aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/tree-vectorizer.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/tree-vectorizer.c')
-rw-r--r--gcc-4.4.0/gcc/tree-vectorizer.c2919
1 files changed, 2919 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/tree-vectorizer.c b/gcc-4.4.0/gcc/tree-vectorizer.c
new file mode 100644
index 000000000..2c5d9cca1
--- /dev/null
+++ b/gcc-4.4.0/gcc/tree-vectorizer.c
@@ -0,0 +1,2919 @@
+/* Loop Vectorization
+ Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
+ Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Loop Vectorization Pass.
+
+ This pass tries to vectorize loops. This first implementation focuses on
+ simple inner-most loops, with no conditional control flow, and a set of
+ simple operations which vector form can be expressed using existing
+ tree codes (PLUS, MULT etc).
+
+ For example, the vectorizer transforms the following simple loop:
+
+ short a[N]; short b[N]; short c[N]; int i;
+
+ for (i=0; i<N; i++){
+ a[i] = b[i] + c[i];
+ }
+
+ as if it was manually vectorized by rewriting the source code into:
+
+ typedef int __attribute__((mode(V8HI))) v8hi;
+ short a[N]; short b[N]; short c[N]; int i;
+ v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
+ v8hi va, vb, vc;
+
+ for (i=0; i<N/8; i++){
+ vb = pb[i];
+ vc = pc[i];
+ va = vb + vc;
+ pa[i] = va;
+ }
+
+ The main entry to this pass is vectorize_loops(), in which
+ the vectorizer applies a set of analyses on a given set of loops,
+ followed by the actual vectorization transformation for the loops that
+ had successfully passed the analysis phase.
+
+ Throughout this pass we make a distinction between two types of
+ data: scalars (which are represented by SSA_NAMES), and memory references
+ ("data-refs"). These two types of data require different handling both
+ during analysis and transformation. The types of data-refs that the
+ vectorizer currently supports are ARRAY_REFS which base is an array DECL
+ (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
+ accesses are required to have a simple (consecutive) access pattern.
+
+ Analysis phase:
+ ===============
+ The driver for the analysis phase is vect_analyze_loop_nest().
+ It applies a set of analyses, some of which rely on the scalar evolution
+ analyzer (scev) developed by Sebastian Pop.
+
+ During the analysis phase the vectorizer records some information
+ per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
+ loop, as well as general information about the loop as a whole, which is
+ recorded in a "loop_vec_info" struct attached to each loop.
+
+ Transformation phase:
+ =====================
+ The loop transformation phase scans all the stmts in the loop, and
+ creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
+ the loop that needs to be vectorized. It insert the vector code sequence
+ just before the scalar stmt S, and records a pointer to the vector code
+ in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
+ attached to S). This pointer will be used for the vectorization of following
+ stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
+ otherwise, we rely on dead code elimination for removing it.
+
+ For example, say stmt S1 was vectorized into stmt VS1:
+
+ VS1: vb = px[i];
+ S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
+ S2: a = b;
+
+ To vectorize stmt S2, the vectorizer first finds the stmt that defines
+ the operand 'b' (S1), and gets the relevant vector def 'vb' from the
+ vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
+ resulting sequence would be:
+
+ VS1: vb = px[i];
+ S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
+ VS2: va = vb;
+ S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
+
+ Operands that are not SSA_NAMEs, are data-refs that appear in
+ load/store operations (like 'x[i]' in S1), and are handled differently.
+
+ Target modeling:
+ =================
+ Currently the only target specific information that is used is the
+ size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
+ support different sizes of vectors, for now will need to specify one value
+ for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
+
+ Since we only vectorize operations which vector form can be
+ expressed using existing tree codes, to verify that an operation is
+ supported, the vectorizer checks the relevant optab at the relevant
+ machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
+ the value found is CODE_FOR_nothing, then there's no target support, and
+ we can't vectorize the stmt.
+
+ For additional information on this project see:
+ http://gcc.gnu.org/projects/tree-ssa/vectorization.html
+*/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+#include "rtl.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "cfglayout.h"
+#include "expr.h"
+#include "recog.h"
+#include "optabs.h"
+#include "params.h"
+#include "toplev.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "input.h"
+#include "hashtab.h"
+#include "tree-vectorizer.h"
+#include "tree-pass.h"
+#include "langhooks.h"
+
+/*************************************************************************
+ General Vectorization Utilities
+ *************************************************************************/
+
+/* vect_dump will be set to stderr or dump_file if exist. */
+FILE *vect_dump;
+
+/* vect_verbosity_level set to an invalid value
+ to mark that it's uninitialized. */
+enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
+
+/* Loop location. */
+static LOC vect_loop_location;
+
+/* Bitmap of virtual variables to be renamed. */
+bitmap vect_memsyms_to_rename;
+
+/* Vector mapping GIMPLE stmt to stmt_vec_info. */
+VEC(vec_void_p,heap) *stmt_vec_info_vec;
+
+
+/*************************************************************************
+ Simple Loop Peeling Utilities
+
+ Utilities to support loop peeling for vectorization purposes.
+ *************************************************************************/
+
+
+/* Renames the use *OP_P. */
+
+static void
+rename_use_op (use_operand_p op_p)
+{
+ tree new_name;
+
+ if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
+ return;
+
+ new_name = get_current_def (USE_FROM_PTR (op_p));
+
+ /* Something defined outside of the loop. */
+ if (!new_name)
+ return;
+
+ /* An ordinary ssa name defined in the loop. */
+
+ SET_USE (op_p, new_name);
+}
+
+
+/* Renames the variables in basic block BB. */
+
+void
+rename_variables_in_bb (basic_block bb)
+{
+ gimple_stmt_iterator gsi;
+ gimple stmt;
+ use_operand_p use_p;
+ ssa_op_iter iter;
+ edge e;
+ edge_iterator ei;
+ struct loop *loop = bb->loop_father;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gsi_stmt (gsi);
+ FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
+ rename_use_op (use_p);
+ }
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (!flow_bb_inside_loop_p (loop, e->dest))
+ continue;
+ for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
+ }
+}
+
+
+/* Renames variables in new generated LOOP. */
+
+void
+rename_variables_in_loop (struct loop *loop)
+{
+ unsigned i;
+ basic_block *bbs;
+
+ bbs = get_loop_body (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ rename_variables_in_bb (bbs[i]);
+
+ free (bbs);
+}
+
+
+/* Update the PHI nodes of NEW_LOOP.
+
+ NEW_LOOP is a duplicate of ORIG_LOOP.
+ AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
+ AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
+ executes before it. */
+
+static void
+slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
+ struct loop *new_loop, bool after)
+{
+ tree new_ssa_name;
+ gimple phi_new, phi_orig;
+ tree def;
+ edge orig_loop_latch = loop_latch_edge (orig_loop);
+ edge orig_entry_e = loop_preheader_edge (orig_loop);
+ edge new_loop_exit_e = single_exit (new_loop);
+ edge new_loop_entry_e = loop_preheader_edge (new_loop);
+ edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
+ gimple_stmt_iterator gsi_new, gsi_orig;
+
+ /*
+ step 1. For each loop-header-phi:
+ Add the first phi argument for the phi in NEW_LOOP
+ (the one associated with the entry of NEW_LOOP)
+
+ step 2. For each loop-header-phi:
+ Add the second phi argument for the phi in NEW_LOOP
+ (the one associated with the latch of NEW_LOOP)
+
+ step 3. Update the phis in the successor block of NEW_LOOP.
+
+ case 1: NEW_LOOP was placed before ORIG_LOOP:
+ The successor block of NEW_LOOP is the header of ORIG_LOOP.
+ Updating the phis in the successor block can therefore be done
+ along with the scanning of the loop header phis, because the
+ header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
+ phi nodes, organized in the same order.
+
+ case 2: NEW_LOOP was placed after ORIG_LOOP:
+ The successor block of NEW_LOOP is the original exit block of
+ ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
+ We postpone updating these phis to a later stage (when
+ loop guards are added).
+ */
+
+
+ /* Scan the phis in the headers of the old and new loops
+ (they are organized in exactly the same order). */
+
+ for (gsi_new = gsi_start_phis (new_loop->header),
+ gsi_orig = gsi_start_phis (orig_loop->header);
+ !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
+ gsi_next (&gsi_new), gsi_next (&gsi_orig))
+ {
+ phi_new = gsi_stmt (gsi_new);
+ phi_orig = gsi_stmt (gsi_orig);
+
+ /* step 1. */
+ def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
+ add_phi_arg (phi_new, def, new_loop_entry_e);
+
+ /* step 2. */
+ def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
+ if (TREE_CODE (def) != SSA_NAME)
+ continue;
+
+ new_ssa_name = get_current_def (def);
+ if (!new_ssa_name)
+ {
+ /* This only happens if there are no definitions
+ inside the loop. use the phi_result in this case. */
+ new_ssa_name = PHI_RESULT (phi_new);
+ }
+
+ /* An ordinary ssa name defined in the loop. */
+ add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
+
+ /* step 3 (case 1). */
+ if (!after)
+ {
+ gcc_assert (new_loop_exit_e == orig_entry_e);
+ SET_PHI_ARG_DEF (phi_orig,
+ new_loop_exit_e->dest_idx,
+ new_ssa_name);
+ }
+ }
+}
+
+
+/* Update PHI nodes for a guard of the LOOP.
+
+ Input:
+ - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
+ controls whether LOOP is to be executed. GUARD_EDGE is the edge that
+ originates from the guard-bb, skips LOOP and reaches the (unique) exit
+ bb of LOOP. This loop-exit-bb is an empty bb with one successor.
+ We denote this bb NEW_MERGE_BB because before the guard code was added
+ it had a single predecessor (the LOOP header), and now it became a merge
+ point of two paths - the path that ends with the LOOP exit-edge, and
+ the path that ends with GUARD_EDGE.
+ - NEW_EXIT_BB: New basic block that is added by this function between LOOP
+ and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
+
+ ===> The CFG before the guard-code was added:
+ LOOP_header_bb:
+ loop_body
+ if (exit_loop) goto update_bb
+ else goto LOOP_header_bb
+ update_bb:
+
+ ==> The CFG after the guard-code was added:
+ guard_bb:
+ if (LOOP_guard_condition) goto new_merge_bb
+ else goto LOOP_header_bb
+ LOOP_header_bb:
+ loop_body
+ if (exit_loop_condition) goto new_merge_bb
+ else goto LOOP_header_bb
+ new_merge_bb:
+ goto update_bb
+ update_bb:
+
+ ==> The CFG after this function:
+ guard_bb:
+ if (LOOP_guard_condition) goto new_merge_bb
+ else goto LOOP_header_bb
+ LOOP_header_bb:
+ loop_body
+ if (exit_loop_condition) goto new_exit_bb
+ else goto LOOP_header_bb
+ new_exit_bb:
+ new_merge_bb:
+ goto update_bb
+ update_bb:
+
+ This function:
+ 1. creates and updates the relevant phi nodes to account for the new
+ incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
+ 1.1. Create phi nodes at NEW_MERGE_BB.
+ 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
+ UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
+ 2. preserves loop-closed-ssa-form by creating the required phi nodes
+ at the exit of LOOP (i.e, in NEW_EXIT_BB).
+
+ There are two flavors to this function:
+
+ slpeel_update_phi_nodes_for_guard1:
+ Here the guard controls whether we enter or skip LOOP, where LOOP is a
+ prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
+ for variables that have phis in the loop header.
+
+ slpeel_update_phi_nodes_for_guard2:
+ Here the guard controls whether we enter or skip LOOP, where LOOP is an
+ epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
+ for variables that have phis in the loop exit.
+
+ I.E., the overall structure is:
+
+ loop1_preheader_bb:
+ guard1 (goto loop1/merge1_bb)
+ loop1
+ loop1_exit_bb:
+ guard2 (goto merge1_bb/merge2_bb)
+ merge1_bb
+ loop2
+ loop2_exit_bb
+ merge2_bb
+ next_bb
+
+ slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
+ loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
+ that have phis in loop1->header).
+
+ slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
+ loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
+ that have phis in next_bb). It also adds some of these phis to
+ loop1_exit_bb.
+
+ slpeel_update_phi_nodes_for_guard1 is always called before
+ slpeel_update_phi_nodes_for_guard2. They are both needed in order
+ to create correct data-flow and loop-closed-ssa-form.
+
+ Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
+ that change between iterations of a loop (and therefore have a phi-node
+ at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
+ phis for variables that are used out of the loop (and therefore have
+ loop-closed exit phis). Some variables may be both updated between
+ iterations and used after the loop. This is why in loop1_exit_bb we
+ may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
+ and exit phis (created by slpeel_update_phi_nodes_for_guard2).
+
+ - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
+ an original loop. i.e., we have:
+
+ orig_loop
+ guard_bb (goto LOOP/new_merge)
+ new_loop <-- LOOP
+ new_exit
+ new_merge
+ next_bb
+
+ If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
+ have:
+
+ new_loop
+ guard_bb (goto LOOP/new_merge)
+ orig_loop <-- LOOP
+ new_exit
+ new_merge
+ next_bb
+
+ The SSA names defined in the original loop have a current
+ reaching definition that that records the corresponding new
+ ssa-name used in the new duplicated loop copy.
+ */
+
+/* Function slpeel_update_phi_nodes_for_guard1
+
+ Input:
+ - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
+ - DEFS - a bitmap of ssa names to mark new names for which we recorded
+ information.
+
+ In the context of the overall structure, we have:
+
+ loop1_preheader_bb:
+ guard1 (goto loop1/merge1_bb)
+LOOP-> loop1
+ loop1_exit_bb:
+ guard2 (goto merge1_bb/merge2_bb)
+ merge1_bb
+ loop2
+ loop2_exit_bb
+ merge2_bb
+ next_bb
+
+ For each name updated between loop iterations (i.e - for each name that has
+ an entry (loop-header) phi in LOOP) we create a new phi in:
+ 1. merge1_bb (to account for the edge from guard1)
+ 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
+*/
+
+static void
+slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
+ bool is_new_loop, basic_block *new_exit_bb,
+ bitmap *defs)
+{
+ gimple orig_phi, new_phi;
+ gimple update_phi, update_phi2;
+ tree guard_arg, loop_arg;
+ basic_block new_merge_bb = guard_edge->dest;
+ edge e = EDGE_SUCC (new_merge_bb, 0);
+ basic_block update_bb = e->dest;
+ basic_block orig_bb = loop->header;
+ edge new_exit_e;
+ tree current_new_name;
+ tree name;
+ gimple_stmt_iterator gsi_orig, gsi_update;
+
+ /* Create new bb between loop and new_merge_bb. */
+ *new_exit_bb = split_edge (single_exit (loop));
+
+ new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
+
+ for (gsi_orig = gsi_start_phis (orig_bb),
+ gsi_update = gsi_start_phis (update_bb);
+ !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
+ gsi_next (&gsi_orig), gsi_next (&gsi_update))
+ {
+ orig_phi = gsi_stmt (gsi_orig);
+ update_phi = gsi_stmt (gsi_update);
+
+ /* Virtual phi; Mark it for renaming. We actually want to call
+ mar_sym_for_renaming, but since all ssa renaming datastructures
+ are going to be freed before we get to call ssa_update, we just
+ record this name for now in a bitmap, and will mark it for
+ renaming later. */
+ name = PHI_RESULT (orig_phi);
+ if (!is_gimple_reg (SSA_NAME_VAR (name)))
+ bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name)));
+
+ /** 1. Handle new-merge-point phis **/
+
+ /* 1.1. Generate new phi node in NEW_MERGE_BB: */
+ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+ new_merge_bb);
+
+ /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
+ of LOOP. Set the two phi args in NEW_PHI for these edges: */
+ loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
+ guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
+
+ add_phi_arg (new_phi, loop_arg, new_exit_e);
+ add_phi_arg (new_phi, guard_arg, guard_edge);
+
+ /* 1.3. Update phi in successor block. */
+ gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
+ || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
+ SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
+ update_phi2 = new_phi;
+
+
+ /** 2. Handle loop-closed-ssa-form phis **/
+
+ if (!is_gimple_reg (PHI_RESULT (orig_phi)))
+ continue;
+
+ /* 2.1. Generate new phi node in NEW_EXIT_BB: */
+ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+ *new_exit_bb);
+
+ /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
+ add_phi_arg (new_phi, loop_arg, single_exit (loop));
+
+ /* 2.3. Update phi in successor of NEW_EXIT_BB: */
+ gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
+ SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
+
+ /* 2.4. Record the newly created name with set_current_def.
+ We want to find a name such that
+ name = get_current_def (orig_loop_name)
+ and to set its current definition as follows:
+ set_current_def (name, new_phi_name)
+
+ If LOOP is a new loop then loop_arg is already the name we're
+ looking for. If LOOP is the original loop, then loop_arg is
+ the orig_loop_name and the relevant name is recorded in its
+ current reaching definition. */
+ if (is_new_loop)
+ current_new_name = loop_arg;
+ else
+ {
+ current_new_name = get_current_def (loop_arg);
+ /* current_def is not available only if the variable does not
+ change inside the loop, in which case we also don't care
+ about recording a current_def for it because we won't be
+ trying to create loop-exit-phis for it. */
+ if (!current_new_name)
+ continue;
+ }
+ gcc_assert (get_current_def (current_new_name) == NULL_TREE);
+
+ set_current_def (current_new_name, PHI_RESULT (new_phi));
+ bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
+ }
+}
+
+
+/* Function slpeel_update_phi_nodes_for_guard2
+
+ Input:
+ - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
+
+ In the context of the overall structure, we have:
+
+ loop1_preheader_bb:
+ guard1 (goto loop1/merge1_bb)
+ loop1
+ loop1_exit_bb:
+ guard2 (goto merge1_bb/merge2_bb)
+ merge1_bb
+LOOP-> loop2
+ loop2_exit_bb
+ merge2_bb
+ next_bb
+
+ For each name used out side the loop (i.e - for each name that has an exit
+ phi in next_bb) we create a new phi in:
+ 1. merge2_bb (to account for the edge from guard_bb)
+ 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
+ 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
+ if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
+*/
+
+static void
+slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
+ bool is_new_loop, basic_block *new_exit_bb)
+{
+ gimple orig_phi, new_phi;
+ gimple update_phi, update_phi2;
+ tree guard_arg, loop_arg;
+ basic_block new_merge_bb = guard_edge->dest;
+ edge e = EDGE_SUCC (new_merge_bb, 0);
+ basic_block update_bb = e->dest;
+ edge new_exit_e;
+ tree orig_def, orig_def_new_name;
+ tree new_name, new_name2;
+ tree arg;
+ gimple_stmt_iterator gsi;
+
+ /* Create new bb between loop and new_merge_bb. */
+ *new_exit_bb = split_edge (single_exit (loop));
+
+ new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
+
+ for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ update_phi = gsi_stmt (gsi);
+ orig_phi = update_phi;
+ orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
+ /* This loop-closed-phi actually doesn't represent a use
+ out of the loop - the phi arg is a constant. */
+ if (TREE_CODE (orig_def) != SSA_NAME)
+ continue;
+ orig_def_new_name = get_current_def (orig_def);
+ arg = NULL_TREE;
+
+ /** 1. Handle new-merge-point phis **/
+
+ /* 1.1. Generate new phi node in NEW_MERGE_BB: */
+ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+ new_merge_bb);
+
+ /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
+ of LOOP. Set the two PHI args in NEW_PHI for these edges: */
+ new_name = orig_def;
+ new_name2 = NULL_TREE;
+ if (orig_def_new_name)
+ {
+ new_name = orig_def_new_name;
+ /* Some variables have both loop-entry-phis and loop-exit-phis.
+ Such variables were given yet newer names by phis placed in
+ guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
+ new_name2 = get_current_def (get_current_def (orig_name)). */
+ new_name2 = get_current_def (new_name);
+ }
+
+ if (is_new_loop)
+ {
+ guard_arg = orig_def;
+ loop_arg = new_name;
+ }
+ else
+ {
+ guard_arg = new_name;
+ loop_arg = orig_def;
+ }
+ if (new_name2)
+ guard_arg = new_name2;
+
+ add_phi_arg (new_phi, loop_arg, new_exit_e);
+ add_phi_arg (new_phi, guard_arg, guard_edge);
+
+ /* 1.3. Update phi in successor block. */
+ gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
+ SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
+ update_phi2 = new_phi;
+
+
+ /** 2. Handle loop-closed-ssa-form phis **/
+
+ /* 2.1. Generate new phi node in NEW_EXIT_BB: */
+ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+ *new_exit_bb);
+
+ /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
+ add_phi_arg (new_phi, loop_arg, single_exit (loop));
+
+ /* 2.3. Update phi in successor of NEW_EXIT_BB: */
+ gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
+ SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
+
+
+ /** 3. Handle loop-closed-ssa-form phis for first loop **/
+
+ /* 3.1. Find the relevant names that need an exit-phi in
+ GUARD_BB, i.e. names for which
+ slpeel_update_phi_nodes_for_guard1 had not already created a
+ phi node. This is the case for names that are used outside
+ the loop (and therefore need an exit phi) but are not updated
+ across loop iterations (and therefore don't have a
+ loop-header-phi).
+
+ slpeel_update_phi_nodes_for_guard1 is responsible for
+ creating loop-exit phis in GUARD_BB for names that have a
+ loop-header-phi. When such a phi is created we also record
+ the new name in its current definition. If this new name
+ exists, then guard_arg was set to this new name (see 1.2
+ above). Therefore, if guard_arg is not this new name, this
+ is an indication that an exit-phi in GUARD_BB was not yet
+ created, so we take care of it here. */
+ if (guard_arg == new_name2)
+ continue;
+ arg = guard_arg;
+
+ /* 3.2. Generate new phi node in GUARD_BB: */
+ new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
+ guard_edge->src);
+
+ /* 3.3. GUARD_BB has one incoming edge: */
+ gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
+ add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
+
+ /* 3.4. Update phi in successor of GUARD_BB: */
+ gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
+ == guard_arg);
+ SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
+ }
+}
+
+
+/* Make the LOOP iterate NITERS times. This is done by adding a new IV
+ that starts at zero, increases by one and its limit is NITERS.
+
+ Assumption: the exit-condition of LOOP is the last stmt in the loop. */
+
+void
+slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
+{
+ tree indx_before_incr, indx_after_incr;
+ gimple cond_stmt;
+ gimple orig_cond;
+ edge exit_edge = single_exit (loop);
+ gimple_stmt_iterator loop_cond_gsi;
+ gimple_stmt_iterator incr_gsi;
+ bool insert_after;
+ tree init = build_int_cst (TREE_TYPE (niters), 0);
+ tree step = build_int_cst (TREE_TYPE (niters), 1);
+ LOC loop_loc;
+ enum tree_code code;
+
+ orig_cond = get_loop_exit_condition (loop);
+ gcc_assert (orig_cond);
+ loop_cond_gsi = gsi_for_stmt (orig_cond);
+
+ standard_iv_increment_position (loop, &incr_gsi, &insert_after);
+ create_iv (init, step, NULL_TREE, loop,
+ &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
+
+ indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
+ true, NULL_TREE, true,
+ GSI_SAME_STMT);
+ niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
+ true, GSI_SAME_STMT);
+
+ code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
+ cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
+ NULL_TREE);
+
+ gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
+
+ /* Remove old loop exit test: */
+ gsi_remove (&loop_cond_gsi, true);
+
+ loop_loc = find_loop_location (loop);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (loop_loc != UNKNOWN_LOC)
+ fprintf (dump_file, "\nloop at %s:%d: ",
+ LOC_FILE (loop_loc), LOC_LINE (loop_loc));
+ print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
+ }
+
+ loop->nb_iterations = niters;
+}
+
+
+/* Given LOOP this function generates a new copy of it and puts it
+ on E which is either the entry or exit of LOOP. */
+
+struct loop *
+slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
+{
+ struct loop *new_loop;
+ basic_block *new_bbs, *bbs;
+ bool at_exit;
+ bool was_imm_dom;
+ basic_block exit_dest;
+ gimple phi;
+ tree phi_arg;
+ edge exit, new_exit;
+ gimple_stmt_iterator gsi;
+
+ at_exit = (e == single_exit (loop));
+ if (!at_exit && e != loop_preheader_edge (loop))
+ return NULL;
+
+ bbs = get_loop_body (loop);
+
+ /* Check whether duplication is possible. */
+ if (!can_copy_bbs_p (bbs, loop->num_nodes))
+ {
+ free (bbs);
+ return NULL;
+ }
+
+ /* Generate new loop structure. */
+ new_loop = duplicate_loop (loop, loop_outer (loop));
+ if (!new_loop)
+ {
+ free (bbs);
+ return NULL;
+ }
+
+ exit_dest = single_exit (loop)->dest;
+ was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
+ exit_dest) == loop->header ?
+ true : false);
+
+ new_bbs = XNEWVEC (basic_block, loop->num_nodes);
+
+ exit = single_exit (loop);
+ copy_bbs (bbs, loop->num_nodes, new_bbs,
+ &exit, 1, &new_exit, NULL,
+ e->src);
+
+ /* Duplicating phi args at exit bbs as coming
+ also from exit of duplicated loop. */
+ for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ phi = gsi_stmt (gsi);
+ phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
+ if (phi_arg)
+ {
+ edge new_loop_exit_edge;
+
+ if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
+ new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
+ else
+ new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
+
+ add_phi_arg (phi, phi_arg, new_loop_exit_edge);
+ }
+ }
+
+ if (at_exit) /* Add the loop copy at exit. */
+ {
+ redirect_edge_and_branch_force (e, new_loop->header);
+ PENDING_STMT (e) = NULL;
+ set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
+ if (was_imm_dom)
+ set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
+ }
+ else /* Add the copy at entry. */
+ {
+ edge new_exit_e;
+ edge entry_e = loop_preheader_edge (loop);
+ basic_block preheader = entry_e->src;
+
+ if (!flow_bb_inside_loop_p (new_loop,
+ EDGE_SUCC (new_loop->header, 0)->dest))
+ new_exit_e = EDGE_SUCC (new_loop->header, 0);
+ else
+ new_exit_e = EDGE_SUCC (new_loop->header, 1);
+
+ redirect_edge_and_branch_force (new_exit_e, loop->header);
+ PENDING_STMT (new_exit_e) = NULL;
+ set_immediate_dominator (CDI_DOMINATORS, loop->header,
+ new_exit_e->src);
+
+ /* We have to add phi args to the loop->header here as coming
+ from new_exit_e edge. */
+ for (gsi = gsi_start_phis (loop->header);
+ !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ phi = gsi_stmt (gsi);
+ phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
+ if (phi_arg)
+ add_phi_arg (phi, phi_arg, new_exit_e);
+ }
+
+ redirect_edge_and_branch_force (entry_e, new_loop->header);
+ PENDING_STMT (entry_e) = NULL;
+ set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
+ }
+
+ free (new_bbs);
+ free (bbs);
+
+ return new_loop;
+}
+
+
+/* Given the condition statement COND, put it as the last statement
+ of GUARD_BB; EXIT_BB is the basic block to skip the loop;
+ Assumes that this is the single exit of the guarded loop.
+ Returns the skip edge. */
+
+static edge
+slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
+ basic_block dom_bb)
+{
+ gimple_stmt_iterator gsi;
+ edge new_e, enter_e;
+ gimple cond_stmt;
+ gimple_seq gimplify_stmt_list = NULL;
+
+ enter_e = EDGE_SUCC (guard_bb, 0);
+ enter_e->flags &= ~EDGE_FALLTHRU;
+ enter_e->flags |= EDGE_FALSE_VALUE;
+ gsi = gsi_last_bb (guard_bb);
+
+ cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
+ cond_stmt = gimple_build_cond (NE_EXPR,
+ cond, build_int_cst (TREE_TYPE (cond), 0),
+ NULL_TREE, NULL_TREE);
+ if (gimplify_stmt_list)
+ gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
+
+ gsi = gsi_last_bb (guard_bb);
+ gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
+
+ /* Add new edge to connect guard block to the merge/loop-exit block. */
+ new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
+ set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
+ return new_e;
+}
+
+
+/* This function verifies that the following restrictions apply to LOOP:
+ (1) it is innermost
+ (2) it consists of exactly 2 basic blocks - header, and an empty latch.
+ (3) it is single entry, single exit
+ (4) its exit condition is the last stmt in the header
+ (5) E is the entry/exit edge of LOOP.
+ */
+
+bool
+slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
+{
+ edge exit_e = single_exit (loop);
+ edge entry_e = loop_preheader_edge (loop);
+ gimple orig_cond = get_loop_exit_condition (loop);
+ gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
+
+ if (need_ssa_update_p ())
+ return false;
+
+ if (loop->inner
+ /* All loops have an outer scope; the only case loop->outer is NULL is for
+ the function itself. */
+ || !loop_outer (loop)
+ || loop->num_nodes != 2
+ || !empty_block_p (loop->latch)
+ || !single_exit (loop)
+ /* Verify that new loop exit condition can be trivially modified. */
+ || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
+ || (e != exit_e && e != entry_e))
+ return false;
+
+ return true;
+}
+
+#ifdef ENABLE_CHECKING
+void
+slpeel_verify_cfg_after_peeling (struct loop *first_loop,
+ struct loop *second_loop)
+{
+ basic_block loop1_exit_bb = single_exit (first_loop)->dest;
+ basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
+ basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
+
+ /* A guard that controls whether the second_loop is to be executed or skipped
+ is placed in first_loop->exit. first_loop->exit therefore has two
+ successors - one is the preheader of second_loop, and the other is a bb
+ after second_loop.
+ */
+ gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
+
+ /* 1. Verify that one of the successors of first_loop->exit is the preheader
+ of second_loop. */
+
+ /* The preheader of new_loop is expected to have two predecessors:
+ first_loop->exit and the block that precedes first_loop. */
+
+ gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
+ && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
+ && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
+ || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
+ && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
+
+ /* Verify that the other successor of first_loop->exit is after the
+ second_loop. */
+ /* TODO */
+}
+#endif
+
+/* If the run time cost model check determines that vectorization is
+ not profitable and hence scalar loop should be generated then set
+ FIRST_NITERS to prologue peeled iterations. This will allow all the
+ iterations to be executed in the prologue peeled scalar loop. */
+
+void
+set_prologue_iterations (basic_block bb_before_first_loop,
+ tree first_niters,
+ struct loop *loop,
+ unsigned int th)
+{
+ edge e;
+ basic_block cond_bb, then_bb;
+ tree var, prologue_after_cost_adjust_name;
+ gimple_stmt_iterator gsi;
+ gimple newphi;
+ edge e_true, e_false, e_fallthru;
+ gimple cond_stmt;
+ gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
+ tree cost_pre_condition = NULL_TREE;
+ tree scalar_loop_iters =
+ unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
+
+ e = single_pred_edge (bb_before_first_loop);
+ cond_bb = split_edge(e);
+
+ e = single_pred_edge (bb_before_first_loop);
+ then_bb = split_edge(e);
+ set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
+
+ e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
+ EDGE_FALSE_VALUE);
+ set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
+
+ e_true = EDGE_PRED (then_bb, 0);
+ e_true->flags &= ~EDGE_FALLTHRU;
+ e_true->flags |= EDGE_TRUE_VALUE;
+
+ e_fallthru = EDGE_SUCC (then_bb, 0);
+
+ cost_pre_condition =
+ fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
+ build_int_cst (TREE_TYPE (scalar_loop_iters), th));
+ cost_pre_condition =
+ force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
+ true, NULL_TREE);
+ cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
+ build_int_cst (TREE_TYPE (cost_pre_condition),
+ 0), NULL_TREE, NULL_TREE);
+
+ gsi = gsi_last_bb (cond_bb);
+ if (gimplify_stmt_list)
+ gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
+
+ gsi = gsi_last_bb (cond_bb);
+ gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
+
+ var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
+ "prologue_after_cost_adjust");
+ add_referenced_var (var);
+ prologue_after_cost_adjust_name =
+ force_gimple_operand (scalar_loop_iters, &stmts, false, var);
+
+ gsi = gsi_last_bb (then_bb);
+ if (stmts)
+ gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
+
+ newphi = create_phi_node (var, bb_before_first_loop);
+ add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru);
+ add_phi_arg (newphi, first_niters, e_false);
+
+ first_niters = PHI_RESULT (newphi);
+}
+
+
+/* Function slpeel_tree_peel_loop_to_edge.
+
+ Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
+ that is placed on the entry (exit) edge E of LOOP. After this transformation
+ we have two loops one after the other - first-loop iterates FIRST_NITERS
+ times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
+ If the cost model indicates that it is profitable to emit a scalar
+ loop instead of the vector one, then the prolog (epilog) loop will iterate
+ for the entire unchanged scalar iterations of the loop.
+
+ Input:
+ - LOOP: the loop to be peeled.
+ - E: the exit or entry edge of LOOP.
+ If it is the entry edge, we peel the first iterations of LOOP. In this
+ case first-loop is LOOP, and second-loop is the newly created loop.
+ If it is the exit edge, we peel the last iterations of LOOP. In this
+ case, first-loop is the newly created loop, and second-loop is LOOP.
+ - NITERS: the number of iterations that LOOP iterates.
+ - FIRST_NITERS: the number of iterations that the first-loop should iterate.
+ - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
+ for updating the loop bound of the first-loop to FIRST_NITERS. If it
+ is false, the caller of this function may want to take care of this
+ (this can be useful if we don't want new stmts added to first-loop).
+ - TH: cost model profitability threshold of iterations for vectorization.
+ - CHECK_PROFITABILITY: specify whether cost model check has not occurred
+ during versioning and hence needs to occur during
+ prologue generation or whether cost model check
+ has not occurred during prologue generation and hence
+ needs to occur during epilogue generation.
+
+
+ Output:
+ The function returns a pointer to the new loop-copy, or NULL if it failed
+ to perform the transformation.
+
+ The function generates two if-then-else guards: one before the first loop,
+ and the other before the second loop:
+ The first guard is:
+ if (FIRST_NITERS == 0) then skip the first loop,
+ and go directly to the second loop.
+ The second guard is:
+ if (FIRST_NITERS == NITERS) then skip the second loop.
+
+ FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
+ FORNOW the resulting code will not be in loop-closed-ssa form.
+*/
+
+struct loop*
+slpeel_tree_peel_loop_to_edge (struct loop *loop,
+ edge e, tree first_niters,
+ tree niters, bool update_first_loop_count,
+ unsigned int th, bool check_profitability)
+{
+ struct loop *new_loop = NULL, *first_loop, *second_loop;
+ edge skip_e;
+ tree pre_condition = NULL_TREE;
+ bitmap definitions;
+ basic_block bb_before_second_loop, bb_after_second_loop;
+ basic_block bb_before_first_loop;
+ basic_block bb_between_loops;
+ basic_block new_exit_bb;
+ edge exit_e = single_exit (loop);
+ LOC loop_loc;
+ tree cost_pre_condition = NULL_TREE;
+
+ if (!slpeel_can_duplicate_loop_p (loop, e))
+ return NULL;
+
+ /* We have to initialize cfg_hooks. Then, when calling
+ cfg_hooks->split_edge, the function tree_split_edge
+ is actually called and, when calling cfg_hooks->duplicate_block,
+ the function tree_duplicate_bb is called. */
+ gimple_register_cfg_hooks ();
+
+
+ /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
+ Resulting CFG would be:
+
+ first_loop:
+ do {
+ } while ...
+
+ second_loop:
+ do {
+ } while ...
+
+ orig_exit_bb:
+ */
+
+ if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
+ {
+ loop_loc = find_loop_location (loop);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (loop_loc != UNKNOWN_LOC)
+ fprintf (dump_file, "\n%s:%d: note: ",
+ LOC_FILE (loop_loc), LOC_LINE (loop_loc));
+ fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
+ }
+ return NULL;
+ }
+
+ if (e == exit_e)
+ {
+ /* NEW_LOOP was placed after LOOP. */
+ first_loop = loop;
+ second_loop = new_loop;
+ }
+ else
+ {
+ /* NEW_LOOP was placed before LOOP. */
+ first_loop = new_loop;
+ second_loop = loop;
+ }
+
+ definitions = ssa_names_to_replace ();
+ slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
+ rename_variables_in_loop (new_loop);
+
+
+ /* 2. Add the guard code in one of the following ways:
+
+ 2.a Add the guard that controls whether the first loop is executed.
+ This occurs when this function is invoked for prologue or epilogue
+ generation and when the cost model check can be done at compile time.
+
+ Resulting CFG would be:
+
+ bb_before_first_loop:
+ if (FIRST_NITERS == 0) GOTO bb_before_second_loop
+ GOTO first-loop
+
+ first_loop:
+ do {
+ } while ...
+
+ bb_before_second_loop:
+
+ second_loop:
+ do {
+ } while ...
+
+ orig_exit_bb:
+
+ 2.b Add the cost model check that allows the prologue
+ to iterate for the entire unchanged scalar
+ iterations of the loop in the event that the cost
+ model indicates that the scalar loop is more
+ profitable than the vector one. This occurs when
+ this function is invoked for prologue generation
+ and the cost model check needs to be done at run
+ time.
+
+ Resulting CFG after prologue peeling would be:
+
+ if (scalar_loop_iterations <= th)
+ FIRST_NITERS = scalar_loop_iterations
+
+ bb_before_first_loop:
+ if (FIRST_NITERS == 0) GOTO bb_before_second_loop
+ GOTO first-loop
+
+ first_loop:
+ do {
+ } while ...
+
+ bb_before_second_loop:
+
+ second_loop:
+ do {
+ } while ...
+
+ orig_exit_bb:
+
+ 2.c Add the cost model check that allows the epilogue
+ to iterate for the entire unchanged scalar
+ iterations of the loop in the event that the cost
+ model indicates that the scalar loop is more
+ profitable than the vector one. This occurs when
+ this function is invoked for epilogue generation
+ and the cost model check needs to be done at run
+ time.
+
+ Resulting CFG after prologue peeling would be:
+
+ bb_before_first_loop:
+ if ((scalar_loop_iterations <= th)
+ ||
+ FIRST_NITERS == 0) GOTO bb_before_second_loop
+ GOTO first-loop
+
+ first_loop:
+ do {
+ } while ...
+
+ bb_before_second_loop:
+
+ second_loop:
+ do {
+ } while ...
+
+ orig_exit_bb:
+ */
+
+ bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
+ bb_before_second_loop = split_edge (single_exit (first_loop));
+
+ /* Epilogue peeling. */
+ if (!update_first_loop_count)
+ {
+ pre_condition =
+ fold_build2 (LE_EXPR, boolean_type_node, first_niters,
+ build_int_cst (TREE_TYPE (first_niters), 0));
+ if (check_profitability)
+ {
+ tree scalar_loop_iters
+ = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
+ (loop_vec_info_for_loop (loop)));
+ cost_pre_condition =
+ fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
+ build_int_cst (TREE_TYPE (scalar_loop_iters), th));
+
+ pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
+ cost_pre_condition, pre_condition);
+ }
+ }
+
+ /* Prologue peeling. */
+ else
+ {
+ if (check_profitability)
+ set_prologue_iterations (bb_before_first_loop, first_niters,
+ loop, th);
+
+ pre_condition =
+ fold_build2 (LE_EXPR, boolean_type_node, first_niters,
+ build_int_cst (TREE_TYPE (first_niters), 0));
+ }
+
+ skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
+ bb_before_second_loop, bb_before_first_loop);
+ slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
+ first_loop == new_loop,
+ &new_exit_bb, &definitions);
+
+
+ /* 3. Add the guard that controls whether the second loop is executed.
+ Resulting CFG would be:
+
+ bb_before_first_loop:
+ if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
+ GOTO first-loop
+
+ first_loop:
+ do {
+ } while ...
+
+ bb_between_loops:
+ if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
+ GOTO bb_before_second_loop
+
+ bb_before_second_loop:
+
+ second_loop:
+ do {
+ } while ...
+
+ bb_after_second_loop:
+
+ orig_exit_bb:
+ */
+
+ bb_between_loops = new_exit_bb;
+ bb_after_second_loop = split_edge (single_exit (second_loop));
+
+ pre_condition =
+ fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
+ skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
+ bb_after_second_loop, bb_before_first_loop);
+ slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
+ second_loop == new_loop, &new_exit_bb);
+
+ /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
+ */
+ if (update_first_loop_count)
+ slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
+
+ BITMAP_FREE (definitions);
+ delete_update_ssa ();
+
+ return new_loop;
+}
+
+/* Function vect_get_loop_location.
+
+ Extract the location of the loop in the source code.
+ If the loop is not well formed for vectorization, an estimated
+ location is calculated.
+ Return the loop location if succeed and NULL if not. */
+
+LOC
+find_loop_location (struct loop *loop)
+{
+ gimple stmt = NULL;
+ basic_block bb;
+ gimple_stmt_iterator si;
+
+ if (!loop)
+ return UNKNOWN_LOC;
+
+ stmt = get_loop_exit_condition (loop);
+
+ if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
+ return gimple_location (stmt);
+
+ /* If we got here the loop is probably not "well formed",
+ try to estimate the loop location */
+
+ if (!loop->header)
+ return UNKNOWN_LOC;
+
+ bb = loop->header;
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ stmt = gsi_stmt (si);
+ if (gimple_location (stmt) != UNKNOWN_LOC)
+ return gimple_location (stmt);
+ }
+
+ return UNKNOWN_LOC;
+}
+
+
+/*************************************************************************
+ Vectorization Debug Information.
+ *************************************************************************/
+
+/* Function vect_set_verbosity_level.
+
+ Called from toplev.c upon detection of the
+ -ftree-vectorizer-verbose=N option. */
+
+void
+vect_set_verbosity_level (const char *val)
+{
+ unsigned int vl;
+
+ vl = atoi (val);
+ if (vl < MAX_VERBOSITY_LEVEL)
+ vect_verbosity_level = vl;
+ else
+ vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
+}
+
+
+/* Function vect_set_dump_settings.
+
+ Fix the verbosity level of the vectorizer if the
+ requested level was not set explicitly using the flag
+ -ftree-vectorizer-verbose=N.
+ Decide where to print the debugging information (dump_file/stderr).
+ If the user defined the verbosity level, but there is no dump file,
+ print to stderr, otherwise print to the dump file. */
+
+static void
+vect_set_dump_settings (void)
+{
+ vect_dump = dump_file;
+
+ /* Check if the verbosity level was defined by the user: */
+ if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
+ {
+ /* If there is no dump file, print to stderr. */
+ if (!dump_file)
+ vect_dump = stderr;
+ return;
+ }
+
+ /* User didn't specify verbosity level: */
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ vect_verbosity_level = REPORT_DETAILS;
+ else if (dump_file && (dump_flags & TDF_STATS))
+ vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
+ else
+ vect_verbosity_level = REPORT_NONE;
+
+ gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
+}
+
+
+/* Function debug_loop_details.
+
+ For vectorization debug dumps. */
+
+bool
+vect_print_dump_info (enum verbosity_levels vl)
+{
+ if (vl > vect_verbosity_level)
+ return false;
+
+ if (!current_function_decl || !vect_dump)
+ return false;
+
+ if (vect_loop_location == UNKNOWN_LOC)
+ fprintf (vect_dump, "\n%s:%d: note: ",
+ DECL_SOURCE_FILE (current_function_decl),
+ DECL_SOURCE_LINE (current_function_decl));
+ else
+ fprintf (vect_dump, "\n%s:%d: note: ",
+ LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));
+
+ return true;
+}
+
+
+/*************************************************************************
+ Vectorization Utilities.
+ *************************************************************************/
+
+/* Function new_stmt_vec_info.
+
+ Create and initialize a new stmt_vec_info struct for STMT. */
+
+stmt_vec_info
+new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo)
+{
+ stmt_vec_info res;
+ res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
+
+ STMT_VINFO_TYPE (res) = undef_vec_info_type;
+ STMT_VINFO_STMT (res) = stmt;
+ STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
+ STMT_VINFO_RELEVANT (res) = 0;
+ STMT_VINFO_LIVE_P (res) = false;
+ STMT_VINFO_VECTYPE (res) = NULL;
+ STMT_VINFO_VEC_STMT (res) = NULL;
+ STMT_VINFO_IN_PATTERN_P (res) = false;
+ STMT_VINFO_RELATED_STMT (res) = NULL;
+ STMT_VINFO_DATA_REF (res) = NULL;
+
+ STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
+ STMT_VINFO_DR_OFFSET (res) = NULL;
+ STMT_VINFO_DR_INIT (res) = NULL;
+ STMT_VINFO_DR_STEP (res) = NULL;
+ STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && is_loop_header_bb_p (gimple_bb (stmt)))
+ STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
+ else
+ STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
+ STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
+ STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
+ STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
+ STMT_SLP_TYPE (res) = 0;
+ DR_GROUP_FIRST_DR (res) = NULL;
+ DR_GROUP_NEXT_DR (res) = NULL;
+ DR_GROUP_SIZE (res) = 0;
+ DR_GROUP_STORE_COUNT (res) = 0;
+ DR_GROUP_GAP (res) = 0;
+ DR_GROUP_SAME_DR_STMT (res) = NULL;
+ DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
+
+ return res;
+}
+
+/* Create a hash table for stmt_vec_info. */
+
+void
+init_stmt_vec_info_vec (void)
+{
+ gcc_assert (!stmt_vec_info_vec);
+ stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
+}
+
+/* Free hash table for stmt_vec_info. */
+
+void
+free_stmt_vec_info_vec (void)
+{
+ gcc_assert (stmt_vec_info_vec);
+ VEC_free (vec_void_p, heap, stmt_vec_info_vec);
+}
+
+/* Free stmt vectorization related info. */
+
+void
+free_stmt_vec_info (gimple stmt)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ if (!stmt_info)
+ return;
+
+ VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
+ set_vinfo_for_stmt (stmt, NULL);
+ free (stmt_info);
+}
+
+
+/* Function bb_in_loop_p
+
+ Used as predicate for dfs order traversal of the loop bbs. */
+
+static bool
+bb_in_loop_p (const_basic_block bb, const void *data)
+{
+ const struct loop *const loop = (const struct loop *)data;
+ if (flow_bb_inside_loop_p (loop, bb))
+ return true;
+ return false;
+}
+
+
+/* Function new_loop_vec_info.
+
+ Create and initialize a new loop_vec_info struct for LOOP, as well as
+ stmt_vec_info structs for all the stmts in LOOP. */
+
+loop_vec_info
+new_loop_vec_info (struct loop *loop)
+{
+ loop_vec_info res;
+ basic_block *bbs;
+ gimple_stmt_iterator si;
+ unsigned int i, nbbs;
+
+ res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
+ LOOP_VINFO_LOOP (res) = loop;
+
+ bbs = get_loop_body (loop);
+
+ /* Create/Update stmt_info for all stmts in the loop. */
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ /* BBs in a nested inner-loop will have been already processed (because
+ we will have called vect_analyze_loop_form for any nested inner-loop).
+ Therefore, for stmts in an inner-loop we just want to update the
+ STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
+ loop_info of the outer-loop we are currently considering to vectorize
+ (instead of the loop_info of the inner-loop).
+ For stmts in other BBs we need to create a stmt_info from scratch. */
+ if (bb->loop_father != loop)
+ {
+ /* Inner-loop bb. */
+ gcc_assert (loop->inner && bb->loop_father == loop->inner);
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple phi = gsi_stmt (si);
+ stmt_vec_info stmt_info = vinfo_for_stmt (phi);
+ loop_vec_info inner_loop_vinfo =
+ STMT_VINFO_LOOP_VINFO (stmt_info);
+ gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
+ STMT_VINFO_LOOP_VINFO (stmt_info) = res;
+ }
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info inner_loop_vinfo =
+ STMT_VINFO_LOOP_VINFO (stmt_info);
+ gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
+ STMT_VINFO_LOOP_VINFO (stmt_info) = res;
+ }
+ }
+ else
+ {
+ /* bb in current nest. */
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple phi = gsi_stmt (si);
+ gimple_set_uid (phi, 0);
+ set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
+ }
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+ gimple_set_uid (stmt, 0);
+ set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
+ }
+ }
+ }
+
+ /* CHECKME: We want to visit all BBs before their successors (except for
+ latch blocks, for which this assertion wouldn't hold). In the simple
+ case of the loop forms we allow, a dfs order of the BBs would the same
+ as reversed postorder traversal, so we are safe. */
+
+ free (bbs);
+ bbs = XCNEWVEC (basic_block, loop->num_nodes);
+ nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
+ bbs, loop->num_nodes, loop);
+ gcc_assert (nbbs == loop->num_nodes);
+
+ LOOP_VINFO_BBS (res) = bbs;
+ LOOP_VINFO_NITERS (res) = NULL;
+ LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
+ LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
+ LOOP_VINFO_VECTORIZABLE_P (res) = 0;
+ LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
+ LOOP_VINFO_VECT_FACTOR (res) = 0;
+ LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
+ LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
+ LOOP_VINFO_UNALIGNED_DR (res) = NULL;
+ LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
+ VEC_alloc (gimple, heap,
+ PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
+ LOOP_VINFO_MAY_ALIAS_DDRS (res) =
+ VEC_alloc (ddr_p, heap,
+ PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
+ LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
+ LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
+ LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
+
+ return res;
+}
+
+
+/* Function destroy_loop_vec_info.
+
+ Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
+ stmts in the loop. */
+
+void
+destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
+{
+ struct loop *loop;
+ basic_block *bbs;
+ int nbbs;
+ gimple_stmt_iterator si;
+ int j;
+ VEC (slp_instance, heap) *slp_instances;
+ slp_instance instance;
+
+ if (!loop_vinfo)
+ return;
+
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ bbs = LOOP_VINFO_BBS (loop_vinfo);
+ nbbs = loop->num_nodes;
+
+ if (!clean_stmts)
+ {
+ free (LOOP_VINFO_BBS (loop_vinfo));
+ free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
+ free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
+ VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
+
+ free (loop_vinfo);
+ loop->aux = NULL;
+ return;
+ }
+
+ for (j = 0; j < nbbs; j++)
+ {
+ basic_block bb = bbs[j];
+
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ free_stmt_vec_info (gsi_stmt (si));
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); )
+ {
+ gimple stmt = gsi_stmt (si);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ if (stmt_info)
+ {
+ /* Check if this is a "pattern stmt" (introduced by the
+ vectorizer during the pattern recognition pass). */
+ bool remove_stmt_p = false;
+ gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+ if (orig_stmt)
+ {
+ stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
+ if (orig_stmt_info
+ && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
+ remove_stmt_p = true;
+ }
+
+ /* Free stmt_vec_info. */
+ free_stmt_vec_info (stmt);
+
+ /* Remove dead "pattern stmts". */
+ if (remove_stmt_p)
+ gsi_remove (&si, true);
+ }
+ gsi_next (&si);
+ }
+ }
+
+ free (LOOP_VINFO_BBS (loop_vinfo));
+ free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
+ free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
+ VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
+ VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
+ slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
+ for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
+ vect_free_slp_instance (instance);
+
+ VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
+ VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
+
+ free (loop_vinfo);
+ loop->aux = NULL;
+}
+
+
+/* Function vect_force_dr_alignment_p.
+
+ Returns whether the alignment of a DECL can be forced to be aligned
+ on ALIGNMENT bit boundary. */
+
+bool
+vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
+{
+ if (TREE_CODE (decl) != VAR_DECL)
+ return false;
+
+ if (DECL_EXTERNAL (decl))
+ return false;
+
+ if (TREE_ASM_WRITTEN (decl))
+ return false;
+
+ if (TREE_STATIC (decl))
+ return (alignment <= MAX_OFILE_ALIGNMENT);
+ else
+ return (alignment <= MAX_STACK_ALIGNMENT);
+}
+
+
+/* Function get_vectype_for_scalar_type.
+
+ Returns the vector type corresponding to SCALAR_TYPE as supported
+ by the target. */
+
+tree
+get_vectype_for_scalar_type (tree scalar_type)
+{
+ enum machine_mode inner_mode = TYPE_MODE (scalar_type);
+ int nbytes = GET_MODE_SIZE (inner_mode);
+ int nunits;
+ tree vectype;
+
+ if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
+ return NULL_TREE;
+
+ /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
+ is expected. */
+ nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;
+
+ vectype = build_vector_type (scalar_type, nunits);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "get vectype with %d units of type ", nunits);
+ print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+ }
+
+ if (!vectype)
+ return NULL_TREE;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vectype: ");
+ print_generic_expr (vect_dump, vectype, TDF_SLIM);
+ }
+
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "mode not supported by target.");
+ return NULL_TREE;
+ }
+
+ return vectype;
+}
+
+
+/* Function vect_supportable_dr_alignment
+
+ Return whether the data reference DR is supported with respect to its
+ alignment. */
+
+enum dr_alignment_support
+vect_supportable_dr_alignment (struct data_reference *dr)
+{
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ enum machine_mode mode = (int) TYPE_MODE (vectype);
+ struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info));
+ bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
+ bool invariant_in_outerloop = false;
+
+ if (aligned_access_p (dr))
+ return dr_aligned;
+
+ if (nested_in_vect_loop)
+ {
+ tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
+ invariant_in_outerloop =
+ (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
+ }
+
+ /* Possibly unaligned access. */
+
+ /* We can choose between using the implicit realignment scheme (generating
+ a misaligned_move stmt) and the explicit realignment scheme (generating
+ aligned loads with a REALIGN_LOAD). There are two variants to the explicit
+ realignment scheme: optimized, and unoptimized.
+ We can optimize the realignment only if the step between consecutive
+ vector loads is equal to the vector size. Since the vector memory
+ accesses advance in steps of VS (Vector Size) in the vectorized loop, it
+ is guaranteed that the misalignment amount remains the same throughout the
+ execution of the vectorized loop. Therefore, we can create the
+ "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
+ at the loop preheader.
+
+ However, in the case of outer-loop vectorization, when vectorizing a
+ memory access in the inner-loop nested within the LOOP that is now being
+ vectorized, while it is guaranteed that the misalignment of the
+ vectorized memory access will remain the same in different outer-loop
+ iterations, it is *not* guaranteed that is will remain the same throughout
+ the execution of the inner-loop. This is because the inner-loop advances
+ with the original scalar step (and not in steps of VS). If the inner-loop
+ step happens to be a multiple of VS, then the misalignment remains fixed
+ and we can use the optimized realignment scheme. For example:
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ s += a[i+j];
+
+ When vectorizing the i-loop in the above example, the step between
+ consecutive vector loads is 1, and so the misalignment does not remain
+ fixed across the execution of the inner-loop, and the realignment cannot
+ be optimized (as illustrated in the following pseudo vectorized loop):
+
+ for (i=0; i<N; i+=4)
+ for (j=0; j<M; j++){
+ vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
+ // when j is {0,1,2,3,4,5,6,7,...} respectively.
+ // (assuming that we start from an aligned address).
+ }
+
+ We therefore have to use the unoptimized realignment scheme:
+
+ for (i=0; i<N; i+=4)
+ for (j=k; j<M; j+=4)
+ vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
+ // that the misalignment of the initial address is
+ // 0).
+
+ The loop can then be vectorized as follows:
+
+ for (k=0; k<4; k++){
+ rt = get_realignment_token (&vp[k]);
+ for (i=0; i<N; i+=4){
+ v1 = vp[i+k];
+ for (j=k; j<M; j+=4){
+ v2 = vp[i+j+VS-1];
+ va = REALIGN_LOAD <v1,v2,rt>;
+ vs += va;
+ v1 = v2;
+ }
+ }
+ } */
+
+ if (DR_IS_READ (dr))
+ {
+ if (optab_handler (vec_realign_load_optab, mode)->insn_code !=
+ CODE_FOR_nothing
+ && (!targetm.vectorize.builtin_mask_for_load
+ || targetm.vectorize.builtin_mask_for_load ()))
+ {
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ if (nested_in_vect_loop
+ && (TREE_INT_CST_LOW (DR_STEP (dr))
+ != GET_MODE_SIZE (TYPE_MODE (vectype))))
+ return dr_explicit_realign;
+ else
+ return dr_explicit_realign_optimized;
+ }
+
+ if (optab_handler (movmisalign_optab, mode)->insn_code !=
+ CODE_FOR_nothing)
+ /* Can't software pipeline the loads, but can at least do them. */
+ return dr_unaligned_supported;
+ }
+
+ /* Unsupported. */
+ return dr_unaligned_unsupported;
+}
+
+
+/* Function vect_is_simple_use.
+
+ Input:
+ LOOP - the loop that is being vectorized.
+ OPERAND - operand of a stmt in LOOP.
+ DEF - the defining stmt in case OPERAND is an SSA_NAME.
+
+ Returns whether a stmt with OPERAND can be vectorized.
+ Supportable operands are constants, loop invariants, and operands that are
+ defined by the current iteration of the loop. Unsupportable operands are
+ those that are defined by a previous iteration of the loop (as is the case
+ in reduction/induction computations). */
+
+bool
+vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, gimple *def_stmt,
+ tree *def, enum vect_def_type *dt)
+{
+ basic_block bb;
+ stmt_vec_info stmt_vinfo;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ *def_stmt = NULL;
+ *def = NULL_TREE;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vect_is_simple_use: operand ");
+ print_generic_expr (vect_dump, operand, TDF_SLIM);
+ }
+
+ if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
+ {
+ *dt = vect_constant_def;
+ return true;
+ }
+ if (is_gimple_min_invariant (operand))
+ {
+ *def = operand;
+ *dt = vect_invariant_def;
+ return true;
+ }
+
+ if (TREE_CODE (operand) == PAREN_EXPR)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "non-associatable copy.");
+ operand = TREE_OPERAND (operand, 0);
+ }
+ if (TREE_CODE (operand) != SSA_NAME)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not ssa-name.");
+ return false;
+ }
+
+ *def_stmt = SSA_NAME_DEF_STMT (operand);
+ if (*def_stmt == NULL)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no def_stmt.");
+ return false;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "def_stmt: ");
+ print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
+ }
+
+ /* empty stmt is expected only in case of a function argument.
+ (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
+ if (gimple_nop_p (*def_stmt))
+ {
+ *def = operand;
+ *dt = vect_invariant_def;
+ return true;
+ }
+
+ bb = gimple_bb (*def_stmt);
+ if (!flow_bb_inside_loop_p (loop, bb))
+ *dt = vect_invariant_def;
+ else
+ {
+ stmt_vinfo = vinfo_for_stmt (*def_stmt);
+ *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
+ }
+
+ if (*dt == vect_unknown_def_type)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Unsupported pattern.");
+ return false;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "type of def: %d.",*dt);
+
+ switch (gimple_code (*def_stmt))
+ {
+ case GIMPLE_PHI:
+ *def = gimple_phi_result (*def_stmt);
+ break;
+
+ case GIMPLE_ASSIGN:
+ *def = gimple_assign_lhs (*def_stmt);
+ break;
+
+ case GIMPLE_CALL:
+ *def = gimple_call_lhs (*def_stmt);
+ if (*def != NULL)
+ break;
+ /* FALLTHRU */
+ default:
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unsupported defining stmt: ");
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function supportable_widening_operation
+
+ Check whether an operation represented by the code CODE is a
+ widening operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE).
+
+ Widening operations we currently support are NOP (CONVERT), FLOAT
+ and WIDEN_MULT. This function checks if these operations are supported
+ by the target platform either directly (via vector tree-codes), or via
+ target builtins.
+
+ Output:
+ - CODE1 and CODE2 are codes of vector operations to be used when
+ vectorizing the operation, if available.
+ - DECL1 and DECL2 are decls of target builtin functions to be used
+ when vectorizing the operation, if available. In this case,
+ CODE1 and CODE2 are CALL_EXPR.
+ - MULTI_STEP_CVT determines the number of required intermediate steps in
+ case of multi-step conversion (like char->short->int - in that case
+ MULTI_STEP_CVT will be 1).
+ - INTERM_TYPES contains the intermediate type required to perform the
+ widening operation (short in the above example). */
+
+bool
+supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype,
+ tree *decl1, tree *decl2,
+ enum tree_code *code1, enum tree_code *code2,
+ int *multi_step_cvt,
+ VEC (tree, heap) **interm_types)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
+ bool ordered_p;
+ enum machine_mode vec_mode;
+ enum insn_code icode1 = 0, icode2 = 0;
+ optab optab1, optab2;
+ tree type = gimple_expr_type (stmt);
+ tree wide_vectype = get_vectype_for_scalar_type (type);
+ enum tree_code c1, c2;
+
+ /* The result of a vectorized widening operation usually requires two vectors
+ (because the widened results do not fit int one vector). The generated
+ vector results would normally be expected to be generated in the same
+ order as in the original scalar computation, i.e. if 8 results are
+ generated in each vector iteration, they are to be organized as follows:
+ vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
+
+ However, in the special case that the result of the widening operation is
+ used in a reduction computation only, the order doesn't matter (because
+ when vectorizing a reduction we change the order of the computation).
+ Some targets can take advantage of this and generate more efficient code.
+ For example, targets like Altivec, that support widen_mult using a sequence
+ of {mult_even,mult_odd} generate the following vectors:
+ vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
+
+ When vectorizing outer-loops, we execute the inner-loop sequentially
+ (each vectorized inner-loop iteration contributes to VF outer-loop
+ iterations in parallel). We therefore don't allow to change the order
+ of the computation in the inner-loop during outer-loop vectorization. */
+
+ if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
+ && !nested_in_vect_loop_p (vect_loop, stmt))
+ ordered_p = false;
+ else
+ ordered_p = true;
+
+ if (!ordered_p
+ && code == WIDEN_MULT_EXPR
+ && targetm.vectorize.builtin_mul_widen_even
+ && targetm.vectorize.builtin_mul_widen_even (vectype)
+ && targetm.vectorize.builtin_mul_widen_odd
+ && targetm.vectorize.builtin_mul_widen_odd (vectype))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Unordered widening operation detected.");
+
+ *code1 = *code2 = CALL_EXPR;
+ *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
+ *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
+ return true;
+ }
+
+ switch (code)
+ {
+ case WIDEN_MULT_EXPR:
+ if (BYTES_BIG_ENDIAN)
+ {
+ c1 = VEC_WIDEN_MULT_HI_EXPR;
+ c2 = VEC_WIDEN_MULT_LO_EXPR;
+ }
+ else
+ {
+ c2 = VEC_WIDEN_MULT_HI_EXPR;
+ c1 = VEC_WIDEN_MULT_LO_EXPR;
+ }
+ break;
+
+ CASE_CONVERT:
+ if (BYTES_BIG_ENDIAN)
+ {
+ c1 = VEC_UNPACK_HI_EXPR;
+ c2 = VEC_UNPACK_LO_EXPR;
+ }
+ else
+ {
+ c2 = VEC_UNPACK_HI_EXPR;
+ c1 = VEC_UNPACK_LO_EXPR;
+ }
+ break;
+
+ case FLOAT_EXPR:
+ if (BYTES_BIG_ENDIAN)
+ {
+ c1 = VEC_UNPACK_FLOAT_HI_EXPR;
+ c2 = VEC_UNPACK_FLOAT_LO_EXPR;
+ }
+ else
+ {
+ c2 = VEC_UNPACK_FLOAT_HI_EXPR;
+ c1 = VEC_UNPACK_FLOAT_LO_EXPR;
+ }
+ break;
+
+ case FIX_TRUNC_EXPR:
+ /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
+ VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
+ computing the operation. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (code == FIX_TRUNC_EXPR)
+ {
+ /* The signedness is determined from output operand. */
+ optab1 = optab_for_tree_code (c1, type, optab_default);
+ optab2 = optab_for_tree_code (c2, type, optab_default);
+ }
+ else
+ {
+ optab1 = optab_for_tree_code (c1, vectype, optab_default);
+ optab2 = optab_for_tree_code (c2, vectype, optab_default);
+ }
+
+ if (!optab1 || !optab2)
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
+ || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
+ == CODE_FOR_nothing)
+ return false;
+
+ /* Check if it's a multi-step conversion that can be done using intermediate
+ types. */
+ if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
+ || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
+ {
+ int i;
+ tree prev_type = vectype, intermediate_type;
+ enum machine_mode intermediate_mode, prev_mode = vec_mode;
+ optab optab3, optab4;
+
+ if (!CONVERT_EXPR_CODE_P (code))
+ return false;
+
+ *code1 = c1;
+ *code2 = c2;
+
+ /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
+ intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
+ to get to NARROW_VECTYPE, and fail if we do not. */
+ *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
+ for (i = 0; i < 3; i++)
+ {
+ intermediate_mode = insn_data[icode1].operand[0].mode;
+ intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
+ TYPE_UNSIGNED (prev_type));
+ optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
+ optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
+
+ if (!optab3 || !optab4
+ || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
+ == CODE_FOR_nothing
+ || insn_data[icode1].operand[0].mode != intermediate_mode
+ || (icode2 = optab2->handlers[(int) prev_mode].insn_code)
+ == CODE_FOR_nothing
+ || insn_data[icode2].operand[0].mode != intermediate_mode
+ || (icode1 = optab3->handlers[(int) intermediate_mode].insn_code)
+ == CODE_FOR_nothing
+ || (icode2 = optab4->handlers[(int) intermediate_mode].insn_code)
+ == CODE_FOR_nothing)
+ return false;
+
+ VEC_quick_push (tree, *interm_types, intermediate_type);
+ (*multi_step_cvt)++;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
+ && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
+ return true;
+
+ prev_type = intermediate_type;
+ prev_mode = intermediate_mode;
+ }
+
+ return false;
+ }
+
+ *code1 = c1;
+ *code2 = c2;
+ return true;
+}
+
+
+/* Function supportable_narrowing_operation
+
+ Check whether an operation represented by the code CODE is a
+ narrowing operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE).
+
+ Narrowing operations we currently support are NOP (CONVERT) and
+ FIX_TRUNC. This function checks if these operations are supported by
+ the target platform directly via vector tree-codes.
+
+ Output:
+ - CODE1 is the code of a vector operation to be used when
+ vectorizing the operation, if available.
+ - MULTI_STEP_CVT determines the number of required intermediate steps in
+ case of multi-step conversion (like int->short->char - in that case
+ MULTI_STEP_CVT will be 1).
+ - INTERM_TYPES contains the intermediate type required to perform the
+ narrowing operation (short in the above example). */
+
+bool
+supportable_narrowing_operation (enum tree_code code,
+ const_gimple stmt, tree vectype,
+ enum tree_code *code1, int *multi_step_cvt,
+ VEC (tree, heap) **interm_types)
+{
+ enum machine_mode vec_mode;
+ enum insn_code icode1;
+ optab optab1, interm_optab;
+ tree type = gimple_expr_type (stmt);
+ tree narrow_vectype = get_vectype_for_scalar_type (type);
+ enum tree_code c1;
+ tree intermediate_type, prev_type;
+ int i;
+
+ switch (code)
+ {
+ CASE_CONVERT:
+ c1 = VEC_PACK_TRUNC_EXPR;
+ break;
+
+ case FIX_TRUNC_EXPR:
+ c1 = VEC_PACK_FIX_TRUNC_EXPR;
+ break;
+
+ case FLOAT_EXPR:
+ /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
+ tree code and optabs used for computing the operation. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (code == FIX_TRUNC_EXPR)
+ /* The signedness is determined from output operand. */
+ optab1 = optab_for_tree_code (c1, type, optab_default);
+ else
+ optab1 = optab_for_tree_code (c1, vectype, optab_default);
+
+ if (!optab1)
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ if ((icode1 = optab_handler (optab1, vec_mode)->insn_code)
+ == CODE_FOR_nothing)
+ return false;
+
+ /* Check if it's a multi-step conversion that can be done using intermediate
+ types. */
+ if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
+ {
+ enum machine_mode intermediate_mode, prev_mode = vec_mode;
+
+ *code1 = c1;
+ prev_type = vectype;
+ /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
+ intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
+ to get to NARROW_VECTYPE, and fail if we do not. */
+ *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
+ for (i = 0; i < 3; i++)
+ {
+ intermediate_mode = insn_data[icode1].operand[0].mode;
+ intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
+ TYPE_UNSIGNED (prev_type));
+ interm_optab = optab_for_tree_code (c1, intermediate_type,
+ optab_default);
+ if (!interm_optab
+ || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
+ == CODE_FOR_nothing
+ || insn_data[icode1].operand[0].mode != intermediate_mode
+ || (icode1
+ = interm_optab->handlers[(int) intermediate_mode].insn_code)
+ == CODE_FOR_nothing)
+ return false;
+
+ VEC_quick_push (tree, *interm_types, intermediate_type);
+ (*multi_step_cvt)++;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
+ return true;
+
+ prev_type = intermediate_type;
+ prev_mode = intermediate_mode;
+ }
+
+ return false;
+ }
+
+ *code1 = c1;
+ return true;
+}
+
+
+/* Function reduction_code_for_scalar_code
+
+ Input:
+ CODE - tree_code of a reduction operations.
+
+ Output:
+ REDUC_CODE - the corresponding tree-code to be used to reduce the
+ vector of partial results into a single scalar result (which
+ will also reside in a vector).
+
+ Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
+
+bool
+reduction_code_for_scalar_code (enum tree_code code,
+ enum tree_code *reduc_code)
+{
+ switch (code)
+ {
+ case MAX_EXPR:
+ *reduc_code = REDUC_MAX_EXPR;
+ return true;
+
+ case MIN_EXPR:
+ *reduc_code = REDUC_MIN_EXPR;
+ return true;
+
+ case PLUS_EXPR:
+ *reduc_code = REDUC_PLUS_EXPR;
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
+ STMT is printed with a message MSG. */
+
+static void
+report_vect_op (gimple stmt, const char *msg)
+{
+ fprintf (vect_dump, "%s", msg);
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+}
+
+/* Function vect_is_simple_reduction
+
+ Detect a cross-iteration def-use cycle that represents a simple
+ reduction computation. We look for the following pattern:
+
+ loop_header:
+ a1 = phi < a0, a2 >
+ a3 = ...
+ a2 = operation (a3, a1)
+
+ such that:
+ 1. operation is commutative and associative and it is safe to
+ change the order of the computation.
+ 2. no uses for a2 in the loop (a2 is used out of the loop)
+ 3. no uses of a1 in the loop besides the reduction operation.
+
+ Condition 1 is tested here.
+ Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
+
+gimple
+vect_is_simple_reduction (loop_vec_info loop_info, gimple phi)
+{
+ struct loop *loop = (gimple_bb (phi))->loop_father;
+ struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
+ edge latch_e = loop_latch_edge (loop);
+ tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
+ gimple def_stmt, def1, def2;
+ enum tree_code code;
+ tree op1, op2;
+ tree type;
+ int nloop_uses;
+ tree name;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));
+
+ name = PHI_RESULT (phi);
+ nloop_uses = 0;
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
+ {
+ gimple use_stmt = USE_STMT (use_p);
+ if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
+ && vinfo_for_stmt (use_stmt)
+ && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
+ nloop_uses++;
+ if (nloop_uses > 1)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduction used in loop.");
+ return NULL;
+ }
+ }
+
+ if (TREE_CODE (loop_arg) != SSA_NAME)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "reduction: not ssa_name: ");
+ print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
+ }
+ return NULL;
+ }
+
+ def_stmt = SSA_NAME_DEF_STMT (loop_arg);
+ if (!def_stmt)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduction: no def_stmt.");
+ return NULL;
+ }
+
+ if (!is_gimple_assign (def_stmt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
+ return NULL;
+ }
+
+ name = gimple_assign_lhs (def_stmt);
+ nloop_uses = 0;
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
+ {
+ gimple use_stmt = USE_STMT (use_p);
+ if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
+ && vinfo_for_stmt (use_stmt)
+ && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
+ nloop_uses++;
+ if (nloop_uses > 1)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduction used in loop.");
+ return NULL;
+ }
+ }
+
+ code = gimple_assign_rhs_code (def_stmt);
+
+ if (!commutative_tree_code (code) || !associative_tree_code (code))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: not commutative/associative: ");
+ return NULL;
+ }
+
+ if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: not binary operation: ");
+ return NULL;
+ }
+
+ op1 = gimple_assign_rhs1 (def_stmt);
+ op2 = gimple_assign_rhs2 (def_stmt);
+ if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
+ return NULL;
+ }
+
+ /* Check that it's ok to change the order of the computation. */
+ type = TREE_TYPE (gimple_assign_lhs (def_stmt));
+ if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
+ || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "reduction: multiple types: operation type: ");
+ print_generic_expr (vect_dump, type, TDF_SLIM);
+ fprintf (vect_dump, ", operands types: ");
+ print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
+ fprintf (vect_dump, ",");
+ print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
+ }
+ return NULL;
+ }
+
+ /* Generally, when vectorizing a reduction we change the order of the
+ computation. This may change the behavior of the program in some
+ cases, so we need to check that this is ok. One exception is when
+ vectorizing an outer-loop: the inner-loop is executed sequentially,
+ and therefore vectorizing reductions in the inner-loop during
+ outer-loop vectorization is safe. */
+
+ /* CHECKME: check for !flag_finite_math_only too? */
+ if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
+ && !nested_in_vect_loop_p (vect_loop, def_stmt))
+ {
+ /* Changing the order of operations changes the semantics. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
+ return NULL;
+ }
+ else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
+ && !nested_in_vect_loop_p (vect_loop, def_stmt))
+ {
+ /* Changing the order of operations changes the semantics. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
+ return NULL;
+ }
+ else if (SAT_FIXED_POINT_TYPE_P (type))
+ {
+ /* Changing the order of operations changes the semantics. */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt,
+ "reduction: unsafe fixed-point math optimization: ");
+ return NULL;
+ }
+
+ /* reduction is safe. we're dealing with one of the following:
+ 1) integer arithmetic and no trapv
+ 2) floating point arithmetic, and special flags permit this optimization.
+ */
+ def1 = SSA_NAME_DEF_STMT (op1);
+ def2 = SSA_NAME_DEF_STMT (op2);
+ if (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: no defs for operands: ");
+ return NULL;
+ }
+
+
+ /* Check that one def is the reduction def, defined by PHI,
+ the other def is either defined in the loop ("vect_loop_def"),
+ or it's an induction (defined by a loop-header phi-node). */
+
+ if (def2 == phi
+ && flow_bb_inside_loop_p (loop, gimple_bb (def1))
+ && (is_gimple_assign (def1)
+ || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
+ || (gimple_code (def1) == GIMPLE_PHI
+ && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def
+ && !is_loop_header_bb_p (gimple_bb (def1)))))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "detected reduction:");
+ return def_stmt;
+ }
+ else if (def1 == phi
+ && flow_bb_inside_loop_p (loop, gimple_bb (def2))
+ && (is_gimple_assign (def2)
+ || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
+ || (gimple_code (def2) == GIMPLE_PHI
+ && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def
+ && !is_loop_header_bb_p (gimple_bb (def2)))))
+ {
+ /* Swap operands (just for simplicity - so that the rest of the code
+ can assume that the reduction variable is always the last (second)
+ argument). */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt ,
+ "detected reduction: need to swap operands:");
+ swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
+ gimple_assign_rhs2_ptr (def_stmt));
+ return def_stmt;
+ }
+ else
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ report_vect_op (def_stmt, "reduction: unknown pattern.");
+ return NULL;
+ }
+}
+
+
+/* Function vect_is_simple_iv_evolution.
+
+ FORNOW: A simple evolution of an induction variables in the loop is
+ considered a polynomial evolution with constant step. */
+
+bool
+vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
+ tree * step)
+{
+ tree init_expr;
+ tree step_expr;
+ tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
+
+ /* When there is no evolution in this loop, the evolution function
+ is not "simple". */
+ if (evolution_part == NULL_TREE)
+ return false;
+
+ /* When the evolution is a polynomial of degree >= 2
+ the evolution function is not "simple". */
+ if (tree_is_chrec (evolution_part))
+ return false;
+
+ step_expr = evolution_part;
+ init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "step: ");
+ print_generic_expr (vect_dump, step_expr, TDF_SLIM);
+ fprintf (vect_dump, ", init: ");
+ print_generic_expr (vect_dump, init_expr, TDF_SLIM);
+ }
+
+ *init = init_expr;
+ *step = step_expr;
+
+ if (TREE_CODE (step_expr) != INTEGER_CST)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "step unknown.");
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vectorize_loops.
+
+ Entry Point to loop vectorization phase. */
+
+unsigned
+vectorize_loops (void)
+{
+ unsigned int i;
+ unsigned int num_vectorized_loops = 0;
+ unsigned int vect_loops_num;
+ loop_iterator li;
+ struct loop *loop;
+
+ vect_loops_num = number_of_loops ();
+
+ /* Bail out if there are no loops. */
+ if (vect_loops_num <= 1)
+ return 0;
+
+ /* Fix the verbosity level if not defined explicitly by the user. */
+ vect_set_dump_settings ();
+
+ /* Allocate the bitmap that records which virtual variables that
+ need to be renamed. */
+ vect_memsyms_to_rename = BITMAP_ALLOC (NULL);
+
+ init_stmt_vec_info_vec ();
+
+ /* ----------- Analyze loops. ----------- */
+
+ /* If some loop was duplicated, it gets bigger number
+ than all previously defined loops. This fact allows us to run
+ only over initial loops skipping newly generated ones. */
+ FOR_EACH_LOOP (li, loop, 0)
+ if (optimize_loop_nest_for_speed_p (loop))
+ {
+ loop_vec_info loop_vinfo;
+
+ vect_loop_location = find_loop_location (loop);
+ loop_vinfo = vect_analyze_loop (loop);
+ loop->aux = loop_vinfo;
+
+ if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
+ continue;
+
+ vect_transform_loop (loop_vinfo);
+ num_vectorized_loops++;
+ }
+ vect_loop_location = UNKNOWN_LOC;
+
+ statistics_counter_event (cfun, "Vectorized loops", num_vectorized_loops);
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS)
+ || (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
+ && num_vectorized_loops > 0))
+ fprintf (vect_dump, "vectorized %u loops in function.\n",
+ num_vectorized_loops);
+
+ /* ----------- Finalize. ----------- */
+
+ BITMAP_FREE (vect_memsyms_to_rename);
+
+ for (i = 1; i < vect_loops_num; i++)
+ {
+ loop_vec_info loop_vinfo;
+
+ loop = get_loop (i);
+ if (!loop)
+ continue;
+ loop_vinfo = (loop_vec_info) loop->aux;
+ destroy_loop_vec_info (loop_vinfo, true);
+ loop->aux = NULL;
+ }
+
+ free_stmt_vec_info_vec ();
+
+ return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;
+}
+
+/* Increase alignment of global arrays to improve vectorization potential.
+ TODO:
+ - Consider also structs that have an array field.
+ - Use ipa analysis to prune arrays that can't be vectorized?
+ This should involve global alignment analysis and in the future also
+ array padding. */
+
+static unsigned int
+increase_alignment (void)
+{
+ struct varpool_node *vnode;
+
+ /* Increase the alignment of all global arrays for vectorization. */
+ for (vnode = varpool_nodes_queue;
+ vnode;
+ vnode = vnode->next_needed)
+ {
+ tree vectype, decl = vnode->decl;
+ unsigned int alignment;
+
+ if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
+ continue;
+ vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));
+ if (!vectype)
+ continue;
+ alignment = TYPE_ALIGN (vectype);
+ if (DECL_ALIGN (decl) >= alignment)
+ continue;
+
+ if (vect_can_force_dr_alignment_p (decl, alignment))
+ {
+ DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
+ DECL_USER_ALIGN (decl) = 1;
+ if (dump_file)
+ {
+ fprintf (dump_file, "Increasing alignment of decl: ");
+ print_generic_expr (dump_file, decl, TDF_SLIM);
+ }
+ }
+ }
+ return 0;
+}
+
+static bool
+gate_increase_alignment (void)
+{
+ return flag_section_anchors && flag_tree_vectorize;
+}
+
+struct simple_ipa_opt_pass pass_ipa_increase_alignment =
+{
+ {
+ SIMPLE_IPA_PASS,
+ "increase_alignment", /* name */
+ gate_increase_alignment, /* gate */
+ increase_alignment, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0 /* todo_flags_finish */
+ }
+};