aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/a-crbtgk.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/a-crbtgk.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/a-crbtgk.adb573
1 files changed, 0 insertions, 573 deletions
diff --git a/gcc-4.4.3/gcc/ada/a-crbtgk.adb b/gcc-4.4.3/gcc/ada/a-crbtgk.adb
deleted file mode 100644
index c06f31e1d..000000000
--- a/gcc-4.4.3/gcc/ada/a-crbtgk.adb
+++ /dev/null
@@ -1,573 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT LIBRARY COMPONENTS --
--- --
--- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS --
--- --
--- B o d y --
--- --
--- Copyright (C) 2004-2009, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- This unit was originally developed by Matthew J Heaney. --
-------------------------------------------------------------------------------
-
-package body Ada.Containers.Red_Black_Trees.Generic_Keys is
-
- package Ops renames Tree_Operations;
-
- -------------
- -- Ceiling --
- -------------
-
- -- AKA Lower_Bound
-
- function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is
- Y : Node_Access;
- X : Node_Access;
-
- begin
- X := Tree.Root;
- while X /= null loop
- if Is_Greater_Key_Node (Key, X) then
- X := Ops.Right (X);
- else
- Y := X;
- X := Ops.Left (X);
- end if;
- end loop;
-
- return Y;
- end Ceiling;
-
- ----------
- -- Find --
- ----------
-
- function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is
- Y : Node_Access;
- X : Node_Access;
-
- begin
- X := Tree.Root;
- while X /= null loop
- if Is_Greater_Key_Node (Key, X) then
- X := Ops.Right (X);
- else
- Y := X;
- X := Ops.Left (X);
- end if;
- end loop;
-
- if Y = null then
- return null;
- end if;
-
- if Is_Less_Key_Node (Key, Y) then
- return null;
- end if;
-
- return Y;
- end Find;
-
- -----------
- -- Floor --
- -----------
-
- function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is
- Y : Node_Access;
- X : Node_Access;
-
- begin
- X := Tree.Root;
- while X /= null loop
- if Is_Less_Key_Node (Key, X) then
- X := Ops.Left (X);
- else
- Y := X;
- X := Ops.Right (X);
- end if;
- end loop;
-
- return Y;
- end Floor;
-
- --------------------------------
- -- Generic_Conditional_Insert --
- --------------------------------
-
- procedure Generic_Conditional_Insert
- (Tree : in out Tree_Type;
- Key : Key_Type;
- Node : out Node_Access;
- Inserted : out Boolean)
- is
- Y : Node_Access := null;
- X : Node_Access := Tree.Root;
-
- begin
- Inserted := True;
- while X /= null loop
- Y := X;
- Inserted := Is_Less_Key_Node (Key, X);
-
- if Inserted then
- X := Ops.Left (X);
- else
- X := Ops.Right (X);
- end if;
- end loop;
-
- -- If Inserted is True, then this means either that Tree is
- -- empty, or there was a least one node (strictly) greater than
- -- Key. Otherwise, it means that Key is equal to or greater than
- -- every node.
-
- if Inserted then
- if Y = Tree.First then
- Insert_Post (Tree, Y, True, Node);
- return;
- end if;
-
- Node := Ops.Previous (Y);
-
- else
- Node := Y;
- end if;
-
- -- Here Node has a value that is less than or equal to Key. We
- -- now have to resolve whether Key is equal to or greater than
- -- Node, which determines whether the insertion succeeds.
-
- if Is_Greater_Key_Node (Key, Node) then
- Insert_Post (Tree, Y, Inserted, Node);
- Inserted := True;
- return;
- end if;
-
- Inserted := False;
- end Generic_Conditional_Insert;
-
- ------------------------------------------
- -- Generic_Conditional_Insert_With_Hint --
- ------------------------------------------
-
- procedure Generic_Conditional_Insert_With_Hint
- (Tree : in out Tree_Type;
- Position : Node_Access;
- Key : Key_Type;
- Node : out Node_Access;
- Inserted : out Boolean)
- is
- begin
- -- The purpose of a hint is to avoid a search from the root of
- -- tree. If we have it hint it means we only need to traverse the
- -- subtree rooted at the hint to find the nearest neighbor. Note
- -- that finding the neighbor means merely walking the tree; this
- -- is not a search and the only comparisons that occur are with
- -- the hint and its neighbor.
-
- -- If Position is null, this is interpreted to mean that Key is
- -- large relative to the nodes in the tree. If the tree is empty,
- -- or Key is greater than the last node in the tree, then we're
- -- done; otherwise the hint was "wrong" and we must search.
-
- if Position = null then -- largest
- if Tree.Last = null
- or else Is_Greater_Key_Node (Key, Tree.Last)
- then
- Insert_Post (Tree, Tree.Last, False, Node);
- Inserted := True;
- else
- Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
- end if;
-
- return;
- end if;
-
- pragma Assert (Tree.Length > 0);
-
- -- A hint can either name the node that immediately follows Key,
- -- or immediately precedes Key. We first test whether Key is
- -- less than the hint, and if so we compare Key to the node that
- -- precedes the hint. If Key is both less than the hint and
- -- greater than the hint's preceding neighbor, then we're done;
- -- otherwise we must search.
-
- -- Note also that a hint can either be an anterior node or a leaf
- -- node. A new node is always inserted at the bottom of the tree
- -- (at least prior to rebalancing), becoming the new left or
- -- right child of leaf node (which prior to the insertion must
- -- necessarily be null, since this is a leaf). If the hint names
- -- an anterior node then its neighbor must be a leaf, and so
- -- (here) we insert after the neighbor. If the hint names a leaf
- -- then its neighbor must be anterior and so we insert before the
- -- hint.
-
- if Is_Less_Key_Node (Key, Position) then
- declare
- Before : constant Node_Access := Ops.Previous (Position);
-
- begin
- if Before = null then
- Insert_Post (Tree, Tree.First, True, Node);
- Inserted := True;
-
- elsif Is_Greater_Key_Node (Key, Before) then
- if Ops.Right (Before) = null then
- Insert_Post (Tree, Before, False, Node);
- else
- Insert_Post (Tree, Position, True, Node);
- end if;
-
- Inserted := True;
-
- else
- Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
- end if;
- end;
-
- return;
- end if;
-
- -- We know that Key isn't less than the hint so we try again,
- -- this time to see if it's greater than the hint. If so we
- -- compare Key to the node that follows the hint. If Key is both
- -- greater than the hint and less than the hint's next neighbor,
- -- then we're done; otherwise we must search.
-
- if Is_Greater_Key_Node (Key, Position) then
- declare
- After : constant Node_Access := Ops.Next (Position);
-
- begin
- if After = null then
- Insert_Post (Tree, Tree.Last, False, Node);
- Inserted := True;
-
- elsif Is_Less_Key_Node (Key, After) then
- if Ops.Right (Position) = null then
- Insert_Post (Tree, Position, False, Node);
- else
- Insert_Post (Tree, After, True, Node);
- end if;
-
- Inserted := True;
-
- else
- Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
- end if;
- end;
-
- return;
- end if;
-
- -- We know that Key is neither less than the hint nor greater
- -- than the hint, and that's the definition of equivalence.
- -- There's nothing else we need to do, since a search would just
- -- reach the same conclusion.
-
- Node := Position;
- Inserted := False;
- end Generic_Conditional_Insert_With_Hint;
-
- -------------------------
- -- Generic_Insert_Post --
- -------------------------
-
- procedure Generic_Insert_Post
- (Tree : in out Tree_Type;
- Y : Node_Access;
- Before : Boolean;
- Z : out Node_Access)
- is
- begin
- if Tree.Length = Count_Type'Last then
- raise Constraint_Error with "too many elements";
- end if;
-
- if Tree.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (container is busy)";
- end if;
-
- Z := New_Node;
- pragma Assert (Z /= null);
- pragma Assert (Ops.Color (Z) = Red);
-
- if Y = null then
- pragma Assert (Tree.Length = 0);
- pragma Assert (Tree.Root = null);
- pragma Assert (Tree.First = null);
- pragma Assert (Tree.Last = null);
-
- Tree.Root := Z;
- Tree.First := Z;
- Tree.Last := Z;
-
- elsif Before then
- pragma Assert (Ops.Left (Y) = null);
-
- Ops.Set_Left (Y, Z);
-
- if Y = Tree.First then
- Tree.First := Z;
- end if;
-
- else
- pragma Assert (Ops.Right (Y) = null);
-
- Ops.Set_Right (Y, Z);
-
- if Y = Tree.Last then
- Tree.Last := Z;
- end if;
- end if;
-
- Ops.Set_Parent (Z, Y);
- Ops.Rebalance_For_Insert (Tree, Z);
- Tree.Length := Tree.Length + 1;
- end Generic_Insert_Post;
-
- -----------------------
- -- Generic_Iteration --
- -----------------------
-
- procedure Generic_Iteration
- (Tree : Tree_Type;
- Key : Key_Type)
- is
- procedure Iterate (Node : Node_Access);
-
- -------------
- -- Iterate --
- -------------
-
- procedure Iterate (Node : Node_Access) is
- N : Node_Access;
- begin
- N := Node;
- while N /= null loop
- if Is_Less_Key_Node (Key, N) then
- N := Ops.Left (N);
- elsif Is_Greater_Key_Node (Key, N) then
- N := Ops.Right (N);
- else
- Iterate (Ops.Left (N));
- Process (N);
- N := Ops.Right (N);
- end if;
- end loop;
- end Iterate;
-
- -- Start of processing for Generic_Iteration
-
- begin
- Iterate (Tree.Root);
- end Generic_Iteration;
-
- -------------------------------
- -- Generic_Reverse_Iteration --
- -------------------------------
-
- procedure Generic_Reverse_Iteration
- (Tree : Tree_Type;
- Key : Key_Type)
- is
- procedure Iterate (Node : Node_Access);
-
- -------------
- -- Iterate --
- -------------
-
- procedure Iterate (Node : Node_Access) is
- N : Node_Access;
- begin
- N := Node;
- while N /= null loop
- if Is_Less_Key_Node (Key, N) then
- N := Ops.Left (N);
- elsif Is_Greater_Key_Node (Key, N) then
- N := Ops.Right (N);
- else
- Iterate (Ops.Right (N));
- Process (N);
- N := Ops.Left (N);
- end if;
- end loop;
- end Iterate;
-
- -- Start of processing for Generic_Reverse_Iteration
-
- begin
- Iterate (Tree.Root);
- end Generic_Reverse_Iteration;
-
- ----------------------------------
- -- Generic_Unconditional_Insert --
- ----------------------------------
-
- procedure Generic_Unconditional_Insert
- (Tree : in out Tree_Type;
- Key : Key_Type;
- Node : out Node_Access)
- is
- Y : Node_Access;
- X : Node_Access;
-
- Before : Boolean;
-
- begin
- Y := null;
- Before := False;
-
- X := Tree.Root;
- while X /= null loop
- Y := X;
- Before := Is_Less_Key_Node (Key, X);
-
- if Before then
- X := Ops.Left (X);
- else
- X := Ops.Right (X);
- end if;
- end loop;
-
- Insert_Post (Tree, Y, Before, Node);
- end Generic_Unconditional_Insert;
-
- --------------------------------------------
- -- Generic_Unconditional_Insert_With_Hint --
- --------------------------------------------
-
- procedure Generic_Unconditional_Insert_With_Hint
- (Tree : in out Tree_Type;
- Hint : Node_Access;
- Key : Key_Type;
- Node : out Node_Access)
- is
- begin
- -- There are fewer constraints for an unconditional insertion
- -- than for a conditional insertion, since we allow duplicate
- -- keys. So instead of having to check (say) whether Key is
- -- (strictly) greater than the hint's previous neighbor, here we
- -- allow Key to be equal to or greater than the previous node.
-
- -- There is the issue of what to do if Key is equivalent to the
- -- hint. Does the new node get inserted before or after the hint?
- -- We decide that it gets inserted after the hint, reasoning that
- -- this is consistent with behavior for non-hint insertion, which
- -- inserts a new node after existing nodes with equivalent keys.
-
- -- First we check whether the hint is null, which is interpreted
- -- to mean that Key is large relative to existing nodes.
- -- Following our rule above, if Key is equal to or greater than
- -- the last node, then we insert the new node immediately after
- -- last. (We don't have an operation for testing whether a key is
- -- "equal to or greater than" a node, so we must say instead "not
- -- less than", which is equivalent.)
-
- if Hint = null then -- largest
- if Tree.Last = null then
- Insert_Post (Tree, null, False, Node);
- elsif Is_Less_Key_Node (Key, Tree.Last) then
- Unconditional_Insert_Sans_Hint (Tree, Key, Node);
- else
- Insert_Post (Tree, Tree.Last, False, Node);
- end if;
-
- return;
- end if;
-
- pragma Assert (Tree.Length > 0);
-
- -- We decide here whether to insert the new node prior to the
- -- hint. Key could be equivalent to the hint, so in theory we
- -- could write the following test as "not greater than" (same as
- -- "less than or equal to"). If Key were equivalent to the hint,
- -- that would mean that the new node gets inserted before an
- -- equivalent node. That wouldn't break any container invariants,
- -- but our rule above says that new nodes always get inserted
- -- after equivalent nodes. So here we test whether Key is both
- -- less than the hint and equal to or greater than the hint's
- -- previous neighbor, and if so insert it before the hint.
-
- if Is_Less_Key_Node (Key, Hint) then
- declare
- Before : constant Node_Access := Ops.Previous (Hint);
- begin
- if Before = null then
- Insert_Post (Tree, Hint, True, Node);
- elsif Is_Less_Key_Node (Key, Before) then
- Unconditional_Insert_Sans_Hint (Tree, Key, Node);
- elsif Ops.Right (Before) = null then
- Insert_Post (Tree, Before, False, Node);
- else
- Insert_Post (Tree, Hint, True, Node);
- end if;
- end;
-
- return;
- end if;
-
- -- We know that Key isn't less than the hint, so it must be equal
- -- or greater. So we just test whether Key is less than or equal
- -- to (same as "not greater than") the hint's next neighbor, and
- -- if so insert it after the hint.
-
- declare
- After : constant Node_Access := Ops.Next (Hint);
- begin
- if After = null then
- Insert_Post (Tree, Hint, False, Node);
- elsif Is_Greater_Key_Node (Key, After) then
- Unconditional_Insert_Sans_Hint (Tree, Key, Node);
- elsif Ops.Right (Hint) = null then
- Insert_Post (Tree, Hint, False, Node);
- else
- Insert_Post (Tree, After, True, Node);
- end if;
- end;
- end Generic_Unconditional_Insert_With_Hint;
-
- -----------------
- -- Upper_Bound --
- -----------------
-
- function Upper_Bound
- (Tree : Tree_Type;
- Key : Key_Type) return Node_Access
- is
- Y : Node_Access;
- X : Node_Access;
-
- begin
- X := Tree.Root;
- while X /= null loop
- if Is_Less_Key_Node (Key, X) then
- Y := X;
- X := Ops.Left (X);
- else
- X := Ops.Right (X);
- end if;
- end loop;
-
- return Y;
- end Upper_Bound;
-
-end Ada.Containers.Red_Black_Trees.Generic_Keys;