aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/a-ngelfu.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/a-ngelfu.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/a-ngelfu.adb1034
1 files changed, 0 insertions, 1034 deletions
diff --git a/gcc-4.4.3/gcc/ada/a-ngelfu.adb b/gcc-4.4.3/gcc/ada/a-ngelfu.adb
deleted file mode 100644
index 62d88a48d..000000000
--- a/gcc-4.4.3/gcc/ada/a-ngelfu.adb
+++ /dev/null
@@ -1,1034 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME COMPONENTS --
--- --
--- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
--- This body is specifically for using an Ada interface to C math.h to get
--- the computation engine. Many special cases are handled locally to avoid
--- unnecessary calls. This is not a "strict" implementation, but takes full
--- advantage of the C functions, e.g. in providing interface to hardware
--- provided versions of the elementary functions.
-
--- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
--- sinh, cosh, tanh from C library via math.h
-
-with Ada.Numerics.Aux;
-
-package body Ada.Numerics.Generic_Elementary_Functions is
-
- use type Ada.Numerics.Aux.Double;
-
- Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
- Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
- Half_Log_Two : constant := Log_Two / 2;
-
- subtype T is Float_Type'Base;
- subtype Double is Aux.Double;
-
- Two_Pi : constant T := 2.0 * Pi;
- Half_Pi : constant T := Pi / 2.0;
-
- Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
- Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
- Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
- -- Cody/Waite routine, supposedly more precise than the library
- -- version. Currently only needed for Sinh/Cosh on X86 with the largest
- -- FP type.
-
- function Local_Atan
- (Y : Float_Type'Base;
- X : Float_Type'Base := 1.0)
- return Float_Type'Base;
- -- Common code for arc tangent after cycle reduction
-
- ----------
- -- "**" --
- ----------
-
- function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
- A_Right : Float_Type'Base;
- Int_Part : Integer;
- Result : Float_Type'Base;
- R1 : Float_Type'Base;
- Rest : Float_Type'Base;
-
- begin
- if Left = 0.0
- and then Right = 0.0
- then
- raise Argument_Error;
-
- elsif Left < 0.0 then
- raise Argument_Error;
-
- elsif Right = 0.0 then
- return 1.0;
-
- elsif Left = 0.0 then
- if Right < 0.0 then
- raise Constraint_Error;
- else
- return 0.0;
- end if;
-
- elsif Left = 1.0 then
- return 1.0;
-
- elsif Right = 1.0 then
- return Left;
-
- else
- begin
- if Right = 2.0 then
- return Left * Left;
-
- elsif Right = 0.5 then
- return Sqrt (Left);
-
- else
- A_Right := abs (Right);
-
- -- If exponent is larger than one, compute integer exponen-
- -- tiation if possible, and evaluate fractional part with
- -- more precision. The relative error is now proportional
- -- to the fractional part of the exponent only.
-
- if A_Right > 1.0
- and then A_Right < Float_Type'Base (Integer'Last)
- then
- Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
- Result := Left ** Int_Part;
- Rest := A_Right - Float_Type'Base (Int_Part);
-
- -- Compute with two leading bits of the mantissa using
- -- square roots. Bound to be better than logarithms, and
- -- easily extended to greater precision.
-
- if Rest >= 0.5 then
- R1 := Sqrt (Left);
- Result := Result * R1;
- Rest := Rest - 0.5;
-
- if Rest >= 0.25 then
- Result := Result * Sqrt (R1);
- Rest := Rest - 0.25;
- end if;
-
- elsif Rest >= 0.25 then
- Result := Result * Sqrt (Sqrt (Left));
- Rest := Rest - 0.25;
- end if;
-
- Result := Result *
- Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
-
- if Right >= 0.0 then
- return Result;
- else
- return (1.0 / Result);
- end if;
- else
- return
- Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
- end if;
- end if;
-
- exception
- when others =>
- raise Constraint_Error;
- end;
- end if;
- end "**";
-
- ------------
- -- Arccos --
- ------------
-
- -- Natural cycle
-
- function Arccos (X : Float_Type'Base) return Float_Type'Base is
- Temp : Float_Type'Base;
-
- begin
- if abs X > 1.0 then
- raise Argument_Error;
-
- elsif abs X < Sqrt_Epsilon then
- return Pi / 2.0 - X;
-
- elsif X = 1.0 then
- return 0.0;
-
- elsif X = -1.0 then
- return Pi;
- end if;
-
- Temp := Float_Type'Base (Aux.Acos (Double (X)));
-
- if Temp < 0.0 then
- Temp := Pi + Temp;
- end if;
-
- return Temp;
- end Arccos;
-
- -- Arbitrary cycle
-
- function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
- Temp : Float_Type'Base;
-
- begin
- if Cycle <= 0.0 then
- raise Argument_Error;
-
- elsif abs X > 1.0 then
- raise Argument_Error;
-
- elsif abs X < Sqrt_Epsilon then
- return Cycle / 4.0;
-
- elsif X = 1.0 then
- return 0.0;
-
- elsif X = -1.0 then
- return Cycle / 2.0;
- end if;
-
- Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
-
- if Temp < 0.0 then
- Temp := Cycle / 2.0 + Temp;
- end if;
-
- return Temp;
- end Arccos;
-
- -------------
- -- Arccosh --
- -------------
-
- function Arccosh (X : Float_Type'Base) return Float_Type'Base is
- begin
- -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
- -- the proper approximation for X close to 1 or >> 1.
-
- if X < 1.0 then
- raise Argument_Error;
-
- elsif X < 1.0 + Sqrt_Epsilon then
- return Sqrt (2.0 * (X - 1.0));
-
- elsif X > 1.0 / Sqrt_Epsilon then
- return Log (X) + Log_Two;
-
- else
- return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
- end if;
- end Arccosh;
-
- ------------
- -- Arccot --
- ------------
-
- -- Natural cycle
-
- function Arccot
- (X : Float_Type'Base;
- Y : Float_Type'Base := 1.0)
- return Float_Type'Base
- is
- begin
- -- Just reverse arguments
-
- return Arctan (Y, X);
- end Arccot;
-
- -- Arbitrary cycle
-
- function Arccot
- (X : Float_Type'Base;
- Y : Float_Type'Base := 1.0;
- Cycle : Float_Type'Base)
- return Float_Type'Base
- is
- begin
- -- Just reverse arguments
-
- return Arctan (Y, X, Cycle);
- end Arccot;
-
- -------------
- -- Arccoth --
- -------------
-
- function Arccoth (X : Float_Type'Base) return Float_Type'Base is
- begin
- if abs X > 2.0 then
- return Arctanh (1.0 / X);
-
- elsif abs X = 1.0 then
- raise Constraint_Error;
-
- elsif abs X < 1.0 then
- raise Argument_Error;
-
- else
- -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
- -- other has error 0 or Epsilon.
-
- return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
- end if;
- end Arccoth;
-
- ------------
- -- Arcsin --
- ------------
-
- -- Natural cycle
-
- function Arcsin (X : Float_Type'Base) return Float_Type'Base is
- begin
- if abs X > 1.0 then
- raise Argument_Error;
-
- elsif abs X < Sqrt_Epsilon then
- return X;
-
- elsif X = 1.0 then
- return Pi / 2.0;
-
- elsif X = -1.0 then
- return -(Pi / 2.0);
- end if;
-
- return Float_Type'Base (Aux.Asin (Double (X)));
- end Arcsin;
-
- -- Arbitrary cycle
-
- function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
- begin
- if Cycle <= 0.0 then
- raise Argument_Error;
-
- elsif abs X > 1.0 then
- raise Argument_Error;
-
- elsif X = 0.0 then
- return X;
-
- elsif X = 1.0 then
- return Cycle / 4.0;
-
- elsif X = -1.0 then
- return -(Cycle / 4.0);
- end if;
-
- return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
- end Arcsin;
-
- -------------
- -- Arcsinh --
- -------------
-
- function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
- begin
- if abs X < Sqrt_Epsilon then
- return X;
-
- elsif X > 1.0 / Sqrt_Epsilon then
- return Log (X) + Log_Two;
-
- elsif X < -(1.0 / Sqrt_Epsilon) then
- return -(Log (-X) + Log_Two);
-
- elsif X < 0.0 then
- return -Log (abs X + Sqrt (X * X + 1.0));
-
- else
- return Log (X + Sqrt (X * X + 1.0));
- end if;
- end Arcsinh;
-
- ------------
- -- Arctan --
- ------------
-
- -- Natural cycle
-
- function Arctan
- (Y : Float_Type'Base;
- X : Float_Type'Base := 1.0)
- return Float_Type'Base
- is
- begin
- if X = 0.0
- and then Y = 0.0
- then
- raise Argument_Error;
-
- elsif Y = 0.0 then
- if X > 0.0 then
- return 0.0;
- else -- X < 0.0
- return Pi * Float_Type'Copy_Sign (1.0, Y);
- end if;
-
- elsif X = 0.0 then
- if Y > 0.0 then
- return Half_Pi;
- else -- Y < 0.0
- return -Half_Pi;
- end if;
-
- else
- return Local_Atan (Y, X);
- end if;
- end Arctan;
-
- -- Arbitrary cycle
-
- function Arctan
- (Y : Float_Type'Base;
- X : Float_Type'Base := 1.0;
- Cycle : Float_Type'Base)
- return Float_Type'Base
- is
- begin
- if Cycle <= 0.0 then
- raise Argument_Error;
-
- elsif X = 0.0
- and then Y = 0.0
- then
- raise Argument_Error;
-
- elsif Y = 0.0 then
- if X > 0.0 then
- return 0.0;
- else -- X < 0.0
- return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
- end if;
-
- elsif X = 0.0 then
- if Y > 0.0 then
- return Cycle / 4.0;
- else -- Y < 0.0
- return -(Cycle / 4.0);
- end if;
-
- else
- return Local_Atan (Y, X) * Cycle / Two_Pi;
- end if;
- end Arctan;
-
- -------------
- -- Arctanh --
- -------------
-
- function Arctanh (X : Float_Type'Base) return Float_Type'Base is
- A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
- Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
-
- begin
- -- The naive formula:
-
- -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
-
- -- is not well-behaved numerically when X < 0.5 and when X is close
- -- to one. The following is accurate but probably not optimal.
-
- if abs X = 1.0 then
- raise Constraint_Error;
-
- elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
-
- if abs X >= 1.0 then
- raise Argument_Error;
- else
-
- -- The one case that overflows if put through the method below:
- -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
- -- accurate. This simplifies to:
-
- return Float_Type'Copy_Sign (
- Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
- end if;
-
- -- elsif abs X <= 0.5 then
- -- why is above line commented out ???
-
- else
- -- Use several piecewise linear approximations.
- -- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
- -- The two scalings remove the low-order bits of X.
-
- A := Float_Type'Base'Scaling (
- Float_Type'Base (Long_Long_Integer
- (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
-
- B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
- A_Plus_1 := 1.0 + A; -- This is exact.
- A_From_1 := 1.0 - A; -- Ditto.
- D := A_Plus_1 * A_From_1; -- 1 - A*A.
-
- -- use one term of the series expansion:
- -- f (x + e) = f(x) + e * f'(x) + ..
-
- -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
- -- A*(B/D)**2 (if a quadratic approximation is ever needed).
-
- return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
-
- -- else
- -- return 0.5 * Log ((X + 1.0) / (1.0 - X));
- -- why are above lines commented out ???
- end if;
- end Arctanh;
-
- ---------
- -- Cos --
- ---------
-
- -- Natural cycle
-
- function Cos (X : Float_Type'Base) return Float_Type'Base is
- begin
- if X = 0.0 then
- return 1.0;
-
- elsif abs X < Sqrt_Epsilon then
- return 1.0;
-
- end if;
-
- return Float_Type'Base (Aux.Cos (Double (X)));
- end Cos;
-
- -- Arbitrary cycle
-
- function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
- begin
- -- Just reuse the code for Sin. The potential small
- -- loss of speed is negligible with proper (front-end) inlining.
-
- return -Sin (abs X - Cycle * 0.25, Cycle);
- end Cos;
-
- ----------
- -- Cosh --
- ----------
-
- function Cosh (X : Float_Type'Base) return Float_Type'Base is
- Lnv : constant Float_Type'Base := 8#0.542714#;
- V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
- Y : constant Float_Type'Base := abs X;
- Z : Float_Type'Base;
-
- begin
- if Y < Sqrt_Epsilon then
- return 1.0;
-
- elsif Y > Log_Inverse_Epsilon then
- Z := Exp_Strict (Y - Lnv);
- return (Z + V2minus1 * Z);
-
- else
- Z := Exp_Strict (Y);
- return 0.5 * (Z + 1.0 / Z);
- end if;
-
- end Cosh;
-
- ---------
- -- Cot --
- ---------
-
- -- Natural cycle
-
- function Cot (X : Float_Type'Base) return Float_Type'Base is
- begin
- if X = 0.0 then
- raise Constraint_Error;
-
- elsif abs X < Sqrt_Epsilon then
- return 1.0 / X;
- end if;
-
- return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
- end Cot;
-
- -- Arbitrary cycle
-
- function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
- T : Float_Type'Base;
-
- begin
- if Cycle <= 0.0 then
- raise Argument_Error;
- end if;
-
- T := Float_Type'Base'Remainder (X, Cycle);
-
- if T = 0.0 or abs T = 0.5 * Cycle then
- raise Constraint_Error;
-
- elsif abs T < Sqrt_Epsilon then
- return 1.0 / T;
-
- elsif abs T = 0.25 * Cycle then
- return 0.0;
-
- else
- T := T / Cycle * Two_Pi;
- return Cos (T) / Sin (T);
- end if;
- end Cot;
-
- ----------
- -- Coth --
- ----------
-
- function Coth (X : Float_Type'Base) return Float_Type'Base is
- begin
- if X = 0.0 then
- raise Constraint_Error;
-
- elsif X < Half_Log_Epsilon then
- return -1.0;
-
- elsif X > -Half_Log_Epsilon then
- return 1.0;
-
- elsif abs X < Sqrt_Epsilon then
- return 1.0 / X;
- end if;
-
- return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
- end Coth;
-
- ---------
- -- Exp --
- ---------
-
- function Exp (X : Float_Type'Base) return Float_Type'Base is
- Result : Float_Type'Base;
-
- begin
- if X = 0.0 then
- return 1.0;
- end if;
-
- Result := Float_Type'Base (Aux.Exp (Double (X)));
-
- -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
- -- is False, then we can just leave it as an infinity (and indeed we
- -- prefer to do so). But if Machine_Overflows is True, then we have
- -- to raise a Constraint_Error exception as required by the RM.
-
- if Float_Type'Machine_Overflows and then not Result'Valid then
- raise Constraint_Error;
- end if;
-
- return Result;
- end Exp;
-
- ----------------
- -- Exp_Strict --
- ----------------
-
- function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
- G : Float_Type'Base;
- Z : Float_Type'Base;
-
- P0 : constant := 0.25000_00000_00000_00000;
- P1 : constant := 0.75753_18015_94227_76666E-2;
- P2 : constant := 0.31555_19276_56846_46356E-4;
-
- Q0 : constant := 0.5;
- Q1 : constant := 0.56817_30269_85512_21787E-1;
- Q2 : constant := 0.63121_89437_43985_02557E-3;
- Q3 : constant := 0.75104_02839_98700_46114E-6;
-
- C1 : constant := 8#0.543#;
- C2 : constant := -2.1219_44400_54690_58277E-4;
- Le : constant := 1.4426_95040_88896_34074;
-
- XN : Float_Type'Base;
- P, Q, R : Float_Type'Base;
-
- begin
- if X = 0.0 then
- return 1.0;
- end if;
-
- XN := Float_Type'Base'Rounding (X * Le);
- G := (X - XN * C1) - XN * C2;
- Z := G * G;
- P := G * ((P2 * Z + P1) * Z + P0);
- Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
- R := 0.5 + P / (Q - P);
-
- R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
-
- -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
- -- is False, then we can just leave it as an infinity (and indeed we
- -- prefer to do so). But if Machine_Overflows is True, then we have
- -- to raise a Constraint_Error exception as required by the RM.
-
- if Float_Type'Machine_Overflows and then not R'Valid then
- raise Constraint_Error;
- else
- return R;
- end if;
-
- end Exp_Strict;
-
- ----------------
- -- Local_Atan --
- ----------------
-
- function Local_Atan
- (Y : Float_Type'Base;
- X : Float_Type'Base := 1.0)
- return Float_Type'Base
- is
- Z : Float_Type'Base;
- Raw_Atan : Float_Type'Base;
-
- begin
- if abs Y > abs X then
- Z := abs (X / Y);
- else
- Z := abs (Y / X);
- end if;
-
- if Z < Sqrt_Epsilon then
- Raw_Atan := Z;
-
- elsif Z = 1.0 then
- Raw_Atan := Pi / 4.0;
-
- else
- Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
- end if;
-
- if abs Y > abs X then
- Raw_Atan := Half_Pi - Raw_Atan;
- end if;
-
- if X > 0.0 then
- if Y > 0.0 then
- return Raw_Atan;
- else -- Y < 0.0
- return -Raw_Atan;
- end if;
-
- else -- X < 0.0
- if Y > 0.0 then
- return Pi - Raw_Atan;
- else -- Y < 0.0
- return -(Pi - Raw_Atan);
- end if;
- end if;
- end Local_Atan;
-
- ---------
- -- Log --
- ---------
-
- -- Natural base
-
- function Log (X : Float_Type'Base) return Float_Type'Base is
- begin
- if X < 0.0 then
- raise Argument_Error;
-
- elsif X = 0.0 then
- raise Constraint_Error;
-
- elsif X = 1.0 then
- return 0.0;
- end if;
-
- return Float_Type'Base (Aux.Log (Double (X)));
- end Log;
-
- -- Arbitrary base
-
- function Log (X, Base : Float_Type'Base) return Float_Type'Base is
- begin
- if X < 0.0 then
- raise Argument_Error;
-
- elsif Base <= 0.0 or else Base = 1.0 then
- raise Argument_Error;
-
- elsif X = 0.0 then
- raise Constraint_Error;
-
- elsif X = 1.0 then
- return 0.0;
- end if;
-
- return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
- end Log;
-
- ---------
- -- Sin --
- ---------
-
- -- Natural cycle
-
- function Sin (X : Float_Type'Base) return Float_Type'Base is
- begin
- if abs X < Sqrt_Epsilon then
- return X;
- end if;
-
- return Float_Type'Base (Aux.Sin (Double (X)));
- end Sin;
-
- -- Arbitrary cycle
-
- function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
- T : Float_Type'Base;
-
- begin
- if Cycle <= 0.0 then
- raise Argument_Error;
-
- elsif X = 0.0 then
- -- Is this test really needed on any machine ???
- return X;
- end if;
-
- T := Float_Type'Base'Remainder (X, Cycle);
-
- -- The following two reductions reduce the argument
- -- to the interval [-0.25 * Cycle, 0.25 * Cycle].
- -- This reduction is exact and is needed to prevent
- -- inaccuracy that may result if the sinus function
- -- a different (more accurate) value of Pi in its
- -- reduction than is used in the multiplication with Two_Pi.
-
- if abs T > 0.25 * Cycle then
- T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
- end if;
-
- -- Could test for 12.0 * abs T = Cycle, and return
- -- an exact value in those cases. It is not clear that
- -- this is worth the extra test though.
-
- return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
- end Sin;
-
- ----------
- -- Sinh --
- ----------
-
- function Sinh (X : Float_Type'Base) return Float_Type'Base is
- Lnv : constant Float_Type'Base := 8#0.542714#;
- V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
- Y : constant Float_Type'Base := abs X;
- F : constant Float_Type'Base := Y * Y;
- Z : Float_Type'Base;
-
- Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
-
- begin
- if Y < Sqrt_Epsilon then
- return X;
-
- elsif Y > Log_Inverse_Epsilon then
- Z := Exp_Strict (Y - Lnv);
- Z := Z + V2minus1 * Z;
-
- elsif Y < 1.0 then
-
- if Float_Digits_1_6 then
-
- -- Use expansion provided by Cody and Waite, p. 226. Note that
- -- leading term of the polynomial in Q is exactly 1.0.
-
- declare
- P0 : constant := -0.71379_3159E+1;
- P1 : constant := -0.19033_3399E+0;
- Q0 : constant := -0.42827_7109E+2;
-
- begin
- Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
- end;
-
- else
- declare
- P0 : constant := -0.35181_28343_01771_17881E+6;
- P1 : constant := -0.11563_52119_68517_68270E+5;
- P2 : constant := -0.16375_79820_26307_51372E+3;
- P3 : constant := -0.78966_12741_73570_99479E+0;
- Q0 : constant := -0.21108_77005_81062_71242E+7;
- Q1 : constant := 0.36162_72310_94218_36460E+5;
- Q2 : constant := -0.27773_52311_96507_01667E+3;
-
- begin
- Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
- / (((F + Q2) * F + Q1) * F + Q0);
- end;
- end if;
-
- else
- Z := Exp_Strict (Y);
- Z := 0.5 * (Z - 1.0 / Z);
- end if;
-
- if X > 0.0 then
- return Z;
- else
- return -Z;
- end if;
- end Sinh;
-
- ----------
- -- Sqrt --
- ----------
-
- function Sqrt (X : Float_Type'Base) return Float_Type'Base is
- begin
- if X < 0.0 then
- raise Argument_Error;
-
- -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
-
- elsif X = 0.0 then
- return X;
-
- end if;
-
- return Float_Type'Base (Aux.Sqrt (Double (X)));
- end Sqrt;
-
- ---------
- -- Tan --
- ---------
-
- -- Natural cycle
-
- function Tan (X : Float_Type'Base) return Float_Type'Base is
- begin
- if abs X < Sqrt_Epsilon then
- return X;
-
- elsif abs X = Pi / 2.0 then
- raise Constraint_Error;
- end if;
-
- return Float_Type'Base (Aux.Tan (Double (X)));
- end Tan;
-
- -- Arbitrary cycle
-
- function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
- T : Float_Type'Base;
-
- begin
- if Cycle <= 0.0 then
- raise Argument_Error;
-
- elsif X = 0.0 then
- return X;
- end if;
-
- T := Float_Type'Base'Remainder (X, Cycle);
-
- if abs T = 0.25 * Cycle then
- raise Constraint_Error;
-
- elsif abs T = 0.5 * Cycle then
- return 0.0;
-
- else
- T := T / Cycle * Two_Pi;
- return Sin (T) / Cos (T);
- end if;
-
- end Tan;
-
- ----------
- -- Tanh --
- ----------
-
- function Tanh (X : Float_Type'Base) return Float_Type'Base is
- P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
- P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
- P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
-
- Q0 : constant Float_Type'Base := 0.48402_35707_19886_88686E+4;
- Q1 : constant Float_Type'Base := 0.22337_72071_89623_12926E+4;
- Q2 : constant Float_Type'Base := 0.11274_47438_05349_49335E+3;
- Q3 : constant Float_Type'Base := 0.10000_00000_00000_00000E+1;
-
- Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
-
- P, Q, R : Float_Type'Base;
- Y : constant Float_Type'Base := abs X;
- G : constant Float_Type'Base := Y * Y;
-
- Float_Type_Digits_15_Or_More : constant Boolean :=
- Float_Type'Digits > 14;
-
- begin
- if X < Half_Log_Epsilon then
- return -1.0;
-
- elsif X > -Half_Log_Epsilon then
- return 1.0;
-
- elsif Y < Sqrt_Epsilon then
- return X;
-
- elsif Y < Half_Ln3
- and then Float_Type_Digits_15_Or_More
- then
- P := (P2 * G + P1) * G + P0;
- Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
- R := G * (P / Q);
- return X + X * R;
-
- else
- return Float_Type'Base (Aux.Tanh (Double (X)));
- end if;
- end Tanh;
-
-end Ada.Numerics.Generic_Elementary_Functions;