aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/sem_res.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/sem_res.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/sem_res.adb9688
1 files changed, 9688 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/ada/sem_res.adb b/gcc-4.4.0/gcc/ada/sem_res.adb
new file mode 100644
index 000000000..21369ae72
--- /dev/null
+++ b/gcc-4.4.0/gcc/ada/sem_res.adb
@@ -0,0 +1,9688 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ R E S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Debug_A; use Debug_A;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Disp; use Exp_Disp;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Nmake; use Nmake;
+with Nlists; use Nlists;
+with Opt; use Opt;
+with Output; use Output;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aggr; use Sem_Aggr;
+with Sem_Attr; use Sem_Attr;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch4; use Sem_Ch4;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Elab; use Sem_Elab;
+with Sem_Eval; use Sem_Eval;
+with Sem_Intr; use Sem_Intr;
+with Sem_Util; use Sem_Util;
+with Sem_Type; use Sem_Type;
+with Sem_Warn; use Sem_Warn;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Stringt; use Stringt;
+with Style; use Style;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Sem_Res is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ -- Second pass (top-down) type checking and overload resolution procedures
+ -- Typ is the type required by context. These procedures propagate the
+ -- type information recursively to the descendants of N. If the node
+ -- is not overloaded, its Etype is established in the first pass. If
+ -- overloaded, the Resolve routines set the correct type. For arith.
+ -- operators, the Etype is the base type of the context.
+
+ -- Note that Resolve_Attribute is separated off in Sem_Attr
+
+ procedure Check_Discriminant_Use (N : Node_Id);
+ -- Enforce the restrictions on the use of discriminants when constraining
+ -- a component of a discriminated type (record or concurrent type).
+
+ procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
+ -- Given a node for an operator associated with type T, check that
+ -- the operator is visible. Operators all of whose operands are
+ -- universal must be checked for visibility during resolution
+ -- because their type is not determinable based on their operands.
+
+ procedure Check_Fully_Declared_Prefix
+ (Typ : Entity_Id;
+ Pref : Node_Id);
+ -- Check that the type of the prefix of a dereference is not incomplete
+
+ function Check_Infinite_Recursion (N : Node_Id) return Boolean;
+ -- Given a call node, N, which is known to occur immediately within the
+ -- subprogram being called, determines whether it is a detectable case of
+ -- an infinite recursion, and if so, outputs appropriate messages. Returns
+ -- True if an infinite recursion is detected, and False otherwise.
+
+ procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
+ -- If the type of the object being initialized uses the secondary stack
+ -- directly or indirectly, create a transient scope for the call to the
+ -- init proc. This is because we do not create transient scopes for the
+ -- initialization of individual components within the init proc itself.
+ -- Could be optimized away perhaps?
+
+ function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
+ -- Determine whether E is an access type declared by an access
+ -- declaration, and not an (anonymous) allocator type.
+
+ function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
+ -- Utility to check whether the name in the call is a predefined
+ -- operator, in which case the call is made into an operator node.
+ -- An instance of an intrinsic conversion operation may be given
+ -- an operator name, but is not treated like an operator.
+
+ procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
+ -- If a default expression in entry call N depends on the discriminants
+ -- of the task, it must be replaced with a reference to the discriminant
+ -- of the task being called.
+
+ procedure Resolve_Op_Concat_Arg
+ (N : Node_Id;
+ Arg : Node_Id;
+ Typ : Entity_Id;
+ Is_Comp : Boolean);
+ -- Internal procedure for Resolve_Op_Concat to resolve one operand of
+ -- concatenation operator. The operand is either of the array type or of
+ -- the component type. If the operand is an aggregate, and the component
+ -- type is composite, this is ambiguous if component type has aggregates.
+
+ procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
+ -- Does the first part of the work of Resolve_Op_Concat
+
+ procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
+ -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
+ -- has been resolved. See Resolve_Op_Concat for details.
+
+ procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
+ procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
+
+ function Operator_Kind
+ (Op_Name : Name_Id;
+ Is_Binary : Boolean) return Node_Kind;
+ -- Utility to map the name of an operator into the corresponding Node. Used
+ -- by other node rewriting procedures.
+
+ procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
+ -- Resolve actuals of call, and add default expressions for missing ones.
+ -- N is the Node_Id for the subprogram call, and Nam is the entity of the
+ -- called subprogram.
+
+ procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
+ -- Called from Resolve_Call, when the prefix denotes an entry or element
+ -- of entry family. Actuals are resolved as for subprograms, and the node
+ -- is rebuilt as an entry call. Also called for protected operations. Typ
+ -- is the context type, which is used when the operation is a protected
+ -- function with no arguments, and the return value is indexed.
+
+ procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
+ -- A call to a user-defined intrinsic operator is rewritten as a call
+ -- to the corresponding predefined operator, with suitable conversions.
+
+ procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
+ -- Ditto, for unary operators (only arithmetic ones)
+
+ procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
+ -- If an operator node resolves to a call to a user-defined operator,
+ -- rewrite the node as a function call.
+
+ procedure Make_Call_Into_Operator
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Op_Id : Entity_Id);
+ -- Inverse transformation: if an operator is given in functional notation,
+ -- then after resolving the node, transform into an operator node, so
+ -- that operands are resolved properly. Recall that predefined operators
+ -- do not have a full signature and special resolution rules apply.
+
+ procedure Rewrite_Renamed_Operator
+ (N : Node_Id;
+ Op : Entity_Id;
+ Typ : Entity_Id);
+ -- An operator can rename another, e.g. in an instantiation. In that
+ -- case, the proper operator node must be constructed and resolved.
+
+ procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
+ -- The String_Literal_Subtype is built for all strings that are not
+ -- operands of a static concatenation operation. If the argument is
+ -- not a N_String_Literal node, then the call has no effect.
+
+ procedure Set_Slice_Subtype (N : Node_Id);
+ -- Build subtype of array type, with the range specified by the slice
+
+ procedure Simplify_Type_Conversion (N : Node_Id);
+ -- Called after N has been resolved and evaluated, but before range checks
+ -- have been applied. Currently simplifies a combination of floating-point
+ -- to integer conversion and Truncation attribute.
+
+ function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
+ -- A universal_fixed expression in an universal context is unambiguous
+ -- if there is only one applicable fixed point type. Determining whether
+ -- there is only one requires a search over all visible entities, and
+ -- happens only in very pathological cases (see 6115-006).
+
+ function Valid_Conversion
+ (N : Node_Id;
+ Target : Entity_Id;
+ Operand : Node_Id) return Boolean;
+ -- Verify legality rules given in 4.6 (8-23). Target is the target
+ -- type of the conversion, which may be an implicit conversion of
+ -- an actual parameter to an anonymous access type (in which case
+ -- N denotes the actual parameter and N = Operand).
+
+ -------------------------
+ -- Ambiguous_Character --
+ -------------------------
+
+ procedure Ambiguous_Character (C : Node_Id) is
+ E : Entity_Id;
+
+ begin
+ if Nkind (C) = N_Character_Literal then
+ Error_Msg_N ("ambiguous character literal", C);
+
+ -- First the ones in Standard
+
+ Error_Msg_N
+ ("\\possible interpretation: Character!", C);
+ Error_Msg_N
+ ("\\possible interpretation: Wide_Character!", C);
+
+ -- Include Wide_Wide_Character in Ada 2005 mode
+
+ if Ada_Version >= Ada_05 then
+ Error_Msg_N
+ ("\\possible interpretation: Wide_Wide_Character!", C);
+ end if;
+
+ -- Now any other types that match
+
+ E := Current_Entity (C);
+ while Present (E) loop
+ Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
+ E := Homonym (E);
+ end loop;
+ end if;
+ end Ambiguous_Character;
+
+ -------------------------
+ -- Analyze_And_Resolve --
+ -------------------------
+
+ procedure Analyze_And_Resolve (N : Node_Id) is
+ begin
+ Analyze (N);
+ Resolve (N);
+ end Analyze_And_Resolve;
+
+ procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
+ begin
+ Analyze (N);
+ Resolve (N, Typ);
+ end Analyze_And_Resolve;
+
+ -- Version withs check(s) suppressed
+
+ procedure Analyze_And_Resolve
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Suppress : Check_Id)
+ is
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ if Suppress = All_Checks then
+ declare
+ Svg : constant Suppress_Array := Scope_Suppress;
+ begin
+ Scope_Suppress := (others => True);
+ Analyze_And_Resolve (N, Typ);
+ Scope_Suppress := Svg;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress (Suppress);
+
+ begin
+ Scope_Suppress (Suppress) := True;
+ Analyze_And_Resolve (N, Typ);
+ Scope_Suppress (Suppress) := Svg;
+ end;
+ end if;
+
+ if Current_Scope /= Scop
+ and then Scope_Is_Transient
+ then
+ -- This can only happen if a transient scope was created
+ -- for an inner expression, which will be removed upon
+ -- completion of the analysis of an enclosing construct.
+ -- The transient scope must have the suppress status of
+ -- the enclosing environment, not of this Analyze call.
+
+ Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
+ Scope_Suppress;
+ end if;
+ end Analyze_And_Resolve;
+
+ procedure Analyze_And_Resolve
+ (N : Node_Id;
+ Suppress : Check_Id)
+ is
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ if Suppress = All_Checks then
+ declare
+ Svg : constant Suppress_Array := Scope_Suppress;
+ begin
+ Scope_Suppress := (others => True);
+ Analyze_And_Resolve (N);
+ Scope_Suppress := Svg;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress (Suppress);
+
+ begin
+ Scope_Suppress (Suppress) := True;
+ Analyze_And_Resolve (N);
+ Scope_Suppress (Suppress) := Svg;
+ end;
+ end if;
+
+ if Current_Scope /= Scop
+ and then Scope_Is_Transient
+ then
+ Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
+ Scope_Suppress;
+ end if;
+ end Analyze_And_Resolve;
+
+ ----------------------------
+ -- Check_Discriminant_Use --
+ ----------------------------
+
+ procedure Check_Discriminant_Use (N : Node_Id) is
+ PN : constant Node_Id := Parent (N);
+ Disc : constant Entity_Id := Entity (N);
+ P : Node_Id;
+ D : Node_Id;
+
+ begin
+ -- Any use in a spec-expression is legal
+
+ if In_Spec_Expression then
+ null;
+
+ elsif Nkind (PN) = N_Range then
+
+ -- Discriminant cannot be used to constrain a scalar type
+
+ P := Parent (PN);
+
+ if Nkind (P) = N_Range_Constraint
+ and then Nkind (Parent (P)) = N_Subtype_Indication
+ and then Nkind (Parent (Parent (P))) = N_Component_Definition
+ then
+ Error_Msg_N ("discriminant cannot constrain scalar type", N);
+
+ elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
+
+ -- The following check catches the unusual case where
+ -- a discriminant appears within an index constraint
+ -- that is part of a larger expression within a constraint
+ -- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
+ -- For now we only check case of record components, and
+ -- note that a similar check should also apply in the
+ -- case of discriminant constraints below. ???
+
+ -- Note that the check for N_Subtype_Declaration below is to
+ -- detect the valid use of discriminants in the constraints of a
+ -- subtype declaration when this subtype declaration appears
+ -- inside the scope of a record type (which is syntactically
+ -- illegal, but which may be created as part of derived type
+ -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
+ -- for more info.
+
+ if Ekind (Current_Scope) = E_Record_Type
+ and then Scope (Disc) = Current_Scope
+ and then not
+ (Nkind (Parent (P)) = N_Subtype_Indication
+ and then
+ Nkind_In (Parent (Parent (P)), N_Component_Definition,
+ N_Subtype_Declaration)
+ and then Paren_Count (N) = 0)
+ then
+ Error_Msg_N
+ ("discriminant must appear alone in component constraint", N);
+ return;
+ end if;
+
+ -- Detect a common error:
+
+ -- type R (D : Positive := 100) is record
+ -- Name : String (1 .. D);
+ -- end record;
+
+ -- The default value causes an object of type R to be allocated
+ -- with room for Positive'Last characters. The RM does not mandate
+ -- the allocation of the maximum size, but that is what GNAT does
+ -- so we should warn the programmer that there is a problem.
+
+ Check_Large : declare
+ SI : Node_Id;
+ T : Entity_Id;
+ TB : Node_Id;
+ CB : Entity_Id;
+
+ function Large_Storage_Type (T : Entity_Id) return Boolean;
+ -- Return True if type T has a large enough range that
+ -- any array whose index type covered the whole range of
+ -- the type would likely raise Storage_Error.
+
+ ------------------------
+ -- Large_Storage_Type --
+ ------------------------
+
+ function Large_Storage_Type (T : Entity_Id) return Boolean is
+ begin
+ -- The type is considered large if its bounds are known at
+ -- compile time and if it requires at least as many bits as
+ -- a Positive to store the possible values.
+
+ return Compile_Time_Known_Value (Type_Low_Bound (T))
+ and then Compile_Time_Known_Value (Type_High_Bound (T))
+ and then
+ Minimum_Size (T, Biased => True) >=
+ RM_Size (Standard_Positive);
+ end Large_Storage_Type;
+
+ -- Start of processing for Check_Large
+
+ begin
+ -- Check that the Disc has a large range
+
+ if not Large_Storage_Type (Etype (Disc)) then
+ goto No_Danger;
+ end if;
+
+ -- If the enclosing type is limited, we allocate only the
+ -- default value, not the maximum, and there is no need for
+ -- a warning.
+
+ if Is_Limited_Type (Scope (Disc)) then
+ goto No_Danger;
+ end if;
+
+ -- Check that it is the high bound
+
+ if N /= High_Bound (PN)
+ or else No (Discriminant_Default_Value (Disc))
+ then
+ goto No_Danger;
+ end if;
+
+ -- Check the array allows a large range at this bound.
+ -- First find the array
+
+ SI := Parent (P);
+
+ if Nkind (SI) /= N_Subtype_Indication then
+ goto No_Danger;
+ end if;
+
+ T := Entity (Subtype_Mark (SI));
+
+ if not Is_Array_Type (T) then
+ goto No_Danger;
+ end if;
+
+ -- Next, find the dimension
+
+ TB := First_Index (T);
+ CB := First (Constraints (P));
+ while True
+ and then Present (TB)
+ and then Present (CB)
+ and then CB /= PN
+ loop
+ Next_Index (TB);
+ Next (CB);
+ end loop;
+
+ if CB /= PN then
+ goto No_Danger;
+ end if;
+
+ -- Now, check the dimension has a large range
+
+ if not Large_Storage_Type (Etype (TB)) then
+ goto No_Danger;
+ end if;
+
+ -- Warn about the danger
+
+ Error_Msg_N
+ ("?creation of & object may raise Storage_Error!",
+ Scope (Disc));
+
+ <<No_Danger>>
+ null;
+
+ end Check_Large;
+ end if;
+
+ -- Legal case is in index or discriminant constraint
+
+ elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
+ N_Discriminant_Association)
+ then
+ if Paren_Count (N) > 0 then
+ Error_Msg_N
+ ("discriminant in constraint must appear alone", N);
+
+ elsif Nkind (N) = N_Expanded_Name
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N
+ ("discriminant must appear alone as a direct name", N);
+ end if;
+
+ return;
+
+ -- Otherwise, context is an expression. It should not be within
+ -- (i.e. a subexpression of) a constraint for a component.
+
+ else
+ D := PN;
+ P := Parent (PN);
+ while not Nkind_In (P, N_Component_Declaration,
+ N_Subtype_Indication,
+ N_Entry_Declaration)
+ loop
+ D := P;
+ P := Parent (P);
+ exit when No (P);
+ end loop;
+
+ -- If the discriminant is used in an expression that is a bound
+ -- of a scalar type, an Itype is created and the bounds are attached
+ -- to its range, not to the original subtype indication. Such use
+ -- is of course a double fault.
+
+ if (Nkind (P) = N_Subtype_Indication
+ and then Nkind_In (Parent (P), N_Component_Definition,
+ N_Derived_Type_Definition)
+ and then D = Constraint (P))
+
+ -- The constraint itself may be given by a subtype indication,
+ -- rather than by a more common discrete range.
+
+ or else (Nkind (P) = N_Subtype_Indication
+ and then
+ Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
+ or else Nkind (P) = N_Entry_Declaration
+ or else Nkind (D) = N_Defining_Identifier
+ then
+ Error_Msg_N
+ ("discriminant in constraint must appear alone", N);
+ end if;
+ end if;
+ end Check_Discriminant_Use;
+
+ --------------------------------
+ -- Check_For_Visible_Operator --
+ --------------------------------
+
+ procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
+ begin
+ if Is_Invisible_Operator (N, T) then
+ Error_Msg_NE
+ ("operator for} is not directly visible!", N, First_Subtype (T));
+ Error_Msg_N ("use clause would make operation legal!", N);
+ end if;
+ end Check_For_Visible_Operator;
+
+ ----------------------------------
+ -- Check_Fully_Declared_Prefix --
+ ----------------------------------
+
+ procedure Check_Fully_Declared_Prefix
+ (Typ : Entity_Id;
+ Pref : Node_Id)
+ is
+ begin
+ -- Check that the designated type of the prefix of a dereference is
+ -- not an incomplete type. This cannot be done unconditionally, because
+ -- dereferences of private types are legal in default expressions. This
+ -- case is taken care of in Check_Fully_Declared, called below. There
+ -- are also 2005 cases where it is legal for the prefix to be unfrozen.
+
+ -- This consideration also applies to similar checks for allocators,
+ -- qualified expressions, and type conversions.
+
+ -- An additional exception concerns other per-object expressions that
+ -- are not directly related to component declarations, in particular
+ -- representation pragmas for tasks. These will be per-object
+ -- expressions if they depend on discriminants or some global entity.
+ -- If the task has access discriminants, the designated type may be
+ -- incomplete at the point the expression is resolved. This resolution
+ -- takes place within the body of the initialization procedure, where
+ -- the discriminant is replaced by its discriminal.
+
+ if Is_Entity_Name (Pref)
+ and then Ekind (Entity (Pref)) = E_In_Parameter
+ then
+ null;
+
+ -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
+ -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
+ -- Analyze_Object_Renaming, and Freeze_Entity.
+
+ elsif Ada_Version >= Ada_05
+ and then Is_Entity_Name (Pref)
+ and then Ekind (Directly_Designated_Type (Etype (Pref))) =
+ E_Incomplete_Type
+ and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
+ then
+ null;
+ else
+ Check_Fully_Declared (Typ, Parent (Pref));
+ end if;
+ end Check_Fully_Declared_Prefix;
+
+ ------------------------------
+ -- Check_Infinite_Recursion --
+ ------------------------------
+
+ function Check_Infinite_Recursion (N : Node_Id) return Boolean is
+ P : Node_Id;
+ C : Node_Id;
+
+ function Same_Argument_List return Boolean;
+ -- Check whether list of actuals is identical to list of formals
+ -- of called function (which is also the enclosing scope).
+
+ ------------------------
+ -- Same_Argument_List --
+ ------------------------
+
+ function Same_Argument_List return Boolean is
+ A : Node_Id;
+ F : Entity_Id;
+ Subp : Entity_Id;
+
+ begin
+ if not Is_Entity_Name (Name (N)) then
+ return False;
+ else
+ Subp := Entity (Name (N));
+ end if;
+
+ F := First_Formal (Subp);
+ A := First_Actual (N);
+ while Present (F) and then Present (A) loop
+ if not Is_Entity_Name (A)
+ or else Entity (A) /= F
+ then
+ return False;
+ end if;
+
+ Next_Actual (A);
+ Next_Formal (F);
+ end loop;
+
+ return True;
+ end Same_Argument_List;
+
+ -- Start of processing for Check_Infinite_Recursion
+
+ begin
+ -- Special case, if this is a procedure call and is a call to the
+ -- current procedure with the same argument list, then this is for
+ -- sure an infinite recursion and we insert a call to raise SE.
+
+ if Is_List_Member (N)
+ and then List_Length (List_Containing (N)) = 1
+ and then Same_Argument_List
+ then
+ declare
+ P : constant Node_Id := Parent (N);
+ begin
+ if Nkind (P) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (P)) = N_Subprogram_Body
+ and then Is_Empty_List (Declarations (Parent (P)))
+ then
+ Error_Msg_N ("!?infinite recursion", N);
+ Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
+ Insert_Action (N,
+ Make_Raise_Storage_Error (Sloc (N),
+ Reason => SE_Infinite_Recursion));
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- If not that special case, search up tree, quitting if we reach a
+ -- construct (e.g. a conditional) that tells us that this is not a
+ -- case for an infinite recursion warning.
+
+ C := N;
+ loop
+ P := Parent (C);
+
+ -- If no parent, then we were not inside a subprogram, this can for
+ -- example happen when processing certain pragmas in a spec. Just
+ -- return False in this case.
+
+ if No (P) then
+ return False;
+ end if;
+
+ -- Done if we get to subprogram body, this is definitely an infinite
+ -- recursion case if we did not find anything to stop us.
+
+ exit when Nkind (P) = N_Subprogram_Body;
+
+ -- If appearing in conditional, result is false
+
+ if Nkind_In (P, N_Or_Else,
+ N_And_Then,
+ N_If_Statement,
+ N_Case_Statement)
+ then
+ return False;
+
+ elsif Nkind (P) = N_Handled_Sequence_Of_Statements
+ and then C /= First (Statements (P))
+ then
+ -- If the call is the expression of a return statement and the
+ -- actuals are identical to the formals, it's worth a warning.
+ -- However, we skip this if there is an immediately preceding
+ -- raise statement, since the call is never executed.
+
+ -- Furthermore, this corresponds to a common idiom:
+
+ -- function F (L : Thing) return Boolean is
+ -- begin
+ -- raise Program_Error;
+ -- return F (L);
+ -- end F;
+
+ -- for generating a stub function
+
+ if Nkind (Parent (N)) = N_Simple_Return_Statement
+ and then Same_Argument_List
+ then
+ exit when not Is_List_Member (Parent (N));
+
+ -- OK, return statement is in a statement list, look for raise
+
+ declare
+ Nod : Node_Id;
+
+ begin
+ -- Skip past N_Freeze_Entity nodes generated by expansion
+
+ Nod := Prev (Parent (N));
+ while Present (Nod)
+ and then Nkind (Nod) = N_Freeze_Entity
+ loop
+ Prev (Nod);
+ end loop;
+
+ -- If no raise statement, give warning
+
+ exit when Nkind (Nod) /= N_Raise_Statement
+ and then
+ (Nkind (Nod) not in N_Raise_xxx_Error
+ or else Present (Condition (Nod)));
+ end;
+ end if;
+
+ return False;
+
+ else
+ C := P;
+ end if;
+ end loop;
+
+ Error_Msg_N ("!?possible infinite recursion", N);
+ Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
+
+ return True;
+ end Check_Infinite_Recursion;
+
+ -------------------------------
+ -- Check_Initialization_Call --
+ -------------------------------
+
+ procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
+ Typ : constant Entity_Id := Etype (First_Formal (Nam));
+
+ function Uses_SS (T : Entity_Id) return Boolean;
+ -- Check whether the creation of an object of the type will involve
+ -- use of the secondary stack. If T is a record type, this is true
+ -- if the expression for some component uses the secondary stack, e.g.
+ -- through a call to a function that returns an unconstrained value.
+ -- False if T is controlled, because cleanups occur elsewhere.
+
+ -------------
+ -- Uses_SS --
+ -------------
+
+ function Uses_SS (T : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+ Expr : Node_Id;
+ Full_Type : Entity_Id := Underlying_Type (T);
+
+ begin
+ -- Normally we want to use the underlying type, but if it's not set
+ -- then continue with T.
+
+ if not Present (Full_Type) then
+ Full_Type := T;
+ end if;
+
+ if Is_Controlled (Full_Type) then
+ return False;
+
+ elsif Is_Array_Type (Full_Type) then
+ return Uses_SS (Component_Type (Full_Type));
+
+ elsif Is_Record_Type (Full_Type) then
+ Comp := First_Component (Full_Type);
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ and then Nkind (Parent (Comp)) = N_Component_Declaration
+ then
+ -- The expression for a dynamic component may be rewritten
+ -- as a dereference, so retrieve original node.
+
+ Expr := Original_Node (Expression (Parent (Comp)));
+
+ -- Return True if the expression is a call to a function
+ -- (including an attribute function such as Image) with
+ -- a result that requires a transient scope.
+
+ if (Nkind (Expr) = N_Function_Call
+ or else (Nkind (Expr) = N_Attribute_Reference
+ and then Present (Expressions (Expr))))
+ and then Requires_Transient_Scope (Etype (Expr))
+ then
+ return True;
+
+ elsif Uses_SS (Etype (Comp)) then
+ return True;
+ end if;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Uses_SS;
+
+ -- Start of processing for Check_Initialization_Call
+
+ begin
+ -- Establish a transient scope if the type needs it
+
+ if Uses_SS (Typ) then
+ Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
+ end if;
+ end Check_Initialization_Call;
+
+ ------------------------------
+ -- Check_Parameterless_Call --
+ ------------------------------
+
+ procedure Check_Parameterless_Call (N : Node_Id) is
+ Nam : Node_Id;
+
+ function Prefix_Is_Access_Subp return Boolean;
+ -- If the prefix is of an access_to_subprogram type, the node must be
+ -- rewritten as a call. Ditto if the prefix is overloaded and all its
+ -- interpretations are access to subprograms.
+
+ ---------------------------
+ -- Prefix_Is_Access_Subp --
+ ---------------------------
+
+ function Prefix_Is_Access_Subp return Boolean is
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (N) then
+ return
+ Ekind (Etype (N)) = E_Subprogram_Type
+ and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
+ else
+ Get_First_Interp (N, I, It);
+ while Present (It.Typ) loop
+ if Ekind (It.Typ) /= E_Subprogram_Type
+ or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
+ then
+ return False;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ return True;
+ end if;
+ end Prefix_Is_Access_Subp;
+
+ -- Start of processing for Check_Parameterless_Call
+
+ begin
+ -- Defend against junk stuff if errors already detected
+
+ if Total_Errors_Detected /= 0 then
+ if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
+ return;
+ elsif Nkind (N) in N_Has_Chars
+ and then Chars (N) in Error_Name_Or_No_Name
+ then
+ return;
+ end if;
+
+ Require_Entity (N);
+ end if;
+
+ -- If the context expects a value, and the name is a procedure, this is
+ -- most likely a missing 'Access. Don't try to resolve the parameterless
+ -- call, error will be caught when the outer call is analyzed.
+
+ if Is_Entity_Name (N)
+ and then Ekind (Entity (N)) = E_Procedure
+ and then not Is_Overloaded (N)
+ and then
+ Nkind_In (Parent (N), N_Parameter_Association,
+ N_Function_Call,
+ N_Procedure_Call_Statement)
+ then
+ return;
+ end if;
+
+ -- Rewrite as call if overloadable entity that is (or could be, in the
+ -- overloaded case) a function call. If we know for sure that the entity
+ -- is an enumeration literal, we do not rewrite it.
+
+ if (Is_Entity_Name (N)
+ and then Is_Overloadable (Entity (N))
+ and then (Ekind (Entity (N)) /= E_Enumeration_Literal
+ or else Is_Overloaded (N)))
+
+ -- Rewrite as call if it is an explicit deference of an expression of
+ -- a subprogram access type, and the subprogram type is not that of a
+ -- procedure or entry.
+
+ or else
+ (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
+
+ -- Rewrite as call if it is a selected component which is a function,
+ -- this is the case of a call to a protected function (which may be
+ -- overloaded with other protected operations).
+
+ or else
+ (Nkind (N) = N_Selected_Component
+ and then (Ekind (Entity (Selector_Name (N))) = E_Function
+ or else
+ ((Ekind (Entity (Selector_Name (N))) = E_Entry
+ or else
+ Ekind (Entity (Selector_Name (N))) = E_Procedure)
+ and then Is_Overloaded (Selector_Name (N)))))
+
+ -- If one of the above three conditions is met, rewrite as call.
+ -- Apply the rewriting only once.
+
+ then
+ if Nkind (Parent (N)) /= N_Function_Call
+ or else N /= Name (Parent (N))
+ then
+ Nam := New_Copy (N);
+
+ -- If overloaded, overload set belongs to new copy
+
+ Save_Interps (N, Nam);
+
+ -- Change node to parameterless function call (note that the
+ -- Parameter_Associations associations field is left set to Empty,
+ -- its normal default value since there are no parameters)
+
+ Change_Node (N, N_Function_Call);
+ Set_Name (N, Nam);
+ Set_Sloc (N, Sloc (Nam));
+ Analyze_Call (N);
+ end if;
+
+ elsif Nkind (N) = N_Parameter_Association then
+ Check_Parameterless_Call (Explicit_Actual_Parameter (N));
+ end if;
+ end Check_Parameterless_Call;
+
+ -----------------------------
+ -- Is_Definite_Access_Type --
+ -----------------------------
+
+ function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
+ Btyp : constant Entity_Id := Base_Type (E);
+ begin
+ return Ekind (Btyp) = E_Access_Type
+ or else (Ekind (Btyp) = E_Access_Subprogram_Type
+ and then Comes_From_Source (Btyp));
+ end Is_Definite_Access_Type;
+
+ ----------------------
+ -- Is_Predefined_Op --
+ ----------------------
+
+ function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
+ begin
+ return Is_Intrinsic_Subprogram (Nam)
+ and then not Is_Generic_Instance (Nam)
+ and then Chars (Nam) in Any_Operator_Name
+ and then (No (Alias (Nam))
+ or else Is_Predefined_Op (Alias (Nam)));
+ end Is_Predefined_Op;
+
+ -----------------------------
+ -- Make_Call_Into_Operator --
+ -----------------------------
+
+ procedure Make_Call_Into_Operator
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Op_Id : Entity_Id)
+ is
+ Op_Name : constant Name_Id := Chars (Op_Id);
+ Act1 : Node_Id := First_Actual (N);
+ Act2 : Node_Id := Next_Actual (Act1);
+ Error : Boolean := False;
+ Func : constant Entity_Id := Entity (Name (N));
+ Is_Binary : constant Boolean := Present (Act2);
+ Op_Node : Node_Id;
+ Opnd_Type : Entity_Id;
+ Orig_Type : Entity_Id := Empty;
+ Pack : Entity_Id;
+
+ type Kind_Test is access function (E : Entity_Id) return Boolean;
+
+ function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
+ -- If the operand is not universal, and the operator is given by a
+ -- expanded name, verify that the operand has an interpretation with
+ -- a type defined in the given scope of the operator.
+
+ function Type_In_P (Test : Kind_Test) return Entity_Id;
+ -- Find a type of the given class in the package Pack that contains
+ -- the operator.
+
+ ---------------------------
+ -- Operand_Type_In_Scope --
+ ---------------------------
+
+ function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
+ Nod : constant Node_Id := Right_Opnd (Op_Node);
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (Nod) then
+ return Scope (Base_Type (Etype (Nod))) = S;
+
+ else
+ Get_First_Interp (Nod, I, It);
+ while Present (It.Typ) loop
+ if Scope (Base_Type (It.Typ)) = S then
+ return True;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ return False;
+ end if;
+ end Operand_Type_In_Scope;
+
+ ---------------
+ -- Type_In_P --
+ ---------------
+
+ function Type_In_P (Test : Kind_Test) return Entity_Id is
+ E : Entity_Id;
+
+ function In_Decl return Boolean;
+ -- Verify that node is not part of the type declaration for the
+ -- candidate type, which would otherwise be invisible.
+
+ -------------
+ -- In_Decl --
+ -------------
+
+ function In_Decl return Boolean is
+ Decl_Node : constant Node_Id := Parent (E);
+ N2 : Node_Id;
+
+ begin
+ N2 := N;
+
+ if Etype (E) = Any_Type then
+ return True;
+
+ elsif No (Decl_Node) then
+ return False;
+
+ else
+ while Present (N2)
+ and then Nkind (N2) /= N_Compilation_Unit
+ loop
+ if N2 = Decl_Node then
+ return True;
+ else
+ N2 := Parent (N2);
+ end if;
+ end loop;
+
+ return False;
+ end if;
+ end In_Decl;
+
+ -- Start of processing for Type_In_P
+
+ begin
+ -- If the context type is declared in the prefix package, this
+ -- is the desired base type.
+
+ if Scope (Base_Type (Typ)) = Pack
+ and then Test (Typ)
+ then
+ return Base_Type (Typ);
+
+ else
+ E := First_Entity (Pack);
+ while Present (E) loop
+ if Test (E)
+ and then not In_Decl
+ then
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return Empty;
+ end if;
+ end Type_In_P;
+
+ -- Start of processing for Make_Call_Into_Operator
+
+ begin
+ Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
+
+ -- Binary operator
+
+ if Is_Binary then
+ Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
+ Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
+ Save_Interps (Act1, Left_Opnd (Op_Node));
+ Save_Interps (Act2, Right_Opnd (Op_Node));
+ Act1 := Left_Opnd (Op_Node);
+ Act2 := Right_Opnd (Op_Node);
+
+ -- Unary operator
+
+ else
+ Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
+ Save_Interps (Act1, Right_Opnd (Op_Node));
+ Act1 := Right_Opnd (Op_Node);
+ end if;
+
+ -- If the operator is denoted by an expanded name, and the prefix is
+ -- not Standard, but the operator is a predefined one whose scope is
+ -- Standard, then this is an implicit_operator, inserted as an
+ -- interpretation by the procedure of the same name. This procedure
+ -- overestimates the presence of implicit operators, because it does
+ -- not examine the type of the operands. Verify now that the operand
+ -- type appears in the given scope. If right operand is universal,
+ -- check the other operand. In the case of concatenation, either
+ -- argument can be the component type, so check the type of the result.
+ -- If both arguments are literals, look for a type of the right kind
+ -- defined in the given scope. This elaborate nonsense is brought to
+ -- you courtesy of b33302a. The type itself must be frozen, so we must
+ -- find the type of the proper class in the given scope.
+
+ -- A final wrinkle is the multiplication operator for fixed point
+ -- types, which is defined in Standard only, and not in the scope of
+ -- the fixed_point type itself.
+
+ if Nkind (Name (N)) = N_Expanded_Name then
+ Pack := Entity (Prefix (Name (N)));
+
+ -- If the entity being called is defined in the given package,
+ -- it is a renaming of a predefined operator, and known to be
+ -- legal.
+
+ if Scope (Entity (Name (N))) = Pack
+ and then Pack /= Standard_Standard
+ then
+ null;
+
+ -- Visibility does not need to be checked in an instance: if the
+ -- operator was not visible in the generic it has been diagnosed
+ -- already, else there is an implicit copy of it in the instance.
+
+ elsif In_Instance then
+ null;
+
+ elsif (Op_Name = Name_Op_Multiply
+ or else Op_Name = Name_Op_Divide)
+ and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
+ and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
+ then
+ if Pack /= Standard_Standard then
+ Error := True;
+ end if;
+
+ -- Ada 2005, AI-420: Predefined equality on Universal_Access
+ -- is available.
+
+ elsif Ada_Version >= Ada_05
+ and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
+ and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
+ then
+ null;
+
+ else
+ Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
+
+ if Op_Name = Name_Op_Concat then
+ Opnd_Type := Base_Type (Typ);
+
+ elsif (Scope (Opnd_Type) = Standard_Standard
+ and then Is_Binary)
+ or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
+ and then Is_Binary
+ and then not Comes_From_Source (Opnd_Type))
+ then
+ Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
+ end if;
+
+ if Scope (Opnd_Type) = Standard_Standard then
+
+ -- Verify that the scope contains a type that corresponds to
+ -- the given literal. Optimize the case where Pack is Standard.
+
+ if Pack /= Standard_Standard then
+
+ if Opnd_Type = Universal_Integer then
+ Orig_Type := Type_In_P (Is_Integer_Type'Access);
+
+ elsif Opnd_Type = Universal_Real then
+ Orig_Type := Type_In_P (Is_Real_Type'Access);
+
+ elsif Opnd_Type = Any_String then
+ Orig_Type := Type_In_P (Is_String_Type'Access);
+
+ elsif Opnd_Type = Any_Access then
+ Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
+
+ elsif Opnd_Type = Any_Composite then
+ Orig_Type := Type_In_P (Is_Composite_Type'Access);
+
+ if Present (Orig_Type) then
+ if Has_Private_Component (Orig_Type) then
+ Orig_Type := Empty;
+ else
+ Set_Etype (Act1, Orig_Type);
+
+ if Is_Binary then
+ Set_Etype (Act2, Orig_Type);
+ end if;
+ end if;
+ end if;
+
+ else
+ Orig_Type := Empty;
+ end if;
+
+ Error := No (Orig_Type);
+ end if;
+
+ elsif Ekind (Opnd_Type) = E_Allocator_Type
+ and then No (Type_In_P (Is_Definite_Access_Type'Access))
+ then
+ Error := True;
+
+ -- If the type is defined elsewhere, and the operator is not
+ -- defined in the given scope (by a renaming declaration, e.g.)
+ -- then this is an error as well. If an extension of System is
+ -- present, and the type may be defined there, Pack must be
+ -- System itself.
+
+ elsif Scope (Opnd_Type) /= Pack
+ and then Scope (Op_Id) /= Pack
+ and then (No (System_Aux_Id)
+ or else Scope (Opnd_Type) /= System_Aux_Id
+ or else Pack /= Scope (System_Aux_Id))
+ then
+ if not Is_Overloaded (Right_Opnd (Op_Node)) then
+ Error := True;
+ else
+ Error := not Operand_Type_In_Scope (Pack);
+ end if;
+
+ elsif Pack = Standard_Standard
+ and then not Operand_Type_In_Scope (Standard_Standard)
+ then
+ Error := True;
+ end if;
+ end if;
+
+ if Error then
+ Error_Msg_Node_2 := Pack;
+ Error_Msg_NE
+ ("& not declared in&", N, Selector_Name (Name (N)));
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+ end if;
+
+ Set_Chars (Op_Node, Op_Name);
+
+ if not Is_Private_Type (Etype (N)) then
+ Set_Etype (Op_Node, Base_Type (Etype (N)));
+ else
+ Set_Etype (Op_Node, Etype (N));
+ end if;
+
+ -- If this is a call to a function that renames a predefined equality,
+ -- the renaming declaration provides a type that must be used to
+ -- resolve the operands. This must be done now because resolution of
+ -- the equality node will not resolve any remaining ambiguity, and it
+ -- assumes that the first operand is not overloaded.
+
+ if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
+ and then Ekind (Func) = E_Function
+ and then Is_Overloaded (Act1)
+ then
+ Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
+ Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
+ end if;
+
+ Set_Entity (Op_Node, Op_Id);
+ Generate_Reference (Op_Id, N, ' ');
+
+ -- Do rewrite setting Comes_From_Source on the result if the original
+ -- call came from source. Although it is not strictly the case that the
+ -- operator as such comes from the source, logically it corresponds
+ -- exactly to the function call in the source, so it should be marked
+ -- this way (e.g. to make sure that validity checks work fine).
+
+ declare
+ CS : constant Boolean := Comes_From_Source (N);
+ begin
+ Rewrite (N, Op_Node);
+ Set_Comes_From_Source (N, CS);
+ end;
+
+ -- If this is an arithmetic operator and the result type is private,
+ -- the operands and the result must be wrapped in conversion to
+ -- expose the underlying numeric type and expand the proper checks,
+ -- e.g. on division.
+
+ if Is_Private_Type (Typ) then
+ case Nkind (N) is
+ when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
+ N_Op_Expon | N_Op_Mod | N_Op_Rem =>
+ Resolve_Intrinsic_Operator (N, Typ);
+
+ when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
+ Resolve_Intrinsic_Unary_Operator (N, Typ);
+
+ when others =>
+ Resolve (N, Typ);
+ end case;
+ else
+ Resolve (N, Typ);
+ end if;
+
+ -- For predefined operators on literals, the operation freezes
+ -- their type.
+
+ if Present (Orig_Type) then
+ Set_Etype (Act1, Orig_Type);
+ Freeze_Expression (Act1);
+ end if;
+ end Make_Call_Into_Operator;
+
+ -------------------
+ -- Operator_Kind --
+ -------------------
+
+ function Operator_Kind
+ (Op_Name : Name_Id;
+ Is_Binary : Boolean) return Node_Kind
+ is
+ Kind : Node_Kind;
+
+ begin
+ if Is_Binary then
+ if Op_Name = Name_Op_And then
+ Kind := N_Op_And;
+ elsif Op_Name = Name_Op_Or then
+ Kind := N_Op_Or;
+ elsif Op_Name = Name_Op_Xor then
+ Kind := N_Op_Xor;
+ elsif Op_Name = Name_Op_Eq then
+ Kind := N_Op_Eq;
+ elsif Op_Name = Name_Op_Ne then
+ Kind := N_Op_Ne;
+ elsif Op_Name = Name_Op_Lt then
+ Kind := N_Op_Lt;
+ elsif Op_Name = Name_Op_Le then
+ Kind := N_Op_Le;
+ elsif Op_Name = Name_Op_Gt then
+ Kind := N_Op_Gt;
+ elsif Op_Name = Name_Op_Ge then
+ Kind := N_Op_Ge;
+ elsif Op_Name = Name_Op_Add then
+ Kind := N_Op_Add;
+ elsif Op_Name = Name_Op_Subtract then
+ Kind := N_Op_Subtract;
+ elsif Op_Name = Name_Op_Concat then
+ Kind := N_Op_Concat;
+ elsif Op_Name = Name_Op_Multiply then
+ Kind := N_Op_Multiply;
+ elsif Op_Name = Name_Op_Divide then
+ Kind := N_Op_Divide;
+ elsif Op_Name = Name_Op_Mod then
+ Kind := N_Op_Mod;
+ elsif Op_Name = Name_Op_Rem then
+ Kind := N_Op_Rem;
+ elsif Op_Name = Name_Op_Expon then
+ Kind := N_Op_Expon;
+ else
+ raise Program_Error;
+ end if;
+
+ -- Unary operators
+
+ else
+ if Op_Name = Name_Op_Add then
+ Kind := N_Op_Plus;
+ elsif Op_Name = Name_Op_Subtract then
+ Kind := N_Op_Minus;
+ elsif Op_Name = Name_Op_Abs then
+ Kind := N_Op_Abs;
+ elsif Op_Name = Name_Op_Not then
+ Kind := N_Op_Not;
+ else
+ raise Program_Error;
+ end if;
+ end if;
+
+ return Kind;
+ end Operator_Kind;
+
+ ----------------------------
+ -- Preanalyze_And_Resolve --
+ ----------------------------
+
+ procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
+ Save_Full_Analysis : constant Boolean := Full_Analysis;
+
+ begin
+ Full_Analysis := False;
+ Expander_Mode_Save_And_Set (False);
+
+ -- We suppress all checks for this analysis, since the checks will
+ -- be applied properly, and in the right location, when the default
+ -- expression is reanalyzed and reexpanded later on.
+
+ Analyze_And_Resolve (N, T, Suppress => All_Checks);
+
+ Expander_Mode_Restore;
+ Full_Analysis := Save_Full_Analysis;
+ end Preanalyze_And_Resolve;
+
+ -- Version without context type
+
+ procedure Preanalyze_And_Resolve (N : Node_Id) is
+ Save_Full_Analysis : constant Boolean := Full_Analysis;
+
+ begin
+ Full_Analysis := False;
+ Expander_Mode_Save_And_Set (False);
+
+ Analyze (N);
+ Resolve (N, Etype (N), Suppress => All_Checks);
+
+ Expander_Mode_Restore;
+ Full_Analysis := Save_Full_Analysis;
+ end Preanalyze_And_Resolve;
+
+ ----------------------------------
+ -- Replace_Actual_Discriminants --
+ ----------------------------------
+
+ procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Tsk : Node_Id := Empty;
+
+ function Process_Discr (Nod : Node_Id) return Traverse_Result;
+
+ -------------------
+ -- Process_Discr --
+ -------------------
+
+ function Process_Discr (Nod : Node_Id) return Traverse_Result is
+ Ent : Entity_Id;
+
+ begin
+ if Nkind (Nod) = N_Identifier then
+ Ent := Entity (Nod);
+
+ if Present (Ent)
+ and then Ekind (Ent) = E_Discriminant
+ then
+ Rewrite (Nod,
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
+ Selector_Name => Make_Identifier (Loc, Chars (Ent))));
+
+ Set_Etype (Nod, Etype (Ent));
+ end if;
+
+ end if;
+
+ return OK;
+ end Process_Discr;
+
+ procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
+
+ -- Start of processing for Replace_Actual_Discriminants
+
+ begin
+ if not Expander_Active then
+ return;
+ end if;
+
+ if Nkind (Name (N)) = N_Selected_Component then
+ Tsk := Prefix (Name (N));
+
+ elsif Nkind (Name (N)) = N_Indexed_Component then
+ Tsk := Prefix (Prefix (Name (N)));
+ end if;
+
+ if No (Tsk) then
+ return;
+ else
+ Replace_Discrs (Default);
+ end if;
+ end Replace_Actual_Discriminants;
+
+ -------------
+ -- Resolve --
+ -------------
+
+ procedure Resolve (N : Node_Id; Typ : Entity_Id) is
+ Ambiguous : Boolean := False;
+ Ctx_Type : Entity_Id := Typ;
+ Expr_Type : Entity_Id := Empty; -- prevent junk warning
+ Err_Type : Entity_Id := Empty;
+ Found : Boolean := False;
+ From_Lib : Boolean;
+ I : Interp_Index;
+ I1 : Interp_Index := 0; -- prevent junk warning
+ It : Interp;
+ It1 : Interp;
+ Seen : Entity_Id := Empty; -- prevent junk warning
+
+ function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
+ -- Determine whether a node comes from a predefined library unit or
+ -- Standard.
+
+ procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
+ -- Try and fix up a literal so that it matches its expected type. New
+ -- literals are manufactured if necessary to avoid cascaded errors.
+
+ procedure Resolution_Failed;
+ -- Called when attempt at resolving current expression fails
+
+ ------------------------------------
+ -- Comes_From_Predefined_Lib_Unit --
+ -------------------------------------
+
+ function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
+ begin
+ return
+ Sloc (Nod) = Standard_Location
+ or else Is_Predefined_File_Name (Unit_File_Name (
+ Get_Source_Unit (Sloc (Nod))));
+ end Comes_From_Predefined_Lib_Unit;
+
+ --------------------
+ -- Patch_Up_Value --
+ --------------------
+
+ procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
+ begin
+ if Nkind (N) = N_Integer_Literal
+ and then Is_Real_Type (Typ)
+ then
+ Rewrite (N,
+ Make_Real_Literal (Sloc (N),
+ Realval => UR_From_Uint (Intval (N))));
+ Set_Etype (N, Universal_Real);
+ Set_Is_Static_Expression (N);
+
+ elsif Nkind (N) = N_Real_Literal
+ and then Is_Integer_Type (Typ)
+ then
+ Rewrite (N,
+ Make_Integer_Literal (Sloc (N),
+ Intval => UR_To_Uint (Realval (N))));
+ Set_Etype (N, Universal_Integer);
+ Set_Is_Static_Expression (N);
+
+ elsif Nkind (N) = N_String_Literal
+ and then Is_Character_Type (Typ)
+ then
+ Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
+ Rewrite (N,
+ Make_Character_Literal (Sloc (N),
+ Chars => Name_Find,
+ Char_Literal_Value =>
+ UI_From_Int (Character'Pos ('A'))));
+ Set_Etype (N, Any_Character);
+ Set_Is_Static_Expression (N);
+
+ elsif Nkind (N) /= N_String_Literal
+ and then Is_String_Type (Typ)
+ then
+ Rewrite (N,
+ Make_String_Literal (Sloc (N),
+ Strval => End_String));
+
+ elsif Nkind (N) = N_Range then
+ Patch_Up_Value (Low_Bound (N), Typ);
+ Patch_Up_Value (High_Bound (N), Typ);
+ end if;
+ end Patch_Up_Value;
+
+ -----------------------
+ -- Resolution_Failed --
+ -----------------------
+
+ procedure Resolution_Failed is
+ begin
+ Patch_Up_Value (N, Typ);
+ Set_Etype (N, Typ);
+ Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
+ Set_Is_Overloaded (N, False);
+
+ -- The caller will return without calling the expander, so we need
+ -- to set the analyzed flag. Note that it is fine to set Analyzed
+ -- to True even if we are in the middle of a shallow analysis,
+ -- (see the spec of sem for more details) since this is an error
+ -- situation anyway, and there is no point in repeating the
+ -- analysis later (indeed it won't work to repeat it later, since
+ -- we haven't got a clear resolution of which entity is being
+ -- referenced.)
+
+ Set_Analyzed (N, True);
+ return;
+ end Resolution_Failed;
+
+ -- Start of processing for Resolve
+
+ begin
+ if N = Error then
+ return;
+ end if;
+
+ -- Access attribute on remote subprogram cannot be used for
+ -- a non-remote access-to-subprogram type.
+
+ if Nkind (N) = N_Attribute_Reference
+ and then (Attribute_Name (N) = Name_Access
+ or else Attribute_Name (N) = Name_Unrestricted_Access
+ or else Attribute_Name (N) = Name_Unchecked_Access)
+ and then Comes_From_Source (N)
+ and then Is_Entity_Name (Prefix (N))
+ and then Is_Subprogram (Entity (Prefix (N)))
+ and then Is_Remote_Call_Interface (Entity (Prefix (N)))
+ and then not Is_Remote_Access_To_Subprogram_Type (Typ)
+ then
+ Error_Msg_N
+ ("prefix must statically denote a non-remote subprogram", N);
+ end if;
+
+ From_Lib := Comes_From_Predefined_Lib_Unit (N);
+
+ -- If the context is a Remote_Access_To_Subprogram, access attributes
+ -- must be resolved with the corresponding fat pointer. There is no need
+ -- to check for the attribute name since the return type of an
+ -- attribute is never a remote type.
+
+ if Nkind (N) = N_Attribute_Reference
+ and then Comes_From_Source (N)
+ and then (Is_Remote_Call_Interface (Typ)
+ or else Is_Remote_Types (Typ))
+ then
+ declare
+ Attr : constant Attribute_Id :=
+ Get_Attribute_Id (Attribute_Name (N));
+ Pref : constant Node_Id := Prefix (N);
+ Decl : Node_Id;
+ Spec : Node_Id;
+ Is_Remote : Boolean := True;
+
+ begin
+ -- Check that Typ is a remote access-to-subprogram type
+
+ if Is_Remote_Access_To_Subprogram_Type (Typ) then
+ -- Prefix (N) must statically denote a remote subprogram
+ -- declared in a package specification.
+
+ if Attr = Attribute_Access then
+ Decl := Unit_Declaration_Node (Entity (Pref));
+
+ if Nkind (Decl) = N_Subprogram_Body then
+ Spec := Corresponding_Spec (Decl);
+
+ if not No (Spec) then
+ Decl := Unit_Declaration_Node (Spec);
+ end if;
+ end if;
+
+ Spec := Parent (Decl);
+
+ if not Is_Entity_Name (Prefix (N))
+ or else Nkind (Spec) /= N_Package_Specification
+ or else
+ not Is_Remote_Call_Interface (Defining_Entity (Spec))
+ then
+ Is_Remote := False;
+ Error_Msg_N
+ ("prefix must statically denote a remote subprogram ",
+ N);
+ end if;
+ end if;
+
+ -- If we are generating code for a distributed program.
+ -- perform semantic checks against the corresponding
+ -- remote entities.
+
+ if (Attr = Attribute_Access
+ or else Attr = Attribute_Unchecked_Access
+ or else Attr = Attribute_Unrestricted_Access)
+ and then Expander_Active
+ and then Get_PCS_Name /= Name_No_DSA
+ then
+ Check_Subtype_Conformant
+ (New_Id => Entity (Prefix (N)),
+ Old_Id => Designated_Type
+ (Corresponding_Remote_Type (Typ)),
+ Err_Loc => N);
+
+ if Is_Remote then
+ Process_Remote_AST_Attribute (N, Typ);
+ end if;
+ end if;
+ end if;
+ end;
+ end if;
+
+ Debug_A_Entry ("resolving ", N);
+
+ if Comes_From_Source (N) then
+ if Is_Fixed_Point_Type (Typ) then
+ Check_Restriction (No_Fixed_Point, N);
+
+ elsif Is_Floating_Point_Type (Typ)
+ and then Typ /= Universal_Real
+ and then Typ /= Any_Real
+ then
+ Check_Restriction (No_Floating_Point, N);
+ end if;
+ end if;
+
+ -- Return if already analyzed
+
+ if Analyzed (N) then
+ Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
+ return;
+
+ -- Return if type = Any_Type (previous error encountered)
+
+ elsif Etype (N) = Any_Type then
+ Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
+ return;
+ end if;
+
+ Check_Parameterless_Call (N);
+
+ -- If not overloaded, then we know the type, and all that needs doing
+ -- is to check that this type is compatible with the context.
+
+ if not Is_Overloaded (N) then
+ Found := Covers (Typ, Etype (N));
+ Expr_Type := Etype (N);
+
+ -- In the overloaded case, we must select the interpretation that
+ -- is compatible with the context (i.e. the type passed to Resolve)
+
+ else
+ -- Loop through possible interpretations
+
+ Get_First_Interp (N, I, It);
+ Interp_Loop : while Present (It.Typ) loop
+
+ -- We are only interested in interpretations that are compatible
+ -- with the expected type, any other interpretations are ignored.
+
+ if not Covers (Typ, It.Typ) then
+ if Debug_Flag_V then
+ Write_Str (" interpretation incompatible with context");
+ Write_Eol;
+ end if;
+
+ else
+ -- Skip the current interpretation if it is disabled by an
+ -- abstract operator. This action is performed only when the
+ -- type against which we are resolving is the same as the
+ -- type of the interpretation.
+
+ if Ada_Version >= Ada_05
+ and then It.Typ = Typ
+ and then Typ /= Universal_Integer
+ and then Typ /= Universal_Real
+ and then Present (It.Abstract_Op)
+ then
+ goto Continue;
+ end if;
+
+ -- First matching interpretation
+
+ if not Found then
+ Found := True;
+ I1 := I;
+ Seen := It.Nam;
+ Expr_Type := It.Typ;
+
+ -- Matching interpretation that is not the first, maybe an
+ -- error, but there are some cases where preference rules are
+ -- used to choose between the two possibilities. These and
+ -- some more obscure cases are handled in Disambiguate.
+
+ else
+ -- If the current statement is part of a predefined library
+ -- unit, then all interpretations which come from user level
+ -- packages should not be considered.
+
+ if From_Lib
+ and then not Comes_From_Predefined_Lib_Unit (It.Nam)
+ then
+ goto Continue;
+ end if;
+
+ Error_Msg_Sloc := Sloc (Seen);
+ It1 := Disambiguate (N, I1, I, Typ);
+
+ -- Disambiguation has succeeded. Skip the remaining
+ -- interpretations.
+
+ if It1 /= No_Interp then
+ Seen := It1.Nam;
+ Expr_Type := It1.Typ;
+
+ while Present (It.Typ) loop
+ Get_Next_Interp (I, It);
+ end loop;
+
+ else
+ -- Before we issue an ambiguity complaint, check for
+ -- the case of a subprogram call where at least one
+ -- of the arguments is Any_Type, and if so, suppress
+ -- the message, since it is a cascaded error.
+
+ if Nkind_In (N, N_Function_Call,
+ N_Procedure_Call_Statement)
+ then
+ declare
+ A : Node_Id;
+ E : Node_Id;
+
+ begin
+ A := First_Actual (N);
+ while Present (A) loop
+ E := A;
+
+ if Nkind (E) = N_Parameter_Association then
+ E := Explicit_Actual_Parameter (E);
+ end if;
+
+ if Etype (E) = Any_Type then
+ if Debug_Flag_V then
+ Write_Str ("Any_Type in call");
+ Write_Eol;
+ end if;
+
+ exit Interp_Loop;
+ end if;
+
+ Next_Actual (A);
+ end loop;
+ end;
+
+ elsif Nkind (N) in N_Binary_Op
+ and then (Etype (Left_Opnd (N)) = Any_Type
+ or else Etype (Right_Opnd (N)) = Any_Type)
+ then
+ exit Interp_Loop;
+
+ elsif Nkind (N) in N_Unary_Op
+ and then Etype (Right_Opnd (N)) = Any_Type
+ then
+ exit Interp_Loop;
+ end if;
+
+ -- Not that special case, so issue message using the
+ -- flag Ambiguous to control printing of the header
+ -- message only at the start of an ambiguous set.
+
+ if not Ambiguous then
+ if Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Explicit_Dereference
+ then
+ Error_Msg_N
+ ("ambiguous expression "
+ & "(cannot resolve indirect call)!", N);
+ else
+ Error_Msg_NE
+ ("ambiguous expression (cannot resolve&)!",
+ N, It.Nam);
+ end if;
+
+ Ambiguous := True;
+
+ if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("\\possible interpretation (inherited)#!", N);
+ else
+ Error_Msg_N ("\\possible interpretation#!", N);
+ end if;
+ end if;
+
+ Error_Msg_Sloc := Sloc (It.Nam);
+
+ -- By default, the error message refers to the candidate
+ -- interpretation. But if it is a predefined operator, it
+ -- is implicitly declared at the declaration of the type
+ -- of the operand. Recover the sloc of that declaration
+ -- for the error message.
+
+ if Nkind (N) in N_Op
+ and then Scope (It.Nam) = Standard_Standard
+ and then not Is_Overloaded (Right_Opnd (N))
+ and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
+ Standard_Standard
+ then
+ Err_Type := First_Subtype (Etype (Right_Opnd (N)));
+
+ if Comes_From_Source (Err_Type)
+ and then Present (Parent (Err_Type))
+ then
+ Error_Msg_Sloc := Sloc (Parent (Err_Type));
+ end if;
+
+ elsif Nkind (N) in N_Binary_Op
+ and then Scope (It.Nam) = Standard_Standard
+ and then not Is_Overloaded (Left_Opnd (N))
+ and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
+ Standard_Standard
+ then
+ Err_Type := First_Subtype (Etype (Left_Opnd (N)));
+
+ if Comes_From_Source (Err_Type)
+ and then Present (Parent (Err_Type))
+ then
+ Error_Msg_Sloc := Sloc (Parent (Err_Type));
+ end if;
+
+ -- If this is an indirect call, use the subprogram_type
+ -- in the message, to have a meaningful location.
+ -- Indicate as well if this is an inherited operation,
+ -- created by a type declaration.
+
+ elsif Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Explicit_Dereference
+ and then Is_Type (It.Nam)
+ then
+ Err_Type := It.Nam;
+ Error_Msg_Sloc :=
+ Sloc (Associated_Node_For_Itype (Err_Type));
+ else
+ Err_Type := Empty;
+ end if;
+
+ if Nkind (N) in N_Op
+ and then Scope (It.Nam) = Standard_Standard
+ and then Present (Err_Type)
+ then
+ -- Special-case the message for universal_fixed
+ -- operators, which are not declared with the type
+ -- of the operand, but appear forever in Standard.
+
+ if It.Typ = Universal_Fixed
+ and then Scope (It.Nam) = Standard_Standard
+ then
+ Error_Msg_N
+ ("\\possible interpretation as " &
+ "universal_fixed operation " &
+ "(RM 4.5.5 (19))", N);
+ else
+ Error_Msg_N
+ ("\\possible interpretation (predefined)#!", N);
+ end if;
+
+ elsif
+ Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
+ then
+ Error_Msg_N
+ ("\\possible interpretation (inherited)#!", N);
+ else
+ Error_Msg_N ("\\possible interpretation#!", N);
+ end if;
+
+ end if;
+ end if;
+
+ -- We have a matching interpretation, Expr_Type is the type
+ -- from this interpretation, and Seen is the entity.
+
+ -- For an operator, just set the entity name. The type will be
+ -- set by the specific operator resolution routine.
+
+ if Nkind (N) in N_Op then
+ Set_Entity (N, Seen);
+ Generate_Reference (Seen, N);
+
+ elsif Nkind (N) = N_Character_Literal then
+ Set_Etype (N, Expr_Type);
+
+ -- For an explicit dereference, attribute reference, range,
+ -- short-circuit form (which is not an operator node), or call
+ -- with a name that is an explicit dereference, there is
+ -- nothing to be done at this point.
+
+ elsif Nkind_In (N, N_Explicit_Dereference,
+ N_Attribute_Reference,
+ N_And_Then,
+ N_Indexed_Component,
+ N_Or_Else,
+ N_Range,
+ N_Selected_Component,
+ N_Slice)
+ or else Nkind (Name (N)) = N_Explicit_Dereference
+ then
+ null;
+
+ -- For procedure or function calls, set the type of the name,
+ -- and also the entity pointer for the prefix
+
+ elsif Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
+ and then (Is_Entity_Name (Name (N))
+ or else Nkind (Name (N)) = N_Operator_Symbol)
+ then
+ Set_Etype (Name (N), Expr_Type);
+ Set_Entity (Name (N), Seen);
+ Generate_Reference (Seen, Name (N));
+
+ elsif Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Selected_Component
+ then
+ Set_Etype (Name (N), Expr_Type);
+ Set_Entity (Selector_Name (Name (N)), Seen);
+ Generate_Reference (Seen, Selector_Name (Name (N)));
+
+ -- For all other cases, just set the type of the Name
+
+ else
+ Set_Etype (Name (N), Expr_Type);
+ end if;
+
+ end if;
+
+ <<Continue>>
+
+ -- Move to next interpretation
+
+ exit Interp_Loop when No (It.Typ);
+
+ Get_Next_Interp (I, It);
+ end loop Interp_Loop;
+ end if;
+
+ -- At this stage Found indicates whether or not an acceptable
+ -- interpretation exists. If not, then we have an error, except
+ -- that if the context is Any_Type as a result of some other error,
+ -- then we suppress the error report.
+
+ if not Found then
+ if Typ /= Any_Type then
+
+ -- If type we are looking for is Void, then this is the procedure
+ -- call case, and the error is simply that what we gave is not a
+ -- procedure name (we think of procedure calls as expressions with
+ -- types internally, but the user doesn't think of them this way!)
+
+ if Typ = Standard_Void_Type then
+
+ -- Special case message if function used as a procedure
+
+ if Nkind (N) = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (N))
+ and then Ekind (Entity (Name (N))) = E_Function
+ then
+ Error_Msg_NE
+ ("cannot use function & in a procedure call",
+ Name (N), Entity (Name (N)));
+
+ -- Otherwise give general message (not clear what cases this
+ -- covers, but no harm in providing for them!)
+
+ else
+ Error_Msg_N ("expect procedure name in procedure call", N);
+ end if;
+
+ Found := True;
+
+ -- Otherwise we do have a subexpression with the wrong type
+
+ -- Check for the case of an allocator which uses an access type
+ -- instead of the designated type. This is a common error and we
+ -- specialize the message, posting an error on the operand of the
+ -- allocator, complaining that we expected the designated type of
+ -- the allocator.
+
+ elsif Nkind (N) = N_Allocator
+ and then Ekind (Typ) in Access_Kind
+ and then Ekind (Etype (N)) in Access_Kind
+ and then Designated_Type (Etype (N)) = Typ
+ then
+ Wrong_Type (Expression (N), Designated_Type (Typ));
+ Found := True;
+
+ -- Check for view mismatch on Null in instances, for which the
+ -- view-swapping mechanism has no identifier.
+
+ elsif (In_Instance or else In_Inlined_Body)
+ and then (Nkind (N) = N_Null)
+ and then Is_Private_Type (Typ)
+ and then Is_Access_Type (Full_View (Typ))
+ then
+ Resolve (N, Full_View (Typ));
+ Set_Etype (N, Typ);
+ return;
+
+ -- Check for an aggregate. Sometimes we can get bogus aggregates
+ -- from misuse of parentheses, and we are about to complain about
+ -- the aggregate without even looking inside it.
+
+ -- Instead, if we have an aggregate of type Any_Composite, then
+ -- analyze and resolve the component fields, and then only issue
+ -- another message if we get no errors doing this (otherwise
+ -- assume that the errors in the aggregate caused the problem).
+
+ elsif Nkind (N) = N_Aggregate
+ and then Etype (N) = Any_Composite
+ then
+ -- Disable expansion in any case. If there is a type mismatch
+ -- it may be fatal to try to expand the aggregate. The flag
+ -- would otherwise be set to false when the error is posted.
+
+ Expander_Active := False;
+
+ declare
+ procedure Check_Aggr (Aggr : Node_Id);
+ -- Check one aggregate, and set Found to True if we have a
+ -- definite error in any of its elements
+
+ procedure Check_Elmt (Aelmt : Node_Id);
+ -- Check one element of aggregate and set Found to True if
+ -- we definitely have an error in the element.
+
+ ----------------
+ -- Check_Aggr --
+ ----------------
+
+ procedure Check_Aggr (Aggr : Node_Id) is
+ Elmt : Node_Id;
+
+ begin
+ if Present (Expressions (Aggr)) then
+ Elmt := First (Expressions (Aggr));
+ while Present (Elmt) loop
+ Check_Elmt (Elmt);
+ Next (Elmt);
+ end loop;
+ end if;
+
+ if Present (Component_Associations (Aggr)) then
+ Elmt := First (Component_Associations (Aggr));
+ while Present (Elmt) loop
+
+ -- If this is a default-initialized component, then
+ -- there is nothing to check. The box will be
+ -- replaced by the appropriate call during late
+ -- expansion.
+
+ if not Box_Present (Elmt) then
+ Check_Elmt (Expression (Elmt));
+ end if;
+
+ Next (Elmt);
+ end loop;
+ end if;
+ end Check_Aggr;
+
+ ----------------
+ -- Check_Elmt --
+ ----------------
+
+ procedure Check_Elmt (Aelmt : Node_Id) is
+ begin
+ -- If we have a nested aggregate, go inside it (to
+ -- attempt a naked analyze-resolve of the aggregate
+ -- can cause undesirable cascaded errors). Do not
+ -- resolve expression if it needs a type from context,
+ -- as for integer * fixed expression.
+
+ if Nkind (Aelmt) = N_Aggregate then
+ Check_Aggr (Aelmt);
+
+ else
+ Analyze (Aelmt);
+
+ if not Is_Overloaded (Aelmt)
+ and then Etype (Aelmt) /= Any_Fixed
+ then
+ Resolve (Aelmt);
+ end if;
+
+ if Etype (Aelmt) = Any_Type then
+ Found := True;
+ end if;
+ end if;
+ end Check_Elmt;
+
+ begin
+ Check_Aggr (N);
+ end;
+ end if;
+
+ -- If an error message was issued already, Found got reset
+ -- to True, so if it is still False, issue the standard
+ -- Wrong_Type message.
+
+ if not Found then
+ if Is_Overloaded (N)
+ and then Nkind (N) = N_Function_Call
+ then
+ declare
+ Subp_Name : Node_Id;
+ begin
+ if Is_Entity_Name (Name (N)) then
+ Subp_Name := Name (N);
+
+ elsif Nkind (Name (N)) = N_Selected_Component then
+
+ -- Protected operation: retrieve operation name
+
+ Subp_Name := Selector_Name (Name (N));
+ else
+ raise Program_Error;
+ end if;
+
+ Error_Msg_Node_2 := Typ;
+ Error_Msg_NE ("no visible interpretation of&" &
+ " matches expected type&", N, Subp_Name);
+ end;
+
+ if All_Errors_Mode then
+ declare
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ Error_Msg_N ("\\possible interpretations:", N);
+
+ Get_First_Interp (Name (N), Index, It);
+ while Present (It.Nam) loop
+ Error_Msg_Sloc := Sloc (It.Nam);
+ Error_Msg_Node_2 := It.Nam;
+ Error_Msg_NE
+ ("\\ type& for & declared#", N, It.Typ);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+
+ else
+ Error_Msg_N ("\use -gnatf for details", N);
+ end if;
+ else
+ Wrong_Type (N, Typ);
+ end if;
+ end if;
+ end if;
+
+ Resolution_Failed;
+ return;
+
+ -- Test if we have more than one interpretation for the context
+
+ elsif Ambiguous then
+ Resolution_Failed;
+ return;
+
+ -- Here we have an acceptable interpretation for the context
+
+ else
+ -- Propagate type information and normalize tree for various
+ -- predefined operations. If the context only imposes a class of
+ -- types, rather than a specific type, propagate the actual type
+ -- downward.
+
+ if Typ = Any_Integer
+ or else Typ = Any_Boolean
+ or else Typ = Any_Modular
+ or else Typ = Any_Real
+ or else Typ = Any_Discrete
+ then
+ Ctx_Type := Expr_Type;
+
+ -- Any_Fixed is legal in a real context only if a specific
+ -- fixed point type is imposed. If Norman Cohen can be
+ -- confused by this, it deserves a separate message.
+
+ if Typ = Any_Real
+ and then Expr_Type = Any_Fixed
+ then
+ Error_Msg_N ("illegal context for mixed mode operation", N);
+ Set_Etype (N, Universal_Real);
+ Ctx_Type := Universal_Real;
+ end if;
+ end if;
+
+ -- A user-defined operator is transformed into a function call at
+ -- this point, so that further processing knows that operators are
+ -- really operators (i.e. are predefined operators). User-defined
+ -- operators that are intrinsic are just renamings of the predefined
+ -- ones, and need not be turned into calls either, but if they rename
+ -- a different operator, we must transform the node accordingly.
+ -- Instantiations of Unchecked_Conversion are intrinsic but are
+ -- treated as functions, even if given an operator designator.
+
+ if Nkind (N) in N_Op
+ and then Present (Entity (N))
+ and then Ekind (Entity (N)) /= E_Operator
+ then
+
+ if not Is_Predefined_Op (Entity (N)) then
+ Rewrite_Operator_As_Call (N, Entity (N));
+
+ elsif Present (Alias (Entity (N)))
+ and then
+ Nkind (Parent (Parent (Entity (N)))) =
+ N_Subprogram_Renaming_Declaration
+ then
+ Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
+
+ -- If the node is rewritten, it will be fully resolved in
+ -- Rewrite_Renamed_Operator.
+
+ if Analyzed (N) then
+ return;
+ end if;
+ end if;
+ end if;
+
+ case N_Subexpr'(Nkind (N)) is
+
+ when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
+
+ when N_Allocator => Resolve_Allocator (N, Ctx_Type);
+
+ when N_And_Then | N_Or_Else
+ => Resolve_Short_Circuit (N, Ctx_Type);
+
+ when N_Attribute_Reference
+ => Resolve_Attribute (N, Ctx_Type);
+
+ when N_Character_Literal
+ => Resolve_Character_Literal (N, Ctx_Type);
+
+ when N_Conditional_Expression
+ => Resolve_Conditional_Expression (N, Ctx_Type);
+
+ when N_Expanded_Name
+ => Resolve_Entity_Name (N, Ctx_Type);
+
+ when N_Extension_Aggregate
+ => Resolve_Extension_Aggregate (N, Ctx_Type);
+
+ when N_Explicit_Dereference
+ => Resolve_Explicit_Dereference (N, Ctx_Type);
+
+ when N_Function_Call
+ => Resolve_Call (N, Ctx_Type);
+
+ when N_Identifier
+ => Resolve_Entity_Name (N, Ctx_Type);
+
+ when N_Indexed_Component
+ => Resolve_Indexed_Component (N, Ctx_Type);
+
+ when N_Integer_Literal
+ => Resolve_Integer_Literal (N, Ctx_Type);
+
+ when N_Membership_Test
+ => Resolve_Membership_Op (N, Ctx_Type);
+
+ when N_Null => Resolve_Null (N, Ctx_Type);
+
+ when N_Op_And | N_Op_Or | N_Op_Xor
+ => Resolve_Logical_Op (N, Ctx_Type);
+
+ when N_Op_Eq | N_Op_Ne
+ => Resolve_Equality_Op (N, Ctx_Type);
+
+ when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
+ => Resolve_Comparison_Op (N, Ctx_Type);
+
+ when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
+
+ when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
+ N_Op_Divide | N_Op_Mod | N_Op_Rem
+
+ => Resolve_Arithmetic_Op (N, Ctx_Type);
+
+ when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
+
+ when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
+
+ when N_Op_Plus | N_Op_Minus | N_Op_Abs
+ => Resolve_Unary_Op (N, Ctx_Type);
+
+ when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
+
+ when N_Procedure_Call_Statement
+ => Resolve_Call (N, Ctx_Type);
+
+ when N_Operator_Symbol
+ => Resolve_Operator_Symbol (N, Ctx_Type);
+
+ when N_Qualified_Expression
+ => Resolve_Qualified_Expression (N, Ctx_Type);
+
+ when N_Raise_xxx_Error
+ => Set_Etype (N, Ctx_Type);
+
+ when N_Range => Resolve_Range (N, Ctx_Type);
+
+ when N_Real_Literal
+ => Resolve_Real_Literal (N, Ctx_Type);
+
+ when N_Reference => Resolve_Reference (N, Ctx_Type);
+
+ when N_Selected_Component
+ => Resolve_Selected_Component (N, Ctx_Type);
+
+ when N_Slice => Resolve_Slice (N, Ctx_Type);
+
+ when N_String_Literal
+ => Resolve_String_Literal (N, Ctx_Type);
+
+ when N_Subprogram_Info
+ => Resolve_Subprogram_Info (N, Ctx_Type);
+
+ when N_Type_Conversion
+ => Resolve_Type_Conversion (N, Ctx_Type);
+
+ when N_Unchecked_Expression =>
+ Resolve_Unchecked_Expression (N, Ctx_Type);
+
+ when N_Unchecked_Type_Conversion =>
+ Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
+
+ end case;
+
+ -- If the subexpression was replaced by a non-subexpression, then
+ -- all we do is to expand it. The only legitimate case we know of
+ -- is converting procedure call statement to entry call statements,
+ -- but there may be others, so we are making this test general.
+
+ if Nkind (N) not in N_Subexpr then
+ Debug_A_Exit ("resolving ", N, " (done)");
+ Expand (N);
+ return;
+ end if;
+
+ -- The expression is definitely NOT overloaded at this point, so
+ -- we reset the Is_Overloaded flag to avoid any confusion when
+ -- reanalyzing the node.
+
+ Set_Is_Overloaded (N, False);
+
+ -- Freeze expression type, entity if it is a name, and designated
+ -- type if it is an allocator (RM 13.14(10,11,13)).
+
+ -- Now that the resolution of the type of the node is complete,
+ -- and we did not detect an error, we can expand this node. We
+ -- skip the expand call if we are in a default expression, see
+ -- section "Handling of Default Expressions" in Sem spec.
+
+ Debug_A_Exit ("resolving ", N, " (done)");
+
+ -- We unconditionally freeze the expression, even if we are in
+ -- default expression mode (the Freeze_Expression routine tests
+ -- this flag and only freezes static types if it is set).
+
+ Freeze_Expression (N);
+
+ -- Now we can do the expansion
+
+ Expand (N);
+ end if;
+ end Resolve;
+
+ -------------
+ -- Resolve --
+ -------------
+
+ -- Version with check(s) suppressed
+
+ procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
+ begin
+ if Suppress = All_Checks then
+ declare
+ Svg : constant Suppress_Array := Scope_Suppress;
+ begin
+ Scope_Suppress := (others => True);
+ Resolve (N, Typ);
+ Scope_Suppress := Svg;
+ end;
+
+ else
+ declare
+ Svg : constant Boolean := Scope_Suppress (Suppress);
+ begin
+ Scope_Suppress (Suppress) := True;
+ Resolve (N, Typ);
+ Scope_Suppress (Suppress) := Svg;
+ end;
+ end if;
+ end Resolve;
+
+ -------------
+ -- Resolve --
+ -------------
+
+ -- Version with implicit type
+
+ procedure Resolve (N : Node_Id) is
+ begin
+ Resolve (N, Etype (N));
+ end Resolve;
+
+ ---------------------
+ -- Resolve_Actuals --
+ ---------------------
+
+ procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ A : Node_Id;
+ F : Entity_Id;
+ A_Typ : Entity_Id;
+ F_Typ : Entity_Id;
+ Prev : Node_Id := Empty;
+ Orig_A : Node_Id;
+
+ procedure Check_Argument_Order;
+ -- Performs a check for the case where the actuals are all simple
+ -- identifiers that correspond to the formal names, but in the wrong
+ -- order, which is considered suspicious and cause for a warning.
+
+ procedure Check_Prefixed_Call;
+ -- If the original node is an overloaded call in prefix notation,
+ -- insert an 'Access or a dereference as needed over the first actual.
+ -- Try_Object_Operation has already verified that there is a valid
+ -- interpretation, but the form of the actual can only be determined
+ -- once the primitive operation is identified.
+
+ procedure Insert_Default;
+ -- If the actual is missing in a call, insert in the actuals list
+ -- an instance of the default expression. The insertion is always
+ -- a named association.
+
+ function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
+ -- Check whether T1 and T2, or their full views, are derived from a
+ -- common type. Used to enforce the restrictions on array conversions
+ -- of AI95-00246.
+
+ --------------------------
+ -- Check_Argument_Order --
+ --------------------------
+
+ procedure Check_Argument_Order is
+ begin
+ -- Nothing to do if no parameters, or original node is neither a
+ -- function call nor a procedure call statement (happens in the
+ -- operator-transformed-to-function call case), or the call does
+ -- not come from source, or this warning is off.
+
+ if not Warn_On_Parameter_Order
+ or else
+ No (Parameter_Associations (N))
+ or else
+ not Nkind_In (Original_Node (N), N_Procedure_Call_Statement,
+ N_Function_Call)
+ or else
+ not Comes_From_Source (N)
+ then
+ return;
+ end if;
+
+ declare
+ Nargs : constant Nat := List_Length (Parameter_Associations (N));
+
+ begin
+ -- Nothing to do if only one parameter
+
+ if Nargs < 2 then
+ return;
+ end if;
+
+ -- Here if at least two arguments
+
+ declare
+ Actuals : array (1 .. Nargs) of Node_Id;
+ Actual : Node_Id;
+ Formal : Node_Id;
+
+ Wrong_Order : Boolean := False;
+ -- Set True if an out of order case is found
+
+ begin
+ -- Collect identifier names of actuals, fail if any actual is
+ -- not a simple identifier, and record max length of name.
+
+ Actual := First (Parameter_Associations (N));
+ for J in Actuals'Range loop
+ if Nkind (Actual) /= N_Identifier then
+ return;
+ else
+ Actuals (J) := Actual;
+ Next (Actual);
+ end if;
+ end loop;
+
+ -- If we got this far, all actuals are identifiers and the list
+ -- of their names is stored in the Actuals array.
+
+ Formal := First_Formal (Nam);
+ for J in Actuals'Range loop
+
+ -- If we ran out of formals, that's odd, probably an error
+ -- which will be detected elsewhere, but abandon the search.
+
+ if No (Formal) then
+ return;
+ end if;
+
+ -- If name matches and is in order OK
+
+ if Chars (Formal) = Chars (Actuals (J)) then
+ null;
+
+ else
+ -- If no match, see if it is elsewhere in list and if so
+ -- flag potential wrong order if type is compatible.
+
+ for K in Actuals'Range loop
+ if Chars (Formal) = Chars (Actuals (K))
+ and then
+ Has_Compatible_Type (Actuals (K), Etype (Formal))
+ then
+ Wrong_Order := True;
+ goto Continue;
+ end if;
+ end loop;
+
+ -- No match
+
+ return;
+ end if;
+
+ <<Continue>> Next_Formal (Formal);
+ end loop;
+
+ -- If Formals left over, also probably an error, skip warning
+
+ if Present (Formal) then
+ return;
+ end if;
+
+ -- Here we give the warning if something was out of order
+
+ if Wrong_Order then
+ Error_Msg_N
+ ("actuals for this call may be in wrong order?", N);
+ end if;
+ end;
+ end;
+ end Check_Argument_Order;
+
+ -------------------------
+ -- Check_Prefixed_Call --
+ -------------------------
+
+ procedure Check_Prefixed_Call is
+ Act : constant Node_Id := First_Actual (N);
+ A_Type : constant Entity_Id := Etype (Act);
+ F_Type : constant Entity_Id := Etype (First_Formal (Nam));
+ Orig : constant Node_Id := Original_Node (N);
+ New_A : Node_Id;
+
+ begin
+ -- Check whether the call is a prefixed call, with or without
+ -- additional actuals.
+
+ if Nkind (Orig) = N_Selected_Component
+ or else
+ (Nkind (Orig) = N_Indexed_Component
+ and then Nkind (Prefix (Orig)) = N_Selected_Component
+ and then Is_Entity_Name (Prefix (Prefix (Orig)))
+ and then Is_Entity_Name (Act)
+ and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
+ then
+ if Is_Access_Type (A_Type)
+ and then not Is_Access_Type (F_Type)
+ then
+ -- Introduce dereference on object in prefix
+
+ New_A :=
+ Make_Explicit_Dereference (Sloc (Act),
+ Prefix => Relocate_Node (Act));
+ Rewrite (Act, New_A);
+ Analyze (Act);
+
+ elsif Is_Access_Type (F_Type)
+ and then not Is_Access_Type (A_Type)
+ then
+ -- Introduce an implicit 'Access in prefix
+
+ if not Is_Aliased_View (Act) then
+ Error_Msg_NE
+ ("object in prefixed call to& must be aliased"
+ & " (RM-2005 4.3.1 (13))",
+ Prefix (Act), Nam);
+ end if;
+
+ Rewrite (Act,
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Access,
+ Prefix => Relocate_Node (Act)));
+ end if;
+
+ Analyze (Act);
+ end if;
+ end Check_Prefixed_Call;
+
+ --------------------
+ -- Insert_Default --
+ --------------------
+
+ procedure Insert_Default is
+ Actval : Node_Id;
+ Assoc : Node_Id;
+
+ begin
+ -- Missing argument in call, nothing to insert
+
+ if No (Default_Value (F)) then
+ return;
+
+ else
+ -- Note that we do a full New_Copy_Tree, so that any associated
+ -- Itypes are properly copied. This may not be needed any more,
+ -- but it does no harm as a safety measure! Defaults of a generic
+ -- formal may be out of bounds of the corresponding actual (see
+ -- cc1311b) and an additional check may be required.
+
+ Actval :=
+ New_Copy_Tree
+ (Default_Value (F),
+ New_Scope => Current_Scope,
+ New_Sloc => Loc);
+
+ if Is_Concurrent_Type (Scope (Nam))
+ and then Has_Discriminants (Scope (Nam))
+ then
+ Replace_Actual_Discriminants (N, Actval);
+ end if;
+
+ if Is_Overloadable (Nam)
+ and then Present (Alias (Nam))
+ then
+ if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
+ and then not Is_Tagged_Type (Etype (F))
+ then
+ -- If default is a real literal, do not introduce a
+ -- conversion whose effect may depend on the run-time
+ -- size of universal real.
+
+ if Nkind (Actval) = N_Real_Literal then
+ Set_Etype (Actval, Base_Type (Etype (F)));
+ else
+ Actval := Unchecked_Convert_To (Etype (F), Actval);
+ end if;
+ end if;
+
+ if Is_Scalar_Type (Etype (F)) then
+ Enable_Range_Check (Actval);
+ end if;
+
+ Set_Parent (Actval, N);
+
+ -- Resolve aggregates with their base type, to avoid scope
+ -- anomalies: the subtype was first built in the subprogram
+ -- declaration, and the current call may be nested.
+
+ if Nkind (Actval) = N_Aggregate
+ and then Has_Discriminants (Etype (Actval))
+ then
+ Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
+ else
+ Analyze_And_Resolve (Actval, Etype (Actval));
+ end if;
+
+ else
+ Set_Parent (Actval, N);
+
+ -- See note above concerning aggregates
+
+ if Nkind (Actval) = N_Aggregate
+ and then Has_Discriminants (Etype (Actval))
+ then
+ Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
+
+ -- Resolve entities with their own type, which may differ
+ -- from the type of a reference in a generic context (the
+ -- view swapping mechanism did not anticipate the re-analysis
+ -- of default values in calls).
+
+ elsif Is_Entity_Name (Actval) then
+ Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
+
+ else
+ Analyze_And_Resolve (Actval, Etype (Actval));
+ end if;
+ end if;
+
+ -- If default is a tag indeterminate function call, propagate
+ -- tag to obtain proper dispatching.
+
+ if Is_Controlling_Formal (F)
+ and then Nkind (Default_Value (F)) = N_Function_Call
+ then
+ Set_Is_Controlling_Actual (Actval);
+ end if;
+
+ end if;
+
+ -- If the default expression raises constraint error, then just
+ -- silently replace it with an N_Raise_Constraint_Error node,
+ -- since we already gave the warning on the subprogram spec.
+
+ if Raises_Constraint_Error (Actval) then
+ Rewrite (Actval,
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Range_Check_Failed));
+ Set_Raises_Constraint_Error (Actval);
+ Set_Etype (Actval, Etype (F));
+ end if;
+
+ Assoc :=
+ Make_Parameter_Association (Loc,
+ Explicit_Actual_Parameter => Actval,
+ Selector_Name => Make_Identifier (Loc, Chars (F)));
+
+ -- Case of insertion is first named actual
+
+ if No (Prev) or else
+ Nkind (Parent (Prev)) /= N_Parameter_Association
+ then
+ Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
+ Set_First_Named_Actual (N, Actval);
+
+ if No (Prev) then
+ if No (Parameter_Associations (N)) then
+ Set_Parameter_Associations (N, New_List (Assoc));
+ else
+ Append (Assoc, Parameter_Associations (N));
+ end if;
+
+ else
+ Insert_After (Prev, Assoc);
+ end if;
+
+ -- Case of insertion is not first named actual
+
+ else
+ Set_Next_Named_Actual
+ (Assoc, Next_Named_Actual (Parent (Prev)));
+ Set_Next_Named_Actual (Parent (Prev), Actval);
+ Append (Assoc, Parameter_Associations (N));
+ end if;
+
+ Mark_Rewrite_Insertion (Assoc);
+ Mark_Rewrite_Insertion (Actval);
+
+ Prev := Actval;
+ end Insert_Default;
+
+ -------------------
+ -- Same_Ancestor --
+ -------------------
+
+ function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
+ FT1 : Entity_Id := T1;
+ FT2 : Entity_Id := T2;
+
+ begin
+ if Is_Private_Type (T1)
+ and then Present (Full_View (T1))
+ then
+ FT1 := Full_View (T1);
+ end if;
+
+ if Is_Private_Type (T2)
+ and then Present (Full_View (T2))
+ then
+ FT2 := Full_View (T2);
+ end if;
+
+ return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
+ end Same_Ancestor;
+
+ -- Start of processing for Resolve_Actuals
+
+ begin
+ Check_Argument_Order;
+
+ if Present (First_Actual (N)) then
+ Check_Prefixed_Call;
+ end if;
+
+ A := First_Actual (N);
+ F := First_Formal (Nam);
+ while Present (F) loop
+ if No (A) and then Needs_No_Actuals (Nam) then
+ null;
+
+ -- If we have an error in any actual or formal, indicated by
+ -- a type of Any_Type, then abandon resolution attempt, and
+ -- set result type to Any_Type.
+
+ elsif (Present (A) and then Etype (A) = Any_Type)
+ or else Etype (F) = Any_Type
+ then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Case where actual is present
+
+ -- If the actual is an entity, generate a reference to it now. We
+ -- do this before the actual is resolved, because a formal of some
+ -- protected subprogram, or a task discriminant, will be rewritten
+ -- during expansion, and the reference to the source entity may
+ -- be lost.
+
+ if Present (A)
+ and then Is_Entity_Name (A)
+ and then Comes_From_Source (N)
+ then
+ Orig_A := Entity (A);
+
+ if Present (Orig_A) then
+ if Is_Formal (Orig_A)
+ and then Ekind (F) /= E_In_Parameter
+ then
+ Generate_Reference (Orig_A, A, 'm');
+ elsif not Is_Overloaded (A) then
+ Generate_Reference (Orig_A, A);
+ end if;
+ end if;
+ end if;
+
+ if Present (A)
+ and then (Nkind (Parent (A)) /= N_Parameter_Association
+ or else
+ Chars (Selector_Name (Parent (A))) = Chars (F))
+ then
+ -- If style checking mode on, check match of formal name
+
+ if Style_Check then
+ if Nkind (Parent (A)) = N_Parameter_Association then
+ Check_Identifier (Selector_Name (Parent (A)), F);
+ end if;
+ end if;
+
+ -- If the formal is Out or In_Out, do not resolve and expand the
+ -- conversion, because it is subsequently expanded into explicit
+ -- temporaries and assignments. However, the object of the
+ -- conversion can be resolved. An exception is the case of tagged
+ -- type conversion with a class-wide actual. In that case we want
+ -- the tag check to occur and no temporary will be needed (no
+ -- representation change can occur) and the parameter is passed by
+ -- reference, so we go ahead and resolve the type conversion.
+ -- Another exception is the case of reference to component or
+ -- subcomponent of a bit-packed array, in which case we want to
+ -- defer expansion to the point the in and out assignments are
+ -- performed.
+
+ if Ekind (F) /= E_In_Parameter
+ and then Nkind (A) = N_Type_Conversion
+ and then not Is_Class_Wide_Type (Etype (Expression (A)))
+ then
+ if Ekind (F) = E_In_Out_Parameter
+ and then Is_Array_Type (Etype (F))
+ then
+ if Has_Aliased_Components (Etype (Expression (A)))
+ /= Has_Aliased_Components (Etype (F))
+ then
+
+ -- In a view conversion, the conversion must be legal in
+ -- both directions, and thus both component types must be
+ -- aliased, or neither (4.6 (8)).
+
+ -- The additional rule 4.6 (24.9.2) seems unduly
+ -- restrictive: the privacy requirement should not
+ -- apply to generic types, and should be checked in
+ -- an instance. ARG query is in order.
+
+ Error_Msg_N
+ ("both component types in a view conversion must be"
+ & " aliased, or neither", A);
+
+ elsif
+ not Same_Ancestor (Etype (F), Etype (Expression (A)))
+ then
+ if Is_By_Reference_Type (Etype (F))
+ or else Is_By_Reference_Type (Etype (Expression (A)))
+ then
+ Error_Msg_N
+ ("view conversion between unrelated by reference " &
+ "array types not allowed (\'A'I-00246)", A);
+ else
+ declare
+ Comp_Type : constant Entity_Id :=
+ Component_Type
+ (Etype (Expression (A)));
+ begin
+ if Comes_From_Source (A)
+ and then Ada_Version >= Ada_05
+ and then
+ ((Is_Private_Type (Comp_Type)
+ and then not Is_Generic_Type (Comp_Type))
+ or else Is_Tagged_Type (Comp_Type)
+ or else Is_Volatile (Comp_Type))
+ then
+ Error_Msg_N
+ ("component type of a view conversion cannot"
+ & " be private, tagged, or volatile"
+ & " (RM 4.6 (24))",
+ Expression (A));
+ end if;
+ end;
+ end if;
+ end if;
+ end if;
+
+ if (Conversion_OK (A)
+ or else Valid_Conversion (A, Etype (A), Expression (A)))
+ and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
+ then
+ Resolve (Expression (A));
+ end if;
+
+ -- If the actual is a function call that returns a limited
+ -- unconstrained object that needs finalization, create a
+ -- transient scope for it, so that it can receive the proper
+ -- finalization list.
+
+ elsif Nkind (A) = N_Function_Call
+ and then Is_Limited_Record (Etype (F))
+ and then not Is_Constrained (Etype (F))
+ and then Expander_Active
+ and then
+ (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
+ then
+ Establish_Transient_Scope (A, False);
+
+ else
+ if Nkind (A) = N_Type_Conversion
+ and then Is_Array_Type (Etype (F))
+ and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
+ and then
+ (Is_Limited_Type (Etype (F))
+ or else Is_Limited_Type (Etype (Expression (A))))
+ then
+ Error_Msg_N
+ ("conversion between unrelated limited array types " &
+ "not allowed (\A\I-00246)", A);
+
+ if Is_Limited_Type (Etype (F)) then
+ Explain_Limited_Type (Etype (F), A);
+ end if;
+
+ if Is_Limited_Type (Etype (Expression (A))) then
+ Explain_Limited_Type (Etype (Expression (A)), A);
+ end if;
+ end if;
+
+ -- (Ada 2005: AI-251): If the actual is an allocator whose
+ -- directly designated type is a class-wide interface, we build
+ -- an anonymous access type to use it as the type of the
+ -- allocator. Later, when the subprogram call is expanded, if
+ -- the interface has a secondary dispatch table the expander
+ -- will add a type conversion to force the correct displacement
+ -- of the pointer.
+
+ if Nkind (A) = N_Allocator then
+ declare
+ DDT : constant Entity_Id :=
+ Directly_Designated_Type (Base_Type (Etype (F)));
+
+ New_Itype : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (DDT)
+ and then Is_Interface (DDT)
+ then
+ New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
+ Set_Etype (New_Itype, Etype (A));
+ Set_Directly_Designated_Type (New_Itype,
+ Directly_Designated_Type (Etype (A)));
+ Set_Etype (A, New_Itype);
+ end if;
+
+ -- Ada 2005, AI-162:If the actual is an allocator, the
+ -- innermost enclosing statement is the master of the
+ -- created object. This needs to be done with expansion
+ -- enabled only, otherwise the transient scope will not
+ -- be removed in the expansion of the wrapped construct.
+
+ if (Is_Controlled (DDT) or else Has_Task (DDT))
+ and then Expander_Active
+ then
+ Establish_Transient_Scope (A, False);
+ end if;
+ end;
+ end if;
+
+ -- (Ada 2005): The call may be to a primitive operation of
+ -- a tagged synchronized type, declared outside of the type.
+ -- In this case the controlling actual must be converted to
+ -- its corresponding record type, which is the formal type.
+ -- The actual may be a subtype, either because of a constraint
+ -- or because it is a generic actual, so use base type to
+ -- locate concurrent type.
+
+ A_Typ := Base_Type (Etype (A));
+ F_Typ := Base_Type (Etype (F));
+
+ declare
+ Full_A_Typ : Entity_Id;
+
+ begin
+ if Present (Full_View (A_Typ)) then
+ Full_A_Typ := Base_Type (Full_View (A_Typ));
+ else
+ Full_A_Typ := A_Typ;
+ end if;
+
+ -- Tagged synchronized type (case 1): the actual is a
+ -- concurrent type
+
+ if Is_Concurrent_Type (A_Typ)
+ and then Corresponding_Record_Type (A_Typ) = F_Typ
+ then
+ Rewrite (A,
+ Unchecked_Convert_To
+ (Corresponding_Record_Type (A_Typ), A));
+ Resolve (A, Etype (F));
+
+ -- Tagged synchronized type (case 2): the formal is a
+ -- concurrent type
+
+ elsif Ekind (Full_A_Typ) = E_Record_Type
+ and then Present
+ (Corresponding_Concurrent_Type (Full_A_Typ))
+ and then Is_Concurrent_Type (F_Typ)
+ and then Present (Corresponding_Record_Type (F_Typ))
+ and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
+ then
+ Resolve (A, Corresponding_Record_Type (F_Typ));
+
+ -- Common case
+
+ else
+ Resolve (A, Etype (F));
+ end if;
+ end;
+ end if;
+
+ A_Typ := Etype (A);
+ F_Typ := Etype (F);
+
+ -- For mode IN, if actual is an entity, and the type of the formal
+ -- has warnings suppressed, then we reset Never_Set_In_Source for
+ -- the calling entity. The reason for this is to catch cases like
+ -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
+ -- uses trickery to modify an IN parameter.
+
+ if Ekind (F) = E_In_Parameter
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Ekind (Entity (A)) = E_Variable
+ and then Has_Warnings_Off (F_Typ)
+ then
+ Set_Never_Set_In_Source (Entity (A), False);
+ end if;
+
+ -- Perform error checks for IN and IN OUT parameters
+
+ if Ekind (F) /= E_Out_Parameter then
+
+ -- Check unset reference. For scalar parameters, it is clearly
+ -- wrong to pass an uninitialized value as either an IN or
+ -- IN-OUT parameter. For composites, it is also clearly an
+ -- error to pass a completely uninitialized value as an IN
+ -- parameter, but the case of IN OUT is trickier. We prefer
+ -- not to give a warning here. For example, suppose there is
+ -- a routine that sets some component of a record to False.
+ -- It is perfectly reasonable to make this IN-OUT and allow
+ -- either initialized or uninitialized records to be passed
+ -- in this case.
+
+ -- For partially initialized composite values, we also avoid
+ -- warnings, since it is quite likely that we are passing a
+ -- partially initialized value and only the initialized fields
+ -- will in fact be read in the subprogram.
+
+ if Is_Scalar_Type (A_Typ)
+ or else (Ekind (F) = E_In_Parameter
+ and then not Is_Partially_Initialized_Type (A_Typ))
+ then
+ Check_Unset_Reference (A);
+ end if;
+
+ -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
+ -- actual to a nested call, since this is case of reading an
+ -- out parameter, which is not allowed.
+
+ if Ada_Version = Ada_83
+ and then Is_Entity_Name (A)
+ and then Ekind (Entity (A)) = E_Out_Parameter
+ then
+ Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
+ end if;
+ end if;
+
+ -- Case of OUT or IN OUT parameter
+
+ if Ekind (F) /= E_In_Parameter then
+
+ -- For an Out parameter, check for useless assignment. Note
+ -- that we can't set Last_Assignment this early, because we may
+ -- kill current values in Resolve_Call, and that call would
+ -- clobber the Last_Assignment field.
+
+ -- Note: call Warn_On_Useless_Assignment before doing the check
+ -- below for Is_OK_Variable_For_Out_Formal so that the setting
+ -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
+ -- reflects the last assignment, not this one!
+
+ if Ekind (F) = E_Out_Parameter then
+ if Warn_On_Modified_As_Out_Parameter (F)
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Comes_From_Source (N)
+ then
+ Warn_On_Useless_Assignment (Entity (A), A);
+ end if;
+ end if;
+
+ -- Validate the form of the actual. Note that the call to
+ -- Is_OK_Variable_For_Out_Formal generates the required
+ -- reference in this case.
+
+ if not Is_OK_Variable_For_Out_Formal (A) then
+ Error_Msg_NE ("actual for& must be a variable", A, F);
+ end if;
+
+ -- What's the following about???
+
+ if Is_Entity_Name (A) then
+ Kill_Checks (Entity (A));
+ else
+ Kill_All_Checks;
+ end if;
+ end if;
+
+ if Etype (A) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Apply appropriate range checks for in, out, and in-out
+ -- parameters. Out and in-out parameters also need a separate
+ -- check, if there is a type conversion, to make sure the return
+ -- value meets the constraints of the variable before the
+ -- conversion.
+
+ -- Gigi looks at the check flag and uses the appropriate types.
+ -- For now since one flag is used there is an optimization which
+ -- might not be done in the In Out case since Gigi does not do
+ -- any analysis. More thought required about this ???
+
+ if Ekind (F) = E_In_Parameter
+ or else Ekind (F) = E_In_Out_Parameter
+ then
+ if Is_Scalar_Type (Etype (A)) then
+ Apply_Scalar_Range_Check (A, F_Typ);
+
+ elsif Is_Array_Type (Etype (A)) then
+ Apply_Length_Check (A, F_Typ);
+
+ elsif Is_Record_Type (F_Typ)
+ and then Has_Discriminants (F_Typ)
+ and then Is_Constrained (F_Typ)
+ and then (not Is_Derived_Type (F_Typ)
+ or else Comes_From_Source (Nam))
+ then
+ Apply_Discriminant_Check (A, F_Typ);
+
+ elsif Is_Access_Type (F_Typ)
+ and then Is_Array_Type (Designated_Type (F_Typ))
+ and then Is_Constrained (Designated_Type (F_Typ))
+ then
+ Apply_Length_Check (A, F_Typ);
+
+ elsif Is_Access_Type (F_Typ)
+ and then Has_Discriminants (Designated_Type (F_Typ))
+ and then Is_Constrained (Designated_Type (F_Typ))
+ then
+ Apply_Discriminant_Check (A, F_Typ);
+
+ else
+ Apply_Range_Check (A, F_Typ);
+ end if;
+
+ -- Ada 2005 (AI-231)
+
+ if Ada_Version >= Ada_05
+ and then Is_Access_Type (F_Typ)
+ and then Can_Never_Be_Null (F_Typ)
+ and then Known_Null (A)
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N => A,
+ Msg => "(Ada 2005) null not allowed in "
+ & "null-excluding formal?",
+ Reason => CE_Null_Not_Allowed);
+ end if;
+ end if;
+
+ if Ekind (F) = E_Out_Parameter
+ or else Ekind (F) = E_In_Out_Parameter
+ then
+ if Nkind (A) = N_Type_Conversion then
+ if Is_Scalar_Type (A_Typ) then
+ Apply_Scalar_Range_Check
+ (Expression (A), Etype (Expression (A)), A_Typ);
+ else
+ Apply_Range_Check
+ (Expression (A), Etype (Expression (A)), A_Typ);
+ end if;
+
+ else
+ if Is_Scalar_Type (F_Typ) then
+ Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
+
+ elsif Is_Array_Type (F_Typ)
+ and then Ekind (F) = E_Out_Parameter
+ then
+ Apply_Length_Check (A, F_Typ);
+
+ else
+ Apply_Range_Check (A, A_Typ, F_Typ);
+ end if;
+ end if;
+ end if;
+
+ -- An actual associated with an access parameter is implicitly
+ -- converted to the anonymous access type of the formal and must
+ -- satisfy the legality checks for access conversions.
+
+ if Ekind (F_Typ) = E_Anonymous_Access_Type then
+ if not Valid_Conversion (A, F_Typ, A) then
+ Error_Msg_N
+ ("invalid implicit conversion for access parameter", A);
+ end if;
+ end if;
+
+ -- Check bad case of atomic/volatile argument (RM C.6(12))
+
+ if Is_By_Reference_Type (Etype (F))
+ and then Comes_From_Source (N)
+ then
+ if Is_Atomic_Object (A)
+ and then not Is_Atomic (Etype (F))
+ then
+ Error_Msg_N
+ ("cannot pass atomic argument to non-atomic formal",
+ N);
+
+ elsif Is_Volatile_Object (A)
+ and then not Is_Volatile (Etype (F))
+ then
+ Error_Msg_N
+ ("cannot pass volatile argument to non-volatile formal",
+ N);
+ end if;
+ end if;
+
+ -- Check that subprograms don't have improper controlling
+ -- arguments (RM 3.9.2 (9))
+
+ -- A primitive operation may have an access parameter of an
+ -- incomplete tagged type, but a dispatching call is illegal
+ -- if the type is still incomplete.
+
+ if Is_Controlling_Formal (F) then
+ Set_Is_Controlling_Actual (A);
+
+ if Ekind (Etype (F)) = E_Anonymous_Access_Type then
+ declare
+ Desig : constant Entity_Id := Designated_Type (Etype (F));
+ begin
+ if Ekind (Desig) = E_Incomplete_Type
+ and then No (Full_View (Desig))
+ and then No (Non_Limited_View (Desig))
+ then
+ Error_Msg_NE
+ ("premature use of incomplete type& " &
+ "in dispatching call", A, Desig);
+ end if;
+ end;
+ end if;
+
+ elsif Nkind (A) = N_Explicit_Dereference then
+ Validate_Remote_Access_To_Class_Wide_Type (A);
+ end if;
+
+ if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
+ and then not Is_Class_Wide_Type (F_Typ)
+ and then not Is_Controlling_Formal (F)
+ then
+ Error_Msg_N ("class-wide argument not allowed here!", A);
+
+ if Is_Subprogram (Nam)
+ and then Comes_From_Source (Nam)
+ then
+ Error_Msg_Node_2 := F_Typ;
+ Error_Msg_NE
+ ("& is not a dispatching operation of &!", A, Nam);
+ end if;
+
+ elsif Is_Access_Type (A_Typ)
+ and then Is_Access_Type (F_Typ)
+ and then Ekind (F_Typ) /= E_Access_Subprogram_Type
+ and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
+ and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
+ or else (Nkind (A) = N_Attribute_Reference
+ and then
+ Is_Class_Wide_Type (Etype (Prefix (A)))))
+ and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
+ and then not Is_Controlling_Formal (F)
+ then
+ Error_Msg_N
+ ("access to class-wide argument not allowed here!", A);
+
+ if Is_Subprogram (Nam)
+ and then Comes_From_Source (Nam)
+ then
+ Error_Msg_Node_2 := Designated_Type (F_Typ);
+ Error_Msg_NE
+ ("& is not a dispatching operation of &!", A, Nam);
+ end if;
+ end if;
+
+ Eval_Actual (A);
+
+ -- If it is a named association, treat the selector_name as
+ -- a proper identifier, and mark the corresponding entity.
+
+ if Nkind (Parent (A)) = N_Parameter_Association then
+ Set_Entity (Selector_Name (Parent (A)), F);
+ Generate_Reference (F, Selector_Name (Parent (A)));
+ Set_Etype (Selector_Name (Parent (A)), F_Typ);
+ Generate_Reference (F_Typ, N, ' ');
+ end if;
+
+ Prev := A;
+
+ if Ekind (F) /= E_Out_Parameter then
+ Check_Unset_Reference (A);
+ end if;
+
+ Next_Actual (A);
+
+ -- Case where actual is not present
+
+ else
+ Insert_Default;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end Resolve_Actuals;
+
+ -----------------------
+ -- Resolve_Allocator --
+ -----------------------
+
+ procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
+ E : constant Node_Id := Expression (N);
+ Subtyp : Entity_Id;
+ Discrim : Entity_Id;
+ Constr : Node_Id;
+ Aggr : Node_Id;
+ Assoc : Node_Id := Empty;
+ Disc_Exp : Node_Id;
+
+ procedure Check_Allocator_Discrim_Accessibility
+ (Disc_Exp : Node_Id;
+ Alloc_Typ : Entity_Id);
+ -- Check that accessibility level associated with an access discriminant
+ -- initialized in an allocator by the expression Disc_Exp is not deeper
+ -- than the level of the allocator type Alloc_Typ. An error message is
+ -- issued if this condition is violated. Specialized checks are done for
+ -- the cases of a constraint expression which is an access attribute or
+ -- an access discriminant.
+
+ function In_Dispatching_Context return Boolean;
+ -- If the allocator is an actual in a call, it is allowed to be class-
+ -- wide when the context is not because it is a controlling actual.
+
+ procedure Propagate_Coextensions (Root : Node_Id);
+ -- Propagate all nested coextensions which are located one nesting
+ -- level down the tree to the node Root. Example:
+ --
+ -- Top_Record
+ -- Level_1_Coextension
+ -- Level_2_Coextension
+ --
+ -- The algorithm is paired with delay actions done by the Expander. In
+ -- the above example, assume all coextensions are controlled types.
+ -- The cycle of analysis, resolution and expansion will yield:
+ --
+ -- 1) Analyze Top_Record
+ -- 2) Analyze Level_1_Coextension
+ -- 3) Analyze Level_2_Coextension
+ -- 4) Resolve Level_2_Coextension. The allocator is marked as a
+ -- coextension.
+ -- 5) Expand Level_2_Coextension. A temporary variable Temp_1 is
+ -- generated to capture the allocated object. Temp_1 is attached
+ -- to the coextension chain of Level_2_Coextension.
+ -- 6) Resolve Level_1_Coextension. The allocator is marked as a
+ -- coextension. A forward tree traversal is performed which finds
+ -- Level_2_Coextension's list and copies its contents into its
+ -- own list.
+ -- 7) Expand Level_1_Coextension. A temporary variable Temp_2 is
+ -- generated to capture the allocated object. Temp_2 is attached
+ -- to the coextension chain of Level_1_Coextension. Currently, the
+ -- contents of the list are [Temp_2, Temp_1].
+ -- 8) Resolve Top_Record. A forward tree traversal is performed which
+ -- finds Level_1_Coextension's list and copies its contents into
+ -- its own list.
+ -- 9) Expand Top_Record. Generate finalization calls for Temp_1 and
+ -- Temp_2 and attach them to Top_Record's finalization list.
+
+ -------------------------------------------
+ -- Check_Allocator_Discrim_Accessibility --
+ -------------------------------------------
+
+ procedure Check_Allocator_Discrim_Accessibility
+ (Disc_Exp : Node_Id;
+ Alloc_Typ : Entity_Id)
+ is
+ begin
+ if Type_Access_Level (Etype (Disc_Exp)) >
+ Type_Access_Level (Alloc_Typ)
+ then
+ Error_Msg_N
+ ("operand type has deeper level than allocator type", Disc_Exp);
+
+ -- When the expression is an Access attribute the level of the prefix
+ -- object must not be deeper than that of the allocator's type.
+
+ elsif Nkind (Disc_Exp) = N_Attribute_Reference
+ and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
+ = Attribute_Access
+ and then Object_Access_Level (Prefix (Disc_Exp))
+ > Type_Access_Level (Alloc_Typ)
+ then
+ Error_Msg_N
+ ("prefix of attribute has deeper level than allocator type",
+ Disc_Exp);
+
+ -- When the expression is an access discriminant the check is against
+ -- the level of the prefix object.
+
+ elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
+ and then Nkind (Disc_Exp) = N_Selected_Component
+ and then Object_Access_Level (Prefix (Disc_Exp))
+ > Type_Access_Level (Alloc_Typ)
+ then
+ Error_Msg_N
+ ("access discriminant has deeper level than allocator type",
+ Disc_Exp);
+
+ -- All other cases are legal
+
+ else
+ null;
+ end if;
+ end Check_Allocator_Discrim_Accessibility;
+
+ ----------------------------
+ -- In_Dispatching_Context --
+ ----------------------------
+
+ function In_Dispatching_Context return Boolean is
+ Par : constant Node_Id := Parent (N);
+ begin
+ return Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
+ and then Is_Entity_Name (Name (Par))
+ and then Is_Dispatching_Operation (Entity (Name (Par)));
+ end In_Dispatching_Context;
+
+ ----------------------------
+ -- Propagate_Coextensions --
+ ----------------------------
+
+ procedure Propagate_Coextensions (Root : Node_Id) is
+
+ procedure Copy_List (From : Elist_Id; To : Elist_Id);
+ -- Copy the contents of list From into list To, preserving the
+ -- order of elements.
+
+ function Process_Allocator (Nod : Node_Id) return Traverse_Result;
+ -- Recognize an allocator or a rewritten allocator node and add it
+ -- along with its nested coextensions to the list of Root.
+
+ ---------------
+ -- Copy_List --
+ ---------------
+
+ procedure Copy_List (From : Elist_Id; To : Elist_Id) is
+ From_Elmt : Elmt_Id;
+ begin
+ From_Elmt := First_Elmt (From);
+ while Present (From_Elmt) loop
+ Append_Elmt (Node (From_Elmt), To);
+ Next_Elmt (From_Elmt);
+ end loop;
+ end Copy_List;
+
+ -----------------------
+ -- Process_Allocator --
+ -----------------------
+
+ function Process_Allocator (Nod : Node_Id) return Traverse_Result is
+ Orig_Nod : Node_Id := Nod;
+
+ begin
+ -- This is a possible rewritten subtype indication allocator. Any
+ -- nested coextensions will appear as discriminant constraints.
+
+ if Nkind (Nod) = N_Identifier
+ and then Present (Original_Node (Nod))
+ and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
+ then
+ declare
+ Discr : Node_Id;
+ Discr_Elmt : Elmt_Id;
+
+ begin
+ if Is_Record_Type (Entity (Nod)) then
+ Discr_Elmt :=
+ First_Elmt (Discriminant_Constraint (Entity (Nod)));
+ while Present (Discr_Elmt) loop
+ Discr := Node (Discr_Elmt);
+
+ if Nkind (Discr) = N_Identifier
+ and then Present (Original_Node (Discr))
+ and then Nkind (Original_Node (Discr)) = N_Allocator
+ and then Present (Coextensions (
+ Original_Node (Discr)))
+ then
+ if No (Coextensions (Root)) then
+ Set_Coextensions (Root, New_Elmt_List);
+ end if;
+
+ Copy_List
+ (From => Coextensions (Original_Node (Discr)),
+ To => Coextensions (Root));
+ end if;
+
+ Next_Elmt (Discr_Elmt);
+ end loop;
+
+ -- There is no need to continue the traversal of this
+ -- subtree since all the information has already been
+ -- propagated.
+
+ return Skip;
+ end if;
+ end;
+
+ -- Case of either a stand alone allocator or a rewritten allocator
+ -- with an aggregate.
+
+ else
+ if Present (Original_Node (Nod)) then
+ Orig_Nod := Original_Node (Nod);
+ end if;
+
+ if Nkind (Orig_Nod) = N_Allocator then
+
+ -- Propagate the list of nested coextensions to the Root
+ -- allocator. This is done through list copy since a single
+ -- allocator may have multiple coextensions. Do not touch
+ -- coextensions roots.
+
+ if not Is_Coextension_Root (Orig_Nod)
+ and then Present (Coextensions (Orig_Nod))
+ then
+ if No (Coextensions (Root)) then
+ Set_Coextensions (Root, New_Elmt_List);
+ end if;
+
+ Copy_List
+ (From => Coextensions (Orig_Nod),
+ To => Coextensions (Root));
+ end if;
+
+ -- There is no need to continue the traversal of this
+ -- subtree since all the information has already been
+ -- propagated.
+
+ return Skip;
+ end if;
+ end if;
+
+ -- Keep on traversing, looking for the next allocator
+
+ return OK;
+ end Process_Allocator;
+
+ procedure Process_Allocators is
+ new Traverse_Proc (Process_Allocator);
+
+ -- Start of processing for Propagate_Coextensions
+
+ begin
+ Process_Allocators (Expression (Root));
+ end Propagate_Coextensions;
+
+ -- Start of processing for Resolve_Allocator
+
+ begin
+ -- Replace general access with specific type
+
+ if Ekind (Etype (N)) = E_Allocator_Type then
+ Set_Etype (N, Base_Type (Typ));
+ end if;
+
+ if Is_Abstract_Type (Typ) then
+ Error_Msg_N ("type of allocator cannot be abstract", N);
+ end if;
+
+ -- For qualified expression, resolve the expression using the
+ -- given subtype (nothing to do for type mark, subtype indication)
+
+ if Nkind (E) = N_Qualified_Expression then
+ if Is_Class_Wide_Type (Etype (E))
+ and then not Is_Class_Wide_Type (Designated_Type (Typ))
+ and then not In_Dispatching_Context
+ then
+ Error_Msg_N
+ ("class-wide allocator not allowed for this access type", N);
+ end if;
+
+ Resolve (Expression (E), Etype (E));
+ Check_Unset_Reference (Expression (E));
+
+ -- A qualified expression requires an exact match of the type,
+ -- class-wide matching is not allowed.
+
+ if (Is_Class_Wide_Type (Etype (Expression (E)))
+ or else Is_Class_Wide_Type (Etype (E)))
+ and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
+ then
+ Wrong_Type (Expression (E), Etype (E));
+ end if;
+
+ -- A special accessibility check is needed for allocators that
+ -- constrain access discriminants. The level of the type of the
+ -- expression used to constrain an access discriminant cannot be
+ -- deeper than the type of the allocator (in contrast to access
+ -- parameters, where the level of the actual can be arbitrary).
+
+ -- We can't use Valid_Conversion to perform this check because
+ -- in general the type of the allocator is unrelated to the type
+ -- of the access discriminant.
+
+ if Ekind (Typ) /= E_Anonymous_Access_Type
+ or else Is_Local_Anonymous_Access (Typ)
+ then
+ Subtyp := Entity (Subtype_Mark (E));
+
+ Aggr := Original_Node (Expression (E));
+
+ if Has_Discriminants (Subtyp)
+ and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
+ then
+ Discrim := First_Discriminant (Base_Type (Subtyp));
+
+ -- Get the first component expression of the aggregate
+
+ if Present (Expressions (Aggr)) then
+ Disc_Exp := First (Expressions (Aggr));
+
+ elsif Present (Component_Associations (Aggr)) then
+ Assoc := First (Component_Associations (Aggr));
+
+ if Present (Assoc) then
+ Disc_Exp := Expression (Assoc);
+ else
+ Disc_Exp := Empty;
+ end if;
+
+ else
+ Disc_Exp := Empty;
+ end if;
+
+ while Present (Discrim) and then Present (Disc_Exp) loop
+ if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
+ Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
+ end if;
+
+ Next_Discriminant (Discrim);
+
+ if Present (Discrim) then
+ if Present (Assoc) then
+ Next (Assoc);
+ Disc_Exp := Expression (Assoc);
+
+ elsif Present (Next (Disc_Exp)) then
+ Next (Disc_Exp);
+
+ else
+ Assoc := First (Component_Associations (Aggr));
+
+ if Present (Assoc) then
+ Disc_Exp := Expression (Assoc);
+ else
+ Disc_Exp := Empty;
+ end if;
+ end if;
+ end if;
+ end loop;
+ end if;
+ end if;
+
+ -- For a subtype mark or subtype indication, freeze the subtype
+
+ else
+ Freeze_Expression (E);
+
+ if Is_Access_Constant (Typ) and then not No_Initialization (N) then
+ Error_Msg_N
+ ("initialization required for access-to-constant allocator", N);
+ end if;
+
+ -- A special accessibility check is needed for allocators that
+ -- constrain access discriminants. The level of the type of the
+ -- expression used to constrain an access discriminant cannot be
+ -- deeper than the type of the allocator (in contrast to access
+ -- parameters, where the level of the actual can be arbitrary).
+ -- We can't use Valid_Conversion to perform this check because
+ -- in general the type of the allocator is unrelated to the type
+ -- of the access discriminant.
+
+ if Nkind (Original_Node (E)) = N_Subtype_Indication
+ and then (Ekind (Typ) /= E_Anonymous_Access_Type
+ or else Is_Local_Anonymous_Access (Typ))
+ then
+ Subtyp := Entity (Subtype_Mark (Original_Node (E)));
+
+ if Has_Discriminants (Subtyp) then
+ Discrim := First_Discriminant (Base_Type (Subtyp));
+ Constr := First (Constraints (Constraint (Original_Node (E))));
+ while Present (Discrim) and then Present (Constr) loop
+ if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
+ if Nkind (Constr) = N_Discriminant_Association then
+ Disc_Exp := Original_Node (Expression (Constr));
+ else
+ Disc_Exp := Original_Node (Constr);
+ end if;
+
+ Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
+ end if;
+
+ Next_Discriminant (Discrim);
+ Next (Constr);
+ end loop;
+ end if;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
+ -- check that the level of the type of the created object is not deeper
+ -- than the level of the allocator's access type, since extensions can
+ -- now occur at deeper levels than their ancestor types. This is a
+ -- static accessibility level check; a run-time check is also needed in
+ -- the case of an initialized allocator with a class-wide argument (see
+ -- Expand_Allocator_Expression).
+
+ if Ada_Version >= Ada_05
+ and then Is_Class_Wide_Type (Designated_Type (Typ))
+ then
+ declare
+ Exp_Typ : Entity_Id;
+
+ begin
+ if Nkind (E) = N_Qualified_Expression then
+ Exp_Typ := Etype (E);
+ elsif Nkind (E) = N_Subtype_Indication then
+ Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
+ else
+ Exp_Typ := Entity (E);
+ end if;
+
+ if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
+ if In_Instance_Body then
+ Error_Msg_N ("?type in allocator has deeper level than" &
+ " designated class-wide type", E);
+ Error_Msg_N ("\?Program_Error will be raised at run time",
+ E);
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Typ);
+
+ -- Do not apply Ada 2005 accessibility checks on a class-wide
+ -- allocator if the type given in the allocator is a formal
+ -- type. A run-time check will be performed in the instance.
+
+ elsif not Is_Generic_Type (Exp_Typ) then
+ Error_Msg_N ("type in allocator has deeper level than" &
+ " designated class-wide type", E);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Check for allocation from an empty storage pool
+
+ if No_Pool_Assigned (Typ) then
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ begin
+ Error_Msg_N ("?allocation from empty storage pool!", N);
+ Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
+ Insert_Action (N,
+ Make_Raise_Storage_Error (Loc,
+ Reason => SE_Empty_Storage_Pool));
+ end;
+
+ -- If the context is an unchecked conversion, as may happen within
+ -- an inlined subprogram, the allocator is being resolved with its
+ -- own anonymous type. In that case, if the target type has a specific
+ -- storage pool, it must be inherited explicitly by the allocator type.
+
+ elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
+ and then No (Associated_Storage_Pool (Typ))
+ then
+ Set_Associated_Storage_Pool
+ (Typ, Associated_Storage_Pool (Etype (Parent (N))));
+ end if;
+
+ -- An erroneous allocator may be rewritten as a raise Program_Error
+ -- statement.
+
+ if Nkind (N) = N_Allocator then
+
+ -- An anonymous access discriminant is the definition of a
+ -- coextension.
+
+ if Ekind (Typ) = E_Anonymous_Access_Type
+ and then Nkind (Associated_Node_For_Itype (Typ)) =
+ N_Discriminant_Specification
+ then
+ -- Avoid marking an allocator as a dynamic coextension if it is
+ -- within a static construct.
+
+ if not Is_Static_Coextension (N) then
+ Set_Is_Dynamic_Coextension (N);
+ end if;
+
+ -- Cleanup for potential static coextensions
+
+ else
+ Set_Is_Dynamic_Coextension (N, False);
+ Set_Is_Static_Coextension (N, False);
+ end if;
+
+ -- There is no need to propagate any nested coextensions if they
+ -- are marked as static since they will be rewritten on the spot.
+
+ if not Is_Static_Coextension (N) then
+ Propagate_Coextensions (N);
+ end if;
+ end if;
+ end Resolve_Allocator;
+
+ ---------------------------
+ -- Resolve_Arithmetic_Op --
+ ---------------------------
+
+ -- Used for resolving all arithmetic operators except exponentiation
+
+ procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ TL : constant Entity_Id := Base_Type (Etype (L));
+ TR : constant Entity_Id := Base_Type (Etype (R));
+ T : Entity_Id;
+ Rop : Node_Id;
+
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ -- We do the resolution using the base type, because intermediate values
+ -- in expressions always are of the base type, not a subtype of it.
+
+ function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
+ -- Returns True if N is in a context that expects "any real type"
+
+ function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
+ -- Return True iff given type is Integer or universal real/integer
+
+ procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
+ -- Choose type of integer literal in fixed-point operation to conform
+ -- to available fixed-point type. T is the type of the other operand,
+ -- which is needed to determine the expected type of N.
+
+ procedure Set_Operand_Type (N : Node_Id);
+ -- Set operand type to T if universal
+
+ -------------------------------
+ -- Expected_Type_Is_Any_Real --
+ -------------------------------
+
+ function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
+ begin
+ -- N is the expression after "delta" in a fixed_point_definition;
+ -- see RM-3.5.9(6):
+
+ return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
+ N_Decimal_Fixed_Point_Definition,
+
+ -- N is one of the bounds in a real_range_specification;
+ -- see RM-3.5.7(5):
+
+ N_Real_Range_Specification,
+
+ -- N is the expression of a delta_constraint;
+ -- see RM-J.3(3):
+
+ N_Delta_Constraint);
+ end Expected_Type_Is_Any_Real;
+
+ -----------------------------
+ -- Is_Integer_Or_Universal --
+ -----------------------------
+
+ function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
+ T : Entity_Id;
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (N) then
+ T := Etype (N);
+ return Base_Type (T) = Base_Type (Standard_Integer)
+ or else T = Universal_Integer
+ or else T = Universal_Real;
+ else
+ Get_First_Interp (N, Index, It);
+ while Present (It.Typ) loop
+ if Base_Type (It.Typ) = Base_Type (Standard_Integer)
+ or else It.Typ = Universal_Integer
+ or else It.Typ = Universal_Real
+ then
+ return True;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+
+ return False;
+ end Is_Integer_Or_Universal;
+
+ ----------------------------
+ -- Set_Mixed_Mode_Operand --
+ ----------------------------
+
+ procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if Universal_Interpretation (N) = Universal_Integer then
+
+ -- A universal integer literal is resolved as standard integer
+ -- except in the case of a fixed-point result, where we leave it
+ -- as universal (to be handled by Exp_Fixd later on)
+
+ if Is_Fixed_Point_Type (T) then
+ Resolve (N, Universal_Integer);
+ else
+ Resolve (N, Standard_Integer);
+ end if;
+
+ elsif Universal_Interpretation (N) = Universal_Real
+ and then (T = Base_Type (Standard_Integer)
+ or else T = Universal_Integer
+ or else T = Universal_Real)
+ then
+ -- A universal real can appear in a fixed-type context. We resolve
+ -- the literal with that context, even though this might raise an
+ -- exception prematurely (the other operand may be zero).
+
+ Resolve (N, B_Typ);
+
+ elsif Etype (N) = Base_Type (Standard_Integer)
+ and then T = Universal_Real
+ and then Is_Overloaded (N)
+ then
+ -- Integer arg in mixed-mode operation. Resolve with universal
+ -- type, in case preference rule must be applied.
+
+ Resolve (N, Universal_Integer);
+
+ elsif Etype (N) = T
+ and then B_Typ /= Universal_Fixed
+ then
+ -- Not a mixed-mode operation, resolve with context
+
+ Resolve (N, B_Typ);
+
+ elsif Etype (N) = Any_Fixed then
+
+ -- N may itself be a mixed-mode operation, so use context type
+
+ Resolve (N, B_Typ);
+
+ elsif Is_Fixed_Point_Type (T)
+ and then B_Typ = Universal_Fixed
+ and then Is_Overloaded (N)
+ then
+ -- Must be (fixed * fixed) operation, operand must have one
+ -- compatible interpretation.
+
+ Resolve (N, Any_Fixed);
+
+ elsif Is_Fixed_Point_Type (B_Typ)
+ and then (T = Universal_Real
+ or else Is_Fixed_Point_Type (T))
+ and then Is_Overloaded (N)
+ then
+ -- C * F(X) in a fixed context, where C is a real literal or a
+ -- fixed-point expression. F must have either a fixed type
+ -- interpretation or an integer interpretation, but not both.
+
+ Get_First_Interp (N, Index, It);
+ while Present (It.Typ) loop
+ if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
+
+ if Analyzed (N) then
+ Error_Msg_N ("ambiguous operand in fixed operation", N);
+ else
+ Resolve (N, Standard_Integer);
+ end if;
+
+ elsif Is_Fixed_Point_Type (It.Typ) then
+
+ if Analyzed (N) then
+ Error_Msg_N ("ambiguous operand in fixed operation", N);
+ else
+ Resolve (N, It.Typ);
+ end if;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+
+ -- Reanalyze the literal with the fixed type of the context. If
+ -- context is Universal_Fixed, we are within a conversion, leave
+ -- the literal as a universal real because there is no usable
+ -- fixed type, and the target of the conversion plays no role in
+ -- the resolution.
+
+ declare
+ Op2 : Node_Id;
+ T2 : Entity_Id;
+
+ begin
+ if N = L then
+ Op2 := R;
+ else
+ Op2 := L;
+ end if;
+
+ if B_Typ = Universal_Fixed
+ and then Nkind (Op2) = N_Real_Literal
+ then
+ T2 := Universal_Real;
+ else
+ T2 := B_Typ;
+ end if;
+
+ Set_Analyzed (Op2, False);
+ Resolve (Op2, T2);
+ end;
+
+ else
+ Resolve (N);
+ end if;
+ end Set_Mixed_Mode_Operand;
+
+ ----------------------
+ -- Set_Operand_Type --
+ ----------------------
+
+ procedure Set_Operand_Type (N : Node_Id) is
+ begin
+ if Etype (N) = Universal_Integer
+ or else Etype (N) = Universal_Real
+ then
+ Set_Etype (N, T);
+ end if;
+ end Set_Operand_Type;
+
+ -- Start of processing for Resolve_Arithmetic_Op
+
+ begin
+ if Comes_From_Source (N)
+ and then Ekind (Entity (N)) = E_Function
+ and then Is_Imported (Entity (N))
+ and then Is_Intrinsic_Subprogram (Entity (N))
+ then
+ Resolve_Intrinsic_Operator (N, Typ);
+ return;
+
+ -- Special-case for mixed-mode universal expressions or fixed point
+ -- type operation: each argument is resolved separately. The same
+ -- treatment is required if one of the operands of a fixed point
+ -- operation is universal real, since in this case we don't do a
+ -- conversion to a specific fixed-point type (instead the expander
+ -- takes care of the case).
+
+ elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
+ and then Present (Universal_Interpretation (L))
+ and then Present (Universal_Interpretation (R))
+ then
+ Resolve (L, Universal_Interpretation (L));
+ Resolve (R, Universal_Interpretation (R));
+ Set_Etype (N, B_Typ);
+
+ elsif (B_Typ = Universal_Real
+ or else Etype (N) = Universal_Fixed
+ or else (Etype (N) = Any_Fixed
+ and then Is_Fixed_Point_Type (B_Typ))
+ or else (Is_Fixed_Point_Type (B_Typ)
+ and then (Is_Integer_Or_Universal (L)
+ or else
+ Is_Integer_Or_Universal (R))))
+ and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
+ then
+ if TL = Universal_Integer or else TR = Universal_Integer then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- If context is a fixed type and one operand is integer, the
+ -- other is resolved with the type of the context.
+
+ if Is_Fixed_Point_Type (B_Typ)
+ and then (Base_Type (TL) = Base_Type (Standard_Integer)
+ or else TL = Universal_Integer)
+ then
+ Resolve (R, B_Typ);
+ Resolve (L, TL);
+
+ elsif Is_Fixed_Point_Type (B_Typ)
+ and then (Base_Type (TR) = Base_Type (Standard_Integer)
+ or else TR = Universal_Integer)
+ then
+ Resolve (L, B_Typ);
+ Resolve (R, TR);
+
+ else
+ Set_Mixed_Mode_Operand (L, TR);
+ Set_Mixed_Mode_Operand (R, TL);
+ end if;
+
+ -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
+ -- multiplying operators from being used when the expected type is
+ -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
+ -- some cases where the expected type is actually Any_Real;
+ -- Expected_Type_Is_Any_Real takes care of that case.
+
+ if Etype (N) = Universal_Fixed
+ or else Etype (N) = Any_Fixed
+ then
+ if B_Typ = Universal_Fixed
+ and then not Expected_Type_Is_Any_Real (N)
+ and then not Nkind_In (Parent (N), N_Type_Conversion,
+ N_Unchecked_Type_Conversion)
+ then
+ Error_Msg_N ("type cannot be determined from context!", N);
+ Error_Msg_N ("\explicit conversion to result type required", N);
+
+ Set_Etype (L, Any_Type);
+ Set_Etype (R, Any_Type);
+
+ else
+ if Ada_Version = Ada_83
+ and then Etype (N) = Universal_Fixed
+ and then not
+ Nkind_In (Parent (N), N_Type_Conversion,
+ N_Unchecked_Type_Conversion)
+ then
+ Error_Msg_N
+ ("(Ada 83) fixed-point operation "
+ & "needs explicit conversion", N);
+ end if;
+
+ -- The expected type is "any real type" in contexts like
+ -- type T is delta <universal_fixed-expression> ...
+ -- in which case we need to set the type to Universal_Real
+ -- so that static expression evaluation will work properly.
+
+ if Expected_Type_Is_Any_Real (N) then
+ Set_Etype (N, Universal_Real);
+ else
+ Set_Etype (N, B_Typ);
+ end if;
+ end if;
+
+ elsif Is_Fixed_Point_Type (B_Typ)
+ and then (Is_Integer_Or_Universal (L)
+ or else Nkind (L) = N_Real_Literal
+ or else Nkind (R) = N_Real_Literal
+ or else Is_Integer_Or_Universal (R))
+ then
+ Set_Etype (N, B_Typ);
+
+ elsif Etype (N) = Any_Fixed then
+
+ -- If no previous errors, this is only possible if one operand
+ -- is overloaded and the context is universal. Resolve as such.
+
+ Set_Etype (N, B_Typ);
+ end if;
+
+ else
+ if (TL = Universal_Integer or else TL = Universal_Real)
+ and then
+ (TR = Universal_Integer or else TR = Universal_Real)
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- If the context is Universal_Fixed and the operands are also
+ -- universal fixed, this is an error, unless there is only one
+ -- applicable fixed_point type (usually duration).
+
+ if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
+ T := Unique_Fixed_Point_Type (N);
+
+ if T = Any_Type then
+ Set_Etype (N, T);
+ return;
+ else
+ Resolve (L, T);
+ Resolve (R, T);
+ end if;
+
+ else
+ Resolve (L, B_Typ);
+ Resolve (R, B_Typ);
+ end if;
+
+ -- If one of the arguments was resolved to a non-universal type.
+ -- label the result of the operation itself with the same type.
+ -- Do the same for the universal argument, if any.
+
+ T := Intersect_Types (L, R);
+ Set_Etype (N, Base_Type (T));
+ Set_Operand_Type (L);
+ Set_Operand_Type (R);
+ end if;
+
+ Generate_Operator_Reference (N, Typ);
+ Eval_Arithmetic_Op (N);
+
+ -- Set overflow and division checking bit. Much cleverer code needed
+ -- here eventually and perhaps the Resolve routines should be separated
+ -- for the various arithmetic operations, since they will need
+ -- different processing. ???
+
+ if Nkind (N) in N_Op then
+ if not Overflow_Checks_Suppressed (Etype (N)) then
+ Enable_Overflow_Check (N);
+ end if;
+
+ -- Give warning if explicit division by zero
+
+ if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
+ and then not Division_Checks_Suppressed (Etype (N))
+ then
+ Rop := Right_Opnd (N);
+
+ if Compile_Time_Known_Value (Rop)
+ and then ((Is_Integer_Type (Etype (Rop))
+ and then Expr_Value (Rop) = Uint_0)
+ or else
+ (Is_Real_Type (Etype (Rop))
+ and then Expr_Value_R (Rop) = Ureal_0))
+ then
+ -- Specialize the warning message according to the operation
+
+ case Nkind (N) is
+ when N_Op_Divide =>
+ Apply_Compile_Time_Constraint_Error
+ (N, "division by zero?", CE_Divide_By_Zero,
+ Loc => Sloc (Right_Opnd (N)));
+
+ when N_Op_Rem =>
+ Apply_Compile_Time_Constraint_Error
+ (N, "rem with zero divisor?", CE_Divide_By_Zero,
+ Loc => Sloc (Right_Opnd (N)));
+
+ when N_Op_Mod =>
+ Apply_Compile_Time_Constraint_Error
+ (N, "mod with zero divisor?", CE_Divide_By_Zero,
+ Loc => Sloc (Right_Opnd (N)));
+
+ -- Division by zero can only happen with division, rem,
+ -- and mod operations.
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ -- Otherwise just set the flag to check at run time
+
+ else
+ Activate_Division_Check (N);
+ end if;
+ end if;
+
+ -- If Restriction No_Implicit_Conditionals is active, then it is
+ -- violated if either operand can be negative for mod, or for rem
+ -- if both operands can be negative.
+
+ if Restrictions.Set (No_Implicit_Conditionals)
+ and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
+ then
+ declare
+ Lo : Uint;
+ Hi : Uint;
+ OK : Boolean;
+
+ LNeg : Boolean;
+ RNeg : Boolean;
+ -- Set if corresponding operand might be negative
+
+ begin
+ Determine_Range (Left_Opnd (N), OK, Lo, Hi);
+ LNeg := (not OK) or else Lo < 0;
+
+ Determine_Range (Right_Opnd (N), OK, Lo, Hi);
+ RNeg := (not OK) or else Lo < 0;
+
+ if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
+ or else
+ (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
+ then
+ Check_Restriction (No_Implicit_Conditionals, N);
+ end if;
+ end;
+ end if;
+ end if;
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+ end Resolve_Arithmetic_Op;
+
+ ------------------
+ -- Resolve_Call --
+ ------------------
+
+ procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Subp : constant Node_Id := Name (N);
+ Nam : Entity_Id;
+ I : Interp_Index;
+ It : Interp;
+ Norm_OK : Boolean;
+ Scop : Entity_Id;
+ Rtype : Entity_Id;
+
+ begin
+ -- The context imposes a unique interpretation with type Typ on a
+ -- procedure or function call. Find the entity of the subprogram that
+ -- yields the expected type, and propagate the corresponding formal
+ -- constraints on the actuals. The caller has established that an
+ -- interpretation exists, and emitted an error if not unique.
+
+ -- First deal with the case of a call to an access-to-subprogram,
+ -- dereference made explicit in Analyze_Call.
+
+ if Ekind (Etype (Subp)) = E_Subprogram_Type then
+ if not Is_Overloaded (Subp) then
+ Nam := Etype (Subp);
+
+ else
+ -- Find the interpretation whose type (a subprogram type) has a
+ -- return type that is compatible with the context. Analysis of
+ -- the node has established that one exists.
+
+ Nam := Empty;
+
+ Get_First_Interp (Subp, I, It);
+ while Present (It.Typ) loop
+ if Covers (Typ, Etype (It.Typ)) then
+ Nam := It.Typ;
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if No (Nam) then
+ raise Program_Error;
+ end if;
+ end if;
+
+ -- If the prefix is not an entity, then resolve it
+
+ if not Is_Entity_Name (Subp) then
+ Resolve (Subp, Nam);
+ end if;
+
+ -- For an indirect call, we always invalidate checks, since we do not
+ -- know whether the subprogram is local or global. Yes we could do
+ -- better here, e.g. by knowing that there are no local subprograms,
+ -- but it does not seem worth the effort. Similarly, we kill all
+ -- knowledge of current constant values.
+
+ Kill_Current_Values;
+
+ -- If this is a procedure call which is really an entry call, do
+ -- the conversion of the procedure call to an entry call. Protected
+ -- operations use the same circuitry because the name in the call
+ -- can be an arbitrary expression with special resolution rules.
+
+ elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
+ or else (Is_Entity_Name (Subp)
+ and then Ekind (Entity (Subp)) = E_Entry)
+ then
+ Resolve_Entry_Call (N, Typ);
+ Check_Elab_Call (N);
+
+ -- Kill checks and constant values, as above for indirect case
+ -- Who knows what happens when another task is activated?
+
+ Kill_Current_Values;
+ return;
+
+ -- Normal subprogram call with name established in Resolve
+
+ elsif not (Is_Type (Entity (Subp))) then
+ Nam := Entity (Subp);
+ Set_Entity_With_Style_Check (Subp, Nam);
+
+ -- Otherwise we must have the case of an overloaded call
+
+ else
+ pragma Assert (Is_Overloaded (Subp));
+ Nam := Empty; -- We know that it will be assigned in loop below
+
+ Get_First_Interp (Subp, I, It);
+ while Present (It.Typ) loop
+ if Covers (Typ, It.Typ) then
+ Nam := It.Nam;
+ Set_Entity_With_Style_Check (Subp, Nam);
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
+ and then not Is_Access_Subprogram_Type (Base_Type (Typ))
+ and then Nkind (Subp) /= N_Explicit_Dereference
+ and then Present (Parameter_Associations (N))
+ then
+ -- The prefix is a parameterless function call that returns an access
+ -- to subprogram. If parameters are present in the current call, add
+ -- add an explicit dereference. We use the base type here because
+ -- within an instance these may be subtypes.
+
+ -- The dereference is added either in Analyze_Call or here. Should
+ -- be consolidated ???
+
+ Set_Is_Overloaded (Subp, False);
+ Set_Etype (Subp, Etype (Nam));
+ Insert_Explicit_Dereference (Subp);
+ Nam := Designated_Type (Etype (Nam));
+ Resolve (Subp, Nam);
+ end if;
+
+ -- Check that a call to Current_Task does not occur in an entry body
+
+ if Is_RTE (Nam, RE_Current_Task) then
+ declare
+ P : Node_Id;
+
+ begin
+ P := N;
+ loop
+ P := Parent (P);
+
+ -- Exclude calls that occur within the default of a formal
+ -- parameter of the entry, since those are evaluated outside
+ -- of the body.
+
+ exit when No (P) or else Nkind (P) = N_Parameter_Specification;
+
+ if Nkind (P) = N_Entry_Body
+ or else (Nkind (P) = N_Subprogram_Body
+ and then Is_Entry_Barrier_Function (P))
+ then
+ Rtype := Etype (N);
+ Error_Msg_NE
+ ("?& should not be used in entry body (RM C.7(17))",
+ N, Nam);
+ Error_Msg_NE
+ ("\Program_Error will be raised at run time?", N, Nam);
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Current_Task_In_Entry_Body));
+ Set_Etype (N, Rtype);
+ return;
+ end if;
+ end loop;
+ end;
+ end if;
+
+ -- Check that a procedure call does not occur in the context of the
+ -- entry call statement of a conditional or timed entry call. Note that
+ -- the case of a call to a subprogram renaming of an entry will also be
+ -- rejected. The test for N not being an N_Entry_Call_Statement is
+ -- defensive, covering the possibility that the processing of entry
+ -- calls might reach this point due to later modifications of the code
+ -- above.
+
+ if Nkind (Parent (N)) = N_Entry_Call_Alternative
+ and then Nkind (N) /= N_Entry_Call_Statement
+ and then Entry_Call_Statement (Parent (N)) = N
+ then
+ if Ada_Version < Ada_05 then
+ Error_Msg_N ("entry call required in select statement", N);
+
+ -- Ada 2005 (AI-345): If a procedure_call_statement is used
+ -- for a procedure_or_entry_call, the procedure_name or
+ -- procedure_prefix of the procedure_call_statement shall denote
+ -- an entry renamed by a procedure, or (a view of) a primitive
+ -- subprogram of a limited interface whose first parameter is
+ -- a controlling parameter.
+
+ elsif Nkind (N) = N_Procedure_Call_Statement
+ and then not Is_Renamed_Entry (Nam)
+ and then not Is_Controlling_Limited_Procedure (Nam)
+ then
+ Error_Msg_N
+ ("entry call or dispatching primitive of interface required", N);
+ end if;
+ end if;
+
+ -- Check that this is not a call to a protected procedure or entry from
+ -- within a protected function.
+
+ if Ekind (Current_Scope) = E_Function
+ and then Ekind (Scope (Current_Scope)) = E_Protected_Type
+ and then Ekind (Nam) /= E_Function
+ and then Scope (Nam) = Scope (Current_Scope)
+ then
+ Error_Msg_N ("within protected function, protected " &
+ "object is constant", N);
+ Error_Msg_N ("\cannot call operation that may modify it", N);
+ end if;
+
+ -- Freeze the subprogram name if not in a spec-expression. Note that we
+ -- freeze procedure calls as well as function calls. Procedure calls are
+ -- not frozen according to the rules (RM 13.14(14)) because it is
+ -- impossible to have a procedure call to a non-frozen procedure in pure
+ -- Ada, but in the code that we generate in the expander, this rule
+ -- needs extending because we can generate procedure calls that need
+ -- freezing.
+
+ if Is_Entity_Name (Subp) and then not In_Spec_Expression then
+ Freeze_Expression (Subp);
+ end if;
+
+ -- For a predefined operator, the type of the result is the type imposed
+ -- by context, except for a predefined operation on universal fixed.
+ -- Otherwise The type of the call is the type returned by the subprogram
+ -- being called.
+
+ if Is_Predefined_Op (Nam) then
+ if Etype (N) /= Universal_Fixed then
+ Set_Etype (N, Typ);
+ end if;
+
+ -- If the subprogram returns an array type, and the context requires the
+ -- component type of that array type, the node is really an indexing of
+ -- the parameterless call. Resolve as such. A pathological case occurs
+ -- when the type of the component is an access to the array type. In
+ -- this case the call is truly ambiguous.
+
+ elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
+ and then
+ ((Is_Array_Type (Etype (Nam))
+ and then Covers (Typ, Component_Type (Etype (Nam))))
+ or else (Is_Access_Type (Etype (Nam))
+ and then Is_Array_Type (Designated_Type (Etype (Nam)))
+ and then
+ Covers (Typ,
+ Component_Type (Designated_Type (Etype (Nam))))))
+ then
+ declare
+ Index_Node : Node_Id;
+ New_Subp : Node_Id;
+ Ret_Type : constant Entity_Id := Etype (Nam);
+
+ begin
+ if Is_Access_Type (Ret_Type)
+ and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
+ then
+ Error_Msg_N
+ ("cannot disambiguate function call and indexing", N);
+ else
+ New_Subp := Relocate_Node (Subp);
+ Set_Entity (Subp, Nam);
+
+ if Component_Type (Ret_Type) /= Any_Type then
+ if Needs_No_Actuals (Nam) then
+
+ -- Indexed call to a parameterless function
+
+ Index_Node :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Function_Call (Loc,
+ Name => New_Subp),
+ Expressions => Parameter_Associations (N));
+ else
+ -- An Ada 2005 prefixed call to a primitive operation
+ -- whose first parameter is the prefix. This prefix was
+ -- prepended to the parameter list, which is actually a
+ -- list of indices. Remove the prefix in order to build
+ -- the proper indexed component.
+
+ Index_Node :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Function_Call (Loc,
+ Name => New_Subp,
+ Parameter_Associations =>
+ New_List
+ (Remove_Head (Parameter_Associations (N)))),
+ Expressions => Parameter_Associations (N));
+ end if;
+
+ -- Since we are correcting a node classification error made
+ -- by the parser, we call Replace rather than Rewrite.
+
+ Replace (N, Index_Node);
+ Set_Etype (Prefix (N), Ret_Type);
+ Set_Etype (N, Typ);
+ Resolve_Indexed_Component (N, Typ);
+ Check_Elab_Call (Prefix (N));
+ end if;
+ end if;
+
+ return;
+ end;
+
+ else
+ Set_Etype (N, Etype (Nam));
+ end if;
+
+ -- In the case where the call is to an overloaded subprogram, Analyze
+ -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
+ -- such a case Normalize_Actuals needs to be called once more to order
+ -- the actuals correctly. Otherwise the call will have the ordering
+ -- given by the last overloaded subprogram whether this is the correct
+ -- one being called or not.
+
+ if Is_Overloaded (Subp) then
+ Normalize_Actuals (N, Nam, False, Norm_OK);
+ pragma Assert (Norm_OK);
+ end if;
+
+ -- In any case, call is fully resolved now. Reset Overload flag, to
+ -- prevent subsequent overload resolution if node is analyzed again
+
+ Set_Is_Overloaded (Subp, False);
+ Set_Is_Overloaded (N, False);
+
+ -- If we are calling the current subprogram from immediately within its
+ -- body, then that is the case where we can sometimes detect cases of
+ -- infinite recursion statically. Do not try this in case restriction
+ -- No_Recursion is in effect anyway, and do it only for source calls.
+
+ if Comes_From_Source (N) then
+ Scop := Current_Scope;
+
+ -- Issue warning for possible infinite recursion in the absence
+ -- of the No_Recursion restriction.
+
+ if Nam = Scop
+ and then not Restriction_Active (No_Recursion)
+ and then Check_Infinite_Recursion (N)
+ then
+ -- Here we detected and flagged an infinite recursion, so we do
+ -- not need to test the case below for further warnings. Also if
+ -- we now have a raise SE node, we are all done.
+
+ if Nkind (N) = N_Raise_Storage_Error then
+ return;
+ end if;
+
+ -- If call is to immediately containing subprogram, then check for
+ -- the case of a possible run-time detectable infinite recursion.
+
+ else
+ Scope_Loop : while Scop /= Standard_Standard loop
+ if Nam = Scop then
+
+ -- Although in general case, recursion is not statically
+ -- checkable, the case of calling an immediately containing
+ -- subprogram is easy to catch.
+
+ Check_Restriction (No_Recursion, N);
+
+ -- If the recursive call is to a parameterless subprogram,
+ -- then even if we can't statically detect infinite
+ -- recursion, this is pretty suspicious, and we output a
+ -- warning. Furthermore, we will try later to detect some
+ -- cases here at run time by expanding checking code (see
+ -- Detect_Infinite_Recursion in package Exp_Ch6).
+
+ -- If the recursive call is within a handler, do not emit a
+ -- warning, because this is a common idiom: loop until input
+ -- is correct, catch illegal input in handler and restart.
+
+ if No (First_Formal (Nam))
+ and then Etype (Nam) = Standard_Void_Type
+ and then not Error_Posted (N)
+ and then Nkind (Parent (N)) /= N_Exception_Handler
+ then
+ -- For the case of a procedure call. We give the message
+ -- only if the call is the first statement in a sequence
+ -- of statements, or if all previous statements are
+ -- simple assignments. This is simply a heuristic to
+ -- decrease false positives, without losing too many good
+ -- warnings. The idea is that these previous statements
+ -- may affect global variables the procedure depends on.
+
+ if Nkind (N) = N_Procedure_Call_Statement
+ and then Is_List_Member (N)
+ then
+ declare
+ P : Node_Id;
+ begin
+ P := Prev (N);
+ while Present (P) loop
+ if Nkind (P) /= N_Assignment_Statement then
+ exit Scope_Loop;
+ end if;
+
+ Prev (P);
+ end loop;
+ end;
+ end if;
+
+ -- Do not give warning if we are in a conditional context
+
+ declare
+ K : constant Node_Kind := Nkind (Parent (N));
+ begin
+ if (K = N_Loop_Statement
+ and then Present (Iteration_Scheme (Parent (N))))
+ or else K = N_If_Statement
+ or else K = N_Elsif_Part
+ or else K = N_Case_Statement_Alternative
+ then
+ exit Scope_Loop;
+ end if;
+ end;
+
+ -- Here warning is to be issued
+
+ Set_Has_Recursive_Call (Nam);
+ Error_Msg_N
+ ("?possible infinite recursion!", N);
+ Error_Msg_N
+ ("\?Storage_Error may be raised at run time!", N);
+ end if;
+
+ exit Scope_Loop;
+ end if;
+
+ Scop := Scope (Scop);
+ end loop Scope_Loop;
+ end if;
+ end if;
+
+ -- If subprogram name is a predefined operator, it was given in
+ -- functional notation. Replace call node with operator node, so
+ -- that actuals can be resolved appropriately.
+
+ if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
+ Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
+ return;
+
+ elsif Present (Alias (Nam))
+ and then Is_Predefined_Op (Alias (Nam))
+ then
+ Resolve_Actuals (N, Nam);
+ Make_Call_Into_Operator (N, Typ, Alias (Nam));
+ return;
+ end if;
+
+ -- Create a transient scope if the resulting type requires it
+
+ -- There are 4 notable exceptions: in init procs, the transient scope
+ -- overhead is not needed and even incorrect due to the actual expansion
+ -- of adjust calls; the second case is enumeration literal pseudo calls;
+ -- the third case is intrinsic subprograms (Unchecked_Conversion and
+ -- source information functions) that do not use the secondary stack
+ -- even though the return type is unconstrained; the fourth case is a
+ -- call to a build-in-place function, since such functions may allocate
+ -- their result directly in a target object, and cases where the result
+ -- does get allocated in the secondary stack are checked for within the
+ -- specialized Exp_Ch6 procedures for expanding build-in-place calls.
+
+ -- If this is an initialization call for a type whose initialization
+ -- uses the secondary stack, we also need to create a transient scope
+ -- for it, precisely because we will not do it within the init proc
+ -- itself.
+
+ -- If the subprogram is marked Inline_Always, then even if it returns
+ -- an unconstrained type the call does not require use of the secondary
+ -- stack. However, inlining will only take place if the body to inline
+ -- is already present. It may not be available if e.g. the subprogram is
+ -- declared in a child instance.
+
+ if Is_Inlined (Nam)
+ and then Has_Pragma_Inline_Always (Nam)
+ and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
+ and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
+ then
+ null;
+
+ elsif Expander_Active
+ and then Is_Type (Etype (Nam))
+ and then Requires_Transient_Scope (Etype (Nam))
+ and then not Is_Build_In_Place_Function (Nam)
+ and then Ekind (Nam) /= E_Enumeration_Literal
+ and then not Within_Init_Proc
+ and then not Is_Intrinsic_Subprogram (Nam)
+ then
+ Establish_Transient_Scope (N, Sec_Stack => True);
+
+ -- If the call appears within the bounds of a loop, it will
+ -- be rewritten and reanalyzed, nothing left to do here.
+
+ if Nkind (N) /= N_Function_Call then
+ return;
+ end if;
+
+ elsif Is_Init_Proc (Nam)
+ and then not Within_Init_Proc
+ then
+ Check_Initialization_Call (N, Nam);
+ end if;
+
+ -- A protected function cannot be called within the definition of the
+ -- enclosing protected type.
+
+ if Is_Protected_Type (Scope (Nam))
+ and then In_Open_Scopes (Scope (Nam))
+ and then not Has_Completion (Scope (Nam))
+ then
+ Error_Msg_NE
+ ("& cannot be called before end of protected definition", N, Nam);
+ end if;
+
+ -- Propagate interpretation to actuals, and add default expressions
+ -- where needed.
+
+ if Present (First_Formal (Nam)) then
+ Resolve_Actuals (N, Nam);
+
+ -- Overloaded literals are rewritten as function calls, for
+ -- purpose of resolution. After resolution, we can replace
+ -- the call with the literal itself.
+
+ elsif Ekind (Nam) = E_Enumeration_Literal then
+ Copy_Node (Subp, N);
+ Resolve_Entity_Name (N, Typ);
+
+ -- Avoid validation, since it is a static function call
+
+ Generate_Reference (Nam, Subp);
+ return;
+ end if;
+
+ -- If the subprogram is not global, then kill all saved values and
+ -- checks. This is a bit conservative, since in many cases we could do
+ -- better, but it is not worth the effort. Similarly, we kill constant
+ -- values. However we do not need to do this for internal entities
+ -- (unless they are inherited user-defined subprograms), since they
+ -- are not in the business of molesting local values.
+
+ -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
+ -- kill all checks and values for calls to global subprograms. This
+ -- takes care of the case where an access to a local subprogram is
+ -- taken, and could be passed directly or indirectly and then called
+ -- from almost any context.
+
+ -- Note: we do not do this step till after resolving the actuals. That
+ -- way we still take advantage of the current value information while
+ -- scanning the actuals.
+
+ -- We suppress killing values if we are processing the nodes associated
+ -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
+ -- type kills all the values as part of analyzing the code that
+ -- initializes the dispatch tables.
+
+ if Inside_Freezing_Actions = 0
+ and then (not Is_Library_Level_Entity (Nam)
+ or else Suppress_Value_Tracking_On_Call (Current_Scope))
+ and then (Comes_From_Source (Nam)
+ or else (Present (Alias (Nam))
+ and then Comes_From_Source (Alias (Nam))))
+ then
+ Kill_Current_Values;
+ end if;
+
+ -- If we are warning about unread OUT parameters, this is the place to
+ -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
+ -- after the above call to Kill_Current_Values (since that call clears
+ -- the Last_Assignment field of all local variables).
+
+ if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (N)
+ then
+ declare
+ F : Entity_Id;
+ A : Node_Id;
+
+ begin
+ F := First_Formal (Nam);
+ A := First_Actual (N);
+ while Present (F) and then Present (A) loop
+ if (Ekind (F) = E_Out_Parameter
+ or else Ekind (F) = E_In_Out_Parameter)
+ and then Warn_On_Modified_As_Out_Parameter (F)
+ and then Is_Entity_Name (A)
+ and then Present (Entity (A))
+ and then Comes_From_Source (N)
+ and then Safe_To_Capture_Value (N, Entity (A))
+ then
+ Set_Last_Assignment (Entity (A), A);
+ end if;
+
+ Next_Formal (F);
+ Next_Actual (A);
+ end loop;
+ end;
+ end if;
+
+ -- If the subprogram is a primitive operation, check whether or not
+ -- it is a correct dispatching call.
+
+ if Is_Overloadable (Nam)
+ and then Is_Dispatching_Operation (Nam)
+ then
+ Check_Dispatching_Call (N);
+
+ elsif Ekind (Nam) /= E_Subprogram_Type
+ and then Is_Abstract_Subprogram (Nam)
+ and then not In_Instance
+ then
+ Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
+ end if;
+
+ -- If this is a dispatching call, generate the appropriate reference,
+ -- for better source navigation in GPS.
+
+ if Is_Overloadable (Nam)
+ and then Present (Controlling_Argument (N))
+ then
+ Generate_Reference (Nam, Subp, 'R');
+ else
+ Generate_Reference (Nam, Subp);
+ end if;
+
+ if Is_Intrinsic_Subprogram (Nam) then
+ Check_Intrinsic_Call (N);
+ end if;
+
+ -- Check for violation of restriction No_Specific_Termination_Handlers
+ -- and warn on a potentially blocking call to Abort_Task.
+
+ if Is_RTE (Nam, RE_Set_Specific_Handler)
+ or else
+ Is_RTE (Nam, RE_Specific_Handler)
+ then
+ Check_Restriction (No_Specific_Termination_Handlers, N);
+
+ elsif Is_RTE (Nam, RE_Abort_Task) then
+ Check_Potentially_Blocking_Operation (N);
+ end if;
+
+ -- All done, evaluate call and deal with elaboration issues
+
+ Eval_Call (N);
+ Check_Elab_Call (N);
+ end Resolve_Call;
+
+ -------------------------------
+ -- Resolve_Character_Literal --
+ -------------------------------
+
+ procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ C : Entity_Id;
+
+ begin
+ -- Verify that the character does belong to the type of the context
+
+ Set_Etype (N, B_Typ);
+ Eval_Character_Literal (N);
+
+ -- Wide_Wide_Character literals must always be defined, since the set
+ -- of wide wide character literals is complete, i.e. if a character
+ -- literal is accepted by the parser, then it is OK for wide wide
+ -- character (out of range character literals are rejected).
+
+ if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
+ return;
+
+ -- Always accept character literal for type Any_Character, which
+ -- occurs in error situations and in comparisons of literals, both
+ -- of which should accept all literals.
+
+ elsif B_Typ = Any_Character then
+ return;
+
+ -- For Standard.Character or a type derived from it, check that
+ -- the literal is in range
+
+ elsif Root_Type (B_Typ) = Standard_Character then
+ if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
+ return;
+ end if;
+
+ -- For Standard.Wide_Character or a type derived from it, check
+ -- that the literal is in range
+
+ elsif Root_Type (B_Typ) = Standard_Wide_Character then
+ if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
+ return;
+ end if;
+
+ -- For Standard.Wide_Wide_Character or a type derived from it, we
+ -- know the literal is in range, since the parser checked!
+
+ elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
+ return;
+
+ -- If the entity is already set, this has already been resolved in
+ -- a generic context, or comes from expansion. Nothing else to do.
+
+ elsif Present (Entity (N)) then
+ return;
+
+ -- Otherwise we have a user defined character type, and we can use
+ -- the standard visibility mechanisms to locate the referenced entity
+
+ else
+ C := Current_Entity (N);
+ while Present (C) loop
+ if Etype (C) = B_Typ then
+ Set_Entity_With_Style_Check (N, C);
+ Generate_Reference (C, N);
+ return;
+ end if;
+
+ C := Homonym (C);
+ end loop;
+ end if;
+
+ -- If we fall through, then the literal does not match any of the
+ -- entries of the enumeration type. This isn't just a constraint
+ -- error situation, it is an illegality (see RM 4.2).
+
+ Error_Msg_NE
+ ("character not defined for }", N, First_Subtype (B_Typ));
+ end Resolve_Character_Literal;
+
+ ---------------------------
+ -- Resolve_Comparison_Op --
+ ---------------------------
+
+ -- Context requires a boolean type, and plays no role in resolution.
+ -- Processing identical to that for equality operators. The result
+ -- type is the base type, which matters when pathological subtypes of
+ -- booleans with limited ranges are used.
+
+ procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ T : Entity_Id;
+
+ begin
+ -- If this is an intrinsic operation which is not predefined, use
+ -- the types of its declared arguments to resolve the possibly
+ -- overloaded operands. Otherwise the operands are unambiguous and
+ -- specify the expected type.
+
+ if Scope (Entity (N)) /= Standard_Standard then
+ T := Etype (First_Entity (Entity (N)));
+
+ else
+ T := Find_Unique_Type (L, R);
+
+ if T = Any_Fixed then
+ T := Unique_Fixed_Point_Type (L);
+ end if;
+ end if;
+
+ Set_Etype (N, Base_Type (Typ));
+ Generate_Reference (T, N, ' ');
+
+ if T /= Any_Type then
+ if T = Any_String
+ or else T = Any_Composite
+ or else T = Any_Character
+ then
+ if T = Any_Character then
+ Ambiguous_Character (L);
+ else
+ Error_Msg_N ("ambiguous operands for comparison", N);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+
+ else
+ Resolve (L, T);
+ Resolve (R, T);
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+ Generate_Operator_Reference (N, T);
+ Eval_Relational_Op (N);
+ end if;
+ end if;
+ end Resolve_Comparison_Op;
+
+ ------------------------------------
+ -- Resolve_Conditional_Expression --
+ ------------------------------------
+
+ procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
+ Condition : constant Node_Id := First (Expressions (N));
+ Then_Expr : constant Node_Id := Next (Condition);
+ Else_Expr : constant Node_Id := Next (Then_Expr);
+
+ begin
+ Resolve (Condition, Standard_Boolean);
+ Resolve (Then_Expr, Typ);
+ Resolve (Else_Expr, Typ);
+
+ Set_Etype (N, Typ);
+ Eval_Conditional_Expression (N);
+ end Resolve_Conditional_Expression;
+
+ -----------------------------------------
+ -- Resolve_Discrete_Subtype_Indication --
+ -----------------------------------------
+
+ procedure Resolve_Discrete_Subtype_Indication
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ R : Node_Id;
+ S : Entity_Id;
+
+ begin
+ Analyze (Subtype_Mark (N));
+ S := Entity (Subtype_Mark (N));
+
+ if Nkind (Constraint (N)) /= N_Range_Constraint then
+ Error_Msg_N ("expect range constraint for discrete type", N);
+ Set_Etype (N, Any_Type);
+
+ else
+ R := Range_Expression (Constraint (N));
+
+ if R = Error then
+ return;
+ end if;
+
+ Analyze (R);
+
+ if Base_Type (S) /= Base_Type (Typ) then
+ Error_Msg_NE
+ ("expect subtype of }", N, First_Subtype (Typ));
+
+ -- Rewrite the constraint as a range of Typ
+ -- to allow compilation to proceed further.
+
+ Set_Etype (N, Typ);
+ Rewrite (Low_Bound (R),
+ Make_Attribute_Reference (Sloc (Low_Bound (R)),
+ Prefix => New_Occurrence_Of (Typ, Sloc (R)),
+ Attribute_Name => Name_First));
+ Rewrite (High_Bound (R),
+ Make_Attribute_Reference (Sloc (High_Bound (R)),
+ Prefix => New_Occurrence_Of (Typ, Sloc (R)),
+ Attribute_Name => Name_First));
+
+ else
+ Resolve (R, Typ);
+ Set_Etype (N, Etype (R));
+
+ -- Additionally, we must check that the bounds are compatible
+ -- with the given subtype, which might be different from the
+ -- type of the context.
+
+ Apply_Range_Check (R, S);
+
+ -- ??? If the above check statically detects a Constraint_Error
+ -- it replaces the offending bound(s) of the range R with a
+ -- Constraint_Error node. When the itype which uses these bounds
+ -- is frozen the resulting call to Duplicate_Subexpr generates
+ -- a new temporary for the bounds.
+
+ -- Unfortunately there are other itypes that are also made depend
+ -- on these bounds, so when Duplicate_Subexpr is called they get
+ -- a forward reference to the newly created temporaries and Gigi
+ -- aborts on such forward references. This is probably sign of a
+ -- more fundamental problem somewhere else in either the order of
+ -- itype freezing or the way certain itypes are constructed.
+
+ -- To get around this problem we call Remove_Side_Effects right
+ -- away if either bounds of R are a Constraint_Error.
+
+ declare
+ L : constant Node_Id := Low_Bound (R);
+ H : constant Node_Id := High_Bound (R);
+
+ begin
+ if Nkind (L) = N_Raise_Constraint_Error then
+ Remove_Side_Effects (L);
+ end if;
+
+ if Nkind (H) = N_Raise_Constraint_Error then
+ Remove_Side_Effects (H);
+ end if;
+ end;
+
+ Check_Unset_Reference (Low_Bound (R));
+ Check_Unset_Reference (High_Bound (R));
+ end if;
+ end if;
+ end Resolve_Discrete_Subtype_Indication;
+
+ -------------------------
+ -- Resolve_Entity_Name --
+ -------------------------
+
+ -- Used to resolve identifiers and expanded names
+
+ procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
+ E : constant Entity_Id := Entity (N);
+
+ begin
+ -- If garbage from errors, set to Any_Type and return
+
+ if No (E) and then Total_Errors_Detected /= 0 then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Replace named numbers by corresponding literals. Note that this is
+ -- the one case where Resolve_Entity_Name must reset the Etype, since
+ -- it is currently marked as universal.
+
+ if Ekind (E) = E_Named_Integer then
+ Set_Etype (N, Typ);
+ Eval_Named_Integer (N);
+
+ elsif Ekind (E) = E_Named_Real then
+ Set_Etype (N, Typ);
+ Eval_Named_Real (N);
+
+ -- Allow use of subtype only if it is a concurrent type where we are
+ -- currently inside the body. This will eventually be expanded
+ -- into a call to Self (for tasks) or _object (for protected
+ -- objects). Any other use of a subtype is invalid.
+
+ elsif Is_Type (E) then
+ if Is_Concurrent_Type (E)
+ and then In_Open_Scopes (E)
+ then
+ null;
+ else
+ Error_Msg_N
+ ("invalid use of subtype mark in expression or call", N);
+ end if;
+
+ -- Check discriminant use if entity is discriminant in current scope,
+ -- i.e. discriminant of record or concurrent type currently being
+ -- analyzed. Uses in corresponding body are unrestricted.
+
+ elsif Ekind (E) = E_Discriminant
+ and then Scope (E) = Current_Scope
+ and then not Has_Completion (Current_Scope)
+ then
+ Check_Discriminant_Use (N);
+
+ -- A parameterless generic function cannot appear in a context that
+ -- requires resolution.
+
+ elsif Ekind (E) = E_Generic_Function then
+ Error_Msg_N ("illegal use of generic function", N);
+
+ elsif Ekind (E) = E_Out_Parameter
+ and then Ada_Version = Ada_83
+ and then (Nkind (Parent (N)) in N_Op
+ or else (Nkind (Parent (N)) = N_Assignment_Statement
+ and then N = Expression (Parent (N)))
+ or else Nkind (Parent (N)) = N_Explicit_Dereference)
+ then
+ Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
+
+ -- In all other cases, just do the possible static evaluation
+
+ else
+ -- A deferred constant that appears in an expression must have
+ -- a completion, unless it has been removed by in-place expansion
+ -- of an aggregate.
+
+ if Ekind (E) = E_Constant
+ and then Comes_From_Source (E)
+ and then No (Constant_Value (E))
+ and then Is_Frozen (Etype (E))
+ and then not In_Spec_Expression
+ and then not Is_Imported (E)
+ then
+
+ if No_Initialization (Parent (E))
+ or else (Present (Full_View (E))
+ and then No_Initialization (Parent (Full_View (E))))
+ then
+ null;
+ else
+ Error_Msg_N (
+ "deferred constant is frozen before completion", N);
+ end if;
+ end if;
+
+ Eval_Entity_Name (N);
+ end if;
+ end Resolve_Entity_Name;
+
+ -------------------
+ -- Resolve_Entry --
+ -------------------
+
+ procedure Resolve_Entry (Entry_Name : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Entry_Name);
+ Nam : Entity_Id;
+ New_N : Node_Id;
+ S : Entity_Id;
+ Tsk : Entity_Id;
+ E_Name : Node_Id;
+ Index : Node_Id;
+
+ function Actual_Index_Type (E : Entity_Id) return Entity_Id;
+ -- If the bounds of the entry family being called depend on task
+ -- discriminants, build a new index subtype where a discriminant is
+ -- replaced with the value of the discriminant of the target task.
+ -- The target task is the prefix of the entry name in the call.
+
+ -----------------------
+ -- Actual_Index_Type --
+ -----------------------
+
+ function Actual_Index_Type (E : Entity_Id) return Entity_Id is
+ Typ : constant Entity_Id := Entry_Index_Type (E);
+ Tsk : constant Entity_Id := Scope (E);
+ Lo : constant Node_Id := Type_Low_Bound (Typ);
+ Hi : constant Node_Id := Type_High_Bound (Typ);
+ New_T : Entity_Id;
+
+ function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
+ -- If the bound is given by a discriminant, replace with a reference
+ -- to the discriminant of the same name in the target task.
+ -- If the entry name is the target of a requeue statement and the
+ -- entry is in the current protected object, the bound to be used
+ -- is the discriminal of the object (see apply_range_checks for
+ -- details of the transformation).
+
+ -----------------------------
+ -- Actual_Discriminant_Ref --
+ -----------------------------
+
+ function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
+ Typ : constant Entity_Id := Etype (Bound);
+ Ref : Node_Id;
+
+ begin
+ Remove_Side_Effects (Bound);
+
+ if not Is_Entity_Name (Bound)
+ or else Ekind (Entity (Bound)) /= E_Discriminant
+ then
+ return Bound;
+
+ elsif Is_Protected_Type (Tsk)
+ and then In_Open_Scopes (Tsk)
+ and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
+ then
+ return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
+
+ else
+ Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
+ Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
+ Analyze (Ref);
+ Resolve (Ref, Typ);
+ return Ref;
+ end if;
+ end Actual_Discriminant_Ref;
+
+ -- Start of processing for Actual_Index_Type
+
+ begin
+ if not Has_Discriminants (Tsk)
+ or else (not Is_Entity_Name (Lo)
+ and then not Is_Entity_Name (Hi))
+ then
+ return Entry_Index_Type (E);
+
+ else
+ New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
+ Set_Etype (New_T, Base_Type (Typ));
+ Set_Size_Info (New_T, Typ);
+ Set_RM_Size (New_T, RM_Size (Typ));
+ Set_Scalar_Range (New_T,
+ Make_Range (Sloc (Entry_Name),
+ Low_Bound => Actual_Discriminant_Ref (Lo),
+ High_Bound => Actual_Discriminant_Ref (Hi)));
+
+ return New_T;
+ end if;
+ end Actual_Index_Type;
+
+ -- Start of processing of Resolve_Entry
+
+ begin
+ -- Find name of entry being called, and resolve prefix of name
+ -- with its own type. The prefix can be overloaded, and the name
+ -- and signature of the entry must be taken into account.
+
+ if Nkind (Entry_Name) = N_Indexed_Component then
+
+ -- Case of dealing with entry family within the current tasks
+
+ E_Name := Prefix (Entry_Name);
+
+ else
+ E_Name := Entry_Name;
+ end if;
+
+ if Is_Entity_Name (E_Name) then
+ -- Entry call to an entry (or entry family) in the current task.
+ -- This is legal even though the task will deadlock. Rewrite as
+ -- call to current task.
+
+ -- This can also be a call to an entry in an enclosing task.
+ -- If this is a single task, we have to retrieve its name,
+ -- because the scope of the entry is the task type, not the
+ -- object. If the enclosing task is a task type, the identity
+ -- of the task is given by its own self variable.
+
+ -- Finally this can be a requeue on an entry of the same task
+ -- or protected object.
+
+ S := Scope (Entity (E_Name));
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+
+ if Is_Task_Type (Scope_Stack.Table (J).Entity)
+ and then not Comes_From_Source (S)
+ then
+ -- S is an enclosing task or protected object. The concurrent
+ -- declaration has been converted into a type declaration, and
+ -- the object itself has an object declaration that follows
+ -- the type in the same declarative part.
+
+ Tsk := Next_Entity (S);
+ while Etype (Tsk) /= S loop
+ Next_Entity (Tsk);
+ end loop;
+
+ S := Tsk;
+ exit;
+
+ elsif S = Scope_Stack.Table (J).Entity then
+
+ -- Call to current task. Will be transformed into call to Self
+
+ exit;
+
+ end if;
+ end loop;
+
+ New_N :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (S, Loc),
+ Selector_Name =>
+ New_Occurrence_Of (Entity (E_Name), Loc));
+ Rewrite (E_Name, New_N);
+ Analyze (E_Name);
+
+ elsif Nkind (Entry_Name) = N_Selected_Component
+ and then Is_Overloaded (Prefix (Entry_Name))
+ then
+ -- Use the entry name (which must be unique at this point) to
+ -- find the prefix that returns the corresponding task type or
+ -- protected type.
+
+ declare
+ Pref : constant Node_Id := Prefix (Entry_Name);
+ Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Pref, I, It);
+ while Present (It.Typ) loop
+ if Scope (Ent) = It.Typ then
+ Set_Etype (Pref, It.Typ);
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+
+ if Nkind (Entry_Name) = N_Selected_Component then
+ Resolve (Prefix (Entry_Name));
+
+ else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
+ Nam := Entity (Selector_Name (Prefix (Entry_Name)));
+ Resolve (Prefix (Prefix (Entry_Name)));
+ Index := First (Expressions (Entry_Name));
+ Resolve (Index, Entry_Index_Type (Nam));
+
+ -- Up to this point the expression could have been the actual
+ -- in a simple entry call, and be given by a named association.
+
+ if Nkind (Index) = N_Parameter_Association then
+ Error_Msg_N ("expect expression for entry index", Index);
+ else
+ Apply_Range_Check (Index, Actual_Index_Type (Nam));
+ end if;
+ end if;
+ end Resolve_Entry;
+
+ ------------------------
+ -- Resolve_Entry_Call --
+ ------------------------
+
+ procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
+ Entry_Name : constant Node_Id := Name (N);
+ Loc : constant Source_Ptr := Sloc (Entry_Name);
+ Actuals : List_Id;
+ First_Named : Node_Id;
+ Nam : Entity_Id;
+ Norm_OK : Boolean;
+ Obj : Node_Id;
+ Was_Over : Boolean;
+
+ begin
+ -- We kill all checks here, because it does not seem worth the
+ -- effort to do anything better, an entry call is a big operation.
+
+ Kill_All_Checks;
+
+ -- Processing of the name is similar for entry calls and protected
+ -- operation calls. Once the entity is determined, we can complete
+ -- the resolution of the actuals.
+
+ -- The selector may be overloaded, in the case of a protected object
+ -- with overloaded functions. The type of the context is used for
+ -- resolution.
+
+ if Nkind (Entry_Name) = N_Selected_Component
+ and then Is_Overloaded (Selector_Name (Entry_Name))
+ and then Typ /= Standard_Void_Type
+ then
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Selector_Name (Entry_Name), I, It);
+ while Present (It.Typ) loop
+ if Covers (Typ, It.Typ) then
+ Set_Entity (Selector_Name (Entry_Name), It.Nam);
+ Set_Etype (Entry_Name, It.Typ);
+
+ Generate_Reference (It.Typ, N, ' ');
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+
+ Resolve_Entry (Entry_Name);
+
+ if Nkind (Entry_Name) = N_Selected_Component then
+
+ -- Simple entry call
+
+ Nam := Entity (Selector_Name (Entry_Name));
+ Obj := Prefix (Entry_Name);
+ Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
+
+ else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
+
+ -- Call to member of entry family
+
+ Nam := Entity (Selector_Name (Prefix (Entry_Name)));
+ Obj := Prefix (Prefix (Entry_Name));
+ Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
+ end if;
+
+ -- We cannot in general check the maximum depth of protected entry
+ -- calls at compile time. But we can tell that any protected entry
+ -- call at all violates a specified nesting depth of zero.
+
+ if Is_Protected_Type (Scope (Nam)) then
+ Check_Restriction (Max_Entry_Queue_Length, N);
+ end if;
+
+ -- Use context type to disambiguate a protected function that can be
+ -- called without actuals and that returns an array type, and where
+ -- the argument list may be an indexing of the returned value.
+
+ if Ekind (Nam) = E_Function
+ and then Needs_No_Actuals (Nam)
+ and then Present (Parameter_Associations (N))
+ and then
+ ((Is_Array_Type (Etype (Nam))
+ and then Covers (Typ, Component_Type (Etype (Nam))))
+
+ or else (Is_Access_Type (Etype (Nam))
+ and then Is_Array_Type (Designated_Type (Etype (Nam)))
+ and then Covers (Typ,
+ Component_Type (Designated_Type (Etype (Nam))))))
+ then
+ declare
+ Index_Node : Node_Id;
+
+ begin
+ Index_Node :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Function_Call (Loc,
+ Name => Relocate_Node (Entry_Name)),
+ Expressions => Parameter_Associations (N));
+
+ -- Since we are correcting a node classification error made by
+ -- the parser, we call Replace rather than Rewrite.
+
+ Replace (N, Index_Node);
+ Set_Etype (Prefix (N), Etype (Nam));
+ Set_Etype (N, Typ);
+ Resolve_Indexed_Component (N, Typ);
+ return;
+ end;
+ end if;
+
+ -- The operation name may have been overloaded. Order the actuals
+ -- according to the formals of the resolved entity, and set the
+ -- return type to that of the operation.
+
+ if Was_Over then
+ Normalize_Actuals (N, Nam, False, Norm_OK);
+ pragma Assert (Norm_OK);
+ Set_Etype (N, Etype (Nam));
+ end if;
+
+ Resolve_Actuals (N, Nam);
+ Generate_Reference (Nam, Entry_Name);
+
+ if Ekind (Nam) = E_Entry
+ or else Ekind (Nam) = E_Entry_Family
+ then
+ Check_Potentially_Blocking_Operation (N);
+ end if;
+
+ -- Verify that a procedure call cannot masquerade as an entry
+ -- call where an entry call is expected.
+
+ if Ekind (Nam) = E_Procedure then
+ if Nkind (Parent (N)) = N_Entry_Call_Alternative
+ and then N = Entry_Call_Statement (Parent (N))
+ then
+ Error_Msg_N ("entry call required in select statement", N);
+
+ elsif Nkind (Parent (N)) = N_Triggering_Alternative
+ and then N = Triggering_Statement (Parent (N))
+ then
+ Error_Msg_N ("triggering statement cannot be procedure call", N);
+
+ elsif Ekind (Scope (Nam)) = E_Task_Type
+ and then not In_Open_Scopes (Scope (Nam))
+ then
+ Error_Msg_N ("task has no entry with this name", Entry_Name);
+ end if;
+ end if;
+
+ -- After resolution, entry calls and protected procedure calls
+ -- are changed into entry calls, for expansion. The structure
+ -- of the node does not change, so it can safely be done in place.
+ -- Protected function calls must keep their structure because they
+ -- are subexpressions.
+
+ if Ekind (Nam) /= E_Function then
+
+ -- A protected operation that is not a function may modify the
+ -- corresponding object, and cannot apply to a constant.
+ -- If this is an internal call, the prefix is the type itself.
+
+ if Is_Protected_Type (Scope (Nam))
+ and then not Is_Variable (Obj)
+ and then (not Is_Entity_Name (Obj)
+ or else not Is_Type (Entity (Obj)))
+ then
+ Error_Msg_N
+ ("prefix of protected procedure or entry call must be variable",
+ Entry_Name);
+ end if;
+
+ Actuals := Parameter_Associations (N);
+ First_Named := First_Named_Actual (N);
+
+ Rewrite (N,
+ Make_Entry_Call_Statement (Loc,
+ Name => Entry_Name,
+ Parameter_Associations => Actuals));
+
+ Set_First_Named_Actual (N, First_Named);
+ Set_Analyzed (N, True);
+
+ -- Protected functions can return on the secondary stack, in which
+ -- case we must trigger the transient scope mechanism.
+
+ elsif Expander_Active
+ and then Requires_Transient_Scope (Etype (Nam))
+ then
+ Establish_Transient_Scope (N, Sec_Stack => True);
+ end if;
+ end Resolve_Entry_Call;
+
+ -------------------------
+ -- Resolve_Equality_Op --
+ -------------------------
+
+ -- Both arguments must have the same type, and the boolean context
+ -- does not participate in the resolution. The first pass verifies
+ -- that the interpretation is not ambiguous, and the type of the left
+ -- argument is correctly set, or is Any_Type in case of ambiguity.
+ -- If both arguments are strings or aggregates, allocators, or Null,
+ -- they are ambiguous even though they carry a single (universal) type.
+ -- Diagnose this case here.
+
+ procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ T : Entity_Id := Find_Unique_Type (L, R);
+
+ function Find_Unique_Access_Type return Entity_Id;
+ -- In the case of allocators, make a last-ditch attempt to find a single
+ -- access type with the right designated type. This is semantically
+ -- dubious, and of no interest to any real code, but c48008a makes it
+ -- all worthwhile.
+
+ -----------------------------
+ -- Find_Unique_Access_Type --
+ -----------------------------
+
+ function Find_Unique_Access_Type return Entity_Id is
+ Acc : Entity_Id;
+ E : Entity_Id;
+ S : Entity_Id;
+
+ begin
+ if Ekind (Etype (R)) = E_Allocator_Type then
+ Acc := Designated_Type (Etype (R));
+ elsif Ekind (Etype (L)) = E_Allocator_Type then
+ Acc := Designated_Type (Etype (L));
+ else
+ return Empty;
+ end if;
+
+ S := Current_Scope;
+ while S /= Standard_Standard loop
+ E := First_Entity (S);
+ while Present (E) loop
+ if Is_Type (E)
+ and then Is_Access_Type (E)
+ and then Ekind (E) /= E_Allocator_Type
+ and then Designated_Type (E) = Base_Type (Acc)
+ then
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ S := Scope (S);
+ end loop;
+
+ return Empty;
+ end Find_Unique_Access_Type;
+
+ -- Start of processing for Resolve_Equality_Op
+
+ begin
+ Set_Etype (N, Base_Type (Typ));
+ Generate_Reference (T, N, ' ');
+
+ if T = Any_Fixed then
+ T := Unique_Fixed_Point_Type (L);
+ end if;
+
+ if T /= Any_Type then
+ if T = Any_String
+ or else T = Any_Composite
+ or else T = Any_Character
+ then
+ if T = Any_Character then
+ Ambiguous_Character (L);
+ else
+ Error_Msg_N ("ambiguous operands for equality", N);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+
+ elsif T = Any_Access
+ or else Ekind (T) = E_Allocator_Type
+ or else Ekind (T) = E_Access_Attribute_Type
+ then
+ T := Find_Unique_Access_Type;
+
+ if No (T) then
+ Error_Msg_N ("ambiguous operands for equality", N);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+ end if;
+
+ Resolve (L, T);
+ Resolve (R, T);
+
+ -- If the unique type is a class-wide type then it will be expanded
+ -- into a dispatching call to the predefined primitive. Therefore we
+ -- check here for potential violation of such restriction.
+
+ if Is_Class_Wide_Type (T) then
+ Check_Restriction (No_Dispatching_Calls, N);
+ end if;
+
+ if Warn_On_Redundant_Constructs
+ and then Comes_From_Source (N)
+ and then Is_Entity_Name (R)
+ and then Entity (R) = Standard_True
+ and then Comes_From_Source (R)
+ then
+ Error_Msg_N ("?comparison with True is redundant!", R);
+ end if;
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+ Generate_Operator_Reference (N, T);
+
+ -- If this is an inequality, it may be the implicit inequality
+ -- created for a user-defined operation, in which case the corres-
+ -- ponding equality operation is not intrinsic, and the operation
+ -- cannot be constant-folded. Else fold.
+
+ if Nkind (N) = N_Op_Eq
+ or else Comes_From_Source (Entity (N))
+ or else Ekind (Entity (N)) = E_Operator
+ or else Is_Intrinsic_Subprogram
+ (Corresponding_Equality (Entity (N)))
+ then
+ Eval_Relational_Op (N);
+
+ elsif Nkind (N) = N_Op_Ne
+ and then Is_Abstract_Subprogram (Entity (N))
+ then
+ Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
+ end if;
+
+ -- Ada 2005: If one operand is an anonymous access type, convert
+ -- the other operand to it, to ensure that the underlying types
+ -- match in the back-end. Same for access_to_subprogram, and the
+ -- conversion verifies that the types are subtype conformant.
+
+ -- We apply the same conversion in the case one of the operands is
+ -- a private subtype of the type of the other.
+
+ -- Why the Expander_Active test here ???
+
+ if Expander_Active
+ and then
+ (Ekind (T) = E_Anonymous_Access_Type
+ or else Ekind (T) = E_Anonymous_Access_Subprogram_Type
+ or else Is_Private_Type (T))
+ then
+ if Etype (L) /= T then
+ Rewrite (L,
+ Make_Unchecked_Type_Conversion (Sloc (L),
+ Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
+ Expression => Relocate_Node (L)));
+ Analyze_And_Resolve (L, T);
+ end if;
+
+ if (Etype (R)) /= T then
+ Rewrite (R,
+ Make_Unchecked_Type_Conversion (Sloc (R),
+ Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
+ Expression => Relocate_Node (R)));
+ Analyze_And_Resolve (R, T);
+ end if;
+ end if;
+ end if;
+ end Resolve_Equality_Op;
+
+ ----------------------------------
+ -- Resolve_Explicit_Dereference --
+ ----------------------------------
+
+ procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ New_N : Node_Id;
+ P : constant Node_Id := Prefix (N);
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Check_Fully_Declared_Prefix (Typ, P);
+
+ if Is_Overloaded (P) then
+
+ -- Use the context type to select the prefix that has the correct
+ -- designated type.
+
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ exit when Is_Access_Type (It.Typ)
+ and then Covers (Typ, Designated_Type (It.Typ));
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if Present (It.Typ) then
+ Resolve (P, It.Typ);
+ else
+ -- If no interpretation covers the designated type of the prefix,
+ -- this is the pathological case where not all implementations of
+ -- the prefix allow the interpretation of the node as a call. Now
+ -- that the expected type is known, Remove other interpretations
+ -- from prefix, rewrite it as a call, and resolve again, so that
+ -- the proper call node is generated.
+
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ if Ekind (It.Typ) /= E_Access_Subprogram_Type then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ New_N :=
+ Make_Function_Call (Loc,
+ Name =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => P),
+ Parameter_Associations => New_List);
+
+ Save_Interps (N, New_N);
+ Rewrite (N, New_N);
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ Set_Etype (N, Designated_Type (It.Typ));
+
+ else
+ Resolve (P);
+ end if;
+
+ if Is_Access_Type (Etype (P)) then
+ Apply_Access_Check (N);
+ end if;
+
+ -- If the designated type is a packed unconstrained array type, and the
+ -- explicit dereference is not in the context of an attribute reference,
+ -- then we must compute and set the actual subtype, since it is needed
+ -- by Gigi. The reason we exclude the attribute case is that this is
+ -- handled fine by Gigi, and in fact we use such attributes to build the
+ -- actual subtype. We also exclude generated code (which builds actual
+ -- subtypes directly if they are needed).
+
+ if Is_Array_Type (Etype (N))
+ and then Is_Packed (Etype (N))
+ and then not Is_Constrained (Etype (N))
+ and then Nkind (Parent (N)) /= N_Attribute_Reference
+ and then Comes_From_Source (N)
+ then
+ Set_Etype (N, Get_Actual_Subtype (N));
+ end if;
+
+ -- Note: there is no Eval processing required for an explicit deference,
+ -- because the type is known to be an allocators, and allocator
+ -- expressions can never be static.
+
+ end Resolve_Explicit_Dereference;
+
+ -------------------------------
+ -- Resolve_Indexed_Component --
+ -------------------------------
+
+ procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
+ Name : constant Node_Id := Prefix (N);
+ Expr : Node_Id;
+ Array_Type : Entity_Id := Empty; -- to prevent junk warning
+ Index : Node_Id;
+
+ begin
+ if Is_Overloaded (Name) then
+
+ -- Use the context type to select the prefix that yields the correct
+ -- component type.
+
+ declare
+ I : Interp_Index;
+ It : Interp;
+ I1 : Interp_Index := 0;
+ P : constant Node_Id := Prefix (N);
+ Found : Boolean := False;
+
+ begin
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ if (Is_Array_Type (It.Typ)
+ and then Covers (Typ, Component_Type (It.Typ)))
+ or else (Is_Access_Type (It.Typ)
+ and then Is_Array_Type (Designated_Type (It.Typ))
+ and then Covers
+ (Typ, Component_Type (Designated_Type (It.Typ))))
+ then
+ if Found then
+ It := Disambiguate (P, I1, I, Any_Type);
+
+ if It = No_Interp then
+ Error_Msg_N ("ambiguous prefix for indexing", N);
+ Set_Etype (N, Typ);
+ return;
+
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ else
+ Array_Type := Etype (Name);
+ end if;
+
+ Resolve (Name, Array_Type);
+ Array_Type := Get_Actual_Subtype_If_Available (Name);
+
+ -- If prefix is access type, dereference to get real array type.
+ -- Note: we do not apply an access check because the expander always
+ -- introduces an explicit dereference, and the check will happen there.
+
+ if Is_Access_Type (Array_Type) then
+ Array_Type := Designated_Type (Array_Type);
+ end if;
+
+ -- If name was overloaded, set component type correctly now
+ -- If a misplaced call to an entry family (which has no index types)
+ -- return. Error will be diagnosed from calling context.
+
+ if Is_Array_Type (Array_Type) then
+ Set_Etype (N, Component_Type (Array_Type));
+ else
+ return;
+ end if;
+
+ Index := First_Index (Array_Type);
+ Expr := First (Expressions (N));
+
+ -- The prefix may have resolved to a string literal, in which case its
+ -- etype has a special representation. This is only possible currently
+ -- if the prefix is a static concatenation, written in functional
+ -- notation.
+
+ if Ekind (Array_Type) = E_String_Literal_Subtype then
+ Resolve (Expr, Standard_Positive);
+
+ else
+ while Present (Index) and Present (Expr) loop
+ Resolve (Expr, Etype (Index));
+ Check_Unset_Reference (Expr);
+
+ if Is_Scalar_Type (Etype (Expr)) then
+ Apply_Scalar_Range_Check (Expr, Etype (Index));
+ else
+ Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
+ end if;
+
+ Next_Index (Index);
+ Next (Expr);
+ end loop;
+ end if;
+
+ -- Do not generate the warning on suspicious index if we are analyzing
+ -- package Ada.Tags; otherwise we will report the warning with the
+ -- Prims_Ptr field of the dispatch table.
+
+ if Scope (Etype (Prefix (N))) = Standard_Standard
+ or else not
+ Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
+ Ada_Tags)
+ then
+ Warn_On_Suspicious_Index (Name, First (Expressions (N)));
+ Eval_Indexed_Component (N);
+ end if;
+ end Resolve_Indexed_Component;
+
+ -----------------------------
+ -- Resolve_Integer_Literal --
+ -----------------------------
+
+ procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
+ begin
+ Set_Etype (N, Typ);
+ Eval_Integer_Literal (N);
+ end Resolve_Integer_Literal;
+
+ --------------------------------
+ -- Resolve_Intrinsic_Operator --
+ --------------------------------
+
+ procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
+ Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
+ Op : Entity_Id;
+ Arg1 : Node_Id;
+ Arg2 : Node_Id;
+
+ begin
+ Op := Entity (N);
+ while Scope (Op) /= Standard_Standard loop
+ Op := Homonym (Op);
+ pragma Assert (Present (Op));
+ end loop;
+
+ Set_Entity (N, Op);
+ Set_Is_Overloaded (N, False);
+
+ -- If the operand type is private, rewrite with suitable conversions on
+ -- the operands and the result, to expose the proper underlying numeric
+ -- type.
+
+ if Is_Private_Type (Typ) then
+ Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd (N));
+
+ if Nkind (N) = N_Op_Expon then
+ Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
+ else
+ Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
+ end if;
+
+ Save_Interps (Left_Opnd (N), Expression (Arg1));
+ Save_Interps (Right_Opnd (N), Expression (Arg2));
+
+ Set_Left_Opnd (N, Arg1);
+ Set_Right_Opnd (N, Arg2);
+
+ Set_Etype (N, Btyp);
+ Rewrite (N, Unchecked_Convert_To (Typ, N));
+ Resolve (N, Typ);
+
+ elsif Typ /= Etype (Left_Opnd (N))
+ or else Typ /= Etype (Right_Opnd (N))
+ then
+ -- Add explicit conversion where needed, and save interpretations
+ -- in case operands are overloaded.
+
+ Arg1 := Convert_To (Typ, Left_Opnd (N));
+ Arg2 := Convert_To (Typ, Right_Opnd (N));
+
+ if Nkind (Arg1) = N_Type_Conversion then
+ Save_Interps (Left_Opnd (N), Expression (Arg1));
+ else
+ Save_Interps (Left_Opnd (N), Arg1);
+ end if;
+
+ if Nkind (Arg2) = N_Type_Conversion then
+ Save_Interps (Right_Opnd (N), Expression (Arg2));
+ else
+ Save_Interps (Right_Opnd (N), Arg2);
+ end if;
+
+ Rewrite (Left_Opnd (N), Arg1);
+ Rewrite (Right_Opnd (N), Arg2);
+ Analyze (Arg1);
+ Analyze (Arg2);
+ Resolve_Arithmetic_Op (N, Typ);
+
+ else
+ Resolve_Arithmetic_Op (N, Typ);
+ end if;
+ end Resolve_Intrinsic_Operator;
+
+ --------------------------------------
+ -- Resolve_Intrinsic_Unary_Operator --
+ --------------------------------------
+
+ procedure Resolve_Intrinsic_Unary_Operator
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
+ Op : Entity_Id;
+ Arg2 : Node_Id;
+
+ begin
+ Op := Entity (N);
+ while Scope (Op) /= Standard_Standard loop
+ Op := Homonym (Op);
+ pragma Assert (Present (Op));
+ end loop;
+
+ Set_Entity (N, Op);
+
+ if Is_Private_Type (Typ) then
+ Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
+ Save_Interps (Right_Opnd (N), Expression (Arg2));
+
+ Set_Right_Opnd (N, Arg2);
+
+ Set_Etype (N, Btyp);
+ Rewrite (N, Unchecked_Convert_To (Typ, N));
+ Resolve (N, Typ);
+
+ else
+ Resolve_Unary_Op (N, Typ);
+ end if;
+ end Resolve_Intrinsic_Unary_Operator;
+
+ ------------------------
+ -- Resolve_Logical_Op --
+ ------------------------
+
+ procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : Entity_Id;
+ N_Opr : constant Node_Kind := Nkind (N);
+
+ begin
+ -- Predefined operations on scalar types yield the base type. On the
+ -- other hand, logical operations on arrays yield the type of the
+ -- arguments (and the context).
+
+ if Is_Array_Type (Typ) then
+ B_Typ := Typ;
+ else
+ B_Typ := Base_Type (Typ);
+ end if;
+
+ -- The following test is required because the operands of the operation
+ -- may be literals, in which case the resulting type appears to be
+ -- compatible with a signed integer type, when in fact it is compatible
+ -- only with modular types. If the context itself is universal, the
+ -- operation is illegal.
+
+ if not Valid_Boolean_Arg (Typ) then
+ Error_Msg_N ("invalid context for logical operation", N);
+ Set_Etype (N, Any_Type);
+ return;
+
+ elsif Typ = Any_Modular then
+ Error_Msg_N
+ ("no modular type available in this context", N);
+ Set_Etype (N, Any_Type);
+ return;
+ elsif Is_Modular_Integer_Type (Typ)
+ and then Etype (Left_Opnd (N)) = Universal_Integer
+ and then Etype (Right_Opnd (N)) = Universal_Integer
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ Resolve (Left_Opnd (N), B_Typ);
+ Resolve (Right_Opnd (N), B_Typ);
+
+ Check_Unset_Reference (Left_Opnd (N));
+ Check_Unset_Reference (Right_Opnd (N));
+
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Logical_Op (N);
+
+ -- Check for violation of restriction No_Direct_Boolean_Operators
+ -- if the operator was not eliminated by the Eval_Logical_Op call.
+
+ if Nkind (N) = N_Opr
+ and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
+ then
+ Check_Restriction (No_Direct_Boolean_Operators, N);
+ end if;
+ end Resolve_Logical_Op;
+
+ ---------------------------
+ -- Resolve_Membership_Op --
+ ---------------------------
+
+ -- The context can only be a boolean type, and does not determine
+ -- the arguments. Arguments should be unambiguous, but the preference
+ -- rule for universal types applies.
+
+ procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
+ pragma Warnings (Off, Typ);
+
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ T : Entity_Id;
+
+ begin
+ if L = Error or else R = Error then
+ return;
+ end if;
+
+ if not Is_Overloaded (R)
+ and then
+ (Etype (R) = Universal_Integer or else
+ Etype (R) = Universal_Real)
+ and then Is_Overloaded (L)
+ then
+ T := Etype (R);
+
+ -- Ada 2005 (AI-251): Give support to the following case:
+
+ -- type I is interface;
+ -- type T is tagged ...
+
+ -- function Test (O : I'Class) is
+ -- begin
+ -- return O in T'Class.
+ -- end Test;
+
+ -- In this case we have nothing else to do; the membership test will be
+ -- done at run-time.
+
+ elsif Ada_Version >= Ada_05
+ and then Is_Class_Wide_Type (Etype (L))
+ and then Is_Interface (Etype (L))
+ and then Is_Class_Wide_Type (Etype (R))
+ and then not Is_Interface (Etype (R))
+ then
+ return;
+
+ else
+ T := Intersect_Types (L, R);
+ end if;
+
+ Resolve (L, T);
+ Check_Unset_Reference (L);
+
+ if Nkind (R) = N_Range
+ and then not Is_Scalar_Type (T)
+ then
+ Error_Msg_N ("scalar type required for range", R);
+ end if;
+
+ if Is_Entity_Name (R) then
+ Freeze_Expression (R);
+ else
+ Resolve (R, T);
+ Check_Unset_Reference (R);
+ end if;
+
+ Eval_Membership_Op (N);
+ end Resolve_Membership_Op;
+
+ ------------------
+ -- Resolve_Null --
+ ------------------
+
+ procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ begin
+ -- Handle restriction against anonymous null access values This
+ -- restriction can be turned off using -gnatdj.
+
+ -- Ada 2005 (AI-231): Remove restriction
+
+ if Ada_Version < Ada_05
+ and then not Debug_Flag_J
+ and then Ekind (Typ) = E_Anonymous_Access_Type
+ and then Comes_From_Source (N)
+ then
+ -- In the common case of a call which uses an explicitly null
+ -- value for an access parameter, give specialized error message.
+
+ if Nkind_In (Parent (N), N_Procedure_Call_Statement,
+ N_Function_Call)
+ then
+ Error_Msg_N
+ ("null is not allowed as argument for an access parameter", N);
+
+ -- Standard message for all other cases (are there any?)
+
+ else
+ Error_Msg_N
+ ("null cannot be of an anonymous access type", N);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-231): Generate the null-excluding check in case of
+ -- assignment to a null-excluding object
+
+ if Ada_Version >= Ada_05
+ and then Can_Never_Be_Null (Typ)
+ and then Nkind (Parent (N)) = N_Assignment_Statement
+ then
+ if not Inside_Init_Proc then
+ Insert_Action
+ (Compile_Time_Constraint_Error (N,
+ "(Ada 2005) null not allowed in null-excluding objects?"),
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Access_Check_Failed));
+ else
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Access_Check_Failed));
+ end if;
+ end if;
+
+ -- In a distributed context, null for a remote access to subprogram
+ -- may need to be replaced with a special record aggregate. In this
+ -- case, return after having done the transformation.
+
+ if (Ekind (Typ) = E_Record_Type
+ or else Is_Remote_Access_To_Subprogram_Type (Typ))
+ and then Remote_AST_Null_Value (N, Typ)
+ then
+ return;
+ end if;
+
+ -- The null literal takes its type from the context
+
+ Set_Etype (N, Typ);
+ end Resolve_Null;
+
+ -----------------------
+ -- Resolve_Op_Concat --
+ -----------------------
+
+ procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
+
+ -- We wish to avoid deep recursion, because concatenations are often
+ -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
+ -- operands nonrecursively until we find something that is not a simple
+ -- concatenation (A in this case). We resolve that, and then walk back
+ -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
+ -- to do the rest of the work at each level. The Parent pointers allow
+ -- us to avoid recursion, and thus avoid running out of memory. See also
+ -- Sem_Ch4.Analyze_Concatenation, where a similar hack is used.
+
+ NN : Node_Id := N;
+ Op1 : Node_Id;
+
+ begin
+ -- The following code is equivalent to:
+
+ -- Resolve_Op_Concat_First (NN, Typ);
+ -- Resolve_Op_Concat_Arg (N, ...);
+ -- Resolve_Op_Concat_Rest (N, Typ);
+
+ -- where the Resolve_Op_Concat_Arg call recurses back here if the left
+ -- operand is a concatenation.
+
+ -- Walk down left operands
+
+ loop
+ Resolve_Op_Concat_First (NN, Typ);
+ Op1 := Left_Opnd (NN);
+ exit when not (Nkind (Op1) = N_Op_Concat
+ and then not Is_Array_Type (Component_Type (Typ))
+ and then Entity (Op1) = Entity (NN));
+ NN := Op1;
+ end loop;
+
+ -- Now (given the above example) NN is A&B and Op1 is A
+
+ -- First resolve Op1 ...
+
+ Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
+
+ -- ... then walk NN back up until we reach N (where we started), calling
+ -- Resolve_Op_Concat_Rest along the way.
+
+ loop
+ Resolve_Op_Concat_Rest (NN, Typ);
+ exit when NN = N;
+ NN := Parent (NN);
+ end loop;
+ end Resolve_Op_Concat;
+
+ ---------------------------
+ -- Resolve_Op_Concat_Arg --
+ ---------------------------
+
+ procedure Resolve_Op_Concat_Arg
+ (N : Node_Id;
+ Arg : Node_Id;
+ Typ : Entity_Id;
+ Is_Comp : Boolean)
+ is
+ Btyp : constant Entity_Id := Base_Type (Typ);
+
+ begin
+ if In_Instance then
+ if Is_Comp
+ or else (not Is_Overloaded (Arg)
+ and then Etype (Arg) /= Any_Composite
+ and then Covers (Component_Type (Typ), Etype (Arg)))
+ then
+ Resolve (Arg, Component_Type (Typ));
+ else
+ Resolve (Arg, Btyp);
+ end if;
+
+ elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
+ if Nkind (Arg) = N_Aggregate
+ and then Is_Composite_Type (Component_Type (Typ))
+ then
+ if Is_Private_Type (Component_Type (Typ)) then
+ Resolve (Arg, Btyp);
+ else
+ Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
+ Set_Etype (Arg, Any_Type);
+ end if;
+
+ else
+ if Is_Overloaded (Arg)
+ and then Has_Compatible_Type (Arg, Typ)
+ and then Etype (Arg) /= Any_Type
+ then
+ declare
+ I : Interp_Index;
+ It : Interp;
+ Func : Entity_Id;
+
+ begin
+ Get_First_Interp (Arg, I, It);
+ Func := It.Nam;
+ Get_Next_Interp (I, It);
+
+ -- Special-case the error message when the overloading is
+ -- caused by a function that yields an array and can be
+ -- called without parameters.
+
+ if It.Nam = Func then
+ Error_Msg_Sloc := Sloc (Func);
+ Error_Msg_N ("ambiguous call to function#", Arg);
+ Error_Msg_NE
+ ("\\interpretation as call yields&", Arg, Typ);
+ Error_Msg_NE
+ ("\\interpretation as indexing of call yields&",
+ Arg, Component_Type (Typ));
+
+ else
+ Error_Msg_N
+ ("ambiguous operand for concatenation!", Arg);
+ Get_First_Interp (Arg, I, It);
+ while Present (It.Nam) loop
+ Error_Msg_Sloc := Sloc (It.Nam);
+
+ if Base_Type (It.Typ) = Base_Type (Typ)
+ or else Base_Type (It.Typ) =
+ Base_Type (Component_Type (Typ))
+ then
+ Error_Msg_N ("\\possible interpretation#", Arg);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end;
+ end if;
+
+ Resolve (Arg, Component_Type (Typ));
+
+ if Nkind (Arg) = N_String_Literal then
+ Set_Etype (Arg, Component_Type (Typ));
+ end if;
+
+ if Arg = Left_Opnd (N) then
+ Set_Is_Component_Left_Opnd (N);
+ else
+ Set_Is_Component_Right_Opnd (N);
+ end if;
+ end if;
+
+ else
+ Resolve (Arg, Btyp);
+ end if;
+
+ Check_Unset_Reference (Arg);
+ end Resolve_Op_Concat_Arg;
+
+ -----------------------------
+ -- Resolve_Op_Concat_First --
+ -----------------------------
+
+ procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+
+ begin
+ -- The parser folds an enormous sequence of concatenations of string
+ -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
+ -- in the right. If the expression resolves to a predefined "&"
+ -- operator, all is well. Otherwise, the parser's folding is wrong, so
+ -- we give an error. See P_Simple_Expression in Par.Ch4.
+
+ if Nkind (Op2) = N_String_Literal
+ and then Is_Folded_In_Parser (Op2)
+ and then Ekind (Entity (N)) = E_Function
+ then
+ pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
+ and then String_Length (Strval (Op1)) = 0);
+ Error_Msg_N ("too many user-defined concatenations", N);
+ return;
+ end if;
+
+ Set_Etype (N, Btyp);
+
+ if Is_Limited_Composite (Btyp) then
+ Error_Msg_N ("concatenation not available for limited array", N);
+ Explain_Limited_Type (Btyp, N);
+ end if;
+ end Resolve_Op_Concat_First;
+
+ ----------------------------
+ -- Resolve_Op_Concat_Rest --
+ ----------------------------
+
+ procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+
+ begin
+ Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
+
+ Generate_Operator_Reference (N, Typ);
+
+ if Is_String_Type (Typ) then
+ Eval_Concatenation (N);
+ end if;
+
+ -- If this is not a static concatenation, but the result is a
+ -- string type (and not an array of strings) ensure that static
+ -- string operands have their subtypes properly constructed.
+
+ if Nkind (N) /= N_String_Literal
+ and then Is_Character_Type (Component_Type (Typ))
+ then
+ Set_String_Literal_Subtype (Op1, Typ);
+ Set_String_Literal_Subtype (Op2, Typ);
+ end if;
+ end Resolve_Op_Concat_Rest;
+
+ ----------------------
+ -- Resolve_Op_Expon --
+ ----------------------
+
+ procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+
+ begin
+ -- Catch attempts to do fixed-point exponentiation with universal
+ -- operands, which is a case where the illegality is not caught during
+ -- normal operator analysis.
+
+ if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
+ Error_Msg_N ("exponentiation not available for fixed point", N);
+ return;
+ end if;
+
+ if Comes_From_Source (N)
+ and then Ekind (Entity (N)) = E_Function
+ and then Is_Imported (Entity (N))
+ and then Is_Intrinsic_Subprogram (Entity (N))
+ then
+ Resolve_Intrinsic_Operator (N, Typ);
+ return;
+ end if;
+
+ if Etype (Left_Opnd (N)) = Universal_Integer
+ or else Etype (Left_Opnd (N)) = Universal_Real
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ -- We do the resolution using the base type, because intermediate values
+ -- in expressions always are of the base type, not a subtype of it.
+
+ Resolve (Left_Opnd (N), B_Typ);
+ Resolve (Right_Opnd (N), Standard_Integer);
+
+ Check_Unset_Reference (Left_Opnd (N));
+ Check_Unset_Reference (Right_Opnd (N));
+
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Op_Expon (N);
+
+ -- Set overflow checking bit. Much cleverer code needed here eventually
+ -- and perhaps the Resolve routines should be separated for the various
+ -- arithmetic operations, since they will need different processing. ???
+
+ if Nkind (N) in N_Op then
+ if not Overflow_Checks_Suppressed (Etype (N)) then
+ Enable_Overflow_Check (N);
+ end if;
+ end if;
+ end Resolve_Op_Expon;
+
+ --------------------
+ -- Resolve_Op_Not --
+ --------------------
+
+ procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : Entity_Id;
+
+ function Parent_Is_Boolean return Boolean;
+ -- This function determines if the parent node is a boolean operator
+ -- or operation (comparison op, membership test, or short circuit form)
+ -- and the not in question is the left operand of this operation.
+ -- Note that if the not is in parens, then false is returned.
+
+ -----------------------
+ -- Parent_Is_Boolean --
+ -----------------------
+
+ function Parent_Is_Boolean return Boolean is
+ begin
+ if Paren_Count (N) /= 0 then
+ return False;
+
+ else
+ case Nkind (Parent (N)) is
+ when N_Op_And |
+ N_Op_Eq |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Ne |
+ N_Op_Or |
+ N_Op_Xor |
+ N_In |
+ N_Not_In |
+ N_And_Then |
+ N_Or_Else =>
+
+ return Left_Opnd (Parent (N)) = N;
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Parent_Is_Boolean;
+
+ -- Start of processing for Resolve_Op_Not
+
+ begin
+ -- Predefined operations on scalar types yield the base type. On the
+ -- other hand, logical operations on arrays yield the type of the
+ -- arguments (and the context).
+
+ if Is_Array_Type (Typ) then
+ B_Typ := Typ;
+ else
+ B_Typ := Base_Type (Typ);
+ end if;
+
+ -- Straightforward case of incorrect arguments
+
+ if not Valid_Boolean_Arg (Typ) then
+ Error_Msg_N ("invalid operand type for operator&", N);
+ Set_Etype (N, Any_Type);
+ return;
+
+ -- Special case of probable missing parens
+
+ elsif Typ = Universal_Integer or else Typ = Any_Modular then
+ if Parent_Is_Boolean then
+ Error_Msg_N
+ ("operand of not must be enclosed in parentheses",
+ Right_Opnd (N));
+ else
+ Error_Msg_N
+ ("no modular type available in this context", N);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+
+ -- OK resolution of not
+
+ else
+ -- Warn if non-boolean types involved. This is a case like not a < b
+ -- where a and b are modular, where we will get (not a) < b and most
+ -- likely not (a < b) was intended.
+
+ if Warn_On_Questionable_Missing_Parens
+ and then not Is_Boolean_Type (Typ)
+ and then Parent_Is_Boolean
+ then
+ Error_Msg_N ("?not expression should be parenthesized here!", N);
+ end if;
+
+ -- Warn on double negation if checking redundant constructs
+
+ if Warn_On_Redundant_Constructs
+ and then Comes_From_Source (N)
+ and then Comes_From_Source (Right_Opnd (N))
+ and then Root_Type (Typ) = Standard_Boolean
+ and then Nkind (Right_Opnd (N)) = N_Op_Not
+ then
+ Error_Msg_N ("redundant double negation?", N);
+ end if;
+
+ -- Complete resolution and evaluation of NOT
+
+ Resolve (Right_Opnd (N), B_Typ);
+ Check_Unset_Reference (Right_Opnd (N));
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Op_Not (N);
+ end if;
+ end Resolve_Op_Not;
+
+ -----------------------------
+ -- Resolve_Operator_Symbol --
+ -----------------------------
+
+ -- Nothing to be done, all resolved already
+
+ procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
+ pragma Warnings (Off, N);
+ pragma Warnings (Off, Typ);
+
+ begin
+ null;
+ end Resolve_Operator_Symbol;
+
+ ----------------------------------
+ -- Resolve_Qualified_Expression --
+ ----------------------------------
+
+ procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
+ pragma Warnings (Off, Typ);
+
+ Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
+ Expr : constant Node_Id := Expression (N);
+
+ begin
+ Resolve (Expr, Target_Typ);
+
+ -- A qualified expression requires an exact match of the type,
+ -- class-wide matching is not allowed. However, if the qualifying
+ -- type is specific and the expression has a class-wide type, it
+ -- may still be okay, since it can be the result of the expansion
+ -- of a call to a dispatching function, so we also have to check
+ -- class-wideness of the type of the expression's original node.
+
+ if (Is_Class_Wide_Type (Target_Typ)
+ or else
+ (Is_Class_Wide_Type (Etype (Expr))
+ and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
+ and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
+ then
+ Wrong_Type (Expr, Target_Typ);
+ end if;
+
+ -- If the target type is unconstrained, then we reset the type of
+ -- the result from the type of the expression. For other cases, the
+ -- actual subtype of the expression is the target type.
+
+ if Is_Composite_Type (Target_Typ)
+ and then not Is_Constrained (Target_Typ)
+ then
+ Set_Etype (N, Etype (Expr));
+ end if;
+
+ Eval_Qualified_Expression (N);
+ end Resolve_Qualified_Expression;
+
+ -------------------
+ -- Resolve_Range --
+ -------------------
+
+ procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
+ L : constant Node_Id := Low_Bound (N);
+ H : constant Node_Id := High_Bound (N);
+
+ begin
+ Set_Etype (N, Typ);
+ Resolve (L, Typ);
+ Resolve (H, Typ);
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (H);
+
+ -- We have to check the bounds for being within the base range as
+ -- required for a non-static context. Normally this is automatic and
+ -- done as part of evaluating expressions, but the N_Range node is an
+ -- exception, since in GNAT we consider this node to be a subexpression,
+ -- even though in Ada it is not. The circuit in Sem_Eval could check for
+ -- this, but that would put the test on the main evaluation path for
+ -- expressions.
+
+ Check_Non_Static_Context (L);
+ Check_Non_Static_Context (H);
+
+ -- Check for an ambiguous range over character literals. This will
+ -- happen with a membership test involving only literals.
+
+ if Typ = Any_Character then
+ Ambiguous_Character (L);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- If bounds are static, constant-fold them, so size computations
+ -- are identical between front-end and back-end. Do not perform this
+ -- transformation while analyzing generic units, as type information
+ -- would then be lost when reanalyzing the constant node in the
+ -- instance.
+
+ if Is_Discrete_Type (Typ) and then Expander_Active then
+ if Is_OK_Static_Expression (L) then
+ Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
+ end if;
+
+ if Is_OK_Static_Expression (H) then
+ Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
+ end if;
+ end if;
+ end Resolve_Range;
+
+ --------------------------
+ -- Resolve_Real_Literal --
+ --------------------------
+
+ procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
+ Actual_Typ : constant Entity_Id := Etype (N);
+
+ begin
+ -- Special processing for fixed-point literals to make sure that the
+ -- value is an exact multiple of small where this is required. We
+ -- skip this for the universal real case, and also for generic types.
+
+ if Is_Fixed_Point_Type (Typ)
+ and then Typ /= Universal_Fixed
+ and then Typ /= Any_Fixed
+ and then not Is_Generic_Type (Typ)
+ then
+ declare
+ Val : constant Ureal := Realval (N);
+ Cintr : constant Ureal := Val / Small_Value (Typ);
+ Cint : constant Uint := UR_Trunc (Cintr);
+ Den : constant Uint := Norm_Den (Cintr);
+ Stat : Boolean;
+
+ begin
+ -- Case of literal is not an exact multiple of the Small
+
+ if Den /= 1 then
+
+ -- For a source program literal for a decimal fixed-point
+ -- type, this is statically illegal (RM 4.9(36)).
+
+ if Is_Decimal_Fixed_Point_Type (Typ)
+ and then Actual_Typ = Universal_Real
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N ("value has extraneous low order digits", N);
+ end if;
+
+ -- Generate a warning if literal from source
+
+ if Is_Static_Expression (N)
+ and then Warn_On_Bad_Fixed_Value
+ then
+ Error_Msg_N
+ ("?static fixed-point value is not a multiple of Small!",
+ N);
+ end if;
+
+ -- Replace literal by a value that is the exact representation
+ -- of a value of the type, i.e. a multiple of the small value,
+ -- by truncation, since Machine_Rounds is false for all GNAT
+ -- fixed-point types (RM 4.9(38)).
+
+ Stat := Is_Static_Expression (N);
+ Rewrite (N,
+ Make_Real_Literal (Sloc (N),
+ Realval => Small_Value (Typ) * Cint));
+
+ Set_Is_Static_Expression (N, Stat);
+ end if;
+
+ -- In all cases, set the corresponding integer field
+
+ Set_Corresponding_Integer_Value (N, Cint);
+ end;
+ end if;
+
+ -- Now replace the actual type by the expected type as usual
+
+ Set_Etype (N, Typ);
+ Eval_Real_Literal (N);
+ end Resolve_Real_Literal;
+
+ -----------------------
+ -- Resolve_Reference --
+ -----------------------
+
+ procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
+ P : constant Node_Id := Prefix (N);
+
+ begin
+ -- Replace general access with specific type
+
+ if Ekind (Etype (N)) = E_Allocator_Type then
+ Set_Etype (N, Base_Type (Typ));
+ end if;
+
+ Resolve (P, Designated_Type (Etype (N)));
+
+ -- If we are taking the reference of a volatile entity, then treat
+ -- it as a potential modification of this entity. This is much too
+ -- conservative, but is necessary because remove side effects can
+ -- result in transformations of normal assignments into reference
+ -- sequences that otherwise fail to notice the modification.
+
+ if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
+ Note_Possible_Modification (P, Sure => False);
+ end if;
+ end Resolve_Reference;
+
+ --------------------------------
+ -- Resolve_Selected_Component --
+ --------------------------------
+
+ procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
+ Comp : Entity_Id;
+ Comp1 : Entity_Id := Empty; -- prevent junk warning
+ P : constant Node_Id := Prefix (N);
+ S : constant Node_Id := Selector_Name (N);
+ T : Entity_Id := Etype (P);
+ I : Interp_Index;
+ I1 : Interp_Index := 0; -- prevent junk warning
+ It : Interp;
+ It1 : Interp;
+ Found : Boolean;
+
+ function Init_Component return Boolean;
+ -- Check whether this is the initialization of a component within an
+ -- init proc (by assignment or call to another init proc). If true,
+ -- there is no need for a discriminant check.
+
+ --------------------
+ -- Init_Component --
+ --------------------
+
+ function Init_Component return Boolean is
+ begin
+ return Inside_Init_Proc
+ and then Nkind (Prefix (N)) = N_Identifier
+ and then Chars (Prefix (N)) = Name_uInit
+ and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
+ end Init_Component;
+
+ -- Start of processing for Resolve_Selected_Component
+
+ begin
+ if Is_Overloaded (P) then
+
+ -- Use the context type to select the prefix that has a selector
+ -- of the correct name and type.
+
+ Found := False;
+ Get_First_Interp (P, I, It);
+
+ Search : while Present (It.Typ) loop
+ if Is_Access_Type (It.Typ) then
+ T := Designated_Type (It.Typ);
+ else
+ T := It.Typ;
+ end if;
+
+ if Is_Record_Type (T) then
+
+ -- The visible components of a class-wide type are those of
+ -- the root type.
+
+ if Is_Class_Wide_Type (T) then
+ T := Etype (T);
+ end if;
+
+ Comp := First_Entity (T);
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (S)
+ and then Covers (Etype (Comp), Typ)
+ then
+ if not Found then
+ Found := True;
+ I1 := I;
+ It1 := It;
+ Comp1 := Comp;
+
+ else
+ It := Disambiguate (P, I1, I, Any_Type);
+
+ if It = No_Interp then
+ Error_Msg_N
+ ("ambiguous prefix for selected component", N);
+ Set_Etype (N, Typ);
+ return;
+
+ else
+ It1 := It;
+
+ -- There may be an implicit dereference. Retrieve
+ -- designated record type.
+
+ if Is_Access_Type (It1.Typ) then
+ T := Designated_Type (It1.Typ);
+ else
+ T := It1.Typ;
+ end if;
+
+ if Scope (Comp1) /= T then
+
+ -- Resolution chooses the new interpretation.
+ -- Find the component with the right name.
+
+ Comp1 := First_Entity (T);
+ while Present (Comp1)
+ and then Chars (Comp1) /= Chars (S)
+ loop
+ Comp1 := Next_Entity (Comp1);
+ end loop;
+ end if;
+
+ exit Search;
+ end if;
+ end if;
+ end if;
+
+ Comp := Next_Entity (Comp);
+ end loop;
+
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop Search;
+
+ Resolve (P, It1.Typ);
+ Set_Etype (N, Typ);
+ Set_Entity_With_Style_Check (S, Comp1);
+
+ else
+ -- Resolve prefix with its type
+
+ Resolve (P, T);
+ end if;
+
+ -- Generate cross-reference. We needed to wait until full overloading
+ -- resolution was complete to do this, since otherwise we can't tell if
+ -- we are an Lvalue of not.
+
+ if May_Be_Lvalue (N) then
+ Generate_Reference (Entity (S), S, 'm');
+ else
+ Generate_Reference (Entity (S), S, 'r');
+ end if;
+
+ -- If prefix is an access type, the node will be transformed into an
+ -- explicit dereference during expansion. The type of the node is the
+ -- designated type of that of the prefix.
+
+ if Is_Access_Type (Etype (P)) then
+ T := Designated_Type (Etype (P));
+ Check_Fully_Declared_Prefix (T, P);
+ else
+ T := Etype (P);
+ end if;
+
+ if Has_Discriminants (T)
+ and then (Ekind (Entity (S)) = E_Component
+ or else
+ Ekind (Entity (S)) = E_Discriminant)
+ and then Present (Original_Record_Component (Entity (S)))
+ and then Ekind (Original_Record_Component (Entity (S))) = E_Component
+ and then Present (Discriminant_Checking_Func
+ (Original_Record_Component (Entity (S))))
+ and then not Discriminant_Checks_Suppressed (T)
+ and then not Init_Component
+ then
+ Set_Do_Discriminant_Check (N);
+ end if;
+
+ if Ekind (Entity (S)) = E_Void then
+ Error_Msg_N ("premature use of component", S);
+ end if;
+
+ -- If the prefix is a record conversion, this may be a renamed
+ -- discriminant whose bounds differ from those of the original
+ -- one, so we must ensure that a range check is performed.
+
+ if Nkind (P) = N_Type_Conversion
+ and then Ekind (Entity (S)) = E_Discriminant
+ and then Is_Discrete_Type (Typ)
+ then
+ Set_Etype (N, Base_Type (Typ));
+ end if;
+
+ -- Note: No Eval processing is required, because the prefix is of a
+ -- record type, or protected type, and neither can possibly be static.
+
+ end Resolve_Selected_Component;
+
+ -------------------
+ -- Resolve_Shift --
+ -------------------
+
+ procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+
+ begin
+ -- We do the resolution using the base type, because intermediate values
+ -- in expressions always are of the base type, not a subtype of it.
+
+ Resolve (L, B_Typ);
+ Resolve (R, Standard_Natural);
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+
+ Set_Etype (N, B_Typ);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Shift (N);
+ end Resolve_Shift;
+
+ ---------------------------
+ -- Resolve_Short_Circuit --
+ ---------------------------
+
+ procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+
+ begin
+ Resolve (L, B_Typ);
+ Resolve (R, B_Typ);
+
+ -- Check for issuing warning for always False assert/check, this happens
+ -- when assertions are turned off, in which case the pragma Assert/Check
+ -- was transformed into:
+
+ -- if False and then <condition> then ...
+
+ -- and we detect this pattern
+
+ if Warn_On_Assertion_Failure
+ and then Is_Entity_Name (R)
+ and then Entity (R) = Standard_False
+ and then Nkind (Parent (N)) = N_If_Statement
+ and then Nkind (N) = N_And_Then
+ and then Is_Entity_Name (L)
+ and then Entity (L) = Standard_False
+ then
+ declare
+ Orig : constant Node_Id := Original_Node (Parent (N));
+
+ begin
+ if Nkind (Orig) = N_Pragma
+ and then Pragma_Name (Orig) = Name_Assert
+ then
+ -- Don't want to warn if original condition is explicit False
+
+ declare
+ Expr : constant Node_Id :=
+ Original_Node
+ (Expression
+ (First (Pragma_Argument_Associations (Orig))));
+ begin
+ if Is_Entity_Name (Expr)
+ and then Entity (Expr) = Standard_False
+ then
+ null;
+ else
+ -- Issue warning. Note that we don't want to make this
+ -- an unconditional warning, because if the assert is
+ -- within deleted code we do not want the warning. But
+ -- we do not want the deletion of the IF/AND-THEN to
+ -- take this message with it. We achieve this by making
+ -- sure that the expanded code points to the Sloc of
+ -- the expression, not the original pragma.
+
+ Error_Msg_N ("?assertion would fail at run-time", Orig);
+ end if;
+ end;
+
+ -- Similar processing for Check pragma
+
+ elsif Nkind (Orig) = N_Pragma
+ and then Pragma_Name (Orig) = Name_Check
+ then
+ -- Don't want to warn if original condition is explicit False
+
+ declare
+ Expr : constant Node_Id :=
+ Original_Node
+ (Expression
+ (Next (First
+ (Pragma_Argument_Associations (Orig)))));
+ begin
+ if Is_Entity_Name (Expr)
+ and then Entity (Expr) = Standard_False
+ then
+ null;
+ else
+ Error_Msg_N ("?check would fail at run-time", Orig);
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Continue with processing of short circuit
+
+ Check_Unset_Reference (L);
+ Check_Unset_Reference (R);
+
+ Set_Etype (N, B_Typ);
+ Eval_Short_Circuit (N);
+ end Resolve_Short_Circuit;
+
+ -------------------
+ -- Resolve_Slice --
+ -------------------
+
+ procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
+ Name : constant Node_Id := Prefix (N);
+ Drange : constant Node_Id := Discrete_Range (N);
+ Array_Type : Entity_Id := Empty;
+ Index : Node_Id;
+
+ begin
+ if Is_Overloaded (Name) then
+
+ -- Use the context type to select the prefix that yields the
+ -- correct array type.
+
+ declare
+ I : Interp_Index;
+ I1 : Interp_Index := 0;
+ It : Interp;
+ P : constant Node_Id := Prefix (N);
+ Found : Boolean := False;
+
+ begin
+ Get_First_Interp (P, I, It);
+ while Present (It.Typ) loop
+ if (Is_Array_Type (It.Typ)
+ and then Covers (Typ, It.Typ))
+ or else (Is_Access_Type (It.Typ)
+ and then Is_Array_Type (Designated_Type (It.Typ))
+ and then Covers (Typ, Designated_Type (It.Typ)))
+ then
+ if Found then
+ It := Disambiguate (P, I1, I, Any_Type);
+
+ if It = No_Interp then
+ Error_Msg_N ("ambiguous prefix for slicing", N);
+ Set_Etype (N, Typ);
+ return;
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+ else
+ Found := True;
+ Array_Type := It.Typ;
+ I1 := I;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ else
+ Array_Type := Etype (Name);
+ end if;
+
+ Resolve (Name, Array_Type);
+
+ if Is_Access_Type (Array_Type) then
+ Apply_Access_Check (N);
+ Array_Type := Designated_Type (Array_Type);
+
+ -- If the prefix is an access to an unconstrained array, we must use
+ -- the actual subtype of the object to perform the index checks. The
+ -- object denoted by the prefix is implicit in the node, so we build
+ -- an explicit representation for it in order to compute the actual
+ -- subtype.
+
+ if not Is_Constrained (Array_Type) then
+ Remove_Side_Effects (Prefix (N));
+
+ declare
+ Obj : constant Node_Id :=
+ Make_Explicit_Dereference (Sloc (N),
+ Prefix => New_Copy_Tree (Prefix (N)));
+ begin
+ Set_Etype (Obj, Array_Type);
+ Set_Parent (Obj, Parent (N));
+ Array_Type := Get_Actual_Subtype (Obj);
+ end;
+ end if;
+
+ elsif Is_Entity_Name (Name)
+ or else (Nkind (Name) = N_Function_Call
+ and then not Is_Constrained (Etype (Name)))
+ then
+ Array_Type := Get_Actual_Subtype (Name);
+
+ -- If the name is a selected component that depends on discriminants,
+ -- build an actual subtype for it. This can happen only when the name
+ -- itself is overloaded; otherwise the actual subtype is created when
+ -- the selected component is analyzed.
+
+ elsif Nkind (Name) = N_Selected_Component
+ and then Full_Analysis
+ and then Depends_On_Discriminant (First_Index (Array_Type))
+ then
+ declare
+ Act_Decl : constant Node_Id :=
+ Build_Actual_Subtype_Of_Component (Array_Type, Name);
+ begin
+ Insert_Action (N, Act_Decl);
+ Array_Type := Defining_Identifier (Act_Decl);
+ end;
+ end if;
+
+ -- If name was overloaded, set slice type correctly now
+
+ Set_Etype (N, Array_Type);
+
+ -- If the range is specified by a subtype mark, no resolution is
+ -- necessary. Else resolve the bounds, and apply needed checks.
+
+ if not Is_Entity_Name (Drange) then
+ Index := First_Index (Array_Type);
+ Resolve (Drange, Base_Type (Etype (Index)));
+
+ if Nkind (Drange) = N_Range
+
+ -- Do not apply the range check to nodes associated with the
+ -- frontend expansion of the dispatch table. We first check
+ -- if Ada.Tags is already loaded to void the addition of an
+ -- undesired dependence on such run-time unit.
+
+ and then
+ (VM_Target /= No_VM
+ or else not
+ (RTU_Loaded (Ada_Tags)
+ and then Nkind (Prefix (N)) = N_Selected_Component
+ and then Present (Entity (Selector_Name (Prefix (N))))
+ and then Entity (Selector_Name (Prefix (N))) =
+ RTE_Record_Component (RE_Prims_Ptr)))
+ then
+ Apply_Range_Check (Drange, Etype (Index));
+ end if;
+ end if;
+
+ Set_Slice_Subtype (N);
+
+ if Nkind (Drange) = N_Range then
+ Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
+ Warn_On_Suspicious_Index (Name, High_Bound (Drange));
+ end if;
+
+ Eval_Slice (N);
+ end Resolve_Slice;
+
+ ----------------------------
+ -- Resolve_String_Literal --
+ ----------------------------
+
+ procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
+ C_Typ : constant Entity_Id := Component_Type (Typ);
+ R_Typ : constant Entity_Id := Root_Type (C_Typ);
+ Loc : constant Source_Ptr := Sloc (N);
+ Str : constant String_Id := Strval (N);
+ Strlen : constant Nat := String_Length (Str);
+ Subtype_Id : Entity_Id;
+ Need_Check : Boolean;
+
+ begin
+ -- For a string appearing in a concatenation, defer creation of the
+ -- string_literal_subtype until the end of the resolution of the
+ -- concatenation, because the literal may be constant-folded away. This
+ -- is a useful optimization for long concatenation expressions.
+
+ -- If the string is an aggregate built for a single character (which
+ -- happens in a non-static context) or a is null string to which special
+ -- checks may apply, we build the subtype. Wide strings must also get a
+ -- string subtype if they come from a one character aggregate. Strings
+ -- generated by attributes might be static, but it is often hard to
+ -- determine whether the enclosing context is static, so we generate
+ -- subtypes for them as well, thus losing some rarer optimizations ???
+ -- Same for strings that come from a static conversion.
+
+ Need_Check :=
+ (Strlen = 0 and then Typ /= Standard_String)
+ or else Nkind (Parent (N)) /= N_Op_Concat
+ or else (N /= Left_Opnd (Parent (N))
+ and then N /= Right_Opnd (Parent (N)))
+ or else ((Typ = Standard_Wide_String
+ or else Typ = Standard_Wide_Wide_String)
+ and then Nkind (Original_Node (N)) /= N_String_Literal);
+
+ -- If the resolving type is itself a string literal subtype, we
+ -- can just reuse it, since there is no point in creating another.
+
+ if Ekind (Typ) = E_String_Literal_Subtype then
+ Subtype_Id := Typ;
+
+ elsif Nkind (Parent (N)) = N_Op_Concat
+ and then not Need_Check
+ and then not Nkind_In (Original_Node (N), N_Character_Literal,
+ N_Attribute_Reference,
+ N_Qualified_Expression,
+ N_Type_Conversion)
+ then
+ Subtype_Id := Typ;
+
+ -- Otherwise we must create a string literal subtype. Note that the
+ -- whole idea of string literal subtypes is simply to avoid the need
+ -- for building a full fledged array subtype for each literal.
+
+ else
+ Set_String_Literal_Subtype (N, Typ);
+ Subtype_Id := Etype (N);
+ end if;
+
+ if Nkind (Parent (N)) /= N_Op_Concat
+ or else Need_Check
+ then
+ Set_Etype (N, Subtype_Id);
+ Eval_String_Literal (N);
+ end if;
+
+ if Is_Limited_Composite (Typ)
+ or else Is_Private_Composite (Typ)
+ then
+ Error_Msg_N ("string literal not available for private array", N);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- The validity of a null string has been checked in the
+ -- call to Eval_String_Literal.
+
+ if Strlen = 0 then
+ return;
+
+ -- Always accept string literal with component type Any_Character, which
+ -- occurs in error situations and in comparisons of literals, both of
+ -- which should accept all literals.
+
+ elsif R_Typ = Any_Character then
+ return;
+
+ -- If the type is bit-packed, then we always transform the string
+ -- literal into a full fledged aggregate.
+
+ elsif Is_Bit_Packed_Array (Typ) then
+ null;
+
+ -- Deal with cases of Wide_Wide_String, Wide_String, and String
+
+ else
+ -- For Standard.Wide_Wide_String, or any other type whose component
+ -- type is Standard.Wide_Wide_Character, we know that all the
+ -- characters in the string must be acceptable, since the parser
+ -- accepted the characters as valid character literals.
+
+ if R_Typ = Standard_Wide_Wide_Character then
+ null;
+
+ -- For the case of Standard.String, or any other type whose component
+ -- type is Standard.Character, we must make sure that there are no
+ -- wide characters in the string, i.e. that it is entirely composed
+ -- of characters in range of type Character.
+
+ -- If the string literal is the result of a static concatenation, the
+ -- test has already been performed on the components, and need not be
+ -- repeated.
+
+ elsif R_Typ = Standard_Character
+ and then Nkind (Original_Node (N)) /= N_Op_Concat
+ then
+ for J in 1 .. Strlen loop
+ if not In_Character_Range (Get_String_Char (Str, J)) then
+
+ -- If we are out of range, post error. This is one of the
+ -- very few places that we place the flag in the middle of
+ -- a token, right under the offending wide character.
+
+ Error_Msg
+ ("literal out of range of type Standard.Character",
+ Source_Ptr (Int (Loc) + J));
+ return;
+ end if;
+ end loop;
+
+ -- For the case of Standard.Wide_String, or any other type whose
+ -- component type is Standard.Wide_Character, we must make sure that
+ -- there are no wide characters in the string, i.e. that it is
+ -- entirely composed of characters in range of type Wide_Character.
+
+ -- If the string literal is the result of a static concatenation,
+ -- the test has already been performed on the components, and need
+ -- not be repeated.
+
+ elsif R_Typ = Standard_Wide_Character
+ and then Nkind (Original_Node (N)) /= N_Op_Concat
+ then
+ for J in 1 .. Strlen loop
+ if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
+
+ -- If we are out of range, post error. This is one of the
+ -- very few places that we place the flag in the middle of
+ -- a token, right under the offending wide character.
+
+ -- This is not quite right, because characters in general
+ -- will take more than one character position ???
+
+ Error_Msg
+ ("literal out of range of type Standard.Wide_Character",
+ Source_Ptr (Int (Loc) + J));
+ return;
+ end if;
+ end loop;
+
+ -- If the root type is not a standard character, then we will convert
+ -- the string into an aggregate and will let the aggregate code do
+ -- the checking. Standard Wide_Wide_Character is also OK here.
+
+ else
+ null;
+ end if;
+
+ -- See if the component type of the array corresponding to the string
+ -- has compile time known bounds. If yes we can directly check
+ -- whether the evaluation of the string will raise constraint error.
+ -- Otherwise we need to transform the string literal into the
+ -- corresponding character aggregate and let the aggregate
+ -- code do the checking.
+
+ if Is_Standard_Character_Type (R_Typ) then
+
+ -- Check for the case of full range, where we are definitely OK
+
+ if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
+ return;
+ end if;
+
+ -- Here the range is not the complete base type range, so check
+
+ declare
+ Comp_Typ_Lo : constant Node_Id :=
+ Type_Low_Bound (Component_Type (Typ));
+ Comp_Typ_Hi : constant Node_Id :=
+ Type_High_Bound (Component_Type (Typ));
+
+ Char_Val : Uint;
+
+ begin
+ if Compile_Time_Known_Value (Comp_Typ_Lo)
+ and then Compile_Time_Known_Value (Comp_Typ_Hi)
+ then
+ for J in 1 .. Strlen loop
+ Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
+
+ if Char_Val < Expr_Value (Comp_Typ_Lo)
+ or else Char_Val > Expr_Value (Comp_Typ_Hi)
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N, "character out of range?", CE_Range_Check_Failed,
+ Loc => Source_Ptr (Int (Loc) + J));
+ end if;
+ end loop;
+
+ return;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- If we got here we meed to transform the string literal into the
+ -- equivalent qualified positional array aggregate. This is rather
+ -- heavy artillery for this situation, but it is hard work to avoid.
+
+ declare
+ Lits : constant List_Id := New_List;
+ P : Source_Ptr := Loc + 1;
+ C : Char_Code;
+
+ begin
+ -- Build the character literals, we give them source locations that
+ -- correspond to the string positions, which is a bit tricky given
+ -- the possible presence of wide character escape sequences.
+
+ for J in 1 .. Strlen loop
+ C := Get_String_Char (Str, J);
+ Set_Character_Literal_Name (C);
+
+ Append_To (Lits,
+ Make_Character_Literal (P,
+ Chars => Name_Find,
+ Char_Literal_Value => UI_From_CC (C)));
+
+ if In_Character_Range (C) then
+ P := P + 1;
+
+ -- Should we have a call to Skip_Wide here ???
+ -- ??? else
+ -- Skip_Wide (P);
+
+ end if;
+ end loop;
+
+ Rewrite (N,
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => New_Reference_To (Typ, Loc),
+ Expression =>
+ Make_Aggregate (Loc, Expressions => Lits)));
+
+ Analyze_And_Resolve (N, Typ);
+ end;
+ end Resolve_String_Literal;
+
+ -----------------------------
+ -- Resolve_Subprogram_Info --
+ -----------------------------
+
+ procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
+ begin
+ Set_Etype (N, Typ);
+ end Resolve_Subprogram_Info;
+
+ -----------------------------
+ -- Resolve_Type_Conversion --
+ -----------------------------
+
+ procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
+ Conv_OK : constant Boolean := Conversion_OK (N);
+ Operand : constant Node_Id := Expression (N);
+ Operand_Typ : constant Entity_Id := Etype (Operand);
+ Target_Typ : constant Entity_Id := Etype (N);
+ Rop : Node_Id;
+ Orig_N : Node_Id;
+ Orig_T : Node_Id;
+
+ begin
+ if not Conv_OK
+ and then not Valid_Conversion (N, Target_Typ, Operand)
+ then
+ return;
+ end if;
+
+ if Etype (Operand) = Any_Fixed then
+
+ -- Mixed-mode operation involving a literal. Context must be a fixed
+ -- type which is applied to the literal subsequently.
+
+ if Is_Fixed_Point_Type (Typ) then
+ Set_Etype (Operand, Universal_Real);
+
+ elsif Is_Numeric_Type (Typ)
+ and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
+ and then (Etype (Right_Opnd (Operand)) = Universal_Real
+ or else
+ Etype (Left_Opnd (Operand)) = Universal_Real)
+ then
+ -- Return if expression is ambiguous
+
+ if Unique_Fixed_Point_Type (N) = Any_Type then
+ return;
+
+ -- If nothing else, the available fixed type is Duration
+
+ else
+ Set_Etype (Operand, Standard_Duration);
+ end if;
+
+ -- Resolve the real operand with largest available precision
+
+ if Etype (Right_Opnd (Operand)) = Universal_Real then
+ Rop := New_Copy_Tree (Right_Opnd (Operand));
+ else
+ Rop := New_Copy_Tree (Left_Opnd (Operand));
+ end if;
+
+ Resolve (Rop, Universal_Real);
+
+ -- If the operand is a literal (it could be a non-static and
+ -- illegal exponentiation) check whether the use of Duration
+ -- is potentially inaccurate.
+
+ if Nkind (Rop) = N_Real_Literal
+ and then Realval (Rop) /= Ureal_0
+ and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
+ then
+ Error_Msg_N
+ ("?universal real operand can only " &
+ "be interpreted as Duration!",
+ Rop);
+ Error_Msg_N
+ ("\?precision will be lost in the conversion!", Rop);
+ end if;
+
+ elsif Is_Numeric_Type (Typ)
+ and then Nkind (Operand) in N_Op
+ and then Unique_Fixed_Point_Type (N) /= Any_Type
+ then
+ Set_Etype (Operand, Standard_Duration);
+
+ else
+ Error_Msg_N ("invalid context for mixed mode operation", N);
+ Set_Etype (Operand, Any_Type);
+ return;
+ end if;
+ end if;
+
+ Resolve (Operand);
+
+ -- Note: we do the Eval_Type_Conversion call before applying the
+ -- required checks for a subtype conversion. This is important,
+ -- since both are prepared under certain circumstances to change
+ -- the type conversion to a constraint error node, but in the case
+ -- of Eval_Type_Conversion this may reflect an illegality in the
+ -- static case, and we would miss the illegality (getting only a
+ -- warning message), if we applied the type conversion checks first.
+
+ Eval_Type_Conversion (N);
+
+ -- Even when evaluation is not possible, we may be able to simplify
+ -- the conversion or its expression. This needs to be done before
+ -- applying checks, since otherwise the checks may use the original
+ -- expression and defeat the simplifications. This is specifically
+ -- the case for elimination of the floating-point Truncation
+ -- attribute in float-to-int conversions.
+
+ Simplify_Type_Conversion (N);
+
+ -- If after evaluation we still have a type conversion, then we
+ -- may need to apply checks required for a subtype conversion.
+
+ -- Skip these type conversion checks if universal fixed operands
+ -- operands involved, since range checks are handled separately for
+ -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
+
+ if Nkind (N) = N_Type_Conversion
+ and then not Is_Generic_Type (Root_Type (Target_Typ))
+ and then Target_Typ /= Universal_Fixed
+ and then Operand_Typ /= Universal_Fixed
+ then
+ Apply_Type_Conversion_Checks (N);
+ end if;
+
+ -- Issue warning for conversion of simple object to its own type
+ -- We have to test the original nodes, since they may have been
+ -- rewritten by various optimizations.
+
+ Orig_N := Original_Node (N);
+
+ if Warn_On_Redundant_Constructs
+ and then Comes_From_Source (Orig_N)
+ and then Nkind (Orig_N) = N_Type_Conversion
+ and then not In_Instance
+ then
+ Orig_N := Original_Node (Expression (Orig_N));
+ Orig_T := Target_Typ;
+
+ -- If the node is part of a larger expression, the Target_Type
+ -- may not be the original type of the node if the context is a
+ -- condition. Recover original type to see if conversion is needed.
+
+ if Is_Boolean_Type (Orig_T)
+ and then Nkind (Parent (N)) in N_Op
+ then
+ Orig_T := Etype (Parent (N));
+ end if;
+
+ if Is_Entity_Name (Orig_N)
+ and then
+ (Etype (Entity (Orig_N)) = Orig_T
+ or else
+ (Ekind (Entity (Orig_N)) = E_Loop_Parameter
+ and then Covers (Orig_T, Etype (Entity (Orig_N)))))
+ then
+ Error_Msg_Node_2 := Orig_T;
+ Error_Msg_NE
+ ("?redundant conversion, & is of type &!", N, Entity (Orig_N));
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
+ -- No need to perform any interface conversion if the type of the
+ -- expression coincides with the target type.
+
+ if Ada_Version >= Ada_05
+ and then Expander_Active
+ and then Operand_Typ /= Target_Typ
+ then
+ declare
+ Opnd : Entity_Id := Operand_Typ;
+ Target : Entity_Id := Target_Typ;
+
+ begin
+ if Is_Access_Type (Opnd) then
+ Opnd := Directly_Designated_Type (Opnd);
+ end if;
+
+ if Is_Access_Type (Target_Typ) then
+ Target := Directly_Designated_Type (Target);
+ end if;
+
+ if Opnd = Target then
+ null;
+
+ -- Conversion from interface type
+
+ elsif Is_Interface (Opnd) then
+
+ -- Ada 2005 (AI-217): Handle entities from limited views
+
+ if From_With_Type (Opnd) then
+ Error_Msg_Qual_Level := 99;
+ Error_Msg_NE ("missing with-clause on package &", N,
+ Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
+ Error_Msg_N
+ ("type conversions require visibility of the full view",
+ N);
+
+ elsif From_With_Type (Target)
+ and then not
+ (Is_Access_Type (Target_Typ)
+ and then Present (Non_Limited_View (Etype (Target))))
+ then
+ Error_Msg_Qual_Level := 99;
+ Error_Msg_NE ("missing with-clause on package &", N,
+ Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
+ Error_Msg_N
+ ("type conversions require visibility of the full view",
+ N);
+
+ else
+ Expand_Interface_Conversion (N, Is_Static => False);
+ end if;
+
+ -- Conversion to interface type
+
+ elsif Is_Interface (Target) then
+
+ -- Handle subtypes
+
+ if Ekind (Opnd) = E_Protected_Subtype
+ or else Ekind (Opnd) = E_Task_Subtype
+ then
+ Opnd := Etype (Opnd);
+ end if;
+
+ if not Interface_Present_In_Ancestor
+ (Typ => Opnd,
+ Iface => Target)
+ then
+ if Is_Class_Wide_Type (Opnd) then
+
+ -- The static analysis is not enough to know if the
+ -- interface is implemented or not. Hence we must pass
+ -- the work to the expander to generate code to evaluate
+ -- the conversion at run-time.
+
+ Expand_Interface_Conversion (N, Is_Static => False);
+
+ else
+ Error_Msg_Name_1 := Chars (Etype (Target));
+ Error_Msg_Name_2 := Chars (Opnd);
+ Error_Msg_N
+ ("wrong interface conversion (% is not a progenitor " &
+ "of %)", N);
+ end if;
+
+ else
+ Expand_Interface_Conversion (N);
+ end if;
+ end if;
+ end;
+ end if;
+ end Resolve_Type_Conversion;
+
+ ----------------------
+ -- Resolve_Unary_Op --
+ ----------------------
+
+ procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ R : constant Node_Id := Right_Opnd (N);
+ OK : Boolean;
+ Lo : Uint;
+ Hi : Uint;
+
+ begin
+ -- Deal with intrinsic unary operators
+
+ if Comes_From_Source (N)
+ and then Ekind (Entity (N)) = E_Function
+ and then Is_Imported (Entity (N))
+ and then Is_Intrinsic_Subprogram (Entity (N))
+ then
+ Resolve_Intrinsic_Unary_Operator (N, Typ);
+ return;
+ end if;
+
+ -- Deal with universal cases
+
+ if Etype (R) = Universal_Integer
+ or else
+ Etype (R) = Universal_Real
+ then
+ Check_For_Visible_Operator (N, B_Typ);
+ end if;
+
+ Set_Etype (N, B_Typ);
+ Resolve (R, B_Typ);
+
+ -- Generate warning for expressions like abs (x mod 2)
+
+ if Warn_On_Redundant_Constructs
+ and then Nkind (N) = N_Op_Abs
+ then
+ Determine_Range (Right_Opnd (N), OK, Lo, Hi);
+
+ if OK and then Hi >= Lo and then Lo >= 0 then
+ Error_Msg_N
+ ("?abs applied to known non-negative value has no effect", N);
+ end if;
+ end if;
+
+ -- Deal with reference generation
+
+ Check_Unset_Reference (R);
+ Generate_Operator_Reference (N, B_Typ);
+ Eval_Unary_Op (N);
+
+ -- Set overflow checking bit. Much cleverer code needed here eventually
+ -- and perhaps the Resolve routines should be separated for the various
+ -- arithmetic operations, since they will need different processing ???
+
+ if Nkind (N) in N_Op then
+ if not Overflow_Checks_Suppressed (Etype (N)) then
+ Enable_Overflow_Check (N);
+ end if;
+ end if;
+
+ -- Generate warning for expressions like -5 mod 3 for integers. No
+ -- need to worry in the floating-point case, since parens do not affect
+ -- the result so there is no point in giving in a warning.
+
+ declare
+ Norig : constant Node_Id := Original_Node (N);
+ Rorig : Node_Id;
+ Val : Uint;
+ HB : Uint;
+ LB : Uint;
+ Lval : Uint;
+ Opnd : Node_Id;
+
+ begin
+ if Warn_On_Questionable_Missing_Parens
+ and then Comes_From_Source (Norig)
+ and then Is_Integer_Type (Typ)
+ and then Nkind (Norig) = N_Op_Minus
+ then
+ Rorig := Original_Node (Right_Opnd (Norig));
+
+ -- We are looking for cases where the right operand is not
+ -- parenthesized, and is a binary operator, multiply, divide, or
+ -- mod. These are the cases where the grouping can affect results.
+
+ if Paren_Count (Rorig) = 0
+ and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
+ then
+ -- For mod, we always give the warning, since the value is
+ -- affected by the parenthesization (e.g. (-5) mod 315 /=
+ -- (5 mod 315)). But for the other cases, the only concern is
+ -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
+ -- overflows, but (-2) * 64 does not). So we try to give the
+ -- message only when overflow is possible.
+
+ if Nkind (Rorig) /= N_Op_Mod
+ and then Compile_Time_Known_Value (R)
+ then
+ Val := Expr_Value (R);
+
+ if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
+ HB := Expr_Value (Type_High_Bound (Typ));
+ else
+ HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
+ end if;
+
+ if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
+ LB := Expr_Value (Type_Low_Bound (Typ));
+ else
+ LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
+ end if;
+
+ -- Note that the test below is deliberately excluding
+ -- the largest negative number, since that is a potentially
+ -- troublesome case (e.g. -2 * x, where the result is the
+ -- largest negative integer has an overflow with 2 * x).
+
+ if Val > LB and then Val <= HB then
+ return;
+ end if;
+ end if;
+
+ -- For the multiplication case, the only case we have to worry
+ -- about is when (-a)*b is exactly the largest negative number
+ -- so that -(a*b) can cause overflow. This can only happen if
+ -- a is a power of 2, and more generally if any operand is a
+ -- constant that is not a power of 2, then the parentheses
+ -- cannot affect whether overflow occurs. We only bother to
+ -- test the left most operand
+
+ -- Loop looking at left operands for one that has known value
+
+ Opnd := Rorig;
+ Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
+ if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
+ Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
+
+ -- Operand value of 0 or 1 skips warning
+
+ if Lval <= 1 then
+ return;
+
+ -- Otherwise check power of 2, if power of 2, warn, if
+ -- anything else, skip warning.
+
+ else
+ while Lval /= 2 loop
+ if Lval mod 2 = 1 then
+ return;
+ else
+ Lval := Lval / 2;
+ end if;
+ end loop;
+
+ exit Opnd_Loop;
+ end if;
+ end if;
+
+ -- Keep looking at left operands
+
+ Opnd := Left_Opnd (Opnd);
+ end loop Opnd_Loop;
+
+ -- For rem or "/" we can only have a problematic situation
+ -- if the divisor has a value of minus one or one. Otherwise
+ -- overflow is impossible (divisor > 1) or we have a case of
+ -- division by zero in any case.
+
+ if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
+ and then Compile_Time_Known_Value (Right_Opnd (Rorig))
+ and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
+ then
+ return;
+ end if;
+
+ -- If we fall through warning should be issued
+
+ Error_Msg_N
+ ("?unary minus expression should be parenthesized here!", N);
+ end if;
+ end if;
+ end;
+ end Resolve_Unary_Op;
+
+ ----------------------------------
+ -- Resolve_Unchecked_Expression --
+ ----------------------------------
+
+ procedure Resolve_Unchecked_Expression
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ begin
+ Resolve (Expression (N), Typ, Suppress => All_Checks);
+ Set_Etype (N, Typ);
+ end Resolve_Unchecked_Expression;
+
+ ---------------------------------------
+ -- Resolve_Unchecked_Type_Conversion --
+ ---------------------------------------
+
+ procedure Resolve_Unchecked_Type_Conversion
+ (N : Node_Id;
+ Typ : Entity_Id)
+ is
+ pragma Warnings (Off, Typ);
+
+ Operand : constant Node_Id := Expression (N);
+ Opnd_Type : constant Entity_Id := Etype (Operand);
+
+ begin
+ -- Resolve operand using its own type
+
+ Resolve (Operand, Opnd_Type);
+ Eval_Unchecked_Conversion (N);
+
+ end Resolve_Unchecked_Type_Conversion;
+
+ ------------------------------
+ -- Rewrite_Operator_As_Call --
+ ------------------------------
+
+ procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Actuals : constant List_Id := New_List;
+ New_N : Node_Id;
+
+ begin
+ if Nkind (N) in N_Binary_Op then
+ Append (Left_Opnd (N), Actuals);
+ end if;
+
+ Append (Right_Opnd (N), Actuals);
+
+ New_N :=
+ Make_Function_Call (Sloc => Loc,
+ Name => New_Occurrence_Of (Nam, Loc),
+ Parameter_Associations => Actuals);
+
+ Preserve_Comes_From_Source (New_N, N);
+ Preserve_Comes_From_Source (Name (New_N), N);
+ Rewrite (N, New_N);
+ Set_Etype (N, Etype (Nam));
+ end Rewrite_Operator_As_Call;
+
+ ------------------------------
+ -- Rewrite_Renamed_Operator --
+ ------------------------------
+
+ procedure Rewrite_Renamed_Operator
+ (N : Node_Id;
+ Op : Entity_Id;
+ Typ : Entity_Id)
+ is
+ Nam : constant Name_Id := Chars (Op);
+ Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
+ Op_Node : Node_Id;
+
+ begin
+ -- Rewrite the operator node using the real operator, not its
+ -- renaming. Exclude user-defined intrinsic operations of the same
+ -- name, which are treated separately and rewritten as calls.
+
+ if Ekind (Op) /= E_Function
+ or else Chars (N) /= Nam
+ then
+ Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
+ Set_Chars (Op_Node, Nam);
+ Set_Etype (Op_Node, Etype (N));
+ Set_Entity (Op_Node, Op);
+ Set_Right_Opnd (Op_Node, Right_Opnd (N));
+
+ -- Indicate that both the original entity and its renaming are
+ -- referenced at this point.
+
+ Generate_Reference (Entity (N), N);
+ Generate_Reference (Op, N);
+
+ if Is_Binary then
+ Set_Left_Opnd (Op_Node, Left_Opnd (N));
+ end if;
+
+ Rewrite (N, Op_Node);
+
+ -- If the context type is private, add the appropriate conversions
+ -- so that the operator is applied to the full view. This is done
+ -- in the routines that resolve intrinsic operators,
+
+ if Is_Intrinsic_Subprogram (Op)
+ and then Is_Private_Type (Typ)
+ then
+ case Nkind (N) is
+ when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
+ N_Op_Expon | N_Op_Mod | N_Op_Rem =>
+ Resolve_Intrinsic_Operator (N, Typ);
+
+ when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
+ Resolve_Intrinsic_Unary_Operator (N, Typ);
+
+ when others =>
+ Resolve (N, Typ);
+ end case;
+ end if;
+
+ elsif Ekind (Op) = E_Function
+ and then Is_Intrinsic_Subprogram (Op)
+ then
+ -- Operator renames a user-defined operator of the same name. Use
+ -- the original operator in the node, which is the one that Gigi
+ -- knows about.
+
+ Set_Entity (N, Op);
+ Set_Is_Overloaded (N, False);
+ end if;
+ end Rewrite_Renamed_Operator;
+
+ -----------------------
+ -- Set_Slice_Subtype --
+ -----------------------
+
+ -- Build an implicit subtype declaration to represent the type delivered
+ -- by the slice. This is an abbreviated version of an array subtype. We
+ -- define an index subtype for the slice, using either the subtype name
+ -- or the discrete range of the slice. To be consistent with index usage
+ -- elsewhere, we create a list header to hold the single index. This list
+ -- is not otherwise attached to the syntax tree.
+
+ procedure Set_Slice_Subtype (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Index_List : constant List_Id := New_List;
+ Index : Node_Id;
+ Index_Subtype : Entity_Id;
+ Index_Type : Entity_Id;
+ Slice_Subtype : Entity_Id;
+ Drange : constant Node_Id := Discrete_Range (N);
+
+ begin
+ if Is_Entity_Name (Drange) then
+ Index_Subtype := Entity (Drange);
+
+ else
+ -- We force the evaluation of a range. This is definitely needed in
+ -- the renamed case, and seems safer to do unconditionally. Note in
+ -- any case that since we will create and insert an Itype referring
+ -- to this range, we must make sure any side effect removal actions
+ -- are inserted before the Itype definition.
+
+ if Nkind (Drange) = N_Range then
+ Force_Evaluation (Low_Bound (Drange));
+ Force_Evaluation (High_Bound (Drange));
+ end if;
+
+ Index_Type := Base_Type (Etype (Drange));
+
+ Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
+
+ Set_Scalar_Range (Index_Subtype, Drange);
+ Set_Etype (Index_Subtype, Index_Type);
+ Set_Size_Info (Index_Subtype, Index_Type);
+ Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
+ end if;
+
+ Slice_Subtype := Create_Itype (E_Array_Subtype, N);
+
+ Index := New_Occurrence_Of (Index_Subtype, Loc);
+ Set_Etype (Index, Index_Subtype);
+ Append (Index, Index_List);
+
+ Set_First_Index (Slice_Subtype, Index);
+ Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
+ Set_Is_Constrained (Slice_Subtype, True);
+
+ Check_Compile_Time_Size (Slice_Subtype);
+
+ -- The Etype of the existing Slice node is reset to this slice subtype.
+ -- Its bounds are obtained from its first index.
+
+ Set_Etype (N, Slice_Subtype);
+
+ -- In the packed case, this must be immediately frozen
+
+ -- Couldn't we always freeze here??? and if we did, then the above
+ -- call to Check_Compile_Time_Size could be eliminated, which would
+ -- be nice, because then that routine could be made private to Freeze.
+
+ -- Why the test for In_Spec_Expression here ???
+
+ if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
+ Freeze_Itype (Slice_Subtype, N);
+ end if;
+
+ end Set_Slice_Subtype;
+
+ --------------------------------
+ -- Set_String_Literal_Subtype --
+ --------------------------------
+
+ procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Low_Bound : constant Node_Id :=
+ Type_Low_Bound (Etype (First_Index (Typ)));
+ Subtype_Id : Entity_Id;
+
+ begin
+ if Nkind (N) /= N_String_Literal then
+ return;
+ end if;
+
+ Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
+ Set_String_Literal_Length (Subtype_Id, UI_From_Int
+ (String_Length (Strval (N))));
+ Set_Etype (Subtype_Id, Base_Type (Typ));
+ Set_Is_Constrained (Subtype_Id);
+ Set_Etype (N, Subtype_Id);
+
+ if Is_OK_Static_Expression (Low_Bound) then
+
+ -- The low bound is set from the low bound of the corresponding
+ -- index type. Note that we do not store the high bound in the
+ -- string literal subtype, but it can be deduced if necessary
+ -- from the length and the low bound.
+
+ Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
+
+ else
+ Set_String_Literal_Low_Bound
+ (Subtype_Id, Make_Integer_Literal (Loc, 1));
+ Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);
+
+ -- Build bona fide subtype for the string, and wrap it in an
+ -- unchecked conversion, because the backend expects the
+ -- String_Literal_Subtype to have a static lower bound.
+
+ declare
+ Index_List : constant List_Id := New_List;
+ Index_Type : constant Entity_Id := Etype (First_Index (Typ));
+ High_Bound : constant Node_Id :=
+ Make_Op_Add (Loc,
+ Left_Opnd => New_Copy_Tree (Low_Bound),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ String_Length (Strval (N)) - 1));
+ Array_Subtype : Entity_Id;
+ Index_Subtype : Entity_Id;
+ Drange : Node_Id;
+ Index : Node_Id;
+
+ begin
+ Index_Subtype :=
+ Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
+ Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
+ Set_Scalar_Range (Index_Subtype, Drange);
+ Set_Parent (Drange, N);
+ Analyze_And_Resolve (Drange, Index_Type);
+
+ -- In the context, the Index_Type may already have a constraint,
+ -- so use common base type on string subtype. The base type may
+ -- be used when generating attributes of the string, for example
+ -- in the context of a slice assignment.
+
+ Set_Etype (Index_Subtype, Base_Type (Index_Type));
+ Set_Size_Info (Index_Subtype, Index_Type);
+ Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
+
+ Array_Subtype := Create_Itype (E_Array_Subtype, N);
+
+ Index := New_Occurrence_Of (Index_Subtype, Loc);
+ Set_Etype (Index, Index_Subtype);
+ Append (Index, Index_List);
+
+ Set_First_Index (Array_Subtype, Index);
+ Set_Etype (Array_Subtype, Base_Type (Typ));
+ Set_Is_Constrained (Array_Subtype, True);
+
+ Rewrite (N,
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
+ Expression => Relocate_Node (N)));
+ Set_Etype (N, Array_Subtype);
+ end;
+ end if;
+ end Set_String_Literal_Subtype;
+
+ ------------------------------
+ -- Simplify_Type_Conversion --
+ ------------------------------
+
+ procedure Simplify_Type_Conversion (N : Node_Id) is
+ begin
+ if Nkind (N) = N_Type_Conversion then
+ declare
+ Operand : constant Node_Id := Expression (N);
+ Target_Typ : constant Entity_Id := Etype (N);
+ Opnd_Typ : constant Entity_Id := Etype (Operand);
+
+ begin
+ if Is_Floating_Point_Type (Opnd_Typ)
+ and then
+ (Is_Integer_Type (Target_Typ)
+ or else (Is_Fixed_Point_Type (Target_Typ)
+ and then Conversion_OK (N)))
+ and then Nkind (Operand) = N_Attribute_Reference
+ and then Attribute_Name (Operand) = Name_Truncation
+
+ -- Special processing required if the conversion is the expression
+ -- of a Truncation attribute reference. In this case we replace:
+
+ -- ityp (ftyp'Truncation (x))
+
+ -- by
+
+ -- ityp (x)
+
+ -- with the Float_Truncate flag set, which is more efficient
+
+ then
+ Rewrite (Operand,
+ Relocate_Node (First (Expressions (Operand))));
+ Set_Float_Truncate (N, True);
+ end if;
+ end;
+ end if;
+ end Simplify_Type_Conversion;
+
+ -----------------------------
+ -- Unique_Fixed_Point_Type --
+ -----------------------------
+
+ function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
+ T1 : Entity_Id := Empty;
+ T2 : Entity_Id;
+ Item : Node_Id;
+ Scop : Entity_Id;
+
+ procedure Fixed_Point_Error;
+ -- If true ambiguity, give details
+
+ -----------------------
+ -- Fixed_Point_Error --
+ -----------------------
+
+ procedure Fixed_Point_Error is
+ begin
+ Error_Msg_N ("ambiguous universal_fixed_expression", N);
+ Error_Msg_NE ("\\possible interpretation as}", N, T1);
+ Error_Msg_NE ("\\possible interpretation as}", N, T2);
+ end Fixed_Point_Error;
+
+ -- Start of processing for Unique_Fixed_Point_Type
+
+ begin
+ -- The operations on Duration are visible, so Duration is always a
+ -- possible interpretation.
+
+ T1 := Standard_Duration;
+
+ -- Look for fixed-point types in enclosing scopes
+
+ Scop := Current_Scope;
+ while Scop /= Standard_Standard loop
+ T2 := First_Entity (Scop);
+ while Present (T2) loop
+ if Is_Fixed_Point_Type (T2)
+ and then Current_Entity (T2) = T2
+ and then Scope (Base_Type (T2)) = Scop
+ then
+ if Present (T1) then
+ Fixed_Point_Error;
+ return Any_Type;
+ else
+ T1 := T2;
+ end if;
+ end if;
+
+ Next_Entity (T2);
+ end loop;
+
+ Scop := Scope (Scop);
+ end loop;
+
+ -- Look for visible fixed type declarations in the context
+
+ Item := First (Context_Items (Cunit (Current_Sem_Unit)));
+ while Present (Item) loop
+ if Nkind (Item) = N_With_Clause then
+ Scop := Entity (Name (Item));
+ T2 := First_Entity (Scop);
+ while Present (T2) loop
+ if Is_Fixed_Point_Type (T2)
+ and then Scope (Base_Type (T2)) = Scop
+ and then (Is_Potentially_Use_Visible (T2)
+ or else In_Use (T2))
+ then
+ if Present (T1) then
+ Fixed_Point_Error;
+ return Any_Type;
+ else
+ T1 := T2;
+ end if;
+ end if;
+
+ Next_Entity (T2);
+ end loop;
+ end if;
+
+ Next (Item);
+ end loop;
+
+ if Nkind (N) = N_Real_Literal then
+ Error_Msg_NE ("?real literal interpreted as }!", N, T1);
+ else
+ Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
+ end if;
+
+ return T1;
+ end Unique_Fixed_Point_Type;
+
+ ----------------------
+ -- Valid_Conversion --
+ ----------------------
+
+ function Valid_Conversion
+ (N : Node_Id;
+ Target : Entity_Id;
+ Operand : Node_Id) return Boolean
+ is
+ Target_Type : constant Entity_Id := Base_Type (Target);
+ Opnd_Type : Entity_Id := Etype (Operand);
+
+ function Conversion_Check
+ (Valid : Boolean;
+ Msg : String) return Boolean;
+ -- Little routine to post Msg if Valid is False, returns Valid value
+
+ function Valid_Tagged_Conversion
+ (Target_Type : Entity_Id;
+ Opnd_Type : Entity_Id) return Boolean;
+ -- Specifically test for validity of tagged conversions
+
+ function Valid_Array_Conversion return Boolean;
+ -- Check index and component conformance, and accessibility levels
+ -- if the component types are anonymous access types (Ada 2005)
+
+ ----------------------
+ -- Conversion_Check --
+ ----------------------
+
+ function Conversion_Check
+ (Valid : Boolean;
+ Msg : String) return Boolean
+ is
+ begin
+ if not Valid then
+ Error_Msg_N (Msg, Operand);
+ end if;
+
+ return Valid;
+ end Conversion_Check;
+
+ ----------------------------
+ -- Valid_Array_Conversion --
+ ----------------------------
+
+ function Valid_Array_Conversion return Boolean
+ is
+ Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
+ Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
+
+ Opnd_Index : Node_Id;
+ Opnd_Index_Type : Entity_Id;
+
+ Target_Comp_Type : constant Entity_Id :=
+ Component_Type (Target_Type);
+ Target_Comp_Base : constant Entity_Id :=
+ Base_Type (Target_Comp_Type);
+
+ Target_Index : Node_Id;
+ Target_Index_Type : Entity_Id;
+
+ begin
+ -- Error if wrong number of dimensions
+
+ if
+ Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
+ then
+ Error_Msg_N
+ ("incompatible number of dimensions for conversion", Operand);
+ return False;
+
+ -- Number of dimensions matches
+
+ else
+ -- Loop through indexes of the two arrays
+
+ Target_Index := First_Index (Target_Type);
+ Opnd_Index := First_Index (Opnd_Type);
+ while Present (Target_Index) and then Present (Opnd_Index) loop
+ Target_Index_Type := Etype (Target_Index);
+ Opnd_Index_Type := Etype (Opnd_Index);
+
+ -- Error if index types are incompatible
+
+ if not (Is_Integer_Type (Target_Index_Type)
+ and then Is_Integer_Type (Opnd_Index_Type))
+ and then (Root_Type (Target_Index_Type)
+ /= Root_Type (Opnd_Index_Type))
+ then
+ Error_Msg_N
+ ("incompatible index types for array conversion",
+ Operand);
+ return False;
+ end if;
+
+ Next_Index (Target_Index);
+ Next_Index (Opnd_Index);
+ end loop;
+
+ -- If component types have same base type, all set
+
+ if Target_Comp_Base = Opnd_Comp_Base then
+ null;
+
+ -- Here if base types of components are not the same. The only
+ -- time this is allowed is if we have anonymous access types.
+
+ -- The conversion of arrays of anonymous access types can lead
+ -- to dangling pointers. AI-392 formalizes the accessibility
+ -- checks that must be applied to such conversions to prevent
+ -- out-of-scope references.
+
+ elsif
+ (Ekind (Target_Comp_Base) = E_Anonymous_Access_Type
+ or else
+ Ekind (Target_Comp_Base) = E_Anonymous_Access_Subprogram_Type)
+ and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
+ and then
+ Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
+ then
+ if Type_Access_Level (Target_Type) <
+ Type_Access_Level (Opnd_Type)
+ then
+ if In_Instance_Body then
+ Error_Msg_N ("?source array type " &
+ "has deeper accessibility level than target", Operand);
+ Error_Msg_N ("\?Program_Error will be raised at run time",
+ Operand);
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Target_Type);
+ return False;
+
+ -- Conversion not allowed because of accessibility levels
+
+ else
+ Error_Msg_N ("source array type " &
+ "has deeper accessibility level than target", Operand);
+ return False;
+ end if;
+ else
+ null;
+ end if;
+
+ -- All other cases where component base types do not match
+
+ else
+ Error_Msg_N
+ ("incompatible component types for array conversion",
+ Operand);
+ return False;
+ end if;
+
+ -- Check that component subtypes statically match. For numeric
+ -- types this means that both must be either constrained or
+ -- unconstrained. For enumeration types the bounds must match.
+ -- All of this is checked in Subtypes_Statically_Match.
+
+ if not Subtypes_Statically_Match
+ (Target_Comp_Type, Opnd_Comp_Type)
+ then
+ Error_Msg_N
+ ("component subtypes must statically match", Operand);
+ return False;
+ end if;
+ end if;
+
+ return True;
+ end Valid_Array_Conversion;
+
+ -----------------------------
+ -- Valid_Tagged_Conversion --
+ -----------------------------
+
+ function Valid_Tagged_Conversion
+ (Target_Type : Entity_Id;
+ Opnd_Type : Entity_Id) return Boolean
+ is
+ begin
+ -- Upward conversions are allowed (RM 4.6(22))
+
+ if Covers (Target_Type, Opnd_Type)
+ or else Is_Ancestor (Target_Type, Opnd_Type)
+ then
+ return True;
+
+ -- Downward conversion are allowed if the operand is class-wide
+ -- (RM 4.6(23)).
+
+ elsif Is_Class_Wide_Type (Opnd_Type)
+ and then Covers (Opnd_Type, Target_Type)
+ then
+ return True;
+
+ elsif Covers (Opnd_Type, Target_Type)
+ or else Is_Ancestor (Opnd_Type, Target_Type)
+ then
+ return
+ Conversion_Check (False,
+ "downward conversion of tagged objects not allowed");
+
+ -- Ada 2005 (AI-251): The conversion to/from interface types is
+ -- always valid
+
+ elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
+ return True;
+
+ -- If the operand is a class-wide type obtained through a limited_
+ -- with clause, and the context includes the non-limited view, use
+ -- it to determine whether the conversion is legal.
+
+ elsif Is_Class_Wide_Type (Opnd_Type)
+ and then From_With_Type (Opnd_Type)
+ and then Present (Non_Limited_View (Etype (Opnd_Type)))
+ and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
+ then
+ return True;
+
+ elsif Is_Access_Type (Opnd_Type)
+ and then Is_Interface (Directly_Designated_Type (Opnd_Type))
+ then
+ return True;
+
+ else
+ Error_Msg_NE
+ ("invalid tagged conversion, not compatible with}",
+ N, First_Subtype (Opnd_Type));
+ return False;
+ end if;
+ end Valid_Tagged_Conversion;
+
+ -- Start of processing for Valid_Conversion
+
+ begin
+ Check_Parameterless_Call (Operand);
+
+ if Is_Overloaded (Operand) then
+ declare
+ I : Interp_Index;
+ I1 : Interp_Index;
+ It : Interp;
+ It1 : Interp;
+ N1 : Entity_Id;
+
+ begin
+ -- Remove procedure calls, which syntactically cannot appear
+ -- in this context, but which cannot be removed by type checking,
+ -- because the context does not impose a type.
+
+ -- When compiling for VMS, spurious ambiguities can be produced
+ -- when arithmetic operations have a literal operand and return
+ -- System.Address or a descendant of it. These ambiguities are
+ -- otherwise resolved by the context, but for conversions there
+ -- is no context type and the removal of the spurious operations
+ -- must be done explicitly here.
+
+ -- The node may be labelled overloaded, but still contain only
+ -- one interpretation because others were discarded in previous
+ -- filters. If this is the case, retain the single interpretation
+ -- if legal.
+
+ Get_First_Interp (Operand, I, It);
+ Opnd_Type := It.Typ;
+ Get_Next_Interp (I, It);
+
+ if Present (It.Typ)
+ and then Opnd_Type /= Standard_Void_Type
+ then
+ -- More than one candidate interpretation is available
+
+ Get_First_Interp (Operand, I, It);
+ while Present (It.Typ) loop
+ if It.Typ = Standard_Void_Type then
+ Remove_Interp (I);
+ end if;
+
+ if Present (System_Aux_Id)
+ and then Is_Descendent_Of_Address (It.Typ)
+ then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ Get_First_Interp (Operand, I, It);
+ I1 := I;
+ It1 := It;
+
+ if No (It.Typ) then
+ Error_Msg_N ("illegal operand in conversion", Operand);
+ return False;
+ end if;
+
+ Get_Next_Interp (I, It);
+
+ if Present (It.Typ) then
+ N1 := It1.Nam;
+ It1 := Disambiguate (Operand, I1, I, Any_Type);
+
+ if It1 = No_Interp then
+ Error_Msg_N ("ambiguous operand in conversion", Operand);
+
+ Error_Msg_Sloc := Sloc (It.Nam);
+ Error_Msg_N ("\\possible interpretation#!", Operand);
+
+ Error_Msg_Sloc := Sloc (N1);
+ Error_Msg_N ("\\possible interpretation#!", Operand);
+
+ return False;
+ end if;
+ end if;
+
+ Set_Etype (Operand, It1.Typ);
+ Opnd_Type := It1.Typ;
+ end;
+ end if;
+
+ -- Numeric types
+
+ if Is_Numeric_Type (Target_Type) then
+
+ -- A universal fixed expression can be converted to any numeric type
+
+ if Opnd_Type = Universal_Fixed then
+ return True;
+
+ -- Also no need to check when in an instance or inlined body, because
+ -- the legality has been established when the template was analyzed.
+ -- Furthermore, numeric conversions may occur where only a private
+ -- view of the operand type is visible at the instantiation point.
+ -- This results in a spurious error if we check that the operand type
+ -- is a numeric type.
+
+ -- Note: in a previous version of this unit, the following tests were
+ -- applied only for generated code (Comes_From_Source set to False),
+ -- but in fact the test is required for source code as well, since
+ -- this situation can arise in source code.
+
+ elsif In_Instance or else In_Inlined_Body then
+ return True;
+
+ -- Otherwise we need the conversion check
+
+ else
+ return Conversion_Check
+ (Is_Numeric_Type (Opnd_Type),
+ "illegal operand for numeric conversion");
+ end if;
+
+ -- Array types
+
+ elsif Is_Array_Type (Target_Type) then
+ if not Is_Array_Type (Opnd_Type)
+ or else Opnd_Type = Any_Composite
+ or else Opnd_Type = Any_String
+ then
+ Error_Msg_N
+ ("illegal operand for array conversion", Operand);
+ return False;
+ else
+ return Valid_Array_Conversion;
+ end if;
+
+ -- Ada 2005 (AI-251): Anonymous access types where target references an
+ -- interface type.
+
+ elsif (Ekind (Target_Type) = E_General_Access_Type
+ or else
+ Ekind (Target_Type) = E_Anonymous_Access_Type)
+ and then Is_Interface (Directly_Designated_Type (Target_Type))
+ then
+ -- Check the static accessibility rule of 4.6(17). Note that the
+ -- check is not enforced when within an instance body, since the RM
+ -- requires such cases to be caught at run time.
+
+ if Ekind (Target_Type) /= E_Anonymous_Access_Type then
+ if Type_Access_Level (Opnd_Type) >
+ Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we know
+ -- will fail, so generate an appropriate warning. The raise
+ -- will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_N
+ ("?cannot convert local pointer to non-local access type",
+ Operand);
+ Error_Msg_N
+ ("\?Program_Error will be raised at run time", Operand);
+ else
+ Error_Msg_N
+ ("cannot convert local pointer to non-local access type",
+ Operand);
+ return False;
+ end if;
+
+ -- Special accessibility checks are needed in the case of access
+ -- discriminants declared for a limited type.
+
+ elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
+ and then not Is_Local_Anonymous_Access (Opnd_Type)
+ then
+ -- When the operand is a selected access discriminant the check
+ -- needs to be made against the level of the object denoted by
+ -- the prefix of the selected name. (Object_Access_Level
+ -- handles checking the prefix of the operand for this case.)
+
+ if Nkind (Operand) = N_Selected_Component
+ and then Object_Access_Level (Operand) >
+ Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we
+ -- know will fail, so generate an appropriate warning.
+ -- The raise will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_N
+ ("?cannot convert access discriminant to non-local" &
+ " access type", Operand);
+ Error_Msg_N
+ ("\?Program_Error will be raised at run time", Operand);
+ else
+ Error_Msg_N
+ ("cannot convert access discriminant to non-local" &
+ " access type", Operand);
+ return False;
+ end if;
+ end if;
+
+ -- The case of a reference to an access discriminant from
+ -- within a limited type declaration (which will appear as
+ -- a discriminal) is always illegal because the level of the
+ -- discriminant is considered to be deeper than any (nameable)
+ -- access type.
+
+ if Is_Entity_Name (Operand)
+ and then not Is_Local_Anonymous_Access (Opnd_Type)
+ and then (Ekind (Entity (Operand)) = E_In_Parameter
+ or else Ekind (Entity (Operand)) = E_Constant)
+ and then Present (Discriminal_Link (Entity (Operand)))
+ then
+ Error_Msg_N
+ ("discriminant has deeper accessibility level than target",
+ Operand);
+ return False;
+ end if;
+ end if;
+ end if;
+
+ return True;
+
+ -- General and anonymous access types
+
+ elsif (Ekind (Target_Type) = E_General_Access_Type
+ or else Ekind (Target_Type) = E_Anonymous_Access_Type)
+ and then
+ Conversion_Check
+ (Is_Access_Type (Opnd_Type)
+ and then Ekind (Opnd_Type) /=
+ E_Access_Subprogram_Type
+ and then Ekind (Opnd_Type) /=
+ E_Access_Protected_Subprogram_Type,
+ "must be an access-to-object type")
+ then
+ if Is_Access_Constant (Opnd_Type)
+ and then not Is_Access_Constant (Target_Type)
+ then
+ Error_Msg_N
+ ("access-to-constant operand type not allowed", Operand);
+ return False;
+ end if;
+
+ -- Check the static accessibility rule of 4.6(17). Note that the
+ -- check is not enforced when within an instance body, since the RM
+ -- requires such cases to be caught at run time.
+
+ if Ekind (Target_Type) /= E_Anonymous_Access_Type
+ or else Is_Local_Anonymous_Access (Target_Type)
+ then
+ if Type_Access_Level (Opnd_Type)
+ > Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we
+ -- know will fail, so generate an appropriate warning.
+ -- The raise will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_N
+ ("?cannot convert local pointer to non-local access type",
+ Operand);
+ Error_Msg_N
+ ("\?Program_Error will be raised at run time", Operand);
+
+ else
+ -- Avoid generation of spurious error message
+
+ if not Error_Posted (N) then
+ Error_Msg_N
+ ("cannot convert local pointer to non-local access type",
+ Operand);
+ end if;
+
+ return False;
+ end if;
+
+ -- Special accessibility checks are needed in the case of access
+ -- discriminants declared for a limited type.
+
+ elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
+ and then not Is_Local_Anonymous_Access (Opnd_Type)
+ then
+
+ -- When the operand is a selected access discriminant the check
+ -- needs to be made against the level of the object denoted by
+ -- the prefix of the selected name. (Object_Access_Level
+ -- handles checking the prefix of the operand for this case.)
+
+ if Nkind (Operand) = N_Selected_Component
+ and then Object_Access_Level (Operand) >
+ Type_Access_Level (Target_Type)
+ then
+ -- In an instance, this is a run-time check, but one we
+ -- know will fail, so generate an appropriate warning.
+ -- The raise will be generated by Expand_N_Type_Conversion.
+
+ if In_Instance_Body then
+ Error_Msg_N
+ ("?cannot convert access discriminant to non-local" &
+ " access type", Operand);
+ Error_Msg_N
+ ("\?Program_Error will be raised at run time",
+ Operand);
+
+ else
+ Error_Msg_N
+ ("cannot convert access discriminant to non-local" &
+ " access type", Operand);
+ return False;
+ end if;
+ end if;
+
+ -- The case of a reference to an access discriminant from
+ -- within a limited type declaration (which will appear as
+ -- a discriminal) is always illegal because the level of the
+ -- discriminant is considered to be deeper than any (nameable)
+ -- access type.
+
+ if Is_Entity_Name (Operand)
+ and then (Ekind (Entity (Operand)) = E_In_Parameter
+ or else Ekind (Entity (Operand)) = E_Constant)
+ and then Present (Discriminal_Link (Entity (Operand)))
+ then
+ Error_Msg_N
+ ("discriminant has deeper accessibility level than target",
+ Operand);
+ return False;
+ end if;
+ end if;
+ end if;
+
+ declare
+ function Full_Designated_Type (T : Entity_Id) return Entity_Id;
+ -- Helper function to handle limited views
+
+ --------------------------
+ -- Full_Designated_Type --
+ --------------------------
+
+ function Full_Designated_Type (T : Entity_Id) return Entity_Id is
+ Desig : constant Entity_Id := Designated_Type (T);
+ begin
+ if From_With_Type (Desig)
+ and then Is_Incomplete_Type (Desig)
+ and then Present (Non_Limited_View (Desig))
+ then
+ return Non_Limited_View (Desig);
+ else
+ return Desig;
+ end if;
+ end Full_Designated_Type;
+
+ Target : constant Entity_Id := Full_Designated_Type (Target_Type);
+ Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
+
+ Same_Base : constant Boolean :=
+ Base_Type (Target) = Base_Type (Opnd);
+
+ begin
+ if Is_Tagged_Type (Target) then
+ return Valid_Tagged_Conversion (Target, Opnd);
+
+ else
+ if not Same_Base then
+ Error_Msg_NE
+ ("target designated type not compatible with }",
+ N, Base_Type (Opnd));
+ return False;
+
+ -- Ada 2005 AI-384: legality rule is symmetric in both
+ -- designated types. The conversion is legal (with possible
+ -- constraint check) if either designated type is
+ -- unconstrained.
+
+ elsif Subtypes_Statically_Match (Target, Opnd)
+ or else
+ (Has_Discriminants (Target)
+ and then
+ (not Is_Constrained (Opnd)
+ or else not Is_Constrained (Target)))
+ then
+ -- Special case, if Value_Size has been used to make the
+ -- sizes different, the conversion is not allowed even
+ -- though the subtypes statically match.
+
+ if Known_Static_RM_Size (Target)
+ and then Known_Static_RM_Size (Opnd)
+ and then RM_Size (Target) /= RM_Size (Opnd)
+ then
+ Error_Msg_NE
+ ("target designated subtype not compatible with }",
+ N, Opnd);
+ Error_Msg_NE
+ ("\because sizes of the two designated subtypes differ",
+ N, Opnd);
+ return False;
+
+ -- Normal case where conversion is allowed
+
+ else
+ return True;
+ end if;
+
+ else
+ Error_Msg_NE
+ ("target designated subtype not compatible with }",
+ N, Opnd);
+ return False;
+ end if;
+ end if;
+ end;
+
+ -- Access to subprogram types. If the operand is an access parameter,
+ -- the type has a deeper accessibility that any master, and cannot
+ -- be assigned. We must make an exception if the conversion is part
+ -- of an assignment and the target is the return object of an extended
+ -- return statement, because in that case the accessibility check
+ -- takes place after the return.
+
+ elsif Is_Access_Subprogram_Type (Target_Type)
+ and then No (Corresponding_Remote_Type (Opnd_Type))
+ then
+ if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
+ and then Is_Entity_Name (Operand)
+ and then Ekind (Entity (Operand)) = E_In_Parameter
+ and then
+ (Nkind (Parent (N)) /= N_Assignment_Statement
+ or else not Is_Entity_Name (Name (Parent (N)))
+ or else not Is_Return_Object (Entity (Name (Parent (N)))))
+ then
+ Error_Msg_N
+ ("illegal attempt to store anonymous access to subprogram",
+ Operand);
+ Error_Msg_N
+ ("\value has deeper accessibility than any master " &
+ "(RM 3.10.2 (13))",
+ Operand);
+
+ Error_Msg_NE
+ ("\use named access type for& instead of access parameter",
+ Operand, Entity (Operand));
+ end if;
+
+ -- Check that the designated types are subtype conformant
+
+ Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
+ Old_Id => Designated_Type (Opnd_Type),
+ Err_Loc => N);
+
+ -- Check the static accessibility rule of 4.6(20)
+
+ if Type_Access_Level (Opnd_Type) >
+ Type_Access_Level (Target_Type)
+ then
+ Error_Msg_N
+ ("operand type has deeper accessibility level than target",
+ Operand);
+
+ -- Check that if the operand type is declared in a generic body,
+ -- then the target type must be declared within that same body
+ -- (enforces last sentence of 4.6(20)).
+
+ elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
+ declare
+ O_Gen : constant Node_Id :=
+ Enclosing_Generic_Body (Opnd_Type);
+
+ T_Gen : Node_Id;
+
+ begin
+ T_Gen := Enclosing_Generic_Body (Target_Type);
+ while Present (T_Gen) and then T_Gen /= O_Gen loop
+ T_Gen := Enclosing_Generic_Body (T_Gen);
+ end loop;
+
+ if T_Gen /= O_Gen then
+ Error_Msg_N
+ ("target type must be declared in same generic body"
+ & " as operand type", N);
+ end if;
+ end;
+ end if;
+
+ return True;
+
+ -- Remote subprogram access types
+
+ elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
+ and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
+ then
+ -- It is valid to convert from one RAS type to another provided
+ -- that their specification statically match.
+
+ Check_Subtype_Conformant
+ (New_Id =>
+ Designated_Type (Corresponding_Remote_Type (Target_Type)),
+ Old_Id =>
+ Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
+ Err_Loc =>
+ N);
+ return True;
+
+ -- If both are tagged types, check legality of view conversions
+
+ elsif Is_Tagged_Type (Target_Type)
+ and then Is_Tagged_Type (Opnd_Type)
+ then
+ return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
+
+ -- Types derived from the same root type are convertible
+
+ elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
+ return True;
+
+ -- In an instance or an inlined body, there may be inconsistent
+ -- views of the same type, or of types derived from a common root.
+
+ elsif (In_Instance or In_Inlined_Body)
+ and then
+ Root_Type (Underlying_Type (Target_Type)) =
+ Root_Type (Underlying_Type (Opnd_Type))
+ then
+ return True;
+
+ -- Special check for common access type error case
+
+ elsif Ekind (Target_Type) = E_Access_Type
+ and then Is_Access_Type (Opnd_Type)
+ then
+ Error_Msg_N ("target type must be general access type!", N);
+ Error_Msg_NE ("add ALL to }!", N, Target_Type);
+
+ return False;
+
+ else
+ Error_Msg_NE ("invalid conversion, not compatible with }",
+ N, Opnd_Type);
+
+ return False;
+ end if;
+ end Valid_Conversion;
+
+end Sem_Res;