aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/contrib/paranoia.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/contrib/paranoia.cc')
-rw-r--r--gcc-4.4.3/contrib/paranoia.cc2714
1 files changed, 0 insertions, 2714 deletions
diff --git a/gcc-4.4.3/contrib/paranoia.cc b/gcc-4.4.3/contrib/paranoia.cc
deleted file mode 100644
index ce21d3520..000000000
--- a/gcc-4.4.3/contrib/paranoia.cc
+++ /dev/null
@@ -1,2714 +0,0 @@
-/* A C version of Kahan's Floating Point Test "Paranoia"
-
-Thos Sumner, UCSF, Feb. 1985
-David Gay, BTL, Jan. 1986
-
-This is a rewrite from the Pascal version by
-
-B. A. Wichmann, 18 Jan. 1985
-
-(and does NOT exhibit good C programming style).
-
-Adjusted to use Standard C headers 19 Jan. 1992 (dmg);
-
-(C) Apr 19 1983 in BASIC version by:
-Professor W. M. Kahan,
-567 Evans Hall
-Electrical Engineering & Computer Science Dept.
-University of California
-Berkeley, California 94720
-USA
-
-converted to Pascal by:
-B. A. Wichmann
-National Physical Laboratory
-Teddington Middx
-TW11 OLW
-UK
-
-converted to C by:
-
-David M. Gay and Thos Sumner
-AT&T Bell Labs Computer Center, Rm. U-76
-600 Mountain Avenue University of California
-Murray Hill, NJ 07974 San Francisco, CA 94143
-USA USA
-
-with simultaneous corrections to the Pascal source (reflected
-in the Pascal source available over netlib).
-[A couple of bug fixes from dgh = sun!dhough incorporated 31 July 1986.]
-
-Reports of results on various systems from all the versions
-of Paranoia are being collected by Richard Karpinski at the
-same address as Thos Sumner. This includes sample outputs,
-bug reports, and criticisms.
-
-You may copy this program freely if you acknowledge its source.
-Comments on the Pascal version to NPL, please.
-
-The following is from the introductory commentary from Wichmann's work:
-
-The BASIC program of Kahan is written in Microsoft BASIC using many
-facilities which have no exact analogy in Pascal. The Pascal
-version below cannot therefore be exactly the same. Rather than be
-a minimal transcription of the BASIC program, the Pascal coding
-follows the conventional style of block-structured languages. Hence
-the Pascal version could be useful in producing versions in other
-structured languages.
-
-Rather than use identifiers of minimal length (which therefore have
-little mnemonic significance), the Pascal version uses meaningful
-identifiers as follows [Note: A few changes have been made for C]:
-
-
-BASIC C BASIC C BASIC C
-
-A J S StickyBit
-A1 AInverse J0 NoErrors T
-B Radix [Failure] T0 Underflow
-B1 BInverse J1 NoErrors T2 ThirtyTwo
-B2 RadixD2 [SeriousDefect] T5 OneAndHalf
-B9 BMinusU2 J2 NoErrors T7 TwentySeven
-C [Defect] T8 TwoForty
-C1 CInverse J3 NoErrors U OneUlp
-D [Flaw] U0 UnderflowThreshold
-D4 FourD K PageNo U1
-E0 L Milestone U2
-E1 M V
-E2 Exp2 N V0
-E3 N1 V8
-E5 MinSqEr O Zero V9
-E6 SqEr O1 One W
-E7 MaxSqEr O2 Two X
-E8 O3 Three X1
-E9 O4 Four X8
-F1 MinusOne O5 Five X9 Random1
-F2 Half O8 Eight Y
-F3 Third O9 Nine Y1
-F6 P Precision Y2
-F9 Q Y9 Random2
-G1 GMult Q8 Z
-G2 GDiv Q9 Z0 PseudoZero
-G3 GAddSub R Z1
-H R1 RMult Z2
-H1 HInverse R2 RDiv Z9
-I R3 RAddSub
-IO NoTrials R4 RSqrt
-I3 IEEE R9 Random9
-
-SqRWrng
-
-All the variables in BASIC are true variables and in consequence,
-the program is more difficult to follow since the "constants" must
-be determined (the glossary is very helpful). The Pascal version
-uses Real constants, but checks are added to ensure that the values
-are correctly converted by the compiler.
-
-The major textual change to the Pascal version apart from the
-identifiersis that named procedures are used, inserting parameters
-wherehelpful. New procedures are also introduced. The
-correspondence is as follows:
-
-
-BASIC Pascal
-lines
-
-90- 140 Pause
-170- 250 Instructions
-380- 460 Heading
-480- 670 Characteristics
-690- 870 History
-2940-2950 Random
-3710-3740 NewD
-4040-4080 DoesYequalX
-4090-4110 PrintIfNPositive
-4640-4850 TestPartialUnderflow
-
-*/
-
- /* This version of paranoia has been modified to work with GCC's internal
- software floating point emulation library, as a sanity check of same.
-
- I'm doing this in C++ so that I can do operator overloading and not
- have to modify so damned much of the existing code. */
-
- extern "C" {
-#include <stdio.h>
-#include <stddef.h>
-#include <limits.h>
-#include <string.h>
-#include <stdlib.h>
-#include <math.h>
-#include <unistd.h>
-#include <float.h>
-
- /* This part is made all the more awful because many gcc headers are
- not prepared at all to be parsed as C++. The biggest stickler
- here is const structure members. So we include exactly the pieces
- that we need. */
-
-#define GTY(x)
-
-#include "ansidecl.h"
-#include "auto-host.h"
-#include "hwint.h"
-
-#undef EXTRA_MODES_FILE
-
- struct rtx_def;
- typedef struct rtx_def *rtx;
- struct rtvec_def;
- typedef struct rtvec_def *rtvec;
- union tree_node;
- typedef union tree_node *tree;
-
-#define DEFTREECODE(SYM, STRING, TYPE, NARGS) SYM,
- enum tree_code {
-#include "tree.def"
- LAST_AND_UNUSED_TREE_CODE
- };
-#undef DEFTREECODE
-
-#define ENUM_BITFIELD(X) enum X
-#define class klass
-
-#include "real.h"
-
-#undef class
- }
-
-/* We never produce signals from the library. Thus setjmp need do nothing. */
-#undef setjmp
-#define setjmp(x) (0)
-
-static bool verbose = false;
-static int verbose_index = 0;
-
-/* ====================================================================== */
-/* The implementation of the abstract floating point class based on gcc's
- real.c. I.e. the object of this exercise. Templated so that we can
- all fp sizes. */
-
-class real_c_float
-{
- public:
- static const enum machine_mode MODE = SFmode;
-
- private:
- static const int external_max = 128 / 32;
- static const int internal_max
- = (sizeof (REAL_VALUE_TYPE) + sizeof (long) + 1) / sizeof (long);
- long image[external_max < internal_max ? internal_max : external_max];
-
- void from_long(long);
- void from_str(const char *);
- void binop(int code, const real_c_float&);
- void unop(int code);
- bool cmp(int code, const real_c_float&) const;
-
- public:
- real_c_float()
- { }
- real_c_float(long l)
- { from_long(l); }
- real_c_float(const char *s)
- { from_str(s); }
- real_c_float(const real_c_float &b)
- { memcpy(image, b.image, sizeof(image)); }
-
- const real_c_float& operator= (long l)
- { from_long(l); return *this; }
- const real_c_float& operator= (const char *s)
- { from_str(s); return *this; }
- const real_c_float& operator= (const real_c_float &b)
- { memcpy(image, b.image, sizeof(image)); return *this; }
-
- const real_c_float& operator+= (const real_c_float &b)
- { binop(PLUS_EXPR, b); return *this; }
- const real_c_float& operator-= (const real_c_float &b)
- { binop(MINUS_EXPR, b); return *this; }
- const real_c_float& operator*= (const real_c_float &b)
- { binop(MULT_EXPR, b); return *this; }
- const real_c_float& operator/= (const real_c_float &b)
- { binop(RDIV_EXPR, b); return *this; }
-
- real_c_float operator- () const
- { real_c_float r(*this); r.unop(NEGATE_EXPR); return r; }
- real_c_float abs () const
- { real_c_float r(*this); r.unop(ABS_EXPR); return r; }
-
- bool operator < (const real_c_float &b) const { return cmp(LT_EXPR, b); }
- bool operator <= (const real_c_float &b) const { return cmp(LE_EXPR, b); }
- bool operator == (const real_c_float &b) const { return cmp(EQ_EXPR, b); }
- bool operator != (const real_c_float &b) const { return cmp(NE_EXPR, b); }
- bool operator >= (const real_c_float &b) const { return cmp(GE_EXPR, b); }
- bool operator > (const real_c_float &b) const { return cmp(GT_EXPR, b); }
-
- const char * str () const;
- const char * hex () const;
- long integer () const;
- int exp () const;
- void ldexp (int);
-};
-
-void
-real_c_float::from_long (long l)
-{
- REAL_VALUE_TYPE f;
-
- real_from_integer (&f, MODE, l, l < 0 ? -1 : 0, 0);
- real_to_target (image, &f, MODE);
-}
-
-void
-real_c_float::from_str (const char *s)
-{
- REAL_VALUE_TYPE f;
- const char *p = s;
-
- if (*p == '-' || *p == '+')
- p++;
- if (strcasecmp(p, "inf") == 0)
- {
- real_inf (&f);
- if (*s == '-')
- real_arithmetic (&f, NEGATE_EXPR, &f, NULL);
- }
- else if (strcasecmp(p, "nan") == 0)
- real_nan (&f, "", 1, MODE);
- else
- real_from_string (&f, s);
-
- real_to_target (image, &f, MODE);
-}
-
-void
-real_c_float::binop (int code, const real_c_float &b)
-{
- REAL_VALUE_TYPE ai, bi, ri;
-
- real_from_target (&ai, image, MODE);
- real_from_target (&bi, b.image, MODE);
- real_arithmetic (&ri, code, &ai, &bi);
- real_to_target (image, &ri, MODE);
-
- if (verbose)
- {
- char ab[64], bb[64], rb[64];
- const real_format *fmt = real_format_for_mode[MODE - QFmode];
- const int digits = (fmt->p * fmt->log2_b + 3) / 4;
- char symbol_for_code;
-
- real_from_target (&ri, image, MODE);
- real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
- real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
- real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
-
- switch (code)
- {
- case PLUS_EXPR:
- symbol_for_code = '+';
- break;
- case MINUS_EXPR:
- symbol_for_code = '-';
- break;
- case MULT_EXPR:
- symbol_for_code = '*';
- break;
- case RDIV_EXPR:
- symbol_for_code = '/';
- break;
- default:
- abort ();
- }
-
- fprintf (stderr, "%6d: %s %c %s = %s\n", verbose_index++,
- ab, symbol_for_code, bb, rb);
- }
-}
-
-void
-real_c_float::unop (int code)
-{
- REAL_VALUE_TYPE ai, ri;
-
- real_from_target (&ai, image, MODE);
- real_arithmetic (&ri, code, &ai, NULL);
- real_to_target (image, &ri, MODE);
-
- if (verbose)
- {
- char ab[64], rb[64];
- const real_format *fmt = real_format_for_mode[MODE - QFmode];
- const int digits = (fmt->p * fmt->log2_b + 3) / 4;
- const char *symbol_for_code;
-
- real_from_target (&ri, image, MODE);
- real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
- real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
-
- switch (code)
- {
- case NEGATE_EXPR:
- symbol_for_code = "-";
- break;
- case ABS_EXPR:
- symbol_for_code = "abs ";
- break;
- default:
- abort ();
- }
-
- fprintf (stderr, "%6d: %s%s = %s\n", verbose_index++,
- symbol_for_code, ab, rb);
- }
-}
-
-bool
-real_c_float::cmp (int code, const real_c_float &b) const
-{
- REAL_VALUE_TYPE ai, bi;
- bool ret;
-
- real_from_target (&ai, image, MODE);
- real_from_target (&bi, b.image, MODE);
- ret = real_compare (code, &ai, &bi);
-
- if (verbose)
- {
- char ab[64], bb[64];
- const real_format *fmt = real_format_for_mode[MODE - QFmode];
- const int digits = (fmt->p * fmt->log2_b + 3) / 4;
- const char *symbol_for_code;
-
- real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
- real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
-
- switch (code)
- {
- case LT_EXPR:
- symbol_for_code = "<";
- break;
- case LE_EXPR:
- symbol_for_code = "<=";
- break;
- case EQ_EXPR:
- symbol_for_code = "==";
- break;
- case NE_EXPR:
- symbol_for_code = "!=";
- break;
- case GE_EXPR:
- symbol_for_code = ">=";
- break;
- case GT_EXPR:
- symbol_for_code = ">";
- break;
- default:
- abort ();
- }
-
- fprintf (stderr, "%6d: %s %s %s = %s\n", verbose_index++,
- ab, symbol_for_code, bb, (ret ? "true" : "false"));
- }
-
- return ret;
-}
-
-const char *
-real_c_float::str() const
-{
- REAL_VALUE_TYPE f;
- const real_format *fmt = real_format_for_mode[MODE - QFmode];
- const int digits = int(fmt->p * fmt->log2_b * .30102999566398119521 + 1);
-
- real_from_target (&f, image, MODE);
- char *buf = new char[digits + 10];
- real_to_decimal (buf, &f, digits+10, digits, 0);
-
- return buf;
-}
-
-const char *
-real_c_float::hex() const
-{
- REAL_VALUE_TYPE f;
- const real_format *fmt = real_format_for_mode[MODE - QFmode];
- const int digits = (fmt->p * fmt->log2_b + 3) / 4;
-
- real_from_target (&f, image, MODE);
- char *buf = new char[digits + 10];
- real_to_hexadecimal (buf, &f, digits+10, digits, 0);
-
- return buf;
-}
-
-long
-real_c_float::integer() const
-{
- REAL_VALUE_TYPE f;
- real_from_target (&f, image, MODE);
- return real_to_integer (&f);
-}
-
-int
-real_c_float::exp() const
-{
- REAL_VALUE_TYPE f;
- real_from_target (&f, image, MODE);
- return real_exponent (&f);
-}
-
-void
-real_c_float::ldexp (int exp)
-{
- REAL_VALUE_TYPE ai;
-
- real_from_target (&ai, image, MODE);
- real_ldexp (&ai, &ai, exp);
- real_to_target (image, &ai, MODE);
-}
-
-/* ====================================================================== */
-/* An implementation of the abstract floating point class that uses native
- arithmetic. Exists for reference and debugging. */
-
-template<typename T>
-class native_float
-{
- private:
- // Force intermediate results back to memory.
- volatile T image;
-
- static T from_str (const char *);
- static T do_abs (T);
- static T verbose_binop (T, char, T, T);
- static T verbose_unop (const char *, T, T);
- static bool verbose_cmp (T, const char *, T, bool);
-
- public:
- native_float()
- { }
- native_float(long l)
- { image = l; }
- native_float(const char *s)
- { image = from_str(s); }
- native_float(const native_float &b)
- { image = b.image; }
-
- const native_float& operator= (long l)
- { image = l; return *this; }
- const native_float& operator= (const char *s)
- { image = from_str(s); return *this; }
- const native_float& operator= (const native_float &b)
- { image = b.image; return *this; }
-
- const native_float& operator+= (const native_float &b)
- {
- image = verbose_binop(image, '+', b.image, image + b.image);
- return *this;
- }
- const native_float& operator-= (const native_float &b)
- {
- image = verbose_binop(image, '-', b.image, image - b.image);
- return *this;
- }
- const native_float& operator*= (const native_float &b)
- {
- image = verbose_binop(image, '*', b.image, image * b.image);
- return *this;
- }
- const native_float& operator/= (const native_float &b)
- {
- image = verbose_binop(image, '/', b.image, image / b.image);
- return *this;
- }
-
- native_float operator- () const
- {
- native_float r;
- r.image = verbose_unop("-", image, -image);
- return r;
- }
- native_float abs () const
- {
- native_float r;
- r.image = verbose_unop("abs ", image, do_abs(image));
- return r;
- }
-
- bool operator < (const native_float &b) const
- { return verbose_cmp(image, "<", b.image, image < b.image); }
- bool operator <= (const native_float &b) const
- { return verbose_cmp(image, "<=", b.image, image <= b.image); }
- bool operator == (const native_float &b) const
- { return verbose_cmp(image, "==", b.image, image == b.image); }
- bool operator != (const native_float &b) const
- { return verbose_cmp(image, "!=", b.image, image != b.image); }
- bool operator >= (const native_float &b) const
- { return verbose_cmp(image, ">=", b.image, image >= b.image); }
- bool operator > (const native_float &b) const
- { return verbose_cmp(image, ">", b.image, image > b.image); }
-
- const char * str () const;
- const char * hex () const;
- long integer () const
- { return long(image); }
- int exp () const;
- void ldexp (int);
-};
-
-template<typename T>
-inline T
-native_float<T>::from_str (const char *s)
-{
- return strtold (s, NULL);
-}
-
-template<>
-inline float
-native_float<float>::from_str (const char *s)
-{
- return strtof (s, NULL);
-}
-
-template<>
-inline double
-native_float<double>::from_str (const char *s)
-{
- return strtod (s, NULL);
-}
-
-template<typename T>
-inline T
-native_float<T>::do_abs (T image)
-{
- return fabsl (image);
-}
-
-template<>
-inline float
-native_float<float>::do_abs (float image)
-{
- return fabsf (image);
-}
-
-template<>
-inline double
-native_float<double>::do_abs (double image)
-{
- return fabs (image);
-}
-
-template<typename T>
-T
-native_float<T>::verbose_binop (T a, char symbol, T b, T r)
-{
- if (verbose)
- {
- const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
-#ifdef NO_LONG_DOUBLE
- fprintf (stderr, "%6d: %.*a %c %.*a = %.*a\n", verbose_index++,
- digits, (double)a, symbol,
- digits, (double)b, digits, (double)r);
-#else
- fprintf (stderr, "%6d: %.*La %c %.*La = %.*La\n", verbose_index++,
- digits, (long double)a, symbol,
- digits, (long double)b, digits, (long double)r);
-#endif
- }
- return r;
-}
-
-template<typename T>
-T
-native_float<T>::verbose_unop (const char *symbol, T a, T r)
-{
- if (verbose)
- {
- const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
-#ifdef NO_LONG_DOUBLE
- fprintf (stderr, "%6d: %s%.*a = %.*a\n", verbose_index++,
- symbol, digits, (double)a, digits, (double)r);
-#else
- fprintf (stderr, "%6d: %s%.*La = %.*La\n", verbose_index++,
- symbol, digits, (long double)a, digits, (long double)r);
-#endif
- }
- return r;
-}
-
-template<typename T>
-bool
-native_float<T>::verbose_cmp (T a, const char *symbol, T b, bool r)
-{
- if (verbose)
- {
- const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
-#ifndef NO_LONG_DOUBLE
- fprintf (stderr, "%6d: %.*a %s %.*a = %s\n", verbose_index++,
- digits, (double)a, symbol,
- digits, (double)b, (r ? "true" : "false"));
-#else
- fprintf (stderr, "%6d: %.*La %s %.*La = %s\n", verbose_index++,
- digits, (long double)a, symbol,
- digits, (long double)b, (r ? "true" : "false"));
-#endif
- }
- return r;
-}
-
-template<typename T>
-const char *
-native_float<T>::str() const
-{
- char *buf = new char[50];
- const int digits = int(sizeof(T) * CHAR_BIT * .30102999566398119521 + 1);
-#ifndef NO_LONG_DOUBLE
- sprintf (buf, "%.*e", digits - 1, (double) image);
-#else
- sprintf (buf, "%.*Le", digits - 1, (long double) image);
-#endif
- return buf;
-}
-
-template<typename T>
-const char *
-native_float<T>::hex() const
-{
- char *buf = new char[50];
- const int digits = int(sizeof(T) * CHAR_BIT / 4);
-#ifndef NO_LONG_DOUBLE
- sprintf (buf, "%.*a", digits - 1, (double) image);
-#else
- sprintf (buf, "%.*La", digits - 1, (long double) image);
-#endif
- return buf;
-}
-
-template<typename T>
-int
-native_float<T>::exp() const
-{
- int e;
- frexp (image, &e);
- return e;
-}
-
-template<typename T>
-void
-native_float<T>::ldexp (int exp)
-{
- image = ldexpl (image, exp);
-}
-
-template<>
-void
-native_float<float>::ldexp (int exp)
-{
- image = ldexpf (image, exp);
-}
-
-template<>
-void
-native_float<double>::ldexp (int exp)
-{
- image = ::ldexp (image, exp);
-}
-
-/* ====================================================================== */
-/* Some libm routines that Paranoia expects to be available. */
-
-template<typename FLOAT>
-inline FLOAT
-FABS (const FLOAT &f)
-{
- return f.abs();
-}
-
-template<typename FLOAT, typename RHS>
-inline FLOAT
-operator+ (const FLOAT &a, const RHS &b)
-{
- return FLOAT(a) += FLOAT(b);
-}
-
-template<typename FLOAT, typename RHS>
-inline FLOAT
-operator- (const FLOAT &a, const RHS &b)
-{
- return FLOAT(a) -= FLOAT(b);
-}
-
-template<typename FLOAT, typename RHS>
-inline FLOAT
-operator* (const FLOAT &a, const RHS &b)
-{
- return FLOAT(a) *= FLOAT(b);
-}
-
-template<typename FLOAT, typename RHS>
-inline FLOAT
-operator/ (const FLOAT &a, const RHS &b)
-{
- return FLOAT(a) /= FLOAT(b);
-}
-
-template<typename FLOAT>
-FLOAT
-FLOOR (const FLOAT &f)
-{
- /* ??? This is only correct when F is representable as an integer. */
- long i = f.integer();
- FLOAT r;
-
- r = i;
- if (i < 0 && f != r)
- r = i - 1;
-
- return r;
-}
-
-template<typename FLOAT>
-FLOAT
-SQRT (const FLOAT &f)
-{
-#if 0
- FLOAT zero = long(0);
- FLOAT two = 2;
- FLOAT one = 1;
- FLOAT diff, diff2;
- FLOAT z, t;
-
- if (f == zero)
- return zero;
- if (f < zero)
- return zero / zero;
- if (f == one)
- return f;
-
- z = f;
- z.ldexp (-f.exp() / 2);
-
- diff2 = FABS (z * z - f);
- if (diff2 > zero)
- while (1)
- {
- t = (f / (two * z)) + (z / two);
- diff = FABS (t * t - f);
- if (diff >= diff2)
- break;
- z = t;
- diff2 = diff;
- }
-
- return z;
-#elif defined(NO_LONG_DOUBLE)
- double d;
- char buf[64];
-
- d = strtod (f.hex(), NULL);
- d = sqrt (d);
- sprintf(buf, "%.35a", d);
-
- return FLOAT(buf);
-#else
- long double ld;
- char buf[64];
-
- ld = strtold (f.hex(), NULL);
- ld = sqrtl (ld);
- sprintf(buf, "%.35La", ld);
-
- return FLOAT(buf);
-#endif
-}
-
-template<typename FLOAT>
-FLOAT
-LOG (FLOAT x)
-{
-#if 0
- FLOAT zero = long(0);
- FLOAT one = 1;
-
- if (x <= zero)
- return zero / zero;
- if (x == one)
- return zero;
-
- int exp = x.exp() - 1;
- x.ldexp(-exp);
-
- FLOAT xm1 = x - one;
- FLOAT y = xm1;
- long n = 2;
-
- FLOAT sum = xm1;
- while (1)
- {
- y *= xm1;
- FLOAT term = y / FLOAT (n);
- FLOAT next = sum + term;
- if (next == sum)
- break;
- sum = next;
- if (++n == 1000)
- break;
- }
-
- if (exp)
- sum += FLOAT (exp) * FLOAT(".69314718055994530941");
-
- return sum;
-#elif defined (NO_LONG_DOUBLE)
- double d;
- char buf[64];
-
- d = strtod (x.hex(), NULL);
- d = log (d);
- sprintf(buf, "%.35a", d);
-
- return FLOAT(buf);
-#else
- long double ld;
- char buf[64];
-
- ld = strtold (x.hex(), NULL);
- ld = logl (ld);
- sprintf(buf, "%.35La", ld);
-
- return FLOAT(buf);
-#endif
-}
-
-template<typename FLOAT>
-FLOAT
-EXP (const FLOAT &x)
-{
- /* Cheat. */
-#ifdef NO_LONG_DOUBLE
- double d;
- char buf[64];
-
- d = strtod (x.hex(), NULL);
- d = exp (d);
- sprintf(buf, "%.35a", d);
-
- return FLOAT(buf);
-#else
- long double ld;
- char buf[64];
-
- ld = strtold (x.hex(), NULL);
- ld = expl (ld);
- sprintf(buf, "%.35La", ld);
-
- return FLOAT(buf);
-#endif
-}
-
-template<typename FLOAT>
-FLOAT
-POW (const FLOAT &base, const FLOAT &exp)
-{
- /* Cheat. */
-#ifdef NO_LONG_DOUBLE
- double d1, d2;
- char buf[64];
-
- d1 = strtod (base.hex(), NULL);
- d2 = strtod (exp.hex(), NULL);
- d1 = pow (d1, d2);
- sprintf(buf, "%.35a", d1);
-
- return FLOAT(buf);
-#else
- long double ld1, ld2;
- char buf[64];
-
- ld1 = strtold (base.hex(), NULL);
- ld2 = strtold (exp.hex(), NULL);
- ld1 = powl (ld1, ld2);
- sprintf(buf, "%.35La", ld1);
-
- return FLOAT(buf);
-#endif
-}
-
-/* ====================================================================== */
-/* Real Paranoia begins again here. We wrap the thing in a template so
- that we can instantiate it for each floating point type we care for. */
-
-int NoTrials = 20; /*Number of tests for commutativity. */
-bool do_pause = false;
-
-enum Guard { No, Yes };
-enum Rounding { Other, Rounded, Chopped };
-enum Class { Failure, Serious, Defect, Flaw };
-
-template<typename FLOAT>
-struct Paranoia
-{
- FLOAT Radix, BInvrse, RadixD2, BMinusU2;
-
- /* Small floating point constants. */
- FLOAT Zero;
- FLOAT Half;
- FLOAT One;
- FLOAT Two;
- FLOAT Three;
- FLOAT Four;
- FLOAT Five;
- FLOAT Eight;
- FLOAT Nine;
- FLOAT TwentySeven;
- FLOAT ThirtyTwo;
- FLOAT TwoForty;
- FLOAT MinusOne;
- FLOAT OneAndHalf;
-
- /* Declarations of Variables. */
- int Indx;
- char ch[8];
- FLOAT AInvrse, A1;
- FLOAT C, CInvrse;
- FLOAT D, FourD;
- FLOAT E0, E1, Exp2, E3, MinSqEr;
- FLOAT SqEr, MaxSqEr, E9;
- FLOAT Third;
- FLOAT F6, F9;
- FLOAT H, HInvrse;
- int I;
- FLOAT StickyBit, J;
- FLOAT MyZero;
- FLOAT Precision;
- FLOAT Q, Q9;
- FLOAT R, Random9;
- FLOAT T, Underflow, S;
- FLOAT OneUlp, UfThold, U1, U2;
- FLOAT V, V0, V9;
- FLOAT W;
- FLOAT X, X1, X2, X8, Random1;
- FLOAT Y, Y1, Y2, Random2;
- FLOAT Z, PseudoZero, Z1, Z2, Z9;
- int ErrCnt[4];
- int Milestone;
- int PageNo;
- int M, N, N1;
- Guard GMult, GDiv, GAddSub;
- Rounding RMult, RDiv, RAddSub, RSqrt;
- int Break, Done, NotMonot, Monot, Anomaly, IEEE, SqRWrng, UfNGrad;
-
- /* Computed constants. */
- /*U1 gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */
- /*U2 gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */
-
- int main ();
-
- FLOAT Sign (FLOAT);
- FLOAT Random ();
- void Pause ();
- void BadCond (int, const char *);
- void SqXMinX (int);
- void TstCond (int, int, const char *);
- void notify (const char *);
- void IsYeqX ();
- void NewD ();
- void PrintIfNPositive ();
- void SR3750 ();
- void TstPtUf ();
-
- // Pretend we're bss.
- Paranoia() { memset(this, 0, sizeof (*this)); }
-};
-
-template<typename FLOAT>
-int
-Paranoia<FLOAT>::main()
-{
- /* First two assignments use integer right-hand sides. */
- Zero = long(0);
- One = long(1);
- Two = long(2);
- Three = long(3);
- Four = long(4);
- Five = long(5);
- Eight = long(8);
- Nine = long(9);
- TwentySeven = long(27);
- ThirtyTwo = long(32);
- TwoForty = long(240);
- MinusOne = long(-1);
- Half = "0x1p-1";
- OneAndHalf = "0x3p-1";
- ErrCnt[Failure] = 0;
- ErrCnt[Serious] = 0;
- ErrCnt[Defect] = 0;
- ErrCnt[Flaw] = 0;
- PageNo = 1;
- /*=============================================*/
- Milestone = 7;
- /*=============================================*/
- printf ("Program is now RUNNING tests on small integers:\n");
-
- TstCond (Failure, (Zero + Zero == Zero), "0+0 != 0");
- TstCond (Failure, (One - One == Zero), "1-1 != 0");
- TstCond (Failure, (One > Zero), "1 <= 0");
- TstCond (Failure, (One + One == Two), "1+1 != 2");
-
- Z = -Zero;
- if (Z != Zero)
- {
- ErrCnt[Failure] = ErrCnt[Failure] + 1;
- printf ("Comparison alleges that -0.0 is Non-zero!\n");
- U2 = "0.001";
- Radix = 1;
- TstPtUf ();
- }
-
- TstCond (Failure, (Three == Two + One), "3 != 2+1");
- TstCond (Failure, (Four == Three + One), "4 != 3+1");
- TstCond (Failure, (Four + Two * (-Two) == Zero), "4 + 2*(-2) != 0");
- TstCond (Failure, (Four - Three - One == Zero), "4-3-1 != 0");
-
- TstCond (Failure, (MinusOne == (Zero - One)), "-1 != 0-1");
- TstCond (Failure, (MinusOne + One == Zero), "-1+1 != 0");
- TstCond (Failure, (One + MinusOne == Zero), "1+(-1) != 0");
- TstCond (Failure, (MinusOne + FABS (One) == Zero), "-1+abs(1) != 0");
- TstCond (Failure, (MinusOne + MinusOne * MinusOne == Zero),
- "-1+(-1)*(-1) != 0");
-
- TstCond (Failure, Half + MinusOne + Half == Zero, "1/2 + (-1) + 1/2 != 0");
-
- /*=============================================*/
- Milestone = 10;
- /*=============================================*/
-
- TstCond (Failure, (Nine == Three * Three), "9 != 3*3");
- TstCond (Failure, (TwentySeven == Nine * Three), "27 != 9*3");
- TstCond (Failure, (Eight == Four + Four), "8 != 4+4");
- TstCond (Failure, (ThirtyTwo == Eight * Four), "32 != 8*4");
- TstCond (Failure, (ThirtyTwo - TwentySeven - Four - One == Zero),
- "32-27-4-1 != 0");
-
- TstCond (Failure, Five == Four + One, "5 != 4+1");
- TstCond (Failure, TwoForty == Four * Five * Three * Four, "240 != 4*5*3*4");
- TstCond (Failure, TwoForty / Three - Four * Four * Five == Zero,
- "240/3 - 4*4*5 != 0");
- TstCond (Failure, TwoForty / Four - Five * Three * Four == Zero,
- "240/4 - 5*3*4 != 0");
- TstCond (Failure, TwoForty / Five - Four * Three * Four == Zero,
- "240/5 - 4*3*4 != 0");
-
- if (ErrCnt[Failure] == 0)
- {
- printf ("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n");
- printf ("\n");
- }
- printf ("Searching for Radix and Precision.\n");
- W = One;
- do
- {
- W = W + W;
- Y = W + One;
- Z = Y - W;
- Y = Z - One;
- }
- while (MinusOne + FABS (Y) < Zero);
- /*.. now W is just big enough that |((W+1)-W)-1| >= 1 ... */
- Precision = Zero;
- Y = One;
- do
- {
- Radix = W + Y;
- Y = Y + Y;
- Radix = Radix - W;
- }
- while (Radix == Zero);
- if (Radix < Two)
- Radix = One;
- printf ("Radix = %s .\n", Radix.str());
- if (Radix != One)
- {
- W = One;
- do
- {
- Precision = Precision + One;
- W = W * Radix;
- Y = W + One;
- }
- while ((Y - W) == One);
- }
- /*... now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1
- ... */
- U1 = One / W;
- U2 = Radix * U1;
- printf ("Closest relative separation found is U1 = %s .\n\n", U1.str());
- printf ("Recalculating radix and precision\n ");
-
- /*save old values */
- E0 = Radix;
- E1 = U1;
- E9 = U2;
- E3 = Precision;
-
- X = Four / Three;
- Third = X - One;
- F6 = Half - Third;
- X = F6 + F6;
- X = FABS (X - Third);
- if (X < U2)
- X = U2;
-
- /*... now X = (unknown no.) ulps of 1+... */
- do
- {
- U2 = X;
- Y = Half * U2 + ThirtyTwo * U2 * U2;
- Y = One + Y;
- X = Y - One;
- }
- while (!((U2 <= X) || (X <= Zero)));
-
- /*... now U2 == 1 ulp of 1 + ... */
- X = Two / Three;
- F6 = X - Half;
- Third = F6 + F6;
- X = Third - Half;
- X = FABS (X + F6);
- if (X < U1)
- X = U1;
-
- /*... now X == (unknown no.) ulps of 1 -... */
- do
- {
- U1 = X;
- Y = Half * U1 + ThirtyTwo * U1 * U1;
- Y = Half - Y;
- X = Half + Y;
- Y = Half - X;
- X = Half + Y;
- }
- while (!((U1 <= X) || (X <= Zero)));
- /*... now U1 == 1 ulp of 1 - ... */
- if (U1 == E1)
- printf ("confirms closest relative separation U1 .\n");
- else
- printf ("gets better closest relative separation U1 = %s .\n", U1.str());
- W = One / U1;
- F9 = (Half - U1) + Half;
-
- Radix = FLOOR (FLOAT ("0.01") + U2 / U1);
- if (Radix == E0)
- printf ("Radix confirmed.\n");
- else
- printf ("MYSTERY: recalculated Radix = %s .\n", Radix.str());
- TstCond (Defect, Radix <= Eight + Eight,
- "Radix is too big: roundoff problems");
- TstCond (Flaw, (Radix == Two) || (Radix == 10)
- || (Radix == One), "Radix is not as good as 2 or 10");
- /*=============================================*/
- Milestone = 20;
- /*=============================================*/
- TstCond (Failure, F9 - Half < Half,
- "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?");
- X = F9;
- I = 1;
- Y = X - Half;
- Z = Y - Half;
- TstCond (Failure, (X != One)
- || (Z == Zero), "Comparison is fuzzy,X=1 but X-1/2-1/2 != 0");
- X = One + U2;
- I = 0;
- /*=============================================*/
- Milestone = 25;
- /*=============================================*/
- /*... BMinusU2 = nextafter(Radix, 0) */
- BMinusU2 = Radix - One;
- BMinusU2 = (BMinusU2 - U2) + One;
- /* Purify Integers */
- if (Radix != One)
- {
- X = -TwoForty * LOG (U1) / LOG (Radix);
- Y = FLOOR (Half + X);
- if (FABS (X - Y) * Four < One)
- X = Y;
- Precision = X / TwoForty;
- Y = FLOOR (Half + Precision);
- if (FABS (Precision - Y) * TwoForty < Half)
- Precision = Y;
- }
- if ((Precision != FLOOR (Precision)) || (Radix == One))
- {
- printf ("Precision cannot be characterized by an Integer number\n");
- printf
- ("of significant digits but, by itself, this is a minor flaw.\n");
- }
- if (Radix == One)
- printf
- ("logarithmic encoding has precision characterized solely by U1.\n");
- else
- printf ("The number of significant digits of the Radix is %s .\n",
- Precision.str());
- TstCond (Serious, U2 * Nine * Nine * TwoForty < One,
- "Precision worse than 5 decimal figures ");
- /*=============================================*/
- Milestone = 30;
- /*=============================================*/
- /* Test for extra-precise subexpressions */
- X = FABS (((Four / Three - One) - One / Four) * Three - One / Four);
- do
- {
- Z2 = X;
- X = (One + (Half * Z2 + ThirtyTwo * Z2 * Z2)) - One;
- }
- while (!((Z2 <= X) || (X <= Zero)));
- X = Y = Z = FABS ((Three / Four - Two / Three) * Three - One / Four);
- do
- {
- Z1 = Z;
- Z = (One / Two - ((One / Two - (Half * Z1 + ThirtyTwo * Z1 * Z1))
- + One / Two)) + One / Two;
- }
- while (!((Z1 <= Z) || (Z <= Zero)));
- do
- {
- do
- {
- Y1 = Y;
- Y =
- (Half - ((Half - (Half * Y1 + ThirtyTwo * Y1 * Y1)) + Half)) +
- Half;
- }
- while (!((Y1 <= Y) || (Y <= Zero)));
- X1 = X;
- X = ((Half * X1 + ThirtyTwo * X1 * X1) - F9) + F9;
- }
- while (!((X1 <= X) || (X <= Zero)));
- if ((X1 != Y1) || (X1 != Z1))
- {
- BadCond (Serious, "Disagreements among the values X1, Y1, Z1,\n");
- printf ("respectively %s, %s, %s,\n", X1.str(), Y1.str(), Z1.str());
- printf ("are symptoms of inconsistencies introduced\n");
- printf ("by extra-precise evaluation of arithmetic subexpressions.\n");
- notify ("Possibly some part of this");
- if ((X1 == U1) || (Y1 == U1) || (Z1 == U1))
- printf ("That feature is not tested further by this program.\n");
- }
- else
- {
- if ((Z1 != U1) || (Z2 != U2))
- {
- if ((Z1 >= U1) || (Z2 >= U2))
- {
- BadCond (Failure, "");
- notify ("Precision");
- printf ("\tU1 = %s, Z1 - U1 = %s\n", U1.str(), (Z1 - U1).str());
- printf ("\tU2 = %s, Z2 - U2 = %s\n", U2.str(), (Z2 - U2).str());
- }
- else
- {
- if ((Z1 <= Zero) || (Z2 <= Zero))
- {
- printf ("Because of unusual Radix = %s", Radix.str());
- printf (", or exact rational arithmetic a result\n");
- printf ("Z1 = %s, or Z2 = %s ", Z1.str(), Z2.str());
- notify ("of an\nextra-precision");
- }
- if (Z1 != Z2 || Z1 > Zero)
- {
- X = Z1 / U1;
- Y = Z2 / U2;
- if (Y > X)
- X = Y;
- Q = -LOG (X);
- printf ("Some subexpressions appear to be calculated "
- "extra precisely\n");
- printf ("with about %s extra B-digits, i.e.\n",
- (Q / LOG (Radix)).str());
- printf ("roughly %s extra significant decimals.\n",
- (Q / LOG (FLOAT (10))).str());
- }
- printf
- ("That feature is not tested further by this program.\n");
- }
- }
- }
- Pause ();
- /*=============================================*/
- Milestone = 35;
- /*=============================================*/
- if (Radix >= Two)
- {
- X = W / (Radix * Radix);
- Y = X + One;
- Z = Y - X;
- T = Z + U2;
- X = T - Z;
- TstCond (Failure, X == U2,
- "Subtraction is not normalized X=Y,X+Z != Y+Z!");
- if (X == U2)
- printf ("Subtraction appears to be normalized, as it should be.");
- }
- printf ("\nChecking for guard digit in *, /, and -.\n");
- Y = F9 * One;
- Z = One * F9;
- X = F9 - Half;
- Y = (Y - Half) - X;
- Z = (Z - Half) - X;
- X = One + U2;
- T = X * Radix;
- R = Radix * X;
- X = T - Radix;
- X = X - Radix * U2;
- T = R - Radix;
- T = T - Radix * U2;
- X = X * (Radix - One);
- T = T * (Radix - One);
- if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero))
- GMult = Yes;
- else
- {
- GMult = No;
- TstCond (Serious, false, "* lacks a Guard Digit, so 1*X != X");
- }
- Z = Radix * U2;
- X = One + Z;
- Y = FABS ((X + Z) - X * X) - U2;
- X = One - U2;
- Z = FABS ((X - U2) - X * X) - U1;
- TstCond (Failure, (Y <= Zero)
- && (Z <= Zero), "* gets too many final digits wrong.\n");
- Y = One - U2;
- X = One + U2;
- Z = One / Y;
- Y = Z - X;
- X = One / Three;
- Z = Three / Nine;
- X = X - Z;
- T = Nine / TwentySeven;
- Z = Z - T;
- TstCond (Defect, X == Zero && Y == Zero && Z == Zero,
- "Division lacks a Guard Digit, so error can exceed 1 ulp\n"
- "or 1/3 and 3/9 and 9/27 may disagree");
- Y = F9 / One;
- X = F9 - Half;
- Y = (Y - Half) - X;
- X = One + U2;
- T = X / One;
- X = T - X;
- if ((X == Zero) && (Y == Zero) && (Z == Zero))
- GDiv = Yes;
- else
- {
- GDiv = No;
- TstCond (Serious, false, "Division lacks a Guard Digit, so X/1 != X");
- }
- X = One / (One + U2);
- Y = X - Half - Half;
- TstCond (Serious, Y < Zero, "Computed value of 1/1.000..1 >= 1");
- X = One - U2;
- Y = One + Radix * U2;
- Z = X * Radix;
- T = Y * Radix;
- R = Z / Radix;
- StickyBit = T / Radix;
- X = R - X;
- Y = StickyBit - Y;
- TstCond (Failure, X == Zero && Y == Zero,
- "* and/or / gets too many last digits wrong");
- Y = One - U1;
- X = One - F9;
- Y = One - Y;
- T = Radix - U2;
- Z = Radix - BMinusU2;
- T = Radix - T;
- if ((X == U1) && (Y == U1) && (Z == U2) && (T == U2))
- GAddSub = Yes;
- else
- {
- GAddSub = No;
- TstCond (Serious, false,
- "- lacks Guard Digit, so cancellation is obscured");
- }
- if (F9 != One && F9 - One >= Zero)
- {
- BadCond (Serious, "comparison alleges (1-U1) < 1 although\n");
- printf (" subtraction yields (1-U1) - 1 = 0 , thereby vitiating\n");
- printf (" such precautions against division by zero as\n");
- printf (" ... if (X == 1.0) {.....} else {.../(X-1.0)...}\n");
- }
- if (GMult == Yes && GDiv == Yes && GAddSub == Yes)
- printf
- (" *, /, and - appear to have guard digits, as they should.\n");
- /*=============================================*/
- Milestone = 40;
- /*=============================================*/
- Pause ();
- printf ("Checking rounding on multiply, divide and add/subtract.\n");
- RMult = Other;
- RDiv = Other;
- RAddSub = Other;
- RadixD2 = Radix / Two;
- A1 = Two;
- Done = false;
- do
- {
- AInvrse = Radix;
- do
- {
- X = AInvrse;
- AInvrse = AInvrse / A1;
- }
- while (!(FLOOR (AInvrse) != AInvrse));
- Done = (X == One) || (A1 > Three);
- if (!Done)
- A1 = Nine + One;
- }
- while (!(Done));
- if (X == One)
- A1 = Radix;
- AInvrse = One / A1;
- X = A1;
- Y = AInvrse;
- Done = false;
- do
- {
- Z = X * Y - Half;
- TstCond (Failure, Z == Half, "X * (1/X) differs from 1");
- Done = X == Radix;
- X = Radix;
- Y = One / X;
- }
- while (!(Done));
- Y2 = One + U2;
- Y1 = One - U2;
- X = OneAndHalf - U2;
- Y = OneAndHalf + U2;
- Z = (X - U2) * Y2;
- T = Y * Y1;
- Z = Z - X;
- T = T - X;
- X = X * Y2;
- Y = (Y + U2) * Y1;
- X = X - OneAndHalf;
- Y = Y - OneAndHalf;
- if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T <= Zero))
- {
- X = (OneAndHalf + U2) * Y2;
- Y = OneAndHalf - U2 - U2;
- Z = OneAndHalf + U2 + U2;
- T = (OneAndHalf - U2) * Y1;
- X = X - (Z + U2);
- StickyBit = Y * Y1;
- S = Z * Y2;
- T = T - Y;
- Y = (U2 - Y) + StickyBit;
- Z = S - (Z + U2 + U2);
- StickyBit = (Y2 + U2) * Y1;
- Y1 = Y2 * Y1;
- StickyBit = StickyBit - Y2;
- Y1 = Y1 - Half;
- if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
- && (StickyBit == Zero) && (Y1 == Half))
- {
- RMult = Rounded;
- printf ("Multiplication appears to round correctly.\n");
- }
- else if ((X + U2 == Zero) && (Y < Zero) && (Z + U2 == Zero)
- && (T < Zero) && (StickyBit + U2 == Zero) && (Y1 < Half))
- {
- RMult = Chopped;
- printf ("Multiplication appears to chop.\n");
- }
- else
- printf ("* is neither chopped nor correctly rounded.\n");
- if ((RMult == Rounded) && (GMult == No))
- notify ("Multiplication");
- }
- else
- printf ("* is neither chopped nor correctly rounded.\n");
- /*=============================================*/
- Milestone = 45;
- /*=============================================*/
- Y2 = One + U2;
- Y1 = One - U2;
- Z = OneAndHalf + U2 + U2;
- X = Z / Y2;
- T = OneAndHalf - U2 - U2;
- Y = (T - U2) / Y1;
- Z = (Z + U2) / Y2;
- X = X - OneAndHalf;
- Y = Y - T;
- T = T / Y1;
- Z = Z - (OneAndHalf + U2);
- T = (U2 - OneAndHalf) + T;
- if (!((X > Zero) || (Y > Zero) || (Z > Zero) || (T > Zero)))
- {
- X = OneAndHalf / Y2;
- Y = OneAndHalf - U2;
- Z = OneAndHalf + U2;
- X = X - Y;
- T = OneAndHalf / Y1;
- Y = Y / Y1;
- T = T - (Z + U2);
- Y = Y - Z;
- Z = Z / Y2;
- Y1 = (Y2 + U2) / Y2;
- Z = Z - OneAndHalf;
- Y2 = Y1 - Y2;
- Y1 = (F9 - U1) / F9;
- if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
- && (Y2 == Zero) && (Y2 == Zero) && (Y1 - Half == F9 - Half))
- {
- RDiv = Rounded;
- printf ("Division appears to round correctly.\n");
- if (GDiv == No)
- notify ("Division");
- }
- else if ((X < Zero) && (Y < Zero) && (Z < Zero) && (T < Zero)
- && (Y2 < Zero) && (Y1 - Half < F9 - Half))
- {
- RDiv = Chopped;
- printf ("Division appears to chop.\n");
- }
- }
- if (RDiv == Other)
- printf ("/ is neither chopped nor correctly rounded.\n");
- BInvrse = One / Radix;
- TstCond (Failure, (BInvrse * Radix - Half == Half),
- "Radix * ( 1 / Radix ) differs from 1");
- /*=============================================*/
- Milestone = 50;
- /*=============================================*/
- TstCond (Failure, ((F9 + U1) - Half == Half)
- && ((BMinusU2 + U2) - One == Radix - One),
- "Incomplete carry-propagation in Addition");
- X = One - U1 * U1;
- Y = One + U2 * (One - U2);
- Z = F9 - Half;
- X = (X - Half) - Z;
- Y = Y - One;
- if ((X == Zero) && (Y == Zero))
- {
- RAddSub = Chopped;
- printf ("Add/Subtract appears to be chopped.\n");
- }
- if (GAddSub == Yes)
- {
- X = (Half + U2) * U2;
- Y = (Half - U2) * U2;
- X = One + X;
- Y = One + Y;
- X = (One + U2) - X;
- Y = One - Y;
- if ((X == Zero) && (Y == Zero))
- {
- X = (Half + U2) * U1;
- Y = (Half - U2) * U1;
- X = One - X;
- Y = One - Y;
- X = F9 - X;
- Y = One - Y;
- if ((X == Zero) && (Y == Zero))
- {
- RAddSub = Rounded;
- printf ("Addition/Subtraction appears to round correctly.\n");
- if (GAddSub == No)
- notify ("Add/Subtract");
- }
- else
- printf ("Addition/Subtraction neither rounds nor chops.\n");
- }
- else
- printf ("Addition/Subtraction neither rounds nor chops.\n");
- }
- else
- printf ("Addition/Subtraction neither rounds nor chops.\n");
- S = One;
- X = One + Half * (One + Half);
- Y = (One + U2) * Half;
- Z = X - Y;
- T = Y - X;
- StickyBit = Z + T;
- if (StickyBit != Zero)
- {
- S = Zero;
- BadCond (Flaw, "(X - Y) + (Y - X) is non zero!\n");
- }
- StickyBit = Zero;
- if ((GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes)
- && (RMult == Rounded) && (RDiv == Rounded)
- && (RAddSub == Rounded) && (FLOOR (RadixD2) == RadixD2))
- {
- printf ("Checking for sticky bit.\n");
- X = (Half + U1) * U2;
- Y = Half * U2;
- Z = One + Y;
- T = One + X;
- if ((Z - One <= Zero) && (T - One >= U2))
- {
- Z = T + Y;
- Y = Z - X;
- if ((Z - T >= U2) && (Y - T == Zero))
- {
- X = (Half + U1) * U1;
- Y = Half * U1;
- Z = One - Y;
- T = One - X;
- if ((Z - One == Zero) && (T - F9 == Zero))
- {
- Z = (Half - U1) * U1;
- T = F9 - Z;
- Q = F9 - Y;
- if ((T - F9 == Zero) && (F9 - U1 - Q == Zero))
- {
- Z = (One + U2) * OneAndHalf;
- T = (OneAndHalf + U2) - Z + U2;
- X = One + Half / Radix;
- Y = One + Radix * U2;
- Z = X * Y;
- if (T == Zero && X + Radix * U2 - Z == Zero)
- {
- if (Radix != Two)
- {
- X = Two + U2;
- Y = X / Two;
- if ((Y - One == Zero))
- StickyBit = S;
- }
- else
- StickyBit = S;
- }
- }
- }
- }
- }
- }
- if (StickyBit == One)
- printf ("Sticky bit apparently used correctly.\n");
- else
- printf ("Sticky bit used incorrectly or not at all.\n");
- TstCond (Flaw, !(GMult == No || GDiv == No || GAddSub == No ||
- RMult == Other || RDiv == Other || RAddSub == Other),
- "lack(s) of guard digits or failure(s) to correctly round or chop\n\
-(noted above) count as one flaw in the final tally below");
- /*=============================================*/
- Milestone = 60;
- /*=============================================*/
- printf ("\n");
- printf ("Does Multiplication commute? ");
- printf ("Testing on %d random pairs.\n", NoTrials);
- Random9 = SQRT (FLOAT (3));
- Random1 = Third;
- I = 1;
- do
- {
- X = Random ();
- Y = Random ();
- Z9 = Y * X;
- Z = X * Y;
- Z9 = Z - Z9;
- I = I + 1;
- }
- while (!((I > NoTrials) || (Z9 != Zero)));
- if (I == NoTrials)
- {
- Random1 = One + Half / Three;
- Random2 = (U2 + U1) + One;
- Z = Random1 * Random2;
- Y = Random2 * Random1;
- Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half /
- Three) * ((U2 + U1) +
- One);
- }
- if (!((I == NoTrials) || (Z9 == Zero)))
- BadCond (Defect, "X * Y == Y * X trial fails.\n");
- else
- printf (" No failures found in %d integer pairs.\n", NoTrials);
- /*=============================================*/
- Milestone = 70;
- /*=============================================*/
- printf ("\nRunning test of square root(x).\n");
- TstCond (Failure, (Zero == SQRT (Zero))
- && (-Zero == SQRT (-Zero))
- && (One == SQRT (One)), "Square root of 0.0, -0.0 or 1.0 wrong");
- MinSqEr = Zero;
- MaxSqEr = Zero;
- J = Zero;
- X = Radix;
- OneUlp = U2;
- SqXMinX (Serious);
- X = BInvrse;
- OneUlp = BInvrse * U1;
- SqXMinX (Serious);
- X = U1;
- OneUlp = U1 * U1;
- SqXMinX (Serious);
- if (J != Zero)
- Pause ();
- printf ("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials);
- J = Zero;
- X = Two;
- Y = Radix;
- if ((Radix != One))
- do
- {
- X = Y;
- Y = Radix * Y;
- }
- while (!((Y - X >= NoTrials)));
- OneUlp = X * U2;
- I = 1;
- while (I <= NoTrials)
- {
- X = X + One;
- SqXMinX (Defect);
- if (J > Zero)
- break;
- I = I + 1;
- }
- printf ("Test for sqrt monotonicity.\n");
- I = -1;
- X = BMinusU2;
- Y = Radix;
- Z = Radix + Radix * U2;
- NotMonot = false;
- Monot = false;
- while (!(NotMonot || Monot))
- {
- I = I + 1;
- X = SQRT (X);
- Q = SQRT (Y);
- Z = SQRT (Z);
- if ((X > Q) || (Q > Z))
- NotMonot = true;
- else
- {
- Q = FLOOR (Q + Half);
- if (!(I > 0 || Radix == Q * Q))
- Monot = true;
- else if (I > 0)
- {
- if (I > 1)
- Monot = true;
- else
- {
- Y = Y * BInvrse;
- X = Y - U1;
- Z = Y + U1;
- }
- }
- else
- {
- Y = Q;
- X = Y - U2;
- Z = Y + U2;
- }
- }
- }
- if (Monot)
- printf ("sqrt has passed a test for Monotonicity.\n");
- else
- {
- BadCond (Defect, "");
- printf ("sqrt(X) is non-monotonic for X near %s .\n", Y.str());
- }
- /*=============================================*/
- Milestone = 110;
- /*=============================================*/
- printf ("Seeking Underflow thresholds UfThold and E0.\n");
- D = U1;
- if (Precision != FLOOR (Precision))
- {
- D = BInvrse;
- X = Precision;
- do
- {
- D = D * BInvrse;
- X = X - One;
- }
- while (X > Zero);
- }
- Y = One;
- Z = D;
- /* ... D is power of 1/Radix < 1. */
- do
- {
- C = Y;
- Y = Z;
- Z = Y * Y;
- }
- while ((Y > Z) && (Z + Z > Z));
- Y = C;
- Z = Y * D;
- do
- {
- C = Y;
- Y = Z;
- Z = Y * D;
- }
- while ((Y > Z) && (Z + Z > Z));
- if (Radix < Two)
- HInvrse = Two;
- else
- HInvrse = Radix;
- H = One / HInvrse;
- /* ... 1/HInvrse == H == Min(1/Radix, 1/2) */
- CInvrse = One / C;
- E0 = C;
- Z = E0 * H;
- /* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */
- do
- {
- Y = E0;
- E0 = Z;
- Z = E0 * H;
- }
- while ((E0 > Z) && (Z + Z > Z));
- UfThold = E0;
- E1 = Zero;
- Q = Zero;
- E9 = U2;
- S = One + E9;
- D = C * S;
- if (D <= C)
- {
- E9 = Radix * U2;
- S = One + E9;
- D = C * S;
- if (D <= C)
- {
- BadCond (Failure,
- "multiplication gets too many last digits wrong.\n");
- Underflow = E0;
- Y1 = Zero;
- PseudoZero = Z;
- Pause ();
- }
- }
- else
- {
- Underflow = D;
- PseudoZero = Underflow * H;
- UfThold = Zero;
- do
- {
- Y1 = Underflow;
- Underflow = PseudoZero;
- if (E1 + E1 <= E1)
- {
- Y2 = Underflow * HInvrse;
- E1 = FABS (Y1 - Y2);
- Q = Y1;
- if ((UfThold == Zero) && (Y1 != Y2))
- UfThold = Y1;
- }
- PseudoZero = PseudoZero * H;
- }
- while ((Underflow > PseudoZero)
- && (PseudoZero + PseudoZero > PseudoZero));
- }
- /* Comment line 4530 .. 4560 */
- if (PseudoZero != Zero)
- {
- printf ("\n");
- Z = PseudoZero;
- /* ... Test PseudoZero for "phoney- zero" violates */
- /* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero
- ... */
- if (PseudoZero <= Zero)
- {
- BadCond (Failure, "Positive expressions can underflow to an\n");
- printf ("allegedly negative value\n");
- printf ("PseudoZero that prints out as: %s .\n", PseudoZero.str());
- X = -PseudoZero;
- if (X <= Zero)
- {
- printf ("But -PseudoZero, which should be\n");
- printf ("positive, isn't; it prints out as %s .\n", X.str());
- }
- }
- else
- {
- BadCond (Flaw, "Underflow can stick at an allegedly positive\n");
- printf ("value PseudoZero that prints out as %s .\n",
- PseudoZero.str());
- }
- TstPtUf ();
- }
- /*=============================================*/
- Milestone = 120;
- /*=============================================*/
- if (CInvrse * Y > CInvrse * Y1)
- {
- S = H * S;
- E0 = Underflow;
- }
- if (!((E1 == Zero) || (E1 == E0)))
- {
- BadCond (Defect, "");
- if (E1 < E0)
- {
- printf ("Products underflow at a higher");
- printf (" threshold than differences.\n");
- if (PseudoZero == Zero)
- E0 = E1;
- }
- else
- {
- printf ("Difference underflows at a higher");
- printf (" threshold than products.\n");
- }
- }
- printf ("Smallest strictly positive number found is E0 = %s .\n", E0.str());
- Z = E0;
- TstPtUf ();
- Underflow = E0;
- if (N == 1)
- Underflow = Y;
- I = 4;
- if (E1 == Zero)
- I = 3;
- if (UfThold == Zero)
- I = I - 2;
- UfNGrad = true;
- switch (I)
- {
- case 1:
- UfThold = Underflow;
- if ((CInvrse * Q) != ((CInvrse * Y) * S))
- {
- UfThold = Y;
- BadCond (Failure, "Either accuracy deteriorates as numbers\n");
- printf ("approach a threshold = %s\n", UfThold.str());
- printf (" coming down from %s\n", C.str());
- printf
- (" or else multiplication gets too many last digits wrong.\n");
- }
- Pause ();
- break;
-
- case 2:
- BadCond (Failure,
- "Underflow confuses Comparison, which alleges that\n");
- printf ("Q == Y while denying that |Q - Y| == 0; these values\n");
- printf ("print out as Q = %s, Y = %s .\n", Q.str(), Y2.str());
- printf ("|Q - Y| = %s .\n", FABS (Q - Y2).str());
- UfThold = Q;
- break;
-
- case 3:
- X = X;
- break;
-
- case 4:
- if ((Q == UfThold) && (E1 == E0) && (FABS (UfThold - E1 / E9) <= E1))
- {
- UfNGrad = false;
- printf ("Underflow is gradual; it incurs Absolute Error =\n");
- printf ("(roundoff in UfThold) < E0.\n");
- Y = E0 * CInvrse;
- Y = Y * (OneAndHalf + U2);
- X = CInvrse * (One + U2);
- Y = Y / X;
- IEEE = (Y == E0);
- }
- }
- if (UfNGrad)
- {
- printf ("\n");
- if (setjmp (ovfl_buf))
- {
- printf ("Underflow / UfThold failed!\n");
- R = H + H;
- }
- else
- R = SQRT (Underflow / UfThold);
- if (R <= H)
- {
- Z = R * UfThold;
- X = Z * (One + R * H * (One + H));
- }
- else
- {
- Z = UfThold;
- X = Z * (One + H * H * (One + H));
- }
- if (!((X == Z) || (X - Z != Zero)))
- {
- BadCond (Flaw, "");
- printf ("X = %s\n\tis not equal to Z = %s .\n", X.str(), Z.str());
- Z9 = X - Z;
- printf ("yet X - Z yields %s .\n", Z9.str());
- printf (" Should this NOT signal Underflow, ");
- printf ("this is a SERIOUS DEFECT\nthat causes ");
- printf ("confusion when innocent statements like\n");;
- printf (" if (X == Z) ... else");
- printf (" ... (f(X) - f(Z)) / (X - Z) ...\n");
- printf ("encounter Division by Zero although actually\n");
- if (setjmp (ovfl_buf))
- printf ("X / Z fails!\n");
- else
- printf ("X / Z = 1 + %s .\n", ((X / Z - Half) - Half).str());
- }
- }
- printf ("The Underflow threshold is %s, below which\n", UfThold.str());
- printf ("calculation may suffer larger Relative error than ");
- printf ("merely roundoff.\n");
- Y2 = U1 * U1;
- Y = Y2 * Y2;
- Y2 = Y * U1;
- if (Y2 <= UfThold)
- {
- if (Y > E0)
- {
- BadCond (Defect, "");
- I = 5;
- }
- else
- {
- BadCond (Serious, "");
- I = 4;
- }
- printf ("Range is too narrow; U1^%d Underflows.\n", I);
- }
- /*=============================================*/
- Milestone = 130;
- /*=============================================*/
- Y = -FLOOR (Half - TwoForty * LOG (UfThold) / LOG (HInvrse)) / TwoForty;
- Y2 = Y + Y;
- printf ("Since underflow occurs below the threshold\n");
- printf ("UfThold = (%s) ^ (%s)\nonly underflow ", HInvrse.str(), Y.str());
- printf ("should afflict the expression\n\t(%s) ^ (%s);\n",
- HInvrse.str(), Y2.str());
- printf ("actually calculating yields:");
- if (setjmp (ovfl_buf))
- {
- BadCond (Serious, "trap on underflow.\n");
- }
- else
- {
- V9 = POW (HInvrse, Y2);
- printf (" %s .\n", V9.str());
- if (!((V9 >= Zero) && (V9 <= (Radix + Radix + E9) * UfThold)))
- {
- BadCond (Serious, "this is not between 0 and underflow\n");
- printf (" threshold = %s .\n", UfThold.str());
- }
- else if (!(V9 > UfThold * (One + E9)))
- printf ("This computed value is O.K.\n");
- else
- {
- BadCond (Defect, "this is not between 0 and underflow\n");
- printf (" threshold = %s .\n", UfThold.str());
- }
- }
- /*=============================================*/
- Milestone = 160;
- /*=============================================*/
- Pause ();
- printf ("Searching for Overflow threshold:\n");
- printf ("This may generate an error.\n");
- Y = -CInvrse;
- V9 = HInvrse * Y;
- if (setjmp (ovfl_buf))
- {
- I = 0;
- V9 = Y;
- goto overflow;
- }
- do
- {
- V = Y;
- Y = V9;
- V9 = HInvrse * Y;
- }
- while (V9 < Y);
- I = 1;
-overflow:
- Z = V9;
- printf ("Can `Z = -Y' overflow?\n");
- printf ("Trying it on Y = %s .\n", Y.str());
- V9 = -Y;
- V0 = V9;
- if (V - Y == V + V0)
- printf ("Seems O.K.\n");
- else
- {
- printf ("finds a ");
- BadCond (Flaw, "-(-Y) differs from Y.\n");
- }
- if (Z != Y)
- {
- BadCond (Serious, "");
- printf ("overflow past %s\n\tshrinks to %s .\n", Y.str(), Z.str());
- }
- if (I)
- {
- Y = V * (HInvrse * U2 - HInvrse);
- Z = Y + ((One - HInvrse) * U2) * V;
- if (Z < V0)
- Y = Z;
- if (Y < V0)
- V = Y;
- if (V0 - V < V0)
- V = V0;
- }
- else
- {
- V = Y * (HInvrse * U2 - HInvrse);
- V = V + ((One - HInvrse) * U2) * Y;
- }
- printf ("Overflow threshold is V = %s .\n", V.str());
- if (I)
- printf ("Overflow saturates at V0 = %s .\n", V0.str());
- else
- printf ("There is no saturation value because "
- "the system traps on overflow.\n");
- V9 = V * One;
- printf ("No Overflow should be signaled for V * 1 = %s\n", V9.str());
- V9 = V / One;
- printf (" nor for V / 1 = %s.\n", V9.str());
- printf ("Any overflow signal separating this * from the one\n");
- printf ("above is a DEFECT.\n");
- /*=============================================*/
- Milestone = 170;
- /*=============================================*/
- if (!(-V < V && -V0 < V0 && -UfThold < V && UfThold < V))
- {
- BadCond (Failure, "Comparisons involving ");
- printf ("+-%s, +-%s\nand +-%s are confused by Overflow.",
- V.str(), V0.str(), UfThold.str());
- }
- /*=============================================*/
- Milestone = 175;
- /*=============================================*/
- printf ("\n");
- for (Indx = 1; Indx <= 3; ++Indx)
- {
- switch (Indx)
- {
- case 1:
- Z = UfThold;
- break;
- case 2:
- Z = E0;
- break;
- case 3:
- Z = PseudoZero;
- break;
- }
- if (Z != Zero)
- {
- V9 = SQRT (Z);
- Y = V9 * V9;
- if (Y / (One - Radix * E9) < Z || Y > (One + Radix * E9) * Z)
- { /* dgh: + E9 --> * E9 */
- if (V9 > U1)
- BadCond (Serious, "");
- else
- BadCond (Defect, "");
- printf ("Comparison alleges that what prints as Z = %s\n",
- Z.str());
- printf (" is too far from sqrt(Z) ^ 2 = %s .\n", Y.str());
- }
- }
- }
- /*=============================================*/
- Milestone = 180;
- /*=============================================*/
- for (Indx = 1; Indx <= 2; ++Indx)
- {
- if (Indx == 1)
- Z = V;
- else
- Z = V0;
- V9 = SQRT (Z);
- X = (One - Radix * E9) * V9;
- V9 = V9 * X;
- if (((V9 < (One - Two * Radix * E9) * Z) || (V9 > Z)))
- {
- Y = V9;
- if (X < W)
- BadCond (Serious, "");
- else
- BadCond (Defect, "");
- printf ("Comparison alleges that Z = %s\n", Z.str());
- printf (" is too far from sqrt(Z) ^ 2 (%s) .\n", Y.str());
- }
- }
- /*=============================================*/
- Milestone = 190;
- /*=============================================*/
- Pause ();
- X = UfThold * V;
- Y = Radix * Radix;
- if (X * Y < One || X > Y)
- {
- if (X * Y < U1 || X > Y / U1)
- BadCond (Defect, "Badly");
- else
- BadCond (Flaw, "");
-
- printf (" unbalanced range; UfThold * V = %s\n\t%s\n",
- X.str(), "is too far from 1.\n");
- }
- /*=============================================*/
- Milestone = 200;
- /*=============================================*/
- for (Indx = 1; Indx <= 5; ++Indx)
- {
- X = F9;
- switch (Indx)
- {
- case 2:
- X = One + U2;
- break;
- case 3:
- X = V;
- break;
- case 4:
- X = UfThold;
- break;
- case 5:
- X = Radix;
- }
- Y = X;
- if (setjmp (ovfl_buf))
- printf (" X / X traps when X = %s\n", X.str());
- else
- {
- V9 = (Y / X - Half) - Half;
- if (V9 == Zero)
- continue;
- if (V9 == -U1 && Indx < 5)
- BadCond (Flaw, "");
- else
- BadCond (Serious, "");
- printf (" X / X differs from 1 when X = %s\n", X.str());
- printf (" instead, X / X - 1/2 - 1/2 = %s .\n", V9.str());
- }
- }
- /*=============================================*/
- Milestone = 210;
- /*=============================================*/
- MyZero = Zero;
- printf ("\n");
- printf ("What message and/or values does Division by Zero produce?\n");
- printf (" Trying to compute 1 / 0 produces ...");
- if (!setjmp (ovfl_buf))
- printf (" %s .\n", (One / MyZero).str());
- printf ("\n Trying to compute 0 / 0 produces ...");
- if (!setjmp (ovfl_buf))
- printf (" %s .\n", (Zero / MyZero).str());
- /*=============================================*/
- Milestone = 220;
- /*=============================================*/
- Pause ();
- printf ("\n");
- {
- static const char *msg[] = {
- "FAILUREs encountered =",
- "SERIOUS DEFECTs discovered =",
- "DEFECTs discovered =",
- "FLAWs discovered ="
- };
- int i;
- for (i = 0; i < 4; i++)
- if (ErrCnt[i])
- printf ("The number of %-29s %d.\n", msg[i], ErrCnt[i]);
- }
- printf ("\n");
- if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] + ErrCnt[Flaw]) > 0)
- {
- if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] == 0)
- && (ErrCnt[Flaw] > 0))
- {
- printf ("The arithmetic diagnosed seems ");
- printf ("Satisfactory though flawed.\n");
- }
- if ((ErrCnt[Failure] + ErrCnt[Serious] == 0) && (ErrCnt[Defect] > 0))
- {
- printf ("The arithmetic diagnosed may be Acceptable\n");
- printf ("despite inconvenient Defects.\n");
- }
- if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0)
- {
- printf ("The arithmetic diagnosed has ");
- printf ("unacceptable Serious Defects.\n");
- }
- if (ErrCnt[Failure] > 0)
- {
- printf ("Potentially fatal FAILURE may have spoiled this");
- printf (" program's subsequent diagnoses.\n");
- }
- }
- else
- {
- printf ("No failures, defects nor flaws have been discovered.\n");
- if (!((RMult == Rounded) && (RDiv == Rounded)
- && (RAddSub == Rounded) && (RSqrt == Rounded)))
- printf ("The arithmetic diagnosed seems Satisfactory.\n");
- else
- {
- if (StickyBit >= One &&
- (Radix - Two) * (Radix - Nine - One) == Zero)
- {
- printf ("Rounding appears to conform to ");
- printf ("the proposed IEEE standard P");
- if ((Radix == Two) &&
- ((Precision - Four * Three * Two) *
- (Precision - TwentySeven - TwentySeven + One) == Zero))
- printf ("754");
- else
- printf ("854");
- if (IEEE)
- printf (".\n");
- else
- {
- printf (",\nexcept for possibly Double Rounding");
- printf (" during Gradual Underflow.\n");
- }
- }
- printf ("The arithmetic diagnosed appears to be Excellent!\n");
- }
- }
- printf ("END OF TEST.\n");
- return 0;
-}
-
-template<typename FLOAT>
-FLOAT
-Paranoia<FLOAT>::Sign (FLOAT X)
-{
- return X >= FLOAT (long (0)) ? 1 : -1;
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::Pause ()
-{
- if (do_pause)
- {
- fputs ("Press return...", stdout);
- fflush (stdout);
- getchar();
- }
- printf ("\nDiagnosis resumes after milestone Number %d", Milestone);
- printf (" Page: %d\n\n", PageNo);
- ++Milestone;
- ++PageNo;
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::TstCond (int K, int Valid, const char *T)
-{
- if (!Valid)
- {
- BadCond (K, T);
- printf (".\n");
- }
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::BadCond (int K, const char *T)
-{
- static const char *msg[] = { "FAILURE", "SERIOUS DEFECT", "DEFECT", "FLAW" };
-
- ErrCnt[K] = ErrCnt[K] + 1;
- printf ("%s: %s", msg[K], T);
-}
-
-/* Random computes
- X = (Random1 + Random9)^5
- Random1 = X - FLOOR(X) + 0.000005 * X;
- and returns the new value of Random1. */
-
-template<typename FLOAT>
-FLOAT
-Paranoia<FLOAT>::Random ()
-{
- FLOAT X, Y;
-
- X = Random1 + Random9;
- Y = X * X;
- Y = Y * Y;
- X = X * Y;
- Y = X - FLOOR (X);
- Random1 = Y + X * FLOAT ("0.000005");
- return (Random1);
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::SqXMinX (int ErrKind)
-{
- FLOAT XA, XB;
-
- XB = X * BInvrse;
- XA = X - XB;
- SqEr = ((SQRT (X * X) - XB) - XA) / OneUlp;
- if (SqEr != Zero)
- {
- if (SqEr < MinSqEr)
- MinSqEr = SqEr;
- if (SqEr > MaxSqEr)
- MaxSqEr = SqEr;
- J = J + 1;
- BadCond (ErrKind, "\n");
- printf ("sqrt(%s) - %s = %s\n", (X * X).str(), X.str(),
- (OneUlp * SqEr).str());
- printf ("\tinstead of correct value 0 .\n");
- }
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::NewD ()
-{
- X = Z1 * Q;
- X = FLOOR (Half - X / Radix) * Radix + X;
- Q = (Q - X * Z) / Radix + X * X * (D / Radix);
- Z = Z - Two * X * D;
- if (Z <= Zero)
- {
- Z = -Z;
- Z1 = -Z1;
- }
- D = Radix * D;
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::SR3750 ()
-{
- if (!((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2)))
- {
- I = I + 1;
- X2 = SQRT (X * D);
- Y2 = (X2 - Z2) - (Y - Z2);
- X2 = X8 / (Y - Half);
- X2 = X2 - Half * X2 * X2;
- SqEr = (Y2 + Half) + (Half - X2);
- if (SqEr < MinSqEr)
- MinSqEr = SqEr;
- SqEr = Y2 - X2;
- if (SqEr > MaxSqEr)
- MaxSqEr = SqEr;
- }
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::IsYeqX ()
-{
- if (Y != X)
- {
- if (N <= 0)
- {
- if (Z == Zero && Q <= Zero)
- printf ("WARNING: computing\n");
- else
- BadCond (Defect, "computing\n");
- printf ("\t(%s) ^ (%s)\n", Z.str(), Q.str());
- printf ("\tyielded %s;\n", Y.str());
- printf ("\twhich compared unequal to correct %s ;\n", X.str());
- printf ("\t\tthey differ by %s .\n", (Y - X).str());
- }
- N = N + 1; /* ... count discrepancies. */
- }
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::PrintIfNPositive ()
-{
- if (N > 0)
- printf ("Similar discrepancies have occurred %d times.\n", N);
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::TstPtUf ()
-{
- N = 0;
- if (Z != Zero)
- {
- printf ("Since comparison denies Z = 0, evaluating ");
- printf ("(Z + Z) / Z should be safe.\n");
- if (setjmp (ovfl_buf))
- goto very_serious;
- Q9 = (Z + Z) / Z;
- printf ("What the machine gets for (Z + Z) / Z is %s .\n", Q9.str());
- if (FABS (Q9 - Two) < Radix * U2)
- {
- printf ("This is O.K., provided Over/Underflow");
- printf (" has NOT just been signaled.\n");
- }
- else
- {
- if ((Q9 < One) || (Q9 > Two))
- {
- very_serious:
- N = 1;
- ErrCnt[Serious] = ErrCnt[Serious] + 1;
- printf ("This is a VERY SERIOUS DEFECT!\n");
- }
- else
- {
- N = 1;
- ErrCnt[Defect] = ErrCnt[Defect] + 1;
- printf ("This is a DEFECT!\n");
- }
- }
- V9 = Z * One;
- Random1 = V9;
- V9 = One * Z;
- Random2 = V9;
- V9 = Z / One;
- if ((Z == Random1) && (Z == Random2) && (Z == V9))
- {
- if (N > 0)
- Pause ();
- }
- else
- {
- N = 1;
- BadCond (Defect, "What prints as Z = ");
- printf ("%s\n\tcompares different from ", Z.str());
- if (Z != Random1)
- printf ("Z * 1 = %s ", Random1.str());
- if (!((Z == Random2) || (Random2 == Random1)))
- printf ("1 * Z == %s\n", Random2.str());
- if (!(Z == V9))
- printf ("Z / 1 = %s\n", V9.str());
- if (Random2 != Random1)
- {
- ErrCnt[Defect] = ErrCnt[Defect] + 1;
- BadCond (Defect, "Multiplication does not commute!\n");
- printf ("\tComparison alleges that 1 * Z = %s\n", Random2.str());
- printf ("\tdiffers from Z * 1 = %s\n", Random1.str());
- }
- Pause ();
- }
- }
-}
-
-template<typename FLOAT>
-void
-Paranoia<FLOAT>::notify (const char *s)
-{
- printf ("%s test appears to be inconsistent...\n", s);
- printf (" PLEASE NOTIFY KARPINKSI!\n");
-}
-
-/* ====================================================================== */
-
-int main(int ac, char **av)
-{
- setbuf(stdout, NULL);
- setbuf(stderr, NULL);
-
- while (1)
- switch (getopt (ac, av, "pvg:fdl"))
- {
- case -1:
- return 0;
- case 'p':
- do_pause = true;
- break;
- case 'v':
- verbose = true;
- break;
- case 'g':
- {
- static const struct {
- const char *name;
- const struct real_format *fmt;
- } fmts[] = {
-#define F(x) { #x, &x##_format }
- F(ieee_single),
- F(ieee_double),
- F(ieee_extended_motorola),
- F(ieee_extended_intel_96),
- F(ieee_extended_intel_128),
- F(ibm_extended),
- F(ieee_quad),
- F(vax_f),
- F(vax_d),
- F(vax_g),
- F(i370_single),
- F(i370_double),
- F(real_internal),
-#undef F
- };
-
- int i, n = sizeof (fmts)/sizeof(*fmts);
-
- for (i = 0; i < n; ++i)
- if (strcmp (fmts[i].name, optarg) == 0)
- break;
-
- if (i == n)
- {
- printf ("Unknown implementation \"%s\"; "
- "available implementations:\n", optarg);
- for (i = 0; i < n; ++i)
- printf ("\t%s\n", fmts[i].name);
- return 1;
- }
-
- // We cheat and use the same mode all the time, but vary
- // the format used for that mode.
- real_format_for_mode[int(real_c_float::MODE) - int(QFmode)]
- = fmts[i].fmt;
-
- Paranoia<real_c_float>().main();
- break;
- }
-
- case 'f':
- Paranoia < native_float<float> >().main();
- break;
- case 'd':
- Paranoia < native_float<double> >().main();
- break;
- case 'l':
-#ifndef NO_LONG_DOUBLE
- Paranoia < native_float<long double> >().main();
-#endif
- break;
-
- case '?':
- puts ("-p\tpause between pages");
- puts ("-g<FMT>\treal.c implementation FMT");
- puts ("-f\tnative float");
- puts ("-d\tnative double");
- puts ("-l\tnative long double");
- return 0;
- }
-}
-
-/* GCC stuff referenced by real.o. */
-
-extern "C" void
-fancy_abort ()
-{
- abort ();
-}
-
-int target_flags = 0;
-
-extern "C" int
-floor_log2_wide (unsigned HOST_WIDE_INT x)
-{
- int log = -1;
- while (x != 0)
- log++,
- x >>= 1;
- return log;
-}