aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/sem_ch8.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/sem_ch8.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/sem_ch8.adb7262
1 files changed, 0 insertions, 7262 deletions
diff --git a/gcc-4.4.0/gcc/ada/sem_ch8.adb b/gcc-4.4.0/gcc/ada/sem_ch8.adb
deleted file mode 100644
index 3e231f612..000000000
--- a/gcc-4.4.0/gcc/ada/sem_ch8.adb
+++ /dev/null
@@ -1,7262 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M . C H 8 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Fname; use Fname;
-with Freeze; use Freeze;
-with Impunit; use Impunit;
-with Lib; use Lib;
-with Lib.Load; use Lib.Load;
-with Lib.Xref; use Lib.Xref;
-with Namet; use Namet;
-with Namet.Sp; use Namet.Sp;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Output; use Output;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch4; use Sem_Ch4;
-with Sem_Ch6; use Sem_Ch6;
-with Sem_Ch12; use Sem_Ch12;
-with Sem_Disp; use Sem_Disp;
-with Sem_Dist; use Sem_Dist;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sem_Type; use Sem_Type;
-with Stand; use Stand;
-with Sinfo; use Sinfo;
-with Sinfo.CN; use Sinfo.CN;
-with Snames; use Snames;
-with Style; use Style;
-with Table;
-with Tbuild; use Tbuild;
-with Uintp; use Uintp;
-
-package body Sem_Ch8 is
-
- ------------------------------------
- -- Visibility and Name Resolution --
- ------------------------------------
-
- -- This package handles name resolution and the collection of
- -- interpretations for overloaded names, prior to overload resolution.
-
- -- Name resolution is the process that establishes a mapping between source
- -- identifiers and the entities they denote at each point in the program.
- -- Each entity is represented by a defining occurrence. Each identifier
- -- that denotes an entity points to the corresponding defining occurrence.
- -- This is the entity of the applied occurrence. Each occurrence holds
- -- an index into the names table, where source identifiers are stored.
-
- -- Each entry in the names table for an identifier or designator uses the
- -- Info pointer to hold a link to the currently visible entity that has
- -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
- -- in package Sem_Util). The visibility is initialized at the beginning of
- -- semantic processing to make entities in package Standard immediately
- -- visible. The visibility table is used in a more subtle way when
- -- compiling subunits (see below).
-
- -- Entities that have the same name (i.e. homonyms) are chained. In the
- -- case of overloaded entities, this chain holds all the possible meanings
- -- of a given identifier. The process of overload resolution uses type
- -- information to select from this chain the unique meaning of a given
- -- identifier.
-
- -- Entities are also chained in their scope, through the Next_Entity link.
- -- As a consequence, the name space is organized as a sparse matrix, where
- -- each row corresponds to a scope, and each column to a source identifier.
- -- Open scopes, that is to say scopes currently being compiled, have their
- -- corresponding rows of entities in order, innermost scope first.
-
- -- The scopes of packages that are mentioned in context clauses appear in
- -- no particular order, interspersed among open scopes. This is because
- -- in the course of analyzing the context of a compilation, a package
- -- declaration is first an open scope, and subsequently an element of the
- -- context. If subunits or child units are present, a parent unit may
- -- appear under various guises at various times in the compilation.
-
- -- When the compilation of the innermost scope is complete, the entities
- -- defined therein are no longer visible. If the scope is not a package
- -- declaration, these entities are never visible subsequently, and can be
- -- removed from visibility chains. If the scope is a package declaration,
- -- its visible declarations may still be accessible. Therefore the entities
- -- defined in such a scope are left on the visibility chains, and only
- -- their visibility (immediately visibility or potential use-visibility)
- -- is affected.
-
- -- The ordering of homonyms on their chain does not necessarily follow
- -- the order of their corresponding scopes on the scope stack. For
- -- example, if package P and the enclosing scope both contain entities
- -- named E, then when compiling the package body the chain for E will
- -- hold the global entity first, and the local one (corresponding to
- -- the current inner scope) next. As a result, name resolution routines
- -- do not assume any relative ordering of the homonym chains, either
- -- for scope nesting or to order of appearance of context clauses.
-
- -- When compiling a child unit, entities in the parent scope are always
- -- immediately visible. When compiling the body of a child unit, private
- -- entities in the parent must also be made immediately visible. There
- -- are separate routines to make the visible and private declarations
- -- visible at various times (see package Sem_Ch7).
-
- -- +--------+ +-----+
- -- | In use |-------->| EU1 |-------------------------->
- -- +--------+ +-----+
- -- | |
- -- +--------+ +-----+ +-----+
- -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
- -- +--------+ +-----+ +-----+
- -- | |
- -- +---------+ | +-----+
- -- | with'ed |------------------------------>| EW2 |--->
- -- +---------+ | +-----+
- -- | |
- -- +--------+ +-----+ +-----+
- -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
- -- +--------+ +-----+ +-----+
- -- | |
- -- +--------+ +-----+ +-----+
- -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
- -- +--------+ +-----+ +-----+
- -- ^ | |
- -- | | |
- -- | +---------+ | |
- -- | | with'ed |----------------------------------------->
- -- | +---------+ | |
- -- | | |
- -- Scope stack | |
- -- (innermost first) | |
- -- +----------------------------+
- -- Names table => | Id1 | | | | Id2 |
- -- +----------------------------+
-
- -- Name resolution must deal with several syntactic forms: simple names,
- -- qualified names, indexed names, and various forms of calls.
-
- -- Each identifier points to an entry in the names table. The resolution
- -- of a simple name consists in traversing the homonym chain, starting
- -- from the names table. If an entry is immediately visible, it is the one
- -- designated by the identifier. If only potentially use-visible entities
- -- are on the chain, we must verify that they do not hide each other. If
- -- the entity we find is overloadable, we collect all other overloadable
- -- entities on the chain as long as they are not hidden.
- --
- -- To resolve expanded names, we must find the entity at the intersection
- -- of the entity chain for the scope (the prefix) and the homonym chain
- -- for the selector. In general, homonym chains will be much shorter than
- -- entity chains, so it is preferable to start from the names table as
- -- well. If the entity found is overloadable, we must collect all other
- -- interpretations that are defined in the scope denoted by the prefix.
-
- -- For records, protected types, and tasks, their local entities are
- -- removed from visibility chains on exit from the corresponding scope.
- -- From the outside, these entities are always accessed by selected
- -- notation, and the entity chain for the record type, protected type,
- -- etc. is traversed sequentially in order to find the designated entity.
-
- -- The discriminants of a type and the operations of a protected type or
- -- task are unchained on exit from the first view of the type, (such as
- -- a private or incomplete type declaration, or a protected type speci-
- -- fication) and re-chained when compiling the second view.
-
- -- In the case of operators, we do not make operators on derived types
- -- explicit. As a result, the notation P."+" may denote either a user-
- -- defined function with name "+", or else an implicit declaration of the
- -- operator "+" in package P. The resolution of expanded names always
- -- tries to resolve an operator name as such an implicitly defined entity,
- -- in addition to looking for explicit declarations.
-
- -- All forms of names that denote entities (simple names, expanded names,
- -- character literals in some cases) have a Entity attribute, which
- -- identifies the entity denoted by the name.
-
- ---------------------
- -- The Scope Stack --
- ---------------------
-
- -- The Scope stack keeps track of the scopes currently been compiled.
- -- Every entity that contains declarations (including records) is placed
- -- on the scope stack while it is being processed, and removed at the end.
- -- Whenever a non-package scope is exited, the entities defined therein
- -- are removed from the visibility table, so that entities in outer scopes
- -- become visible (see previous description). On entry to Sem, the scope
- -- stack only contains the package Standard. As usual, subunits complicate
- -- this picture ever so slightly.
-
- -- The Rtsfind mechanism can force a call to Semantics while another
- -- compilation is in progress. The unit retrieved by Rtsfind must be
- -- compiled in its own context, and has no access to the visibility of
- -- the unit currently being compiled. The procedures Save_Scope_Stack and
- -- Restore_Scope_Stack make entities in current open scopes invisible
- -- before compiling the retrieved unit, and restore the compilation
- -- environment afterwards.
-
- ------------------------
- -- Compiling subunits --
- ------------------------
-
- -- Subunits must be compiled in the environment of the corresponding stub,
- -- that is to say with the same visibility into the parent (and its
- -- context) that is available at the point of the stub declaration, but
- -- with the additional visibility provided by the context clause of the
- -- subunit itself. As a result, compilation of a subunit forces compilation
- -- of the parent (see description in lib-). At the point of the stub
- -- declaration, Analyze is called recursively to compile the proper body of
- -- the subunit, but without reinitializing the names table, nor the scope
- -- stack (i.e. standard is not pushed on the stack). In this fashion the
- -- context of the subunit is added to the context of the parent, and the
- -- subunit is compiled in the correct environment. Note that in the course
- -- of processing the context of a subunit, Standard will appear twice on
- -- the scope stack: once for the parent of the subunit, and once for the
- -- unit in the context clause being compiled. However, the two sets of
- -- entities are not linked by homonym chains, so that the compilation of
- -- any context unit happens in a fresh visibility environment.
-
- -------------------------------
- -- Processing of USE Clauses --
- -------------------------------
-
- -- Every defining occurrence has a flag indicating if it is potentially use
- -- visible. Resolution of simple names examines this flag. The processing
- -- of use clauses consists in setting this flag on all visible entities
- -- defined in the corresponding package. On exit from the scope of the use
- -- clause, the corresponding flag must be reset. However, a package may
- -- appear in several nested use clauses (pathological but legal, alas!)
- -- which forces us to use a slightly more involved scheme:
-
- -- a) The defining occurrence for a package holds a flag -In_Use- to
- -- indicate that it is currently in the scope of a use clause. If a
- -- redundant use clause is encountered, then the corresponding occurrence
- -- of the package name is flagged -Redundant_Use-.
-
- -- b) On exit from a scope, the use clauses in its declarative part are
- -- scanned. The visibility flag is reset in all entities declared in
- -- package named in a use clause, as long as the package is not flagged
- -- as being in a redundant use clause (in which case the outer use
- -- clause is still in effect, and the direct visibility of its entities
- -- must be retained).
-
- -- Note that entities are not removed from their homonym chains on exit
- -- from the package specification. A subsequent use clause does not need
- -- to rechain the visible entities, but only to establish their direct
- -- visibility.
-
- -----------------------------------
- -- Handling private declarations --
- -----------------------------------
-
- -- The principle that each entity has a single defining occurrence clashes
- -- with the presence of two separate definitions for private types: the
- -- first is the private type declaration, and second is the full type
- -- declaration. It is important that all references to the type point to
- -- the same defining occurrence, namely the first one. To enforce the two
- -- separate views of the entity, the corresponding information is swapped
- -- between the two declarations. Outside of the package, the defining
- -- occurrence only contains the private declaration information, while in
- -- the private part and the body of the package the defining occurrence
- -- contains the full declaration. To simplify the swap, the defining
- -- occurrence that currently holds the private declaration points to the
- -- full declaration. During semantic processing the defining occurrence
- -- also points to a list of private dependents, that is to say access types
- -- or composite types whose designated types or component types are
- -- subtypes or derived types of the private type in question. After the
- -- full declaration has been seen, the private dependents are updated to
- -- indicate that they have full definitions.
-
- ------------------------------------
- -- Handling of Undefined Messages --
- ------------------------------------
-
- -- In normal mode, only the first use of an undefined identifier generates
- -- a message. The table Urefs is used to record error messages that have
- -- been issued so that second and subsequent ones do not generate further
- -- messages. However, the second reference causes text to be added to the
- -- original undefined message noting "(more references follow)". The
- -- full error list option (-gnatf) forces messages to be generated for
- -- every reference and disconnects the use of this table.
-
- type Uref_Entry is record
- Node : Node_Id;
- -- Node for identifier for which original message was posted. The
- -- Chars field of this identifier is used to detect later references
- -- to the same identifier.
-
- Err : Error_Msg_Id;
- -- Records error message Id of original undefined message. Reset to
- -- No_Error_Msg after the second occurrence, where it is used to add
- -- text to the original message as described above.
-
- Nvis : Boolean;
- -- Set if the message is not visible rather than undefined
-
- Loc : Source_Ptr;
- -- Records location of error message. Used to make sure that we do
- -- not consider a, b : undefined as two separate instances, which
- -- would otherwise happen, since the parser converts this sequence
- -- to a : undefined; b : undefined.
-
- end record;
-
- package Urefs is new Table.Table (
- Table_Component_Type => Uref_Entry,
- Table_Index_Type => Nat,
- Table_Low_Bound => 1,
- Table_Initial => 10,
- Table_Increment => 100,
- Table_Name => "Urefs");
-
- Candidate_Renaming : Entity_Id;
- -- Holds a candidate interpretation that appears in a subprogram renaming
- -- declaration and does not match the given specification, but matches at
- -- least on the first formal. Allows better error message when given
- -- specification omits defaulted parameters, a common error.
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Analyze_Generic_Renaming
- (N : Node_Id;
- K : Entity_Kind);
- -- Common processing for all three kinds of generic renaming declarations.
- -- Enter new name and indicate that it renames the generic unit.
-
- procedure Analyze_Renamed_Character
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean);
- -- Renamed entity is given by a character literal, which must belong
- -- to the return type of the new entity. Is_Body indicates whether the
- -- declaration is a renaming_as_body. If the original declaration has
- -- already been frozen (because of an intervening body, e.g.) the body of
- -- the function must be built now. The same applies to the following
- -- various renaming procedures.
-
- procedure Analyze_Renamed_Dereference
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean);
- -- Renamed entity is given by an explicit dereference. Prefix must be a
- -- conformant access_to_subprogram type.
-
- procedure Analyze_Renamed_Entry
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean);
- -- If the renamed entity in a subprogram renaming is an entry or protected
- -- subprogram, build a body for the new entity whose only statement is a
- -- call to the renamed entity.
-
- procedure Analyze_Renamed_Family_Member
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean);
- -- Used when the renamed entity is an indexed component. The prefix must
- -- denote an entry family.
-
- procedure Analyze_Renamed_Primitive_Operation
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean);
- -- If the renamed entity in a subprogram renaming is a primitive operation
- -- or a class-wide operation in prefix form, save the target object, which
- -- must be added to the list of actuals in any subsequent call.
-
- function Applicable_Use (Pack_Name : Node_Id) return Boolean;
- -- Common code to Use_One_Package and Set_Use, to determine whether
- -- use clause must be processed. Pack_Name is an entity name that
- -- references the package in question.
-
- procedure Attribute_Renaming (N : Node_Id);
- -- Analyze renaming of attribute as function. The renaming declaration N
- -- is rewritten as a function body that returns the attribute reference
- -- applied to the formals of the function.
-
- procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
- -- A renaming_as_body may occur after the entity of the original decla-
- -- ration has been frozen. In that case, the body of the new entity must
- -- be built now, because the usual mechanism of building the renamed
- -- body at the point of freezing will not work. Subp is the subprogram
- -- for which N provides the Renaming_As_Body.
-
- procedure Check_In_Previous_With_Clause
- (N : Node_Id;
- Nam : Node_Id);
- -- N is a use_package clause and Nam the package name, or N is a use_type
- -- clause and Nam is the prefix of the type name. In either case, verify
- -- that the package is visible at that point in the context: either it
- -- appears in a previous with_clause, or because it is a fully qualified
- -- name and the root ancestor appears in a previous with_clause.
-
- procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
- -- Verify that the entity in a renaming declaration that is a library unit
- -- is itself a library unit and not a nested unit or subunit. Also check
- -- that if the renaming is a child unit of a generic parent, then the
- -- renamed unit must also be a child unit of that parent. Finally, verify
- -- that a renamed generic unit is not an implicit child declared within
- -- an instance of the parent.
-
- procedure Chain_Use_Clause (N : Node_Id);
- -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
- -- the proper scope table entry. This is usually the current scope, but it
- -- will be an inner scope when installing the use clauses of the private
- -- declarations of a parent unit prior to compiling the private part of a
- -- child unit. This chain is traversed when installing/removing use clauses
- -- when compiling a subunit or instantiating a generic body on the fly,
- -- when it is necessary to save and restore full environments.
-
- function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
- -- Find a type derived from Character or Wide_Character in the prefix of N.
- -- Used to resolved qualified names whose selector is a character literal.
-
- function Has_Private_With (E : Entity_Id) return Boolean;
- -- Ada 2005 (AI-262): Determines if the current compilation unit has a
- -- private with on E.
-
- procedure Find_Expanded_Name (N : Node_Id);
- -- Selected component is known to be expanded name. Verify legality
- -- of selector given the scope denoted by prefix.
-
- function Find_Renamed_Entity
- (N : Node_Id;
- Nam : Node_Id;
- New_S : Entity_Id;
- Is_Actual : Boolean := False) return Entity_Id;
- -- Find the renamed entity that corresponds to the given parameter profile
- -- in a subprogram renaming declaration. The renamed entity may be an
- -- operator, a subprogram, an entry, or a protected operation. Is_Actual
- -- indicates that the renaming is the one generated for an actual subpro-
- -- gram in an instance, for which special visibility checks apply.
-
- function Has_Implicit_Operator (N : Node_Id) return Boolean;
- -- N is an expanded name whose selector is an operator name (e.g. P."+").
- -- declarative part contains an implicit declaration of an operator if it
- -- has a declaration of a type to which one of the predefined operators
- -- apply. The existence of this routine is an implementation artifact. A
- -- more straightforward but more space-consuming choice would be to make
- -- all inherited operators explicit in the symbol table.
-
- procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
- -- A subprogram defined by a renaming declaration inherits the parameter
- -- profile of the renamed entity. The subtypes given in the subprogram
- -- specification are discarded and replaced with those of the renamed
- -- subprogram, which are then used to recheck the default values.
-
- function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
- -- Prefix is appropriate for record if it is of a record type, or an access
- -- to such.
-
- function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
- -- True if it is of a task type, a protected type, or else an access to one
- -- of these types.
-
- procedure Note_Redundant_Use (Clause : Node_Id);
- -- Mark the name in a use clause as redundant if the corresponding entity
- -- is already use-visible. Emit a warning if the use clause comes from
- -- source and the proper warnings are enabled.
-
- procedure Premature_Usage (N : Node_Id);
- -- Diagnose usage of an entity before it is visible
-
- procedure Use_One_Package (P : Entity_Id; N : Node_Id);
- -- Make visible entities declared in package P potentially use-visible
- -- in the current context. Also used in the analysis of subunits, when
- -- re-installing use clauses of parent units. N is the use_clause that
- -- names P (and possibly other packages).
-
- procedure Use_One_Type (Id : Node_Id);
- -- Id is the subtype mark from a use type clause. This procedure makes
- -- the primitive operators of the type potentially use-visible.
-
- procedure Write_Info;
- -- Write debugging information on entities declared in current scope
-
- procedure Write_Scopes;
- pragma Warnings (Off, Write_Scopes);
- -- Debugging information: dump all entities on scope stack
-
- --------------------------------
- -- Analyze_Exception_Renaming --
- --------------------------------
-
- -- The language only allows a single identifier, but the tree holds an
- -- identifier list. The parser has already issued an error message if
- -- there is more than one element in the list.
-
- procedure Analyze_Exception_Renaming (N : Node_Id) is
- Id : constant Node_Id := Defining_Identifier (N);
- Nam : constant Node_Id := Name (N);
-
- begin
- Enter_Name (Id);
- Analyze (Nam);
-
- Set_Ekind (Id, E_Exception);
- Set_Exception_Code (Id, Uint_0);
- Set_Etype (Id, Standard_Exception_Type);
- Set_Is_Pure (Id, Is_Pure (Current_Scope));
-
- if not Is_Entity_Name (Nam) or else
- Ekind (Entity (Nam)) /= E_Exception
- then
- Error_Msg_N ("invalid exception name in renaming", Nam);
- else
- if Present (Renamed_Object (Entity (Nam))) then
- Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
- else
- Set_Renamed_Object (Id, Entity (Nam));
- end if;
- end if;
- end Analyze_Exception_Renaming;
-
- ---------------------------
- -- Analyze_Expanded_Name --
- ---------------------------
-
- procedure Analyze_Expanded_Name (N : Node_Id) is
- begin
- -- If the entity pointer is already set, this is an internal node, or a
- -- node that is analyzed more than once, after a tree modification. In
- -- such a case there is no resolution to perform, just set the type. For
- -- completeness, analyze prefix as well.
-
- if Present (Entity (N)) then
- if Is_Type (Entity (N)) then
- Set_Etype (N, Entity (N));
- else
- Set_Etype (N, Etype (Entity (N)));
- end if;
-
- Analyze (Prefix (N));
- return;
- else
- Find_Expanded_Name (N);
- end if;
- end Analyze_Expanded_Name;
-
- ---------------------------------------
- -- Analyze_Generic_Function_Renaming --
- ---------------------------------------
-
- procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
- begin
- Analyze_Generic_Renaming (N, E_Generic_Function);
- end Analyze_Generic_Function_Renaming;
-
- --------------------------------------
- -- Analyze_Generic_Package_Renaming --
- --------------------------------------
-
- procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
- begin
- -- Apply the Text_IO Kludge here, since we may be renaming one of the
- -- subpackages of Text_IO, then join common routine.
-
- Text_IO_Kludge (Name (N));
-
- Analyze_Generic_Renaming (N, E_Generic_Package);
- end Analyze_Generic_Package_Renaming;
-
- ----------------------------------------
- -- Analyze_Generic_Procedure_Renaming --
- ----------------------------------------
-
- procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
- begin
- Analyze_Generic_Renaming (N, E_Generic_Procedure);
- end Analyze_Generic_Procedure_Renaming;
-
- ------------------------------
- -- Analyze_Generic_Renaming --
- ------------------------------
-
- procedure Analyze_Generic_Renaming
- (N : Node_Id;
- K : Entity_Kind)
- is
- New_P : constant Entity_Id := Defining_Entity (N);
- Old_P : Entity_Id;
- Inst : Boolean := False; -- prevent junk warning
-
- begin
- if Name (N) = Error then
- return;
- end if;
-
- Generate_Definition (New_P);
-
- if Current_Scope /= Standard_Standard then
- Set_Is_Pure (New_P, Is_Pure (Current_Scope));
- end if;
-
- if Nkind (Name (N)) = N_Selected_Component then
- Check_Generic_Child_Unit (Name (N), Inst);
- else
- Analyze (Name (N));
- end if;
-
- if not Is_Entity_Name (Name (N)) then
- Error_Msg_N ("expect entity name in renaming declaration", Name (N));
- Old_P := Any_Id;
- else
- Old_P := Entity (Name (N));
- end if;
-
- Enter_Name (New_P);
- Set_Ekind (New_P, K);
-
- if Etype (Old_P) = Any_Type then
- null;
-
- elsif Ekind (Old_P) /= K then
- Error_Msg_N ("invalid generic unit name", Name (N));
-
- else
- if Present (Renamed_Object (Old_P)) then
- Set_Renamed_Object (New_P, Renamed_Object (Old_P));
- else
- Set_Renamed_Object (New_P, Old_P);
- end if;
-
- Set_Is_Pure (New_P, Is_Pure (Old_P));
- Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
-
- Set_Etype (New_P, Etype (Old_P));
- Set_Has_Completion (New_P);
-
- if In_Open_Scopes (Old_P) then
- Error_Msg_N ("within its scope, generic denotes its instance", N);
- end if;
-
- Check_Library_Unit_Renaming (N, Old_P);
- end if;
- end Analyze_Generic_Renaming;
-
- -----------------------------
- -- Analyze_Object_Renaming --
- -----------------------------
-
- procedure Analyze_Object_Renaming (N : Node_Id) is
- Id : constant Entity_Id := Defining_Identifier (N);
- Dec : Node_Id;
- Nam : constant Node_Id := Name (N);
- T : Entity_Id;
- T2 : Entity_Id;
-
- function In_Generic_Scope (E : Entity_Id) return Boolean;
- -- Determine whether entity E is inside a generic cope
-
- ----------------------
- -- In_Generic_Scope --
- ----------------------
-
- function In_Generic_Scope (E : Entity_Id) return Boolean is
- S : Entity_Id;
-
- begin
- S := Scope (E);
- while Present (S) and then S /= Standard_Standard loop
- if Is_Generic_Unit (S) then
- return True;
- end if;
-
- S := Scope (S);
- end loop;
-
- return False;
- end In_Generic_Scope;
-
- -- Start of processing for Analyze_Object_Renaming
-
- begin
- if Nam = Error then
- return;
- end if;
-
- Set_Is_Pure (Id, Is_Pure (Current_Scope));
- Enter_Name (Id);
-
- -- The renaming of a component that depends on a discriminant requires
- -- an actual subtype, because in subsequent use of the object Gigi will
- -- be unable to locate the actual bounds. This explicit step is required
- -- when the renaming is generated in removing side effects of an
- -- already-analyzed expression.
-
- if Nkind (Nam) = N_Selected_Component
- and then Analyzed (Nam)
- then
- T := Etype (Nam);
- Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
-
- if Present (Dec) then
- Insert_Action (N, Dec);
- T := Defining_Identifier (Dec);
- Set_Etype (Nam, T);
- end if;
-
- -- Complete analysis of the subtype mark in any case, for ASIS use
-
- if Present (Subtype_Mark (N)) then
- Find_Type (Subtype_Mark (N));
- end if;
-
- elsif Present (Subtype_Mark (N)) then
- Find_Type (Subtype_Mark (N));
- T := Entity (Subtype_Mark (N));
- Analyze (Nam);
-
- if Nkind (Nam) = N_Type_Conversion
- and then not Is_Tagged_Type (T)
- then
- Error_Msg_N
- ("renaming of conversion only allowed for tagged types", Nam);
- end if;
-
- Resolve (Nam, T);
-
- -- Check that a class-wide object is not being renamed as an object
- -- of a specific type. The test for access types is needed to exclude
- -- cases where the renamed object is a dynamically tagged access
- -- result, such as occurs in certain expansions.
-
- if (Is_Class_Wide_Type (Etype (Nam))
- or else (Is_Dynamically_Tagged (Nam)
- and then not Is_Access_Type (T)))
- and then not Is_Class_Wide_Type (T)
- then
- Error_Msg_N ("dynamically tagged expression not allowed!", Nam);
- end if;
-
- -- Ada 2005 (AI-230/AI-254): Access renaming
-
- else pragma Assert (Present (Access_Definition (N)));
- T := Access_Definition
- (Related_Nod => N,
- N => Access_Definition (N));
-
- Analyze_And_Resolve (Nam, T);
-
- -- Ada 2005 (AI-231): "In the case where the type is defined by an
- -- access_definition, the renamed entity shall be of an access-to-
- -- constant type if and only if the access_definition defines an
- -- access-to-constant type" ARM 8.5.1(4)
-
- if Constant_Present (Access_Definition (N))
- and then not Is_Access_Constant (Etype (Nam))
- then
- Error_Msg_N ("(Ada 2005): the renamed object is not "
- & "access-to-constant (RM 8.5.1(6))", N);
- end if;
- end if;
-
- -- Special processing for renaming function return object
-
- if Nkind (Nam) = N_Function_Call
- and then Comes_From_Source (Nam)
- then
- case Ada_Version is
-
- -- Usage is illegal in Ada 83
-
- when Ada_83 =>
- Error_Msg_N
- ("(Ada 83) cannot rename function return object", Nam);
-
- -- In Ada 95, warn for odd case of renaming parameterless function
- -- call if this is not a limited type (where this is useful)
-
- when others =>
- if Warn_On_Object_Renames_Function
- and then No (Parameter_Associations (Nam))
- and then not Is_Limited_Type (Etype (Nam))
- then
- Error_Msg_N
- ("?renaming function result object is suspicious",
- Nam);
- Error_Msg_NE
- ("\?function & will be called only once",
- Nam, Entity (Name (Nam)));
- Error_Msg_N
- ("\?suggest using an initialized constant object instead",
- Nam);
- end if;
- end case;
- end if;
-
- -- An object renaming requires an exact match of the type. Class-wide
- -- matching is not allowed.
-
- if Is_Class_Wide_Type (T)
- and then Base_Type (Etype (Nam)) /= Base_Type (T)
- then
- Wrong_Type (Nam, T);
- end if;
-
- T2 := Etype (Nam);
-
- -- (Ada 2005: AI-326): Handle wrong use of incomplete type
-
- if Nkind (Nam) = N_Explicit_Dereference
- and then Ekind (Etype (T2)) = E_Incomplete_Type
- then
- Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
- return;
- elsif Ekind (Etype (T)) = E_Incomplete_Type then
- Error_Msg_NE ("invalid use of incomplete type&", Id, T);
- return;
- end if;
-
- -- Ada 2005 (AI-327)
-
- if Ada_Version >= Ada_05
- and then Nkind (Nam) = N_Attribute_Reference
- and then Attribute_Name (Nam) = Name_Priority
- then
- null;
-
- elsif Ada_Version >= Ada_05
- and then Nkind (Nam) in N_Has_Entity
- then
- declare
- Nam_Decl : Node_Id;
- Nam_Ent : Entity_Id;
-
- begin
- if Nkind (Nam) = N_Attribute_Reference then
- Nam_Ent := Entity (Prefix (Nam));
- else
- Nam_Ent := Entity (Nam);
- end if;
-
- Nam_Decl := Parent (Nam_Ent);
-
- if Has_Null_Exclusion (N)
- and then not Has_Null_Exclusion (Nam_Decl)
- then
- -- Ada 2005 (AI-423): If the object name denotes a generic
- -- formal object of a generic unit G, and the object renaming
- -- declaration occurs within the body of G or within the body
- -- of a generic unit declared within the declarative region
- -- of G, then the declaration of the formal object of G must
- -- have a null exclusion.
-
- if Is_Formal_Object (Nam_Ent)
- and then In_Generic_Scope (Id)
- then
- Error_Msg_N
- ("renamed formal does not exclude `NULL` "
- & "(RM 8.5.1(4.6/2))", N);
-
- -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
- -- shall exclude null.
-
- elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
- Error_Msg_N
- ("renamed object does not exclude `NULL` "
- & "(RM 8.5.1(4.6/2))", N);
-
- elsif Can_Never_Be_Null (Etype (Nam_Ent)) then
- Error_Msg_NE
- ("`NOT NULL` not allowed (type of& already excludes null)",
- N, Nam_Ent);
-
- end if;
-
- elsif Has_Null_Exclusion (N)
- and then No (Access_Definition (N))
- and then Can_Never_Be_Null (T)
- then
- Error_Msg_NE
- ("`NOT NULL` not allowed (& already excludes null)", N, T);
- end if;
- end;
- end if;
-
- Set_Ekind (Id, E_Variable);
- Init_Size_Align (Id);
-
- if T = Any_Type or else Etype (Nam) = Any_Type then
- return;
-
- -- Verify that the renamed entity is an object or a function call. It
- -- may have been rewritten in several ways.
-
- elsif Is_Object_Reference (Nam) then
- if Comes_From_Source (N)
- and then Is_Dependent_Component_Of_Mutable_Object (Nam)
- then
- Error_Msg_N
- ("illegal renaming of discriminant-dependent component", Nam);
- else
- null;
- end if;
-
- -- A static function call may have been folded into a literal
-
- elsif Nkind (Original_Node (Nam)) = N_Function_Call
-
- -- When expansion is disabled, attribute reference is not
- -- rewritten as function call. Otherwise it may be rewritten
- -- as a conversion, so check original node.
-
- or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
- and then Is_Function_Attribute_Name
- (Attribute_Name (Original_Node (Nam))))
-
- -- Weird but legal, equivalent to renaming a function call.
- -- Illegal if the literal is the result of constant-folding an
- -- attribute reference that is not a function.
-
- or else (Is_Entity_Name (Nam)
- and then Ekind (Entity (Nam)) = E_Enumeration_Literal
- and then
- Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
-
- or else (Nkind (Nam) = N_Type_Conversion
- and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
- then
- null;
-
- elsif Nkind (Nam) = N_Type_Conversion then
- Error_Msg_N
- ("renaming of conversion only allowed for tagged types", Nam);
-
- -- Ada 2005 (AI-327)
-
- elsif Ada_Version >= Ada_05
- and then Nkind (Nam) = N_Attribute_Reference
- and then Attribute_Name (Nam) = Name_Priority
- then
- null;
-
- -- Allow internally generated x'Reference expression
-
- elsif Nkind (Nam) = N_Reference then
- null;
-
- else
- Error_Msg_N ("expect object name in renaming", Nam);
- end if;
-
- Set_Etype (Id, T2);
-
- if not Is_Variable (Nam) then
- Set_Ekind (Id, E_Constant);
- Set_Never_Set_In_Source (Id, True);
- Set_Is_True_Constant (Id, True);
- end if;
-
- Set_Renamed_Object (Id, Nam);
- end Analyze_Object_Renaming;
-
- ------------------------------
- -- Analyze_Package_Renaming --
- ------------------------------
-
- procedure Analyze_Package_Renaming (N : Node_Id) is
- New_P : constant Entity_Id := Defining_Entity (N);
- Old_P : Entity_Id;
- Spec : Node_Id;
-
- begin
- if Name (N) = Error then
- return;
- end if;
-
- -- Apply Text_IO kludge here, since we may be renaming one of the
- -- children of Text_IO.
-
- Text_IO_Kludge (Name (N));
-
- if Current_Scope /= Standard_Standard then
- Set_Is_Pure (New_P, Is_Pure (Current_Scope));
- end if;
-
- Enter_Name (New_P);
- Analyze (Name (N));
-
- if Is_Entity_Name (Name (N)) then
- Old_P := Entity (Name (N));
- else
- Old_P := Any_Id;
- end if;
-
- if Etype (Old_P) = Any_Type then
- Error_Msg_N
- ("expect package name in renaming", Name (N));
-
- elsif Ekind (Old_P) /= E_Package
- and then not (Ekind (Old_P) = E_Generic_Package
- and then In_Open_Scopes (Old_P))
- then
- if Ekind (Old_P) = E_Generic_Package then
- Error_Msg_N
- ("generic package cannot be renamed as a package", Name (N));
- else
- Error_Msg_Sloc := Sloc (Old_P);
- Error_Msg_NE
- ("expect package name in renaming, found& declared#",
- Name (N), Old_P);
- end if;
-
- -- Set basic attributes to minimize cascaded errors
-
- Set_Ekind (New_P, E_Package);
- Set_Etype (New_P, Standard_Void_Type);
-
- -- Here for OK package renaming
-
- else
- -- Entities in the old package are accessible through the renaming
- -- entity. The simplest implementation is to have both packages share
- -- the entity list.
-
- Set_Ekind (New_P, E_Package);
- Set_Etype (New_P, Standard_Void_Type);
-
- if Present (Renamed_Object (Old_P)) then
- Set_Renamed_Object (New_P, Renamed_Object (Old_P));
- else
- Set_Renamed_Object (New_P, Old_P);
- end if;
-
- Set_Has_Completion (New_P);
-
- Set_First_Entity (New_P, First_Entity (Old_P));
- Set_Last_Entity (New_P, Last_Entity (Old_P));
- Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
- Check_Library_Unit_Renaming (N, Old_P);
- Generate_Reference (Old_P, Name (N));
-
- -- If the renaming is in the visible part of a package, then we set
- -- Renamed_In_Spec for the renamed package, to prevent giving
- -- warnings about no entities referenced. Such a warning would be
- -- overenthusiastic, since clients can see entities in the renamed
- -- package via the visible package renaming.
-
- declare
- Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
- begin
- if Ekind (Ent) = E_Package
- and then not In_Private_Part (Ent)
- and then In_Extended_Main_Source_Unit (N)
- and then Ekind (Old_P) = E_Package
- then
- Set_Renamed_In_Spec (Old_P);
- end if;
- end;
-
- -- If this is the renaming declaration of a package instantiation
- -- within itself, it is the declaration that ends the list of actuals
- -- for the instantiation. At this point, the subtypes that rename
- -- the actuals are flagged as generic, to avoid spurious ambiguities
- -- if the actuals for two distinct formals happen to coincide. If
- -- the actual is a private type, the subtype has a private completion
- -- that is flagged in the same fashion.
-
- -- Resolution is identical to what is was in the original generic.
- -- On exit from the generic instance, these are turned into regular
- -- subtypes again, so they are compatible with types in their class.
-
- if not Is_Generic_Instance (Old_P) then
- return;
- else
- Spec := Specification (Unit_Declaration_Node (Old_P));
- end if;
-
- if Nkind (Spec) = N_Package_Specification
- and then Present (Generic_Parent (Spec))
- and then Old_P = Current_Scope
- and then Chars (New_P) = Chars (Generic_Parent (Spec))
- then
- declare
- E : Entity_Id;
-
- begin
- E := First_Entity (Old_P);
- while Present (E)
- and then E /= New_P
- loop
- if Is_Type (E)
- and then Nkind (Parent (E)) = N_Subtype_Declaration
- then
- Set_Is_Generic_Actual_Type (E);
-
- if Is_Private_Type (E)
- and then Present (Full_View (E))
- then
- Set_Is_Generic_Actual_Type (Full_View (E));
- end if;
- end if;
-
- Next_Entity (E);
- end loop;
- end;
- end if;
- end if;
- end Analyze_Package_Renaming;
-
- -------------------------------
- -- Analyze_Renamed_Character --
- -------------------------------
-
- procedure Analyze_Renamed_Character
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean)
- is
- C : constant Node_Id := Name (N);
-
- begin
- if Ekind (New_S) = E_Function then
- Resolve (C, Etype (New_S));
-
- if Is_Body then
- Check_Frozen_Renaming (N, New_S);
- end if;
-
- else
- Error_Msg_N ("character literal can only be renamed as function", N);
- end if;
- end Analyze_Renamed_Character;
-
- ---------------------------------
- -- Analyze_Renamed_Dereference --
- ---------------------------------
-
- procedure Analyze_Renamed_Dereference
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean)
- is
- Nam : constant Node_Id := Name (N);
- P : constant Node_Id := Prefix (Nam);
- Typ : Entity_Id;
- Ind : Interp_Index;
- It : Interp;
-
- begin
- if not Is_Overloaded (P) then
- if Ekind (Etype (Nam)) /= E_Subprogram_Type
- or else not Type_Conformant (Etype (Nam), New_S) then
- Error_Msg_N ("designated type does not match specification", P);
- else
- Resolve (P);
- end if;
-
- return;
-
- else
- Typ := Any_Type;
- Get_First_Interp (Nam, Ind, It);
-
- while Present (It.Nam) loop
-
- if Ekind (It.Nam) = E_Subprogram_Type
- and then Type_Conformant (It.Nam, New_S) then
-
- if Typ /= Any_Id then
- Error_Msg_N ("ambiguous renaming", P);
- return;
- else
- Typ := It.Nam;
- end if;
- end if;
-
- Get_Next_Interp (Ind, It);
- end loop;
-
- if Typ = Any_Type then
- Error_Msg_N ("designated type does not match specification", P);
- else
- Resolve (N, Typ);
-
- if Is_Body then
- Check_Frozen_Renaming (N, New_S);
- end if;
- end if;
- end if;
- end Analyze_Renamed_Dereference;
-
- ---------------------------
- -- Analyze_Renamed_Entry --
- ---------------------------
-
- procedure Analyze_Renamed_Entry
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean)
- is
- Nam : constant Node_Id := Name (N);
- Sel : constant Node_Id := Selector_Name (Nam);
- Old_S : Entity_Id;
-
- begin
- if Entity (Sel) = Any_Id then
-
- -- Selector is undefined on prefix. Error emitted already
-
- Set_Has_Completion (New_S);
- return;
- end if;
-
- -- Otherwise find renamed entity and build body of New_S as a call to it
-
- Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
-
- if Old_S = Any_Id then
- Error_Msg_N (" no subprogram or entry matches specification", N);
- else
- if Is_Body then
- Check_Subtype_Conformant (New_S, Old_S, N);
- Generate_Reference (New_S, Defining_Entity (N), 'b');
- Style.Check_Identifier (Defining_Entity (N), New_S);
-
- else
- -- Only mode conformance required for a renaming_as_declaration
-
- Check_Mode_Conformant (New_S, Old_S, N);
- end if;
-
- Inherit_Renamed_Profile (New_S, Old_S);
-
- -- The prefix can be an arbitrary expression that yields a task
- -- type, so it must be resolved.
-
- Resolve (Prefix (Nam), Scope (Old_S));
- end if;
-
- Set_Convention (New_S, Convention (Old_S));
- Set_Has_Completion (New_S, Inside_A_Generic);
-
- if Is_Body then
- Check_Frozen_Renaming (N, New_S);
- end if;
- end Analyze_Renamed_Entry;
-
- -----------------------------------
- -- Analyze_Renamed_Family_Member --
- -----------------------------------
-
- procedure Analyze_Renamed_Family_Member
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean)
- is
- Nam : constant Node_Id := Name (N);
- P : constant Node_Id := Prefix (Nam);
- Old_S : Entity_Id;
-
- begin
- if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
- or else (Nkind (P) = N_Selected_Component
- and then
- Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
- then
- if Is_Entity_Name (P) then
- Old_S := Entity (P);
- else
- Old_S := Entity (Selector_Name (P));
- end if;
-
- if not Entity_Matches_Spec (Old_S, New_S) then
- Error_Msg_N ("entry family does not match specification", N);
-
- elsif Is_Body then
- Check_Subtype_Conformant (New_S, Old_S, N);
- Generate_Reference (New_S, Defining_Entity (N), 'b');
- Style.Check_Identifier (Defining_Entity (N), New_S);
- end if;
-
- else
- Error_Msg_N ("no entry family matches specification", N);
- end if;
-
- Set_Has_Completion (New_S, Inside_A_Generic);
-
- if Is_Body then
- Check_Frozen_Renaming (N, New_S);
- end if;
- end Analyze_Renamed_Family_Member;
-
- -----------------------------------------
- -- Analyze_Renamed_Primitive_Operation --
- -----------------------------------------
-
- procedure Analyze_Renamed_Primitive_Operation
- (N : Node_Id;
- New_S : Entity_Id;
- Is_Body : Boolean)
- is
- Old_S : Entity_Id;
-
- function Conforms
- (Subp : Entity_Id;
- Ctyp : Conformance_Type) return Boolean;
- -- Verify that the signatures of the renamed entity and the new entity
- -- match. The first formal of the renamed entity is skipped because it
- -- is the target object in any subsequent call.
-
- function Conforms
- (Subp : Entity_Id;
- Ctyp : Conformance_Type) return Boolean
- is
- Old_F : Entity_Id;
- New_F : Entity_Id;
-
- begin
- if Ekind (Subp) /= Ekind (New_S) then
- return False;
- end if;
-
- Old_F := Next_Formal (First_Formal (Subp));
- New_F := First_Formal (New_S);
- while Present (Old_F) and then Present (New_F) loop
- if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
- return False;
- end if;
-
- if Ctyp >= Mode_Conformant
- and then Ekind (Old_F) /= Ekind (New_F)
- then
- return False;
- end if;
-
- Next_Formal (New_F);
- Next_Formal (Old_F);
- end loop;
-
- return True;
- end Conforms;
-
- begin
- if not Is_Overloaded (Selector_Name (Name (N))) then
- Old_S := Entity (Selector_Name (Name (N)));
-
- if not Conforms (Old_S, Type_Conformant) then
- Old_S := Any_Id;
- end if;
-
- else
- -- Find the operation that matches the given signature
-
- declare
- It : Interp;
- Ind : Interp_Index;
-
- begin
- Old_S := Any_Id;
- Get_First_Interp (Selector_Name (Name (N)), Ind, It);
-
- while Present (It.Nam) loop
- if Conforms (It.Nam, Type_Conformant) then
- Old_S := It.Nam;
- end if;
-
- Get_Next_Interp (Ind, It);
- end loop;
- end;
- end if;
-
- if Old_S = Any_Id then
- Error_Msg_N (" no subprogram or entry matches specification", N);
-
- else
- if Is_Body then
- if not Conforms (Old_S, Subtype_Conformant) then
- Error_Msg_N ("subtype conformance error in renaming", N);
- end if;
-
- Generate_Reference (New_S, Defining_Entity (N), 'b');
- Style.Check_Identifier (Defining_Entity (N), New_S);
-
- else
- -- Only mode conformance required for a renaming_as_declaration
-
- if not Conforms (Old_S, Mode_Conformant) then
- Error_Msg_N ("mode conformance error in renaming", N);
- end if;
- end if;
-
- -- Inherit_Renamed_Profile (New_S, Old_S);
-
- -- The prefix can be an arbitrary expression that yields an
- -- object, so it must be resolved.
-
- Resolve (Prefix (Name (N)));
- end if;
- end Analyze_Renamed_Primitive_Operation;
-
- ---------------------------------
- -- Analyze_Subprogram_Renaming --
- ---------------------------------
-
- procedure Analyze_Subprogram_Renaming (N : Node_Id) is
- Formal_Spec : constant Node_Id := Corresponding_Formal_Spec (N);
- Is_Actual : constant Boolean := Present (Formal_Spec);
- Inst_Node : Node_Id := Empty;
- Nam : constant Node_Id := Name (N);
- New_S : Entity_Id;
- Old_S : Entity_Id := Empty;
- Rename_Spec : Entity_Id;
- Save_AV : constant Ada_Version_Type := Ada_Version;
- Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
- Spec : constant Node_Id := Specification (N);
-
- procedure Check_Null_Exclusion
- (Ren : Entity_Id;
- Sub : Entity_Id);
- -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
- -- following AI rules:
- --
- -- If Ren is a renaming of a formal subprogram and one of its
- -- parameters has a null exclusion, then the corresponding formal
- -- in Sub must also have one. Otherwise the subtype of the Sub's
- -- formal parameter must exclude null.
- --
- -- If Ren is a renaming of a formal function and its return
- -- profile has a null exclusion, then Sub's return profile must
- -- have one. Otherwise the subtype of Sub's return profile must
- -- exclude null.
-
- function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
- -- Find renamed entity when the declaration is a renaming_as_body and
- -- the renamed entity may itself be a renaming_as_body. Used to enforce
- -- rule that a renaming_as_body is illegal if the declaration occurs
- -- before the subprogram it completes is frozen, and renaming indirectly
- -- renames the subprogram itself.(Defect Report 8652/0027).
-
- --------------------------
- -- Check_Null_Exclusion --
- --------------------------
-
- procedure Check_Null_Exclusion
- (Ren : Entity_Id;
- Sub : Entity_Id)
- is
- Ren_Formal : Entity_Id;
- Sub_Formal : Entity_Id;
-
- begin
- -- Parameter check
-
- Ren_Formal := First_Formal (Ren);
- Sub_Formal := First_Formal (Sub);
- while Present (Ren_Formal)
- and then Present (Sub_Formal)
- loop
- if Has_Null_Exclusion (Parent (Ren_Formal))
- and then
- not (Has_Null_Exclusion (Parent (Sub_Formal))
- or else Can_Never_Be_Null (Etype (Sub_Formal)))
- then
- Error_Msg_NE
- ("`NOT NULL` required for parameter &",
- Parent (Sub_Formal), Sub_Formal);
- end if;
-
- Next_Formal (Ren_Formal);
- Next_Formal (Sub_Formal);
- end loop;
-
- -- Return profile check
-
- if Nkind (Parent (Ren)) = N_Function_Specification
- and then Nkind (Parent (Sub)) = N_Function_Specification
- and then Has_Null_Exclusion (Parent (Ren))
- and then
- not (Has_Null_Exclusion (Parent (Sub))
- or else Can_Never_Be_Null (Etype (Sub)))
- then
- Error_Msg_N
- ("return must specify `NOT NULL`",
- Result_Definition (Parent (Sub)));
- end if;
- end Check_Null_Exclusion;
-
- -------------------------
- -- Original_Subprogram --
- -------------------------
-
- function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
- Orig_Decl : Node_Id;
- Orig_Subp : Entity_Id;
-
- begin
- -- First case: renamed entity is itself a renaming
-
- if Present (Alias (Subp)) then
- return Alias (Subp);
-
- elsif
- Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
- and then Present
- (Corresponding_Body (Unit_Declaration_Node (Subp)))
- then
- -- Check if renamed entity is a renaming_as_body
-
- Orig_Decl :=
- Unit_Declaration_Node
- (Corresponding_Body (Unit_Declaration_Node (Subp)));
-
- if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
- Orig_Subp := Entity (Name (Orig_Decl));
-
- if Orig_Subp = Rename_Spec then
-
- -- Circularity detected
-
- return Orig_Subp;
-
- else
- return (Original_Subprogram (Orig_Subp));
- end if;
- else
- return Subp;
- end if;
- else
- return Subp;
- end if;
- end Original_Subprogram;
-
- -- Start of processing for Analyze_Subprogram_Renaming
-
- begin
- -- We must test for the attribute renaming case before the Analyze
- -- call because otherwise Sem_Attr will complain that the attribute
- -- is missing an argument when it is analyzed.
-
- if Nkind (Nam) = N_Attribute_Reference then
-
- -- In the case of an abstract formal subprogram association, rewrite
- -- an actual given by a stream attribute as the name of the
- -- corresponding stream primitive of the type.
-
- -- In a generic context the stream operations are not generated, and
- -- this must be treated as a normal attribute reference, to be
- -- expanded in subsequent instantiations.
-
- if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec)
- and then Expander_Active
- then
- declare
- Stream_Prim : Entity_Id;
- Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
-
- begin
- -- The class-wide forms of the stream attributes are not
- -- primitive dispatching operations (even though they
- -- internally dispatch to a stream attribute).
-
- if Is_Class_Wide_Type (Prefix_Type) then
- Error_Msg_N
- ("attribute must be a primitive dispatching operation",
- Nam);
- return;
- end if;
-
- -- Retrieve the primitive subprogram associated with the
- -- attribute. This can only be a stream attribute, since those
- -- are the only ones that are dispatching (and the actual for
- -- an abstract formal subprogram must be dispatching
- -- operation).
-
- begin
- case Attribute_Name (Nam) is
- when Name_Input =>
- Stream_Prim :=
- Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
- when Name_Output =>
- Stream_Prim :=
- Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
- when Name_Read =>
- Stream_Prim :=
- Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
- when Name_Write =>
- Stream_Prim :=
- Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
- when others =>
- Error_Msg_N
- ("attribute must be a primitive"
- & " dispatching operation", Nam);
- return;
- end case;
-
- exception
-
- -- If no operation was found, and the type is limited,
- -- the user should have defined one.
-
- when Program_Error =>
- if Is_Limited_Type (Prefix_Type) then
- Error_Msg_NE
- ("stream operation not defined for type&",
- N, Prefix_Type);
- return;
-
- -- Otherwise, compiler should have generated default
-
- else
- raise;
- end if;
- end;
-
- -- Rewrite the attribute into the name of its corresponding
- -- primitive dispatching subprogram. We can then proceed with
- -- the usual processing for subprogram renamings.
-
- declare
- Prim_Name : constant Node_Id :=
- Make_Identifier (Sloc (Nam),
- Chars => Chars (Stream_Prim));
- begin
- Set_Entity (Prim_Name, Stream_Prim);
- Rewrite (Nam, Prim_Name);
- Analyze (Nam);
- end;
- end;
-
- -- Normal processing for a renaming of an attribute
-
- else
- Attribute_Renaming (N);
- return;
- end if;
- end if;
-
- -- Check whether this declaration corresponds to the instantiation
- -- of a formal subprogram.
-
- -- If this is an instantiation, the corresponding actual is frozen and
- -- error messages can be made more precise. If this is a default
- -- subprogram, the entity is already established in the generic, and is
- -- not retrieved by visibility. If it is a default with a box, the
- -- candidate interpretations, if any, have been collected when building
- -- the renaming declaration. If overloaded, the proper interpretation is
- -- determined in Find_Renamed_Entity. If the entity is an operator,
- -- Find_Renamed_Entity applies additional visibility checks.
-
- if Is_Actual then
- Inst_Node := Unit_Declaration_Node (Formal_Spec);
-
- if Is_Entity_Name (Nam)
- and then Present (Entity (Nam))
- and then not Comes_From_Source (Nam)
- and then not Is_Overloaded (Nam)
- then
- Old_S := Entity (Nam);
- New_S := Analyze_Subprogram_Specification (Spec);
-
- -- Operator case
-
- if Ekind (Entity (Nam)) = E_Operator then
-
- -- Box present
-
- if Box_Present (Inst_Node) then
- Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
-
- -- If there is an immediately visible homonym of the operator
- -- and the declaration has a default, this is worth a warning
- -- because the user probably did not intend to get the pre-
- -- defined operator, visible in the generic declaration. To
- -- find if there is an intended candidate, analyze the renaming
- -- again in the current context.
-
- elsif Scope (Old_S) = Standard_Standard
- and then Present (Default_Name (Inst_Node))
- then
- declare
- Decl : constant Node_Id := New_Copy_Tree (N);
- Hidden : Entity_Id;
-
- begin
- Set_Entity (Name (Decl), Empty);
- Analyze (Name (Decl));
- Hidden :=
- Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
-
- if Present (Hidden)
- and then In_Open_Scopes (Scope (Hidden))
- and then Is_Immediately_Visible (Hidden)
- and then Comes_From_Source (Hidden)
- and then Hidden /= Old_S
- then
- Error_Msg_Sloc := Sloc (Hidden);
- Error_Msg_N ("?default subprogram is resolved " &
- "in the generic declaration " &
- "(RM 12.6(17))", N);
- Error_Msg_NE ("\?and will not use & #", N, Hidden);
- end if;
- end;
- end if;
- end if;
-
- else
- Analyze (Nam);
- New_S := Analyze_Subprogram_Specification (Spec);
- end if;
-
- else
- -- Renamed entity must be analyzed first, to avoid being hidden by
- -- new name (which might be the same in a generic instance).
-
- Analyze (Nam);
-
- -- The renaming defines a new overloaded entity, which is analyzed
- -- like a subprogram declaration.
-
- New_S := Analyze_Subprogram_Specification (Spec);
- end if;
-
- if Current_Scope /= Standard_Standard then
- Set_Is_Pure (New_S, Is_Pure (Current_Scope));
- end if;
-
- Rename_Spec := Find_Corresponding_Spec (N);
-
- -- Case of Renaming_As_Body
-
- if Present (Rename_Spec) then
-
- -- Renaming declaration is the completion of the declaration of
- -- Rename_Spec. We build an actual body for it at the freezing point.
-
- Set_Corresponding_Spec (N, Rename_Spec);
-
- -- Deal with special case of stream functions of abstract types
- -- and interfaces.
-
- if Nkind (Unit_Declaration_Node (Rename_Spec)) =
- N_Abstract_Subprogram_Declaration
- then
- -- Input stream functions are abstract if the object type is
- -- abstract. Similarly, all default stream functions for an
- -- interface type are abstract. However, these subprograms may
- -- receive explicit declarations in representation clauses, making
- -- the attribute subprograms usable as defaults in subsequent
- -- type extensions.
- -- In this case we rewrite the declaration to make the subprogram
- -- non-abstract. We remove the previous declaration, and insert
- -- the new one at the point of the renaming, to prevent premature
- -- access to unfrozen types. The new declaration reuses the
- -- specification of the previous one, and must not be analyzed.
-
- pragma Assert
- (Is_Primitive (Entity (Nam))
- and then
- Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
- declare
- Old_Decl : constant Node_Id :=
- Unit_Declaration_Node (Rename_Spec);
- New_Decl : constant Node_Id :=
- Make_Subprogram_Declaration (Sloc (N),
- Specification =>
- Relocate_Node (Specification (Old_Decl)));
- begin
- Remove (Old_Decl);
- Insert_After (N, New_Decl);
- Set_Is_Abstract_Subprogram (Rename_Spec, False);
- Set_Analyzed (New_Decl);
- end;
- end if;
-
- Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
-
- if Ada_Version = Ada_83 and then Comes_From_Source (N) then
- Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
- end if;
-
- Set_Convention (New_S, Convention (Rename_Spec));
- Check_Fully_Conformant (New_S, Rename_Spec);
- Set_Public_Status (New_S);
-
- -- The specification does not introduce new formals, but only
- -- repeats the formals of the original subprogram declaration.
- -- For cross-reference purposes, and for refactoring tools, we
- -- treat the formals of the renaming declaration as body formals.
-
- Reference_Body_Formals (Rename_Spec, New_S);
-
- -- Indicate that the entity in the declaration functions like the
- -- corresponding body, and is not a new entity. The body will be
- -- constructed later at the freeze point, so indicate that the
- -- completion has not been seen yet.
-
- Set_Ekind (New_S, E_Subprogram_Body);
- New_S := Rename_Spec;
- Set_Has_Completion (Rename_Spec, False);
-
- -- Ada 2005: check overriding indicator
-
- if Is_Overriding_Operation (Rename_Spec) then
- if Must_Not_Override (Specification (N)) then
- Error_Msg_NE
- ("subprogram& overrides inherited operation",
- N, Rename_Spec);
- elsif
- Style_Check and then not Must_Override (Specification (N))
- then
- Style.Missing_Overriding (N, Rename_Spec);
- end if;
-
- elsif Must_Override (Specification (N)) then
- Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
- end if;
-
- -- Normal subprogram renaming (not renaming as body)
-
- else
- Generate_Definition (New_S);
- New_Overloaded_Entity (New_S);
-
- if Is_Entity_Name (Nam)
- and then Is_Intrinsic_Subprogram (Entity (Nam))
- then
- null;
- else
- Check_Delayed_Subprogram (New_S);
- end if;
- end if;
-
- -- There is no need for elaboration checks on the new entity, which may
- -- be called before the next freezing point where the body will appear.
- -- Elaboration checks refer to the real entity, not the one created by
- -- the renaming declaration.
-
- Set_Kill_Elaboration_Checks (New_S, True);
-
- if Etype (Nam) = Any_Type then
- Set_Has_Completion (New_S);
- return;
-
- elsif Nkind (Nam) = N_Selected_Component then
-
- -- A prefix of the form A.B can designate an entry of task A, a
- -- protected operation of protected object A, or finally a primitive
- -- operation of object A. In the later case, A is an object of some
- -- tagged type, or an access type that denotes one such. To further
- -- distinguish these cases, note that the scope of a task entry or
- -- protected operation is type of the prefix.
-
- -- The prefix could be an overloaded function call that returns both
- -- kinds of operations. This overloading pathology is left to the
- -- dedicated reader ???
-
- declare
- T : constant Entity_Id := Etype (Prefix (Nam));
-
- begin
- if Present (T)
- and then
- (Is_Tagged_Type (T)
- or else
- (Is_Access_Type (T)
- and then
- Is_Tagged_Type (Designated_Type (T))))
- and then Scope (Entity (Selector_Name (Nam))) /= T
- then
- Analyze_Renamed_Primitive_Operation
- (N, New_S, Present (Rename_Spec));
- return;
-
- else
- -- Renamed entity is an entry or protected operation. For those
- -- cases an explicit body is built (at the point of freezing of
- -- this entity) that contains a call to the renamed entity.
-
- -- This is not allowed for renaming as body if the renamed
- -- spec is already frozen (see RM 8.5.4(5) for details).
-
- if Present (Rename_Spec)
- and then Is_Frozen (Rename_Spec)
- then
- Error_Msg_N
- ("renaming-as-body cannot rename entry as subprogram", N);
- Error_Msg_NE
- ("\since & is already frozen (RM 8.5.4(5))",
- N, Rename_Spec);
- else
- Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
- end if;
-
- return;
- end if;
- end;
-
- elsif Nkind (Nam) = N_Explicit_Dereference then
-
- -- Renamed entity is designated by access_to_subprogram expression.
- -- Must build body to encapsulate call, as in the entry case.
-
- Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
- return;
-
- elsif Nkind (Nam) = N_Indexed_Component then
- Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
- return;
-
- elsif Nkind (Nam) = N_Character_Literal then
- Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
- return;
-
- elsif (not Is_Entity_Name (Nam)
- and then Nkind (Nam) /= N_Operator_Symbol)
- or else not Is_Overloadable (Entity (Nam))
- then
- Error_Msg_N ("expect valid subprogram name in renaming", N);
- return;
- end if;
-
- -- Find the renamed entity that matches the given specification. Disable
- -- Ada_83 because there is no requirement of full conformance between
- -- renamed entity and new entity, even though the same circuit is used.
-
- -- This is a bit of a kludge, which introduces a really irregular use of
- -- Ada_Version[_Explicit]. Would be nice to find cleaner way to do this
- -- ???
-
- Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
- Ada_Version_Explicit := Ada_Version;
-
- if No (Old_S) then
- Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
-
- -- When the renamed subprogram is overloaded and used as an actual
- -- of a generic, its entity is set to the first available homonym.
- -- We must first disambiguate the name, then set the proper entity.
-
- if Is_Actual
- and then Is_Overloaded (Nam)
- then
- Set_Entity (Nam, Old_S);
- end if;
- end if;
-
- -- Most common case: subprogram renames subprogram. No body is generated
- -- in this case, so we must indicate the declaration is complete as is.
- -- and inherit various attributes of the renamed subprogram.
-
- if No (Rename_Spec) then
- Set_Has_Completion (New_S);
- Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
- Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
- Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
-
- -- Ada 2005 (AI-423): Check the consistency of null exclusions
- -- between a subprogram and its correct renaming.
-
- -- Note: the Any_Id check is a guard that prevents compiler crashes
- -- when performing a null exclusion check between a renaming and a
- -- renamed subprogram that has been found to be illegal.
-
- if Ada_Version >= Ada_05
- and then Entity (Nam) /= Any_Id
- then
- Check_Null_Exclusion
- (Ren => New_S,
- Sub => Entity (Nam));
- end if;
-
- -- Enforce the Ada 2005 rule that the renamed entity cannot require
- -- overriding. The flag Requires_Overriding is set very selectively
- -- and misses some other illegal cases. The additional conditions
- -- checked below are sufficient but not necessary ???
-
- -- The rule does not apply to the renaming generated for an actual
- -- subprogram in an instance.
-
- if Is_Actual then
- null;
-
- -- Guard against previous errors, and omit renamings of predefined
- -- operators.
-
- elsif Ekind (Old_S) /= E_Function
- and then Ekind (Old_S) /= E_Procedure
- then
- null;
-
- elsif Requires_Overriding (Old_S)
- or else
- (Is_Abstract_Subprogram (Old_S)
- and then Present (Find_Dispatching_Type (Old_S))
- and then
- not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
- then
- Error_Msg_N
- ("renamed entity cannot be "
- & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
- end if;
- end if;
-
- if Old_S /= Any_Id then
- if Is_Actual
- and then From_Default (N)
- then
- -- This is an implicit reference to the default actual
-
- Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
- else
- Generate_Reference (Old_S, Nam);
- end if;
-
- -- For a renaming-as-body, require subtype conformance, but if the
- -- declaration being completed has not been frozen, then inherit the
- -- convention of the renamed subprogram prior to checking conformance
- -- (unless the renaming has an explicit convention established; the
- -- rule stated in the RM doesn't seem to address this ???).
-
- if Present (Rename_Spec) then
- Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
- Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
-
- if not Is_Frozen (Rename_Spec) then
- if not Has_Convention_Pragma (Rename_Spec) then
- Set_Convention (New_S, Convention (Old_S));
- end if;
-
- if Ekind (Old_S) /= E_Operator then
- Check_Mode_Conformant (New_S, Old_S, Spec);
- end if;
-
- if Original_Subprogram (Old_S) = Rename_Spec then
- Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
- end if;
- else
- Check_Subtype_Conformant (New_S, Old_S, Spec);
- end if;
-
- Check_Frozen_Renaming (N, Rename_Spec);
-
- -- Check explicitly that renamed entity is not intrinsic, because
- -- in a generic the renamed body is not built. In this case,
- -- the renaming_as_body is a completion.
-
- if Inside_A_Generic then
- if Is_Frozen (Rename_Spec)
- and then Is_Intrinsic_Subprogram (Old_S)
- then
- Error_Msg_N
- ("subprogram in renaming_as_body cannot be intrinsic",
- Name (N));
- end if;
-
- Set_Has_Completion (Rename_Spec);
- end if;
-
- elsif Ekind (Old_S) /= E_Operator then
- Check_Mode_Conformant (New_S, Old_S);
-
- if Is_Actual
- and then Error_Posted (New_S)
- then
- Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
- end if;
- end if;
-
- if No (Rename_Spec) then
-
- -- The parameter profile of the new entity is that of the renamed
- -- entity: the subtypes given in the specification are irrelevant.
-
- Inherit_Renamed_Profile (New_S, Old_S);
-
- -- A call to the subprogram is transformed into a call to the
- -- renamed entity. This is transitive if the renamed entity is
- -- itself a renaming.
-
- if Present (Alias (Old_S)) then
- Set_Alias (New_S, Alias (Old_S));
- else
- Set_Alias (New_S, Old_S);
- end if;
-
- -- Note that we do not set Is_Intrinsic_Subprogram if we have a
- -- renaming as body, since the entity in this case is not an
- -- intrinsic (it calls an intrinsic, but we have a real body for
- -- this call, and it is in this body that the required intrinsic
- -- processing will take place).
-
- -- Also, if this is a renaming of inequality, the renamed operator
- -- is intrinsic, but what matters is the corresponding equality
- -- operator, which may be user-defined.
-
- Set_Is_Intrinsic_Subprogram
- (New_S,
- Is_Intrinsic_Subprogram (Old_S)
- and then
- (Chars (Old_S) /= Name_Op_Ne
- or else Ekind (Old_S) = E_Operator
- or else
- Is_Intrinsic_Subprogram
- (Corresponding_Equality (Old_S))));
-
- if Ekind (Alias (New_S)) = E_Operator then
- Set_Has_Delayed_Freeze (New_S, False);
- end if;
-
- -- If the renaming corresponds to an association for an abstract
- -- formal subprogram, then various attributes must be set to
- -- indicate that the renaming is an abstract dispatching operation
- -- with a controlling type.
-
- if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
-
- -- Mark the renaming as abstract here, so Find_Dispatching_Type
- -- see it as corresponding to a generic association for a
- -- formal abstract subprogram
-
- Set_Is_Abstract_Subprogram (New_S);
-
- declare
- New_S_Ctrl_Type : constant Entity_Id :=
- Find_Dispatching_Type (New_S);
- Old_S_Ctrl_Type : constant Entity_Id :=
- Find_Dispatching_Type (Old_S);
-
- begin
- if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
- Error_Msg_NE
- ("actual must be dispatching subprogram for type&",
- Nam, New_S_Ctrl_Type);
-
- else
- Set_Is_Dispatching_Operation (New_S);
- Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
-
- -- If the actual in the formal subprogram is itself a
- -- formal abstract subprogram association, there's no
- -- dispatch table component or position to inherit.
-
- if Present (DTC_Entity (Old_S)) then
- Set_DTC_Entity (New_S, DTC_Entity (Old_S));
- Set_DT_Position (New_S, DT_Position (Old_S));
- end if;
- end if;
- end;
- end if;
- end if;
-
- if not Is_Actual
- and then (Old_S = New_S
- or else (Nkind (Nam) /= N_Expanded_Name
- and then Chars (Old_S) = Chars (New_S)))
- then
- Error_Msg_N ("subprogram cannot rename itself", N);
- end if;
-
- Set_Convention (New_S, Convention (Old_S));
-
- if Is_Abstract_Subprogram (Old_S) then
- if Present (Rename_Spec) then
- Error_Msg_N
- ("a renaming-as-body cannot rename an abstract subprogram",
- N);
- Set_Has_Completion (Rename_Spec);
- else
- Set_Is_Abstract_Subprogram (New_S);
- end if;
- end if;
-
- Check_Library_Unit_Renaming (N, Old_S);
-
- -- Pathological case: procedure renames entry in the scope of its
- -- task. Entry is given by simple name, but body must be built for
- -- procedure. Of course if called it will deadlock.
-
- if Ekind (Old_S) = E_Entry then
- Set_Has_Completion (New_S, False);
- Set_Alias (New_S, Empty);
- end if;
-
- if Is_Actual then
- Freeze_Before (N, Old_S);
- Set_Has_Delayed_Freeze (New_S, False);
- Freeze_Before (N, New_S);
-
- -- An abstract subprogram is only allowed as an actual in the case
- -- where the formal subprogram is also abstract.
-
- if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
- and then Is_Abstract_Subprogram (Old_S)
- and then not Is_Abstract_Subprogram (Formal_Spec)
- then
- Error_Msg_N
- ("abstract subprogram not allowed as generic actual", Nam);
- end if;
- end if;
-
- else
- -- A common error is to assume that implicit operators for types are
- -- defined in Standard, or in the scope of a subtype. In those cases
- -- where the renamed entity is given with an expanded name, it is
- -- worth mentioning that operators for the type are not declared in
- -- the scope given by the prefix.
-
- if Nkind (Nam) = N_Expanded_Name
- and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
- and then Scope (Entity (Nam)) = Standard_Standard
- then
- declare
- T : constant Entity_Id :=
- Base_Type (Etype (First_Formal (New_S)));
- begin
- Error_Msg_Node_2 := Prefix (Nam);
- Error_Msg_NE
- ("operator for type& is not declared in&", Prefix (Nam), T);
- end;
-
- else
- Error_Msg_NE
- ("no visible subprogram matches the specification for&",
- Spec, New_S);
- end if;
-
- if Present (Candidate_Renaming) then
- declare
- F1 : Entity_Id;
- F2 : Entity_Id;
-
- begin
- F1 := First_Formal (Candidate_Renaming);
- F2 := First_Formal (New_S);
-
- while Present (F1) and then Present (F2) loop
- Next_Formal (F1);
- Next_Formal (F2);
- end loop;
-
- if Present (F1) and then Present (Default_Value (F1)) then
- if Present (Next_Formal (F1)) then
- Error_Msg_NE
- ("\missing specification for &" &
- " and other formals with defaults", Spec, F1);
- else
- Error_Msg_NE
- ("\missing specification for &", Spec, F1);
- end if;
- end if;
- end;
- end if;
- end if;
-
- -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
- -- controlling access parameters are known non-null for the renamed
- -- subprogram. Test also applies to a subprogram instantiation that
- -- is dispatching. Test is skipped if some previous error was detected
- -- that set Old_S to Any_Id.
-
- if Ada_Version >= Ada_05
- and then Old_S /= Any_Id
- and then not Is_Dispatching_Operation (Old_S)
- and then Is_Dispatching_Operation (New_S)
- then
- declare
- Old_F : Entity_Id;
- New_F : Entity_Id;
-
- begin
- Old_F := First_Formal (Old_S);
- New_F := First_Formal (New_S);
- while Present (Old_F) loop
- if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
- and then Is_Controlling_Formal (New_F)
- and then not Can_Never_Be_Null (Old_F)
- then
- Error_Msg_N ("access parameter is controlling,", New_F);
- Error_Msg_NE
- ("\corresponding parameter of& "
- & "must be explicitly null excluding", New_F, Old_S);
- end if;
-
- Next_Formal (Old_F);
- Next_Formal (New_F);
- end loop;
- end;
- end if;
-
- -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
-
- if Comes_From_Source (N)
- and then Present (Old_S)
- and then Nkind (Old_S) = N_Defining_Operator_Symbol
- and then Nkind (New_S) = N_Defining_Operator_Symbol
- and then Chars (Old_S) /= Chars (New_S)
- then
- Error_Msg_NE
- ("?& is being renamed as a different operator",
- New_S, Old_S);
- end if;
-
- -- Another warning or some utility: if the new subprogram as the same
- -- name as the old one, the old one is not hidden by an outer homograph,
- -- the new one is not a public symbol, and the old one is otherwise
- -- directly visible, the renaming is superfluous.
-
- if Chars (Old_S) = Chars (New_S)
- and then Comes_From_Source (N)
- and then Scope (Old_S) /= Standard_Standard
- and then Warn_On_Redundant_Constructs
- and then
- (Is_Immediately_Visible (Old_S)
- or else Is_Potentially_Use_Visible (Old_S))
- and then Is_Overloadable (Current_Scope)
- and then Chars (Current_Scope) /= Chars (Old_S)
- then
- Error_Msg_N
- ("?redundant renaming, entity is directly visible", Name (N));
- end if;
-
- Ada_Version := Save_AV;
- Ada_Version_Explicit := Save_AV_Exp;
- end Analyze_Subprogram_Renaming;
-
- -------------------------
- -- Analyze_Use_Package --
- -------------------------
-
- -- Resolve the package names in the use clause, and make all the visible
- -- entities defined in the package potentially use-visible. If the package
- -- is already in use from a previous use clause, its visible entities are
- -- already use-visible. In that case, mark the occurrence as a redundant
- -- use. If the package is an open scope, i.e. if the use clause occurs
- -- within the package itself, ignore it.
-
- procedure Analyze_Use_Package (N : Node_Id) is
- Pack_Name : Node_Id;
- Pack : Entity_Id;
-
- -- Start of processing for Analyze_Use_Package
-
- begin
- Set_Hidden_By_Use_Clause (N, No_Elist);
-
- -- Use clause is not allowed in a spec of a predefined package
- -- declaration except that packages whose file name starts a-n are OK
- -- (these are children of Ada.Numerics, and such packages are never
- -- loaded by Rtsfind).
-
- if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
- and then Name_Buffer (1 .. 3) /= "a-n"
- and then
- Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
- then
- Error_Msg_N ("use clause not allowed in predefined spec", N);
- end if;
-
- -- Chain clause to list of use clauses in current scope
-
- if Nkind (Parent (N)) /= N_Compilation_Unit then
- Chain_Use_Clause (N);
- end if;
-
- -- Loop through package names to identify referenced packages
-
- Pack_Name := First (Names (N));
- while Present (Pack_Name) loop
- Analyze (Pack_Name);
-
- if Nkind (Parent (N)) = N_Compilation_Unit
- and then Nkind (Pack_Name) = N_Expanded_Name
- then
- declare
- Pref : Node_Id;
-
- begin
- Pref := Prefix (Pack_Name);
- while Nkind (Pref) = N_Expanded_Name loop
- Pref := Prefix (Pref);
- end loop;
-
- if Entity (Pref) = Standard_Standard then
- Error_Msg_N
- ("predefined package Standard cannot appear"
- & " in a context clause", Pref);
- end if;
- end;
- end if;
-
- Next (Pack_Name);
- end loop;
-
- -- Loop through package names to mark all entities as potentially
- -- use visible.
-
- Pack_Name := First (Names (N));
- while Present (Pack_Name) loop
- if Is_Entity_Name (Pack_Name) then
- Pack := Entity (Pack_Name);
-
- if Ekind (Pack) /= E_Package
- and then Etype (Pack) /= Any_Type
- then
- if Ekind (Pack) = E_Generic_Package then
- Error_Msg_N
- ("a generic package is not allowed in a use clause",
- Pack_Name);
- else
- Error_Msg_N ("& is not a usable package", Pack_Name);
- end if;
-
- else
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Check_In_Previous_With_Clause (N, Pack_Name);
- end if;
-
- if Applicable_Use (Pack_Name) then
- Use_One_Package (Pack, N);
- end if;
- end if;
-
- -- Report error because name denotes something other than a package
-
- else
- Error_Msg_N ("& is not a package", Pack_Name);
- end if;
-
- Next (Pack_Name);
- end loop;
- end Analyze_Use_Package;
-
- ----------------------
- -- Analyze_Use_Type --
- ----------------------
-
- procedure Analyze_Use_Type (N : Node_Id) is
- E : Entity_Id;
- Id : Entity_Id;
-
- begin
- Set_Hidden_By_Use_Clause (N, No_Elist);
-
- -- Chain clause to list of use clauses in current scope
-
- if Nkind (Parent (N)) /= N_Compilation_Unit then
- Chain_Use_Clause (N);
- end if;
-
- Id := First (Subtype_Marks (N));
- while Present (Id) loop
- Find_Type (Id);
- E := Entity (Id);
-
- if E /= Any_Type then
- Use_One_Type (Id);
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- if Nkind (Id) = N_Identifier then
- Error_Msg_N ("type is not directly visible", Id);
-
- elsif Is_Child_Unit (Scope (E))
- and then Scope (E) /= System_Aux_Id
- then
- Check_In_Previous_With_Clause (N, Prefix (Id));
- end if;
- end if;
- end if;
-
- Next (Id);
- end loop;
- end Analyze_Use_Type;
-
- --------------------
- -- Applicable_Use --
- --------------------
-
- function Applicable_Use (Pack_Name : Node_Id) return Boolean is
- Pack : constant Entity_Id := Entity (Pack_Name);
-
- begin
- if In_Open_Scopes (Pack) then
- if Warn_On_Redundant_Constructs
- and then Pack = Current_Scope
- then
- Error_Msg_NE
- ("& is already use-visible within itself?", Pack_Name, Pack);
- end if;
-
- return False;
-
- elsif In_Use (Pack) then
- Note_Redundant_Use (Pack_Name);
- return False;
-
- elsif Present (Renamed_Object (Pack))
- and then In_Use (Renamed_Object (Pack))
- then
- Note_Redundant_Use (Pack_Name);
- return False;
-
- else
- return True;
- end if;
- end Applicable_Use;
-
- ------------------------
- -- Attribute_Renaming --
- ------------------------
-
- procedure Attribute_Renaming (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Nam : constant Node_Id := Name (N);
- Spec : constant Node_Id := Specification (N);
- New_S : constant Entity_Id := Defining_Unit_Name (Spec);
- Aname : constant Name_Id := Attribute_Name (Nam);
-
- Form_Num : Nat := 0;
- Expr_List : List_Id := No_List;
-
- Attr_Node : Node_Id;
- Body_Node : Node_Id;
- Param_Spec : Node_Id;
-
- begin
- Generate_Definition (New_S);
-
- -- This procedure is called in the context of subprogram renaming,
- -- and thus the attribute must be one that is a subprogram. All of
- -- those have at least one formal parameter, with the singular
- -- exception of AST_Entry (which is a real oddity, it is odd that
- -- this can be renamed at all!)
-
- if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
- if Aname /= Name_AST_Entry then
- Error_Msg_N
- ("subprogram renaming an attribute must have formals", N);
- return;
- end if;
-
- else
- Param_Spec := First (Parameter_Specifications (Spec));
- while Present (Param_Spec) loop
- Form_Num := Form_Num + 1;
-
- if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
- Find_Type (Parameter_Type (Param_Spec));
-
- -- The profile of the new entity denotes the base type (s) of
- -- the types given in the specification. For access parameters
- -- there are no subtypes involved.
-
- Rewrite (Parameter_Type (Param_Spec),
- New_Reference_To
- (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
- end if;
-
- if No (Expr_List) then
- Expr_List := New_List;
- end if;
-
- Append_To (Expr_List,
- Make_Identifier (Loc,
- Chars => Chars (Defining_Identifier (Param_Spec))));
-
- -- The expressions in the attribute reference are not freeze
- -- points. Neither is the attribute as a whole, see below.
-
- Set_Must_Not_Freeze (Last (Expr_List));
- Next (Param_Spec);
- end loop;
- end if;
-
- -- Immediate error if too many formals. Other mismatches in numbers
- -- of number of types of parameters are detected when we analyze the
- -- body of the subprogram that we construct.
-
- if Form_Num > 2 then
- Error_Msg_N ("too many formals for attribute", N);
-
- -- Error if the attribute reference has expressions that look
- -- like formal parameters.
-
- elsif Present (Expressions (Nam)) then
- Error_Msg_N ("illegal expressions in attribute reference", Nam);
-
- elsif
- Aname = Name_Compose or else
- Aname = Name_Exponent or else
- Aname = Name_Leading_Part or else
- Aname = Name_Pos or else
- Aname = Name_Round or else
- Aname = Name_Scaling or else
- Aname = Name_Val
- then
- if Nkind (N) = N_Subprogram_Renaming_Declaration
- and then Present (Corresponding_Formal_Spec (N))
- then
- Error_Msg_N
- ("generic actual cannot be attribute involving universal type",
- Nam);
- else
- Error_Msg_N
- ("attribute involving a universal type cannot be renamed",
- Nam);
- end if;
- end if;
-
- -- AST_Entry is an odd case. It doesn't really make much sense to
- -- allow it to be renamed, but that's the DEC rule, so we have to
- -- do it right. The point is that the AST_Entry call should be made
- -- now, and what the function will return is the returned value.
-
- -- Note that there is no Expr_List in this case anyway
-
- if Aname = Name_AST_Entry then
- declare
- Ent : Entity_Id;
- Decl : Node_Id;
-
- begin
- Ent := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
-
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Ent,
- Object_Definition =>
- New_Occurrence_Of (RTE (RE_AST_Handler), Loc),
- Expression => Nam,
- Constant_Present => True);
-
- Set_Assignment_OK (Decl, True);
- Insert_Action (N, Decl);
- Attr_Node := Make_Identifier (Loc, Chars (Ent));
- end;
-
- -- For all other attributes, we rewrite the attribute node to have
- -- a list of expressions corresponding to the subprogram formals.
- -- A renaming declaration is not a freeze point, and the analysis of
- -- the attribute reference should not freeze the type of the prefix.
-
- else
- Attr_Node :=
- Make_Attribute_Reference (Loc,
- Prefix => Prefix (Nam),
- Attribute_Name => Aname,
- Expressions => Expr_List);
-
- Set_Must_Not_Freeze (Attr_Node);
- Set_Must_Not_Freeze (Prefix (Nam));
- end if;
-
- -- Case of renaming a function
-
- if Nkind (Spec) = N_Function_Specification then
- if Is_Procedure_Attribute_Name (Aname) then
- Error_Msg_N ("attribute can only be renamed as procedure", Nam);
- return;
- end if;
-
- Find_Type (Result_Definition (Spec));
- Rewrite (Result_Definition (Spec),
- New_Reference_To (
- Base_Type (Entity (Result_Definition (Spec))), Loc));
-
- Body_Node :=
- Make_Subprogram_Body (Loc,
- Specification => Spec,
- Declarations => New_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => Attr_Node))));
-
- -- Case of renaming a procedure
-
- else
- if not Is_Procedure_Attribute_Name (Aname) then
- Error_Msg_N ("attribute can only be renamed as function", Nam);
- return;
- end if;
-
- Body_Node :=
- Make_Subprogram_Body (Loc,
- Specification => Spec,
- Declarations => New_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (Attr_Node)));
- end if;
-
- -- In case of tagged types we add the body of the generated function to
- -- the freezing actions of the type (because in the general case such
- -- type is still not frozen). We exclude from this processing generic
- -- formal subprograms found in instantiations and AST_Entry renamings.
-
- if not Present (Corresponding_Formal_Spec (N))
- and then Etype (Nam) /= RTE (RE_AST_Handler)
- then
- declare
- P : constant Entity_Id := Prefix (Nam);
-
- begin
- Find_Type (P);
-
- if Is_Tagged_Type (Etype (P)) then
- Ensure_Freeze_Node (Etype (P));
- Append_Freeze_Action (Etype (P), Body_Node);
- else
- Rewrite (N, Body_Node);
- Analyze (N);
- Set_Etype (New_S, Base_Type (Etype (New_S)));
- end if;
- end;
-
- -- Generic formal subprograms or AST_Handler renaming
-
- else
- Rewrite (N, Body_Node);
- Analyze (N);
- Set_Etype (New_S, Base_Type (Etype (New_S)));
- end if;
-
- if Is_Compilation_Unit (New_S) then
- Error_Msg_N
- ("a library unit can only rename another library unit", N);
- end if;
-
- -- We suppress elaboration warnings for the resulting entity, since
- -- clearly they are not needed, and more particularly, in the case
- -- of a generic formal subprogram, the resulting entity can appear
- -- after the instantiation itself, and thus look like a bogus case
- -- of access before elaboration.
-
- Set_Suppress_Elaboration_Warnings (New_S);
-
- end Attribute_Renaming;
-
- ----------------------
- -- Chain_Use_Clause --
- ----------------------
-
- procedure Chain_Use_Clause (N : Node_Id) is
- Pack : Entity_Id;
- Level : Int := Scope_Stack.Last;
-
- begin
- if not Is_Compilation_Unit (Current_Scope)
- or else not Is_Child_Unit (Current_Scope)
- then
- null; -- Common case
-
- elsif Defining_Entity (Parent (N)) = Current_Scope then
- null; -- Common case for compilation unit
-
- else
- -- If declaration appears in some other scope, it must be in some
- -- parent unit when compiling a child.
-
- Pack := Defining_Entity (Parent (N));
- if not In_Open_Scopes (Pack) then
- null; -- default as well
-
- else
- -- Find entry for parent unit in scope stack
-
- while Scope_Stack.Table (Level).Entity /= Pack loop
- Level := Level - 1;
- end loop;
- end if;
- end if;
-
- Set_Next_Use_Clause (N,
- Scope_Stack.Table (Level).First_Use_Clause);
- Scope_Stack.Table (Level).First_Use_Clause := N;
- end Chain_Use_Clause;
-
- ---------------------------
- -- Check_Frozen_Renaming --
- ---------------------------
-
- procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
- B_Node : Node_Id;
- Old_S : Entity_Id;
-
- begin
- if Is_Frozen (Subp)
- and then not Has_Completion (Subp)
- then
- B_Node :=
- Build_Renamed_Body
- (Parent (Declaration_Node (Subp)), Defining_Entity (N));
-
- if Is_Entity_Name (Name (N)) then
- Old_S := Entity (Name (N));
-
- if not Is_Frozen (Old_S)
- and then Operating_Mode /= Check_Semantics
- then
- Append_Freeze_Action (Old_S, B_Node);
- else
- Insert_After (N, B_Node);
- Analyze (B_Node);
- end if;
-
- if Is_Intrinsic_Subprogram (Old_S)
- and then not In_Instance
- then
- Error_Msg_N
- ("subprogram used in renaming_as_body cannot be intrinsic",
- Name (N));
- end if;
-
- else
- Insert_After (N, B_Node);
- Analyze (B_Node);
- end if;
- end if;
- end Check_Frozen_Renaming;
-
- -----------------------------------
- -- Check_In_Previous_With_Clause --
- -----------------------------------
-
- procedure Check_In_Previous_With_Clause
- (N : Node_Id;
- Nam : Entity_Id)
- is
- Pack : constant Entity_Id := Entity (Original_Node (Nam));
- Item : Node_Id;
- Par : Node_Id;
-
- begin
- Item := First (Context_Items (Parent (N)));
-
- while Present (Item)
- and then Item /= N
- loop
- if Nkind (Item) = N_With_Clause
-
- -- Protect the frontend against previous critical errors
-
- and then Nkind (Name (Item)) /= N_Selected_Component
- and then Entity (Name (Item)) = Pack
- then
- Par := Nam;
-
- -- Find root library unit in with_clause
-
- while Nkind (Par) = N_Expanded_Name loop
- Par := Prefix (Par);
- end loop;
-
- if Is_Child_Unit (Entity (Original_Node (Par))) then
- Error_Msg_NE
- ("& is not directly visible", Par, Entity (Par));
- else
- return;
- end if;
- end if;
-
- Next (Item);
- end loop;
-
- -- On exit, package is not mentioned in a previous with_clause.
- -- Check if its prefix is.
-
- if Nkind (Nam) = N_Expanded_Name then
- Check_In_Previous_With_Clause (N, Prefix (Nam));
-
- elsif Pack /= Any_Id then
- Error_Msg_NE ("& is not visible", Nam, Pack);
- end if;
- end Check_In_Previous_With_Clause;
-
- ---------------------------------
- -- Check_Library_Unit_Renaming --
- ---------------------------------
-
- procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
- New_E : Entity_Id;
-
- begin
- if Nkind (Parent (N)) /= N_Compilation_Unit then
- return;
-
- -- Check for library unit. Note that we used to check for the scope
- -- being Standard here, but that was wrong for Standard itself.
-
- elsif not Is_Compilation_Unit (Old_E)
- and then not Is_Child_Unit (Old_E)
- then
- Error_Msg_N ("renamed unit must be a library unit", Name (N));
-
- -- Entities defined in Standard (operators and boolean literals) cannot
- -- be renamed as library units.
-
- elsif Scope (Old_E) = Standard_Standard
- and then Sloc (Old_E) = Standard_Location
- then
- Error_Msg_N ("renamed unit must be a library unit", Name (N));
-
- elsif Present (Parent_Spec (N))
- and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
- and then not Is_Child_Unit (Old_E)
- then
- Error_Msg_N
- ("renamed unit must be a child unit of generic parent", Name (N));
-
- elsif Nkind (N) in N_Generic_Renaming_Declaration
- and then Nkind (Name (N)) = N_Expanded_Name
- and then Is_Generic_Instance (Entity (Prefix (Name (N))))
- and then Is_Generic_Unit (Old_E)
- then
- Error_Msg_N
- ("renamed generic unit must be a library unit", Name (N));
-
- elsif Is_Package_Or_Generic_Package (Old_E) then
-
- -- Inherit categorization flags
-
- New_E := Defining_Entity (N);
- Set_Is_Pure (New_E, Is_Pure (Old_E));
- Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
- Set_Is_Remote_Call_Interface (New_E,
- Is_Remote_Call_Interface (Old_E));
- Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
- Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
- end if;
- end Check_Library_Unit_Renaming;
-
- ---------------
- -- End_Scope --
- ---------------
-
- procedure End_Scope is
- Id : Entity_Id;
- Prev : Entity_Id;
- Outer : Entity_Id;
-
- begin
- Id := First_Entity (Current_Scope);
- while Present (Id) loop
- -- An entity in the current scope is not necessarily the first one
- -- on its homonym chain. Find its predecessor if any,
- -- If it is an internal entity, it will not be in the visibility
- -- chain altogether, and there is nothing to unchain.
-
- if Id /= Current_Entity (Id) then
- Prev := Current_Entity (Id);
- while Present (Prev)
- and then Present (Homonym (Prev))
- and then Homonym (Prev) /= Id
- loop
- Prev := Homonym (Prev);
- end loop;
-
- -- Skip to end of loop if Id is not in the visibility chain
-
- if No (Prev) or else Homonym (Prev) /= Id then
- goto Next_Ent;
- end if;
-
- else
- Prev := Empty;
- end if;
-
- Set_Is_Immediately_Visible (Id, False);
-
- Outer := Homonym (Id);
- while Present (Outer) and then Scope (Outer) = Current_Scope loop
- Outer := Homonym (Outer);
- end loop;
-
- -- Reset homonym link of other entities, but do not modify link
- -- between entities in current scope, so that the back-end can have
- -- a proper count of local overloadings.
-
- if No (Prev) then
- Set_Name_Entity_Id (Chars (Id), Outer);
-
- elsif Scope (Prev) /= Scope (Id) then
- Set_Homonym (Prev, Outer);
- end if;
-
- <<Next_Ent>>
- Next_Entity (Id);
- end loop;
-
- -- If the scope generated freeze actions, place them before the
- -- current declaration and analyze them. Type declarations and
- -- the bodies of initialization procedures can generate such nodes.
- -- We follow the parent chain until we reach a list node, which is
- -- the enclosing list of declarations. If the list appears within
- -- a protected definition, move freeze nodes outside the protected
- -- type altogether.
-
- if Present
- (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
- then
- declare
- Decl : Node_Id;
- L : constant List_Id := Scope_Stack.Table
- (Scope_Stack.Last).Pending_Freeze_Actions;
-
- begin
- if Is_Itype (Current_Scope) then
- Decl := Associated_Node_For_Itype (Current_Scope);
- else
- Decl := Parent (Current_Scope);
- end if;
-
- Pop_Scope;
-
- while not (Is_List_Member (Decl))
- or else Nkind_In (Parent (Decl), N_Protected_Definition,
- N_Task_Definition)
- loop
- Decl := Parent (Decl);
- end loop;
-
- Insert_List_Before_And_Analyze (Decl, L);
- end;
-
- else
- Pop_Scope;
- end if;
-
- end End_Scope;
-
- ---------------------
- -- End_Use_Clauses --
- ---------------------
-
- procedure End_Use_Clauses (Clause : Node_Id) is
- U : Node_Id;
-
- begin
- -- Remove Use_Type clauses first, because they affect the
- -- visibility of operators in subsequent used packages.
-
- U := Clause;
- while Present (U) loop
- if Nkind (U) = N_Use_Type_Clause then
- End_Use_Type (U);
- end if;
-
- Next_Use_Clause (U);
- end loop;
-
- U := Clause;
- while Present (U) loop
- if Nkind (U) = N_Use_Package_Clause then
- End_Use_Package (U);
- end if;
-
- Next_Use_Clause (U);
- end loop;
- end End_Use_Clauses;
-
- ---------------------
- -- End_Use_Package --
- ---------------------
-
- procedure End_Use_Package (N : Node_Id) is
- Pack_Name : Node_Id;
- Pack : Entity_Id;
- Id : Entity_Id;
- Elmt : Elmt_Id;
-
- function Is_Primitive_Operator
- (Op : Entity_Id;
- F : Entity_Id) return Boolean;
- -- Check whether Op is a primitive operator of a use-visible type
-
- ---------------------------
- -- Is_Primitive_Operator --
- ---------------------------
-
- function Is_Primitive_Operator
- (Op : Entity_Id;
- F : Entity_Id) return Boolean
- is
- T : constant Entity_Id := Etype (F);
- begin
- return In_Use (T)
- and then Scope (T) = Scope (Op);
- end Is_Primitive_Operator;
-
- -- Start of processing for End_Use_Package
-
- begin
- Pack_Name := First (Names (N));
- while Present (Pack_Name) loop
-
- -- Test that Pack_Name actually denotes a package before processing
-
- if Is_Entity_Name (Pack_Name)
- and then Ekind (Entity (Pack_Name)) = E_Package
- then
- Pack := Entity (Pack_Name);
-
- if In_Open_Scopes (Pack) then
- null;
-
- elsif not Redundant_Use (Pack_Name) then
- Set_In_Use (Pack, False);
- Set_Current_Use_Clause (Pack, Empty);
-
- Id := First_Entity (Pack);
- while Present (Id) loop
-
- -- Preserve use-visibility of operators that are primitive
- -- operators of a type that is use-visible through an active
- -- use_type clause.
-
- if Nkind (Id) = N_Defining_Operator_Symbol
- and then
- (Is_Primitive_Operator (Id, First_Formal (Id))
- or else
- (Present (Next_Formal (First_Formal (Id)))
- and then
- Is_Primitive_Operator
- (Id, Next_Formal (First_Formal (Id)))))
- then
- null;
-
- else
- Set_Is_Potentially_Use_Visible (Id, False);
- end if;
-
- if Is_Private_Type (Id)
- and then Present (Full_View (Id))
- then
- Set_Is_Potentially_Use_Visible (Full_View (Id), False);
- end if;
-
- Next_Entity (Id);
- end loop;
-
- if Present (Renamed_Object (Pack)) then
- Set_In_Use (Renamed_Object (Pack), False);
- Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
- end if;
-
- if Chars (Pack) = Name_System
- and then Scope (Pack) = Standard_Standard
- and then Present_System_Aux
- then
- Id := First_Entity (System_Aux_Id);
- while Present (Id) loop
- Set_Is_Potentially_Use_Visible (Id, False);
-
- if Is_Private_Type (Id)
- and then Present (Full_View (Id))
- then
- Set_Is_Potentially_Use_Visible (Full_View (Id), False);
- end if;
-
- Next_Entity (Id);
- end loop;
-
- Set_In_Use (System_Aux_Id, False);
- end if;
-
- else
- Set_Redundant_Use (Pack_Name, False);
- end if;
- end if;
-
- Next (Pack_Name);
- end loop;
-
- if Present (Hidden_By_Use_Clause (N)) then
- Elmt := First_Elmt (Hidden_By_Use_Clause (N));
- while Present (Elmt) loop
- Set_Is_Immediately_Visible (Node (Elmt));
- Next_Elmt (Elmt);
- end loop;
-
- Set_Hidden_By_Use_Clause (N, No_Elist);
- end if;
- end End_Use_Package;
-
- ------------------
- -- End_Use_Type --
- ------------------
-
- procedure End_Use_Type (N : Node_Id) is
- Id : Entity_Id;
- Op_List : Elist_Id;
- Elmt : Elmt_Id;
- T : Entity_Id;
-
- begin
- Id := First (Subtype_Marks (N));
- while Present (Id) loop
-
- -- A call to rtsfind may occur while analyzing a use_type clause,
- -- in which case the type marks are not resolved yet, and there is
- -- nothing to remove.
-
- if not Is_Entity_Name (Id)
- or else No (Entity (Id))
- then
- goto Continue;
- end if;
-
- T := Entity (Id);
-
- if T = Any_Type
- or else From_With_Type (T)
- then
- null;
-
- -- Note that the use_Type clause may mention a subtype of the type
- -- whose primitive operations have been made visible. Here as
- -- elsewhere, it is the base type that matters for visibility.
-
- elsif In_Open_Scopes (Scope (Base_Type (T))) then
- null;
-
- elsif not Redundant_Use (Id) then
- Set_In_Use (T, False);
- Set_In_Use (Base_Type (T), False);
- Set_Current_Use_Clause (T, Empty);
- Set_Current_Use_Clause (Base_Type (T), Empty);
- Op_List := Collect_Primitive_Operations (T);
-
- Elmt := First_Elmt (Op_List);
- while Present (Elmt) loop
- if Nkind (Node (Elmt)) = N_Defining_Operator_Symbol then
- Set_Is_Potentially_Use_Visible (Node (Elmt), False);
- end if;
-
- Next_Elmt (Elmt);
- end loop;
- end if;
-
- <<Continue>>
- Next (Id);
- end loop;
- end End_Use_Type;
-
- ----------------------
- -- Find_Direct_Name --
- ----------------------
-
- procedure Find_Direct_Name (N : Node_Id) is
- E : Entity_Id;
- E2 : Entity_Id;
- Msg : Boolean;
-
- Inst : Entity_Id := Empty;
- -- Enclosing instance, if any
-
- Homonyms : Entity_Id;
- -- Saves start of homonym chain
-
- Nvis_Entity : Boolean;
- -- Set True to indicate that at there is at least one entity on the
- -- homonym chain which, while not visible, is visible enough from the
- -- user point of view to warrant an error message of "not visible"
- -- rather than undefined.
-
- Nvis_Is_Private_Subprg : Boolean := False;
- -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
- -- effect concerning library subprograms has been detected. Used to
- -- generate the precise error message.
-
- function From_Actual_Package (E : Entity_Id) return Boolean;
- -- Returns true if the entity is declared in a package that is
- -- an actual for a formal package of the current instance. Such an
- -- entity requires special handling because it may be use-visible
- -- but hides directly visible entities defined outside the instance.
-
- function Is_Actual_Parameter return Boolean;
- -- This function checks if the node N is an identifier that is an actual
- -- parameter of a procedure call. If so it returns True, otherwise it
- -- return False. The reason for this check is that at this stage we do
- -- not know what procedure is being called if the procedure might be
- -- overloaded, so it is premature to go setting referenced flags or
- -- making calls to Generate_Reference. We will wait till Resolve_Actuals
- -- for that processing
-
- function Known_But_Invisible (E : Entity_Id) return Boolean;
- -- This function determines whether the entity E (which is not
- -- visible) can reasonably be considered to be known to the writer
- -- of the reference. This is a heuristic test, used only for the
- -- purposes of figuring out whether we prefer to complain that an
- -- entity is undefined or invisible (and identify the declaration
- -- of the invisible entity in the latter case). The point here is
- -- that we don't want to complain that something is invisible and
- -- then point to something entirely mysterious to the writer.
-
- procedure Nvis_Messages;
- -- Called if there are no visible entries for N, but there is at least
- -- one non-directly visible, or hidden declaration. This procedure
- -- outputs an appropriate set of error messages.
-
- procedure Undefined (Nvis : Boolean);
- -- This function is called if the current node has no corresponding
- -- visible entity or entities. The value set in Msg indicates whether
- -- an error message was generated (multiple error messages for the
- -- same variable are generally suppressed, see body for details).
- -- Msg is True if an error message was generated, False if not. This
- -- value is used by the caller to determine whether or not to output
- -- additional messages where appropriate. The parameter is set False
- -- to get the message "X is undefined", and True to get the message
- -- "X is not visible".
-
- -------------------------
- -- From_Actual_Package --
- -------------------------
-
- function From_Actual_Package (E : Entity_Id) return Boolean is
- Scop : constant Entity_Id := Scope (E);
- Act : Entity_Id;
-
- begin
- if not In_Instance then
- return False;
- else
- Inst := Current_Scope;
- while Present (Inst)
- and then Ekind (Inst) /= E_Package
- and then not Is_Generic_Instance (Inst)
- loop
- Inst := Scope (Inst);
- end loop;
-
- if No (Inst) then
- return False;
- end if;
-
- Act := First_Entity (Inst);
- while Present (Act) loop
- if Ekind (Act) = E_Package then
-
- -- Check for end of actuals list
-
- if Renamed_Object (Act) = Inst then
- return False;
-
- elsif Present (Associated_Formal_Package (Act))
- and then Renamed_Object (Act) = Scop
- then
- -- Entity comes from (instance of) formal package
-
- return True;
-
- else
- Next_Entity (Act);
- end if;
-
- else
- Next_Entity (Act);
- end if;
- end loop;
-
- return False;
- end if;
- end From_Actual_Package;
-
- -------------------------
- -- Is_Actual_Parameter --
- -------------------------
-
- function Is_Actual_Parameter return Boolean is
- begin
- return
- Nkind (N) = N_Identifier
- and then
- (Nkind (Parent (N)) = N_Procedure_Call_Statement
- or else
- (Nkind (Parent (N)) = N_Parameter_Association
- and then N = Explicit_Actual_Parameter (Parent (N))
- and then Nkind (Parent (Parent (N))) =
- N_Procedure_Call_Statement));
- end Is_Actual_Parameter;
-
- -------------------------
- -- Known_But_Invisible --
- -------------------------
-
- function Known_But_Invisible (E : Entity_Id) return Boolean is
- Fname : File_Name_Type;
-
- begin
- -- Entities in Standard are always considered to be known
-
- if Sloc (E) <= Standard_Location then
- return True;
-
- -- An entity that does not come from source is always considered
- -- to be unknown, since it is an artifact of code expansion.
-
- elsif not Comes_From_Source (E) then
- return False;
-
- -- In gnat internal mode, we consider all entities known
-
- elsif GNAT_Mode then
- return True;
- end if;
-
- -- Here we have an entity that is not from package Standard, and
- -- which comes from Source. See if it comes from an internal file.
-
- Fname := Unit_File_Name (Get_Source_Unit (E));
-
- -- Case of from internal file
-
- if Is_Internal_File_Name (Fname) then
-
- -- Private part entities in internal files are never considered
- -- to be known to the writer of normal application code.
-
- if Is_Hidden (E) then
- return False;
- end if;
-
- -- Entities from System packages other than System and
- -- System.Storage_Elements are not considered to be known.
- -- System.Auxxxx files are also considered known to the user.
-
- -- Should refine this at some point to generally distinguish
- -- between known and unknown internal files ???
-
- Get_Name_String (Fname);
-
- return
- Name_Len < 2
- or else
- Name_Buffer (1 .. 2) /= "s-"
- or else
- Name_Buffer (3 .. 8) = "stoele"
- or else
- Name_Buffer (3 .. 5) = "aux";
-
- -- If not an internal file, then entity is definitely known,
- -- even if it is in a private part (the message generated will
- -- note that it is in a private part)
-
- else
- return True;
- end if;
- end Known_But_Invisible;
-
- -------------------
- -- Nvis_Messages --
- -------------------
-
- procedure Nvis_Messages is
- Comp_Unit : Node_Id;
- Ent : Entity_Id;
- Hidden : Boolean := False;
- Item : Node_Id;
-
- begin
- -- Ada 2005 (AI-262): Generate a precise error concerning the
- -- Beaujolais effect that was previously detected
-
- if Nvis_Is_Private_Subprg then
-
- pragma Assert (Nkind (E2) = N_Defining_Identifier
- and then Ekind (E2) = E_Function
- and then Scope (E2) = Standard_Standard
- and then Has_Private_With (E2));
-
- -- Find the sloc corresponding to the private with'ed unit
-
- Comp_Unit := Cunit (Current_Sem_Unit);
- Error_Msg_Sloc := No_Location;
-
- Item := First (Context_Items (Comp_Unit));
- while Present (Item) loop
- if Nkind (Item) = N_With_Clause
- and then Private_Present (Item)
- and then Entity (Name (Item)) = E2
- then
- Error_Msg_Sloc := Sloc (Item);
- exit;
- end if;
-
- Next (Item);
- end loop;
-
- pragma Assert (Error_Msg_Sloc /= No_Location);
-
- Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
- return;
- end if;
-
- Undefined (Nvis => True);
-
- if Msg then
-
- -- First loop does hidden declarations
-
- Ent := Homonyms;
- while Present (Ent) loop
- if Is_Potentially_Use_Visible (Ent) then
- if not Hidden then
- Error_Msg_N ("multiple use clauses cause hiding!", N);
- Hidden := True;
- end if;
-
- Error_Msg_Sloc := Sloc (Ent);
- Error_Msg_N ("hidden declaration#!", N);
- end if;
-
- Ent := Homonym (Ent);
- end loop;
-
- -- If we found hidden declarations, then that's enough, don't
- -- bother looking for non-visible declarations as well.
-
- if Hidden then
- return;
- end if;
-
- -- Second loop does non-directly visible declarations
-
- Ent := Homonyms;
- while Present (Ent) loop
- if not Is_Potentially_Use_Visible (Ent) then
-
- -- Do not bother the user with unknown entities
-
- if not Known_But_Invisible (Ent) then
- goto Continue;
- end if;
-
- Error_Msg_Sloc := Sloc (Ent);
-
- -- Output message noting that there is a non-visible
- -- declaration, distinguishing the private part case.
-
- if Is_Hidden (Ent) then
- Error_Msg_N ("non-visible (private) declaration#!", N);
- else
- Error_Msg_N ("non-visible declaration#!", N);
-
- if Is_Compilation_Unit (Ent)
- and then
- Nkind (Parent (Parent (N))) = N_Use_Package_Clause
- then
- Error_Msg_Qual_Level := 99;
- Error_Msg_NE ("\\missing `WITH &;`", N, Ent);
- Error_Msg_Qual_Level := 0;
- end if;
- end if;
-
- -- Set entity and its containing package as referenced. We
- -- can't be sure of this, but this seems a better choice
- -- to avoid unused entity messages.
-
- if Comes_From_Source (Ent) then
- Set_Referenced (Ent);
- Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
- end if;
- end if;
-
- <<Continue>>
- Ent := Homonym (Ent);
- end loop;
- end if;
- end Nvis_Messages;
-
- ---------------
- -- Undefined --
- ---------------
-
- procedure Undefined (Nvis : Boolean) is
- Emsg : Error_Msg_Id;
-
- begin
- -- We should never find an undefined internal name. If we do, then
- -- see if we have previous errors. If so, ignore on the grounds that
- -- it is probably a cascaded message (e.g. a block label from a badly
- -- formed block). If no previous errors, then we have a real internal
- -- error of some kind so raise an exception.
-
- if Is_Internal_Name (Chars (N)) then
- if Total_Errors_Detected /= 0 then
- return;
- else
- raise Program_Error;
- end if;
- end if;
-
- -- A very specialized error check, if the undefined variable is
- -- a case tag, and the case type is an enumeration type, check
- -- for a possible misspelling, and if so, modify the identifier
-
- -- Named aggregate should also be handled similarly ???
-
- if Nkind (N) = N_Identifier
- and then Nkind (Parent (N)) = N_Case_Statement_Alternative
- then
- declare
- Case_Stm : constant Node_Id := Parent (Parent (N));
- Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
-
- Lit : Node_Id;
-
- begin
- if Is_Enumeration_Type (Case_Typ)
- and then not Is_Standard_Character_Type (Case_Typ)
- then
- Lit := First_Literal (Case_Typ);
- Get_Name_String (Chars (Lit));
-
- if Chars (Lit) /= Chars (N)
- and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit)) then
- Error_Msg_Node_2 := Lit;
- Error_Msg_N
- ("& is undefined, assume misspelling of &", N);
- Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
- return;
- end if;
-
- Lit := Next_Literal (Lit);
- end if;
- end;
- end if;
-
- -- Normal processing
-
- Set_Entity (N, Any_Id);
- Set_Etype (N, Any_Type);
-
- -- We use the table Urefs to keep track of entities for which we
- -- have issued errors for undefined references. Multiple errors
- -- for a single name are normally suppressed, however we modify
- -- the error message to alert the programmer to this effect.
-
- for J in Urefs.First .. Urefs.Last loop
- if Chars (N) = Chars (Urefs.Table (J).Node) then
- if Urefs.Table (J).Err /= No_Error_Msg
- and then Sloc (N) /= Urefs.Table (J).Loc
- then
- Error_Msg_Node_1 := Urefs.Table (J).Node;
-
- if Urefs.Table (J).Nvis then
- Change_Error_Text (Urefs.Table (J).Err,
- "& is not visible (more references follow)");
- else
- Change_Error_Text (Urefs.Table (J).Err,
- "& is undefined (more references follow)");
- end if;
-
- Urefs.Table (J).Err := No_Error_Msg;
- end if;
-
- -- Although we will set Msg False, and thus suppress the
- -- message, we also set Error_Posted True, to avoid any
- -- cascaded messages resulting from the undefined reference.
-
- Msg := False;
- Set_Error_Posted (N, True);
- return;
- end if;
- end loop;
-
- -- If entry not found, this is first undefined occurrence
-
- if Nvis then
- Error_Msg_N ("& is not visible!", N);
- Emsg := Get_Msg_Id;
-
- else
- Error_Msg_N ("& is undefined!", N);
- Emsg := Get_Msg_Id;
-
- -- A very bizarre special check, if the undefined identifier
- -- is put or put_line, then add a special error message (since
- -- this is a very common error for beginners to make).
-
- if Chars (N) = Name_Put or else Chars (N) = Name_Put_Line then
- Error_Msg_N
- ("\\possible missing `WITH Ada.Text_'I'O; " &
- "USE Ada.Text_'I'O`!", N);
-
- -- Another special check if N is the prefix of a selected
- -- component which is a known unit, add message complaining
- -- about missing with for this unit.
-
- elsif Nkind (Parent (N)) = N_Selected_Component
- and then N = Prefix (Parent (N))
- and then Is_Known_Unit (Parent (N))
- then
- Error_Msg_Node_2 := Selector_Name (Parent (N));
- Error_Msg_N ("\\missing `WITH &.&;`", Prefix (Parent (N)));
- end if;
-
- -- Now check for possible misspellings
-
- declare
- E : Entity_Id;
- Ematch : Entity_Id := Empty;
-
- Last_Name_Id : constant Name_Id :=
- Name_Id (Nat (First_Name_Id) +
- Name_Entries_Count - 1);
-
- begin
- for Nam in First_Name_Id .. Last_Name_Id loop
- E := Get_Name_Entity_Id (Nam);
-
- if Present (E)
- and then (Is_Immediately_Visible (E)
- or else
- Is_Potentially_Use_Visible (E))
- then
- if Is_Bad_Spelling_Of (Chars (N), Nam) then
- Ematch := E;
- exit;
- end if;
- end if;
- end loop;
-
- if Present (Ematch) then
- Error_Msg_NE ("\possible misspelling of&", N, Ematch);
- end if;
- end;
- end if;
-
- -- Make entry in undefined references table unless the full errors
- -- switch is set, in which case by refraining from generating the
- -- table entry, we guarantee that we get an error message for every
- -- undefined reference.
-
- if not All_Errors_Mode then
- Urefs.Append (
- (Node => N,
- Err => Emsg,
- Nvis => Nvis,
- Loc => Sloc (N)));
- end if;
-
- Msg := True;
- end Undefined;
-
- -- Start of processing for Find_Direct_Name
-
- begin
- -- If the entity pointer is already set, this is an internal node, or
- -- a node that is analyzed more than once, after a tree modification.
- -- In such a case there is no resolution to perform, just set the type.
-
- if Present (Entity (N)) then
- if Is_Type (Entity (N)) then
- Set_Etype (N, Entity (N));
-
- else
- declare
- Entyp : constant Entity_Id := Etype (Entity (N));
-
- begin
- -- One special case here. If the Etype field is already set,
- -- and references the packed array type corresponding to the
- -- etype of the referenced entity, then leave it alone. This
- -- happens for trees generated from Exp_Pakd, where expressions
- -- can be deliberately "mis-typed" to the packed array type.
-
- if Is_Array_Type (Entyp)
- and then Is_Packed (Entyp)
- and then Present (Etype (N))
- and then Etype (N) = Packed_Array_Type (Entyp)
- then
- null;
-
- -- If not that special case, then just reset the Etype
-
- else
- Set_Etype (N, Etype (Entity (N)));
- end if;
- end;
- end if;
-
- return;
- end if;
-
- -- Here if Entity pointer was not set, we need full visibility analysis
- -- First we generate debugging output if the debug E flag is set.
-
- if Debug_Flag_E then
- Write_Str ("Looking for ");
- Write_Name (Chars (N));
- Write_Eol;
- end if;
-
- Homonyms := Current_Entity (N);
- Nvis_Entity := False;
-
- E := Homonyms;
- while Present (E) loop
-
- -- If entity is immediately visible or potentially use visible, then
- -- process the entity and we are done.
-
- if Is_Immediately_Visible (E) then
- goto Immediately_Visible_Entity;
-
- elsif Is_Potentially_Use_Visible (E) then
- goto Potentially_Use_Visible_Entity;
-
- -- Note if a known but invisible entity encountered
-
- elsif Known_But_Invisible (E) then
- Nvis_Entity := True;
- end if;
-
- -- Move to next entity in chain and continue search
-
- E := Homonym (E);
- end loop;
-
- -- If no entries on homonym chain that were potentially visible,
- -- and no entities reasonably considered as non-visible, then
- -- we have a plain undefined reference, with no additional
- -- explanation required!
-
- if not Nvis_Entity then
- Undefined (Nvis => False);
-
- -- Otherwise there is at least one entry on the homonym chain that
- -- is reasonably considered as being known and non-visible.
-
- else
- Nvis_Messages;
- end if;
-
- return;
-
- -- Processing for a potentially use visible entry found. We must search
- -- the rest of the homonym chain for two reasons. First, if there is a
- -- directly visible entry, then none of the potentially use-visible
- -- entities are directly visible (RM 8.4(10)). Second, we need to check
- -- for the case of multiple potentially use-visible entries hiding one
- -- another and as a result being non-directly visible (RM 8.4(11)).
-
- <<Potentially_Use_Visible_Entity>> declare
- Only_One_Visible : Boolean := True;
- All_Overloadable : Boolean := Is_Overloadable (E);
-
- begin
- E2 := Homonym (E);
- while Present (E2) loop
- if Is_Immediately_Visible (E2) then
-
- -- If the use-visible entity comes from the actual for a
- -- formal package, it hides a directly visible entity from
- -- outside the instance.
-
- if From_Actual_Package (E)
- and then Scope_Depth (E2) < Scope_Depth (Inst)
- then
- goto Found;
- else
- E := E2;
- goto Immediately_Visible_Entity;
- end if;
-
- elsif Is_Potentially_Use_Visible (E2) then
- Only_One_Visible := False;
- All_Overloadable := All_Overloadable and Is_Overloadable (E2);
-
- -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
- -- that can occur in private_with clauses. Example:
-
- -- with A;
- -- private with B; package A is
- -- package C is function B return Integer;
- -- use A; end A;
- -- V1 : Integer := B;
- -- private function B return Integer;
- -- V2 : Integer := B;
- -- end C;
-
- -- V1 resolves to A.B, but V2 resolves to library unit B
-
- elsif Ekind (E2) = E_Function
- and then Scope (E2) = Standard_Standard
- and then Has_Private_With (E2)
- then
- Only_One_Visible := False;
- All_Overloadable := False;
- Nvis_Is_Private_Subprg := True;
- exit;
- end if;
-
- E2 := Homonym (E2);
- end loop;
-
- -- On falling through this loop, we have checked that there are no
- -- immediately visible entities. Only_One_Visible is set if exactly
- -- one potentially use visible entity exists. All_Overloadable is
- -- set if all the potentially use visible entities are overloadable.
- -- The condition for legality is that either there is one potentially
- -- use visible entity, or if there is more than one, then all of them
- -- are overloadable.
-
- if Only_One_Visible or All_Overloadable then
- goto Found;
-
- -- If there is more than one potentially use-visible entity and at
- -- least one of them non-overloadable, we have an error (RM 8.4(11).
- -- Note that E points to the first such entity on the homonym list.
- -- Special case: if one of the entities is declared in an actual
- -- package, it was visible in the generic, and takes precedence over
- -- other entities that are potentially use-visible. Same if it is
- -- declared in a local instantiation of the current instance.
-
- else
- if In_Instance then
-
- -- Find current instance
-
- Inst := Current_Scope;
- while Present (Inst)
- and then Inst /= Standard_Standard
- loop
- if Is_Generic_Instance (Inst) then
- exit;
- end if;
-
- Inst := Scope (Inst);
- end loop;
-
- E2 := E;
- while Present (E2) loop
- if From_Actual_Package (E2)
- or else
- (Is_Generic_Instance (Scope (E2))
- and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
- then
- E := E2;
- goto Found;
- end if;
-
- E2 := Homonym (E2);
- end loop;
-
- Nvis_Messages;
- return;
-
- elsif
- Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
- then
- -- A use-clause in the body of a system file creates conflict
- -- with some entity in a user scope, while rtsfind is active.
- -- Keep only the entity coming from another predefined unit.
-
- E2 := E;
- while Present (E2) loop
- if Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
- then
- E := E2;
- goto Found;
- end if;
-
- E2 := Homonym (E2);
- end loop;
-
- -- Entity must exist because predefined unit is correct
-
- raise Program_Error;
-
- else
- Nvis_Messages;
- return;
- end if;
- end if;
- end;
-
- -- Come here with E set to the first immediately visible entity on
- -- the homonym chain. This is the one we want unless there is another
- -- immediately visible entity further on in the chain for an inner
- -- scope (RM 8.3(8)).
-
- <<Immediately_Visible_Entity>> declare
- Level : Int;
- Scop : Entity_Id;
-
- begin
- -- Find scope level of initial entity. When compiling through
- -- Rtsfind, the previous context is not completely invisible, and
- -- an outer entity may appear on the chain, whose scope is below
- -- the entry for Standard that delimits the current scope stack.
- -- Indicate that the level for this spurious entry is outside of
- -- the current scope stack.
-
- Level := Scope_Stack.Last;
- loop
- Scop := Scope_Stack.Table (Level).Entity;
- exit when Scop = Scope (E);
- Level := Level - 1;
- exit when Scop = Standard_Standard;
- end loop;
-
- -- Now search remainder of homonym chain for more inner entry
- -- If the entity is Standard itself, it has no scope, and we
- -- compare it with the stack entry directly.
-
- E2 := Homonym (E);
- while Present (E2) loop
- if Is_Immediately_Visible (E2) then
-
- -- If a generic package contains a local declaration that
- -- has the same name as the generic, there may be a visibility
- -- conflict in an instance, where the local declaration must
- -- also hide the name of the corresponding package renaming.
- -- We check explicitly for a package declared by a renaming,
- -- whose renamed entity is an instance that is on the scope
- -- stack, and that contains a homonym in the same scope. Once
- -- we have found it, we know that the package renaming is not
- -- immediately visible, and that the identifier denotes the
- -- other entity (and its homonyms if overloaded).
-
- if Scope (E) = Scope (E2)
- and then Ekind (E) = E_Package
- and then Present (Renamed_Object (E))
- and then Is_Generic_Instance (Renamed_Object (E))
- and then In_Open_Scopes (Renamed_Object (E))
- and then Comes_From_Source (N)
- then
- Set_Is_Immediately_Visible (E, False);
- E := E2;
-
- else
- for J in Level + 1 .. Scope_Stack.Last loop
- if Scope_Stack.Table (J).Entity = Scope (E2)
- or else Scope_Stack.Table (J).Entity = E2
- then
- Level := J;
- E := E2;
- exit;
- end if;
- end loop;
- end if;
- end if;
-
- E2 := Homonym (E2);
- end loop;
-
- -- At the end of that loop, E is the innermost immediately
- -- visible entity, so we are all set.
- end;
-
- -- Come here with entity found, and stored in E
-
- <<Found>> begin
-
- -- When distribution features are available (Get_PCS_Name /=
- -- Name_No_DSA), a remote access-to-subprogram type is converted
- -- into a record type holding whatever information is needed to
- -- perform a remote call on an RCI subprogram. In that case we
- -- rewrite any occurrence of the RAS type into the equivalent record
- -- type here. 'Access attribute references and RAS dereferences are
- -- then implemented using specific TSSs. However when distribution is
- -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
- -- generation of these TSSs, and we must keep the RAS type in its
- -- original access-to-subprogram form (since all calls through a
- -- value of such type will be local anyway in the absence of a PCS).
-
- if Comes_From_Source (N)
- and then Is_Remote_Access_To_Subprogram_Type (E)
- and then Expander_Active
- and then Get_PCS_Name /= Name_No_DSA
- then
- Rewrite (N,
- New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
- return;
- end if;
-
- Set_Entity (N, E);
- -- Why no Style_Check here???
-
- if Is_Type (E) then
- Set_Etype (N, E);
- else
- Set_Etype (N, Get_Full_View (Etype (E)));
- end if;
-
- if Debug_Flag_E then
- Write_Str (" found ");
- Write_Entity_Info (E, " ");
- end if;
-
- -- If the Ekind of the entity is Void, it means that all homonyms
- -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
- -- test is skipped if the current scope is a record and the name is
- -- a pragma argument expression (case of Atomic and Volatile pragmas
- -- and possibly other similar pragmas added later, which are allowed
- -- to reference components in the current record).
-
- if Ekind (E) = E_Void
- and then
- (not Is_Record_Type (Current_Scope)
- or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
- then
- Premature_Usage (N);
-
- -- If the entity is overloadable, collect all interpretations of the
- -- name for subsequent overload resolution. We optimize a bit here to
- -- do this only if we have an overloadable entity that is not on its
- -- own on the homonym chain.
-
- elsif Is_Overloadable (E)
- and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
- then
- Collect_Interps (N);
-
- -- If no homonyms were visible, the entity is unambiguous
-
- if not Is_Overloaded (N) then
- if not Is_Actual_Parameter then
- Generate_Reference (E, N);
- end if;
- end if;
-
- -- Case of non-overloadable entity, set the entity providing that
- -- we do not have the case of a discriminant reference within a
- -- default expression. Such references are replaced with the
- -- corresponding discriminal, which is the formal corresponding to
- -- to the discriminant in the initialization procedure.
-
- else
- -- Entity is unambiguous, indicate that it is referenced here
-
- -- For a renaming of an object, always generate simple reference,
- -- we don't try to keep track of assignments in this case.
-
- if Is_Object (E) and then Present (Renamed_Object (E)) then
- Generate_Reference (E, N);
-
- -- If the renamed entity is a private protected component,
- -- reference the original component as well. This needs to be
- -- done because the private renamings are installed before any
- -- analysis has occurred. Reference to a private component will
- -- resolve to the renaming and the original component will be
- -- left unreferenced, hence the following.
-
- if Is_Prival (E) then
- Generate_Reference (Prival_Link (E), N);
- end if;
-
- -- One odd case is that we do not want to set the Referenced flag
- -- if the entity is a label, and the identifier is the label in
- -- the source, since this is not a reference from the point of
- -- view of the user.
-
- elsif Nkind (Parent (N)) = N_Label then
- declare
- R : constant Boolean := Referenced (E);
-
- begin
- -- Generate reference unless this is an actual parameter
- -- (see comment below)
-
- if Is_Actual_Parameter then
- Generate_Reference (E, N);
- Set_Referenced (E, R);
- end if;
- end;
-
- -- Normal case, not a label: generate reference
-
- -- ??? It is too early to generate a reference here even if
- -- the entity is unambiguous, because the tree is not
- -- sufficiently typed at this point for Generate_Reference to
- -- determine whether this reference modifies the denoted object
- -- (because implicit dereferences cannot be identified prior to
- -- full type resolution).
- --
- -- The Is_Actual_Parameter routine takes care of one of these
- -- cases but there are others probably ???
-
- else
- if not Is_Actual_Parameter then
- Generate_Reference (E, N);
- end if;
-
- Check_Nested_Access (E);
- end if;
-
- -- Set Entity, with style check if need be. For a discriminant
- -- reference, replace by the corresponding discriminal, i.e. the
- -- parameter of the initialization procedure that corresponds to
- -- the discriminant. If this replacement is being performed, there
- -- is no style check to perform.
-
- -- This replacement must not be done if we are currently
- -- processing a generic spec or body, because the discriminal
- -- has not been not generated in this case.
-
- -- The replacement is also skipped if we are in special
- -- spec-expression mode. Why is this skipped in this case ???
-
- if not In_Spec_Expression
- or else Ekind (E) /= E_Discriminant
- or else Inside_A_Generic
- then
- Set_Entity_With_Style_Check (N, E);
-
- -- The replacement is not done either for a task discriminant that
- -- appears in a default expression of an entry parameter. See
- -- Expand_Discriminant in exp_ch2 for details on their handling.
-
- elsif Is_Concurrent_Type (Scope (E)) then
- declare
- P : Node_Id;
-
- begin
- P := Parent (N);
- while Present (P)
- and then not Nkind_In (P, N_Parameter_Specification,
- N_Component_Declaration)
- loop
- P := Parent (P);
- end loop;
-
- if Present (P)
- and then Nkind (P) = N_Parameter_Specification
- then
- null;
- else
- Set_Entity (N, Discriminal (E));
- end if;
- end;
-
- -- Otherwise, this is a discriminant in a context in which
- -- it is a reference to the corresponding parameter of the
- -- init proc for the enclosing type.
-
- else
- Set_Entity (N, Discriminal (E));
- end if;
- end if;
- end;
- end Find_Direct_Name;
-
- ------------------------
- -- Find_Expanded_Name --
- ------------------------
-
- -- This routine searches the homonym chain of the entity until it finds
- -- an entity declared in the scope denoted by the prefix. If the entity
- -- is private, it may nevertheless be immediately visible, if we are in
- -- the scope of its declaration.
-
- procedure Find_Expanded_Name (N : Node_Id) is
- Selector : constant Node_Id := Selector_Name (N);
- Candidate : Entity_Id := Empty;
- P_Name : Entity_Id;
- O_Name : Entity_Id;
- Id : Entity_Id;
-
- begin
- P_Name := Entity (Prefix (N));
- O_Name := P_Name;
-
- -- If the prefix is a renamed package, look for the entity in the
- -- original package.
-
- if Ekind (P_Name) = E_Package
- and then Present (Renamed_Object (P_Name))
- then
- P_Name := Renamed_Object (P_Name);
-
- -- Rewrite node with entity field pointing to renamed object
-
- Rewrite (Prefix (N), New_Copy (Prefix (N)));
- Set_Entity (Prefix (N), P_Name);
-
- -- If the prefix is an object of a concurrent type, look for
- -- the entity in the associated task or protected type.
-
- elsif Is_Concurrent_Type (Etype (P_Name)) then
- P_Name := Etype (P_Name);
- end if;
-
- Id := Current_Entity (Selector);
-
- declare
- Is_New_Candidate : Boolean;
-
- begin
- while Present (Id) loop
- if Scope (Id) = P_Name then
- Candidate := Id;
- Is_New_Candidate := True;
-
- -- Ada 2005 (AI-217): Handle shadow entities associated with types
- -- declared in limited-withed nested packages. We don't need to
- -- handle E_Incomplete_Subtype entities because the entities in
- -- the limited view are always E_Incomplete_Type entities (see
- -- Build_Limited_Views). Regarding the expression used to evaluate
- -- the scope, it is important to note that the limited view also
- -- has shadow entities associated nested packages. For this reason
- -- the correct scope of the entity is the scope of the real entity
- -- The non-limited view may itself be incomplete, in which case
- -- get the full view if available.
-
- elsif From_With_Type (Id)
- and then Is_Type (Id)
- and then Ekind (Id) = E_Incomplete_Type
- and then Present (Non_Limited_View (Id))
- and then Scope (Non_Limited_View (Id)) = P_Name
- then
- Candidate := Get_Full_View (Non_Limited_View (Id));
- Is_New_Candidate := True;
-
- else
- Is_New_Candidate := False;
- end if;
-
- if Is_New_Candidate then
- if Is_Child_Unit (Id) then
- exit when Is_Visible_Child_Unit (Id)
- or else Is_Immediately_Visible (Id);
-
- else
- exit when not Is_Hidden (Id)
- or else Is_Immediately_Visible (Id);
- end if;
- end if;
-
- Id := Homonym (Id);
- end loop;
- end;
-
- if No (Id)
- and then (Ekind (P_Name) = E_Procedure
- or else
- Ekind (P_Name) = E_Function)
- and then Is_Generic_Instance (P_Name)
- then
- -- Expanded name denotes entity in (instance of) generic subprogram.
- -- The entity may be in the subprogram instance, or may denote one of
- -- the formals, which is declared in the enclosing wrapper package.
-
- P_Name := Scope (P_Name);
-
- Id := Current_Entity (Selector);
- while Present (Id) loop
- exit when Scope (Id) = P_Name;
- Id := Homonym (Id);
- end loop;
- end if;
-
- if No (Id) or else Chars (Id) /= Chars (Selector) then
- Set_Etype (N, Any_Type);
-
- -- If we are looking for an entity defined in System, try to find it
- -- in the child package that may have been provided as an extension
- -- to System. The Extend_System pragma will have supplied the name of
- -- the extension, which may have to be loaded.
-
- if Chars (P_Name) = Name_System
- and then Scope (P_Name) = Standard_Standard
- and then Present (System_Extend_Unit)
- and then Present_System_Aux (N)
- then
- Set_Entity (Prefix (N), System_Aux_Id);
- Find_Expanded_Name (N);
- return;
-
- elsif Nkind (Selector) = N_Operator_Symbol
- and then Has_Implicit_Operator (N)
- then
- -- There is an implicit instance of the predefined operator in
- -- the given scope. The operator entity is defined in Standard.
- -- Has_Implicit_Operator makes the node into an Expanded_Name.
-
- return;
-
- elsif Nkind (Selector) = N_Character_Literal
- and then Has_Implicit_Character_Literal (N)
- then
- -- If there is no literal defined in the scope denoted by the
- -- prefix, the literal may belong to (a type derived from)
- -- Standard_Character, for which we have no explicit literals.
-
- return;
-
- else
- -- If the prefix is a single concurrent object, use its name in
- -- the error message, rather than that of the anonymous type.
-
- if Is_Concurrent_Type (P_Name)
- and then Is_Internal_Name (Chars (P_Name))
- then
- Error_Msg_Node_2 := Entity (Prefix (N));
- else
- Error_Msg_Node_2 := P_Name;
- end if;
-
- if P_Name = System_Aux_Id then
- P_Name := Scope (P_Name);
- Set_Entity (Prefix (N), P_Name);
- end if;
-
- if Present (Candidate) then
-
- -- If we know that the unit is a child unit we can give a more
- -- accurate error message.
-
- if Is_Child_Unit (Candidate) then
-
- -- If the candidate is a private child unit and we are in
- -- the visible part of a public unit, specialize the error
- -- message. There might be a private with_clause for it,
- -- but it is not currently active.
-
- if Is_Private_Descendant (Candidate)
- and then Ekind (Current_Scope) = E_Package
- and then not In_Private_Part (Current_Scope)
- and then not Is_Private_Descendant (Current_Scope)
- then
- Error_Msg_N ("private child unit& is not visible here",
- Selector);
-
- -- Normal case where we have a missing with for a child unit
-
- else
- Error_Msg_Qual_Level := 99;
- Error_Msg_NE ("missing `WITH &;`", Selector, Candidate);
- Error_Msg_Qual_Level := 0;
- end if;
-
- -- Here we don't know that this is a child unit
-
- else
- Error_Msg_NE ("& is not a visible entity of&", N, Selector);
- end if;
-
- else
- -- Within the instantiation of a child unit, the prefix may
- -- denote the parent instance, but the selector has the name
- -- of the original child. Find whether we are within the
- -- corresponding instance, and get the proper entity, which
- -- can only be an enclosing scope.
-
- if O_Name /= P_Name
- and then In_Open_Scopes (P_Name)
- and then Is_Generic_Instance (P_Name)
- then
- declare
- S : Entity_Id := Current_Scope;
- P : Entity_Id;
-
- begin
- for J in reverse 0 .. Scope_Stack.Last loop
- S := Scope_Stack.Table (J).Entity;
-
- exit when S = Standard_Standard;
-
- if Ekind (S) = E_Function
- or else Ekind (S) = E_Package
- or else Ekind (S) = E_Procedure
- then
- P := Generic_Parent (Specification
- (Unit_Declaration_Node (S)));
-
- if Present (P)
- and then Chars (Scope (P)) = Chars (O_Name)
- and then Chars (P) = Chars (Selector)
- then
- Id := S;
- goto Found;
- end if;
- end if;
-
- end loop;
- end;
- end if;
-
- -- If this is a selection from Ada, System or Interfaces, then
- -- we assume a missing with for the corresponding package.
-
- if Is_Known_Unit (N) then
- if not Error_Posted (N) then
- Error_Msg_Node_2 := Selector;
- Error_Msg_N ("missing `WITH &.&;`", Prefix (N));
- end if;
-
- -- If this is a selection from a dummy package, then suppress
- -- the error message, of course the entity is missing if the
- -- package is missing!
-
- elsif Sloc (Error_Msg_Node_2) = No_Location then
- null;
-
- -- Here we have the case of an undefined component
-
- else
- Error_Msg_NE ("& not declared in&", N, Selector);
-
- -- Check for misspelling of some entity in prefix
-
- Id := First_Entity (P_Name);
- while Present (Id) loop
- if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
- and then not Is_Internal_Name (Chars (Id))
- then
- Error_Msg_NE
- ("possible misspelling of&", Selector, Id);
- exit;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- -- Specialize the message if this may be an instantiation
- -- of a child unit that was not mentioned in the context.
-
- if Nkind (Parent (N)) = N_Package_Instantiation
- and then Is_Generic_Instance (Entity (Prefix (N)))
- and then Is_Compilation_Unit
- (Generic_Parent (Parent (Entity (Prefix (N)))))
- then
- Error_Msg_Node_2 := Selector;
- Error_Msg_N ("\missing `WITH &.&;`", Prefix (N));
- end if;
- end if;
- end if;
-
- Id := Any_Id;
- end if;
- end if;
-
- <<Found>>
- if Comes_From_Source (N)
- and then Is_Remote_Access_To_Subprogram_Type (Id)
- and then Present (Equivalent_Type (Id))
- then
- -- If we are not actually generating distribution code (i.e. the
- -- current PCS is the dummy non-distributed version), then the
- -- Equivalent_Type will be missing, and Id should be treated as
- -- a regular access-to-subprogram type.
-
- Id := Equivalent_Type (Id);
- Set_Chars (Selector, Chars (Id));
- end if;
-
- -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
-
- if Ekind (P_Name) = E_Package
- and then From_With_Type (P_Name)
- then
- if From_With_Type (Id)
- or else Is_Type (Id)
- or else Ekind (Id) = E_Package
- then
- null;
- else
- Error_Msg_N
- ("limited withed package can only be used to access "
- & "incomplete types",
- N);
- end if;
- end if;
-
- if Is_Task_Type (P_Name)
- and then ((Ekind (Id) = E_Entry
- and then Nkind (Parent (N)) /= N_Attribute_Reference)
- or else
- (Ekind (Id) = E_Entry_Family
- and then
- Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
- then
- -- It is an entry call after all, either to the current task (which
- -- will deadlock) or to an enclosing task.
-
- Analyze_Selected_Component (N);
- return;
- end if;
-
- Change_Selected_Component_To_Expanded_Name (N);
-
- -- Do style check and generate reference, but skip both steps if this
- -- entity has homonyms, since we may not have the right homonym set yet.
- -- The proper homonym will be set during the resolve phase.
-
- if Has_Homonym (Id) then
- Set_Entity (N, Id);
- else
- Set_Entity_With_Style_Check (N, Id);
- Generate_Reference (Id, N);
- end if;
-
- if Is_Type (Id) then
- Set_Etype (N, Id);
- else
- Set_Etype (N, Get_Full_View (Etype (Id)));
- end if;
-
- -- If the Ekind of the entity is Void, it means that all homonyms are
- -- hidden from all visibility (RM 8.3(5,14-20)).
-
- if Ekind (Id) = E_Void then
- Premature_Usage (N);
-
- elsif Is_Overloadable (Id)
- and then Present (Homonym (Id))
- then
- declare
- H : Entity_Id := Homonym (Id);
-
- begin
- while Present (H) loop
- if Scope (H) = Scope (Id)
- and then
- (not Is_Hidden (H)
- or else Is_Immediately_Visible (H))
- then
- Collect_Interps (N);
- exit;
- end if;
-
- H := Homonym (H);
- end loop;
-
- -- If an extension of System is present, collect possible explicit
- -- overloadings declared in the extension.
-
- if Chars (P_Name) = Name_System
- and then Scope (P_Name) = Standard_Standard
- and then Present (System_Extend_Unit)
- and then Present_System_Aux (N)
- then
- H := Current_Entity (Id);
-
- while Present (H) loop
- if Scope (H) = System_Aux_Id then
- Add_One_Interp (N, H, Etype (H));
- end if;
-
- H := Homonym (H);
- end loop;
- end if;
- end;
- end if;
-
- if Nkind (Selector_Name (N)) = N_Operator_Symbol
- and then Scope (Id) /= Standard_Standard
- then
- -- In addition to user-defined operators in the given scope, there
- -- may be an implicit instance of the predefined operator. The
- -- operator (defined in Standard) is found in Has_Implicit_Operator,
- -- and added to the interpretations. Procedure Add_One_Interp will
- -- determine which hides which.
-
- if Has_Implicit_Operator (N) then
- null;
- end if;
- end if;
- end Find_Expanded_Name;
-
- -------------------------
- -- Find_Renamed_Entity --
- -------------------------
-
- function Find_Renamed_Entity
- (N : Node_Id;
- Nam : Node_Id;
- New_S : Entity_Id;
- Is_Actual : Boolean := False) return Entity_Id
- is
- Ind : Interp_Index;
- I1 : Interp_Index := 0; -- Suppress junk warnings
- It : Interp;
- It1 : Interp;
- Old_S : Entity_Id;
- Inst : Entity_Id;
-
- function Enclosing_Instance return Entity_Id;
- -- If the renaming determines the entity for the default of a formal
- -- subprogram nested within another instance, choose the innermost
- -- candidate. This is because if the formal has a box, and we are within
- -- an enclosing instance where some candidate interpretations are local
- -- to this enclosing instance, we know that the default was properly
- -- resolved when analyzing the generic, so we prefer the local
- -- candidates to those that are external. This is not always the case
- -- but is a reasonable heuristic on the use of nested generics. The
- -- proper solution requires a full renaming model.
-
- function Is_Visible_Operation (Op : Entity_Id) return Boolean;
- -- If the renamed entity is an implicit operator, check whether it is
- -- visible because its operand type is properly visible. This check
- -- applies to explicit renamed entities that appear in the source in a
- -- renaming declaration or a formal subprogram instance, but not to
- -- default generic actuals with a name.
-
- function Report_Overload return Entity_Id;
- -- List possible interpretations, and specialize message in the
- -- case of a generic actual.
-
- function Within (Inner, Outer : Entity_Id) return Boolean;
- -- Determine whether a candidate subprogram is defined within the
- -- enclosing instance. If yes, it has precedence over outer candidates.
-
- ------------------------
- -- Enclosing_Instance --
- ------------------------
-
- function Enclosing_Instance return Entity_Id is
- S : Entity_Id;
-
- begin
- if not Is_Generic_Instance (Current_Scope)
- and then not Is_Actual
- then
- return Empty;
- end if;
-
- S := Scope (Current_Scope);
- while S /= Standard_Standard loop
- if Is_Generic_Instance (S) then
- return S;
- end if;
-
- S := Scope (S);
- end loop;
-
- return Empty;
- end Enclosing_Instance;
-
- --------------------------
- -- Is_Visible_Operation --
- --------------------------
-
- function Is_Visible_Operation (Op : Entity_Id) return Boolean is
- Scop : Entity_Id;
- Typ : Entity_Id;
- Btyp : Entity_Id;
-
- begin
- if Ekind (Op) /= E_Operator
- or else Scope (Op) /= Standard_Standard
- or else (In_Instance
- and then
- (not Is_Actual
- or else Present (Enclosing_Instance)))
- then
- return True;
-
- else
- -- For a fixed point type operator, check the resulting type,
- -- because it may be a mixed mode integer * fixed operation.
-
- if Present (Next_Formal (First_Formal (New_S)))
- and then Is_Fixed_Point_Type (Etype (New_S))
- then
- Typ := Etype (New_S);
- else
- Typ := Etype (First_Formal (New_S));
- end if;
-
- Btyp := Base_Type (Typ);
-
- if Nkind (Nam) /= N_Expanded_Name then
- return (In_Open_Scopes (Scope (Btyp))
- or else Is_Potentially_Use_Visible (Btyp)
- or else In_Use (Btyp)
- or else In_Use (Scope (Btyp)));
-
- else
- Scop := Entity (Prefix (Nam));
-
- if Ekind (Scop) = E_Package
- and then Present (Renamed_Object (Scop))
- then
- Scop := Renamed_Object (Scop);
- end if;
-
- -- Operator is visible if prefix of expanded name denotes
- -- scope of type, or else type is defined in System_Aux
- -- and the prefix denotes System.
-
- return Scope (Btyp) = Scop
- or else (Scope (Btyp) = System_Aux_Id
- and then Scope (Scope (Btyp)) = Scop);
- end if;
- end if;
- end Is_Visible_Operation;
-
- ------------
- -- Within --
- ------------
-
- function Within (Inner, Outer : Entity_Id) return Boolean is
- Sc : Entity_Id;
-
- begin
- Sc := Scope (Inner);
- while Sc /= Standard_Standard loop
- if Sc = Outer then
- return True;
- else
- Sc := Scope (Sc);
- end if;
- end loop;
-
- return False;
- end Within;
-
- ---------------------
- -- Report_Overload --
- ---------------------
-
- function Report_Overload return Entity_Id is
- begin
- if Is_Actual then
- Error_Msg_NE
- ("ambiguous actual subprogram&, " &
- "possible interpretations:", N, Nam);
- else
- Error_Msg_N
- ("ambiguous subprogram, " &
- "possible interpretations:", N);
- end if;
-
- List_Interps (Nam, N);
- return Old_S;
- end Report_Overload;
-
- -- Start of processing for Find_Renamed_Entry
-
- begin
- Old_S := Any_Id;
- Candidate_Renaming := Empty;
-
- if not Is_Overloaded (Nam) then
- if Entity_Matches_Spec (Entity (Nam), New_S)
- and then Is_Visible_Operation (Entity (Nam))
- then
- Old_S := Entity (Nam);
-
- elsif
- Present (First_Formal (Entity (Nam)))
- and then Present (First_Formal (New_S))
- and then (Base_Type (Etype (First_Formal (Entity (Nam))))
- = Base_Type (Etype (First_Formal (New_S))))
- then
- Candidate_Renaming := Entity (Nam);
- end if;
-
- else
- Get_First_Interp (Nam, Ind, It);
- while Present (It.Nam) loop
- if Entity_Matches_Spec (It.Nam, New_S)
- and then Is_Visible_Operation (It.Nam)
- then
- if Old_S /= Any_Id then
-
- -- Note: The call to Disambiguate only happens if a
- -- previous interpretation was found, in which case I1
- -- has received a value.
-
- It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
-
- if It1 = No_Interp then
- Inst := Enclosing_Instance;
-
- if Present (Inst) then
- if Within (It.Nam, Inst) then
- return (It.Nam);
- elsif Within (Old_S, Inst) then
- return (Old_S);
- else
- return Report_Overload;
- end if;
-
- else
- return Report_Overload;
- end if;
-
- else
- Old_S := It1.Nam;
- exit;
- end if;
-
- else
- I1 := Ind;
- Old_S := It.Nam;
- end if;
-
- elsif
- Present (First_Formal (It.Nam))
- and then Present (First_Formal (New_S))
- and then (Base_Type (Etype (First_Formal (It.Nam)))
- = Base_Type (Etype (First_Formal (New_S))))
- then
- Candidate_Renaming := It.Nam;
- end if;
-
- Get_Next_Interp (Ind, It);
- end loop;
-
- Set_Entity (Nam, Old_S);
- Set_Is_Overloaded (Nam, False);
- end if;
-
- return Old_S;
- end Find_Renamed_Entity;
-
- -----------------------------
- -- Find_Selected_Component --
- -----------------------------
-
- procedure Find_Selected_Component (N : Node_Id) is
- P : constant Node_Id := Prefix (N);
-
- P_Name : Entity_Id;
- -- Entity denoted by prefix
-
- P_Type : Entity_Id;
- -- and its type
-
- Nam : Node_Id;
-
- begin
- Analyze (P);
-
- if Nkind (P) = N_Error then
- return;
-
- -- If the selector already has an entity, the node has been constructed
- -- in the course of expansion, and is known to be valid. Do not verify
- -- that it is defined for the type (it may be a private component used
- -- in the expansion of record equality).
-
- elsif Present (Entity (Selector_Name (N))) then
- if No (Etype (N))
- or else Etype (N) = Any_Type
- then
- declare
- Sel_Name : constant Node_Id := Selector_Name (N);
- Selector : constant Entity_Id := Entity (Sel_Name);
- C_Etype : Node_Id;
-
- begin
- Set_Etype (Sel_Name, Etype (Selector));
-
- if not Is_Entity_Name (P) then
- Resolve (P);
- end if;
-
- -- Build an actual subtype except for the first parameter
- -- of an init proc, where this actual subtype is by
- -- definition incorrect, since the object is uninitialized
- -- (and does not even have defined discriminants etc.)
-
- if Is_Entity_Name (P)
- and then Ekind (Entity (P)) = E_Function
- then
- Nam := New_Copy (P);
-
- if Is_Overloaded (P) then
- Save_Interps (P, Nam);
- end if;
-
- Rewrite (P,
- Make_Function_Call (Sloc (P), Name => Nam));
- Analyze_Call (P);
- Analyze_Selected_Component (N);
- return;
-
- elsif Ekind (Selector) = E_Component
- and then (not Is_Entity_Name (P)
- or else Chars (Entity (P)) /= Name_uInit)
- then
- C_Etype :=
- Build_Actual_Subtype_Of_Component (
- Etype (Selector), N);
- else
- C_Etype := Empty;
- end if;
-
- if No (C_Etype) then
- C_Etype := Etype (Selector);
- else
- Insert_Action (N, C_Etype);
- C_Etype := Defining_Identifier (C_Etype);
- end if;
-
- Set_Etype (N, C_Etype);
- end;
-
- -- If this is the name of an entry or protected operation, and
- -- the prefix is an access type, insert an explicit dereference,
- -- so that entry calls are treated uniformly.
-
- if Is_Access_Type (Etype (P))
- and then Is_Concurrent_Type (Designated_Type (Etype (P)))
- then
- declare
- New_P : constant Node_Id :=
- Make_Explicit_Dereference (Sloc (P),
- Prefix => Relocate_Node (P));
- begin
- Rewrite (P, New_P);
- Set_Etype (P, Designated_Type (Etype (Prefix (P))));
- end;
- end if;
-
- -- If the selected component appears within a default expression
- -- and it has an actual subtype, the pre-analysis has not yet
- -- completed its analysis, because Insert_Actions is disabled in
- -- that context. Within the init proc of the enclosing type we
- -- must complete this analysis, if an actual subtype was created.
-
- elsif Inside_Init_Proc then
- declare
- Typ : constant Entity_Id := Etype (N);
- Decl : constant Node_Id := Declaration_Node (Typ);
- begin
- if Nkind (Decl) = N_Subtype_Declaration
- and then not Analyzed (Decl)
- and then Is_List_Member (Decl)
- and then No (Parent (Decl))
- then
- Remove (Decl);
- Insert_Action (N, Decl);
- end if;
- end;
- end if;
-
- return;
-
- elsif Is_Entity_Name (P) then
- P_Name := Entity (P);
-
- -- The prefix may denote an enclosing type which is the completion
- -- of an incomplete type declaration.
-
- if Is_Type (P_Name) then
- Set_Entity (P, Get_Full_View (P_Name));
- Set_Etype (P, Entity (P));
- P_Name := Entity (P);
- end if;
-
- P_Type := Base_Type (Etype (P));
-
- if Debug_Flag_E then
- Write_Str ("Found prefix type to be ");
- Write_Entity_Info (P_Type, " "); Write_Eol;
- end if;
-
- -- First check for components of a record object (not the
- -- result of a call, which is handled below).
-
- if Is_Appropriate_For_Record (P_Type)
- and then not Is_Overloadable (P_Name)
- and then not Is_Type (P_Name)
- then
- -- Selected component of record. Type checking will validate
- -- name of selector.
- -- ??? could we rewrite an implicit dereference into an explicit
- -- one here?
-
- Analyze_Selected_Component (N);
-
- elsif Is_Appropriate_For_Entry_Prefix (P_Type)
- and then not In_Open_Scopes (P_Name)
- and then (not Is_Concurrent_Type (Etype (P_Name))
- or else not In_Open_Scopes (Etype (P_Name)))
- then
- -- Call to protected operation or entry. Type checking is
- -- needed on the prefix.
-
- Analyze_Selected_Component (N);
-
- elsif (In_Open_Scopes (P_Name)
- and then Ekind (P_Name) /= E_Void
- and then not Is_Overloadable (P_Name))
- or else (Is_Concurrent_Type (Etype (P_Name))
- and then In_Open_Scopes (Etype (P_Name)))
- then
- -- Prefix denotes an enclosing loop, block, or task, i.e. an
- -- enclosing construct that is not a subprogram or accept.
-
- Find_Expanded_Name (N);
-
- elsif Ekind (P_Name) = E_Package then
- Find_Expanded_Name (N);
-
- elsif Is_Overloadable (P_Name) then
-
- -- The subprogram may be a renaming (of an enclosing scope) as
- -- in the case of the name of the generic within an instantiation.
-
- if (Ekind (P_Name) = E_Procedure
- or else Ekind (P_Name) = E_Function)
- and then Present (Alias (P_Name))
- and then Is_Generic_Instance (Alias (P_Name))
- then
- P_Name := Alias (P_Name);
- end if;
-
- if Is_Overloaded (P) then
-
- -- The prefix must resolve to a unique enclosing construct
-
- declare
- Found : Boolean := False;
- Ind : Interp_Index;
- It : Interp;
-
- begin
- Get_First_Interp (P, Ind, It);
- while Present (It.Nam) loop
- if In_Open_Scopes (It.Nam) then
- if Found then
- Error_Msg_N (
- "prefix must be unique enclosing scope", N);
- Set_Entity (N, Any_Id);
- Set_Etype (N, Any_Type);
- return;
-
- else
- Found := True;
- P_Name := It.Nam;
- end if;
- end if;
-
- Get_Next_Interp (Ind, It);
- end loop;
- end;
- end if;
-
- if In_Open_Scopes (P_Name) then
- Set_Entity (P, P_Name);
- Set_Is_Overloaded (P, False);
- Find_Expanded_Name (N);
-
- else
- -- If no interpretation as an expanded name is possible, it
- -- must be a selected component of a record returned by a
- -- function call. Reformat prefix as a function call, the rest
- -- is done by type resolution. If the prefix is procedure or
- -- entry, as is P.X; this is an error.
-
- if Ekind (P_Name) /= E_Function
- and then (not Is_Overloaded (P)
- or else
- Nkind (Parent (N)) = N_Procedure_Call_Statement)
- then
- -- Prefix may mention a package that is hidden by a local
- -- declaration: let the user know. Scan the full homonym
- -- chain, the candidate package may be anywhere on it.
-
- if Present (Homonym (Current_Entity (P_Name))) then
-
- P_Name := Current_Entity (P_Name);
-
- while Present (P_Name) loop
- exit when Ekind (P_Name) = E_Package;
- P_Name := Homonym (P_Name);
- end loop;
-
- if Present (P_Name) then
- Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
-
- Error_Msg_NE
- ("package& is hidden by declaration#",
- N, P_Name);
-
- Set_Entity (Prefix (N), P_Name);
- Find_Expanded_Name (N);
- return;
- else
- P_Name := Entity (Prefix (N));
- end if;
- end if;
-
- Error_Msg_NE
- ("invalid prefix in selected component&", N, P_Name);
- Change_Selected_Component_To_Expanded_Name (N);
- Set_Entity (N, Any_Id);
- Set_Etype (N, Any_Type);
-
- else
- Nam := New_Copy (P);
- Save_Interps (P, Nam);
- Rewrite (P,
- Make_Function_Call (Sloc (P), Name => Nam));
- Analyze_Call (P);
- Analyze_Selected_Component (N);
- end if;
- end if;
-
- -- Remaining cases generate various error messages
-
- else
- -- Format node as expanded name, to avoid cascaded errors
-
- Change_Selected_Component_To_Expanded_Name (N);
- Set_Entity (N, Any_Id);
- Set_Etype (N, Any_Type);
-
- -- Issue error message, but avoid this if error issued already.
- -- Use identifier of prefix if one is available.
-
- if P_Name = Any_Id then
- null;
-
- elsif Ekind (P_Name) = E_Void then
- Premature_Usage (P);
-
- elsif Nkind (P) /= N_Attribute_Reference then
- Error_Msg_N (
- "invalid prefix in selected component&", P);
-
- if Is_Access_Type (P_Type)
- and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
- then
- Error_Msg_N
- ("\dereference must not be of an incomplete type " &
- "(RM 3.10.1)", P);
- end if;
-
- else
- Error_Msg_N (
- "invalid prefix in selected component", P);
- end if;
- end if;
-
- else
- -- If prefix is not the name of an entity, it must be an expression,
- -- whose type is appropriate for a record. This is determined by
- -- type resolution.
-
- Analyze_Selected_Component (N);
- end if;
- end Find_Selected_Component;
-
- ---------------
- -- Find_Type --
- ---------------
-
- procedure Find_Type (N : Node_Id) is
- C : Entity_Id;
- Typ : Entity_Id;
- T : Entity_Id;
- T_Name : Entity_Id;
-
- begin
- if N = Error then
- return;
-
- elsif Nkind (N) = N_Attribute_Reference then
-
- -- Class attribute. This is not valid in Ada 83 mode, but we do not
- -- need to enforce that at this point, since the declaration of the
- -- tagged type in the prefix would have been flagged already.
-
- if Attribute_Name (N) = Name_Class then
- Check_Restriction (No_Dispatch, N);
- Find_Type (Prefix (N));
-
- -- Propagate error from bad prefix
-
- if Etype (Prefix (N)) = Any_Type then
- Set_Entity (N, Any_Type);
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- T := Base_Type (Entity (Prefix (N)));
-
- -- Case where type is not known to be tagged. Its appearance in
- -- the prefix of the 'Class attribute indicates that the full view
- -- will be tagged.
-
- if not Is_Tagged_Type (T) then
- if Ekind (T) = E_Incomplete_Type then
-
- -- It is legal to denote the class type of an incomplete
- -- type. The full type will have to be tagged, of course.
- -- In Ada 2005 this usage is declared obsolescent, so we
- -- warn accordingly.
-
- -- ??? This test is temporarily disabled (always False)
- -- because it causes an unwanted warning on GNAT sources
- -- (built with -gnatg, which includes Warn_On_Obsolescent_
- -- Feature). Once this issue is cleared in the sources, it
- -- can be enabled.
-
- if not Is_Tagged_Type (T)
- and then Ada_Version >= Ada_05
- and then Warn_On_Obsolescent_Feature
- and then False
- then
- Error_Msg_N
- ("applying 'Class to an untagged incomplete type"
- & " is an obsolescent feature (RM J.11)", N);
- end if;
-
- Set_Is_Tagged_Type (T);
- Set_Primitive_Operations (T, New_Elmt_List);
- Make_Class_Wide_Type (T);
- Set_Entity (N, Class_Wide_Type (T));
- Set_Etype (N, Class_Wide_Type (T));
-
- elsif Ekind (T) = E_Private_Type
- and then not Is_Generic_Type (T)
- and then In_Private_Part (Scope (T))
- then
- -- The Class attribute can be applied to an untagged private
- -- type fulfilled by a tagged type prior to the full type
- -- declaration (but only within the parent package's private
- -- part). Create the class-wide type now and check that the
- -- full type is tagged later during its analysis. Note that
- -- we do not mark the private type as tagged, unlike the
- -- case of incomplete types, because the type must still
- -- appear untagged to outside units.
-
- if No (Class_Wide_Type (T)) then
- Make_Class_Wide_Type (T);
- end if;
-
- Set_Entity (N, Class_Wide_Type (T));
- Set_Etype (N, Class_Wide_Type (T));
-
- else
- -- Should we introduce a type Any_Tagged and use Wrong_Type
- -- here, it would be a bit more consistent???
-
- Error_Msg_NE
- ("tagged type required, found}",
- Prefix (N), First_Subtype (T));
- Set_Entity (N, Any_Type);
- return;
- end if;
-
- -- Case of tagged type
-
- else
- if Is_Concurrent_Type (T) then
- if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
-
- -- Previous error. Use current type, which at least
- -- provides some operations.
-
- C := Entity (Prefix (N));
-
- else
- C := Class_Wide_Type
- (Corresponding_Record_Type (Entity (Prefix (N))));
- end if;
-
- else
- C := Class_Wide_Type (Entity (Prefix (N)));
- end if;
-
- Set_Entity_With_Style_Check (N, C);
- Generate_Reference (C, N);
- Set_Etype (N, C);
- end if;
-
- -- Base attribute, not allowed in Ada 83
-
- elsif Attribute_Name (N) = Name_Base then
- if Ada_Version = Ada_83 and then Comes_From_Source (N) then
- Error_Msg_N
- ("(Ada 83) Base attribute not allowed in subtype mark", N);
-
- else
- Find_Type (Prefix (N));
- Typ := Entity (Prefix (N));
-
- if Ada_Version >= Ada_95
- and then not Is_Scalar_Type (Typ)
- and then not Is_Generic_Type (Typ)
- then
- Error_Msg_N
- ("prefix of Base attribute must be scalar type",
- Prefix (N));
-
- elsif Sloc (Typ) = Standard_Location
- and then Base_Type (Typ) = Typ
- and then Warn_On_Redundant_Constructs
- then
- Error_Msg_NE
- ("?redundant attribute, & is its own base type", N, Typ);
- end if;
-
- T := Base_Type (Typ);
-
- -- Rewrite attribute reference with type itself (see similar
- -- processing in Analyze_Attribute, case Base). Preserve
- -- prefix if present, for other legality checks.
-
- if Nkind (Prefix (N)) = N_Expanded_Name then
- Rewrite (N,
- Make_Expanded_Name (Sloc (N),
- Chars => Chars (T),
- Prefix => New_Copy (Prefix (Prefix (N))),
- Selector_Name => New_Reference_To (T, Sloc (N))));
-
- else
- Rewrite (N, New_Reference_To (T, Sloc (N)));
- end if;
-
- Set_Entity (N, T);
- Set_Etype (N, T);
- end if;
-
- elsif Attribute_Name (N) = Name_Stub_Type then
-
- -- This is handled in Analyze_Attribute
-
- Analyze (N);
-
- -- All other attributes are invalid in a subtype mark
-
- else
- Error_Msg_N ("invalid attribute in subtype mark", N);
- end if;
-
- else
- Analyze (N);
-
- if Is_Entity_Name (N) then
- T_Name := Entity (N);
- else
- Error_Msg_N ("subtype mark required in this context", N);
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- if T_Name = Any_Id or else Etype (N) = Any_Type then
-
- -- Undefined id. Make it into a valid type
-
- Set_Entity (N, Any_Type);
-
- elsif not Is_Type (T_Name)
- and then T_Name /= Standard_Void_Type
- then
- Error_Msg_Sloc := Sloc (T_Name);
- Error_Msg_N ("subtype mark required in this context", N);
- Error_Msg_NE ("\\found & declared#", N, T_Name);
- Set_Entity (N, Any_Type);
-
- else
- -- If the type is an incomplete type created to handle
- -- anonymous access components of a record type, then the
- -- incomplete type is the visible entity and subsequent
- -- references will point to it. Mark the original full
- -- type as referenced, to prevent spurious warnings.
-
- if Is_Incomplete_Type (T_Name)
- and then Present (Full_View (T_Name))
- and then not Comes_From_Source (T_Name)
- then
- Set_Referenced (Full_View (T_Name));
- end if;
-
- T_Name := Get_Full_View (T_Name);
-
- -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
- -- limited-with clauses
-
- if From_With_Type (T_Name)
- and then Ekind (T_Name) in Incomplete_Kind
- and then Present (Non_Limited_View (T_Name))
- and then Is_Interface (Non_Limited_View (T_Name))
- then
- T_Name := Non_Limited_View (T_Name);
- end if;
-
- if In_Open_Scopes (T_Name) then
- if Ekind (Base_Type (T_Name)) = E_Task_Type then
-
- -- In Ada 2005, a task name can be used in an access
- -- definition within its own body.
-
- if Ada_Version >= Ada_05
- and then Nkind (Parent (N)) = N_Access_Definition
- then
- Set_Entity (N, T_Name);
- Set_Etype (N, T_Name);
- return;
-
- else
- Error_Msg_N
- ("task type cannot be used as type mark " &
- "within its own spec or body", N);
- end if;
-
- elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
-
- -- In Ada 2005, a protected name can be used in an access
- -- definition within its own body.
-
- if Ada_Version >= Ada_05
- and then Nkind (Parent (N)) = N_Access_Definition
- then
- Set_Entity (N, T_Name);
- Set_Etype (N, T_Name);
- return;
-
- else
- Error_Msg_N
- ("protected type cannot be used as type mark " &
- "within its own spec or body", N);
- end if;
-
- else
- Error_Msg_N ("type declaration cannot refer to itself", N);
- end if;
-
- Set_Etype (N, Any_Type);
- Set_Entity (N, Any_Type);
- Set_Error_Posted (T_Name);
- return;
- end if;
-
- Set_Entity (N, T_Name);
- Set_Etype (N, T_Name);
- end if;
- end if;
-
- if Present (Etype (N)) and then Comes_From_Source (N) then
- if Is_Fixed_Point_Type (Etype (N)) then
- Check_Restriction (No_Fixed_Point, N);
- elsif Is_Floating_Point_Type (Etype (N)) then
- Check_Restriction (No_Floating_Point, N);
- end if;
- end if;
- end Find_Type;
-
- ------------------------------------
- -- Has_Implicit_Character_Literal --
- ------------------------------------
-
- function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
- Id : Entity_Id;
- Found : Boolean := False;
- P : constant Entity_Id := Entity (Prefix (N));
- Priv_Id : Entity_Id := Empty;
-
- begin
- if Ekind (P) = E_Package
- and then not In_Open_Scopes (P)
- then
- Priv_Id := First_Private_Entity (P);
- end if;
-
- if P = Standard_Standard then
- Change_Selected_Component_To_Expanded_Name (N);
- Rewrite (N, Selector_Name (N));
- Analyze (N);
- Set_Etype (Original_Node (N), Standard_Character);
- return True;
- end if;
-
- Id := First_Entity (P);
- while Present (Id)
- and then Id /= Priv_Id
- loop
- if Is_Standard_Character_Type (Id)
- and then Id = Base_Type (Id)
- then
- -- We replace the node with the literal itself, resolve as a
- -- character, and set the type correctly.
-
- if not Found then
- Change_Selected_Component_To_Expanded_Name (N);
- Rewrite (N, Selector_Name (N));
- Analyze (N);
- Set_Etype (N, Id);
- Set_Etype (Original_Node (N), Id);
- Found := True;
-
- else
- -- More than one type derived from Character in given scope.
- -- Collect all possible interpretations.
-
- Add_One_Interp (N, Id, Id);
- end if;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- return Found;
- end Has_Implicit_Character_Literal;
-
- ----------------------
- -- Has_Private_With --
- ----------------------
-
- function Has_Private_With (E : Entity_Id) return Boolean is
- Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
- Item : Node_Id;
-
- begin
- Item := First (Context_Items (Comp_Unit));
- while Present (Item) loop
- if Nkind (Item) = N_With_Clause
- and then Private_Present (Item)
- and then Entity (Name (Item)) = E
- then
- return True;
- end if;
-
- Next (Item);
- end loop;
-
- return False;
- end Has_Private_With;
-
- ---------------------------
- -- Has_Implicit_Operator --
- ---------------------------
-
- function Has_Implicit_Operator (N : Node_Id) return Boolean is
- Op_Id : constant Name_Id := Chars (Selector_Name (N));
- P : constant Entity_Id := Entity (Prefix (N));
- Id : Entity_Id;
- Priv_Id : Entity_Id := Empty;
-
- procedure Add_Implicit_Operator
- (T : Entity_Id;
- Op_Type : Entity_Id := Empty);
- -- Add implicit interpretation to node N, using the type for which a
- -- predefined operator exists. If the operator yields a boolean type,
- -- the Operand_Type is implicitly referenced by the operator, and a
- -- reference to it must be generated.
-
- ---------------------------
- -- Add_Implicit_Operator --
- ---------------------------
-
- procedure Add_Implicit_Operator
- (T : Entity_Id;
- Op_Type : Entity_Id := Empty)
- is
- Predef_Op : Entity_Id;
-
- begin
- Predef_Op := Current_Entity (Selector_Name (N));
-
- while Present (Predef_Op)
- and then Scope (Predef_Op) /= Standard_Standard
- loop
- Predef_Op := Homonym (Predef_Op);
- end loop;
-
- if Nkind (N) = N_Selected_Component then
- Change_Selected_Component_To_Expanded_Name (N);
- end if;
-
- Add_One_Interp (N, Predef_Op, T);
-
- -- For operators with unary and binary interpretations, add both
-
- if Present (Homonym (Predef_Op)) then
- Add_One_Interp (N, Homonym (Predef_Op), T);
- end if;
-
- -- The node is a reference to a predefined operator, and
- -- an implicit reference to the type of its operands.
-
- if Present (Op_Type) then
- Generate_Operator_Reference (N, Op_Type);
- else
- Generate_Operator_Reference (N, T);
- end if;
- end Add_Implicit_Operator;
-
- -- Start of processing for Has_Implicit_Operator
-
- begin
- if Ekind (P) = E_Package
- and then not In_Open_Scopes (P)
- then
- Priv_Id := First_Private_Entity (P);
- end if;
-
- Id := First_Entity (P);
-
- case Op_Id is
-
- -- Boolean operators: an implicit declaration exists if the scope
- -- contains a declaration for a derived Boolean type, or for an
- -- array of Boolean type.
-
- when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
- while Id /= Priv_Id loop
- if Valid_Boolean_Arg (Id)
- and then Id = Base_Type (Id)
- then
- Add_Implicit_Operator (Id);
- return True;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- -- Equality: look for any non-limited type (result is Boolean)
-
- when Name_Op_Eq | Name_Op_Ne =>
- while Id /= Priv_Id loop
- if Is_Type (Id)
- and then not Is_Limited_Type (Id)
- and then Id = Base_Type (Id)
- then
- Add_Implicit_Operator (Standard_Boolean, Id);
- return True;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- -- Comparison operators: scalar type, or array of scalar
-
- when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
- while Id /= Priv_Id loop
- if (Is_Scalar_Type (Id)
- or else (Is_Array_Type (Id)
- and then Is_Scalar_Type (Component_Type (Id))))
- and then Id = Base_Type (Id)
- then
- Add_Implicit_Operator (Standard_Boolean, Id);
- return True;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- -- Arithmetic operators: any numeric type
-
- when Name_Op_Abs |
- Name_Op_Add |
- Name_Op_Mod |
- Name_Op_Rem |
- Name_Op_Subtract |
- Name_Op_Multiply |
- Name_Op_Divide |
- Name_Op_Expon =>
- while Id /= Priv_Id loop
- if Is_Numeric_Type (Id)
- and then Id = Base_Type (Id)
- then
- Add_Implicit_Operator (Id);
- return True;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- -- Concatenation: any one-dimensional array type
-
- when Name_Op_Concat =>
- while Id /= Priv_Id loop
- if Is_Array_Type (Id) and then Number_Dimensions (Id) = 1
- and then Id = Base_Type (Id)
- then
- Add_Implicit_Operator (Id);
- return True;
- end if;
-
- Next_Entity (Id);
- end loop;
-
- -- What is the others condition here? Should we be using a
- -- subtype of Name_Id that would restrict to operators ???
-
- when others => null;
- end case;
-
- -- If we fall through, then we do not have an implicit operator
-
- return False;
-
- end Has_Implicit_Operator;
-
- --------------------
- -- In_Open_Scopes --
- --------------------
-
- function In_Open_Scopes (S : Entity_Id) return Boolean is
- begin
- -- Several scope stacks are maintained by Scope_Stack. The base of the
- -- currently active scope stack is denoted by the Is_Active_Stack_Base
- -- flag in the scope stack entry. Note that the scope stacks used to
- -- simply be delimited implicitly by the presence of Standard_Standard
- -- at their base, but there now are cases where this is not sufficient
- -- because Standard_Standard actually may appear in the middle of the
- -- active set of scopes.
-
- for J in reverse 0 .. Scope_Stack.Last loop
- if Scope_Stack.Table (J).Entity = S then
- return True;
- end if;
-
- -- Check Is_Active_Stack_Base to tell us when to stop, as there are
- -- cases where Standard_Standard appears in the middle of the active
- -- set of scopes. This affects the declaration and overriding of
- -- private inherited operations in instantiations of generic child
- -- units.
-
- exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
- end loop;
-
- return False;
- end In_Open_Scopes;
-
- -----------------------------
- -- Inherit_Renamed_Profile --
- -----------------------------
-
- procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
- New_F : Entity_Id;
- Old_F : Entity_Id;
- Old_T : Entity_Id;
- New_T : Entity_Id;
-
- begin
- if Ekind (Old_S) = E_Operator then
- New_F := First_Formal (New_S);
-
- while Present (New_F) loop
- Set_Etype (New_F, Base_Type (Etype (New_F)));
- Next_Formal (New_F);
- end loop;
-
- Set_Etype (New_S, Base_Type (Etype (New_S)));
-
- else
- New_F := First_Formal (New_S);
- Old_F := First_Formal (Old_S);
-
- while Present (New_F) loop
- New_T := Etype (New_F);
- Old_T := Etype (Old_F);
-
- -- If the new type is a renaming of the old one, as is the
- -- case for actuals in instances, retain its name, to simplify
- -- later disambiguation.
-
- if Nkind (Parent (New_T)) = N_Subtype_Declaration
- and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
- and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
- then
- null;
- else
- Set_Etype (New_F, Old_T);
- end if;
-
- Next_Formal (New_F);
- Next_Formal (Old_F);
- end loop;
-
- if Ekind (Old_S) = E_Function
- or else Ekind (Old_S) = E_Enumeration_Literal
- then
- Set_Etype (New_S, Etype (Old_S));
- end if;
- end if;
- end Inherit_Renamed_Profile;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize is
- begin
- Urefs.Init;
- end Initialize;
-
- -------------------------
- -- Install_Use_Clauses --
- -------------------------
-
- procedure Install_Use_Clauses
- (Clause : Node_Id;
- Force_Installation : Boolean := False)
- is
- U : Node_Id;
- P : Node_Id;
- Id : Entity_Id;
-
- begin
- U := Clause;
- while Present (U) loop
-
- -- Case of USE package
-
- if Nkind (U) = N_Use_Package_Clause then
- P := First (Names (U));
- while Present (P) loop
- Id := Entity (P);
-
- if Ekind (Id) = E_Package then
- if In_Use (Id) then
- Note_Redundant_Use (P);
-
- elsif Present (Renamed_Object (Id))
- and then In_Use (Renamed_Object (Id))
- then
- Note_Redundant_Use (P);
-
- elsif Force_Installation or else Applicable_Use (P) then
- Use_One_Package (Id, U);
-
- end if;
- end if;
-
- Next (P);
- end loop;
-
- -- Case of USE TYPE
-
- else
- P := First (Subtype_Marks (U));
- while Present (P) loop
- if not Is_Entity_Name (P)
- or else No (Entity (P))
- then
- null;
-
- elsif Entity (P) /= Any_Type then
- Use_One_Type (P);
- end if;
-
- Next (P);
- end loop;
- end if;
-
- Next_Use_Clause (U);
- end loop;
- end Install_Use_Clauses;
-
- -------------------------------------
- -- Is_Appropriate_For_Entry_Prefix --
- -------------------------------------
-
- function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
- P_Type : Entity_Id := T;
-
- begin
- if Is_Access_Type (P_Type) then
- P_Type := Designated_Type (P_Type);
- end if;
-
- return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
- end Is_Appropriate_For_Entry_Prefix;
-
- -------------------------------
- -- Is_Appropriate_For_Record --
- -------------------------------
-
- function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
-
- function Has_Components (T1 : Entity_Id) return Boolean;
- -- Determine if given type has components (i.e. is either a record
- -- type or a type that has discriminants).
-
- --------------------
- -- Has_Components --
- --------------------
-
- function Has_Components (T1 : Entity_Id) return Boolean is
- begin
- return Is_Record_Type (T1)
- or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
- or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
- or else (Is_Incomplete_Type (T1)
- and then From_With_Type (T1)
- and then Present (Non_Limited_View (T1))
- and then Is_Record_Type
- (Get_Full_View (Non_Limited_View (T1))));
- end Has_Components;
-
- -- Start of processing for Is_Appropriate_For_Record
-
- begin
- return
- Present (T)
- and then (Has_Components (T)
- or else (Is_Access_Type (T)
- and then Has_Components (Designated_Type (T))));
- end Is_Appropriate_For_Record;
-
- ------------------------
- -- Note_Redundant_Use --
- ------------------------
-
- procedure Note_Redundant_Use (Clause : Node_Id) is
- Pack_Name : constant Entity_Id := Entity (Clause);
- Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
- Decl : constant Node_Id := Parent (Clause);
-
- Prev_Use : Node_Id := Empty;
- Redundant : Node_Id := Empty;
- -- The Use_Clause which is actually redundant. In the simplest case
- -- it is Pack itself, but when we compile a body we install its
- -- context before that of its spec, in which case it is the use_clause
- -- in the spec that will appear to be redundant, and we want the
- -- warning to be placed on the body. Similar complications appear when
- -- the redundancy is between a child unit and one of its ancestors.
-
- begin
- Set_Redundant_Use (Clause, True);
-
- if not Comes_From_Source (Clause)
- or else In_Instance
- or else not Warn_On_Redundant_Constructs
- then
- return;
- end if;
-
- if not Is_Compilation_Unit (Current_Scope) then
-
- -- If the use_clause is in an inner scope, it is made redundant
- -- by some clause in the current context, with one exception:
- -- If we're compiling a nested package body, and the use_clause
- -- comes from the corresponding spec, the clause is not necessarily
- -- fully redundant, so we should not warn. If a warning was
- -- warranted, it would have been given when the spec was processed.
-
- if Nkind (Parent (Decl)) = N_Package_Specification then
- declare
- Package_Spec_Entity : constant Entity_Id :=
- Defining_Unit_Name (Parent (Decl));
- begin
- if In_Package_Body (Package_Spec_Entity) then
- return;
- end if;
- end;
- end if;
-
- Redundant := Clause;
- Prev_Use := Cur_Use;
-
- elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
- declare
- Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
- New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
- Scop : Entity_Id;
-
- begin
- if Cur_Unit = New_Unit then
-
- -- Redundant clause in same body
-
- Redundant := Clause;
- Prev_Use := Cur_Use;
-
- elsif Cur_Unit = Current_Sem_Unit then
-
- -- If the new clause is not in the current unit it has been
- -- analyzed first, and it makes the other one redundant.
- -- However, if the new clause appears in a subunit, Cur_Unit
- -- is still the parent, and in that case the redundant one
- -- is the one appearing in the subunit.
-
- if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
- Redundant := Clause;
- Prev_Use := Cur_Use;
-
- -- Most common case: redundant clause in body,
- -- original clause in spec. Current scope is spec entity.
-
- elsif
- Current_Scope =
- Defining_Entity (
- Unit (Library_Unit (Cunit (Current_Sem_Unit))))
- then
- Redundant := Cur_Use;
- Prev_Use := Clause;
-
- else
- -- The new clause may appear in an unrelated unit, when
- -- the parents of a generic are being installed prior to
- -- instantiation. In this case there must be no warning.
- -- We detect this case by checking whether the current top
- -- of the stack is related to the current compilation.
-
- Scop := Current_Scope;
- while Present (Scop)
- and then Scop /= Standard_Standard
- loop
- if Is_Compilation_Unit (Scop)
- and then not Is_Child_Unit (Scop)
- then
- return;
-
- elsif Scop = Cunit_Entity (Current_Sem_Unit) then
- exit;
- end if;
-
- Scop := Scope (Scop);
- end loop;
-
- Redundant := Cur_Use;
- Prev_Use := Clause;
- end if;
-
- elsif New_Unit = Current_Sem_Unit then
- Redundant := Clause;
- Prev_Use := Cur_Use;
-
- else
- -- Neither is the current unit, so they appear in parent or
- -- sibling units. Warning will be emitted elsewhere.
-
- return;
- end if;
- end;
-
- elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
- and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
- then
- -- Use_clause is in child unit of current unit, and the child
- -- unit appears in the context of the body of the parent, so it
- -- has been installed first, even though it is the redundant one.
- -- Depending on their placement in the context, the visible or the
- -- private parts of the two units, either might appear as redundant,
- -- but the message has to be on the current unit.
-
- if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
- Redundant := Cur_Use;
- Prev_Use := Clause;
- else
- Redundant := Clause;
- Prev_Use := Cur_Use;
- end if;
-
- -- If the new use clause appears in the private part of a parent unit
- -- it may appear to be redundant w.r.t. a use clause in a child unit,
- -- but the previous use clause was needed in the visible part of the
- -- child, and no warning should be emitted.
-
- if Nkind (Parent (Decl)) = N_Package_Specification
- and then
- List_Containing (Decl) = Private_Declarations (Parent (Decl))
- then
- declare
- Par : constant Entity_Id := Defining_Entity (Parent (Decl));
- Spec : constant Node_Id :=
- Specification (Unit (Cunit (Current_Sem_Unit)));
-
- begin
- if Is_Compilation_Unit (Par)
- and then Par /= Cunit_Entity (Current_Sem_Unit)
- and then Parent (Cur_Use) = Spec
- and then
- List_Containing (Cur_Use) = Visible_Declarations (Spec)
- then
- return;
- end if;
- end;
- end if;
-
- -- Finally, if the current use clause is in the context then
- -- the clause is redundant when it is nested within the unit.
-
- elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
- and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
- and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
- then
- Redundant := Clause;
- Prev_Use := Cur_Use;
-
- else
- null;
- end if;
-
- if Present (Redundant) then
- Error_Msg_Sloc := Sloc (Prev_Use);
- Error_Msg_NE
- ("& is already use-visible through previous use clause #?",
- Redundant, Pack_Name);
- end if;
- end Note_Redundant_Use;
-
- ---------------
- -- Pop_Scope --
- ---------------
-
- procedure Pop_Scope is
- SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
-
- begin
- if Debug_Flag_E then
- Write_Info;
- end if;
-
- Scope_Suppress := SST.Save_Scope_Suppress;
- Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
- Check_Policy_List := SST.Save_Check_Policy_List;
-
- if Debug_Flag_W then
- Write_Str ("--> exiting scope: ");
- Write_Name (Chars (Current_Scope));
- Write_Str (", Depth=");
- Write_Int (Int (Scope_Stack.Last));
- Write_Eol;
- end if;
-
- End_Use_Clauses (SST.First_Use_Clause);
-
- -- If the actions to be wrapped are still there they will get lost
- -- causing incomplete code to be generated. It is better to abort in
- -- this case (and we do the abort even with assertions off since the
- -- penalty is incorrect code generation)
-
- if SST.Actions_To_Be_Wrapped_Before /= No_List
- or else
- SST.Actions_To_Be_Wrapped_After /= No_List
- then
- return;
- end if;
-
- -- Free last subprogram name if allocated, and pop scope
-
- Free (SST.Last_Subprogram_Name);
- Scope_Stack.Decrement_Last;
- end Pop_Scope;
-
- ---------------
- -- Push_Scope --
- ---------------
-
- procedure Push_Scope (S : Entity_Id) is
- E : Entity_Id;
-
- begin
- if Ekind (S) = E_Void then
- null;
-
- -- Set scope depth if not a non-concurrent type, and we have not
- -- yet set the scope depth. This means that we have the first
- -- occurrence of the scope, and this is where the depth is set.
-
- elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
- and then not Scope_Depth_Set (S)
- then
- if S = Standard_Standard then
- Set_Scope_Depth_Value (S, Uint_0);
-
- elsif Is_Child_Unit (S) then
- Set_Scope_Depth_Value (S, Uint_1);
-
- elsif not Is_Record_Type (Current_Scope) then
- if Ekind (S) = E_Loop then
- Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
- else
- Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
- end if;
- end if;
- end if;
-
- Scope_Stack.Increment_Last;
-
- declare
- SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
-
- begin
- SST.Entity := S;
- SST.Save_Scope_Suppress := Scope_Suppress;
- SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
- SST.Save_Check_Policy_List := Check_Policy_List;
-
- if Scope_Stack.Last > Scope_Stack.First then
- SST.Component_Alignment_Default := Scope_Stack.Table
- (Scope_Stack.Last - 1).
- Component_Alignment_Default;
- end if;
-
- SST.Last_Subprogram_Name := null;
- SST.Is_Transient := False;
- SST.Node_To_Be_Wrapped := Empty;
- SST.Pending_Freeze_Actions := No_List;
- SST.Actions_To_Be_Wrapped_Before := No_List;
- SST.Actions_To_Be_Wrapped_After := No_List;
- SST.First_Use_Clause := Empty;
- SST.Is_Active_Stack_Base := False;
- SST.Previous_Visibility := False;
- end;
-
- if Debug_Flag_W then
- Write_Str ("--> new scope: ");
- Write_Name (Chars (Current_Scope));
- Write_Str (", Id=");
- Write_Int (Int (Current_Scope));
- Write_Str (", Depth=");
- Write_Int (Int (Scope_Stack.Last));
- Write_Eol;
- end if;
-
- -- Deal with copying flags from the previous scope to this one. This
- -- is not necessary if either scope is standard, or if the new scope
- -- is a child unit.
-
- if S /= Standard_Standard
- and then Scope (S) /= Standard_Standard
- and then not Is_Child_Unit (S)
- then
- E := Scope (S);
-
- if Nkind (E) not in N_Entity then
- return;
- end if;
-
- -- Copy categorization flags from Scope (S) to S, this is not done
- -- when Scope (S) is Standard_Standard since propagation is from
- -- library unit entity inwards. Copy other relevant attributes as
- -- well (Discard_Names in particular).
-
- -- We only propagate inwards for library level entities,
- -- inner level subprograms do not inherit the categorization.
-
- if Is_Library_Level_Entity (S) then
- Set_Is_Preelaborated (S, Is_Preelaborated (E));
- Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
- Set_Discard_Names (S, Discard_Names (E));
- Set_Suppress_Value_Tracking_On_Call
- (S, Suppress_Value_Tracking_On_Call (E));
- Set_Categorization_From_Scope (E => S, Scop => E);
- end if;
- end if;
- end Push_Scope;
-
- ---------------------
- -- Premature_Usage --
- ---------------------
-
- procedure Premature_Usage (N : Node_Id) is
- Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
- E : Entity_Id := Entity (N);
-
- begin
- -- Within an instance, the analysis of the actual for a formal object
- -- does not see the name of the object itself. This is significant only
- -- if the object is an aggregate, where its analysis does not do any
- -- name resolution on component associations. (see 4717-008). In such a
- -- case, look for the visible homonym on the chain.
-
- if In_Instance
- and then Present (Homonym (E))
- then
- E := Homonym (E);
-
- while Present (E)
- and then not In_Open_Scopes (Scope (E))
- loop
- E := Homonym (E);
- end loop;
-
- if Present (E) then
- Set_Entity (N, E);
- Set_Etype (N, Etype (E));
- return;
- end if;
- end if;
-
- if Kind = N_Component_Declaration then
- Error_Msg_N
- ("component&! cannot be used before end of record declaration", N);
-
- elsif Kind = N_Parameter_Specification then
- Error_Msg_N
- ("formal parameter&! cannot be used before end of specification",
- N);
-
- elsif Kind = N_Discriminant_Specification then
- Error_Msg_N
- ("discriminant&! cannot be used before end of discriminant part",
- N);
-
- elsif Kind = N_Procedure_Specification
- or else Kind = N_Function_Specification
- then
- Error_Msg_N
- ("subprogram&! cannot be used before end of its declaration",
- N);
-
- elsif Kind = N_Full_Type_Declaration then
- Error_Msg_N
- ("type& cannot be used before end of its declaration!", N);
-
- else
- Error_Msg_N
- ("object& cannot be used before end of its declaration!", N);
- end if;
- end Premature_Usage;
-
- ------------------------
- -- Present_System_Aux --
- ------------------------
-
- function Present_System_Aux (N : Node_Id := Empty) return Boolean is
- Loc : Source_Ptr;
- Aux_Name : Unit_Name_Type;
- Unum : Unit_Number_Type;
- Withn : Node_Id;
- With_Sys : Node_Id;
- The_Unit : Node_Id;
-
- function Find_System (C_Unit : Node_Id) return Entity_Id;
- -- Scan context clause of compilation unit to find with_clause
- -- for System.
-
- -----------------
- -- Find_System --
- -----------------
-
- function Find_System (C_Unit : Node_Id) return Entity_Id is
- With_Clause : Node_Id;
-
- begin
- With_Clause := First (Context_Items (C_Unit));
- while Present (With_Clause) loop
- if (Nkind (With_Clause) = N_With_Clause
- and then Chars (Name (With_Clause)) = Name_System)
- and then Comes_From_Source (With_Clause)
- then
- return With_Clause;
- end if;
-
- Next (With_Clause);
- end loop;
-
- return Empty;
- end Find_System;
-
- -- Start of processing for Present_System_Aux
-
- begin
- -- The child unit may have been loaded and analyzed already
-
- if Present (System_Aux_Id) then
- return True;
-
- -- If no previous pragma for System.Aux, nothing to load
-
- elsif No (System_Extend_Unit) then
- return False;
-
- -- Use the unit name given in the pragma to retrieve the unit.
- -- Verify that System itself appears in the context clause of the
- -- current compilation. If System is not present, an error will
- -- have been reported already.
-
- else
- With_Sys := Find_System (Cunit (Current_Sem_Unit));
-
- The_Unit := Unit (Cunit (Current_Sem_Unit));
-
- if No (With_Sys)
- and then
- (Nkind (The_Unit) = N_Package_Body
- or else (Nkind (The_Unit) = N_Subprogram_Body
- and then
- not Acts_As_Spec (Cunit (Current_Sem_Unit))))
- then
- With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
- end if;
-
- if No (With_Sys)
- and then Present (N)
- then
- -- If we are compiling a subunit, we need to examine its
- -- context as well (Current_Sem_Unit is the parent unit);
-
- The_Unit := Parent (N);
- while Nkind (The_Unit) /= N_Compilation_Unit loop
- The_Unit := Parent (The_Unit);
- end loop;
-
- if Nkind (Unit (The_Unit)) = N_Subunit then
- With_Sys := Find_System (The_Unit);
- end if;
- end if;
-
- if No (With_Sys) then
- return False;
- end if;
-
- Loc := Sloc (With_Sys);
- Get_Name_String (Chars (Expression (System_Extend_Unit)));
- Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
- Name_Buffer (1 .. 7) := "system.";
- Name_Buffer (Name_Len + 8) := '%';
- Name_Buffer (Name_Len + 9) := 's';
- Name_Len := Name_Len + 9;
- Aux_Name := Name_Find;
-
- Unum :=
- Load_Unit
- (Load_Name => Aux_Name,
- Required => False,
- Subunit => False,
- Error_Node => With_Sys);
-
- if Unum /= No_Unit then
- Semantics (Cunit (Unum));
- System_Aux_Id :=
- Defining_Entity (Specification (Unit (Cunit (Unum))));
-
- Withn :=
- Make_With_Clause (Loc,
- Name =>
- Make_Expanded_Name (Loc,
- Chars => Chars (System_Aux_Id),
- Prefix => New_Reference_To (Scope (System_Aux_Id), Loc),
- Selector_Name => New_Reference_To (System_Aux_Id, Loc)));
-
- Set_Entity (Name (Withn), System_Aux_Id);
-
- Set_Library_Unit (Withn, Cunit (Unum));
- Set_Corresponding_Spec (Withn, System_Aux_Id);
- Set_First_Name (Withn, True);
- Set_Implicit_With (Withn, True);
-
- Insert_After (With_Sys, Withn);
- Mark_Rewrite_Insertion (Withn);
- Set_Context_Installed (Withn);
-
- return True;
-
- -- Here if unit load failed
-
- else
- Error_Msg_Name_1 := Name_System;
- Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
- Error_Msg_N
- ("extension package `%.%` does not exist",
- Opt.System_Extend_Unit);
- return False;
- end if;
- end if;
- end Present_System_Aux;
-
- -------------------------
- -- Restore_Scope_Stack --
- -------------------------
-
- procedure Restore_Scope_Stack (Handle_Use : Boolean := True) is
- E : Entity_Id;
- S : Entity_Id;
- Comp_Unit : Node_Id;
- In_Child : Boolean := False;
- Full_Vis : Boolean := True;
- SS_Last : constant Int := Scope_Stack.Last;
-
- begin
- -- Restore visibility of previous scope stack, if any
-
- for J in reverse 0 .. Scope_Stack.Last loop
- exit when Scope_Stack.Table (J).Entity = Standard_Standard
- or else No (Scope_Stack.Table (J).Entity);
-
- S := Scope_Stack.Table (J).Entity;
-
- if not Is_Hidden_Open_Scope (S) then
-
- -- If the parent scope is hidden, its entities are hidden as
- -- well, unless the entity is the instantiation currently
- -- being analyzed.
-
- if not Is_Hidden_Open_Scope (Scope (S))
- or else not Analyzed (Parent (S))
- or else Scope (S) = Standard_Standard
- then
- Set_Is_Immediately_Visible (S, True);
- end if;
-
- E := First_Entity (S);
- while Present (E) loop
- if Is_Child_Unit (E) then
- Set_Is_Immediately_Visible (E,
- Is_Visible_Child_Unit (E) or else In_Open_Scopes (E));
- else
- Set_Is_Immediately_Visible (E, True);
- end if;
-
- Next_Entity (E);
-
- if not Full_Vis then
- exit when E = First_Private_Entity (S);
- end if;
- end loop;
-
- -- The visibility of child units (siblings of current compilation)
- -- must be restored in any case. Their declarations may appear
- -- after the private part of the parent.
-
- if not Full_Vis then
- while Present (E) loop
- if Is_Child_Unit (E) then
- Set_Is_Immediately_Visible (E,
- Is_Visible_Child_Unit (E) or else In_Open_Scopes (E));
- end if;
-
- Next_Entity (E);
- end loop;
- end if;
- end if;
-
- if Is_Child_Unit (S)
- and not In_Child -- check only for current unit
- then
- In_Child := True;
-
- -- Restore visibility of parents according to whether the child
- -- is private and whether we are in its visible part.
-
- Comp_Unit := Parent (Unit_Declaration_Node (S));
-
- if Nkind (Comp_Unit) = N_Compilation_Unit
- and then Private_Present (Comp_Unit)
- then
- Full_Vis := True;
-
- elsif Is_Package_Or_Generic_Package (S)
- and then (In_Private_Part (S)
- or else In_Package_Body (S))
- then
- Full_Vis := True;
-
- -- if S is the scope of some instance (which has already been
- -- seen on the stack) it does not affect the visibility of
- -- other scopes.
-
- elsif Is_Hidden_Open_Scope (S) then
- null;
-
- elsif (Ekind (S) = E_Procedure
- or else Ekind (S) = E_Function)
- and then Has_Completion (S)
- then
- Full_Vis := True;
- else
- Full_Vis := False;
- end if;
- else
- Full_Vis := True;
- end if;
- end loop;
-
- if SS_Last >= Scope_Stack.First
- and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
- and then Handle_Use
- then
- Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
- end if;
- end Restore_Scope_Stack;
-
- ----------------------
- -- Save_Scope_Stack --
- ----------------------
-
- procedure Save_Scope_Stack (Handle_Use : Boolean := True) is
- E : Entity_Id;
- S : Entity_Id;
- SS_Last : constant Int := Scope_Stack.Last;
-
- begin
- if SS_Last >= Scope_Stack.First
- and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
- then
- if Handle_Use then
- End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
- end if;
-
- -- If the call is from within a compilation unit, as when called from
- -- Rtsfind, make current entries in scope stack invisible while we
- -- analyze the new unit.
-
- for J in reverse 0 .. SS_Last loop
- exit when Scope_Stack.Table (J).Entity = Standard_Standard
- or else No (Scope_Stack.Table (J).Entity);
-
- S := Scope_Stack.Table (J).Entity;
- Set_Is_Immediately_Visible (S, False);
-
- E := First_Entity (S);
- while Present (E) loop
- Set_Is_Immediately_Visible (E, False);
- Next_Entity (E);
- end loop;
- end loop;
-
- end if;
- end Save_Scope_Stack;
-
- -------------
- -- Set_Use --
- -------------
-
- procedure Set_Use (L : List_Id) is
- Decl : Node_Id;
- Pack_Name : Node_Id;
- Pack : Entity_Id;
- Id : Entity_Id;
-
- begin
- if Present (L) then
- Decl := First (L);
- while Present (Decl) loop
- if Nkind (Decl) = N_Use_Package_Clause then
- Chain_Use_Clause (Decl);
-
- Pack_Name := First (Names (Decl));
- while Present (Pack_Name) loop
- Pack := Entity (Pack_Name);
-
- if Ekind (Pack) = E_Package
- and then Applicable_Use (Pack_Name)
- then
- Use_One_Package (Pack, Decl);
- end if;
-
- Next (Pack_Name);
- end loop;
-
- elsif Nkind (Decl) = N_Use_Type_Clause then
- Chain_Use_Clause (Decl);
-
- Id := First (Subtype_Marks (Decl));
- while Present (Id) loop
- if Entity (Id) /= Any_Type then
- Use_One_Type (Id);
- end if;
-
- Next (Id);
- end loop;
- end if;
-
- Next (Decl);
- end loop;
- end if;
- end Set_Use;
-
- ---------------------
- -- Use_One_Package --
- ---------------------
-
- procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
- Id : Entity_Id;
- Prev : Entity_Id;
- Current_Instance : Entity_Id := Empty;
- Real_P : Entity_Id;
- Private_With_OK : Boolean := False;
-
- begin
- if Ekind (P) /= E_Package then
- return;
- end if;
-
- Set_In_Use (P);
- Set_Current_Use_Clause (P, N);
-
- -- Ada 2005 (AI-50217): Check restriction
-
- if From_With_Type (P) then
- Error_Msg_N ("limited withed package cannot appear in use clause", N);
- end if;
-
- -- Find enclosing instance, if any
-
- if In_Instance then
- Current_Instance := Current_Scope;
- while not Is_Generic_Instance (Current_Instance) loop
- Current_Instance := Scope (Current_Instance);
- end loop;
-
- if No (Hidden_By_Use_Clause (N)) then
- Set_Hidden_By_Use_Clause (N, New_Elmt_List);
- end if;
- end if;
-
- -- If unit is a package renaming, indicate that the renamed
- -- package is also in use (the flags on both entities must
- -- remain consistent, and a subsequent use of either of them
- -- should be recognized as redundant).
-
- if Present (Renamed_Object (P)) then
- Set_In_Use (Renamed_Object (P));
- Set_Current_Use_Clause (Renamed_Object (P), N);
- Real_P := Renamed_Object (P);
- else
- Real_P := P;
- end if;
-
- -- Ada 2005 (AI-262): Check the use_clause of a private withed package
- -- found in the private part of a package specification
-
- if In_Private_Part (Current_Scope)
- and then Has_Private_With (P)
- and then Is_Child_Unit (Current_Scope)
- and then Is_Child_Unit (P)
- and then Is_Ancestor_Package (Scope (Current_Scope), P)
- then
- Private_With_OK := True;
- end if;
-
- -- Loop through entities in one package making them potentially
- -- use-visible.
-
- Id := First_Entity (P);
- while Present (Id)
- and then (Id /= First_Private_Entity (P)
- or else Private_With_OK) -- Ada 2005 (AI-262)
- loop
- Prev := Current_Entity (Id);
- while Present (Prev) loop
- if Is_Immediately_Visible (Prev)
- and then (not Is_Overloadable (Prev)
- or else not Is_Overloadable (Id)
- or else (Type_Conformant (Id, Prev)))
- then
- if No (Current_Instance) then
-
- -- Potentially use-visible entity remains hidden
-
- goto Next_Usable_Entity;
-
- -- A use clause within an instance hides outer global entities,
- -- which are not used to resolve local entities in the
- -- instance. Note that the predefined entities in Standard
- -- could not have been hidden in the generic by a use clause,
- -- and therefore remain visible. Other compilation units whose
- -- entities appear in Standard must be hidden in an instance.
-
- -- To determine whether an entity is external to the instance
- -- we compare the scope depth of its scope with that of the
- -- current instance. However, a generic actual of a subprogram
- -- instance is declared in the wrapper package but will not be
- -- hidden by a use-visible entity.
-
- -- If Id is called Standard, the predefined package with the
- -- same name is in the homonym chain. It has to be ignored
- -- because it has no defined scope (being the only entity in
- -- the system with this mandated behavior).
-
- elsif not Is_Hidden (Id)
- and then Present (Scope (Prev))
- and then not Is_Wrapper_Package (Scope (Prev))
- and then Scope_Depth (Scope (Prev)) <
- Scope_Depth (Current_Instance)
- and then (Scope (Prev) /= Standard_Standard
- or else Sloc (Prev) > Standard_Location)
- then
- Set_Is_Potentially_Use_Visible (Id);
- Set_Is_Immediately_Visible (Prev, False);
- Append_Elmt (Prev, Hidden_By_Use_Clause (N));
- end if;
-
- -- A user-defined operator is not use-visible if the predefined
- -- operator for the type is immediately visible, which is the case
- -- if the type of the operand is in an open scope. This does not
- -- apply to user-defined operators that have operands of different
- -- types, because the predefined mixed mode operations (multiply
- -- and divide) apply to universal types and do not hide anything.
-
- elsif Ekind (Prev) = E_Operator
- and then Operator_Matches_Spec (Prev, Id)
- and then In_Open_Scopes
- (Scope (Base_Type (Etype (First_Formal (Id)))))
- and then (No (Next_Formal (First_Formal (Id)))
- or else Etype (First_Formal (Id))
- = Etype (Next_Formal (First_Formal (Id)))
- or else Chars (Prev) = Name_Op_Expon)
- then
- goto Next_Usable_Entity;
- end if;
-
- Prev := Homonym (Prev);
- end loop;
-
- -- On exit, we know entity is not hidden, unless it is private
-
- if not Is_Hidden (Id)
- and then ((not Is_Child_Unit (Id))
- or else Is_Visible_Child_Unit (Id))
- then
- Set_Is_Potentially_Use_Visible (Id);
-
- if Is_Private_Type (Id)
- and then Present (Full_View (Id))
- then
- Set_Is_Potentially_Use_Visible (Full_View (Id));
- end if;
- end if;
-
- <<Next_Usable_Entity>>
- Next_Entity (Id);
- end loop;
-
- -- Child units are also made use-visible by a use clause, but they may
- -- appear after all visible declarations in the parent entity list.
-
- while Present (Id) loop
- if Is_Child_Unit (Id)
- and then Is_Visible_Child_Unit (Id)
- then
- Set_Is_Potentially_Use_Visible (Id);
- end if;
-
- Next_Entity (Id);
- end loop;
-
- if Chars (Real_P) = Name_System
- and then Scope (Real_P) = Standard_Standard
- and then Present_System_Aux (N)
- then
- Use_One_Package (System_Aux_Id, N);
- end if;
-
- end Use_One_Package;
-
- ------------------
- -- Use_One_Type --
- ------------------
-
- procedure Use_One_Type (Id : Node_Id) is
- Elmt : Elmt_Id;
- Is_Known_Used : Boolean;
- Op_List : Elist_Id;
- T : Entity_Id;
-
- function Spec_Reloaded_For_Body return Boolean;
- -- Determine whether the compilation unit is a package body and the use
- -- type clause is in the spec of the same package. Even though the spec
- -- was analyzed first, its context is reloaded when analysing the body.
-
- ----------------------------
- -- Spec_Reloaded_For_Body --
- ----------------------------
-
- function Spec_Reloaded_For_Body return Boolean is
- begin
- if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
- declare
- Spec : constant Node_Id :=
- Parent (List_Containing (Parent (Id)));
- begin
- return
- Nkind (Spec) = N_Package_Specification
- and then Corresponding_Body (Parent (Spec)) =
- Cunit_Entity (Current_Sem_Unit);
- end;
- end if;
-
- return False;
- end Spec_Reloaded_For_Body;
-
- -- Start of processing for Use_One_Type;
-
- begin
- -- It is the type determined by the subtype mark (8.4(8)) whose
- -- operations become potentially use-visible.
-
- T := Base_Type (Entity (Id));
-
- -- Either the type itself is used, the package where it is declared
- -- is in use or the entity is declared in the current package, thus
- -- use-visible.
-
- Is_Known_Used :=
- In_Use (T)
- or else In_Use (Scope (T))
- or else Scope (T) = Current_Scope;
-
- Set_Redundant_Use (Id,
- Is_Known_Used or else Is_Potentially_Use_Visible (T));
-
- if In_Open_Scopes (Scope (T)) then
- null;
-
- -- A limited view cannot appear in a use_type clause. However, an
- -- access type whose designated type is limited has the flag but
- -- is not itself a limited view unless we only have a limited view
- -- of its enclosing package.
-
- elsif From_With_Type (T)
- and then From_With_Type (Scope (T))
- then
- Error_Msg_N
- ("incomplete type from limited view "
- & "cannot appear in use clause", Id);
-
- -- If the subtype mark designates a subtype in a different package,
- -- we have to check that the parent type is visible, otherwise the
- -- use type clause is a noop. Not clear how to do that???
-
- elsif not Redundant_Use (Id) then
- Set_In_Use (T);
- Set_Current_Use_Clause (T, Parent (Id));
- Op_List := Collect_Primitive_Operations (T);
-
- Elmt := First_Elmt (Op_List);
- while Present (Elmt) loop
- if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
- or else Chars (Node (Elmt)) in Any_Operator_Name)
- and then not Is_Hidden (Node (Elmt))
- then
- Set_Is_Potentially_Use_Visible (Node (Elmt));
- end if;
-
- Next_Elmt (Elmt);
- end loop;
- end if;
-
- -- If warning on redundant constructs, check for unnecessary WITH
-
- if Warn_On_Redundant_Constructs
- and then Is_Known_Used
-
- -- with P; with P; use P;
- -- package P is package X is package body X is
- -- type T ... use P.T;
-
- -- The compilation unit is the body of X. GNAT first compiles the
- -- spec of X, then proceeds to the body. At that point P is marked
- -- as use visible. The analysis then reinstalls the spec along with
- -- its context. The use clause P.T is now recognized as redundant,
- -- but in the wrong context. Do not emit a warning in such cases.
- -- Do not emit a warning either if we are in an instance, there
- -- is no redundancy between an outer use_clause and one that appears
- -- within the generic.
-
- and then not Spec_Reloaded_For_Body
- and then not In_Instance
- then
- -- The type already has a use clause
-
- if In_Use (T) then
-
- -- Case where we know the current use clause for the type
-
- if Present (Current_Use_Clause (T)) then
- Use_Clause_Known : declare
- Clause1 : constant Node_Id := Parent (Id);
- Clause2 : constant Node_Id := Current_Use_Clause (T);
- Ent1 : Entity_Id;
- Ent2 : Entity_Id;
- Err_No : Node_Id;
- Unit1 : Node_Id;
- Unit2 : Node_Id;
-
- function Entity_Of_Unit (U : Node_Id) return Entity_Id;
- -- Return the appropriate entity for determining which unit
- -- has a deeper scope: the defining entity for U, unless U
- -- is a package instance, in which case we retrieve the
- -- entity of the instance spec.
-
- --------------------
- -- Entity_Of_Unit --
- --------------------
-
- function Entity_Of_Unit (U : Node_Id) return Entity_Id is
- begin
- if Nkind (U) = N_Package_Instantiation
- and then Analyzed (U)
- then
- return Defining_Entity (Instance_Spec (U));
- else
- return Defining_Entity (U);
- end if;
- end Entity_Of_Unit;
-
- -- Start of processing for Use_Clause_Known
-
- begin
- -- If both current use type clause and the use type
- -- clause for the type are at the compilation unit level,
- -- one of the units must be an ancestor of the other, and
- -- the warning belongs on the descendant.
-
- if Nkind (Parent (Clause1)) = N_Compilation_Unit
- and then
- Nkind (Parent (Clause2)) = N_Compilation_Unit
- then
- Unit1 := Unit (Parent (Clause1));
- Unit2 := Unit (Parent (Clause2));
-
- -- There is a redundant use type clause in a child unit.
- -- Determine which of the units is more deeply nested.
- -- If a unit is a package instance, retrieve the entity
- -- and its scope from the instance spec.
-
- Ent1 := Entity_Of_Unit (Unit1);
- Ent2 := Entity_Of_Unit (Unit2);
-
- if Scope (Ent2) = Standard_Standard then
- Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
- Err_No := Clause1;
-
- elsif Scope (Ent1) = Standard_Standard then
- Error_Msg_Sloc := Sloc (Id);
- Err_No := Clause2;
-
- -- If both units are child units, we determine which one
- -- is the descendant by the scope distance to the
- -- ultimate parent unit.
-
- else
- declare
- S1, S2 : Entity_Id;
-
- begin
- S1 := Scope (Ent1);
- S2 := Scope (Ent2);
- while S1 /= Standard_Standard
- and then
- S2 /= Standard_Standard
- loop
- S1 := Scope (S1);
- S2 := Scope (S2);
- end loop;
-
- if S1 = Standard_Standard then
- Error_Msg_Sloc := Sloc (Id);
- Err_No := Clause2;
- else
- Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
- Err_No := Clause1;
- end if;
- end;
- end if;
-
- Error_Msg_NE
- ("& is already use-visible through previous "
- & "use_type_clause #?", Err_No, Id);
-
- -- Case where current use type clause and the use type
- -- clause for the type are not both at the compilation unit
- -- level. In this case we don't have location information.
-
- else
- Error_Msg_NE
- ("& is already use-visible through previous "
- & "use type clause?", Id, Id);
- end if;
- end Use_Clause_Known;
-
- -- Here if Current_Use_Clause is not set for T, another case
- -- where we do not have the location information available.
-
- else
- Error_Msg_NE
- ("& is already use-visible through previous "
- & "use type clause?", Id, Id);
- end if;
-
- -- The package where T is declared is already used
-
- elsif In_Use (Scope (T)) then
- Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
- Error_Msg_NE
- ("& is already use-visible through package use clause #?",
- Id, Id);
-
- -- The current scope is the package where T is declared
-
- else
- Error_Msg_Node_2 := Scope (T);
- Error_Msg_NE
- ("& is already use-visible inside package &?", Id, Id);
- end if;
- end if;
- end Use_One_Type;
-
- ----------------
- -- Write_Info --
- ----------------
-
- procedure Write_Info is
- Id : Entity_Id := First_Entity (Current_Scope);
-
- begin
- -- No point in dumping standard entities
-
- if Current_Scope = Standard_Standard then
- return;
- end if;
-
- Write_Str ("========================================================");
- Write_Eol;
- Write_Str (" Defined Entities in ");
- Write_Name (Chars (Current_Scope));
- Write_Eol;
- Write_Str ("========================================================");
- Write_Eol;
-
- if No (Id) then
- Write_Str ("-- none --");
- Write_Eol;
-
- else
- while Present (Id) loop
- Write_Entity_Info (Id, " ");
- Next_Entity (Id);
- end loop;
- end if;
-
- if Scope (Current_Scope) = Standard_Standard then
-
- -- Print information on the current unit itself
-
- Write_Entity_Info (Current_Scope, " ");
- end if;
-
- Write_Eol;
- end Write_Info;
-
- -----------------
- -- Write_Scopes --
- -----------------
-
- procedure Write_Scopes is
- S : Entity_Id;
- begin
- for J in reverse 1 .. Scope_Stack.Last loop
- S := Scope_Stack.Table (J).Entity;
- Write_Int (Int (S));
- Write_Str (" === ");
- Write_Name (Chars (S));
- Write_Eol;
- end loop;
- end Write_Scopes;
-
-end Sem_Ch8;