aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/tree-data-ref.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/tree-data-ref.h')
-rw-r--r--gcc-4.4.0/gcc/tree-data-ref.h610
1 files changed, 610 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/tree-data-ref.h b/gcc-4.4.0/gcc/tree-data-ref.h
new file mode 100644
index 000000000..4a12f3946
--- /dev/null
+++ b/gcc-4.4.0/gcc/tree-data-ref.h
@@ -0,0 +1,610 @@
+/* Data references and dependences detectors.
+ Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
+ Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#ifndef GCC_TREE_DATA_REF_H
+#define GCC_TREE_DATA_REF_H
+
+#include "graphds.h"
+#include "lambda.h"
+#include "omega.h"
+#include "tree-chrec.h"
+
+/*
+ innermost_loop_behavior describes the evolution of the address of the memory
+ reference in the innermost enclosing loop. The address is expressed as
+ BASE + STEP * # of iteration, and base is further decomposed as the base
+ pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
+ constant offset (INIT). Examples, in loop nest
+
+ for (i = 0; i < 100; i++)
+ for (j = 3; j < 100; j++)
+
+ Example 1 Example 2
+ data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
+
+
+ innermost_loop_behavior
+ base_address &a p
+ offset i * D_i x
+ init 3 * D_j + offsetof (b) 28
+ step D_j 4
+
+ */
+struct innermost_loop_behavior
+{
+ tree base_address;
+ tree offset;
+ tree init;
+ tree step;
+
+ /* Alignment information. ALIGNED_TO is set to the largest power of two
+ that divides OFFSET. */
+ tree aligned_to;
+};
+
+/* Describes the evolutions of indices of the memory reference. The indices
+ are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
+ For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
+ (note that this reference does not have to be valid, if zero does not
+ belong to the range of the array; hence it is not recommended to use
+ BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
+ set to the loop-invariant part of the address of the object, except for
+ the constant offset. For the examples above,
+
+ base_object: a[0].b[0][0] *(p + x + 4B * j_0)
+ indices: {j_0, +, 1}_2 {16, +, 4}_2
+ {i_0, +, 1}_1
+ {j_0, +, 1}_2
+*/
+
+struct indices
+{
+ /* The object. */
+ tree base_object;
+
+ /* A list of chrecs. Access functions of the indices. */
+ VEC(tree,heap) *access_fns;
+};
+
+struct dr_alias
+{
+ /* The alias information that should be used for new pointers to this
+ location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
+ tree symbol_tag;
+ struct ptr_info_def *ptr_info;
+
+ /* The set of virtual operands corresponding to this memory reference,
+ serving as a description of the alias information for the memory
+ reference. This could be eliminated if we had alias oracle. */
+ bitmap vops;
+};
+
+typedef struct scop *scop_p;
+
+/* Each vector of the access matrix represents a linear access
+ function for a subscript. First elements correspond to the
+ leftmost indices, ie. for a[i][j] the first vector corresponds to
+ the subscript in "i". The elements of a vector are relative to
+ the loop nests in which the data reference is considered,
+ i.e. the vector is relative to the SCoP that provides the context
+ in which this data reference occurs.
+
+ For example, in
+
+ | loop_1
+ | loop_2
+ | a[i+3][2*j+n-1]
+
+ if "i" varies in loop_1 and "j" varies in loop_2, the access
+ matrix with respect to the loop nest {loop_1, loop_2} is:
+
+ | loop_1 loop_2 param_n cst
+ | 1 0 0 3
+ | 0 2 1 -1
+
+ whereas the access matrix with respect to loop_2 considers "i" as
+ a parameter:
+
+ | loop_2 param_i param_n cst
+ | 0 1 0 3
+ | 2 0 1 -1
+*/
+struct access_matrix
+{
+ VEC (loop_p, heap) *loop_nest;
+ int nb_induction_vars;
+ VEC (tree, heap) *parameters;
+ VEC (lambda_vector, gc) *matrix;
+};
+
+#define AM_LOOP_NEST(M) (M)->loop_nest
+#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
+#define AM_PARAMETERS(M) (M)->parameters
+#define AM_MATRIX(M) (M)->matrix
+#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
+#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
+#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
+#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
+#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
+
+/* Return the column in the access matrix of LOOP_NUM. */
+
+static inline int
+am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
+{
+ int i;
+ loop_p l;
+
+ for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
+ if (l->num == loop_num)
+ return i;
+
+ gcc_unreachable();
+}
+
+int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
+
+struct data_reference
+{
+ /* A pointer to the statement that contains this DR. */
+ gimple stmt;
+
+ /* A pointer to the memory reference. */
+ tree ref;
+
+ /* Auxiliary info specific to a pass. */
+ void *aux;
+
+ /* True when the data reference is in RHS of a stmt. */
+ bool is_read;
+
+ /* Behavior of the memory reference in the innermost loop. */
+ struct innermost_loop_behavior innermost;
+
+ /* Subscripts of this data reference. */
+ struct indices indices;
+
+ /* Alias information for the data reference. */
+ struct dr_alias alias;
+
+ /* The SCoP in which the data reference was analyzed. */
+ scop_p scop;
+
+ /* Matrix representation for the data access functions. */
+ struct access_matrix *access_matrix;
+};
+
+#define DR_SCOP(DR) (DR)->scop
+#define DR_STMT(DR) (DR)->stmt
+#define DR_REF(DR) (DR)->ref
+#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
+#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
+#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
+#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
+#define DR_IS_READ(DR) (DR)->is_read
+#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
+#define DR_OFFSET(DR) (DR)->innermost.offset
+#define DR_INIT(DR) (DR)->innermost.init
+#define DR_STEP(DR) (DR)->innermost.step
+#define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag
+#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
+#define DR_VOPS(DR) (DR)->alias.vops
+#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
+#define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
+
+typedef struct data_reference *data_reference_p;
+DEF_VEC_P(data_reference_p);
+DEF_VEC_ALLOC_P (data_reference_p, heap);
+
+enum data_dependence_direction {
+ dir_positive,
+ dir_negative,
+ dir_equal,
+ dir_positive_or_negative,
+ dir_positive_or_equal,
+ dir_negative_or_equal,
+ dir_star,
+ dir_independent
+};
+
+/* The description of the grid of iterations that overlap. At most
+ two loops are considered at the same time just now, hence at most
+ two functions are needed. For each of the functions, we store
+ the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
+ where x, y, ... are variables. */
+
+#define MAX_DIM 2
+
+/* Special values of N. */
+#define NO_DEPENDENCE 0
+#define NOT_KNOWN (MAX_DIM + 1)
+#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
+#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
+#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
+
+typedef VEC (tree, heap) *affine_fn;
+
+typedef struct
+{
+ unsigned n;
+ affine_fn fns[MAX_DIM];
+} conflict_function;
+
+/* What is a subscript? Given two array accesses a subscript is the
+ tuple composed of the access functions for a given dimension.
+ Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
+ subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
+ are stored in the data_dependence_relation structure under the form
+ of an array of subscripts. */
+
+struct subscript
+{
+ /* A description of the iterations for which the elements are
+ accessed twice. */
+ conflict_function *conflicting_iterations_in_a;
+ conflict_function *conflicting_iterations_in_b;
+
+ /* This field stores the information about the iteration domain
+ validity of the dependence relation. */
+ tree last_conflict;
+
+ /* Distance from the iteration that access a conflicting element in
+ A to the iteration that access this same conflicting element in
+ B. The distance is a tree scalar expression, i.e. a constant or a
+ symbolic expression, but certainly not a chrec function. */
+ tree distance;
+};
+
+typedef struct subscript *subscript_p;
+DEF_VEC_P(subscript_p);
+DEF_VEC_ALLOC_P (subscript_p, heap);
+
+#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
+#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
+#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
+#define SUB_DISTANCE(SUB) SUB->distance
+
+/* A data_dependence_relation represents a relation between two
+ data_references A and B. */
+
+struct data_dependence_relation
+{
+
+ struct data_reference *a;
+ struct data_reference *b;
+
+ /* A "yes/no/maybe" field for the dependence relation:
+
+ - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
+ relation between A and B, and the description of this relation
+ is given in the SUBSCRIPTS array,
+
+ - when "ARE_DEPENDENT == chrec_known", there is no dependence and
+ SUBSCRIPTS is empty,
+
+ - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
+ but the analyzer cannot be more specific. */
+ tree are_dependent;
+
+ /* For each subscript in the dependence test, there is an element in
+ this array. This is the attribute that labels the edge A->B of
+ the data_dependence_relation. */
+ VEC (subscript_p, heap) *subscripts;
+
+ /* The analyzed loop nest. */
+ VEC (loop_p, heap) *loop_nest;
+
+ /* The classic direction vector. */
+ VEC (lambda_vector, heap) *dir_vects;
+
+ /* The classic distance vector. */
+ VEC (lambda_vector, heap) *dist_vects;
+
+ /* An index in loop_nest for the innermost loop that varies for
+ this data dependence relation. */
+ unsigned inner_loop;
+
+ /* Is the dependence reversed with respect to the lexicographic order? */
+ bool reversed_p;
+
+ /* When the dependence relation is affine, it can be represented by
+ a distance vector. */
+ bool affine_p;
+
+ /* Set to true when the dependence relation is on the same data
+ access. */
+ bool self_reference_p;
+};
+
+typedef struct data_dependence_relation *ddr_p;
+DEF_VEC_P(ddr_p);
+DEF_VEC_ALLOC_P(ddr_p,heap);
+
+#define DDR_A(DDR) DDR->a
+#define DDR_B(DDR) DDR->b
+#define DDR_AFFINE_P(DDR) DDR->affine_p
+#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
+#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
+#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
+#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
+
+#define DDR_LOOP_NEST(DDR) DDR->loop_nest
+/* The size of the direction/distance vectors: the number of loops in
+ the loop nest. */
+#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
+#define DDR_INNER_LOOP(DDR) DDR->inner_loop
+#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
+
+#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
+#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
+#define DDR_NUM_DIST_VECTS(DDR) \
+ (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
+#define DDR_NUM_DIR_VECTS(DDR) \
+ (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
+#define DDR_DIR_VECT(DDR, I) \
+ VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
+#define DDR_DIST_VECT(DDR, I) \
+ VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
+#define DDR_REVERSED_P(DDR) DDR->reversed_p
+
+
+
+/* Describes a location of a memory reference. */
+
+typedef struct data_ref_loc_d
+{
+ /* Position of the memory reference. */
+ tree *pos;
+
+ /* True if the memory reference is read. */
+ bool is_read;
+} data_ref_loc;
+
+DEF_VEC_O (data_ref_loc);
+DEF_VEC_ALLOC_O (data_ref_loc, heap);
+
+bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
+bool dr_analyze_innermost (struct data_reference *);
+extern bool compute_data_dependences_for_loop (struct loop *, bool,
+ VEC (data_reference_p, heap) **,
+ VEC (ddr_p, heap) **);
+extern tree find_data_references_in_loop (struct loop *,
+ VEC (data_reference_p, heap) **);
+extern void print_direction_vector (FILE *, lambda_vector, int);
+extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
+extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
+extern void dump_subscript (FILE *, struct subscript *);
+extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
+extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
+extern void dump_data_reference (FILE *, struct data_reference *);
+extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
+extern void debug_data_dependence_relation (struct data_dependence_relation *);
+extern void dump_data_dependence_relation (FILE *,
+ struct data_dependence_relation *);
+extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
+extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
+extern void dump_data_dependence_direction (FILE *,
+ enum data_dependence_direction);
+extern void free_dependence_relation (struct data_dependence_relation *);
+extern void free_dependence_relations (VEC (ddr_p, heap) *);
+extern void free_data_ref (data_reference_p);
+extern void free_data_refs (VEC (data_reference_p, heap) *);
+extern bool find_data_references_in_stmt (struct loop *, gimple,
+ VEC (data_reference_p, heap) **);
+struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
+extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
+extern void compute_all_dependences (VEC (data_reference_p, heap) *,
+ VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
+ bool);
+
+extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
+extern bool dr_may_alias_p (const struct data_reference *,
+ const struct data_reference *);
+extern bool stmt_simple_memref_p (struct loop *, gimple, tree);
+
+/* Return true when the DDR contains two data references that have the
+ same access functions. */
+
+static inline bool
+same_access_functions (const struct data_dependence_relation *ddr)
+{
+ unsigned i;
+
+ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+ if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
+ DR_ACCESS_FN (DDR_B (ddr), i)))
+ return false;
+
+ return true;
+}
+
+/* Return true when DDR is an anti-dependence relation. */
+
+static inline bool
+ddr_is_anti_dependent (ddr_p ddr)
+{
+ return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
+ && DR_IS_READ (DDR_A (ddr))
+ && !DR_IS_READ (DDR_B (ddr))
+ && !same_access_functions (ddr));
+}
+
+/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
+
+static inline bool
+ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
+{
+ unsigned i;
+ ddr_p ddr;
+
+ for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
+ if (ddr_is_anti_dependent (ddr))
+ return true;
+
+ return false;
+}
+
+/* Return the dependence level for the DDR relation. */
+
+static inline unsigned
+ddr_dependence_level (ddr_p ddr)
+{
+ unsigned vector;
+ unsigned level = 0;
+
+ if (DDR_DIST_VECTS (ddr))
+ level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
+
+ for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
+ level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
+ DDR_NB_LOOPS (ddr)));
+ return level;
+}
+
+
+
+/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
+typedef struct rdg_vertex
+{
+ /* The statement represented by this vertex. */
+ gimple stmt;
+
+ /* True when the statement contains a write to memory. */
+ bool has_mem_write;
+
+ /* True when the statement contains a read from memory. */
+ bool has_mem_reads;
+} *rdg_vertex_p;
+
+#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
+#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
+#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
+#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
+#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
+#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
+
+void dump_rdg_vertex (FILE *, struct graph *, int);
+void debug_rdg_vertex (struct graph *, int);
+void dump_rdg_component (FILE *, struct graph *, int, bitmap);
+void debug_rdg_component (struct graph *, int);
+void dump_rdg (FILE *, struct graph *);
+void debug_rdg (struct graph *);
+void dot_rdg (struct graph *);
+int rdg_vertex_for_stmt (struct graph *, gimple);
+
+/* Data dependence type. */
+
+enum rdg_dep_type
+{
+ /* Read After Write (RAW). */
+ flow_dd = 'f',
+
+ /* Write After Read (WAR). */
+ anti_dd = 'a',
+
+ /* Write After Write (WAW). */
+ output_dd = 'o',
+
+ /* Read After Read (RAR). */
+ input_dd = 'i'
+};
+
+/* Dependence information attached to an edge of the RDG. */
+
+typedef struct rdg_edge
+{
+ /* Type of the dependence. */
+ enum rdg_dep_type type;
+
+ /* Levels of the dependence: the depth of the loops that carry the
+ dependence. */
+ unsigned level;
+
+ /* Dependence relation between data dependences, NULL when one of
+ the vertices is a scalar. */
+ ddr_p relation;
+} *rdg_edge_p;
+
+#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
+#define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
+#define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
+
+struct graph *build_rdg (struct loop *);
+struct graph *build_empty_rdg (int);
+void free_rdg (struct graph *);
+
+/* Return the index of the variable VAR in the LOOP_NEST array. */
+
+static inline int
+index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
+{
+ struct loop *loopi;
+ int var_index;
+
+ for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
+ var_index++)
+ if (loopi->num == var)
+ break;
+
+ return var_index;
+}
+
+void stores_from_loop (struct loop *, VEC (gimple, heap) **);
+void remove_similar_memory_refs (VEC (gimple, heap) **);
+bool rdg_defs_used_in_other_loops_p (struct graph *, int);
+bool have_similar_memory_accesses (gimple, gimple);
+
+/* Determines whether RDG vertices V1 and V2 access to similar memory
+ locations, in which case they have to be in the same partition. */
+
+static inline bool
+rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
+{
+ return have_similar_memory_accesses (RDG_STMT (rdg, v1),
+ RDG_STMT (rdg, v2));
+}
+
+/* In lambda-code.c */
+bool lambda_transform_legal_p (lambda_trans_matrix, int,
+ VEC (ddr_p, heap) *);
+void lambda_collect_parameters (VEC (data_reference_p, heap) *,
+ VEC (tree, heap) **);
+bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
+ VEC (tree, heap) *, VEC (loop_p, heap) *);
+
+/* In tree-data-ref.c */
+void split_constant_offset (tree , tree *, tree *);
+
+/* Strongly connected components of the reduced data dependence graph. */
+
+typedef struct rdg_component
+{
+ int num;
+ VEC (int, heap) *vertices;
+} *rdgc;
+
+DEF_VEC_P (rdgc);
+DEF_VEC_ALLOC_P (rdgc, heap);
+
+DEF_VEC_P (bitmap);
+DEF_VEC_ALLOC_P (bitmap, heap);
+
+#endif /* GCC_TREE_DATA_REF_H */