounds --
- ----------------------------
-
- procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
- Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
- Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
- -- The bounds of this specific sub-aggregate
-
- Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
- Aggr_Hi : constant Node_Id := Aggr_High (Dim);
- -- The bounds of the aggregate for this dimension
-
- Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
- -- The index type for this dimension.xxx
-
- Cond : Node_Id := Empty;
- Assoc : Node_Id;
- Expr : Node_Id;
-
- begin
- -- If index checks are on generate the test
-
- -- [constraint_error when
- -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
-
- -- As an optimization try to see if some tests are trivially vacuos
- -- because we are comparing an expression against itself. Also for
- -- the first dimension the test is trivially vacuous because there
- -- is just one aggregate for dimension 1.
-
- if Index_Checks_Suppressed (Ind_Typ) then
- Cond := Empty;
-
- elsif Dim = 1
- or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
- then
- Cond := Empty;
-
- elsif Aggr_Hi = Sub_Hi then
- Cond :=
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
-
- elsif Aggr_Lo = Sub_Lo then
- Cond :=
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
-
- else
- Cond :=
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
- Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
-
- Right_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
- Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
- end if;
-
- if Present (Cond) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Length_Check_Failed));
- end if;
-
- -- Now look inside the sub-aggregate to see if there is more work
-
- if Dim < Aggr_Dimension then
-
- -- Process positional components
-
- if Present (Expressions (Sub_Aggr)) then
- Expr := First (Expressions (Sub_Aggr));
- while Present (Expr) loop
- Check_Same_Aggr_Bounds (Expr, Dim + 1);
- Next (Expr);
- end loop;
- end if;
-
- -- Process component associations
-
- if Present (Component_Associations (Sub_Aggr)) then
- Assoc := First (Component_Associations (Sub_Aggr));
- while Present (Assoc) loop
- Expr := Expression (Assoc);
- Check_Same_Aggr_Bounds (Expr, Dim + 1);
- Next (Assoc);
- end loop;
- end if;
- end if;
- end Check_Same_Aggr_Bounds;
-
- ----------------------------
- -- Compute_Others_Present --
- ----------------------------
-
- procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
- Assoc : Node_Id;
- Expr : Node_Id;
-
- begin
- if Present (Component_Associations (Sub_Aggr)) then
- Assoc := Last (Component_Associations (Sub_Aggr));
-
- if Nkind (First (Choices (Assoc))) = N_Others_Choice then
- Others_Present (Dim) := True;
- end if;
- end if;
-
- -- Now look inside the sub-aggregate to see if there is more work
-
- if Dim < Aggr_Dimension then
-
- -- Process positional components
-
- if Present (Expressions (Sub_Aggr)) then
- Expr := First (Expressions (Sub_Aggr));
- while Present (Expr) loop
- Compute_Others_Present (Expr, Dim + 1);
- Next (Expr);
- end loop;
- end if;
-
- -- Process component associations
-
- if Present (Component_Associations (Sub_Aggr)) then
- Assoc := First (Component_Associations (Sub_Aggr));
- while Present (Assoc) loop
- Expr := Expression (Assoc);
- Compute_Others_Present (Expr, Dim + 1);
- Next (Assoc);
- end loop;
- end if;
- end if;
- end Compute_Others_Present;
-
- ------------------------
- -- Has_Address_Clause --
- ------------------------
-
- function Has_Address_Clause (D : Node_Id) return Boolean is
- Id : constant Entity_Id := Defining_Identifier (D);
- Decl : Node_Id;
-
- begin
- Decl := Next (D);
- while Present (Decl) loop
- if Nkind (Decl) = N_At_Clause
- and then Chars (Identifier (Decl)) = Chars (Id)
- then
- return True;
-
- elsif Nkind (Decl) = N_Attribute_Definition_Clause
- and then Chars (Decl) = Name_Address
- and then Chars (Name (Decl)) = Chars (Id)
- then
- return True;
- end if;
-
- Next (Decl);
- end loop;
-
- return False;
- end Has_Address_Clause;
-
- ------------------------
- -- In_Place_Assign_OK --
- ------------------------
-
- function In_Place_Assign_OK return Boolean is
- Aggr_In : Node_Id;
- Aggr_Lo : Node_Id;
- Aggr_Hi : Node_Id;
- Obj_In : Node_Id;
- Obj_Lo : Node_Id;
- Obj_Hi : Node_Id;
-
- function Is_Others_Aggregate (Aggr : Node_Id) return Boolean;
- -- Aggregates that consist of a single Others choice are safe
- -- if the single expression is.
-
- function Safe_Aggregate (Aggr : Node_Id) return Boolean;
- -- Check recursively that each component of a (sub)aggregate does
- -- not depend on the variable being assigned to.
-
- function Safe_Component (Expr : Node_Id) return Boolean;
- -- Verify that an expression cannot depend on the variable being
- -- assigned to. Room for improvement here (but less than before).
-
- -------------------------
- -- Is_Others_Aggregate --
- -------------------------
-
- function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
- begin
- return No (Expressions (Aggr))
- and then Nkind
- (First (Choices (First (Component_Associations (Aggr)))))
- = N_Others_Choice;
- end Is_Others_Aggregate;
-
- --------------------
- -- Safe_Aggregate --
- --------------------
-
- function Safe_Aggregate (Aggr : Node_Id) return Boolean is
- Expr : Node_Id;
-
- begin
- if Present (Expressions (Aggr)) then
- Expr := First (Expressions (Aggr));
- while Present (Expr) loop
- if Nkind (Expr) = N_Aggregate then
- if not Safe_Aggregate (Expr) then
- return False;
- end if;
-
- elsif not Safe_Component (Expr) then
- return False;
- end if;
-
- Next (Expr);
- end loop;
- end if;
-
- if Present (Component_Associations (Aggr)) then
- Expr := First (Component_Associations (Aggr));
- while Present (Expr) loop
- if Nkind (Expression (Expr)) = N_Aggregate then
- if not Safe_Aggregate (Expression (Expr)) then
- return False;
- end if;
-
- elsif not Safe_Component (Expression (Expr)) then
- return False;
- end if;
-
- Next (Expr);
- end loop;
- end if;
-
- return True;
- end Safe_Aggregate;
-
- --------------------
- -- Safe_Component --
- --------------------
-
- function Safe_Component (Expr : Node_Id) return Boolean is
- Comp : Node_Id := Expr;
-
- function Check_Component (Comp : Node_Id) return Boolean;
- -- Do the recursive traversal, after copy
-
- ---------------------
- -- Check_Component --
- ---------------------
-
- function Check_Component (Comp : Node_Id) return Boolean is
- begin
- if Is_Overloaded (Comp) then
- return False;
- end if;
-
- return Compile_Time_Known_Value (Comp)
-
- or else (Is_Entity_Name (Comp)
- and then Present (Entity (Comp))
- and then No (Renamed_Object (Entity (Comp))))
-
- or else (Nkind (Comp) = N_Attribute_Reference
- and then Check_Component (Prefix (Comp)))
-
- or else (Nkind (Comp) in N_Binary_Op
- and then Check_Component (Left_Opnd (Comp))
- and then Check_Component (Right_Opnd (Comp)))
-
- or else (Nkind (Comp) in N_Unary_Op
- and then Check_Component (Right_Opnd (Comp)))
-
- or else (Nkind (Comp) = N_Selected_Component
- and then Check_Component (Prefix (Comp)))
-
- or else (Nkind (Comp) = N_Unchecked_Type_Conversion
- and then Check_Component (Expression (Comp)));
- end Check_Component;
-
- -- Start of processing for Safe_Component
-
- begin
- -- If the component appears in an association that may
- -- correspond to more than one element, it is not analyzed
- -- before the expansion into assignments, to avoid side effects.
- -- We analyze, but do not resolve the copy, to obtain sufficient
- -- entity information for the checks that follow. If component is
- -- overloaded we assume an unsafe function call.
-
- if not Analyzed (Comp) then
- if Is_Overloaded (Expr) then
- return False;
-
- elsif Nkind (Expr) = N_Aggregate
- and then not Is_Others_Aggregate (Expr)
- then
- return False;
-
- elsif Nkind (Expr) = N_Allocator then
-
- -- For now, too complex to analyze
-
- return False;
- end if;
-
- Comp := New_Copy_Tree (Expr);
- Set_Parent (Comp, Parent (Expr));
- Analyze (Comp);
- end if;
-
- if Nkind (Comp) = N_Aggregate then
- return Safe_Aggregate (Comp);
- else
- return Check_Component (Comp);
- end if;
- end Safe_Component;
-
- -- Start of processing for In_Place_Assign_OK
-
- begin
- if Present (Component_Associations (N)) then
-
- -- On assignment, sliding can take place, so we cannot do the
- -- assignment in place unless the bounds of the aggregate are
- -- statically equal to those of the target.
-
- -- If the aggregate is given by an others choice, the bounds
- -- are derived from the left-hand side, and the assignment is
- -- safe if the expression is.
-
- if Is_Others_Aggregate (N) then
- return
- Safe_Component
- (Expression (First (Component_Associations (N))));
- end if;
-
- Aggr_In := First_Index (Etype (N));
- if Nkind (Parent (N)) = N_Assignment_Statement then
- Obj_In := First_Index (Etype (Name (Parent (N))));
-
- else
- -- Context is an allocator. Check bounds of aggregate
- -- against given type in qualified expression.
-
- pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
- Obj_In :=
- First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
- end if;
-
- while Present (Aggr_In) loop
- Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
- Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
-
- if not Compile_Time_Known_Value (Aggr_Lo)
- or else not Compile_Time_Known_Value (Aggr_Hi)
- or else not Compile_Time_Known_Value (Obj_Lo)
- or else not Compile_Time_Known_Value (Obj_Hi)
- or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
- or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
- then
- return False;
- end if;
-
- Next_Index (Aggr_In);
- Next_Index (Obj_In);
- end loop;
- end if;
-
- -- Now check the component values themselves
-
- return Safe_Aggregate (N);
- end In_Place_Assign_OK;
-
- ------------------
- -- Others_Check --
- ------------------
-
- procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
- Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
- Aggr_Hi : constant Node_Id := Aggr_High (Dim);
- -- The bounds of the aggregate for this dimension
-
- Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
- -- The index type for this dimension
-
- Need_To_Check : Boolean := False;
-
- Choices_Lo : Node_Id := Empty;
- Choices_Hi : Node_Id := Empty;
- -- The lowest and highest discrete choices for a named sub-aggregate
-
- Nb_Choices : Int := -1;
- -- The number of discrete non-others choices in this sub-aggregate
-
- Nb_Elements : Uint := Uint_0;
- -- The number of elements in a positional aggregate
-
- Cond : Node_Id := Empty;
-
- Assoc : Node_Id;
- Choice : Node_Id;
- Expr : Node_Id;
-
- begin
- -- Check if we have an others choice. If we do make sure that this
- -- sub-aggregate contains at least one element in addition to the
- -- others choice.
-
- if Range_Checks_Suppressed (Ind_Typ) then
- Need_To_Check := False;
-
- elsif Present (Expressions (Sub_Aggr))
- and then Present (Component_Associations (Sub_Aggr))
- then
- Need_To_Check := True;
-
- elsif Present (Component_Associations (Sub_Aggr)) then
- Assoc := Last (Component_Associations (Sub_Aggr));
-
- if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
- Need_To_Check := False;
-
- else
- -- Count the number of discrete choices. Start with -1 because
- -- the others choice does not count.
-
- Nb_Choices := -1;
- Assoc := First (Component_Associations (Sub_Aggr));
- while Present (Assoc) loop
- Choice := First (Choices (Assoc));
- while Present (Choice) loop
- Nb_Choices := Nb_Choices + 1;
- Next (Choice);
- end loop;
-
- Next (Assoc);
- end loop;
-
- -- If there is only an others choice nothing to do
-
- Need_To_Check := (Nb_Choices > 0);
- end if;
-
- else
- Need_To_Check := False;
- end if;
-
- -- If we are dealing with a positional sub-aggregate with an others
- -- choice then compute the number or positional elements.
-
- if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
- Expr := First (Expressions (Sub_Aggr));
- Nb_Elements := Uint_0;
- while Present (Expr) loop
- Nb_Elements := Nb_Elements + 1;
- Next (Expr);
- end loop;
-
- -- If the aggregate contains discrete choices and an others choice
- -- compute the smallest and largest discrete choice values.
-
- elsif Need_To_Check then
- Compute_Choices_Lo_And_Choices_Hi : declare
-
- Table : Case_Table_Type (1 .. Nb_Choices);
- -- Used to sort all the different choice values
-
- J : Pos := 1;
- Low : Node_Id;
- High : Node_Id;
-
- begin
- Assoc := First (Component_Associations (Sub_Aggr));
- while Present (Assoc) loop
- Choice := First (Choices (Assoc));
- while Present (Choice) loop
- if Nkind (Choice) = N_Others_Choice then
- exit;
- end if;
-
- Get_Index_Bounds (Choice, Low, High);
- Table (J).Choice_Lo := Low;
- Table (J).Choice_Hi := High;
-
- J := J + 1;
- Next (Choice);
- end loop;
-
- Next (Assoc);
- end loop;
-
- -- Sort the discrete choices
-
- Sort_Case_Table (Table);
-
- Choices_Lo := Table (1).Choice_Lo;
- Choices_Hi := Table (Nb_Choices).Choice_Hi;
- end Compute_Choices_Lo_And_Choices_Hi;
- end if;
-
- -- If no others choice in this sub-aggregate, or the aggregate
- -- comprises only an others choice, nothing to do.
-
- if not Need_To_Check then
- Cond := Empty;
-
- -- If we are dealing with an aggregate containing an others choice
- -- and positional components, we generate the following test:
-
- -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
- -- Ind_Typ'Pos (Aggr_Hi)
- -- then
- -- raise Constraint_Error;
- -- end if;
-
- elsif Nb_Elements > Uint_0 then
- Cond :=
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Pos,
- Expressions =>
- New_List
- (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
- Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
-
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Ind_Typ, Loc),
- Attribute_Name => Name_Pos,
- Expressions => New_List (
- Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
-
- -- If we are dealing with an aggregate containing an others choice
- -- and discrete choices we generate the following test:
-
- -- [constraint_error when
- -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
-
- else
- Cond :=
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Duplicate_Subexpr_Move_Checks (Choices_Lo),
- Right_Opnd =>
- Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Duplicate_Subexpr (Choices_Hi),
- Right_Opnd =>
- Duplicate_Subexpr (Aggr_Hi)));
- end if;
-
- if Present (Cond) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Length_Check_Failed));
- -- Questionable reason code, shouldn't that be a
- -- CE_Range_Check_Failed ???
- end if;
-
- -- Now look inside the sub-aggregate to see if there is more work
-
- if Dim < Aggr_Dimension then
-
- -- Process positional components
-
- if Present (Expressions (Sub_Aggr)) then
- Expr := First (Expressions (Sub_Aggr));
- while Present (Expr) loop
- Others_Check (Expr, Dim + 1);
- Next (Expr);
- end loop;
- end if;
-
- -- Process component associations
-
- if Present (Component_Associations (Sub_Aggr)) then
- Assoc := First (Component_Associations (Sub_Aggr));
- while Present (Assoc) loop
- Expr := Expression (Assoc);
- Others_Check (Expr, Dim + 1);
- Next (Assoc);
- end loop;
- end if;
- end if;
- end Others_Check;
-
- -- Remaining Expand_Array_Aggregate variables
-
- Tmp : Entity_Id;
- -- Holds the temporary aggregate value
-
- Tmp_Decl : Node_Id;
- -- Holds the declaration of Tmp
-
- Aggr_Code : List_Id;
- Parent_Node : Node_Id;
- Parent_Kind : Node_Kind;
-
- -- Start of processing for Expand_Array_Aggregate
-
- begin
- -- Do not touch the special aggregates of attributes used for Asm calls
-
- if Is_RTE (Ctyp, RE_Asm_Input_Operand)
- or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
- then
- return;
- end if;
-
- -- If the semantic analyzer has determined that aggregate N will raise
- -- Constraint_Error at run-time, then the aggregate node has been
- -- replaced with an N_Raise_Constraint_Error node and we should
- -- never get here.
-
- pragma Assert (not Raises_Constraint_Error (N));
-
- -- STEP 1a
-
- -- Check that the index range defined by aggregate bounds is
- -- compatible with corresponding index subtype.
-
- Index_Compatibility_Check : declare
- Aggr_Index_Range : Node_Id := First_Index (Typ);
- -- The current aggregate index range
-
- Index_Constraint : Node_Id := First_Index (Etype (Typ));
- -- The corresponding index constraint against which we have to
- -- check the above aggregate index range.
-
- begin
- Compute_Others_Present (N, 1);
-
- for J in 1 .. Aggr_Dimension loop
- -- There is no need to emit a check if an others choice is
- -- present for this array aggregate dimension since in this
- -- case one of N's sub-aggregates has taken its bounds from the
- -- context and these bounds must have been checked already. In
- -- addition all sub-aggregates corresponding to the same
- -- dimension must all have the same bounds (checked in (c) below).
-
- if not Range_Checks_Suppressed (Etype (Index_Constraint))
- and then not Others_Present (J)
- then
- -- We don't use Checks.Apply_Range_Check here because it emits
- -- a spurious check. Namely it checks that the range defined by
- -- the aggregate bounds is non empty. But we know this already
- -- if we get here.
-
- Check_Bounds (Aggr_Index_Range, Index_Constraint);
- end if;
-
- -- Save the low and high bounds of the aggregate index as well as
- -- the index type for later use in checks (b) and (c) below.
-
- Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
- Aggr_High (J) := High_Bound (Aggr_Index_Range);
-
- Aggr_Index_Typ (J) := Etype (Index_Constraint);
-
- Next_Index (Aggr_Index_Range);
- Next_Index (Index_Constraint);
- end loop;
- end Index_Compatibility_Check;
-
- -- STEP 1b
-
- -- If an others choice is present check that no aggregate index is
- -- outside the bounds of the index constraint.
-
- Others_Check (N, 1);
-
- -- STEP 1c
-
- -- For multidimensional arrays make sure that all subaggregates
- -- corresponding to the same dimension have the same bounds.
-
- if Aggr_Dimension > 1 then
- Check_Same_Aggr_Bounds (N, 1);
- end if;
-
- -- STEP 2
-
- -- Here we test for is packed array aggregate that we can handle at
- -- compile time. If so, return with transformation done. Note that we do
- -- this even if the aggregate is nested, because once we have done this
- -- processing, there is no more nested aggregate!
-
- if Packed_Array_Aggregate_Handled (N) then
- return;
- end if;
-
- -- At this point we try to convert to positional form
-
- if Ekind (Current_Scope) = E_Package
- and then Static_Elaboration_Desired (Current_Scope)
- then
- Convert_To_Positional (N, Max_Others_Replicate => 100);
-
- else
- Convert_To_Positional (N);
- end if;
-
- -- if the result is no longer an aggregate (e.g. it may be a string
- -- literal, or a temporary which has the needed value), then we are
- -- done, since there is no longer a nested aggregate.
-
- if Nkind (N) /= N_Aggregate then
- return;
-
- -- We are also done if the result is an analyzed aggregate
- -- This case could use more comments ???
-
- elsif Analyzed (N)
- and then N /= Original_Node (N)
- then
- return;
- end if;
-
- -- If all aggregate components are compile-time known and the aggregate
- -- has been flattened, nothing left to do. The same occurs if the
- -- aggregate is used to initialize the components of an statically
- -- allocated dispatch table.
-
- if Compile_Time_Known_Aggregate (N)
- or else Is_Static_Dispatch_Table_Aggregate (N)
- then
- Set_Expansion_Delayed (N, False);
- return;
- end if;
-
- -- Now see if back end processing is possible
-
- if Backend_Processing_Possible (N) then
-
- -- If the aggregate is static but the constraints are not, build
- -- a static subtype for the aggregate, so that Gigi can place it
- -- in static memory. Perform an unchecked_conversion to the non-
- -- static type imposed by the context.
-
- declare
- Itype : constant Entity_Id := Etype (N);
- Index : Node_Id;
- Needs_Type : Boolean := False;
-
- begin
- Index := First_Index (Itype);
- while Present (Index) loop
- if not Is_Static_Subtype (Etype (Index)) then
- Needs_Type := True;
- exit;
- else
- Next_Index (Index);
- end if;
- end loop;
-
- if Needs_Type then
- Build_Constrained_Type (Positional => True);
- Rewrite (N, Unchecked_Convert_To (Itype, N));
- Analyze (N);
- end if;
- end;
-
- return;
- end if;
-
- -- STEP 3
-
- -- Delay expansion for nested aggregates it will be taken care of
- -- when the parent aggregate is expanded
-
- Parent_Node := Parent (N);
- Parent_Kind := Nkind (Parent_Node);
-
- if Parent_Kind = N_Qualified_Expression then
- Parent_Node := Parent (Parent_Node);
- Parent_Kind := Nkind (Parent_Node);
- end if;
-
- if Parent_Kind = N_Aggregate
- or else Parent_Kind = N_Extension_Aggregate
- or else Parent_Kind = N_Component_Association
- or else (Parent_Kind = N_Object_Declaration
- and then Needs_Finalization (Typ))
- or else (Parent_Kind = N_Assignment_Statement
- and then Inside_Init_Proc)
- then
- if Static_Array_Aggregate (N)
- or else Compile_Time_Known_Aggregate (N)
- then
- Set_Expansion_Delayed (N, False);
- return;
- else
- Set_Expansion_Delayed (N);
- return;
- end if;
- end if;
-
- -- STEP 4
-
- -- Look if in place aggregate expansion is possible
-
- -- For object declarations we build the aggregate in place, unless
- -- the array is bit-packed or the component is controlled.
-
- -- For assignments we do the assignment in place if all the component
- -- associations have compile-time known values. For other cases we
- -- create a temporary. The analysis for safety of on-line assignment
- -- is delicate, i.e. we don't know how to do it fully yet ???
-
- -- For allocators we assign to the designated object in place if the
- -- aggregate meets the same conditions as other in-place assignments.
- -- In this case the aggregate may not come from source but was created
- -- for default initialization, e.g. with Initialize_Scalars.
-
- if Requires_Transient_Scope (Typ) then
- Establish_Transient_Scope
- (N, Sec_Stack => Has_Controlled_Component (Typ));
- end if;
-
- if Has_Default_Init_Comps (N) then
- Maybe_In_Place_OK := False;
-
- elsif Is_Bit_Packed_Array (Typ)
- or else Has_Controlled_Component (Typ)
- then
- Maybe_In_Place_OK := False;
-
- else
- Maybe_In_Place_OK :=
- (Nkind (Parent (N)) = N_Assignment_Statement
- and then Comes_From_Source (N)
- and then In_Place_Assign_OK)
-
- or else
- (Nkind (Parent (Parent (N))) = N_Allocator
- and then In_Place_Assign_OK);
- end if;
-
- -- If this is an array of tasks, it will be expanded into build-in-
- -- -place assignments. Build an activation chain for the tasks now
-
- if Has_Task (Etype (N)) then
- Build_Activation_Chain_Entity (N);
- end if;
-
- if not Has_Default_Init_Comps (N)
- and then Comes_From_Source (Parent (N))
- and then Nkind (Parent (N)) = N_Object_Declaration
- and then not
- Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
- and then N = Expression (Parent (N))
- and then not Is_Bit_Packed_Array (Typ)
- and then not Has_Controlled_Component (Typ)
- and then not Has_Address_Clause (Parent (N))
- then
- Tmp := Defining_Identifier (Parent (N));
- Set_No_Initialization (Parent (N));
- Set_Expression (Parent (N), Empty);
-
- -- Set the type of the entity, for use in the analysis of the
- -- subsequent indexed assignments. If the nominal type is not
- -- constrained, build a subtype from the known bounds of the
- -- aggregate. If the declaration has a subtype mark, use it,
- -- otherwise use the itype of the aggregate.
-
- if not Is_Constrained (Typ) then
- Build_Constrained_Type (Positional => False);
- elsif Is_Entity_Name (Object_Definition (Parent (N)))
- and then Is_Constrained (Entity (Object_Definition (Parent (N))))
- then
- Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
- else
- Set_Size_Known_At_Compile_Time (Typ, False);
- Set_Etype (Tmp, Typ);
- end if;
-
- elsif Maybe_In_Place_OK
- and then Nkind (Parent (N)) = N_Qualified_Expression
- and then Nkind (Parent (Parent (N))) = N_Allocator
- then
- Set_Expansion_Delayed (N);
- return;
-
- -- In the remaining cases the aggregate is the RHS of an assignment
-
- elsif Maybe_In_Place_OK
- and then Is_Entity_Name (Name (Parent (N)))
- then
- Tmp := Entity (Name (Parent (N)));
-
- if Etype (Tmp) /= Etype (N) then
- Apply_Length_Check (N, Etype (Tmp));
-
- if Nkind (N) = N_Raise_Constraint_Error then
-
- -- Static error, nothing further to expand
-
- return;
- end if;
- end if;
-
- elsif Maybe_In_Place_OK
- and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
- and then Is_Entity_Name (Prefix (Name (Parent (N))))
- then
- Tmp := Name (Parent (N));
-
- if Etype (Tmp) /= Etype (N) then
- Apply_Length_Check (N, Etype (Tmp));
- end if;
-
- elsif Maybe_In_Place_OK
- and then Nkind (Name (Parent (N))) = N_Slice
- and then Safe_Slice_Assignment (N)
- then
- -- Safe_Slice_Assignment rewrites assignment as a loop
-
- return;
-
- -- Step 5
-
- -- In place aggregate expansion is not possible
-
- else
- Maybe_In_Place_OK := False;
- Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
- Tmp_Decl :=
- Make_Object_Declaration
- (Loc,
- Defining_Identifier => Tmp,
- Object_Definition => New_Occurrence_Of (Typ, Loc));
- Set_No_Initialization (Tmp_Decl, True);
-
- -- If we are within a loop, the temporary will be pushed on the
- -- stack at each iteration. If the aggregate is the expression for
- -- an allocator, it will be immediately copied to the heap and can
- -- be reclaimed at once. We create a transient scope around the
- -- aggregate for this purpose.
-
- if Ekind (Current_Scope) = E_Loop
- and then Nkind (Parent (Parent (N))) = N_Allocator
- then
- Establish_Transient_Scope (N, False);
- end if;
-
- Insert_Action (N, Tmp_Decl);
- end if;
-
- -- Construct and insert the aggregate code. We can safely suppress
- -- index checks because this code is guaranteed not to raise CE
- -- on index checks. However we should *not* suppress all checks.
-
- declare
- Target : Node_Id;
-
- begin
- if Nkind (Tmp) = N_Defining_Identifier then
- Target := New_Reference_To (Tmp, Loc);
-
- else
-
- if Has_Default_Init_Comps (N) then
-
- -- Ada 2005 (AI-287): This case has not been analyzed???
-
- raise Program_Error;
- end if;
-
- -- Name in assignment is explicit dereference
-
- Target := New_Copy (Tmp);
- end if;
-
- Aggr_Code :=
- Build_Array_Aggr_Code (N,
- Ctype => Ctyp,
- Index => First_Index (Typ),
- Into => Target,
- Scalar_Comp => Is_Scalar_Type (Ctyp));
- end;
-
- if Comes_From_Source (Tmp) then
- Insert_Actions_After (Parent (N), Aggr_Code);
-
- else
- Insert_Actions (N, Aggr_Code);
- end if;
-
- -- If the aggregate has been assigned in place, remove the original
- -- assignment.
-
- if Nkind (Parent (N)) = N_Assignment_Statement
- and then Maybe_In_Place_OK
- then
- Rewrite (Parent (N), Make_Null_Statement (Loc));
-
- elsif Nkind (Parent (N)) /= N_Object_Declaration
- or else Tmp /= Defining_Identifier (Parent (N))
- then
- Rewrite (N, New_Occurrence_Of (Tmp, Loc));
- Analyze_And_Resolve (N, Typ);
- end if;
- end Expand_Array_Aggregate;
-
- ------------------------
- -- Expand_N_Aggregate --
- ------------------------
-
- procedure Expand_N_Aggregate (N : Node_Id) is
- begin
- if Is_Record_Type (Etype (N)) then
- Expand_Record_Aggregate (N);
- else
- Expand_Array_Aggregate (N);
- end if;
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Aggregate;
-
- ----------------------------------
- -- Expand_N_Extension_Aggregate --
- ----------------------------------
-
- -- If the ancestor part is an expression, add a component association for
- -- the parent field. If the type of the ancestor part is not the direct
- -- parent of the expected type, build recursively the needed ancestors.
- -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
- -- ration for a temporary of the expected type, followed by individual
- -- assignments to the given components.
-
- procedure Expand_N_Extension_Aggregate (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- A : constant Node_Id := Ancestor_Part (N);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- -- If the ancestor is a subtype mark, an init proc must be called
- -- on the resulting object which thus has to be materialized in
- -- the front-end
-
- if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
- Convert_To_Assignments (N, Typ);
-
- -- The extension aggregate is transformed into a record aggregate
- -- of the following form (c1 and c2 are inherited components)
-
- -- (Exp with c3 => a, c4 => b)
- -- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b)
-
- else
- Set_Etype (N, Typ);
-
- if VM_Target = No_VM then
- Expand_Record_Aggregate (N,
- Orig_Tag =>
- New_Occurrence_Of
- (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
- Parent_Expr => A);
- else
- -- No tag is needed in the case of a VM
- Expand_Record_Aggregate (N,
- Parent_Expr => A);
- end if;
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Extension_Aggregate;
-
- -----------------------------
- -- Expand_Record_Aggregate --
- -----------------------------
-
- procedure Expand_Record_Aggregate
- (N : Node_Id;
- Orig_Tag : Node_Id := Empty;
- Parent_Expr : Node_Id := Empty)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Comps : constant List_Id := Component_Associations (N);
- Typ : constant Entity_Id := Etype (N);
- Base_Typ : constant Entity_Id := Base_Type (Typ);
-
- Static_Components : Boolean := True;
- -- Flag to indicate whether all components are compile-time known,
- -- and the aggregate can be constructed statically and handled by
- -- the back-end.
-
- function Component_Not_OK_For_Backend return Boolean;
- -- Check for presence of component which makes it impossible for the
- -- backend to process the aggregate, thus requiring the use of a series
- -- of assignment statements. Cases checked for are a nested aggregate
- -- needing Late_Expansion, the presence of a tagged component which may
- -- need tag adjustment, and a bit unaligned component reference.
- --
- -- We also force expansion into assignments if a component is of a
- -- mutable type (including a private type with discriminants) because
- -- in that case the size of the component to be copied may be smaller
- -- than the side of the target, and there is no simple way for gigi
- -- to compute the size of the object to be copied.
- --
- -- NOTE: This is part of the ongoing work to define precisely the
- -- interface between front-end and back-end handling of aggregates.
- -- In general it is desirable to pass aggregates as they are to gigi,
- -- in order to minimize elaboration code. This is one case where the
- -- semantics of Ada complicate the analysis and lead to anomalies in
- -- the gcc back-end if the aggregate is not expanded into assignments.
-
- ----------------------------------
- -- Component_Not_OK_For_Backend --
- ----------------------------------
-
- function Component_Not_OK_For_Backend return Boolean is
- C : Node_Id;
- Expr_Q : Node_Id;
-
- begin
- if No (Comps) then
- return False;
- end if;
-
- C := First (Comps);
- while Present (C) loop
- if Nkind (Expression (C)) = N_Qualified_Expression then
- Expr_Q := Expression (Expression (C));
- else
- Expr_Q := Expression (C);
- end if;
-
- -- Return true if the aggregate has any associations for tagged
- -- components that may require tag adjustment.
-
- -- These are cases where the source expression may have a tag that
- -- could differ from the component tag (e.g., can occur for type
- -- conversions and formal parameters). (Tag adjustment not needed
- -- if VM_Target because object tags are implicit in the machine.)
-
- if Is_Tagged_Type (Etype (Expr_Q))
- and then (Nkind (Expr_Q) = N_Type_Conversion
- or else (Is_Entity_Name (Expr_Q)
- and then
- Ekind (Entity (Expr_Q)) in Formal_Kind))
- and then VM_Target = No_VM
- then
- Static_Components := False;
- return True;
-
- elsif Is_Delayed_Aggregate (Expr_Q) then
- Static_Components := False;
- return True;
-
- elsif Possible_Bit_Aligned_Component (Expr_Q) then
- Static_Components := False;
- return True;
- end if;
-
- if Is_Scalar_Type (Etype (Expr_Q)) then
- if not Compile_Time_Known_Value (Expr_Q) then
- Static_Components := False;
- end if;
-
- elsif Nkind (Expr_Q) /= N_Aggregate
- or else not Compile_Time_Known_Aggregate (Expr_Q)
- then
- Static_Components := False;
-
- if Is_Private_Type (Etype (Expr_Q))
- and then Has_Discriminants (Etype (Expr_Q))
- then
- return True;
- end if;
- end if;
-
- Next (C);
- end loop;
-
- return False;
- end Component_Not_OK_For_Backend;
-
- -- Remaining Expand_Record_Aggregate variables
-
- Tag_Value : Node_Id;
- Comp : Entity_Id;
- New_Comp : Node_Id;
-
- -- Start of processing for Expand_Record_Aggregate
-
- begin
- -- If the aggregate is to be assigned to an atomic variable, we
- -- have to prevent a piecemeal assignment even if the aggregate
- -- is to be expanded. We create a temporary for the aggregate, and
- -- assign the temporary instead, so that the back end can generate
- -- an atomic move for it.
-
- if Is_Atomic (Typ)
- and then (Nkind (Parent (N)) = N_Object_Declaration
- or else Nkind (Parent (N)) = N_Assignment_Statement)
- and then Comes_From_Source (Parent (N))
- then
- Expand_Atomic_Aggregate (N, Typ);
- return;
-
- -- No special management required for aggregates used to initialize
- -- statically allocated dispatch tables
-
- elsif Is_Static_Dispatch_Table_Aggregate (N) then
- return;
- end if;
-
- -- Ada 2005 (AI-318-2): We need to convert to assignments if components
- -- are build-in-place function calls. This test could be more specific,
- -- but doing it for all inherently limited aggregates seems harmless.
- -- The assignments will turn into build-in-place function calls (see
- -- Make_Build_In_Place_Call_In_Assignment).
-
- if Ada_Version >= Ada_05 and then Is_Inherently_Limited_Type (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- Gigi doesn't handle properly temporaries of variable size
- -- so we generate it in the front-end
-
- elsif not Size_Known_At_Compile_Time (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- Temporaries for controlled aggregates need to be attached to a
- -- final chain in order to be properly finalized, so it has to
- -- be created in the front-end
-
- elsif Is_Controlled (Typ)
- or else Has_Controlled_Component (Base_Type (Typ))
- then
- Convert_To_Assignments (N, Typ);
-
- -- Ada 2005 (AI-287): In case of default initialized components we
- -- convert the aggregate into assignments.
-
- elsif Has_Default_Init_Comps (N) then
- Convert_To_Assignments (N, Typ);
-
- -- Check components
-
- elsif Component_Not_OK_For_Backend then
- Convert_To_Assignments (N, Typ);
-
- -- If an ancestor is private, some components are not inherited and
- -- we cannot expand into a record aggregate
-
- elsif Has_Private_Ancestor (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
- -- is not able to handle the aggregate for Late_Request.
-
- elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- If the tagged types covers interface types we need to initialize all
- -- hidden components containing pointers to secondary dispatch tables.
-
- elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- If some components are mutable, the size of the aggregate component
- -- may be distinct from the default size of the type component, so
- -- we need to expand to insure that the back-end copies the proper
- -- size of the data.
-
- elsif Has_Mutable_Components (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- If the type involved has any non-bit aligned components, then we are
- -- not sure that the back end can handle this case correctly.
-
- elsif Type_May_Have_Bit_Aligned_Components (Typ) then
- Convert_To_Assignments (N, Typ);
-
- -- In all other cases, build a proper aggregate handlable by gigi
-
- else
- if Nkind (N) = N_Aggregate then
-
- -- If the aggregate is static and can be handled by the back-end,
- -- nothing left to do.
-
- if Static_Components then
- Set_Compile_Time_Known_Aggregate (N);
- Set_Expansion_Delayed (N, False);
- end if;
- end if;
-
- -- If no discriminants, nothing special to do
-
- if not Has_Discriminants (Typ) then
- null;
-
- -- Case of discriminants present
-
- elsif Is_Derived_Type (Typ) then
-
- -- For untagged types, non-stored discriminants are replaced
- -- with stored discriminants, which are the ones that gigi uses
- -- to describe the type and its components.
-
- Generate_Aggregate_For_Derived_Type : declare
- Constraints : constant List_Id := New_List;
- First_Comp : Node_Id;
- Discriminant : Entity_Id;
- Decl : Node_Id;
- Num_Disc : Int := 0;
- Num_Gird : Int := 0;
-
- procedure Prepend_Stored_Values (T : Entity_Id);
- -- Scan the list of stored discriminants of the type, and add
- -- their values to the aggregate being built.
-
- ---------------------------
- -- Prepend_Stored_Values --
- ---------------------------
-
- procedure Prepend_Stored_Values (T : Entity_Id) is
- begin
- Discriminant := First_Stored_Discriminant (T);
- while Present (Discriminant) loop
- New_Comp :=
- Make_Component_Association (Loc,
- Choices =>
- New_List (New_Occurrence_Of (Discriminant, Loc)),
-
- Expression =>
- New_Copy_Tree (
- Get_Discriminant_Value (
- Discriminant,
- Typ,
- Discriminant_Constraint (Typ))));
-
- if No (First_Comp) then
- Prepend_To (Component_Associations (N), New_Comp);
- else
- Insert_After (First_Comp, New_Comp);
- end if;
-
- First_Comp := New_Comp;
- Next_Stored_Discriminant (Discriminant);
- end loop;
- end Prepend_Stored_Values;
-
- -- Start of processing for Generate_Aggregate_For_Derived_Type
-
- begin
- -- Remove the associations for the discriminant of derived type
-
- First_Comp := First (Component_Associations (N));
- while Present (First_Comp) loop
- Comp := First_Comp;
- Next (First_Comp);
-
- if Ekind (Entity
- (First (Choices (Comp)))) = E_Discriminant
- then
- Remove (Comp);
- Num_Disc := Num_Disc + 1;
- end if;
- end loop;
-
- -- Insert stored discriminant associations in the correct
- -- order. If there are more stored discriminants than new
- -- discriminants, there is at least one new discriminant that
- -- constrains more than one of the stored discriminants. In
- -- this case we need to construct a proper subtype of the
- -- parent type, in order to supply values to all the
- -- components. Otherwise there is one-one correspondence
- -- between the constraints and the stored discriminants.
-
- First_Comp := Empty;
-
- Discriminant := First_Stored_Discriminant (Base_Type (Typ));
- while Present (Discriminant) loop
- Num_Gird := Num_Gird + 1;
- Next_Stored_Discriminant (Discriminant);
- end loop;
-
- -- Case of more stored discriminants than new discriminants
-
- if Num_Gird > Num_Disc then
-
- -- Create a proper subtype of the parent type, which is the
- -- proper implementation type for the aggregate, and convert
- -- it to the intended target type.
-
- Discriminant := First_Stored_Discriminant (Base_Type (Typ));
- while Present (Discriminant) loop
- New_Comp :=
- New_Copy_Tree (
- Get_Discriminant_Value (
- Discriminant,
- Typ,
- Discriminant_Constraint (Typ)));
- Append (New_Comp, Constraints);
- Next_Stored_Discriminant (Discriminant);
- end loop;
-
- Decl :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('T')),
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint
- (Loc, Constraints)));
-
- Insert_Action (N, Decl);
- Prepend_Stored_Values (Base_Type (Typ));
-
- Set_Etype (N, Defining_Identifier (Decl));
- Set_Analyzed (N);
-
- Rewrite (N, Unchecked_Convert_To (Typ, N));
- Analyze (N);
-
- -- Case where we do not have fewer new discriminants than
- -- stored discriminants, so in this case we can simply use the
- -- stored discriminants of the subtype.
-
- else
- Prepend_Stored_Values (Typ);
- end if;
- end Generate_Aggregate_For_Derived_Type;
- end if;
-
- if Is_Tagged_Type (Typ) then
-
- -- The tagged case, _parent and _tag component must be created
-
- -- Reset null_present unconditionally. tagged records always have
- -- at least one field (the tag or the parent)
-
- Set_Null_Record_Present (N, False);
-
- -- When the current aggregate comes from the expansion of an
- -- extension aggregate, the parent expr is replaced by an
- -- aggregate formed by selected components of this expr
-
- if Present (Parent_Expr)
- and then Is_Empty_List (Comps)
- then
- Comp := First_Component_Or_Discriminant (Typ);
- while Present (Comp) loop
-
- -- Skip all expander-generated components
-
- if
- not Comes_From_Source (Original_Record_Component (Comp))
- then
- null;
-
- else
- New_Comp :=
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (Typ,
- Duplicate_Subexpr (Parent_Expr, True)),
-
- Selector_Name => New_Occurrence_Of (Comp, Loc));
-
- Append_To (Comps,
- Make_Component_Association (Loc,
- Choices =>
- New_List (New_Occurrence_Of (Comp, Loc)),
- Expression =>
- New_Comp));
-
- Analyze_And_Resolve (New_Comp, Etype (Comp));
- end if;
-
- Next_Component_Or_Discriminant (Comp);
- end loop;
- end if;
-
- -- Compute the value for the Tag now, if the type is a root it
- -- will be included in the aggregate right away, otherwise it will
- -- be propagated to the parent aggregate
-
- if Present (Orig_Tag) then
- Tag_Value := Orig_Tag;
- elsif VM_Target /= No_VM then
- Tag_Value := Empty;
- else
- Tag_Value :=
- New_Occurrence_Of
- (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
- end if;
-
- -- For a derived type, an aggregate for the parent is formed with
- -- all the inherited components.
-
- if Is_Derived_Type (Typ) then
-
- declare
- First_Comp : Node_Id;
- Parent_Comps : List_Id;
- Parent_Aggr : Node_Id;
- Parent_Name : Node_Id;
-
- begin
- -- Remove the inherited component association from the
- -- aggregate and store them in the parent aggregate
-
- First_Comp := First (Component_Associations (N));
- Parent_Comps := New_List;
- while Present (First_Comp)
- and then Scope (Original_Record_Component (
- Entity (First (Choices (First_Comp))))) /= Base_Typ
- loop
- Comp := First_Comp;
- Next (First_Comp);
- Remove (Comp);
- Append (Comp, Parent_Comps);
- end loop;
-
- Parent_Aggr := Make_Aggregate (Loc,
- Component_Associations => Parent_Comps);
- Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
-
- -- Find the _parent component
-
- Comp := First_Component (Typ);
- while Chars (Comp) /= Name_uParent loop
- Comp := Next_Component (Comp);
- end loop;
-
- Parent_Name := New_Occurrence_Of (Comp, Loc);
-
- -- Insert the parent aggregate
-
- Prepend_To (Component_Associations (N),
- Make_Component_Association (Loc,
- Choices => New_List (Parent_Name),
- Expression => Parent_Aggr));
-
- -- Expand recursively the parent propagating the right Tag
-
- Expand_Record_Aggregate (
- Parent_Aggr, Tag_Value, Parent_Expr);
- end;
-
- -- For a root type, the tag component is added (unless compiling
- -- for the VMs, where tags are implicit).
-
- elsif VM_Target = No_VM then
- declare
- Tag_Name : constant Node_Id :=
- New_Occurrence_Of
- (First_Tag_Component (Typ), Loc);
- Typ_Tag : constant Entity_Id := RTE (RE_Tag);
- Conv_Node : constant Node_Id :=
- Unchecked_Convert_To (Typ_Tag, Tag_Value);
-
- begin
- Set_Etype (Conv_Node, Typ_Tag);
- Prepend_To (Component_Associations (N),
- Make_Component_Association (Loc,
- Choices => New_List (Tag_Name),
- Expression => Conv_Node));
- end;
- end if;
- end if;
- end if;
-
- end Expand_Record_Aggregate;
-
- ----------------------------
- -- Has_Default_Init_Comps --
- ----------------------------
-
- function Has_Default_Init_Comps (N : Node_Id) return Boolean is
- Comps : constant List_Id := Component_Associations (N);
- C : Node_Id;
- Expr : Node_Id;
- begin
- pragma Assert (Nkind (N) = N_Aggregate
- or else Nkind (N) = N_Extension_Aggregate);
-
- if No (Comps) then
- return False;
- end if;
-
- if Has_Self_Reference (N) then
- return True;
- end if;
-
- -- Check if any direct component has default initialized components
-
- C := First (Comps);
- while Present (C) loop
- if Box_Present (C) then
- return True;
- end if;
-
- Next (C);
- end loop;
-
- -- Recursive call in case of aggregate expression
-
- C := First (Comps);
- while Present (C) loop
- Expr := Expression (C);
-
- if Present (Expr)
- and then (Nkind (Expr) = N_Aggregate
- or else Nkind (Expr) = N_Extension_Aggregate)
- and then Has_Default_Init_Comps (Expr)
- then
- return True;
- end if;
-
- Next (C);
- end loop;
-
- return False;
- end Has_Default_Init_Comps;
-
- --------------------------
- -- Is_Delayed_Aggregate --
- --------------------------
-
- function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
- Node : Node_Id := N;
- Kind : Node_Kind := Nkind (Node);
-
- begin
- if Kind = N_Qualified_Expression then
- Node := Expression (Node);
- Kind := Nkind (Node);
- end if;
-
- if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
- return False;
- else
- return Expansion_Delayed (Node);
- end if;
- end Is_Delayed_Aggregate;
-
- ----------------------------------------
- -- Is_Static_Dispatch_Table_Aggregate --
- ----------------------------------------
-
- function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
- Typ : constant Entity_Id := Base_Type (Etype (N));
-
- begin
- return Static_Dispatch_Tables
- and then VM_Target = No_VM
- and then RTU_Loaded (Ada_Tags)
-
- -- Avoid circularity when rebuilding the compiler
-
- and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
- and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
- or else
- Typ = RTE (RE_Address_Array)
- or else
- Typ = RTE (RE_Type_Specific_Data)
- or else
- Typ = RTE (RE_Tag_Table)
- or else
- (RTE_Available (RE_Interface_Data)
- and then Typ = RTE (RE_Interface_Data))
- or else
- (RTE_Available (RE_Interfaces_Array)
- and then Typ = RTE (RE_Interfaces_Array))
- or else
- (RTE_Available (RE_Interface_Data_Element)
- and then Typ = RTE (RE_Interface_Data_Element)));
- end Is_Static_Dispatch_Table_Aggregate;
-
- --------------------
- -- Late_Expansion --
- --------------------
-
- function Late_Expansion
- (N : Node_Id;
- Typ : Entity_Id;
- Target : Node_Id;
- Flist : Node_Id := Empty;
- Obj : Entity_Id := Empty) return List_Id
- is
- begin
- if Is_Record_Type (Etype (N)) then
- return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj);
-
- else pragma Assert (Is_Array_Type (Etype (N)));
- return
- Build_Array_Aggr_Code
- (N => N,
- Ctype => Component_Type (Etype (N)),
- Index => First_Index (Typ),
- Into => Target,
- Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
- Indices => No_List,
- Flist => Flist);
- end if;
- end Late_Expansion;
-
- ----------------------------------
- -- Make_OK_Assignment_Statement --
- ----------------------------------
-
- function Make_OK_Assignment_Statement
- (Sloc : Source_Ptr;
- Name : Node_Id;
- Expression : Node_Id) return Node_Id
- is
- begin
- Set_Assignment_OK (Name);
-
- return Make_Assignment_Statement (Sloc, Name, Expression);
- end Make_OK_Assignment_Statement;
-
- -----------------------
- -- Number_Of_Choices --
- -----------------------
-
- function Number_Of_Choices (N : Node_Id) return Nat is
- Assoc : Node_Id;
- Choice : Node_Id;
-
- Nb_Choices : Nat := 0;
-
- begin
- if Present (Expressions (N)) then
- return 0;
- end if;
-
- Assoc := First (Component_Associations (N));
- while Present (Assoc) loop
- Choice := First (Choices (Assoc));
- while Present (Choice) loop
- if Nkind (Choice) /= N_Others_Choice then
- Nb_Choices := Nb_Choices + 1;
- end if;
-
- Next (Choice);
- end loop;
-
- Next (Assoc);
- end loop;
-
- return Nb_Choices;
- end Number_Of_Choices;
-
- ------------------------------------
- -- Packed_Array_Aggregate_Handled --
- ------------------------------------
-
- -- The current version of this procedure will handle at compile time
- -- any array aggregate that meets these conditions:
-
- -- One dimensional, bit packed
- -- Underlying packed type is modular type
- -- Bounds are within 32-bit Int range
- -- All bounds and values are static
-
- function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Ctyp : constant Entity_Id := Component_Type (Typ);
-
- Not_Handled : exception;
- -- Exception raised if this aggregate cannot be handled
-
- begin
- -- For now, handle only one dimensional bit packed arrays
-
- if not Is_Bit_Packed_Array (Typ)
- or else Number_Dimensions (Typ) > 1
- or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
- then
- return False;
- end if;
-
- if not Is_Scalar_Type (Component_Type (Typ))
- and then Has_Non_Standard_Rep (Component_Type (Typ))
- then
- return False;
- end if;
-
- declare
- Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
-
- Lo : Node_Id;
- Hi : Node_Id;
- -- Bounds of index type
-
- Lob : Uint;
- Hib : Uint;
- -- Values of bounds if compile time known
-
- function Get_Component_Val (N : Node_Id) return Uint;
- -- Given a expression value N of the component type Ctyp, returns a
- -- value of Csiz (component size) bits representing this value. If
- -- the value is non-static or any other reason exists why the value
- -- cannot be returned, then Not_Handled is raised.
-
- -----------------------
- -- Get_Component_Val --
- -----------------------
-
- function Get_Component_Val (N : Node_Id) return Uint is
- Val : Uint;
-
- begin
- -- We have to analyze the expression here before doing any further
- -- processing here. The analysis of such expressions is deferred
- -- till expansion to prevent some problems of premature analysis.
-
- Analyze_And_Resolve (N, Ctyp);
-
- -- Must have a compile time value. String literals have to be
- -- converted into temporaries as well, because they cannot easily
- -- be converted into their bit representation.
-
- if not Compile_Time_Known_Value (N)
- or else Nkind (N) = N_String_Literal
- then
- raise Not_Handled;
- end if;
-
- Val := Expr_Rep_Value (N);
-
- -- Adjust for bias, and strip proper number of bits
-
- if Has_Biased_Representation (Ctyp) then
- Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
- end if;
-
- return Val mod Uint_2 ** Csiz;
- end Get_Component_Val;
-
- -- Here we know we have a one dimensional bit packed array
-
- begin
- Get_Index_Bounds (First_Index (Typ), Lo, Hi);
-
- -- Cannot do anything if bounds are dynamic
-
- if not Compile_Time_Known_Value (Lo)
- or else
- not Compile_Time_Known_Value (Hi)
- then
- return False;
- end if;
-
- -- Or are silly out of range of int bounds
-
- Lob := Expr_Value (Lo);
- Hib := Expr_Value (Hi);
-
- if not UI_Is_In_Int_Range (Lob)
- or else
- not UI_Is_In_Int_Range (Hib)
- then
- return False;
- end if;
-
- -- At this stage we have a suitable aggregate for handling at compile
- -- time (the only remaining checks are that the values of expressions
- -- in the aggregate are compile time known (check is performed by
- -- Get_Component_Val), and that any subtypes or ranges are statically
- -- known.
-
- -- If the aggregate is not fully positional at this stage, then
- -- convert it to positional form. Either this will fail, in which
- -- case we can do nothing, or it will succeed, in which case we have
- -- succeeded in handling the aggregate, or it will stay an aggregate,
- -- in which case we have failed to handle this case.
-
- if Present (Component_Associations (N)) then
- Convert_To_Positional
- (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
- return Nkind (N) /= N_Aggregate;
- end if;
-
- -- Otherwise we are all positional, so convert to proper value
-
- declare
- Lov : constant Int := UI_To_Int (Lob);
- Hiv : constant Int := UI_To_Int (Hib);
-
- Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
- -- The length of the array (number of elements)
-
- Aggregate_Val : Uint;
- -- Value of aggregate. The value is set in the low order bits of
- -- this value. For the little-endian case, the values are stored
- -- from low-order to high-order and for the big-endian case the
- -- values are stored from high-order to low-order. Note that gigi
- -- will take care of the conversions to left justify the value in
- -- the big endian case (because of left justified modular type
- -- processing), so we do not have to worry about that here.
-
- Lit : Node_Id;
- -- Integer literal for resulting constructed value
-
- Shift : Nat;
- -- Shift count from low order for next value
-
- Incr : Int;
- -- Shift increment for loop
-
- Expr : Node_Id;
- -- Next expression from positional parameters of aggregate
-
- begin
- -- For little endian, we fill up the low order bits of the target
- -- value. For big endian we fill up the high order bits of the
- -- target value (which is a left justified modular value).
-
- if Bytes_Big_Endian xor Debug_Flag_8 then
- Shift := Csiz * (Len - 1);
- Incr := -Csiz;
- else
- Shift := 0;
- Incr := +Csiz;
- end if;
-
- -- Loop to set the values
-
- if Len = 0 then
- Aggregate_Val := Uint_0;
- else
- Expr := First (Expressions (N));
- Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
-
- for J in 2 .. Len loop
- Shift := Shift + Incr;
- Next (Expr);
- Aggregate_Val :=
- Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
- end loop;
- end if;
-
- -- Now we can rewrite with the proper value
-
- Lit :=
- Make_Integer_Literal (Loc,
- Intval => Aggregate_Val);
- Set_Print_In_Hex (Lit);
-
- -- Construct the expression using this literal. Note that it is
- -- important to qualify the literal with its proper modular type
- -- since universal integer does not have the required range and
- -- also this is a left justified modular type, which is important
- -- in the big-endian case.
-
- Rewrite (N,
- Unchecked_Convert_To (Typ,
- Make_Qualified_Expression (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
- Expression => Lit)));
-
- Analyze_And_Resolve (N, Typ);
- return True;
- end;
- end;
-
- exception
- when Not_Handled =>
- return False;
- end Packed_Array_Aggregate_Handled;
-
- ----------------------------
- -- Has_Mutable_Components --
- ----------------------------
-
- function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
- Comp : Entity_Id;
-
- begin
- Comp := First_Component (Typ);
- while Present (Comp) loop
- if Is_Record_Type (Etype (Comp))
- and then Has_Discriminants (Etype (Comp))
- and then not Is_Constrained (Etype (Comp))
- then
- return True;
- end if;
-
- Next_Component (Comp);
- end loop;
-
- return False;
- end Has_Mutable_Components;
-
- ------------------------------
- -- Initialize_Discriminants --
- ------------------------------
-
- procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Bas : constant Entity_Id := Base_Type (Typ);
- Par : constant Entity_Id := Etype (Bas);
- Decl : constant Node_Id := Parent (Par);
- Ref : Node_Id;
-
- begin
- if Is_Tagged_Type (Bas)
- and then Is_Derived_Type (Bas)
- and then Has_Discriminants (Par)
- and then Has_Discriminants (Bas)
- and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
- and then Nkind (Decl) = N_Full_Type_Declaration
- and then Nkind (Type_Definition (Decl)) = N_Record_Definition
- and then Present
- (Variant_Part (Component_List (Type_Definition (Decl))))
- and then Nkind (N) /= N_Extension_Aggregate
- then
-
- -- Call init proc to set discriminants.
- -- There should eventually be a special procedure for this ???
-
- Ref := New_Reference_To (Defining_Identifier (N), Loc);
- Insert_Actions_After (N,
- Build_Initialization_Call (Sloc (N), Ref, Typ));
- end if;
- end Initialize_Discriminants;
-
- ----------------
- -- Must_Slide --
- ----------------
-
- function Must_Slide
- (Obj_Type : Entity_Id;
- Typ : Entity_Id) return Boolean
- is
- L1, L2, H1, H2 : Node_Id;
- begin
- -- No sliding if the type of the object is not established yet, if it is
- -- an unconstrained type whose actual subtype comes from the aggregate,
- -- or if the two types are identical.
-
- if not Is_Array_Type (Obj_Type) then
- return False;
-
- elsif not Is_Constrained (Obj_Type) then
- return False;
-
- elsif Typ = Obj_Type then
- return False;
-
- else
- -- Sliding can only occur along the first dimension
-
- Get_Index_Bounds (First_Index (Typ), L1, H1);
- Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
-
- if not Is_Static_Expression (L1)
- or else not Is_Static_Expression (L2)
- or else not Is_Static_Expression (H1)
- or else not Is_Static_Expression (H2)
- then
- return False;
- else
- return Expr_Value (L1) /= Expr_Value (L2)
- or else Expr_Value (H1) /= Expr_Value (H2);
- end if;
- end if;
- end Must_Slide;
-
- ---------------------------
- -- Safe_Slice_Assignment --
- ---------------------------
-
- function Safe_Slice_Assignment (N : Node_Id) return Boolean is
- Loc : constant Source_Ptr := Sloc (Parent (N));
- Pref : constant Node_Id := Prefix (Name (Parent (N)));
- Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
- Expr : Node_Id;
- L_J : Entity_Id;
- L_Iter : Node_Id;
- L_Body : Node_Id;
- Stat : Node_Id;
-
- begin
- -- Generate: for J in Range loop Pref (J) := Expr; end loop;
-
- if Comes_From_Source (N)
- and then No (Expressions (N))
- and then Nkind (First (Choices (First (Component_Associations (N)))))
- = N_Others_Choice
- then
- Expr :=
- Expression (First (Component_Associations (N)));
- L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
-
- L_Iter :=
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification
- (Loc,
- Defining_Identifier => L_J,
- Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
-
- L_Body :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => Relocate_Node (Pref),
- Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
- Expression => Relocate_Node (Expr));
-
- -- Construct the final loop
-
- Stat :=
- Make_Implicit_Loop_Statement
- (Node => Parent (N),
- Identifier => Empty,
- Iteration_Scheme => L_Iter,
- Statements => New_List (L_Body));
-
- -- Set type of aggregate to be type of lhs in assignment,
- -- to suppress redundant length checks.
-
- Set_Etype (N, Etype (Name (Parent (N))));
-
- Rewrite (Parent (N), Stat);
- Analyze (Parent (N));
- return True;
-
- else
- return False;
- end if;
- end Safe_Slice_Assignment;
-
- ---------------------
- -- Sort_Case_Table --
- ---------------------
-
- procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
- L : constant Int := Case_Table'First;
- U : constant Int := Case_Table'Last;
- K : Int;
- J : Int;
- T : Case_Bounds;
-
- begin
- K := L;
- while K /= U loop
- T := Case_Table (K + 1);
-
- J := K + 1;
- while J /= L
- and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
- Expr_Value (T.Choice_Lo)
- loop
- Case_Table (J) := Case_Table (J - 1);
- J := J - 1;
- end loop;
-
- Case_Table (J) := T;
- K := K + 1;
- end loop;
- end Sort_Case_Table;
-
- ----------------------------
- -- Static_Array_Aggregate --
- ----------------------------
-
- function Static_Array_Aggregate (N : Node_Id) return Boolean is
- Bounds : constant Node_Id := Aggregate_Bounds (N);
-
- Typ : constant Entity_Id := Etype (N);
- Comp_Type : constant Entity_Id := Component_Type (Typ);
- Agg : Node_Id;
- Expr : Node_Id;
- Lo : Node_Id;
- Hi : Node_Id;
-
- begin
- if Is_Tagged_Type (Typ)
- or else Is_Controlled (Typ)
- or else Is_Packed (Typ)
- then
- return False;
- end if;
-
- if Present (Bounds)
- and then Nkind (Bounds) = N_Range
- and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
- and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
- then
- Lo := Low_Bound (Bounds);
- Hi := High_Bound (Bounds);
-
- if No (Component_Associations (N)) then
-
- -- Verify that all components are static integers
-
- Expr := First (Expressions (N));
- while Present (Expr) loop
- if Nkind (Expr) /= N_Integer_Literal then
- return False;
- end if;
-
- Next (Expr);
- end loop;
-
- return True;
-
- else
- -- We allow only a single named association, either a static
- -- range or an others_clause, with a static expression.
-
- Expr := First (Component_Associations (N));
-
- if Present (Expressions (N)) then
- return False;
-
- elsif Present (Next (Expr)) then
- return False;
-
- elsif Present (Next (First (Choices (Expr)))) then
- return False;
-
- else
- -- The aggregate is static if all components are literals, or
- -- else all its components are static aggregates for the
- -- component type. We also limit the size of a static aggregate
- -- to prevent runaway static expressions.
-
- if Is_Array_Type (Comp_Type)
- or else Is_Record_Type (Comp_Type)
- then
- if Nkind (Expression (Expr)) /= N_Aggregate
- or else
- not Compile_Time_Known_Aggregate (Expression (Expr))
- then
- return False;
- end if;
-
- elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
- return False;
-
- elsif not Aggr_Size_OK (N, Typ) then
- return False;
- end if;
-
- -- Create a positional aggregate with the right number of
- -- copies of the expression.
-
- Agg := Make_Aggregate (Sloc (N), New_List, No_List);
-
- for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
- loop
- Append_To
- (Expressions (Agg), New_Copy (Expression (Expr)));
-
- -- The copied expression must be analyzed and resolved.
- -- Besides setting the type, this ensures that static
- -- expressions are appropriately marked as such.
-
- Analyze_And_Resolve
- (Last (Expressions (Agg)), Component_Type (Typ));
- end loop;
-
- Set_Aggregate_Bounds (Agg, Bounds);
- Set_Etype (Agg, Typ);
- Set_Analyzed (Agg);
- Rewrite (N, Agg);
- Set_Compile_Time_Known_Aggregate (N);
-
- return True;
- end if;
- end if;
-
- else
- return False;
- end if;
- end Static_Array_Aggregate;
-
-end Exp_Aggr;