aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/a-calend-vms.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/a-calend-vms.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/a-calend-vms.adb1300
1 files changed, 0 insertions, 1300 deletions
diff --git a/gcc-4.4.3/gcc/ada/a-calend-vms.adb b/gcc-4.4.3/gcc/ada/a-calend-vms.adb
deleted file mode 100644
index ef97fa412..000000000
--- a/gcc-4.4.3/gcc/ada/a-calend-vms.adb
+++ /dev/null
@@ -1,1300 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME COMPONENTS --
--- --
--- A D A . C A L E N D A R --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
--- This is the Alpha/VMS version
-
-with Ada.Unchecked_Conversion;
-
-with System.Aux_DEC; use System.Aux_DEC;
-with System.OS_Primitives; use System.OS_Primitives;
-
-package body Ada.Calendar is
-
- --------------------------
- -- Implementation Notes --
- --------------------------
-
- -- Variables of type Ada.Calendar.Time have suffix _S or _M to denote
- -- units of seconds or milis.
-
- -- Because time is measured in different units and from different origins
- -- on various targets, a system independent model is incorporated into
- -- Ada.Calendar. The idea behind the design is to encapsulate all target
- -- dependent machinery in a single package, thus providing a uniform
- -- interface to all existing and any potential children.
-
- -- package Ada.Calendar
- -- procedure Split (5 parameters) -------+
- -- | Call from local routine
- -- private |
- -- package Formatting_Operations |
- -- procedure Split (11 parameters) <--+
- -- end Formatting_Operations |
- -- end Ada.Calendar |
- -- |
- -- package Ada.Calendar.Formatting | Call from child routine
- -- procedure Split (9 or 10 parameters) -+
- -- end Ada.Calendar.Formatting
-
- -- The behaviour of the interfacing routines is controlled via various
- -- flags. All new Ada 2005 types from children of Ada.Calendar are
- -- emulated by a similar type. For instance, type Day_Number is replaced
- -- by Integer in various routines. One ramification of this model is that
- -- the caller site must perform validity checks on returned results.
- -- The end result of this model is the lack of target specific files per
- -- child of Ada.Calendar (a-calfor, a-calfor-vms, a-calfor-vxwors, etc).
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Check_Within_Time_Bounds (T : OS_Time);
- -- Ensure that a time representation value falls withing the bounds of Ada
- -- time. Leap seconds support is taken into account.
-
- procedure Cumulative_Leap_Seconds
- (Start_Date : OS_Time;
- End_Date : OS_Time;
- Elapsed_Leaps : out Natural;
- Next_Leap_Sec : out OS_Time);
- -- Elapsed_Leaps is the sum of the leap seconds that have occurred on or
- -- after Start_Date and before (strictly before) End_Date. Next_Leap_Sec
- -- represents the next leap second occurrence on or after End_Date. If
- -- there are no leaps seconds after End_Date, End_Of_Time is returned.
- -- End_Of_Time can be used as End_Date to count all the leap seconds that
- -- have occurred on or after Start_Date.
- --
- -- Note: Any sub seconds of Start_Date and End_Date are discarded before
- -- the calculations are done. For instance: if 113 seconds is a leap
- -- second (it isn't) and 113.5 is input as an End_Date, the leap second
- -- at 113 will not be counted in Leaps_Between, but it will be returned
- -- as Next_Leap_Sec. Thus, if the caller wants to know if the End_Date is
- -- a leap second, the comparison should be:
- --
- -- End_Date >= Next_Leap_Sec;
- --
- -- After_Last_Leap is designed so that this comparison works without
- -- having to first check if Next_Leap_Sec is a valid leap second.
-
- function To_Duration (T : Time) return Duration;
- function To_Relative_Time (D : Duration) return Time;
- -- It is important to note that duration's fractional part denotes nano
- -- seconds while the units of Time are 100 nanoseconds. If a regular
- -- Unchecked_Conversion was employed, the resulting values would be off
- -- by 100.
-
- --------------------------
- -- Leap seconds control --
- --------------------------
-
- Flag : Integer;
- pragma Import (C, Flag, "__gl_leap_seconds_support");
- -- This imported value is used to determine whether the compilation had
- -- binder flag "-y" present which enables leap seconds. A value of zero
- -- signifies no leap seconds support while a value of one enables the
- -- support.
-
- Leap_Support : constant Boolean := Flag = 1;
- -- The above flag controls the usage of leap seconds in all Ada.Calendar
- -- routines.
-
- Leap_Seconds_Count : constant Natural := 23;
-
- ---------------------
- -- Local Constants --
- ---------------------
-
- -- The range of Ada time expressed as milis since the VMS Epoch
-
- Ada_Low : constant OS_Time := (10 * 366 + 32 * 365 + 45) * Milis_In_Day;
- Ada_High : constant OS_Time := (131 * 366 + 410 * 365 + 45) * Milis_In_Day;
-
- -- Even though the upper bound of time is 2399-12-31 23:59:59.9999999
- -- UTC, it must be increased to include all leap seconds.
-
- Ada_High_And_Leaps : constant OS_Time :=
- Ada_High + OS_Time (Leap_Seconds_Count) * Mili;
-
- -- Two constants used in the calculations of elapsed leap seconds.
- -- End_Of_Time is later than Ada_High in time zone -28. Start_Of_Time
- -- is earlier than Ada_Low in time zone +28.
-
- End_Of_Time : constant OS_Time := Ada_High + OS_Time (3) * Milis_In_Day;
- Start_Of_Time : constant OS_Time := Ada_Low - OS_Time (3) * Milis_In_Day;
-
- -- The following table contains the hard time values of all existing leap
- -- seconds. The values are produced by the utility program xleaps.adb.
-
- Leap_Second_Times : constant array (1 .. Leap_Seconds_Count) of OS_Time :=
- (35855136000000000,
- 36014112010000000,
- 36329472020000000,
- 36644832030000000,
- 36960192040000000,
- 37276416050000000,
- 37591776060000000,
- 37907136070000000,
- 38222496080000000,
- 38695104090000000,
- 39010464100000000,
- 39325824110000000,
- 39957408120000000,
- 40747104130000000,
- 41378688140000000,
- 41694048150000000,
- 42166656160000000,
- 42482016170000000,
- 42797376180000000,
- 43271712190000000,
- 43744320200000000,
- 44218656210000000,
- 46427904220000000);
-
- ---------
- -- "+" --
- ---------
-
- function "+" (Left : Time; Right : Duration) return Time is
- pragma Unsuppress (Overflow_Check);
- begin
- return Left + To_Relative_Time (Right);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end "+";
-
- function "+" (Left : Duration; Right : Time) return Time is
- pragma Unsuppress (Overflow_Check);
- begin
- return Right + Left;
- exception
- when Constraint_Error =>
- raise Time_Error;
- end "+";
-
- ---------
- -- "-" --
- ---------
-
- function "-" (Left : Time; Right : Duration) return Time is
- pragma Unsuppress (Overflow_Check);
- begin
- return Left - To_Relative_Time (Right);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end "-";
-
- function "-" (Left : Time; Right : Time) return Duration is
- pragma Unsuppress (Overflow_Check);
-
- -- The bound of type Duration expressed as time
-
- Dur_High : constant OS_Time :=
- OS_Time (To_Relative_Time (Duration'Last));
- Dur_Low : constant OS_Time :=
- OS_Time (To_Relative_Time (Duration'First));
-
- Res_M : OS_Time;
-
- begin
- Res_M := OS_Time (Left) - OS_Time (Right);
-
- -- Due to the extended range of Ada time, "-" is capable of producing
- -- results which may exceed the range of Duration. In order to prevent
- -- the generation of bogus values by the Unchecked_Conversion, we apply
- -- the following check.
-
- if Res_M < Dur_Low
- or else Res_M >= Dur_High
- then
- raise Time_Error;
-
- -- Normal case, result fits
-
- else
- return To_Duration (Time (Res_M));
- end if;
-
- exception
- when Constraint_Error =>
- raise Time_Error;
- end "-";
-
- ---------
- -- "<" --
- ---------
-
- function "<" (Left, Right : Time) return Boolean is
- begin
- return OS_Time (Left) < OS_Time (Right);
- end "<";
-
- ----------
- -- "<=" --
- ----------
-
- function "<=" (Left, Right : Time) return Boolean is
- begin
- return OS_Time (Left) <= OS_Time (Right);
- end "<=";
-
- ---------
- -- ">" --
- ---------
-
- function ">" (Left, Right : Time) return Boolean is
- begin
- return OS_Time (Left) > OS_Time (Right);
- end ">";
-
- ----------
- -- ">=" --
- ----------
-
- function ">=" (Left, Right : Time) return Boolean is
- begin
- return OS_Time (Left) >= OS_Time (Right);
- end ">=";
-
- ------------------------------
- -- Check_Within_Time_Bounds --
- ------------------------------
-
- procedure Check_Within_Time_Bounds (T : OS_Time) is
- begin
- if Leap_Support then
- if T < Ada_Low or else T > Ada_High_And_Leaps then
- raise Time_Error;
- end if;
- else
- if T < Ada_Low or else T > Ada_High then
- raise Time_Error;
- end if;
- end if;
- end Check_Within_Time_Bounds;
-
- -----------
- -- Clock --
- -----------
-
- function Clock return Time is
- Elapsed_Leaps : Natural;
- Next_Leap_M : OS_Time;
- Res_M : constant OS_Time := OS_Clock;
-
- begin
- -- Note that on other targets a soft-link is used to get a different
- -- clock depending whether tasking is used or not. On VMS this isn't
- -- needed since all clock calls end up using SYS$GETTIM, so call the
- -- OS_Primitives version for efficiency.
-
- -- If the target supports leap seconds, determine the number of leap
- -- seconds elapsed until this moment.
-
- if Leap_Support then
- Cumulative_Leap_Seconds
- (Start_Of_Time, Res_M, Elapsed_Leaps, Next_Leap_M);
-
- -- The system clock may fall exactly on a leap second
-
- if Res_M >= Next_Leap_M then
- Elapsed_Leaps := Elapsed_Leaps + 1;
- end if;
-
- -- The target does not support leap seconds
-
- else
- Elapsed_Leaps := 0;
- end if;
-
- return Time (Res_M + OS_Time (Elapsed_Leaps) * Mili);
- end Clock;
-
- -----------------------------
- -- Cumulative_Leap_Seconds --
- -----------------------------
-
- procedure Cumulative_Leap_Seconds
- (Start_Date : OS_Time;
- End_Date : OS_Time;
- Elapsed_Leaps : out Natural;
- Next_Leap_Sec : out OS_Time)
- is
- End_Index : Positive;
- End_T : OS_Time := End_Date;
- Start_Index : Positive;
- Start_T : OS_Time := Start_Date;
-
- begin
- pragma Assert (Leap_Support and then End_Date >= Start_Date);
-
- Next_Leap_Sec := End_Of_Time;
-
- -- Make sure that the end date does not exceed the upper bound
- -- of Ada time.
-
- if End_Date > Ada_High then
- End_T := Ada_High;
- end if;
-
- -- Remove the sub seconds from both dates
-
- Start_T := Start_T - (Start_T mod Mili);
- End_T := End_T - (End_T mod Mili);
-
- -- Some trivial cases:
- -- Leap 1 . . . Leap N
- -- ---+========+------+############+-------+========+-----
- -- Start_T End_T Start_T End_T
-
- if End_T < Leap_Second_Times (1) then
- Elapsed_Leaps := 0;
- Next_Leap_Sec := Leap_Second_Times (1);
- return;
-
- elsif Start_T > Leap_Second_Times (Leap_Seconds_Count) then
- Elapsed_Leaps := 0;
- Next_Leap_Sec := End_Of_Time;
- return;
- end if;
-
- -- Perform the calculations only if the start date is within the leap
- -- second occurrences table.
-
- if Start_T <= Leap_Second_Times (Leap_Seconds_Count) then
-
- -- 1 2 N - 1 N
- -- +----+----+-- . . . --+-------+---+
- -- | T1 | T2 | | N - 1 | N |
- -- +----+----+-- . . . --+-------+---+
- -- ^ ^
- -- | Start_Index | End_Index
- -- +-------------------+
- -- Leaps_Between
-
- -- The idea behind the algorithm is to iterate and find two closest
- -- dates which are after Start_T and End_T. Their corresponding
- -- index difference denotes the number of leap seconds elapsed.
-
- Start_Index := 1;
- loop
- exit when Leap_Second_Times (Start_Index) >= Start_T;
- Start_Index := Start_Index + 1;
- end loop;
-
- End_Index := Start_Index;
- loop
- exit when End_Index > Leap_Seconds_Count
- or else Leap_Second_Times (End_Index) >= End_T;
- End_Index := End_Index + 1;
- end loop;
-
- if End_Index <= Leap_Seconds_Count then
- Next_Leap_Sec := Leap_Second_Times (End_Index);
- end if;
-
- Elapsed_Leaps := End_Index - Start_Index;
-
- else
- Elapsed_Leaps := 0;
- end if;
- end Cumulative_Leap_Seconds;
-
- ---------
- -- Day --
- ---------
-
- function Day (Date : Time) return Day_Number is
- Y : Year_Number;
- M : Month_Number;
- D : Day_Number;
- S : Day_Duration;
- pragma Unreferenced (Y, M, S);
- begin
- Split (Date, Y, M, D, S);
- return D;
- end Day;
-
- -------------
- -- Is_Leap --
- -------------
-
- function Is_Leap (Year : Year_Number) return Boolean is
- begin
- -- Leap centennial years
-
- if Year mod 400 = 0 then
- return True;
-
- -- Non-leap centennial years
-
- elsif Year mod 100 = 0 then
- return False;
-
- -- Regular years
-
- else
- return Year mod 4 = 0;
- end if;
- end Is_Leap;
-
- -----------
- -- Month --
- -----------
-
- function Month (Date : Time) return Month_Number is
- Y : Year_Number;
- M : Month_Number;
- D : Day_Number;
- S : Day_Duration;
- pragma Unreferenced (Y, D, S);
- begin
- Split (Date, Y, M, D, S);
- return M;
- end Month;
-
- -------------
- -- Seconds --
- -------------
-
- function Seconds (Date : Time) return Day_Duration is
- Y : Year_Number;
- M : Month_Number;
- D : Day_Number;
- S : Day_Duration;
- pragma Unreferenced (Y, M, D);
- begin
- Split (Date, Y, M, D, S);
- return S;
- end Seconds;
-
- -----------
- -- Split --
- -----------
-
- procedure Split
- (Date : Time;
- Year : out Year_Number;
- Month : out Month_Number;
- Day : out Day_Number;
- Seconds : out Day_Duration)
- is
- H : Integer;
- M : Integer;
- Se : Integer;
- Ss : Duration;
- Le : Boolean;
-
- begin
- -- Use UTC as the local time zone on VMS, the status of flag Is_Ada_05
- -- is irrelevant in this case.
-
- Formatting_Operations.Split
- (Date => Date,
- Year => Year,
- Month => Month,
- Day => Day,
- Day_Secs => Seconds,
- Hour => H,
- Minute => M,
- Second => Se,
- Sub_Sec => Ss,
- Leap_Sec => Le,
- Is_Ada_05 => False,
- Time_Zone => 0);
-
- -- Validity checks
-
- if not Year'Valid
- or else not Month'Valid
- or else not Day'Valid
- or else not Seconds'Valid
- then
- raise Time_Error;
- end if;
- end Split;
-
- -------------
- -- Time_Of --
- -------------
-
- function Time_Of
- (Year : Year_Number;
- Month : Month_Number;
- Day : Day_Number;
- Seconds : Day_Duration := 0.0) return Time
- is
- -- The values in the following constants are irrelevant, they are just
- -- placeholders; the choice of constructing a Day_Duration value is
- -- controlled by the Use_Day_Secs flag.
-
- H : constant Integer := 1;
- M : constant Integer := 1;
- Se : constant Integer := 1;
- Ss : constant Duration := 0.1;
-
- begin
- if not Year'Valid
- or else not Month'Valid
- or else not Day'Valid
- or else not Seconds'Valid
- then
- raise Time_Error;
- end if;
-
- -- Use UTC as the local time zone on VMS, the status of flag Is_Ada_05
- -- is irrelevant in this case.
-
- return
- Formatting_Operations.Time_Of
- (Year => Year,
- Month => Month,
- Day => Day,
- Day_Secs => Seconds,
- Hour => H,
- Minute => M,
- Second => Se,
- Sub_Sec => Ss,
- Leap_Sec => False,
- Use_Day_Secs => True,
- Is_Ada_05 => False,
- Time_Zone => 0);
- end Time_Of;
-
- -----------------
- -- To_Duration --
- -----------------
-
- function To_Duration (T : Time) return Duration is
- function Time_To_Duration is
- new Ada.Unchecked_Conversion (Time, Duration);
- begin
- return Time_To_Duration (T * 100);
- end To_Duration;
-
- ----------------------
- -- To_Relative_Time --
- ----------------------
-
- function To_Relative_Time (D : Duration) return Time is
- function Duration_To_Time is
- new Ada.Unchecked_Conversion (Duration, Time);
- begin
- return Duration_To_Time (D / 100.0);
- end To_Relative_Time;
-
- ----------
- -- Year --
- ----------
-
- function Year (Date : Time) return Year_Number is
- Y : Year_Number;
- M : Month_Number;
- D : Day_Number;
- S : Day_Duration;
- pragma Unreferenced (M, D, S);
- begin
- Split (Date, Y, M, D, S);
- return Y;
- end Year;
-
- -- The following packages assume that Time is a Long_Integer, the units
- -- are 100 nanoseconds and the starting point in the VMS Epoch.
-
- ---------------------------
- -- Arithmetic_Operations --
- ---------------------------
-
- package body Arithmetic_Operations is
-
- ---------
- -- Add --
- ---------
-
- function Add (Date : Time; Days : Long_Integer) return Time is
- pragma Unsuppress (Overflow_Check);
- Date_M : constant OS_Time := OS_Time (Date);
- begin
- return Time (Date_M + OS_Time (Days) * Milis_In_Day);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end Add;
-
- ----------------
- -- Difference --
- ----------------
-
- procedure Difference
- (Left : Time;
- Right : Time;
- Days : out Long_Integer;
- Seconds : out Duration;
- Leap_Seconds : out Integer)
- is
- Diff_M : OS_Time;
- Diff_S : OS_Time;
- Earlier : OS_Time;
- Elapsed_Leaps : Natural;
- Later : OS_Time;
- Negate : Boolean := False;
- Next_Leap : OS_Time;
- Sub_Seconds : Duration;
-
- begin
- -- This classification is necessary in order to avoid a Time_Error
- -- being raised by the arithmetic operators in Ada.Calendar.
-
- if Left >= Right then
- Later := OS_Time (Left);
- Earlier := OS_Time (Right);
- else
- Later := OS_Time (Right);
- Earlier := OS_Time (Left);
- Negate := True;
- end if;
-
- -- If the target supports leap seconds, process them
-
- if Leap_Support then
- Cumulative_Leap_Seconds
- (Earlier, Later, Elapsed_Leaps, Next_Leap);
-
- if Later >= Next_Leap then
- Elapsed_Leaps := Elapsed_Leaps + 1;
- end if;
-
- -- The target does not support leap seconds
-
- else
- Elapsed_Leaps := 0;
- end if;
-
- Diff_M := Later - Earlier - OS_Time (Elapsed_Leaps) * Mili;
-
- -- Sub second processing
-
- Sub_Seconds := Duration (Diff_M mod Mili) / Mili_F;
-
- -- Convert to seconds. Note that his action eliminates the sub
- -- seconds automatically.
-
- Diff_S := Diff_M / Mili;
-
- Days := Long_Integer (Diff_S / Secs_In_Day);
- Seconds := Duration (Diff_S mod Secs_In_Day) + Sub_Seconds;
- Leap_Seconds := Integer (Elapsed_Leaps);
-
- if Negate then
- Days := -Days;
- Seconds := -Seconds;
-
- if Leap_Seconds /= 0 then
- Leap_Seconds := -Leap_Seconds;
- end if;
- end if;
- end Difference;
-
- --------------
- -- Subtract --
- --------------
-
- function Subtract (Date : Time; Days : Long_Integer) return Time is
- pragma Unsuppress (Overflow_Check);
- Date_M : constant OS_Time := OS_Time (Date);
- begin
- return Time (Date_M - OS_Time (Days) * Milis_In_Day);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end Subtract;
- end Arithmetic_Operations;
-
- ---------------------------
- -- Conversion_Operations --
- ---------------------------
-
- package body Conversion_Operations is
-
- Epoch_Offset : constant OS_Time := 35067168000000000;
- -- The difference between 1970-1-1 UTC and 1858-11-17 UTC expressed in
- -- 100 nanoseconds.
-
- -----------------
- -- To_Ada_Time --
- -----------------
-
- function To_Ada_Time (Unix_Time : Long_Integer) return Time is
- pragma Unsuppress (Overflow_Check);
- Unix_Rep : constant OS_Time := OS_Time (Unix_Time) * Mili;
- begin
- return Time (Unix_Rep + Epoch_Offset);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end To_Ada_Time;
-
- -----------------
- -- To_Ada_Time --
- -----------------
-
- function To_Ada_Time
- (tm_year : Integer;
- tm_mon : Integer;
- tm_day : Integer;
- tm_hour : Integer;
- tm_min : Integer;
- tm_sec : Integer;
- tm_isdst : Integer) return Time
- is
- pragma Unsuppress (Overflow_Check);
-
- Year_Shift : constant Integer := 1900;
- Month_Shift : constant Integer := 1;
-
- Year : Year_Number;
- Month : Month_Number;
- Day : Day_Number;
- Second : Integer;
- Leap : Boolean;
- Result : OS_Time;
-
- begin
- -- Input processing
-
- Year := Year_Number (Year_Shift + tm_year);
- Month := Month_Number (Month_Shift + tm_mon);
- Day := Day_Number (tm_day);
-
- -- Step 1: Validity checks of input values
-
- if not Year'Valid
- or else not Month'Valid
- or else not Day'Valid
- or else tm_hour not in 0 .. 24
- or else tm_min not in 0 .. 59
- or else tm_sec not in 0 .. 60
- or else tm_isdst not in -1 .. 1
- then
- raise Time_Error;
- end if;
-
- -- Step 2: Potential leap second
-
- if tm_sec = 60 then
- Leap := True;
- Second := 59;
- else
- Leap := False;
- Second := tm_sec;
- end if;
-
- -- Step 3: Calculate the time value
-
- Result :=
- OS_Time
- (Formatting_Operations.Time_Of
- (Year => Year,
- Month => Month,
- Day => Day,
- Day_Secs => 0.0, -- Time is given in h:m:s
- Hour => tm_hour,
- Minute => tm_min,
- Second => Second,
- Sub_Sec => 0.0, -- No precise sub second given
- Leap_Sec => Leap,
- Use_Day_Secs => False, -- Time is given in h:m:s
- Is_Ada_05 => True, -- Force usage of explicit time zone
- Time_Zone => 0)); -- Place the value in UTC
- -- Step 4: Daylight Savings Time
-
- if tm_isdst = 1 then
- Result := Result + OS_Time (3_600) * Mili;
- end if;
-
- return Time (Result);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end To_Ada_Time;
-
- -----------------
- -- To_Duration --
- -----------------
-
- function To_Duration
- (tv_sec : Long_Integer;
- tv_nsec : Long_Integer) return Duration
- is
- pragma Unsuppress (Overflow_Check);
- begin
- return Duration (tv_sec) + Duration (tv_nsec) / Mili_F;
- end To_Duration;
-
- ------------------------
- -- To_Struct_Timespec --
- ------------------------
-
- procedure To_Struct_Timespec
- (D : Duration;
- tv_sec : out Long_Integer;
- tv_nsec : out Long_Integer)
- is
- pragma Unsuppress (Overflow_Check);
- Secs : Duration;
- Nano_Secs : Duration;
-
- begin
- -- Seconds extraction, avoid potential rounding errors
-
- Secs := D - 0.5;
- tv_sec := Long_Integer (Secs);
-
- -- 100 Nanoseconds extraction
-
- Nano_Secs := D - Duration (tv_sec);
- tv_nsec := Long_Integer (Nano_Secs * Mili);
- end To_Struct_Timespec;
-
- ------------------
- -- To_Struct_Tm --
- ------------------
-
- procedure To_Struct_Tm
- (T : Time;
- tm_year : out Integer;
- tm_mon : out Integer;
- tm_day : out Integer;
- tm_hour : out Integer;
- tm_min : out Integer;
- tm_sec : out Integer)
- is
- pragma Unsuppress (Overflow_Check);
- Year : Year_Number;
- Month : Month_Number;
- Second : Integer;
- Day_Secs : Day_Duration;
- Sub_Sec : Duration;
- Leap_Sec : Boolean;
-
- begin
- -- Step 1: Split the input time
-
- Formatting_Operations.Split
- (T, Year, Month, tm_day, Day_Secs,
- tm_hour, tm_min, Second, Sub_Sec, Leap_Sec, True, 0);
-
- -- Step 2: Correct the year and month
-
- tm_year := Year - 1900;
- tm_mon := Month - 1;
-
- -- Step 3: Handle leap second occurrences
-
- if Leap_Sec then
- tm_sec := 60;
- else
- tm_sec := Second;
- end if;
- end To_Struct_Tm;
-
- ------------------
- -- To_Unix_Time --
- ------------------
-
- function To_Unix_Time (Ada_Time : Time) return Long_Integer is
- pragma Unsuppress (Overflow_Check);
- Ada_OS_Time : constant OS_Time := OS_Time (Ada_Time);
- begin
- return Long_Integer ((Ada_OS_Time - Epoch_Offset) / Mili);
- exception
- when Constraint_Error =>
- raise Time_Error;
- end To_Unix_Time;
- end Conversion_Operations;
-
- ---------------------------
- -- Formatting_Operations --
- ---------------------------
-
- package body Formatting_Operations is
-
- -----------------
- -- Day_Of_Week --
- -----------------
-
- function Day_Of_Week (Date : Time) return Integer is
- Y : Year_Number;
- M : Month_Number;
- D : Day_Number;
- S : Day_Duration;
-
- Day_Count : Long_Integer;
- Midday_Date_S : Time;
-
- begin
- Split (Date, Y, M, D, S);
-
- -- Build a time value in the middle of the same day and convert the
- -- time value to seconds.
-
- Midday_Date_S := Time_Of (Y, M, D, 43_200.0) / Mili;
-
- -- Count the number of days since the start of VMS time. 1858-11-17
- -- was a Wednesday.
-
- Day_Count := Long_Integer (Midday_Date_S / Secs_In_Day) + 2;
-
- return Integer (Day_Count mod 7);
- end Day_Of_Week;
-
- -----------
- -- Split --
- -----------
-
- procedure Split
- (Date : Time;
- Year : out Year_Number;
- Month : out Month_Number;
- Day : out Day_Number;
- Day_Secs : out Day_Duration;
- Hour : out Integer;
- Minute : out Integer;
- Second : out Integer;
- Sub_Sec : out Duration;
- Leap_Sec : out Boolean;
- Is_Ada_05 : Boolean;
- Time_Zone : Long_Integer)
- is
- -- The flag Is_Ada_05 is present for interfacing purposes
-
- pragma Unreferenced (Is_Ada_05);
-
- procedure Numtim
- (Status : out Unsigned_Longword;
- Timbuf : out Unsigned_Word_Array;
- Timadr : Time);
-
- pragma Interface (External, Numtim);
-
- pragma Import_Valued_Procedure
- (Numtim, "SYS$NUMTIM",
- (Unsigned_Longword, Unsigned_Word_Array, Time),
- (Value, Reference, Reference));
-
- Status : Unsigned_Longword;
- Timbuf : Unsigned_Word_Array (1 .. 7);
-
- Ada_Min_Year : constant := 1901;
- Ada_Max_Year : constant := 2399;
-
- Date_M : OS_Time;
- Elapsed_Leaps : Natural;
- Next_Leap_M : OS_Time;
-
- begin
- Date_M := OS_Time (Date);
-
- -- Step 1: Leap seconds processing
-
- if Leap_Support then
- Cumulative_Leap_Seconds
- (Start_Of_Time, Date_M, Elapsed_Leaps, Next_Leap_M);
-
- Leap_Sec := Date_M >= Next_Leap_M;
-
- if Leap_Sec then
- Elapsed_Leaps := Elapsed_Leaps + 1;
- end if;
-
- -- The target does not support leap seconds
-
- else
- Elapsed_Leaps := 0;
- Leap_Sec := False;
- end if;
-
- Date_M := Date_M - OS_Time (Elapsed_Leaps) * Mili;
-
- -- Step 2: Time zone processing
-
- if Time_Zone /= 0 then
- Date_M := Date_M + OS_Time (Time_Zone) * 60 * Mili;
- end if;
-
- -- After the leap seconds and time zone have been accounted for,
- -- the date should be within the bounds of Ada time.
-
- if Date_M < Ada_Low
- or else Date_M > Ada_High
- then
- raise Time_Error;
- end if;
-
- -- Step 3: Sub second processing
-
- Sub_Sec := Duration (Date_M mod Mili) / Mili_F;
-
- -- Drop the sub seconds
-
- Date_M := Date_M - (Date_M mod Mili);
-
- -- Step 4: VMS system call
-
- Numtim (Status, Timbuf, Time (Date_M));
-
- if Status mod 2 /= 1
- or else Timbuf (1) not in Ada_Min_Year .. Ada_Max_Year
- then
- raise Time_Error;
- end if;
-
- -- Step 5: Time components processing
-
- Year := Year_Number (Timbuf (1));
- Month := Month_Number (Timbuf (2));
- Day := Day_Number (Timbuf (3));
- Hour := Integer (Timbuf (4));
- Minute := Integer (Timbuf (5));
- Second := Integer (Timbuf (6));
-
- Day_Secs := Day_Duration (Hour * 3_600) +
- Day_Duration (Minute * 60) +
- Day_Duration (Second) +
- Sub_Sec;
- end Split;
-
- -------------
- -- Time_Of --
- -------------
-
- function Time_Of
- (Year : Year_Number;
- Month : Month_Number;
- Day : Day_Number;
- Day_Secs : Day_Duration;
- Hour : Integer;
- Minute : Integer;
- Second : Integer;
- Sub_Sec : Duration;
- Leap_Sec : Boolean := False;
- Use_Day_Secs : Boolean := False;
- Is_Ada_05 : Boolean := False;
- Time_Zone : Long_Integer := 0) return Time
- is
- procedure Cvt_Vectim
- (Status : out Unsigned_Longword;
- Input_Time : Unsigned_Word_Array;
- Resultant_Time : out Time);
-
- pragma Interface (External, Cvt_Vectim);
-
- pragma Import_Valued_Procedure
- (Cvt_Vectim, "LIB$CVT_VECTIM",
- (Unsigned_Longword, Unsigned_Word_Array, Time),
- (Value, Reference, Reference));
-
- Status : Unsigned_Longword;
- Timbuf : Unsigned_Word_Array (1 .. 7);
-
- Y : Year_Number := Year;
- Mo : Month_Number := Month;
- D : Day_Number := Day;
- H : Integer := Hour;
- Mi : Integer := Minute;
- Se : Integer := Second;
- Su : Duration := Sub_Sec;
-
- Elapsed_Leaps : Natural;
- Int_Day_Secs : Integer;
- Next_Leap_M : OS_Time;
- Res : Time;
- Res_M : OS_Time;
- Rounded_Res_M : OS_Time;
-
- begin
- -- No validity checks are performed on the input values since it is
- -- assumed that the called has already performed them.
-
- -- Step 1: Hour, minute, second and sub second processing
-
- if Use_Day_Secs then
-
- -- A day seconds value of 86_400 designates a new day
-
- if Day_Secs = 86_400.0 then
- declare
- Adj_Year : Year_Number := Year;
- Adj_Month : Month_Number := Month;
- Adj_Day : Day_Number := Day;
-
- begin
- if Day < Days_In_Month (Month)
- or else (Month = 2
- and then Is_Leap (Year))
- then
- Adj_Day := Day + 1;
-
- -- The day adjustment moves the date to a new month
-
- else
- Adj_Day := 1;
-
- if Month < 12 then
- Adj_Month := Month + 1;
-
- -- The month adjustment moves the date to a new year
-
- else
- Adj_Month := 1;
- Adj_Year := Year + 1;
- end if;
- end if;
-
- Y := Adj_Year;
- Mo := Adj_Month;
- D := Adj_Day;
- H := 0;
- Mi := 0;
- Se := 0;
- Su := 0.0;
- end;
-
- -- Normal case (not exactly one day)
-
- else
- -- Sub second extraction
-
- if Day_Secs > 0.0 then
- Int_Day_Secs := Integer (Day_Secs - 0.5);
- else
- Int_Day_Secs := Integer (Day_Secs);
- end if;
-
- H := Int_Day_Secs / 3_600;
- Mi := (Int_Day_Secs / 60) mod 60;
- Se := Int_Day_Secs mod 60;
- Su := Day_Secs - Duration (Int_Day_Secs);
- end if;
- end if;
-
- -- Step 2: System call to VMS
-
- Timbuf (1) := Unsigned_Word (Y);
- Timbuf (2) := Unsigned_Word (Mo);
- Timbuf (3) := Unsigned_Word (D);
- Timbuf (4) := Unsigned_Word (H);
- Timbuf (5) := Unsigned_Word (Mi);
- Timbuf (6) := Unsigned_Word (Se);
- Timbuf (7) := 0;
-
- Cvt_Vectim (Status, Timbuf, Res);
-
- if Status mod 2 /= 1 then
- raise Time_Error;
- end if;
-
- -- Step 3: Sub second adjustment
-
- Res_M := OS_Time (Res) + OS_Time (Su * Mili_F);
-
- -- Step 4: Bounds check
-
- Check_Within_Time_Bounds (Res_M);
-
- -- Step 5: Time zone processing
-
- if Time_Zone /= 0 then
- Res_M := Res_M - OS_Time (Time_Zone) * 60 * Mili;
- end if;
-
- -- Step 6: Leap seconds processing
-
- if Leap_Support then
- Cumulative_Leap_Seconds
- (Start_Of_Time, Res_M, Elapsed_Leaps, Next_Leap_M);
-
- Res_M := Res_M + OS_Time (Elapsed_Leaps) * Mili;
-
- -- An Ada 2005 caller requesting an explicit leap second or an
- -- Ada 95 caller accounting for an invisible leap second.
-
- if Leap_Sec
- or else Res_M >= Next_Leap_M
- then
- Res_M := Res_M + OS_Time (1) * Mili;
- end if;
-
- -- Leap second validity check
-
- Rounded_Res_M := Res_M - (Res_M mod Mili);
-
- if Is_Ada_05
- and then Leap_Sec
- and then Rounded_Res_M /= Next_Leap_M
- then
- raise Time_Error;
- end if;
- end if;
-
- return Time (Res_M);
- end Time_Of;
- end Formatting_Operations;
-
- ---------------------------
- -- Time_Zones_Operations --
- ---------------------------
-
- package body Time_Zones_Operations is
-
- ---------------------
- -- UTC_Time_Offset --
- ---------------------
-
- function UTC_Time_Offset (Date : Time) return Long_Integer is
- -- Formal parameter Date is here for interfacing, but is never
- -- actually used.
-
- pragma Unreferenced (Date);
-
- function get_gmtoff return Long_Integer;
- pragma Import (C, get_gmtoff, "get_gmtoff");
-
- begin
- -- VMS is not capable of determining the time zone in some past or
- -- future point in time denoted by Date, thus the current time zone
- -- is retrieved.
-
- return get_gmtoff;
- end UTC_Time_Offset;
- end Time_Zones_Operations;
-end Ada.Calendar;