aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/sem_ch4.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/sem_ch4.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/sem_ch4.adb6696
1 files changed, 0 insertions, 6696 deletions
diff --git a/gcc-4.4.0/gcc/ada/sem_ch4.adb b/gcc-4.4.0/gcc/ada/sem_ch4.adb
deleted file mode 100644
index 47fd4e6aa..000000000
--- a/gcc-4.4.0/gcc/ada/sem_ch4.adb
+++ /dev/null
@@ -1,6696 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M _ C H 4 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Exp_Util; use Exp_Util;
-with Fname; use Fname;
-with Itypes; use Itypes;
-with Lib; use Lib;
-with Lib.Xref; use Lib.Xref;
-with Namet; use Namet;
-with Namet.Sp; use Namet.Sp;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Output; use Output;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch6; use Sem_Ch6;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Disp; use Sem_Disp;
-with Sem_Dist; use Sem_Dist;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sem_Type; use Sem_Type;
-with Stand; use Stand;
-with Sinfo; use Sinfo;
-with Snames; use Snames;
-with Tbuild; use Tbuild;
-
-package body Sem_Ch4 is
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Analyze_Concatenation_Rest (N : Node_Id);
- -- Does the "rest" of the work of Analyze_Concatenation, after the left
- -- operand has been analyzed. See Analyze_Concatenation for details.
-
- procedure Analyze_Expression (N : Node_Id);
- -- For expressions that are not names, this is just a call to analyze.
- -- If the expression is a name, it may be a call to a parameterless
- -- function, and if so must be converted into an explicit call node
- -- and analyzed as such. This deproceduring must be done during the first
- -- pass of overload resolution, because otherwise a procedure call with
- -- overloaded actuals may fail to resolve.
-
- procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
- -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
- -- is an operator name or an expanded name whose selector is an operator
- -- name, and one possible interpretation is as a predefined operator.
-
- procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
- -- If the prefix of a selected_component is overloaded, the proper
- -- interpretation that yields a record type with the proper selector
- -- name must be selected.
-
- procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
- -- Procedure to analyze a user defined binary operator, which is resolved
- -- like a function, but instead of a list of actuals it is presented
- -- with the left and right operands of an operator node.
-
- procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
- -- Procedure to analyze a user defined unary operator, which is resolved
- -- like a function, but instead of a list of actuals, it is presented with
- -- the operand of the operator node.
-
- procedure Ambiguous_Operands (N : Node_Id);
- -- for equality, membership, and comparison operators with overloaded
- -- arguments, list possible interpretations.
-
- procedure Analyze_One_Call
- (N : Node_Id;
- Nam : Entity_Id;
- Report : Boolean;
- Success : out Boolean;
- Skip_First : Boolean := False);
- -- Check one interpretation of an overloaded subprogram name for
- -- compatibility with the types of the actuals in a call. If there is a
- -- single interpretation which does not match, post error if Report is
- -- set to True.
- --
- -- Nam is the entity that provides the formals against which the actuals
- -- are checked. Nam is either the name of a subprogram, or the internal
- -- subprogram type constructed for an access_to_subprogram. If the actuals
- -- are compatible with Nam, then Nam is added to the list of candidate
- -- interpretations for N, and Success is set to True.
- --
- -- The flag Skip_First is used when analyzing a call that was rewritten
- -- from object notation. In this case the first actual may have to receive
- -- an explicit dereference, depending on the first formal of the operation
- -- being called. The caller will have verified that the object is legal
- -- for the call. If the remaining parameters match, the first parameter
- -- will rewritten as a dereference if needed, prior to completing analysis.
-
- procedure Check_Misspelled_Selector
- (Prefix : Entity_Id;
- Sel : Node_Id);
- -- Give possible misspelling diagnostic if Sel is likely to be
- -- a misspelling of one of the selectors of the Prefix.
- -- This is called by Analyze_Selected_Component after producing
- -- an invalid selector error message.
-
- function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
- -- Verify that type T is declared in scope S. Used to find interpretations
- -- for operators given by expanded names. This is abstracted as a separate
- -- function to handle extensions to System, where S is System, but T is
- -- declared in the extension.
-
- procedure Find_Arithmetic_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- L and R are the operands of an arithmetic operator. Find
- -- consistent pairs of interpretations for L and R that have a
- -- numeric type consistent with the semantics of the operator.
-
- procedure Find_Comparison_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- L and R are operands of a comparison operator. Find consistent
- -- pairs of interpretations for L and R.
-
- procedure Find_Concatenation_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- For the four varieties of concatenation
-
- procedure Find_Equality_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- Ditto for equality operators
-
- procedure Find_Boolean_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- Ditto for binary logical operations
-
- procedure Find_Negation_Types
- (R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- Find consistent interpretation for operand of negation operator
-
- procedure Find_Non_Universal_Interpretations
- (N : Node_Id;
- R : Node_Id;
- Op_Id : Entity_Id;
- T1 : Entity_Id);
- -- For equality and comparison operators, the result is always boolean,
- -- and the legality of the operation is determined from the visibility
- -- of the operand types. If one of the operands has a universal interpre-
- -- tation, the legality check uses some compatible non-universal
- -- interpretation of the other operand. N can be an operator node, or
- -- a function call whose name is an operator designator.
-
- function Find_Primitive_Operation (N : Node_Id) return Boolean;
- -- Find candidate interpretations for the name Obj.Proc when it appears
- -- in a subprogram renaming declaration.
-
- procedure Find_Unary_Types
- (R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- Unary arithmetic types: plus, minus, abs
-
- procedure Check_Arithmetic_Pair
- (T1, T2 : Entity_Id;
- Op_Id : Entity_Id;
- N : Node_Id);
- -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
- -- types for left and right operand. Determine whether they constitute
- -- a valid pair for the given operator, and record the corresponding
- -- interpretation of the operator node. The node N may be an operator
- -- node (the usual case) or a function call whose prefix is an operator
- -- designator. In both cases Op_Id is the operator name itself.
-
- procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
- -- Give detailed information on overloaded call where none of the
- -- interpretations match. N is the call node, Nam the designator for
- -- the overloaded entity being called.
-
- function Junk_Operand (N : Node_Id) return Boolean;
- -- Test for an operand that is an inappropriate entity (e.g. a package
- -- name or a label). If so, issue an error message and return True. If
- -- the operand is not an inappropriate entity kind, return False.
-
- procedure Operator_Check (N : Node_Id);
- -- Verify that an operator has received some valid interpretation. If none
- -- was found, determine whether a use clause would make the operation
- -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
- -- every type compatible with the operator, even if the operator for the
- -- type is not directly visible. The routine uses this type to emit a more
- -- informative message.
-
- function Process_Implicit_Dereference_Prefix
- (E : Entity_Id;
- P : Node_Id) return Entity_Id;
- -- Called when P is the prefix of an implicit dereference, denoting an
- -- object E. The function returns the designated type of the prefix, taking
- -- into account that the designated type of an anonymous access type may be
- -- a limited view, when the non-limited view is visible.
- -- If in semantics only mode (-gnatc or generic), the function also records
- -- that the prefix is a reference to E, if any. Normally, such a reference
- -- is generated only when the implicit dereference is expanded into an
- -- explicit one, but for consistency we must generate the reference when
- -- expansion is disabled as well.
-
- procedure Remove_Abstract_Operations (N : Node_Id);
- -- Ada 2005: implementation of AI-310. An abstract non-dispatching
- -- operation is not a candidate interpretation.
-
- function Try_Indexed_Call
- (N : Node_Id;
- Nam : Entity_Id;
- Typ : Entity_Id;
- Skip_First : Boolean) return Boolean;
- -- If a function has defaults for all its actuals, a call to it may in fact
- -- be an indexing on the result of the call. Try_Indexed_Call attempts the
- -- interpretation as an indexing, prior to analysis as a call. If both are
- -- possible, the node is overloaded with both interpretations (same symbol
- -- but two different types). If the call is written in prefix form, the
- -- prefix becomes the first parameter in the call, and only the remaining
- -- actuals must be checked for the presence of defaults.
-
- function Try_Indirect_Call
- (N : Node_Id;
- Nam : Entity_Id;
- Typ : Entity_Id) return Boolean;
- -- Similarly, a function F that needs no actuals can return an access to a
- -- subprogram, and the call F (X) interpreted as F.all (X). In this case
- -- the call may be overloaded with both interpretations.
-
- function Try_Object_Operation (N : Node_Id) return Boolean;
- -- Ada 2005 (AI-252): Support the object.operation notation
-
- procedure wpo (T : Entity_Id);
- pragma Warnings (Off, wpo);
- -- Used for debugging: obtain list of primitive operations even if
- -- type is not frozen and dispatch table is not built yet.
-
- ------------------------
- -- Ambiguous_Operands --
- ------------------------
-
- procedure Ambiguous_Operands (N : Node_Id) is
- procedure List_Operand_Interps (Opnd : Node_Id);
-
- --------------------------
- -- List_Operand_Interps --
- --------------------------
-
- procedure List_Operand_Interps (Opnd : Node_Id) is
- Nam : Node_Id;
- Err : Node_Id := N;
-
- begin
- if Is_Overloaded (Opnd) then
- if Nkind (Opnd) in N_Op then
- Nam := Opnd;
- elsif Nkind (Opnd) = N_Function_Call then
- Nam := Name (Opnd);
- else
- return;
- end if;
-
- else
- return;
- end if;
-
- if Opnd = Left_Opnd (N) then
- Error_Msg_N
- ("\left operand has the following interpretations", N);
- else
- Error_Msg_N
- ("\right operand has the following interpretations", N);
- Err := Opnd;
- end if;
-
- List_Interps (Nam, Err);
- end List_Operand_Interps;
-
- -- Start of processing for Ambiguous_Operands
-
- begin
- if Nkind (N) in N_Membership_Test then
- Error_Msg_N ("ambiguous operands for membership", N);
-
- elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
- Error_Msg_N ("ambiguous operands for equality", N);
-
- else
- Error_Msg_N ("ambiguous operands for comparison", N);
- end if;
-
- if All_Errors_Mode then
- List_Operand_Interps (Left_Opnd (N));
- List_Operand_Interps (Right_Opnd (N));
- else
- Error_Msg_N ("\use -gnatf switch for details", N);
- end if;
- end Ambiguous_Operands;
-
- -----------------------
- -- Analyze_Aggregate --
- -----------------------
-
- -- Most of the analysis of Aggregates requires that the type be known,
- -- and is therefore put off until resolution.
-
- procedure Analyze_Aggregate (N : Node_Id) is
- begin
- if No (Etype (N)) then
- Set_Etype (N, Any_Composite);
- end if;
- end Analyze_Aggregate;
-
- -----------------------
- -- Analyze_Allocator --
- -----------------------
-
- procedure Analyze_Allocator (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Sav_Errs : constant Nat := Serious_Errors_Detected;
- E : Node_Id := Expression (N);
- Acc_Type : Entity_Id;
- Type_Id : Entity_Id;
-
- begin
- -- In accordance with H.4(7), the No_Allocators restriction only applies
- -- to user-written allocators.
-
- if Comes_From_Source (N) then
- Check_Restriction (No_Allocators, N);
- end if;
-
- if Nkind (E) = N_Qualified_Expression then
- Acc_Type := Create_Itype (E_Allocator_Type, N);
- Set_Etype (Acc_Type, Acc_Type);
- Find_Type (Subtype_Mark (E));
-
- -- Analyze the qualified expression, and apply the name resolution
- -- rule given in 4.7 (3).
-
- Analyze (E);
- Type_Id := Etype (E);
- Set_Directly_Designated_Type (Acc_Type, Type_Id);
-
- Resolve (Expression (E), Type_Id);
-
- if Is_Limited_Type (Type_Id)
- and then Comes_From_Source (N)
- and then not In_Instance_Body
- then
- if not OK_For_Limited_Init (Expression (E)) then
- Error_Msg_N ("initialization not allowed for limited types", N);
- Explain_Limited_Type (Type_Id, N);
- end if;
- end if;
-
- -- A qualified expression requires an exact match of the type,
- -- class-wide matching is not allowed.
-
- -- if Is_Class_Wide_Type (Type_Id)
- -- and then Base_Type
- -- (Etype (Expression (E))) /= Base_Type (Type_Id)
- -- then
- -- Wrong_Type (Expression (E), Type_Id);
- -- end if;
-
- Check_Non_Static_Context (Expression (E));
-
- -- We don't analyze the qualified expression itself because it's
- -- part of the allocator
-
- Set_Etype (E, Type_Id);
-
- -- Case where allocator has a subtype indication
-
- else
- declare
- Def_Id : Entity_Id;
- Base_Typ : Entity_Id;
-
- begin
- -- If the allocator includes a N_Subtype_Indication then a
- -- constraint is present, otherwise the node is a subtype mark.
- -- Introduce an explicit subtype declaration into the tree
- -- defining some anonymous subtype and rewrite the allocator to
- -- use this subtype rather than the subtype indication.
-
- -- It is important to introduce the explicit subtype declaration
- -- so that the bounds of the subtype indication are attached to
- -- the tree in case the allocator is inside a generic unit.
-
- if Nkind (E) = N_Subtype_Indication then
-
- -- A constraint is only allowed for a composite type in Ada
- -- 95. In Ada 83, a constraint is also allowed for an
- -- access-to-composite type, but the constraint is ignored.
-
- Find_Type (Subtype_Mark (E));
- Base_Typ := Entity (Subtype_Mark (E));
-
- if Is_Elementary_Type (Base_Typ) then
- if not (Ada_Version = Ada_83
- and then Is_Access_Type (Base_Typ))
- then
- Error_Msg_N ("constraint not allowed here", E);
-
- if Nkind (Constraint (E)) =
- N_Index_Or_Discriminant_Constraint
- then
- Error_Msg_N
- ("\if qualified expression was meant, " &
- "use apostrophe", Constraint (E));
- end if;
- end if;
-
- -- Get rid of the bogus constraint:
-
- Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
- Analyze_Allocator (N);
- return;
-
- -- Ada 2005, AI-363: if the designated type has a constrained
- -- partial view, it cannot receive a discriminant constraint,
- -- and the allocated object is unconstrained.
-
- elsif Ada_Version >= Ada_05
- and then Has_Constrained_Partial_View (Base_Typ)
- then
- Error_Msg_N
- ("constraint no allowed when type " &
- "has a constrained partial view", Constraint (E));
- end if;
-
- if Expander_Active then
- Def_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
-
- Insert_Action (E,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Indication => Relocate_Node (E)));
-
- if Sav_Errs /= Serious_Errors_Detected
- and then Nkind (Constraint (E)) =
- N_Index_Or_Discriminant_Constraint
- then
- Error_Msg_N
- ("if qualified expression was meant, " &
- "use apostrophe!", Constraint (E));
- end if;
-
- E := New_Occurrence_Of (Def_Id, Loc);
- Rewrite (Expression (N), E);
- end if;
- end if;
-
- Type_Id := Process_Subtype (E, N);
- Acc_Type := Create_Itype (E_Allocator_Type, N);
- Set_Etype (Acc_Type, Acc_Type);
- Set_Directly_Designated_Type (Acc_Type, Type_Id);
- Check_Fully_Declared (Type_Id, N);
-
- -- Ada 2005 (AI-231): If the designated type is itself an access
- -- type that excludes null, its default initialization will
- -- be a null object, and we can insert an unconditional raise
- -- before the allocator.
-
- if Can_Never_Be_Null (Type_Id) then
- declare
- Not_Null_Check : constant Node_Id :=
- Make_Raise_Constraint_Error (Sloc (E),
- Reason => CE_Null_Not_Allowed);
- begin
- if Expander_Active then
- Insert_Action (N, Not_Null_Check);
- Analyze (Not_Null_Check);
- else
- Error_Msg_N ("null value not allowed here?", E);
- end if;
- end;
- end if;
-
- -- Check restriction against dynamically allocated protected
- -- objects. Note that when limited aggregates are supported,
- -- a similar test should be applied to an allocator with a
- -- qualified expression ???
-
- if Is_Protected_Type (Type_Id) then
- Check_Restriction (No_Protected_Type_Allocators, N);
- end if;
-
- -- Check for missing initialization. Skip this check if we already
- -- had errors on analyzing the allocator, since in that case these
- -- are probably cascaded errors.
-
- if Is_Indefinite_Subtype (Type_Id)
- and then Serious_Errors_Detected = Sav_Errs
- then
- if Is_Class_Wide_Type (Type_Id) then
- Error_Msg_N
- ("initialization required in class-wide allocation", N);
- else
- if Ada_Version < Ada_05
- and then Is_Limited_Type (Type_Id)
- then
- Error_Msg_N ("unconstrained allocation not allowed", N);
-
- if Is_Array_Type (Type_Id) then
- Error_Msg_N
- ("\constraint with array bounds required", N);
-
- elsif Has_Unknown_Discriminants (Type_Id) then
- null;
-
- else pragma Assert (Has_Discriminants (Type_Id));
- Error_Msg_N
- ("\constraint with discriminant values required", N);
- end if;
-
- -- Limited Ada 2005 and general non-limited case
-
- else
- Error_Msg_N
- ("uninitialized unconstrained allocation not allowed",
- N);
-
- if Is_Array_Type (Type_Id) then
- Error_Msg_N
- ("\qualified expression or constraint with " &
- "array bounds required", N);
-
- elsif Has_Unknown_Discriminants (Type_Id) then
- Error_Msg_N ("\qualified expression required", N);
-
- else pragma Assert (Has_Discriminants (Type_Id));
- Error_Msg_N
- ("\qualified expression or constraint with " &
- "discriminant values required", N);
- end if;
- end if;
- end if;
- end if;
- end;
- end if;
-
- if Is_Abstract_Type (Type_Id) then
- Error_Msg_N ("cannot allocate abstract object", E);
- end if;
-
- if Has_Task (Designated_Type (Acc_Type)) then
- Check_Restriction (No_Tasking, N);
- Check_Restriction (Max_Tasks, N);
- Check_Restriction (No_Task_Allocators, N);
- end if;
-
- -- If the No_Streams restriction is set, check that the type of the
- -- object is not, and does not contain, any subtype derived from
- -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
- -- Has_Stream just for efficiency reasons. There is no point in
- -- spending time on a Has_Stream check if the restriction is not set.
-
- if Restrictions.Set (No_Streams) then
- if Has_Stream (Designated_Type (Acc_Type)) then
- Check_Restriction (No_Streams, N);
- end if;
- end if;
-
- Set_Etype (N, Acc_Type);
-
- if not Is_Library_Level_Entity (Acc_Type) then
- Check_Restriction (No_Local_Allocators, N);
- end if;
-
- if Serious_Errors_Detected > Sav_Errs then
- Set_Error_Posted (N);
- Set_Etype (N, Any_Type);
- end if;
- end Analyze_Allocator;
-
- ---------------------------
- -- Analyze_Arithmetic_Op --
- ---------------------------
-
- procedure Analyze_Arithmetic_Op (N : Node_Id) is
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id;
-
- begin
- Candidate_Type := Empty;
- Analyze_Expression (L);
- Analyze_Expression (R);
-
- -- If the entity is already set, the node is the instantiation of a
- -- generic node with a non-local reference, or was manufactured by a
- -- call to Make_Op_xxx. In either case the entity is known to be valid,
- -- and we do not need to collect interpretations, instead we just get
- -- the single possible interpretation.
-
- Op_Id := Entity (N);
-
- if Present (Op_Id) then
- if Ekind (Op_Id) = E_Operator then
-
- if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
- and then Treat_Fixed_As_Integer (N)
- then
- null;
- else
- Set_Etype (N, Any_Type);
- Find_Arithmetic_Types (L, R, Op_Id, N);
- end if;
-
- else
- Set_Etype (N, Any_Type);
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- -- Entity is not already set, so we do need to collect interpretations
-
- else
- Op_Id := Get_Name_Entity_Id (Chars (N));
- Set_Etype (N, Any_Type);
-
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator
- and then Present (Next_Entity (First_Entity (Op_Id)))
- then
- Find_Arithmetic_Types (L, R, Op_Id, N);
-
- -- The following may seem superfluous, because an operator cannot
- -- be generic, but this ignores the cleverness of the author of
- -- ACVC bc1013a.
-
- elsif Is_Overloadable (Op_Id) then
- Analyze_User_Defined_Binary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- Operator_Check (N);
- end Analyze_Arithmetic_Op;
-
- ------------------
- -- Analyze_Call --
- ------------------
-
- -- Function, procedure, and entry calls are checked here. The Name in
- -- the call may be overloaded. The actuals have been analyzed and may
- -- themselves be overloaded. On exit from this procedure, the node N
- -- may have zero, one or more interpretations. In the first case an
- -- error message is produced. In the last case, the node is flagged
- -- as overloaded and the interpretations are collected in All_Interp.
-
- -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
- -- the type-checking is similar to that of other calls.
-
- procedure Analyze_Call (N : Node_Id) is
- Actuals : constant List_Id := Parameter_Associations (N);
- Nam : Node_Id;
- X : Interp_Index;
- It : Interp;
- Nam_Ent : Entity_Id;
- Success : Boolean := False;
-
- Deref : Boolean := False;
- -- Flag indicates whether an interpretation of the prefix is a
- -- parameterless call that returns an access_to_subprogram.
-
- function Name_Denotes_Function return Boolean;
- -- If the type of the name is an access to subprogram, this may be the
- -- type of a name, or the return type of the function being called. If
- -- the name is not an entity then it can denote a protected function.
- -- Until we distinguish Etype from Return_Type, we must use this routine
- -- to resolve the meaning of the name in the call.
-
- procedure No_Interpretation;
- -- Output error message when no valid interpretation exists
-
- ---------------------------
- -- Name_Denotes_Function --
- ---------------------------
-
- function Name_Denotes_Function return Boolean is
- begin
- if Is_Entity_Name (Nam) then
- return Ekind (Entity (Nam)) = E_Function;
-
- elsif Nkind (Nam) = N_Selected_Component then
- return Ekind (Entity (Selector_Name (Nam))) = E_Function;
-
- else
- return False;
- end if;
- end Name_Denotes_Function;
-
- -----------------------
- -- No_Interpretation --
- -----------------------
-
- procedure No_Interpretation is
- L : constant Boolean := Is_List_Member (N);
- K : constant Node_Kind := Nkind (Parent (N));
-
- begin
- -- If the node is in a list whose parent is not an expression then it
- -- must be an attempted procedure call.
-
- if L and then K not in N_Subexpr then
- if Ekind (Entity (Nam)) = E_Generic_Procedure then
- Error_Msg_NE
- ("must instantiate generic procedure& before call",
- Nam, Entity (Nam));
- else
- Error_Msg_N
- ("procedure or entry name expected", Nam);
- end if;
-
- -- Check for tasking cases where only an entry call will do
-
- elsif not L
- and then Nkind_In (K, N_Entry_Call_Alternative,
- N_Triggering_Alternative)
- then
- Error_Msg_N ("entry name expected", Nam);
-
- -- Otherwise give general error message
-
- else
- Error_Msg_N ("invalid prefix in call", Nam);
- end if;
- end No_Interpretation;
-
- -- Start of processing for Analyze_Call
-
- begin
- -- Initialize the type of the result of the call to the error type,
- -- which will be reset if the type is successfully resolved.
-
- Set_Etype (N, Any_Type);
-
- Nam := Name (N);
-
- if not Is_Overloaded (Nam) then
-
- -- Only one interpretation to check
-
- if Ekind (Etype (Nam)) = E_Subprogram_Type then
- Nam_Ent := Etype (Nam);
-
- -- If the prefix is an access_to_subprogram, this may be an indirect
- -- call. This is the case if the name in the call is not an entity
- -- name, or if it is a function name in the context of a procedure
- -- call. In this latter case, we have a call to a parameterless
- -- function that returns a pointer_to_procedure which is the entity
- -- being called. Finally, F (X) may be a call to a parameterless
- -- function that returns a pointer to a function with parameters.
-
- elsif Is_Access_Type (Etype (Nam))
- and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
- and then
- (not Name_Denotes_Function
- or else Nkind (N) = N_Procedure_Call_Statement
- or else
- (Nkind (Parent (N)) /= N_Explicit_Dereference
- and then Is_Entity_Name (Nam)
- and then No (First_Formal (Entity (Nam)))
- and then Present (Actuals)))
- then
- Nam_Ent := Designated_Type (Etype (Nam));
- Insert_Explicit_Dereference (Nam);
-
- -- Selected component case. Simple entry or protected operation,
- -- where the entry name is given by the selector name.
-
- elsif Nkind (Nam) = N_Selected_Component then
- Nam_Ent := Entity (Selector_Name (Nam));
-
- if Ekind (Nam_Ent) /= E_Entry
- and then Ekind (Nam_Ent) /= E_Entry_Family
- and then Ekind (Nam_Ent) /= E_Function
- and then Ekind (Nam_Ent) /= E_Procedure
- then
- Error_Msg_N ("name in call is not a callable entity", Nam);
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- -- If the name is an Indexed component, it can be a call to a member
- -- of an entry family. The prefix must be a selected component whose
- -- selector is the entry. Analyze_Procedure_Call normalizes several
- -- kinds of call into this form.
-
- elsif Nkind (Nam) = N_Indexed_Component then
- if Nkind (Prefix (Nam)) = N_Selected_Component then
- Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
- else
- Error_Msg_N ("name in call is not a callable entity", Nam);
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- elsif not Is_Entity_Name (Nam) then
- Error_Msg_N ("name in call is not a callable entity", Nam);
- Set_Etype (N, Any_Type);
- return;
-
- else
- Nam_Ent := Entity (Nam);
-
- -- If no interpretations, give error message
-
- if not Is_Overloadable (Nam_Ent) then
- No_Interpretation;
- return;
- end if;
- end if;
-
- -- Operations generated for RACW stub types are called only through
- -- dispatching, and can never be the static interpretation of a call.
-
- if Is_RACW_Stub_Type_Operation (Nam_Ent) then
- No_Interpretation;
- return;
- end if;
-
- Analyze_One_Call (N, Nam_Ent, True, Success);
-
- -- If this is an indirect call, the return type of the access_to
- -- subprogram may be an incomplete type. At the point of the call,
- -- use the full type if available, and at the same time update
- -- the return type of the access_to_subprogram.
-
- if Success
- and then Nkind (Nam) = N_Explicit_Dereference
- and then Ekind (Etype (N)) = E_Incomplete_Type
- and then Present (Full_View (Etype (N)))
- then
- Set_Etype (N, Full_View (Etype (N)));
- Set_Etype (Nam_Ent, Etype (N));
- end if;
-
- else
- -- An overloaded selected component must denote overloaded operations
- -- of a concurrent type. The interpretations are attached to the
- -- simple name of those operations.
-
- if Nkind (Nam) = N_Selected_Component then
- Nam := Selector_Name (Nam);
- end if;
-
- Get_First_Interp (Nam, X, It);
-
- while Present (It.Nam) loop
- Nam_Ent := It.Nam;
- Deref := False;
-
- -- Name may be call that returns an access to subprogram, or more
- -- generally an overloaded expression one of whose interpretations
- -- yields an access to subprogram. If the name is an entity, we
- -- do not dereference, because the node is a call that returns
- -- the access type: note difference between f(x), where the call
- -- may return an access subprogram type, and f(x)(y), where the
- -- type returned by the call to f is implicitly dereferenced to
- -- analyze the outer call.
-
- if Is_Access_Type (Nam_Ent) then
- Nam_Ent := Designated_Type (Nam_Ent);
-
- elsif Is_Access_Type (Etype (Nam_Ent))
- and then
- (not Is_Entity_Name (Nam)
- or else Nkind (N) = N_Procedure_Call_Statement)
- and then Ekind (Designated_Type (Etype (Nam_Ent)))
- = E_Subprogram_Type
- then
- Nam_Ent := Designated_Type (Etype (Nam_Ent));
-
- if Is_Entity_Name (Nam) then
- Deref := True;
- end if;
- end if;
-
- Analyze_One_Call (N, Nam_Ent, False, Success);
-
- -- If the interpretation succeeds, mark the proper type of the
- -- prefix (any valid candidate will do). If not, remove the
- -- candidate interpretation. This only needs to be done for
- -- overloaded protected operations, for other entities disambi-
- -- guation is done directly in Resolve.
-
- if Success then
- if Deref
- and then Nkind (Parent (N)) /= N_Explicit_Dereference
- then
- Set_Entity (Nam, It.Nam);
- Insert_Explicit_Dereference (Nam);
- Set_Etype (Nam, Nam_Ent);
-
- else
- Set_Etype (Nam, It.Typ);
- end if;
-
- elsif Nkind_In (Name (N), N_Selected_Component,
- N_Function_Call)
- then
- Remove_Interp (X);
- end if;
-
- Get_Next_Interp (X, It);
- end loop;
-
- -- If the name is the result of a function call, it can only
- -- be a call to a function returning an access to subprogram.
- -- Insert explicit dereference.
-
- if Nkind (Nam) = N_Function_Call then
- Insert_Explicit_Dereference (Nam);
- end if;
-
- if Etype (N) = Any_Type then
-
- -- None of the interpretations is compatible with the actuals
-
- Diagnose_Call (N, Nam);
-
- -- Special checks for uninstantiated put routines
-
- if Nkind (N) = N_Procedure_Call_Statement
- and then Is_Entity_Name (Nam)
- and then Chars (Nam) = Name_Put
- and then List_Length (Actuals) = 1
- then
- declare
- Arg : constant Node_Id := First (Actuals);
- Typ : Entity_Id;
-
- begin
- if Nkind (Arg) = N_Parameter_Association then
- Typ := Etype (Explicit_Actual_Parameter (Arg));
- else
- Typ := Etype (Arg);
- end if;
-
- if Is_Signed_Integer_Type (Typ) then
- Error_Msg_N
- ("possible missing instantiation of " &
- "'Text_'I'O.'Integer_'I'O!", Nam);
-
- elsif Is_Modular_Integer_Type (Typ) then
- Error_Msg_N
- ("possible missing instantiation of " &
- "'Text_'I'O.'Modular_'I'O!", Nam);
-
- elsif Is_Floating_Point_Type (Typ) then
- Error_Msg_N
- ("possible missing instantiation of " &
- "'Text_'I'O.'Float_'I'O!", Nam);
-
- elsif Is_Ordinary_Fixed_Point_Type (Typ) then
- Error_Msg_N
- ("possible missing instantiation of " &
- "'Text_'I'O.'Fixed_'I'O!", Nam);
-
- elsif Is_Decimal_Fixed_Point_Type (Typ) then
- Error_Msg_N
- ("possible missing instantiation of " &
- "'Text_'I'O.'Decimal_'I'O!", Nam);
-
- elsif Is_Enumeration_Type (Typ) then
- Error_Msg_N
- ("possible missing instantiation of " &
- "'Text_'I'O.'Enumeration_'I'O!", Nam);
- end if;
- end;
- end if;
-
- elsif not Is_Overloaded (N)
- and then Is_Entity_Name (Nam)
- then
- -- Resolution yields a single interpretation. Verify that the
- -- reference has capitalization consistent with the declaration.
-
- Set_Entity_With_Style_Check (Nam, Entity (Nam));
- Generate_Reference (Entity (Nam), Nam);
-
- Set_Etype (Nam, Etype (Entity (Nam)));
- else
- Remove_Abstract_Operations (N);
- end if;
-
- End_Interp_List;
- end if;
- end Analyze_Call;
-
- ---------------------------
- -- Analyze_Comparison_Op --
- ---------------------------
-
- procedure Analyze_Comparison_Op (N : Node_Id) is
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id := Entity (N);
-
- begin
- Set_Etype (N, Any_Type);
- Candidate_Type := Empty;
-
- Analyze_Expression (L);
- Analyze_Expression (R);
-
- if Present (Op_Id) then
- if Ekind (Op_Id) = E_Operator then
- Find_Comparison_Types (L, R, Op_Id, N);
- else
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- if Is_Overloaded (L) then
- Set_Etype (L, Intersect_Types (L, R));
- end if;
-
- else
- Op_Id := Get_Name_Entity_Id (Chars (N));
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
- Find_Comparison_Types (L, R, Op_Id, N);
- else
- Analyze_User_Defined_Binary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- Operator_Check (N);
- end Analyze_Comparison_Op;
-
- ---------------------------
- -- Analyze_Concatenation --
- ---------------------------
-
- procedure Analyze_Concatenation (N : Node_Id) is
-
- -- We wish to avoid deep recursion, because concatenations are often
- -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
- -- operands nonrecursively until we find something that is not a
- -- concatenation (A in this case), or has already been analyzed. We
- -- analyze that, and then walk back up the tree following Parent
- -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
- -- work at each level. The Parent pointers allow us to avoid recursion,
- -- and thus avoid running out of memory.
-
- NN : Node_Id := N;
- L : Node_Id;
-
- begin
- Candidate_Type := Empty;
-
- -- The following code is equivalent to:
-
- -- Set_Etype (N, Any_Type);
- -- Analyze_Expression (Left_Opnd (N));
- -- Analyze_Concatenation_Rest (N);
-
- -- where the Analyze_Expression call recurses back here if the left
- -- operand is a concatenation.
-
- -- Walk down left operands
-
- loop
- Set_Etype (NN, Any_Type);
- L := Left_Opnd (NN);
- exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
- NN := L;
- end loop;
-
- -- Now (given the above example) NN is A&B and L is A
-
- -- First analyze L ...
-
- Analyze_Expression (L);
-
- -- ... then walk NN back up until we reach N (where we started), calling
- -- Analyze_Concatenation_Rest along the way.
-
- loop
- Analyze_Concatenation_Rest (NN);
- exit when NN = N;
- NN := Parent (NN);
- end loop;
- end Analyze_Concatenation;
-
- --------------------------------
- -- Analyze_Concatenation_Rest --
- --------------------------------
-
- -- If the only one-dimensional array type in scope is String,
- -- this is the resulting type of the operation. Otherwise there
- -- will be a concatenation operation defined for each user-defined
- -- one-dimensional array.
-
- procedure Analyze_Concatenation_Rest (N : Node_Id) is
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id := Entity (N);
- LT : Entity_Id;
- RT : Entity_Id;
-
- begin
- Analyze_Expression (R);
-
- -- If the entity is present, the node appears in an instance, and
- -- denotes a predefined concatenation operation. The resulting type is
- -- obtained from the arguments when possible. If the arguments are
- -- aggregates, the array type and the concatenation type must be
- -- visible.
-
- if Present (Op_Id) then
- if Ekind (Op_Id) = E_Operator then
-
- LT := Base_Type (Etype (L));
- RT := Base_Type (Etype (R));
-
- if Is_Array_Type (LT)
- and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
- then
- Add_One_Interp (N, Op_Id, LT);
-
- elsif Is_Array_Type (RT)
- and then LT = Base_Type (Component_Type (RT))
- then
- Add_One_Interp (N, Op_Id, RT);
-
- -- If one operand is a string type or a user-defined array type,
- -- and the other is a literal, result is of the specific type.
-
- elsif
- (Root_Type (LT) = Standard_String
- or else Scope (LT) /= Standard_Standard)
- and then Etype (R) = Any_String
- then
- Add_One_Interp (N, Op_Id, LT);
-
- elsif
- (Root_Type (RT) = Standard_String
- or else Scope (RT) /= Standard_Standard)
- and then Etype (L) = Any_String
- then
- Add_One_Interp (N, Op_Id, RT);
-
- elsif not Is_Generic_Type (Etype (Op_Id)) then
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
-
- else
- -- Type and its operations must be visible
-
- Set_Entity (N, Empty);
- Analyze_Concatenation (N);
- end if;
-
- else
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- else
- Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
-
- -- Do not consider operators declared in dead code, they can
- -- not be part of the resolution.
-
- if Is_Eliminated (Op_Id) then
- null;
- else
- Find_Concatenation_Types (L, R, Op_Id, N);
- end if;
-
- else
- Analyze_User_Defined_Binary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- Operator_Check (N);
- end Analyze_Concatenation_Rest;
-
- ------------------------------------
- -- Analyze_Conditional_Expression --
- ------------------------------------
-
- procedure Analyze_Conditional_Expression (N : Node_Id) is
- Condition : constant Node_Id := First (Expressions (N));
- Then_Expr : constant Node_Id := Next (Condition);
- Else_Expr : constant Node_Id := Next (Then_Expr);
- begin
- Analyze_Expression (Condition);
- Analyze_Expression (Then_Expr);
- Analyze_Expression (Else_Expr);
- Set_Etype (N, Etype (Then_Expr));
- end Analyze_Conditional_Expression;
-
- -------------------------
- -- Analyze_Equality_Op --
- -------------------------
-
- procedure Analyze_Equality_Op (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id;
-
- begin
- Set_Etype (N, Any_Type);
- Candidate_Type := Empty;
-
- Analyze_Expression (L);
- Analyze_Expression (R);
-
- -- If the entity is set, the node is a generic instance with a non-local
- -- reference to the predefined operator or to a user-defined function.
- -- It can also be an inequality that is expanded into the negation of a
- -- call to a user-defined equality operator.
-
- -- For the predefined case, the result is Boolean, regardless of the
- -- type of the operands. The operands may even be limited, if they are
- -- generic actuals. If they are overloaded, label the left argument with
- -- the common type that must be present, or with the type of the formal
- -- of the user-defined function.
-
- if Present (Entity (N)) then
- Op_Id := Entity (N);
-
- if Ekind (Op_Id) = E_Operator then
- Add_One_Interp (N, Op_Id, Standard_Boolean);
- else
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- if Is_Overloaded (L) then
- if Ekind (Op_Id) = E_Operator then
- Set_Etype (L, Intersect_Types (L, R));
- else
- Set_Etype (L, Etype (First_Formal (Op_Id)));
- end if;
- end if;
-
- else
- Op_Id := Get_Name_Entity_Id (Chars (N));
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
- Find_Equality_Types (L, R, Op_Id, N);
- else
- Analyze_User_Defined_Binary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- -- If there was no match, and the operator is inequality, this may
- -- be a case where inequality has not been made explicit, as for
- -- tagged types. Analyze the node as the negation of an equality
- -- operation. This cannot be done earlier, because before analysis
- -- we cannot rule out the presence of an explicit inequality.
-
- if Etype (N) = Any_Type
- and then Nkind (N) = N_Op_Ne
- then
- Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
- Find_Equality_Types (L, R, Op_Id, N);
- else
- Analyze_User_Defined_Binary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
-
- if Etype (N) /= Any_Type then
- Op_Id := Entity (N);
-
- Rewrite (N,
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd => Left_Opnd (N),
- Right_Opnd => Right_Opnd (N))));
-
- Set_Entity (Right_Opnd (N), Op_Id);
- Analyze (N);
- end if;
- end if;
-
- Operator_Check (N);
- end Analyze_Equality_Op;
-
- ----------------------------------
- -- Analyze_Explicit_Dereference --
- ----------------------------------
-
- procedure Analyze_Explicit_Dereference (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- P : constant Node_Id := Prefix (N);
- T : Entity_Id;
- I : Interp_Index;
- It : Interp;
- New_N : Node_Id;
-
- function Is_Function_Type return Boolean;
- -- Check whether node may be interpreted as an implicit function call
-
- ----------------------
- -- Is_Function_Type --
- ----------------------
-
- function Is_Function_Type return Boolean is
- I : Interp_Index;
- It : Interp;
-
- begin
- if not Is_Overloaded (N) then
- return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
- and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
-
- else
- Get_First_Interp (N, I, It);
- while Present (It.Nam) loop
- if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
- or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
- then
- return False;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- return True;
- end if;
- end Is_Function_Type;
-
- -- Start of processing for Analyze_Explicit_Dereference
-
- begin
- Analyze (P);
- Set_Etype (N, Any_Type);
-
- -- Test for remote access to subprogram type, and if so return
- -- after rewriting the original tree.
-
- if Remote_AST_E_Dereference (P) then
- return;
- end if;
-
- -- Normal processing for other than remote access to subprogram type
-
- if not Is_Overloaded (P) then
- if Is_Access_Type (Etype (P)) then
-
- -- Set the Etype. We need to go through Is_For_Access_Subtypes to
- -- avoid other problems caused by the Private_Subtype and it is
- -- safe to go to the Base_Type because this is the same as
- -- converting the access value to its Base_Type.
-
- declare
- DT : Entity_Id := Designated_Type (Etype (P));
-
- begin
- if Ekind (DT) = E_Private_Subtype
- and then Is_For_Access_Subtype (DT)
- then
- DT := Base_Type (DT);
- end if;
-
- -- An explicit dereference is a legal occurrence of an
- -- incomplete type imported through a limited_with clause,
- -- if the full view is visible.
-
- if From_With_Type (DT)
- and then not From_With_Type (Scope (DT))
- and then
- (Is_Immediately_Visible (Scope (DT))
- or else
- (Is_Child_Unit (Scope (DT))
- and then Is_Visible_Child_Unit (Scope (DT))))
- then
- Set_Etype (N, Available_View (DT));
-
- else
- Set_Etype (N, DT);
- end if;
- end;
-
- elsif Etype (P) /= Any_Type then
- Error_Msg_N ("prefix of dereference must be an access type", N);
- return;
- end if;
-
- else
- Get_First_Interp (P, I, It);
- while Present (It.Nam) loop
- T := It.Typ;
-
- if Is_Access_Type (T) then
- Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- -- Error if no interpretation of the prefix has an access type
-
- if Etype (N) = Any_Type then
- Error_Msg_N
- ("access type required in prefix of explicit dereference", P);
- Set_Etype (N, Any_Type);
- return;
- end if;
- end if;
-
- if Is_Function_Type
- and then Nkind (Parent (N)) /= N_Indexed_Component
-
- and then (Nkind (Parent (N)) /= N_Function_Call
- or else N /= Name (Parent (N)))
-
- and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
- or else N /= Name (Parent (N)))
-
- and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
- and then (Nkind (Parent (N)) /= N_Attribute_Reference
- or else
- (Attribute_Name (Parent (N)) /= Name_Address
- and then
- Attribute_Name (Parent (N)) /= Name_Access))
- then
- -- Name is a function call with no actuals, in a context that
- -- requires deproceduring (including as an actual in an enclosing
- -- function or procedure call). There are some pathological cases
- -- where the prefix might include functions that return access to
- -- subprograms and others that return a regular type. Disambiguation
- -- of those has to take place in Resolve.
-
- New_N :=
- Make_Function_Call (Loc,
- Name => Make_Explicit_Dereference (Loc, P),
- Parameter_Associations => New_List);
-
- -- If the prefix is overloaded, remove operations that have formals,
- -- we know that this is a parameterless call.
-
- if Is_Overloaded (P) then
- Get_First_Interp (P, I, It);
- while Present (It.Nam) loop
- T := It.Typ;
-
- if No (First_Formal (Base_Type (Designated_Type (T)))) then
- Set_Etype (P, T);
- else
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
-
- Rewrite (N, New_N);
- Analyze (N);
-
- elsif not Is_Function_Type
- and then Is_Overloaded (N)
- then
- -- The prefix may include access to subprograms and other access
- -- types. If the context selects the interpretation that is a
- -- function call (not a procedure call) we cannot rewrite the node
- -- yet, but we include the result of the call interpretation.
-
- Get_First_Interp (N, I, It);
- while Present (It.Nam) loop
- if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
- and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
- and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
- then
- Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
-
- -- A value of remote access-to-class-wide must not be dereferenced
- -- (RM E.2.2(16)).
-
- Validate_Remote_Access_To_Class_Wide_Type (N);
- end Analyze_Explicit_Dereference;
-
- ------------------------
- -- Analyze_Expression --
- ------------------------
-
- procedure Analyze_Expression (N : Node_Id) is
- begin
- Analyze (N);
- Check_Parameterless_Call (N);
- end Analyze_Expression;
-
- ------------------------------------
- -- Analyze_Indexed_Component_Form --
- ------------------------------------
-
- procedure Analyze_Indexed_Component_Form (N : Node_Id) is
- P : constant Node_Id := Prefix (N);
- Exprs : constant List_Id := Expressions (N);
- Exp : Node_Id;
- P_T : Entity_Id;
- E : Node_Id;
- U_N : Entity_Id;
-
- procedure Process_Function_Call;
- -- Prefix in indexed component form is an overloadable entity,
- -- so the node is a function call. Reformat it as such.
-
- procedure Process_Indexed_Component;
- -- Prefix in indexed component form is actually an indexed component.
- -- This routine processes it, knowing that the prefix is already
- -- resolved.
-
- procedure Process_Indexed_Component_Or_Slice;
- -- An indexed component with a single index may designate a slice if
- -- the index is a subtype mark. This routine disambiguates these two
- -- cases by resolving the prefix to see if it is a subtype mark.
-
- procedure Process_Overloaded_Indexed_Component;
- -- If the prefix of an indexed component is overloaded, the proper
- -- interpretation is selected by the index types and the context.
-
- ---------------------------
- -- Process_Function_Call --
- ---------------------------
-
- procedure Process_Function_Call is
- Actual : Node_Id;
-
- begin
- Change_Node (N, N_Function_Call);
- Set_Name (N, P);
- Set_Parameter_Associations (N, Exprs);
-
- -- Analyze actuals prior to analyzing the call itself
-
- Actual := First (Parameter_Associations (N));
- while Present (Actual) loop
- Analyze (Actual);
- Check_Parameterless_Call (Actual);
-
- -- Move to next actual. Note that we use Next, not Next_Actual
- -- here. The reason for this is a bit subtle. If a function call
- -- includes named associations, the parser recognizes the node as
- -- a call, and it is analyzed as such. If all associations are
- -- positional, the parser builds an indexed_component node, and
- -- it is only after analysis of the prefix that the construct
- -- is recognized as a call, in which case Process_Function_Call
- -- rewrites the node and analyzes the actuals. If the list of
- -- actuals is malformed, the parser may leave the node as an
- -- indexed component (despite the presence of named associations).
- -- The iterator Next_Actual is equivalent to Next if the list is
- -- positional, but follows the normalized chain of actuals when
- -- named associations are present. In this case normalization has
- -- not taken place, and actuals remain unanalyzed, which leads to
- -- subsequent crashes or loops if there is an attempt to continue
- -- analysis of the program.
-
- Next (Actual);
- end loop;
-
- Analyze_Call (N);
- end Process_Function_Call;
-
- -------------------------------
- -- Process_Indexed_Component --
- -------------------------------
-
- procedure Process_Indexed_Component is
- Exp : Node_Id;
- Array_Type : Entity_Id;
- Index : Node_Id;
- Pent : Entity_Id := Empty;
-
- begin
- Exp := First (Exprs);
-
- if Is_Overloaded (P) then
- Process_Overloaded_Indexed_Component;
-
- else
- Array_Type := Etype (P);
-
- if Is_Entity_Name (P) then
- Pent := Entity (P);
- elsif Nkind (P) = N_Selected_Component
- and then Is_Entity_Name (Selector_Name (P))
- then
- Pent := Entity (Selector_Name (P));
- end if;
-
- -- Prefix must be appropriate for an array type, taking into
- -- account a possible implicit dereference.
-
- if Is_Access_Type (Array_Type) then
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
- Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
- end if;
-
- if Is_Array_Type (Array_Type) then
- null;
-
- elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
- Analyze (Exp);
- Set_Etype (N, Any_Type);
-
- if not Has_Compatible_Type
- (Exp, Entry_Index_Type (Pent))
- then
- Error_Msg_N ("invalid index type in entry name", N);
-
- elsif Present (Next (Exp)) then
- Error_Msg_N ("too many subscripts in entry reference", N);
-
- else
- Set_Etype (N, Etype (P));
- end if;
-
- return;
-
- elsif Is_Record_Type (Array_Type)
- and then Remote_AST_I_Dereference (P)
- then
- return;
-
- elsif Array_Type = Any_Type then
- Set_Etype (N, Any_Type);
- return;
-
- -- Here we definitely have a bad indexing
-
- else
- if Nkind (Parent (N)) = N_Requeue_Statement
- and then Present (Pent) and then Ekind (Pent) = E_Entry
- then
- Error_Msg_N
- ("REQUEUE does not permit parameters", First (Exprs));
-
- elsif Is_Entity_Name (P)
- and then Etype (P) = Standard_Void_Type
- then
- Error_Msg_NE ("incorrect use of&", P, Entity (P));
-
- else
- Error_Msg_N ("array type required in indexed component", P);
- end if;
-
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- Index := First_Index (Array_Type);
- while Present (Index) and then Present (Exp) loop
- if not Has_Compatible_Type (Exp, Etype (Index)) then
- Wrong_Type (Exp, Etype (Index));
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- Next_Index (Index);
- Next (Exp);
- end loop;
-
- Set_Etype (N, Component_Type (Array_Type));
-
- if Present (Index) then
- Error_Msg_N
- ("too few subscripts in array reference", First (Exprs));
-
- elsif Present (Exp) then
- Error_Msg_N ("too many subscripts in array reference", Exp);
- end if;
- end if;
- end Process_Indexed_Component;
-
- ----------------------------------------
- -- Process_Indexed_Component_Or_Slice --
- ----------------------------------------
-
- procedure Process_Indexed_Component_Or_Slice is
- begin
- Exp := First (Exprs);
- while Present (Exp) loop
- Analyze_Expression (Exp);
- Next (Exp);
- end loop;
-
- Exp := First (Exprs);
-
- -- If one index is present, and it is a subtype name, then the
- -- node denotes a slice (note that the case of an explicit range
- -- for a slice was already built as an N_Slice node in the first
- -- place, so that case is not handled here).
-
- -- We use a replace rather than a rewrite here because this is one
- -- of the cases in which the tree built by the parser is plain wrong.
-
- if No (Next (Exp))
- and then Is_Entity_Name (Exp)
- and then Is_Type (Entity (Exp))
- then
- Replace (N,
- Make_Slice (Sloc (N),
- Prefix => P,
- Discrete_Range => New_Copy (Exp)));
- Analyze (N);
-
- -- Otherwise (more than one index present, or single index is not
- -- a subtype name), then we have the indexed component case.
-
- else
- Process_Indexed_Component;
- end if;
- end Process_Indexed_Component_Or_Slice;
-
- ------------------------------------------
- -- Process_Overloaded_Indexed_Component --
- ------------------------------------------
-
- procedure Process_Overloaded_Indexed_Component is
- Exp : Node_Id;
- I : Interp_Index;
- It : Interp;
- Typ : Entity_Id;
- Index : Node_Id;
- Found : Boolean;
-
- begin
- Set_Etype (N, Any_Type);
-
- Get_First_Interp (P, I, It);
- while Present (It.Nam) loop
- Typ := It.Typ;
-
- if Is_Access_Type (Typ) then
- Typ := Designated_Type (Typ);
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
- end if;
-
- if Is_Array_Type (Typ) then
-
- -- Got a candidate: verify that index types are compatible
-
- Index := First_Index (Typ);
- Found := True;
- Exp := First (Exprs);
- while Present (Index) and then Present (Exp) loop
- if Has_Compatible_Type (Exp, Etype (Index)) then
- null;
- else
- Found := False;
- Remove_Interp (I);
- exit;
- end if;
-
- Next_Index (Index);
- Next (Exp);
- end loop;
-
- if Found and then No (Index) and then No (Exp) then
- Add_One_Interp (N,
- Etype (Component_Type (Typ)),
- Etype (Component_Type (Typ)));
- end if;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- if Etype (N) = Any_Type then
- Error_Msg_N ("no legal interpretation for indexed component", N);
- Set_Is_Overloaded (N, False);
- end if;
-
- End_Interp_List;
- end Process_Overloaded_Indexed_Component;
-
- -- Start of processing for Analyze_Indexed_Component_Form
-
- begin
- -- Get name of array, function or type
-
- Analyze (P);
-
- if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
-
- -- If P is an explicit dereference whose prefix is of a
- -- remote access-to-subprogram type, then N has already
- -- been rewritten as a subprogram call and analyzed.
-
- return;
- end if;
-
- pragma Assert (Nkind (N) = N_Indexed_Component);
-
- P_T := Base_Type (Etype (P));
-
- if Is_Entity_Name (P)
- or else Nkind (P) = N_Operator_Symbol
- then
- U_N := Entity (P);
-
- if Is_Type (U_N) then
-
- -- Reformat node as a type conversion
-
- E := Remove_Head (Exprs);
-
- if Present (First (Exprs)) then
- Error_Msg_N
- ("argument of type conversion must be single expression", N);
- end if;
-
- Change_Node (N, N_Type_Conversion);
- Set_Subtype_Mark (N, P);
- Set_Etype (N, U_N);
- Set_Expression (N, E);
-
- -- After changing the node, call for the specific Analysis
- -- routine directly, to avoid a double call to the expander.
-
- Analyze_Type_Conversion (N);
- return;
- end if;
-
- if Is_Overloadable (U_N) then
- Process_Function_Call;
-
- elsif Ekind (Etype (P)) = E_Subprogram_Type
- or else (Is_Access_Type (Etype (P))
- and then
- Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
- then
- -- Call to access_to-subprogram with possible implicit dereference
-
- Process_Function_Call;
-
- elsif Is_Generic_Subprogram (U_N) then
-
- -- A common beginner's (or C++ templates fan) error
-
- Error_Msg_N ("generic subprogram cannot be called", N);
- Set_Etype (N, Any_Type);
- return;
-
- else
- Process_Indexed_Component_Or_Slice;
- end if;
-
- -- If not an entity name, prefix is an expression that may denote
- -- an array or an access-to-subprogram.
-
- else
- if Ekind (P_T) = E_Subprogram_Type
- or else (Is_Access_Type (P_T)
- and then
- Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
- then
- Process_Function_Call;
-
- elsif Nkind (P) = N_Selected_Component
- and then Is_Overloadable (Entity (Selector_Name (P)))
- then
- Process_Function_Call;
-
- else
- -- Indexed component, slice, or a call to a member of a family
- -- entry, which will be converted to an entry call later.
-
- Process_Indexed_Component_Or_Slice;
- end if;
- end if;
- end Analyze_Indexed_Component_Form;
-
- ------------------------
- -- Analyze_Logical_Op --
- ------------------------
-
- procedure Analyze_Logical_Op (N : Node_Id) is
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id := Entity (N);
-
- begin
- Set_Etype (N, Any_Type);
- Candidate_Type := Empty;
-
- Analyze_Expression (L);
- Analyze_Expression (R);
-
- if Present (Op_Id) then
-
- if Ekind (Op_Id) = E_Operator then
- Find_Boolean_Types (L, R, Op_Id, N);
- else
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- else
- Op_Id := Get_Name_Entity_Id (Chars (N));
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
- Find_Boolean_Types (L, R, Op_Id, N);
- else
- Analyze_User_Defined_Binary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- Operator_Check (N);
- end Analyze_Logical_Op;
-
- ---------------------------
- -- Analyze_Membership_Op --
- ---------------------------
-
- procedure Analyze_Membership_Op (N : Node_Id) is
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
-
- Index : Interp_Index;
- It : Interp;
- Found : Boolean := False;
- I_F : Interp_Index;
- T_F : Entity_Id;
-
- procedure Try_One_Interp (T1 : Entity_Id);
- -- Routine to try one proposed interpretation. Note that the context
- -- of the operation plays no role in resolving the arguments, so that
- -- if there is more than one interpretation of the operands that is
- -- compatible with a membership test, the operation is ambiguous.
-
- --------------------
- -- Try_One_Interp --
- --------------------
-
- procedure Try_One_Interp (T1 : Entity_Id) is
- begin
- if Has_Compatible_Type (R, T1) then
- if Found
- and then Base_Type (T1) /= Base_Type (T_F)
- then
- It := Disambiguate (L, I_F, Index, Any_Type);
-
- if It = No_Interp then
- Ambiguous_Operands (N);
- Set_Etype (L, Any_Type);
- return;
-
- else
- T_F := It.Typ;
- end if;
-
- else
- Found := True;
- T_F := T1;
- I_F := Index;
- end if;
-
- Set_Etype (L, T_F);
- end if;
-
- end Try_One_Interp;
-
- -- Start of processing for Analyze_Membership_Op
-
- begin
- Analyze_Expression (L);
-
- if Nkind (R) = N_Range
- or else (Nkind (R) = N_Attribute_Reference
- and then Attribute_Name (R) = Name_Range)
- then
- Analyze (R);
-
- if not Is_Overloaded (L) then
- Try_One_Interp (Etype (L));
-
- else
- Get_First_Interp (L, Index, It);
- while Present (It.Typ) loop
- Try_One_Interp (It.Typ);
- Get_Next_Interp (Index, It);
- end loop;
- end if;
-
- -- If not a range, it can only be a subtype mark, or else there
- -- is a more basic error, to be diagnosed in Find_Type.
-
- else
- Find_Type (R);
-
- if Is_Entity_Name (R) then
- Check_Fully_Declared (Entity (R), R);
- end if;
- end if;
-
- -- Compatibility between expression and subtype mark or range is
- -- checked during resolution. The result of the operation is Boolean
- -- in any case.
-
- Set_Etype (N, Standard_Boolean);
-
- if Comes_From_Source (N)
- and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
- then
- Error_Msg_N ("membership test not applicable to cpp-class types", N);
- end if;
- end Analyze_Membership_Op;
-
- ----------------------
- -- Analyze_Negation --
- ----------------------
-
- procedure Analyze_Negation (N : Node_Id) is
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id := Entity (N);
-
- begin
- Set_Etype (N, Any_Type);
- Candidate_Type := Empty;
-
- Analyze_Expression (R);
-
- if Present (Op_Id) then
- if Ekind (Op_Id) = E_Operator then
- Find_Negation_Types (R, Op_Id, N);
- else
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- else
- Op_Id := Get_Name_Entity_Id (Chars (N));
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
- Find_Negation_Types (R, Op_Id, N);
- else
- Analyze_User_Defined_Unary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- Operator_Check (N);
- end Analyze_Negation;
-
- ------------------
- -- Analyze_Null --
- ------------------
-
- procedure Analyze_Null (N : Node_Id) is
- begin
- Set_Etype (N, Any_Access);
- end Analyze_Null;
-
- ----------------------
- -- Analyze_One_Call --
- ----------------------
-
- procedure Analyze_One_Call
- (N : Node_Id;
- Nam : Entity_Id;
- Report : Boolean;
- Success : out Boolean;
- Skip_First : Boolean := False)
- is
- Actuals : constant List_Id := Parameter_Associations (N);
- Prev_T : constant Entity_Id := Etype (N);
-
- Must_Skip : constant Boolean := Skip_First
- or else Nkind (Original_Node (N)) = N_Selected_Component
- or else
- (Nkind (Original_Node (N)) = N_Indexed_Component
- and then Nkind (Prefix (Original_Node (N)))
- = N_Selected_Component);
- -- The first formal must be omitted from the match when trying to find
- -- a primitive operation that is a possible interpretation, and also
- -- after the call has been rewritten, because the corresponding actual
- -- is already known to be compatible, and because this may be an
- -- indexing of a call with default parameters.
-
- Formal : Entity_Id;
- Actual : Node_Id;
- Is_Indexed : Boolean := False;
- Is_Indirect : Boolean := False;
- Subp_Type : constant Entity_Id := Etype (Nam);
- Norm_OK : Boolean;
-
- function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
- -- There may be a user-defined operator that hides the current
- -- interpretation. We must check for this independently of the
- -- analysis of the call with the user-defined operation, because
- -- the parameter names may be wrong and yet the hiding takes place.
- -- This fixes a problem with ACATS test B34014O.
- --
- -- When the type Address is a visible integer type, and the DEC
- -- system extension is visible, the predefined operator may be
- -- hidden as well, by one of the address operations in auxdec.
- -- Finally, The abstract operations on address do not hide the
- -- predefined operator (this is the purpose of making them abstract).
-
- procedure Indicate_Name_And_Type;
- -- If candidate interpretation matches, indicate name and type of
- -- result on call node.
-
- ----------------------------
- -- Indicate_Name_And_Type --
- ----------------------------
-
- procedure Indicate_Name_And_Type is
- begin
- Add_One_Interp (N, Nam, Etype (Nam));
- Success := True;
-
- -- If the prefix of the call is a name, indicate the entity
- -- being called. If it is not a name, it is an expression that
- -- denotes an access to subprogram or else an entry or family. In
- -- the latter case, the name is a selected component, and the entity
- -- being called is noted on the selector.
-
- if not Is_Type (Nam) then
- if Is_Entity_Name (Name (N))
- or else Nkind (Name (N)) = N_Operator_Symbol
- then
- Set_Entity (Name (N), Nam);
-
- elsif Nkind (Name (N)) = N_Selected_Component then
- Set_Entity (Selector_Name (Name (N)), Nam);
- end if;
- end if;
-
- if Debug_Flag_E and not Report then
- Write_Str (" Overloaded call ");
- Write_Int (Int (N));
- Write_Str (" compatible with ");
- Write_Int (Int (Nam));
- Write_Eol;
- end if;
- end Indicate_Name_And_Type;
-
- ------------------------
- -- Operator_Hidden_By --
- ------------------------
-
- function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
- Act1 : constant Node_Id := First_Actual (N);
- Act2 : constant Node_Id := Next_Actual (Act1);
- Form1 : constant Entity_Id := First_Formal (Fun);
- Form2 : constant Entity_Id := Next_Formal (Form1);
-
- begin
- if Ekind (Fun) /= E_Function
- or else Is_Abstract_Subprogram (Fun)
- then
- return False;
-
- elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
- return False;
-
- elsif Present (Form2) then
- if
- No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
- then
- return False;
- end if;
-
- elsif Present (Act2) then
- return False;
- end if;
-
- -- Now we know that the arity of the operator matches the function,
- -- and the function call is a valid interpretation. The function
- -- hides the operator if it has the right signature, or if one of
- -- its operands is a non-abstract operation on Address when this is
- -- a visible integer type.
-
- return Hides_Op (Fun, Nam)
- or else Is_Descendent_Of_Address (Etype (Form1))
- or else
- (Present (Form2)
- and then Is_Descendent_Of_Address (Etype (Form2)));
- end Operator_Hidden_By;
-
- -- Start of processing for Analyze_One_Call
-
- begin
- Success := False;
-
- -- If the subprogram has no formals or if all the formals have defaults,
- -- and the return type is an array type, the node may denote an indexing
- -- of the result of a parameterless call. In Ada 2005, the subprogram
- -- may have one non-defaulted formal, and the call may have been written
- -- in prefix notation, so that the rebuilt parameter list has more than
- -- one actual.
-
- if not Is_Overloadable (Nam)
- and then Ekind (Nam) /= E_Subprogram_Type
- and then Ekind (Nam) /= E_Entry_Family
- then
- return;
- end if;
-
- if Present (Actuals)
- and then
- (Needs_No_Actuals (Nam)
- or else
- (Needs_One_Actual (Nam)
- and then Present (Next_Actual (First (Actuals)))))
- then
- if Is_Array_Type (Subp_Type) then
- Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
-
- elsif Is_Access_Type (Subp_Type)
- and then Is_Array_Type (Designated_Type (Subp_Type))
- then
- Is_Indexed :=
- Try_Indexed_Call
- (N, Nam, Designated_Type (Subp_Type), Must_Skip);
-
- -- The prefix can also be a parameterless function that returns an
- -- access to subprogram, in which case this is an indirect call.
- -- If this succeeds, an explicit dereference is added later on,
- -- in Analyze_Call or Resolve_Call.
-
- elsif Is_Access_Type (Subp_Type)
- and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
- then
- Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
- end if;
-
- end if;
-
- -- If the call has been transformed into a slice, it is of the form
- -- F (Subtype) where F is parameterless. The node has been rewritten in
- -- Try_Indexed_Call and there is nothing else to do.
-
- if Is_Indexed
- and then Nkind (N) = N_Slice
- then
- return;
- end if;
-
- Normalize_Actuals
- (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
-
- if not Norm_OK then
-
- -- If an indirect call is a possible interpretation, indicate
- -- success to the caller.
-
- if Is_Indirect then
- Success := True;
- return;
-
- -- Mismatch in number or names of parameters
-
- elsif Debug_Flag_E then
- Write_Str (" normalization fails in call ");
- Write_Int (Int (N));
- Write_Str (" with subprogram ");
- Write_Int (Int (Nam));
- Write_Eol;
- end if;
-
- -- If the context expects a function call, discard any interpretation
- -- that is a procedure. If the node is not overloaded, leave as is for
- -- better error reporting when type mismatch is found.
-
- elsif Nkind (N) = N_Function_Call
- and then Is_Overloaded (Name (N))
- and then Ekind (Nam) = E_Procedure
- then
- return;
-
- -- Ditto for function calls in a procedure context
-
- elsif Nkind (N) = N_Procedure_Call_Statement
- and then Is_Overloaded (Name (N))
- and then Etype (Nam) /= Standard_Void_Type
- then
- return;
-
- elsif No (Actuals) then
-
- -- If Normalize succeeds, then there are default parameters for
- -- all formals.
-
- Indicate_Name_And_Type;
-
- elsif Ekind (Nam) = E_Operator then
- if Nkind (N) = N_Procedure_Call_Statement then
- return;
- end if;
-
- -- This can occur when the prefix of the call is an operator
- -- name or an expanded name whose selector is an operator name.
-
- Analyze_Operator_Call (N, Nam);
-
- if Etype (N) /= Prev_T then
-
- -- Check that operator is not hidden by a function interpretation
-
- if Is_Overloaded (Name (N)) then
- declare
- I : Interp_Index;
- It : Interp;
-
- begin
- Get_First_Interp (Name (N), I, It);
- while Present (It.Nam) loop
- if Operator_Hidden_By (It.Nam) then
- Set_Etype (N, Prev_T);
- return;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end;
- end if;
-
- -- If operator matches formals, record its name on the call.
- -- If the operator is overloaded, Resolve will select the
- -- correct one from the list of interpretations. The call
- -- node itself carries the first candidate.
-
- Set_Entity (Name (N), Nam);
- Success := True;
-
- elsif Report and then Etype (N) = Any_Type then
- Error_Msg_N ("incompatible arguments for operator", N);
- end if;
-
- else
- -- Normalize_Actuals has chained the named associations in the
- -- correct order of the formals.
-
- Actual := First_Actual (N);
- Formal := First_Formal (Nam);
-
- -- If we are analyzing a call rewritten from object notation,
- -- skip first actual, which may be rewritten later as an
- -- explicit dereference.
-
- if Must_Skip then
- Next_Actual (Actual);
- Next_Formal (Formal);
- end if;
-
- while Present (Actual) and then Present (Formal) loop
- if Nkind (Parent (Actual)) /= N_Parameter_Association
- or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
- then
- -- The actual can be compatible with the formal, but we must
- -- also check that the context is not an address type that is
- -- visibly an integer type, as is the case in VMS_64. In this
- -- case the use of literals is illegal, except in the body of
- -- descendents of system, where arithmetic operations on
- -- address are of course used.
-
- if Has_Compatible_Type (Actual, Etype (Formal))
- and then
- (Etype (Actual) /= Universal_Integer
- or else not Is_Descendent_Of_Address (Etype (Formal))
- or else
- Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (N))))
- then
- Next_Actual (Actual);
- Next_Formal (Formal);
-
- else
- if Debug_Flag_E then
- Write_Str (" type checking fails in call ");
- Write_Int (Int (N));
- Write_Str (" with formal ");
- Write_Int (Int (Formal));
- Write_Str (" in subprogram ");
- Write_Int (Int (Nam));
- Write_Eol;
- end if;
-
- if Report and not Is_Indexed and not Is_Indirect then
-
- -- Ada 2005 (AI-251): Complete the error notification
- -- to help new Ada 2005 users
-
- if Is_Class_Wide_Type (Etype (Formal))
- and then Is_Interface (Etype (Etype (Formal)))
- and then not Interface_Present_In_Ancestor
- (Typ => Etype (Actual),
- Iface => Etype (Etype (Formal)))
- then
- Error_Msg_NE
- ("(Ada 2005) does not implement interface }",
- Actual, Etype (Etype (Formal)));
- end if;
-
- Wrong_Type (Actual, Etype (Formal));
-
- if Nkind (Actual) = N_Op_Eq
- and then Nkind (Left_Opnd (Actual)) = N_Identifier
- then
- Formal := First_Formal (Nam);
- while Present (Formal) loop
- if Chars (Left_Opnd (Actual)) = Chars (Formal) then
- Error_Msg_N
- ("possible misspelling of `='>`!", Actual);
- exit;
- end if;
-
- Next_Formal (Formal);
- end loop;
- end if;
-
- if All_Errors_Mode then
- Error_Msg_Sloc := Sloc (Nam);
-
- if Is_Overloadable (Nam)
- and then Present (Alias (Nam))
- and then not Comes_From_Source (Nam)
- then
- Error_Msg_NE
- ("\\ =='> in call to inherited operation & #!",
- Actual, Nam);
-
- elsif Ekind (Nam) = E_Subprogram_Type then
- declare
- Access_To_Subprogram_Typ :
- constant Entity_Id :=
- Defining_Identifier
- (Associated_Node_For_Itype (Nam));
- begin
- Error_Msg_NE (
- "\\ =='> in call to dereference of &#!",
- Actual, Access_To_Subprogram_Typ);
- end;
-
- else
- Error_Msg_NE
- ("\\ =='> in call to &#!", Actual, Nam);
-
- end if;
- end if;
- end if;
-
- return;
- end if;
-
- else
- -- Normalize_Actuals has verified that a default value exists
- -- for this formal. Current actual names a subsequent formal.
-
- Next_Formal (Formal);
- end if;
- end loop;
-
- -- On exit, all actuals match
-
- Indicate_Name_And_Type;
- end if;
- end Analyze_One_Call;
-
- ---------------------------
- -- Analyze_Operator_Call --
- ---------------------------
-
- procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
- Op_Name : constant Name_Id := Chars (Op_Id);
- Act1 : constant Node_Id := First_Actual (N);
- Act2 : constant Node_Id := Next_Actual (Act1);
-
- begin
- -- Binary operator case
-
- if Present (Act2) then
-
- -- If more than two operands, then not binary operator after all
-
- if Present (Next_Actual (Act2)) then
- return;
-
- elsif Op_Name = Name_Op_Add
- or else Op_Name = Name_Op_Subtract
- or else Op_Name = Name_Op_Multiply
- or else Op_Name = Name_Op_Divide
- or else Op_Name = Name_Op_Mod
- or else Op_Name = Name_Op_Rem
- or else Op_Name = Name_Op_Expon
- then
- Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
-
- elsif Op_Name = Name_Op_And
- or else Op_Name = Name_Op_Or
- or else Op_Name = Name_Op_Xor
- then
- Find_Boolean_Types (Act1, Act2, Op_Id, N);
-
- elsif Op_Name = Name_Op_Lt
- or else Op_Name = Name_Op_Le
- or else Op_Name = Name_Op_Gt
- or else Op_Name = Name_Op_Ge
- then
- Find_Comparison_Types (Act1, Act2, Op_Id, N);
-
- elsif Op_Name = Name_Op_Eq
- or else Op_Name = Name_Op_Ne
- then
- Find_Equality_Types (Act1, Act2, Op_Id, N);
-
- elsif Op_Name = Name_Op_Concat then
- Find_Concatenation_Types (Act1, Act2, Op_Id, N);
-
- -- Is this else null correct, or should it be an abort???
-
- else
- null;
- end if;
-
- -- Unary operator case
-
- else
- if Op_Name = Name_Op_Subtract or else
- Op_Name = Name_Op_Add or else
- Op_Name = Name_Op_Abs
- then
- Find_Unary_Types (Act1, Op_Id, N);
-
- elsif
- Op_Name = Name_Op_Not
- then
- Find_Negation_Types (Act1, Op_Id, N);
-
- -- Is this else null correct, or should it be an abort???
-
- else
- null;
- end if;
- end if;
- end Analyze_Operator_Call;
-
- -------------------------------------------
- -- Analyze_Overloaded_Selected_Component --
- -------------------------------------------
-
- procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
- Nam : constant Node_Id := Prefix (N);
- Sel : constant Node_Id := Selector_Name (N);
- Comp : Entity_Id;
- I : Interp_Index;
- It : Interp;
- T : Entity_Id;
-
- begin
- Set_Etype (Sel, Any_Type);
-
- Get_First_Interp (Nam, I, It);
- while Present (It.Typ) loop
- if Is_Access_Type (It.Typ) then
- T := Designated_Type (It.Typ);
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
- else
- T := It.Typ;
- end if;
-
- if Is_Record_Type (T) then
-
- -- If the prefix is a class-wide type, the visible components are
- -- those of the base type.
-
- if Is_Class_Wide_Type (T) then
- T := Etype (T);
- end if;
-
- Comp := First_Entity (T);
- while Present (Comp) loop
- if Chars (Comp) = Chars (Sel)
- and then Is_Visible_Component (Comp)
- then
- Set_Entity (Sel, Comp);
- Set_Etype (Sel, Etype (Comp));
- Add_One_Interp (N, Etype (Comp), Etype (Comp));
-
- -- This also specifies a candidate to resolve the name.
- -- Further overloading will be resolved from context.
-
- Set_Etype (Nam, It.Typ);
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- elsif Is_Concurrent_Type (T) then
- Comp := First_Entity (T);
- while Present (Comp)
- and then Comp /= First_Private_Entity (T)
- loop
- if Chars (Comp) = Chars (Sel) then
- if Is_Overloadable (Comp) then
- Add_One_Interp (Sel, Comp, Etype (Comp));
- else
- Set_Entity_With_Style_Check (Sel, Comp);
- Generate_Reference (Comp, Sel);
- end if;
-
- Set_Etype (Sel, Etype (Comp));
- Set_Etype (N, Etype (Comp));
- Set_Etype (Nam, It.Typ);
-
- -- For access type case, introduce explicit deference for
- -- more uniform treatment of entry calls. Do this only
- -- once if several interpretations yield an access type.
-
- if Is_Access_Type (Etype (Nam))
- and then Nkind (Nam) /= N_Explicit_Dereference
- then
- Insert_Explicit_Dereference (Nam);
- Error_Msg_NW
- (Warn_On_Dereference, "?implicit dereference", N);
- end if;
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- Set_Is_Overloaded (N, Is_Overloaded (Sel));
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- if Etype (N) = Any_Type
- and then not Try_Object_Operation (N)
- then
- Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
- Set_Entity (Sel, Any_Id);
- Set_Etype (Sel, Any_Type);
- end if;
- end Analyze_Overloaded_Selected_Component;
-
- ----------------------------------
- -- Analyze_Qualified_Expression --
- ----------------------------------
-
- procedure Analyze_Qualified_Expression (N : Node_Id) is
- Mark : constant Entity_Id := Subtype_Mark (N);
- Expr : constant Node_Id := Expression (N);
- I : Interp_Index;
- It : Interp;
- T : Entity_Id;
-
- begin
- Analyze_Expression (Expr);
-
- Set_Etype (N, Any_Type);
- Find_Type (Mark);
- T := Entity (Mark);
- Set_Etype (N, T);
-
- if T = Any_Type then
- return;
- end if;
-
- Check_Fully_Declared (T, N);
-
- -- If expected type is class-wide, check for exact match before
- -- expansion, because if the expression is a dispatching call it
- -- may be rewritten as explicit dereference with class-wide result.
- -- If expression is overloaded, retain only interpretations that
- -- will yield exact matches.
-
- if Is_Class_Wide_Type (T) then
- if not Is_Overloaded (Expr) then
- if Base_Type (Etype (Expr)) /= Base_Type (T) then
- if Nkind (Expr) = N_Aggregate then
- Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
- else
- Wrong_Type (Expr, T);
- end if;
- end if;
-
- else
- Get_First_Interp (Expr, I, It);
-
- while Present (It.Nam) loop
- if Base_Type (It.Typ) /= Base_Type (T) then
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
- end if;
-
- Set_Etype (N, T);
- end Analyze_Qualified_Expression;
-
- -------------------
- -- Analyze_Range --
- -------------------
-
- procedure Analyze_Range (N : Node_Id) is
- L : constant Node_Id := Low_Bound (N);
- H : constant Node_Id := High_Bound (N);
- I1, I2 : Interp_Index;
- It1, It2 : Interp;
-
- procedure Check_Common_Type (T1, T2 : Entity_Id);
- -- Verify the compatibility of two types, and choose the
- -- non universal one if the other is universal.
-
- procedure Check_High_Bound (T : Entity_Id);
- -- Test one interpretation of the low bound against all those
- -- of the high bound.
-
- procedure Check_Universal_Expression (N : Node_Id);
- -- In Ada83, reject bounds of a universal range that are not
- -- literals or entity names.
-
- -----------------------
- -- Check_Common_Type --
- -----------------------
-
- procedure Check_Common_Type (T1, T2 : Entity_Id) is
- begin
- if Covers (T1 => T1, T2 => T2)
- or else
- Covers (T1 => T2, T2 => T1)
- then
- if T1 = Universal_Integer
- or else T1 = Universal_Real
- or else T1 = Any_Character
- then
- Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
-
- elsif T1 = T2 then
- Add_One_Interp (N, T1, T1);
-
- else
- Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
- end if;
- end if;
- end Check_Common_Type;
-
- ----------------------
- -- Check_High_Bound --
- ----------------------
-
- procedure Check_High_Bound (T : Entity_Id) is
- begin
- if not Is_Overloaded (H) then
- Check_Common_Type (T, Etype (H));
- else
- Get_First_Interp (H, I2, It2);
- while Present (It2.Typ) loop
- Check_Common_Type (T, It2.Typ);
- Get_Next_Interp (I2, It2);
- end loop;
- end if;
- end Check_High_Bound;
-
- -----------------------------
- -- Is_Universal_Expression --
- -----------------------------
-
- procedure Check_Universal_Expression (N : Node_Id) is
- begin
- if Etype (N) = Universal_Integer
- and then Nkind (N) /= N_Integer_Literal
- and then not Is_Entity_Name (N)
- and then Nkind (N) /= N_Attribute_Reference
- then
- Error_Msg_N ("illegal bound in discrete range", N);
- end if;
- end Check_Universal_Expression;
-
- -- Start of processing for Analyze_Range
-
- begin
- Set_Etype (N, Any_Type);
- Analyze_Expression (L);
- Analyze_Expression (H);
-
- if Etype (L) = Any_Type or else Etype (H) = Any_Type then
- return;
-
- else
- if not Is_Overloaded (L) then
- Check_High_Bound (Etype (L));
- else
- Get_First_Interp (L, I1, It1);
- while Present (It1.Typ) loop
- Check_High_Bound (It1.Typ);
- Get_Next_Interp (I1, It1);
- end loop;
- end if;
-
- -- If result is Any_Type, then we did not find a compatible pair
-
- if Etype (N) = Any_Type then
- Error_Msg_N ("incompatible types in range ", N);
- end if;
- end if;
-
- if Ada_Version = Ada_83
- and then
- (Nkind (Parent (N)) = N_Loop_Parameter_Specification
- or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
- then
- Check_Universal_Expression (L);
- Check_Universal_Expression (H);
- end if;
- end Analyze_Range;
-
- -----------------------
- -- Analyze_Reference --
- -----------------------
-
- procedure Analyze_Reference (N : Node_Id) is
- P : constant Node_Id := Prefix (N);
- E : Entity_Id;
- T : Entity_Id;
- Acc_Type : Entity_Id;
-
- begin
- Analyze (P);
-
- -- An interesting error check, if we take the 'Reference of an object
- -- for which a pragma Atomic or Volatile has been given, and the type
- -- of the object is not Atomic or Volatile, then we are in trouble. The
- -- problem is that no trace of the atomic/volatile status will remain
- -- for the backend to respect when it deals with the resulting pointer,
- -- since the pointer type will not be marked atomic (it is a pointer to
- -- the base type of the object).
-
- -- It is not clear if that can ever occur, but in case it does, we will
- -- generate an error message. Not clear if this message can ever be
- -- generated, and pretty clear that it represents a bug if it is, still
- -- seems worth checking!
-
- T := Etype (P);
-
- if Is_Entity_Name (P)
- and then Is_Object_Reference (P)
- then
- E := Entity (P);
- T := Etype (P);
-
- if (Has_Atomic_Components (E)
- and then not Has_Atomic_Components (T))
- or else
- (Has_Volatile_Components (E)
- and then not Has_Volatile_Components (T))
- or else (Is_Atomic (E) and then not Is_Atomic (T))
- or else (Is_Volatile (E) and then not Is_Volatile (T))
- then
- Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
- end if;
- end if;
-
- -- Carry on with normal processing
-
- Acc_Type := Create_Itype (E_Allocator_Type, N);
- Set_Etype (Acc_Type, Acc_Type);
- Set_Directly_Designated_Type (Acc_Type, Etype (P));
- Set_Etype (N, Acc_Type);
- end Analyze_Reference;
-
- --------------------------------
- -- Analyze_Selected_Component --
- --------------------------------
-
- -- Prefix is a record type or a task or protected type. In the
- -- later case, the selector must denote a visible entry.
-
- procedure Analyze_Selected_Component (N : Node_Id) is
- Name : constant Node_Id := Prefix (N);
- Sel : constant Node_Id := Selector_Name (N);
- Act_Decl : Node_Id;
- Comp : Entity_Id;
- Has_Candidate : Boolean := False;
- In_Scope : Boolean;
- Parent_N : Node_Id;
- Pent : Entity_Id := Empty;
- Prefix_Type : Entity_Id;
-
- Type_To_Use : Entity_Id;
- -- In most cases this is the Prefix_Type, but if the Prefix_Type is
- -- a class-wide type, we use its root type, whose components are
- -- present in the class-wide type.
-
- function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
- -- It is known that the parent of N denotes a subprogram call. Comp
- -- is an overloadable component of the concurrent type of the prefix.
- -- Determine whether all formals of the parent of N and Comp are mode
- -- conformant. If the parent node is not analyzed yet it may be an
- -- indexed component rather than a function call.
-
- ------------------------------
- -- Has_Mode_Conformant_Spec --
- ------------------------------
-
- function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
- Comp_Param : Entity_Id;
- Param : Node_Id;
- Param_Typ : Entity_Id;
-
- begin
- Comp_Param := First_Formal (Comp);
-
- if Nkind (Parent (N)) = N_Indexed_Component then
- Param := First (Expressions (Parent (N)));
- else
- Param := First (Parameter_Associations (Parent (N)));
- end if;
-
- while Present (Comp_Param)
- and then Present (Param)
- loop
- Param_Typ := Find_Parameter_Type (Param);
-
- if Present (Param_Typ)
- and then
- not Conforming_Types
- (Etype (Comp_Param), Param_Typ, Mode_Conformant)
- then
- return False;
- end if;
-
- Next_Formal (Comp_Param);
- Next (Param);
- end loop;
-
- -- One of the specs has additional formals
-
- if Present (Comp_Param) or else Present (Param) then
- return False;
- end if;
-
- return True;
- end Has_Mode_Conformant_Spec;
-
- -- Start of processing for Analyze_Selected_Component
-
- begin
- Set_Etype (N, Any_Type);
-
- if Is_Overloaded (Name) then
- Analyze_Overloaded_Selected_Component (N);
- return;
-
- elsif Etype (Name) = Any_Type then
- Set_Entity (Sel, Any_Id);
- Set_Etype (Sel, Any_Type);
- return;
-
- else
- Prefix_Type := Etype (Name);
- end if;
-
- if Is_Access_Type (Prefix_Type) then
-
- -- A RACW object can never be used as prefix of a selected
- -- component since that means it is dereferenced without
- -- being a controlling operand of a dispatching operation
- -- (RM E.2.2(16/1)). Before reporting an error, we must check
- -- whether this is actually a dispatching call in prefix form.
-
- if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
- and then Comes_From_Source (N)
- then
- if Try_Object_Operation (N) then
- return;
- else
- Error_Msg_N
- ("invalid dereference of a remote access-to-class-wide value",
- N);
- end if;
-
- -- Normal case of selected component applied to access type
-
- else
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
-
- if Is_Entity_Name (Name) then
- Pent := Entity (Name);
- elsif Nkind (Name) = N_Selected_Component
- and then Is_Entity_Name (Selector_Name (Name))
- then
- Pent := Entity (Selector_Name (Name));
- end if;
-
- Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
- end if;
-
- -- If we have an explicit dereference of a remote access-to-class-wide
- -- value, then issue an error (see RM-E.2.2(16/1)). However we first
- -- have to check for the case of a prefix that is a controlling operand
- -- of a prefixed dispatching call, as the dereference is legal in that
- -- case. Normally this condition is checked in Validate_Remote_Access_
- -- To_Class_Wide_Type, but we have to defer the checking for selected
- -- component prefixes because of the prefixed dispatching call case.
- -- Note that implicit dereferences are checked for this just above.
-
- elsif Nkind (Name) = N_Explicit_Dereference
- and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
- and then Comes_From_Source (N)
- then
- if Try_Object_Operation (N) then
- return;
- else
- Error_Msg_N
- ("invalid dereference of a remote access-to-class-wide value",
- N);
- end if;
- end if;
-
- -- (Ada 2005): if the prefix is the limited view of a type, and
- -- the context already includes the full view, use the full view
- -- in what follows, either to retrieve a component of to find
- -- a primitive operation. If the prefix is an explicit dereference,
- -- set the type of the prefix to reflect this transformation.
- -- If the non-limited view is itself an incomplete type, get the
- -- full view if available.
-
- if Is_Incomplete_Type (Prefix_Type)
- and then From_With_Type (Prefix_Type)
- and then Present (Non_Limited_View (Prefix_Type))
- then
- Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
-
- if Nkind (N) = N_Explicit_Dereference then
- Set_Etype (Prefix (N), Prefix_Type);
- end if;
-
- elsif Ekind (Prefix_Type) = E_Class_Wide_Type
- and then From_With_Type (Prefix_Type)
- and then Present (Non_Limited_View (Etype (Prefix_Type)))
- then
- Prefix_Type :=
- Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
-
- if Nkind (N) = N_Explicit_Dereference then
- Set_Etype (Prefix (N), Prefix_Type);
- end if;
- end if;
-
- if Ekind (Prefix_Type) = E_Private_Subtype then
- Prefix_Type := Base_Type (Prefix_Type);
- end if;
-
- Type_To_Use := Prefix_Type;
-
- -- For class-wide types, use the entity list of the root type. This
- -- indirection is specially important for private extensions because
- -- only the root type get switched (not the class-wide type).
-
- if Is_Class_Wide_Type (Prefix_Type) then
- Type_To_Use := Root_Type (Prefix_Type);
- end if;
-
- Comp := First_Entity (Type_To_Use);
-
- -- If the selector has an original discriminant, the node appears in
- -- an instance. Replace the discriminant with the corresponding one
- -- in the current discriminated type. For nested generics, this must
- -- be done transitively, so note the new original discriminant.
-
- if Nkind (Sel) = N_Identifier
- and then Present (Original_Discriminant (Sel))
- then
- Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
-
- -- Mark entity before rewriting, for completeness and because
- -- subsequent semantic checks might examine the original node.
-
- Set_Entity (Sel, Comp);
- Rewrite (Selector_Name (N),
- New_Occurrence_Of (Comp, Sloc (N)));
- Set_Original_Discriminant (Selector_Name (N), Comp);
- Set_Etype (N, Etype (Comp));
-
- if Is_Access_Type (Etype (Name)) then
- Insert_Explicit_Dereference (Name);
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
- end if;
-
- elsif Is_Record_Type (Prefix_Type) then
-
- -- Find component with given name
-
- while Present (Comp) loop
- if Chars (Comp) = Chars (Sel)
- and then Is_Visible_Component (Comp)
- then
- Set_Entity_With_Style_Check (Sel, Comp);
- Set_Etype (Sel, Etype (Comp));
-
- if Ekind (Comp) = E_Discriminant then
- if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
- Error_Msg_N
- ("cannot reference discriminant of Unchecked_Union",
- Sel);
- end if;
-
- if Is_Generic_Type (Prefix_Type)
- or else
- Is_Generic_Type (Root_Type (Prefix_Type))
- then
- Set_Original_Discriminant (Sel, Comp);
- end if;
- end if;
-
- -- Resolve the prefix early otherwise it is not possible to
- -- build the actual subtype of the component: it may need
- -- to duplicate this prefix and duplication is only allowed
- -- on fully resolved expressions.
-
- Resolve (Name);
-
- -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
- -- subtypes in a package specification.
- -- Example:
-
- -- limited with Pkg;
- -- package Pkg is
- -- type Acc_Inc is access Pkg.T;
- -- X : Acc_Inc;
- -- N : Natural := X.all.Comp; -- ERROR, limited view
- -- end Pkg; -- Comp is not visible
-
- if Nkind (Name) = N_Explicit_Dereference
- and then From_With_Type (Etype (Prefix (Name)))
- and then not Is_Potentially_Use_Visible (Etype (Name))
- and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
- N_Package_Specification
- then
- Error_Msg_NE
- ("premature usage of incomplete}", Prefix (Name),
- Etype (Prefix (Name)));
- end if;
-
- -- We never need an actual subtype for the case of a selection
- -- for a indexed component of a non-packed array, since in
- -- this case gigi generates all the checks and can find the
- -- necessary bounds information.
-
- -- We also do not need an actual subtype for the case of
- -- a first, last, length, or range attribute applied to a
- -- non-packed array, since gigi can again get the bounds in
- -- these cases (gigi cannot handle the packed case, since it
- -- has the bounds of the packed array type, not the original
- -- bounds of the type). However, if the prefix is itself a
- -- selected component, as in a.b.c (i), gigi may regard a.b.c
- -- as a dynamic-sized temporary, so we do generate an actual
- -- subtype for this case.
-
- Parent_N := Parent (N);
-
- if not Is_Packed (Etype (Comp))
- and then
- ((Nkind (Parent_N) = N_Indexed_Component
- and then Nkind (Name) /= N_Selected_Component)
- or else
- (Nkind (Parent_N) = N_Attribute_Reference
- and then (Attribute_Name (Parent_N) = Name_First
- or else
- Attribute_Name (Parent_N) = Name_Last
- or else
- Attribute_Name (Parent_N) = Name_Length
- or else
- Attribute_Name (Parent_N) = Name_Range)))
- then
- Set_Etype (N, Etype (Comp));
-
- -- If full analysis is not enabled, we do not generate an
- -- actual subtype, because in the absence of expansion
- -- reference to a formal of a protected type, for example,
- -- will not be properly transformed, and will lead to
- -- out-of-scope references in gigi.
-
- -- In all other cases, we currently build an actual subtype.
- -- It seems likely that many of these cases can be avoided,
- -- but right now, the front end makes direct references to the
- -- bounds (e.g. in generating a length check), and if we do
- -- not make an actual subtype, we end up getting a direct
- -- reference to a discriminant, which will not do.
-
- elsif Full_Analysis then
- Act_Decl :=
- Build_Actual_Subtype_Of_Component (Etype (Comp), N);
- Insert_Action (N, Act_Decl);
-
- if No (Act_Decl) then
- Set_Etype (N, Etype (Comp));
-
- else
- -- Component type depends on discriminants. Enter the
- -- main attributes of the subtype.
-
- declare
- Subt : constant Entity_Id :=
- Defining_Identifier (Act_Decl);
-
- begin
- Set_Etype (Subt, Base_Type (Etype (Comp)));
- Set_Ekind (Subt, Ekind (Etype (Comp)));
- Set_Etype (N, Subt);
- end;
- end if;
-
- -- If Full_Analysis not enabled, just set the Etype
-
- else
- Set_Etype (N, Etype (Comp));
- end if;
-
- return;
- end if;
-
- -- If the prefix is a private extension, check only the visible
- -- components of the partial view. This must include the tag,
- -- which can appear in expanded code in a tag check.
-
- if Ekind (Type_To_Use) = E_Record_Type_With_Private
- and then Chars (Selector_Name (N)) /= Name_uTag
- then
- exit when Comp = Last_Entity (Type_To_Use);
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- -- Ada 2005 (AI-252): The selected component can be interpreted as
- -- a prefixed view of a subprogram. Depending on the context, this is
- -- either a name that can appear in a renaming declaration, or part
- -- of an enclosing call given in prefix form.
-
- -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
- -- selected component should resolve to a name.
-
- if Ada_Version >= Ada_05
- and then Is_Tagged_Type (Prefix_Type)
- and then not Is_Concurrent_Type (Prefix_Type)
- then
- if Nkind (Parent (N)) = N_Generic_Association
- or else Nkind (Parent (N)) = N_Requeue_Statement
- or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
- then
- if Find_Primitive_Operation (N) then
- return;
- end if;
-
- elsif Try_Object_Operation (N) then
- return;
- end if;
-
- -- If the transformation fails, it will be necessary to redo the
- -- analysis with all errors enabled, to indicate candidate
- -- interpretations and reasons for each failure ???
-
- end if;
-
- elsif Is_Private_Type (Prefix_Type) then
-
- -- Allow access only to discriminants of the type. If the type has
- -- no full view, gigi uses the parent type for the components, so we
- -- do the same here.
-
- if No (Full_View (Prefix_Type)) then
- Type_To_Use := Root_Type (Base_Type (Prefix_Type));
- Comp := First_Entity (Type_To_Use);
- end if;
-
- while Present (Comp) loop
- if Chars (Comp) = Chars (Sel) then
- if Ekind (Comp) = E_Discriminant then
- Set_Entity_With_Style_Check (Sel, Comp);
- Generate_Reference (Comp, Sel);
-
- Set_Etype (Sel, Etype (Comp));
- Set_Etype (N, Etype (Comp));
-
- if Is_Generic_Type (Prefix_Type)
- or else Is_Generic_Type (Root_Type (Prefix_Type))
- then
- Set_Original_Discriminant (Sel, Comp);
- end if;
-
- -- Before declaring an error, check whether this is tagged
- -- private type and a call to a primitive operation.
-
- elsif Ada_Version >= Ada_05
- and then Is_Tagged_Type (Prefix_Type)
- and then Try_Object_Operation (N)
- then
- return;
-
- else
- Error_Msg_NE
- ("invisible selector for }",
- N, First_Subtype (Prefix_Type));
- Set_Entity (Sel, Any_Id);
- Set_Etype (N, Any_Type);
- end if;
-
- return;
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- elsif Is_Concurrent_Type (Prefix_Type) then
-
- -- Find visible operation with given name. For a protected type,
- -- the possible candidates are discriminants, entries or protected
- -- procedures. For a task type, the set can only include entries or
- -- discriminants if the task type is not an enclosing scope. If it
- -- is an enclosing scope (e.g. in an inner task) then all entities
- -- are visible, but the prefix must denote the enclosing scope, i.e.
- -- can only be a direct name or an expanded name.
-
- Set_Etype (Sel, Any_Type);
- In_Scope := In_Open_Scopes (Prefix_Type);
-
- while Present (Comp) loop
- if Chars (Comp) = Chars (Sel) then
- if Is_Overloadable (Comp) then
- Add_One_Interp (Sel, Comp, Etype (Comp));
-
- -- If the prefix is tagged, the correct interpretation may
- -- lie in the primitive or class-wide operations of the
- -- type. Perform a simple conformance check to determine
- -- whether Try_Object_Operation should be invoked even if
- -- a visible entity is found.
-
- if Is_Tagged_Type (Prefix_Type)
- and then
- Nkind_In (Parent (N), N_Procedure_Call_Statement,
- N_Function_Call,
- N_Indexed_Component)
- and then Has_Mode_Conformant_Spec (Comp)
- then
- Has_Candidate := True;
- end if;
-
- elsif Ekind (Comp) = E_Discriminant
- or else Ekind (Comp) = E_Entry_Family
- or else (In_Scope
- and then Is_Entity_Name (Name))
- then
- Set_Entity_With_Style_Check (Sel, Comp);
- Generate_Reference (Comp, Sel);
-
- else
- goto Next_Comp;
- end if;
-
- Set_Etype (Sel, Etype (Comp));
- Set_Etype (N, Etype (Comp));
-
- if Ekind (Comp) = E_Discriminant then
- Set_Original_Discriminant (Sel, Comp);
- end if;
-
- -- For access type case, introduce explicit deference for more
- -- uniform treatment of entry calls.
-
- if Is_Access_Type (Etype (Name)) then
- Insert_Explicit_Dereference (Name);
- Error_Msg_NW
- (Warn_On_Dereference, "?implicit dereference", N);
- end if;
- end if;
-
- <<Next_Comp>>
- Next_Entity (Comp);
- exit when not In_Scope
- and then
- Comp = First_Private_Entity (Base_Type (Prefix_Type));
- end loop;
-
- -- If there is no visible entity with the given name or none of the
- -- visible entities are plausible interpretations, check whether
- -- there is some other primitive operation with that name.
-
- if Ada_Version >= Ada_05
- and then Is_Tagged_Type (Prefix_Type)
- then
- if (Etype (N) = Any_Type
- or else not Has_Candidate)
- and then Try_Object_Operation (N)
- then
- return;
-
- -- If the context is not syntactically a procedure call, it
- -- may be a call to a primitive function declared outside of
- -- the synchronized type.
-
- -- If the context is a procedure call, there might still be
- -- an overloading between an entry and a primitive procedure
- -- declared outside of the synchronized type, called in prefix
- -- notation. This is harder to disambiguate because in one case
- -- the controlling formal is implicit ???
-
- elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
- and then Nkind (Parent (N)) /= N_Indexed_Component
- and then Try_Object_Operation (N)
- then
- return;
- end if;
- end if;
-
- Set_Is_Overloaded (N, Is_Overloaded (Sel));
-
- else
- -- Invalid prefix
-
- Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
- end if;
-
- -- If N still has no type, the component is not defined in the prefix
-
- if Etype (N) = Any_Type then
-
- -- If the prefix is a single concurrent object, use its name in the
- -- error message, rather than that of its anonymous type.
-
- if Is_Concurrent_Type (Prefix_Type)
- and then Is_Internal_Name (Chars (Prefix_Type))
- and then not Is_Derived_Type (Prefix_Type)
- and then Is_Entity_Name (Name)
- then
-
- Error_Msg_Node_2 := Entity (Name);
- Error_Msg_NE ("no selector& for&", N, Sel);
-
- Check_Misspelled_Selector (Type_To_Use, Sel);
-
- elsif Is_Generic_Type (Prefix_Type)
- and then Ekind (Prefix_Type) = E_Record_Type_With_Private
- and then Prefix_Type /= Etype (Prefix_Type)
- and then Is_Record_Type (Etype (Prefix_Type))
- then
- -- If this is a derived formal type, the parent may have
- -- different visibility at this point. Try for an inherited
- -- component before reporting an error.
-
- Set_Etype (Prefix (N), Etype (Prefix_Type));
- Analyze_Selected_Component (N);
- return;
-
- elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
- and then Is_Generic_Actual_Type (Prefix_Type)
- and then Present (Full_View (Prefix_Type))
- then
- -- Similarly, if this the actual for a formal derived type, the
- -- component inherited from the generic parent may not be visible
- -- in the actual, but the selected component is legal.
-
- declare
- Comp : Entity_Id;
-
- begin
- Comp :=
- First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
- while Present (Comp) loop
- if Chars (Comp) = Chars (Sel) then
- Set_Entity_With_Style_Check (Sel, Comp);
- Set_Etype (Sel, Etype (Comp));
- Set_Etype (N, Etype (Comp));
- return;
- end if;
-
- Next_Component (Comp);
- end loop;
-
- pragma Assert (Etype (N) /= Any_Type);
- end;
-
- else
- if Ekind (Prefix_Type) = E_Record_Subtype then
-
- -- Check whether this is a component of the base type
- -- which is absent from a statically constrained subtype.
- -- This will raise constraint error at run-time, but is
- -- not a compile-time error. When the selector is illegal
- -- for base type as well fall through and generate a
- -- compilation error anyway.
-
- Comp := First_Component (Base_Type (Prefix_Type));
- while Present (Comp) loop
- if Chars (Comp) = Chars (Sel)
- and then Is_Visible_Component (Comp)
- then
- Set_Entity_With_Style_Check (Sel, Comp);
- Generate_Reference (Comp, Sel);
- Set_Etype (Sel, Etype (Comp));
- Set_Etype (N, Etype (Comp));
-
- -- Emit appropriate message. Gigi will replace the
- -- node subsequently with the appropriate Raise.
-
- Apply_Compile_Time_Constraint_Error
- (N, "component not present in }?",
- CE_Discriminant_Check_Failed,
- Ent => Prefix_Type, Rep => False);
- Set_Raises_Constraint_Error (N);
- return;
- end if;
-
- Next_Component (Comp);
- end loop;
-
- end if;
-
- Error_Msg_Node_2 := First_Subtype (Prefix_Type);
- Error_Msg_NE ("no selector& for}", N, Sel);
-
- Check_Misspelled_Selector (Type_To_Use, Sel);
- end if;
-
- Set_Entity (Sel, Any_Id);
- Set_Etype (Sel, Any_Type);
- end if;
- end Analyze_Selected_Component;
-
- ---------------------------
- -- Analyze_Short_Circuit --
- ---------------------------
-
- procedure Analyze_Short_Circuit (N : Node_Id) is
- L : constant Node_Id := Left_Opnd (N);
- R : constant Node_Id := Right_Opnd (N);
- Ind : Interp_Index;
- It : Interp;
-
- begin
- Analyze_Expression (L);
- Analyze_Expression (R);
- Set_Etype (N, Any_Type);
-
- if not Is_Overloaded (L) then
- if Root_Type (Etype (L)) = Standard_Boolean
- and then Has_Compatible_Type (R, Etype (L))
- then
- Add_One_Interp (N, Etype (L), Etype (L));
- end if;
-
- else
- Get_First_Interp (L, Ind, It);
- while Present (It.Typ) loop
- if Root_Type (It.Typ) = Standard_Boolean
- and then Has_Compatible_Type (R, It.Typ)
- then
- Add_One_Interp (N, It.Typ, It.Typ);
- end if;
-
- Get_Next_Interp (Ind, It);
- end loop;
- end if;
-
- -- Here we have failed to find an interpretation. Clearly we know that
- -- it is not the case that both operands can have an interpretation of
- -- Boolean, but this is by far the most likely intended interpretation.
- -- So we simply resolve both operands as Booleans, and at least one of
- -- these resolutions will generate an error message, and we do not need
- -- to give another error message on the short circuit operation itself.
-
- if Etype (N) = Any_Type then
- Resolve (L, Standard_Boolean);
- Resolve (R, Standard_Boolean);
- Set_Etype (N, Standard_Boolean);
- end if;
- end Analyze_Short_Circuit;
-
- -------------------
- -- Analyze_Slice --
- -------------------
-
- procedure Analyze_Slice (N : Node_Id) is
- P : constant Node_Id := Prefix (N);
- D : constant Node_Id := Discrete_Range (N);
- Array_Type : Entity_Id;
-
- procedure Analyze_Overloaded_Slice;
- -- If the prefix is overloaded, select those interpretations that
- -- yield a one-dimensional array type.
-
- ------------------------------
- -- Analyze_Overloaded_Slice --
- ------------------------------
-
- procedure Analyze_Overloaded_Slice is
- I : Interp_Index;
- It : Interp;
- Typ : Entity_Id;
-
- begin
- Set_Etype (N, Any_Type);
-
- Get_First_Interp (P, I, It);
- while Present (It.Nam) loop
- Typ := It.Typ;
-
- if Is_Access_Type (Typ) then
- Typ := Designated_Type (Typ);
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
- end if;
-
- if Is_Array_Type (Typ)
- and then Number_Dimensions (Typ) = 1
- and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
- then
- Add_One_Interp (N, Typ, Typ);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- if Etype (N) = Any_Type then
- Error_Msg_N ("expect array type in prefix of slice", N);
- end if;
- end Analyze_Overloaded_Slice;
-
- -- Start of processing for Analyze_Slice
-
- begin
- Analyze (P);
- Analyze (D);
-
- if Is_Overloaded (P) then
- Analyze_Overloaded_Slice;
-
- else
- Array_Type := Etype (P);
- Set_Etype (N, Any_Type);
-
- if Is_Access_Type (Array_Type) then
- Array_Type := Designated_Type (Array_Type);
- Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
- end if;
-
- if not Is_Array_Type (Array_Type) then
- Wrong_Type (P, Any_Array);
-
- elsif Number_Dimensions (Array_Type) > 1 then
- Error_Msg_N
- ("type is not one-dimensional array in slice prefix", N);
-
- elsif not
- Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
- then
- Wrong_Type (D, Etype (First_Index (Array_Type)));
-
- else
- Set_Etype (N, Array_Type);
- end if;
- end if;
- end Analyze_Slice;
-
- -----------------------------
- -- Analyze_Type_Conversion --
- -----------------------------
-
- procedure Analyze_Type_Conversion (N : Node_Id) is
- Expr : constant Node_Id := Expression (N);
- T : Entity_Id;
-
- begin
- -- If Conversion_OK is set, then the Etype is already set, and the
- -- only processing required is to analyze the expression. This is
- -- used to construct certain "illegal" conversions which are not
- -- allowed by Ada semantics, but can be handled OK by Gigi, see
- -- Sinfo for further details.
-
- if Conversion_OK (N) then
- Analyze (Expr);
- return;
- end if;
-
- -- Otherwise full type analysis is required, as well as some semantic
- -- checks to make sure the argument of the conversion is appropriate.
-
- Find_Type (Subtype_Mark (N));
- T := Entity (Subtype_Mark (N));
- Set_Etype (N, T);
- Check_Fully_Declared (T, N);
- Analyze_Expression (Expr);
- Validate_Remote_Type_Type_Conversion (N);
-
- -- Only remaining step is validity checks on the argument. These
- -- are skipped if the conversion does not come from the source.
-
- if not Comes_From_Source (N) then
- return;
-
- -- If there was an error in a generic unit, no need to replicate the
- -- error message. Conversely, constant-folding in the generic may
- -- transform the argument of a conversion into a string literal, which
- -- is legal. Therefore the following tests are not performed in an
- -- instance.
-
- elsif In_Instance then
- return;
-
- elsif Nkind (Expr) = N_Null then
- Error_Msg_N ("argument of conversion cannot be null", N);
- Error_Msg_N ("\use qualified expression instead", N);
- Set_Etype (N, Any_Type);
-
- elsif Nkind (Expr) = N_Aggregate then
- Error_Msg_N ("argument of conversion cannot be aggregate", N);
- Error_Msg_N ("\use qualified expression instead", N);
-
- elsif Nkind (Expr) = N_Allocator then
- Error_Msg_N ("argument of conversion cannot be an allocator", N);
- Error_Msg_N ("\use qualified expression instead", N);
-
- elsif Nkind (Expr) = N_String_Literal then
- Error_Msg_N ("argument of conversion cannot be string literal", N);
- Error_Msg_N ("\use qualified expression instead", N);
-
- elsif Nkind (Expr) = N_Character_Literal then
- if Ada_Version = Ada_83 then
- Resolve (Expr, T);
- else
- Error_Msg_N ("argument of conversion cannot be character literal",
- N);
- Error_Msg_N ("\use qualified expression instead", N);
- end if;
-
- elsif Nkind (Expr) = N_Attribute_Reference
- and then
- (Attribute_Name (Expr) = Name_Access or else
- Attribute_Name (Expr) = Name_Unchecked_Access or else
- Attribute_Name (Expr) = Name_Unrestricted_Access)
- then
- Error_Msg_N ("argument of conversion cannot be access", N);
- Error_Msg_N ("\use qualified expression instead", N);
- end if;
- end Analyze_Type_Conversion;
-
- ----------------------
- -- Analyze_Unary_Op --
- ----------------------
-
- procedure Analyze_Unary_Op (N : Node_Id) is
- R : constant Node_Id := Right_Opnd (N);
- Op_Id : Entity_Id := Entity (N);
-
- begin
- Set_Etype (N, Any_Type);
- Candidate_Type := Empty;
-
- Analyze_Expression (R);
-
- if Present (Op_Id) then
- if Ekind (Op_Id) = E_Operator then
- Find_Unary_Types (R, Op_Id, N);
- else
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
-
- else
- Op_Id := Get_Name_Entity_Id (Chars (N));
- while Present (Op_Id) loop
- if Ekind (Op_Id) = E_Operator then
- if No (Next_Entity (First_Entity (Op_Id))) then
- Find_Unary_Types (R, Op_Id, N);
- end if;
-
- elsif Is_Overloadable (Op_Id) then
- Analyze_User_Defined_Unary_Op (N, Op_Id);
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
- end if;
-
- Operator_Check (N);
- end Analyze_Unary_Op;
-
- ----------------------------------
- -- Analyze_Unchecked_Expression --
- ----------------------------------
-
- procedure Analyze_Unchecked_Expression (N : Node_Id) is
- begin
- Analyze (Expression (N), Suppress => All_Checks);
- Set_Etype (N, Etype (Expression (N)));
- Save_Interps (Expression (N), N);
- end Analyze_Unchecked_Expression;
-
- ---------------------------------------
- -- Analyze_Unchecked_Type_Conversion --
- ---------------------------------------
-
- procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
- begin
- Find_Type (Subtype_Mark (N));
- Analyze_Expression (Expression (N));
- Set_Etype (N, Entity (Subtype_Mark (N)));
- end Analyze_Unchecked_Type_Conversion;
-
- ------------------------------------
- -- Analyze_User_Defined_Binary_Op --
- ------------------------------------
-
- procedure Analyze_User_Defined_Binary_Op
- (N : Node_Id;
- Op_Id : Entity_Id)
- is
- begin
- -- Only do analysis if the operator Comes_From_Source, since otherwise
- -- the operator was generated by the expander, and all such operators
- -- always refer to the operators in package Standard.
-
- if Comes_From_Source (N) then
- declare
- F1 : constant Entity_Id := First_Formal (Op_Id);
- F2 : constant Entity_Id := Next_Formal (F1);
-
- begin
- -- Verify that Op_Id is a visible binary function. Note that since
- -- we know Op_Id is overloaded, potentially use visible means use
- -- visible for sure (RM 9.4(11)).
-
- if Ekind (Op_Id) = E_Function
- and then Present (F2)
- and then (Is_Immediately_Visible (Op_Id)
- or else Is_Potentially_Use_Visible (Op_Id))
- and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
- and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
- then
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
-
- if Debug_Flag_E then
- Write_Str ("user defined operator ");
- Write_Name (Chars (Op_Id));
- Write_Str (" on node ");
- Write_Int (Int (N));
- Write_Eol;
- end if;
- end if;
- end;
- end if;
- end Analyze_User_Defined_Binary_Op;
-
- -----------------------------------
- -- Analyze_User_Defined_Unary_Op --
- -----------------------------------
-
- procedure Analyze_User_Defined_Unary_Op
- (N : Node_Id;
- Op_Id : Entity_Id)
- is
- begin
- -- Only do analysis if the operator Comes_From_Source, since otherwise
- -- the operator was generated by the expander, and all such operators
- -- always refer to the operators in package Standard.
-
- if Comes_From_Source (N) then
- declare
- F : constant Entity_Id := First_Formal (Op_Id);
-
- begin
- -- Verify that Op_Id is a visible unary function. Note that since
- -- we know Op_Id is overloaded, potentially use visible means use
- -- visible for sure (RM 9.4(11)).
-
- if Ekind (Op_Id) = E_Function
- and then No (Next_Formal (F))
- and then (Is_Immediately_Visible (Op_Id)
- or else Is_Potentially_Use_Visible (Op_Id))
- and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
- then
- Add_One_Interp (N, Op_Id, Etype (Op_Id));
- end if;
- end;
- end if;
- end Analyze_User_Defined_Unary_Op;
-
- ---------------------------
- -- Check_Arithmetic_Pair --
- ---------------------------
-
- procedure Check_Arithmetic_Pair
- (T1, T2 : Entity_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Op_Name : constant Name_Id := Chars (Op_Id);
-
- function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
- -- Check whether the fixed-point type Typ has a user-defined operator
- -- (multiplication or division) that should hide the corresponding
- -- predefined operator. Used to implement Ada 2005 AI-264, to make
- -- such operators more visible and therefore useful.
-
- -- If the name of the operation is an expanded name with prefix
- -- Standard, the predefined universal fixed operator is available,
- -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
-
- function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
- -- Get specific type (i.e. non-universal type if there is one)
-
- ------------------
- -- Has_Fixed_Op --
- ------------------
-
- function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
- Bas : constant Entity_Id := Base_Type (Typ);
- Ent : Entity_Id;
- F1 : Entity_Id;
- F2 : Entity_Id;
-
- begin
- -- If the universal_fixed operation is given explicitly the rule
- -- concerning primitive operations of the type do not apply.
-
- if Nkind (N) = N_Function_Call
- and then Nkind (Name (N)) = N_Expanded_Name
- and then Entity (Prefix (Name (N))) = Standard_Standard
- then
- return False;
- end if;
-
- -- The operation is treated as primitive if it is declared in the
- -- same scope as the type, and therefore on the same entity chain.
-
- Ent := Next_Entity (Typ);
- while Present (Ent) loop
- if Chars (Ent) = Chars (Op) then
- F1 := First_Formal (Ent);
- F2 := Next_Formal (F1);
-
- -- The operation counts as primitive if either operand or
- -- result are of the given base type, and both operands are
- -- fixed point types.
-
- if (Base_Type (Etype (F1)) = Bas
- and then Is_Fixed_Point_Type (Etype (F2)))
-
- or else
- (Base_Type (Etype (F2)) = Bas
- and then Is_Fixed_Point_Type (Etype (F1)))
-
- or else
- (Base_Type (Etype (Ent)) = Bas
- and then Is_Fixed_Point_Type (Etype (F1))
- and then Is_Fixed_Point_Type (Etype (F2)))
- then
- return True;
- end if;
- end if;
-
- Next_Entity (Ent);
- end loop;
-
- return False;
- end Has_Fixed_Op;
-
- -------------------
- -- Specific_Type --
- -------------------
-
- function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
- begin
- if T1 = Universal_Integer or else T1 = Universal_Real then
- return Base_Type (T2);
- else
- return Base_Type (T1);
- end if;
- end Specific_Type;
-
- -- Start of processing for Check_Arithmetic_Pair
-
- begin
- if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
-
- if Is_Numeric_Type (T1)
- and then Is_Numeric_Type (T2)
- and then (Covers (T1 => T1, T2 => T2)
- or else
- Covers (T1 => T2, T2 => T1))
- then
- Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
- end if;
-
- elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
-
- if Is_Fixed_Point_Type (T1)
- and then (Is_Fixed_Point_Type (T2)
- or else T2 = Universal_Real)
- then
- -- If Treat_Fixed_As_Integer is set then the Etype is already set
- -- and no further processing is required (this is the case of an
- -- operator constructed by Exp_Fixd for a fixed point operation)
- -- Otherwise add one interpretation with universal fixed result
- -- If the operator is given in functional notation, it comes
- -- from source and Fixed_As_Integer cannot apply.
-
- if (Nkind (N) not in N_Op
- or else not Treat_Fixed_As_Integer (N))
- and then
- (not Has_Fixed_Op (T1, Op_Id)
- or else Nkind (Parent (N)) = N_Type_Conversion)
- then
- Add_One_Interp (N, Op_Id, Universal_Fixed);
- end if;
-
- elsif Is_Fixed_Point_Type (T2)
- and then (Nkind (N) not in N_Op
- or else not Treat_Fixed_As_Integer (N))
- and then T1 = Universal_Real
- and then
- (not Has_Fixed_Op (T1, Op_Id)
- or else Nkind (Parent (N)) = N_Type_Conversion)
- then
- Add_One_Interp (N, Op_Id, Universal_Fixed);
-
- elsif Is_Numeric_Type (T1)
- and then Is_Numeric_Type (T2)
- and then (Covers (T1 => T1, T2 => T2)
- or else
- Covers (T1 => T2, T2 => T1))
- then
- Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
-
- elsif Is_Fixed_Point_Type (T1)
- and then (Base_Type (T2) = Base_Type (Standard_Integer)
- or else T2 = Universal_Integer)
- then
- Add_One_Interp (N, Op_Id, T1);
-
- elsif T2 = Universal_Real
- and then Base_Type (T1) = Base_Type (Standard_Integer)
- and then Op_Name = Name_Op_Multiply
- then
- Add_One_Interp (N, Op_Id, Any_Fixed);
-
- elsif T1 = Universal_Real
- and then Base_Type (T2) = Base_Type (Standard_Integer)
- then
- Add_One_Interp (N, Op_Id, Any_Fixed);
-
- elsif Is_Fixed_Point_Type (T2)
- and then (Base_Type (T1) = Base_Type (Standard_Integer)
- or else T1 = Universal_Integer)
- and then Op_Name = Name_Op_Multiply
- then
- Add_One_Interp (N, Op_Id, T2);
-
- elsif T1 = Universal_Real and then T2 = Universal_Integer then
- Add_One_Interp (N, Op_Id, T1);
-
- elsif T2 = Universal_Real
- and then T1 = Universal_Integer
- and then Op_Name = Name_Op_Multiply
- then
- Add_One_Interp (N, Op_Id, T2);
- end if;
-
- elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
-
- -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
- -- set does not require any special processing, since the Etype is
- -- already set (case of operation constructed by Exp_Fixed).
-
- if Is_Integer_Type (T1)
- and then (Covers (T1 => T1, T2 => T2)
- or else
- Covers (T1 => T2, T2 => T1))
- then
- Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
- end if;
-
- elsif Op_Name = Name_Op_Expon then
- if Is_Numeric_Type (T1)
- and then not Is_Fixed_Point_Type (T1)
- and then (Base_Type (T2) = Base_Type (Standard_Integer)
- or else T2 = Universal_Integer)
- then
- Add_One_Interp (N, Op_Id, Base_Type (T1));
- end if;
-
- else pragma Assert (Nkind (N) in N_Op_Shift);
-
- -- If not one of the predefined operators, the node may be one
- -- of the intrinsic functions. Its kind is always specific, and
- -- we can use it directly, rather than the name of the operation.
-
- if Is_Integer_Type (T1)
- and then (Base_Type (T2) = Base_Type (Standard_Integer)
- or else T2 = Universal_Integer)
- then
- Add_One_Interp (N, Op_Id, Base_Type (T1));
- end if;
- end if;
- end Check_Arithmetic_Pair;
-
- -------------------------------
- -- Check_Misspelled_Selector --
- -------------------------------
-
- procedure Check_Misspelled_Selector
- (Prefix : Entity_Id;
- Sel : Node_Id)
- is
- Max_Suggestions : constant := 2;
- Nr_Of_Suggestions : Natural := 0;
-
- Suggestion_1 : Entity_Id := Empty;
- Suggestion_2 : Entity_Id := Empty;
-
- Comp : Entity_Id;
-
- begin
- -- All the components of the prefix of selector Sel are matched
- -- against Sel and a count is maintained of possible misspellings.
- -- When at the end of the analysis there are one or two (not more!)
- -- possible misspellings, these misspellings will be suggested as
- -- possible correction.
-
- if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
-
- -- Concurrent types should be handled as well ???
-
- return;
- end if;
-
- Comp := First_Entity (Prefix);
- while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
- if Is_Visible_Component (Comp) then
- if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
- Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
-
- case Nr_Of_Suggestions is
- when 1 => Suggestion_1 := Comp;
- when 2 => Suggestion_2 := Comp;
- when others => exit;
- end case;
- end if;
- end if;
-
- Comp := Next_Entity (Comp);
- end loop;
-
- -- Report at most two suggestions
-
- if Nr_Of_Suggestions = 1 then
- Error_Msg_NE
- ("\possible misspelling of&", Sel, Suggestion_1);
-
- elsif Nr_Of_Suggestions = 2 then
- Error_Msg_Node_2 := Suggestion_2;
- Error_Msg_NE
- ("\possible misspelling of& or&", Sel, Suggestion_1);
- end if;
- end Check_Misspelled_Selector;
-
- ----------------------
- -- Defined_In_Scope --
- ----------------------
-
- function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
- is
- S1 : constant Entity_Id := Scope (Base_Type (T));
- begin
- return S1 = S
- or else (S1 = System_Aux_Id and then S = Scope (S1));
- end Defined_In_Scope;
-
- -------------------
- -- Diagnose_Call --
- -------------------
-
- procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
- Actual : Node_Id;
- X : Interp_Index;
- It : Interp;
- Err_Mode : Boolean;
- New_Nam : Node_Id;
- Void_Interp_Seen : Boolean := False;
-
- Success : Boolean;
- pragma Warnings (Off, Boolean);
-
- begin
- if Ada_Version >= Ada_05 then
- Actual := First_Actual (N);
- while Present (Actual) loop
-
- -- Ada 2005 (AI-50217): Post an error in case of premature
- -- usage of an entity from the limited view.
-
- if not Analyzed (Etype (Actual))
- and then From_With_Type (Etype (Actual))
- then
- Error_Msg_Qual_Level := 1;
- Error_Msg_NE
- ("missing with_clause for scope of imported type&",
- Actual, Etype (Actual));
- Error_Msg_Qual_Level := 0;
- end if;
-
- Next_Actual (Actual);
- end loop;
- end if;
-
- -- Analyze each candidate call again, with full error reporting
- -- for each.
-
- Error_Msg_N
- ("no candidate interpretations match the actuals:!", Nam);
- Err_Mode := All_Errors_Mode;
- All_Errors_Mode := True;
-
- -- If this is a call to an operation of a concurrent type,
- -- the failed interpretations have been removed from the
- -- name. Recover them to provide full diagnostics.
-
- if Nkind (Parent (Nam)) = N_Selected_Component then
- Set_Entity (Nam, Empty);
- New_Nam := New_Copy_Tree (Parent (Nam));
- Set_Is_Overloaded (New_Nam, False);
- Set_Is_Overloaded (Selector_Name (New_Nam), False);
- Set_Parent (New_Nam, Parent (Parent (Nam)));
- Analyze_Selected_Component (New_Nam);
- Get_First_Interp (Selector_Name (New_Nam), X, It);
- else
- Get_First_Interp (Nam, X, It);
- end if;
-
- while Present (It.Nam) loop
- if Etype (It.Nam) = Standard_Void_Type then
- Void_Interp_Seen := True;
- end if;
-
- Analyze_One_Call (N, It.Nam, True, Success);
- Get_Next_Interp (X, It);
- end loop;
-
- if Nkind (N) = N_Function_Call then
- Get_First_Interp (Nam, X, It);
- while Present (It.Nam) loop
- if Ekind (It.Nam) = E_Function
- or else Ekind (It.Nam) = E_Operator
- then
- return;
- else
- Get_Next_Interp (X, It);
- end if;
- end loop;
-
- -- If all interpretations are procedures, this deserves a
- -- more precise message. Ditto if this appears as the prefix
- -- of a selected component, which may be a lexical error.
-
- Error_Msg_N
- ("\context requires function call, found procedure name", Nam);
-
- if Nkind (Parent (N)) = N_Selected_Component
- and then N = Prefix (Parent (N))
- then
- Error_Msg_N (
- "\period should probably be semicolon", Parent (N));
- end if;
-
- elsif Nkind (N) = N_Procedure_Call_Statement
- and then not Void_Interp_Seen
- then
- Error_Msg_N (
- "\function name found in procedure call", Nam);
- end if;
-
- All_Errors_Mode := Err_Mode;
- end Diagnose_Call;
-
- ---------------------------
- -- Find_Arithmetic_Types --
- ---------------------------
-
- procedure Find_Arithmetic_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Index1 : Interp_Index;
- Index2 : Interp_Index;
- It1 : Interp;
- It2 : Interp;
-
- procedure Check_Right_Argument (T : Entity_Id);
- -- Check right operand of operator
-
- --------------------------
- -- Check_Right_Argument --
- --------------------------
-
- procedure Check_Right_Argument (T : Entity_Id) is
- begin
- if not Is_Overloaded (R) then
- Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
- else
- Get_First_Interp (R, Index2, It2);
- while Present (It2.Typ) loop
- Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
- Get_Next_Interp (Index2, It2);
- end loop;
- end if;
- end Check_Right_Argument;
-
- -- Start processing for Find_Arithmetic_Types
-
- begin
- if not Is_Overloaded (L) then
- Check_Right_Argument (Etype (L));
-
- else
- Get_First_Interp (L, Index1, It1);
- while Present (It1.Typ) loop
- Check_Right_Argument (It1.Typ);
- Get_Next_Interp (Index1, It1);
- end loop;
- end if;
-
- end Find_Arithmetic_Types;
-
- ------------------------
- -- Find_Boolean_Types --
- ------------------------
-
- procedure Find_Boolean_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Index : Interp_Index;
- It : Interp;
-
- procedure Check_Numeric_Argument (T : Entity_Id);
- -- Special case for logical operations one of whose operands is an
- -- integer literal. If both are literal the result is any modular type.
-
- ----------------------------
- -- Check_Numeric_Argument --
- ----------------------------
-
- procedure Check_Numeric_Argument (T : Entity_Id) is
- begin
- if T = Universal_Integer then
- Add_One_Interp (N, Op_Id, Any_Modular);
-
- elsif Is_Modular_Integer_Type (T) then
- Add_One_Interp (N, Op_Id, T);
- end if;
- end Check_Numeric_Argument;
-
- -- Start of processing for Find_Boolean_Types
-
- begin
- if not Is_Overloaded (L) then
- if Etype (L) = Universal_Integer
- or else Etype (L) = Any_Modular
- then
- if not Is_Overloaded (R) then
- Check_Numeric_Argument (Etype (R));
-
- else
- Get_First_Interp (R, Index, It);
- while Present (It.Typ) loop
- Check_Numeric_Argument (It.Typ);
- Get_Next_Interp (Index, It);
- end loop;
- end if;
-
- -- If operands are aggregates, we must assume that they may be
- -- boolean arrays, and leave disambiguation for the second pass.
- -- If only one is an aggregate, verify that the other one has an
- -- interpretation as a boolean array
-
- elsif Nkind (L) = N_Aggregate then
- if Nkind (R) = N_Aggregate then
- Add_One_Interp (N, Op_Id, Etype (L));
-
- elsif not Is_Overloaded (R) then
- if Valid_Boolean_Arg (Etype (R)) then
- Add_One_Interp (N, Op_Id, Etype (R));
- end if;
-
- else
- Get_First_Interp (R, Index, It);
- while Present (It.Typ) loop
- if Valid_Boolean_Arg (It.Typ) then
- Add_One_Interp (N, Op_Id, It.Typ);
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end if;
-
- elsif Valid_Boolean_Arg (Etype (L))
- and then Has_Compatible_Type (R, Etype (L))
- then
- Add_One_Interp (N, Op_Id, Etype (L));
- end if;
-
- else
- Get_First_Interp (L, Index, It);
- while Present (It.Typ) loop
- if Valid_Boolean_Arg (It.Typ)
- and then Has_Compatible_Type (R, It.Typ)
- then
- Add_One_Interp (N, Op_Id, It.Typ);
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end if;
- end Find_Boolean_Types;
-
- ---------------------------
- -- Find_Comparison_Types --
- ---------------------------
-
- procedure Find_Comparison_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Index : Interp_Index;
- It : Interp;
- Found : Boolean := False;
- I_F : Interp_Index;
- T_F : Entity_Id;
- Scop : Entity_Id := Empty;
-
- procedure Try_One_Interp (T1 : Entity_Id);
- -- Routine to try one proposed interpretation. Note that the context
- -- of the operator plays no role in resolving the arguments, so that
- -- if there is more than one interpretation of the operands that is
- -- compatible with comparison, the operation is ambiguous.
-
- --------------------
- -- Try_One_Interp --
- --------------------
-
- procedure Try_One_Interp (T1 : Entity_Id) is
- begin
-
- -- If the operator is an expanded name, then the type of the operand
- -- must be defined in the corresponding scope. If the type is
- -- universal, the context will impose the correct type.
-
- if Present (Scop)
- and then not Defined_In_Scope (T1, Scop)
- and then T1 /= Universal_Integer
- and then T1 /= Universal_Real
- and then T1 /= Any_String
- and then T1 /= Any_Composite
- then
- return;
- end if;
-
- if Valid_Comparison_Arg (T1)
- and then Has_Compatible_Type (R, T1)
- then
- if Found
- and then Base_Type (T1) /= Base_Type (T_F)
- then
- It := Disambiguate (L, I_F, Index, Any_Type);
-
- if It = No_Interp then
- Ambiguous_Operands (N);
- Set_Etype (L, Any_Type);
- return;
-
- else
- T_F := It.Typ;
- end if;
-
- else
- Found := True;
- T_F := T1;
- I_F := Index;
- end if;
-
- Set_Etype (L, T_F);
- Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
-
- end if;
- end Try_One_Interp;
-
- -- Start processing for Find_Comparison_Types
-
- begin
- -- If left operand is aggregate, the right operand has to
- -- provide a usable type for it.
-
- if Nkind (L) = N_Aggregate
- and then Nkind (R) /= N_Aggregate
- then
- Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
- return;
- end if;
-
- if Nkind (N) = N_Function_Call
- and then Nkind (Name (N)) = N_Expanded_Name
- then
- Scop := Entity (Prefix (Name (N)));
-
- -- The prefix may be a package renaming, and the subsequent test
- -- requires the original package.
-
- if Ekind (Scop) = E_Package
- and then Present (Renamed_Entity (Scop))
- then
- Scop := Renamed_Entity (Scop);
- Set_Entity (Prefix (Name (N)), Scop);
- end if;
- end if;
-
- if not Is_Overloaded (L) then
- Try_One_Interp (Etype (L));
-
- else
- Get_First_Interp (L, Index, It);
- while Present (It.Typ) loop
- Try_One_Interp (It.Typ);
- Get_Next_Interp (Index, It);
- end loop;
- end if;
- end Find_Comparison_Types;
-
- ----------------------------------------
- -- Find_Non_Universal_Interpretations --
- ----------------------------------------
-
- procedure Find_Non_Universal_Interpretations
- (N : Node_Id;
- R : Node_Id;
- Op_Id : Entity_Id;
- T1 : Entity_Id)
- is
- Index : Interp_Index;
- It : Interp;
-
- begin
- if T1 = Universal_Integer
- or else T1 = Universal_Real
- then
- if not Is_Overloaded (R) then
- Add_One_Interp
- (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
- else
- Get_First_Interp (R, Index, It);
- while Present (It.Typ) loop
- if Covers (It.Typ, T1) then
- Add_One_Interp
- (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end if;
- else
- Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
- end if;
- end Find_Non_Universal_Interpretations;
-
- ------------------------------
- -- Find_Concatenation_Types --
- ------------------------------
-
- procedure Find_Concatenation_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Op_Type : constant Entity_Id := Etype (Op_Id);
-
- begin
- if Is_Array_Type (Op_Type)
- and then not Is_Limited_Type (Op_Type)
-
- and then (Has_Compatible_Type (L, Op_Type)
- or else
- Has_Compatible_Type (L, Component_Type (Op_Type)))
-
- and then (Has_Compatible_Type (R, Op_Type)
- or else
- Has_Compatible_Type (R, Component_Type (Op_Type)))
- then
- Add_One_Interp (N, Op_Id, Op_Type);
- end if;
- end Find_Concatenation_Types;
-
- -------------------------
- -- Find_Equality_Types --
- -------------------------
-
- procedure Find_Equality_Types
- (L, R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Index : Interp_Index;
- It : Interp;
- Found : Boolean := False;
- I_F : Interp_Index;
- T_F : Entity_Id;
- Scop : Entity_Id := Empty;
-
- procedure Try_One_Interp (T1 : Entity_Id);
- -- The context of the operator plays no role in resolving the
- -- arguments, so that if there is more than one interpretation
- -- of the operands that is compatible with equality, the construct
- -- is ambiguous and an error can be emitted now, after trying to
- -- disambiguate, i.e. applying preference rules.
-
- --------------------
- -- Try_One_Interp --
- --------------------
-
- procedure Try_One_Interp (T1 : Entity_Id) is
- begin
- -- If the operator is an expanded name, then the type of the operand
- -- must be defined in the corresponding scope. If the type is
- -- universal, the context will impose the correct type. An anonymous
- -- type for a 'Access reference is also universal in this sense, as
- -- the actual type is obtained from context.
- -- In Ada 2005, the equality operator for anonymous access types
- -- is declared in Standard, and preference rules apply to it.
-
- if Present (Scop) then
- if Defined_In_Scope (T1, Scop)
- or else T1 = Universal_Integer
- or else T1 = Universal_Real
- or else T1 = Any_Access
- or else T1 = Any_String
- or else T1 = Any_Composite
- or else (Ekind (T1) = E_Access_Subprogram_Type
- and then not Comes_From_Source (T1))
- then
- null;
-
- elsif Ekind (T1) = E_Anonymous_Access_Type
- and then Scop = Standard_Standard
- then
- null;
-
- else
- -- The scope does not contain an operator for the type
-
- return;
- end if;
- end if;
-
- -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
- -- Do not allow anonymous access types in equality operators.
-
- if Ada_Version < Ada_05
- and then Ekind (T1) = E_Anonymous_Access_Type
- then
- return;
- end if;
-
- if T1 /= Standard_Void_Type
- and then not Is_Limited_Type (T1)
- and then not Is_Limited_Composite (T1)
- and then Has_Compatible_Type (R, T1)
- then
- if Found
- and then Base_Type (T1) /= Base_Type (T_F)
- then
- It := Disambiguate (L, I_F, Index, Any_Type);
-
- if It = No_Interp then
- Ambiguous_Operands (N);
- Set_Etype (L, Any_Type);
- return;
-
- else
- T_F := It.Typ;
- end if;
-
- else
- Found := True;
- T_F := T1;
- I_F := Index;
- end if;
-
- if not Analyzed (L) then
- Set_Etype (L, T_F);
- end if;
-
- Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
-
- -- Case of operator was not visible, Etype still set to Any_Type
-
- if Etype (N) = Any_Type then
- Found := False;
- end if;
-
- elsif Scop = Standard_Standard
- and then Ekind (T1) = E_Anonymous_Access_Type
- then
- Found := True;
- end if;
- end Try_One_Interp;
-
- -- Start of processing for Find_Equality_Types
-
- begin
- -- If left operand is aggregate, the right operand has to
- -- provide a usable type for it.
-
- if Nkind (L) = N_Aggregate
- and then Nkind (R) /= N_Aggregate
- then
- Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
- return;
- end if;
-
- if Nkind (N) = N_Function_Call
- and then Nkind (Name (N)) = N_Expanded_Name
- then
- Scop := Entity (Prefix (Name (N)));
-
- -- The prefix may be a package renaming, and the subsequent test
- -- requires the original package.
-
- if Ekind (Scop) = E_Package
- and then Present (Renamed_Entity (Scop))
- then
- Scop := Renamed_Entity (Scop);
- Set_Entity (Prefix (Name (N)), Scop);
- end if;
- end if;
-
- if not Is_Overloaded (L) then
- Try_One_Interp (Etype (L));
-
- else
- Get_First_Interp (L, Index, It);
- while Present (It.Typ) loop
- Try_One_Interp (It.Typ);
- Get_Next_Interp (Index, It);
- end loop;
- end if;
- end Find_Equality_Types;
-
- -------------------------
- -- Find_Negation_Types --
- -------------------------
-
- procedure Find_Negation_Types
- (R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Index : Interp_Index;
- It : Interp;
-
- begin
- if not Is_Overloaded (R) then
- if Etype (R) = Universal_Integer then
- Add_One_Interp (N, Op_Id, Any_Modular);
- elsif Valid_Boolean_Arg (Etype (R)) then
- Add_One_Interp (N, Op_Id, Etype (R));
- end if;
-
- else
- Get_First_Interp (R, Index, It);
- while Present (It.Typ) loop
- if Valid_Boolean_Arg (It.Typ) then
- Add_One_Interp (N, Op_Id, It.Typ);
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end if;
- end Find_Negation_Types;
-
- ------------------------------
- -- Find_Primitive_Operation --
- ------------------------------
-
- function Find_Primitive_Operation (N : Node_Id) return Boolean is
- Obj : constant Node_Id := Prefix (N);
- Op : constant Node_Id := Selector_Name (N);
-
- Prim : Elmt_Id;
- Prims : Elist_Id;
- Typ : Entity_Id;
-
- begin
- Set_Etype (Op, Any_Type);
-
- if Is_Access_Type (Etype (Obj)) then
- Typ := Designated_Type (Etype (Obj));
- else
- Typ := Etype (Obj);
- end if;
-
- if Is_Class_Wide_Type (Typ) then
- Typ := Root_Type (Typ);
- end if;
-
- Prims := Primitive_Operations (Typ);
-
- Prim := First_Elmt (Prims);
- while Present (Prim) loop
- if Chars (Node (Prim)) = Chars (Op) then
- Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
- Set_Etype (N, Etype (Node (Prim)));
- end if;
-
- Next_Elmt (Prim);
- end loop;
-
- -- Now look for class-wide operations of the type or any of its
- -- ancestors by iterating over the homonyms of the selector.
-
- declare
- Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
- Hom : Entity_Id;
-
- begin
- Hom := Current_Entity (Op);
- while Present (Hom) loop
- if (Ekind (Hom) = E_Procedure
- or else
- Ekind (Hom) = E_Function)
- and then Scope (Hom) = Scope (Typ)
- and then Present (First_Formal (Hom))
- and then
- (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
- or else
- (Is_Access_Type (Etype (First_Formal (Hom)))
- and then
- Ekind (Etype (First_Formal (Hom))) =
- E_Anonymous_Access_Type
- and then
- Base_Type
- (Designated_Type (Etype (First_Formal (Hom)))) =
- Cls_Type))
- then
- Add_One_Interp (Op, Hom, Etype (Hom));
- Set_Etype (N, Etype (Hom));
- end if;
-
- Hom := Homonym (Hom);
- end loop;
- end;
-
- return Etype (Op) /= Any_Type;
- end Find_Primitive_Operation;
-
- ----------------------
- -- Find_Unary_Types --
- ----------------------
-
- procedure Find_Unary_Types
- (R : Node_Id;
- Op_Id : Entity_Id;
- N : Node_Id)
- is
- Index : Interp_Index;
- It : Interp;
-
- begin
- if not Is_Overloaded (R) then
- if Is_Numeric_Type (Etype (R)) then
- Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
- end if;
-
- else
- Get_First_Interp (R, Index, It);
- while Present (It.Typ) loop
- if Is_Numeric_Type (It.Typ) then
- Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end if;
- end Find_Unary_Types;
-
- ------------------
- -- Junk_Operand --
- ------------------
-
- function Junk_Operand (N : Node_Id) return Boolean is
- Enode : Node_Id;
-
- begin
- if Error_Posted (N) then
- return False;
- end if;
-
- -- Get entity to be tested
-
- if Is_Entity_Name (N)
- and then Present (Entity (N))
- then
- Enode := N;
-
- -- An odd case, a procedure name gets converted to a very peculiar
- -- function call, and here is where we detect this happening.
-
- elsif Nkind (N) = N_Function_Call
- and then Is_Entity_Name (Name (N))
- and then Present (Entity (Name (N)))
- then
- Enode := Name (N);
-
- -- Another odd case, there are at least some cases of selected
- -- components where the selected component is not marked as having
- -- an entity, even though the selector does have an entity
-
- elsif Nkind (N) = N_Selected_Component
- and then Present (Entity (Selector_Name (N)))
- then
- Enode := Selector_Name (N);
-
- else
- return False;
- end if;
-
- -- Now test the entity we got to see if it is a bad case
-
- case Ekind (Entity (Enode)) is
-
- when E_Package =>
- Error_Msg_N
- ("package name cannot be used as operand", Enode);
-
- when Generic_Unit_Kind =>
- Error_Msg_N
- ("generic unit name cannot be used as operand", Enode);
-
- when Type_Kind =>
- Error_Msg_N
- ("subtype name cannot be used as operand", Enode);
-
- when Entry_Kind =>
- Error_Msg_N
- ("entry name cannot be used as operand", Enode);
-
- when E_Procedure =>
- Error_Msg_N
- ("procedure name cannot be used as operand", Enode);
-
- when E_Exception =>
- Error_Msg_N
- ("exception name cannot be used as operand", Enode);
-
- when E_Block | E_Label | E_Loop =>
- Error_Msg_N
- ("label name cannot be used as operand", Enode);
-
- when others =>
- return False;
-
- end case;
-
- return True;
- end Junk_Operand;
-
- --------------------
- -- Operator_Check --
- --------------------
-
- procedure Operator_Check (N : Node_Id) is
- begin
- Remove_Abstract_Operations (N);
-
- -- Test for case of no interpretation found for operator
-
- if Etype (N) = Any_Type then
- declare
- L : Node_Id;
- R : Node_Id;
- Op_Id : Entity_Id := Empty;
-
- begin
- R := Right_Opnd (N);
-
- if Nkind (N) in N_Binary_Op then
- L := Left_Opnd (N);
- else
- L := Empty;
- end if;
-
- -- If either operand has no type, then don't complain further,
- -- since this simply means that we have a propagated error.
-
- if R = Error
- or else Etype (R) = Any_Type
- or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
- then
- return;
-
- -- We explicitly check for the case of concatenation of component
- -- with component to avoid reporting spurious matching array types
- -- that might happen to be lurking in distant packages (such as
- -- run-time packages). This also prevents inconsistencies in the
- -- messages for certain ACVC B tests, which can vary depending on
- -- types declared in run-time interfaces. Another improvement when
- -- aggregates are present is to look for a well-typed operand.
-
- elsif Present (Candidate_Type)
- and then (Nkind (N) /= N_Op_Concat
- or else Is_Array_Type (Etype (L))
- or else Is_Array_Type (Etype (R)))
- then
-
- if Nkind (N) = N_Op_Concat then
- if Etype (L) /= Any_Composite
- and then Is_Array_Type (Etype (L))
- then
- Candidate_Type := Etype (L);
-
- elsif Etype (R) /= Any_Composite
- and then Is_Array_Type (Etype (R))
- then
- Candidate_Type := Etype (R);
- end if;
- end if;
-
- Error_Msg_NE
- ("operator for} is not directly visible!",
- N, First_Subtype (Candidate_Type));
- Error_Msg_N ("use clause would make operation legal!", N);
- return;
-
- -- If either operand is a junk operand (e.g. package name), then
- -- post appropriate error messages, but do not complain further.
-
- -- Note that the use of OR in this test instead of OR ELSE is
- -- quite deliberate, we may as well check both operands in the
- -- binary operator case.
-
- elsif Junk_Operand (R)
- or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
- then
- return;
-
- -- If we have a logical operator, one of whose operands is
- -- Boolean, then we know that the other operand cannot resolve to
- -- Boolean (since we got no interpretations), but in that case we
- -- pretty much know that the other operand should be Boolean, so
- -- resolve it that way (generating an error)
-
- elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
- if Etype (L) = Standard_Boolean then
- Resolve (R, Standard_Boolean);
- return;
- elsif Etype (R) = Standard_Boolean then
- Resolve (L, Standard_Boolean);
- return;
- end if;
-
- -- For an arithmetic operator or comparison operator, if one
- -- of the operands is numeric, then we know the other operand
- -- is not the same numeric type. If it is a non-numeric type,
- -- then probably it is intended to match the other operand.
-
- elsif Nkind_In (N, N_Op_Add,
- N_Op_Divide,
- N_Op_Ge,
- N_Op_Gt,
- N_Op_Le)
- or else
- Nkind_In (N, N_Op_Lt,
- N_Op_Mod,
- N_Op_Multiply,
- N_Op_Rem,
- N_Op_Subtract)
- then
- if Is_Numeric_Type (Etype (L))
- and then not Is_Numeric_Type (Etype (R))
- then
- Resolve (R, Etype (L));
- return;
-
- elsif Is_Numeric_Type (Etype (R))
- and then not Is_Numeric_Type (Etype (L))
- then
- Resolve (L, Etype (R));
- return;
- end if;
-
- -- Comparisons on A'Access are common enough to deserve a
- -- special message.
-
- elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
- and then Ekind (Etype (L)) = E_Access_Attribute_Type
- and then Ekind (Etype (R)) = E_Access_Attribute_Type
- then
- Error_Msg_N
- ("two access attributes cannot be compared directly", N);
- Error_Msg_N
- ("\use qualified expression for one of the operands",
- N);
- return;
-
- -- Another one for C programmers
-
- elsif Nkind (N) = N_Op_Concat
- and then Valid_Boolean_Arg (Etype (L))
- and then Valid_Boolean_Arg (Etype (R))
- then
- Error_Msg_N ("invalid operands for concatenation", N);
- Error_Msg_N ("\maybe AND was meant", N);
- return;
-
- -- A special case for comparison of access parameter with null
-
- elsif Nkind (N) = N_Op_Eq
- and then Is_Entity_Name (L)
- and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
- and then Nkind (Parameter_Type (Parent (Entity (L)))) =
- N_Access_Definition
- and then Nkind (R) = N_Null
- then
- Error_Msg_N ("access parameter is not allowed to be null", L);
- Error_Msg_N ("\(call would raise Constraint_Error)", L);
- return;
- end if;
-
- -- If we fall through then just give general message. Note that in
- -- the following messages, if the operand is overloaded we choose
- -- an arbitrary type to complain about, but that is probably more
- -- useful than not giving a type at all.
-
- if Nkind (N) in N_Unary_Op then
- Error_Msg_Node_2 := Etype (R);
- Error_Msg_N ("operator& not defined for}", N);
- return;
-
- else
- if Nkind (N) in N_Binary_Op then
- if not Is_Overloaded (L)
- and then not Is_Overloaded (R)
- and then Base_Type (Etype (L)) = Base_Type (Etype (R))
- then
- Error_Msg_Node_2 := First_Subtype (Etype (R));
- Error_Msg_N ("there is no applicable operator& for}", N);
-
- else
- -- Another attempt to find a fix: one of the candidate
- -- interpretations may not be use-visible. This has
- -- already been checked for predefined operators, so
- -- we examine only user-defined functions.
-
- Op_Id := Get_Name_Entity_Id (Chars (N));
-
- while Present (Op_Id) loop
- if Ekind (Op_Id) /= E_Operator
- and then Is_Overloadable (Op_Id)
- then
- if not Is_Immediately_Visible (Op_Id)
- and then not In_Use (Scope (Op_Id))
- and then not Is_Abstract_Subprogram (Op_Id)
- and then not Is_Hidden (Op_Id)
- and then Ekind (Scope (Op_Id)) = E_Package
- and then
- Has_Compatible_Type
- (L, Etype (First_Formal (Op_Id)))
- and then Present
- (Next_Formal (First_Formal (Op_Id)))
- and then
- Has_Compatible_Type
- (R,
- Etype (Next_Formal (First_Formal (Op_Id))))
- then
- Error_Msg_N
- ("No legal interpretation for operator&", N);
- Error_Msg_NE
- ("\use clause on& would make operation legal",
- N, Scope (Op_Id));
- exit;
- end if;
- end if;
-
- Op_Id := Homonym (Op_Id);
- end loop;
-
- if No (Op_Id) then
- Error_Msg_N ("invalid operand types for operator&", N);
-
- if Nkind (N) /= N_Op_Concat then
- Error_Msg_NE ("\left operand has}!", N, Etype (L));
- Error_Msg_NE ("\right operand has}!", N, Etype (R));
- end if;
- end if;
- end if;
- end if;
- end if;
- end;
- end if;
- end Operator_Check;
-
- -----------------------------------------
- -- Process_Implicit_Dereference_Prefix --
- -----------------------------------------
-
- function Process_Implicit_Dereference_Prefix
- (E : Entity_Id;
- P : Entity_Id) return Entity_Id
- is
- Ref : Node_Id;
- Typ : constant Entity_Id := Designated_Type (Etype (P));
-
- begin
- if Present (E)
- and then (Operating_Mode = Check_Semantics or else not Expander_Active)
- then
- -- We create a dummy reference to E to ensure that the reference
- -- is not considered as part of an assignment (an implicit
- -- dereference can never assign to its prefix). The Comes_From_Source
- -- attribute needs to be propagated for accurate warnings.
-
- Ref := New_Reference_To (E, Sloc (P));
- Set_Comes_From_Source (Ref, Comes_From_Source (P));
- Generate_Reference (E, Ref);
- end if;
-
- -- An implicit dereference is a legal occurrence of an
- -- incomplete type imported through a limited_with clause,
- -- if the full view is visible.
-
- if From_With_Type (Typ)
- and then not From_With_Type (Scope (Typ))
- and then
- (Is_Immediately_Visible (Scope (Typ))
- or else
- (Is_Child_Unit (Scope (Typ))
- and then Is_Visible_Child_Unit (Scope (Typ))))
- then
- return Available_View (Typ);
- else
- return Typ;
- end if;
-
- end Process_Implicit_Dereference_Prefix;
-
- --------------------------------
- -- Remove_Abstract_Operations --
- --------------------------------
-
- procedure Remove_Abstract_Operations (N : Node_Id) is
- Abstract_Op : Entity_Id := Empty;
- Address_Kludge : Boolean := False;
- I : Interp_Index;
- It : Interp;
-
- -- AI-310: If overloaded, remove abstract non-dispatching operations. We
- -- activate this if either extensions are enabled, or if the abstract
- -- operation in question comes from a predefined file. This latter test
- -- allows us to use abstract to make operations invisible to users. In
- -- particular, if type Address is non-private and abstract subprograms
- -- are used to hide its operators, they will be truly hidden.
-
- type Operand_Position is (First_Op, Second_Op);
- Univ_Type : constant Entity_Id := Universal_Interpretation (N);
-
- procedure Remove_Address_Interpretations (Op : Operand_Position);
- -- Ambiguities may arise when the operands are literal and the address
- -- operations in s-auxdec are visible. In that case, remove the
- -- interpretation of a literal as Address, to retain the semantics of
- -- Address as a private type.
-
- ------------------------------------
- -- Remove_Address_Interpretations --
- ------------------------------------
-
- procedure Remove_Address_Interpretations (Op : Operand_Position) is
- Formal : Entity_Id;
-
- begin
- if Is_Overloaded (N) then
- Get_First_Interp (N, I, It);
- while Present (It.Nam) loop
- Formal := First_Entity (It.Nam);
-
- if Op = Second_Op then
- Formal := Next_Entity (Formal);
- end if;
-
- if Is_Descendent_Of_Address (Etype (Formal)) then
- Address_Kludge := True;
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
- end Remove_Address_Interpretations;
-
- -- Start of processing for Remove_Abstract_Operations
-
- begin
- if Is_Overloaded (N) then
- Get_First_Interp (N, I, It);
-
- while Present (It.Nam) loop
- if Is_Overloadable (It.Nam)
- and then Is_Abstract_Subprogram (It.Nam)
- and then not Is_Dispatching_Operation (It.Nam)
- then
- Abstract_Op := It.Nam;
-
- if Is_Descendent_Of_Address (It.Typ) then
- Address_Kludge := True;
- Remove_Interp (I);
- exit;
-
- -- In Ada 2005, this operation does not participate in Overload
- -- resolution. If the operation is defined in a predefined
- -- unit, it is one of the operations declared abstract in some
- -- variants of System, and it must be removed as well.
-
- elsif Ada_Version >= Ada_05
- or else Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (It.Nam)))
- then
- Remove_Interp (I);
- exit;
- end if;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- if No (Abstract_Op) then
-
- -- If some interpretation yields an integer type, it is still
- -- possible that there are address interpretations. Remove them
- -- if one operand is a literal, to avoid spurious ambiguities
- -- on systems where Address is a visible integer type.
-
- if Is_Overloaded (N)
- and then Nkind (N) in N_Op
- and then Is_Integer_Type (Etype (N))
- then
- if Nkind (N) in N_Binary_Op then
- if Nkind (Right_Opnd (N)) = N_Integer_Literal then
- Remove_Address_Interpretations (Second_Op);
-
- elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
- Remove_Address_Interpretations (First_Op);
- end if;
- end if;
- end if;
-
- elsif Nkind (N) in N_Op then
-
- -- Remove interpretations that treat literals as addresses. This
- -- is never appropriate, even when Address is defined as a visible
- -- Integer type. The reason is that we would really prefer Address
- -- to behave as a private type, even in this case, which is there
- -- only to accommodate oddities of VMS address sizes. If Address
- -- is a visible integer type, we get lots of overload ambiguities.
-
- if Nkind (N) in N_Binary_Op then
- declare
- U1 : constant Boolean :=
- Present (Universal_Interpretation (Right_Opnd (N)));
- U2 : constant Boolean :=
- Present (Universal_Interpretation (Left_Opnd (N)));
-
- begin
- if U1 then
- Remove_Address_Interpretations (Second_Op);
- end if;
-
- if U2 then
- Remove_Address_Interpretations (First_Op);
- end if;
-
- if not (U1 and U2) then
-
- -- Remove corresponding predefined operator, which is
- -- always added to the overload set.
-
- Get_First_Interp (N, I, It);
- while Present (It.Nam) loop
- if Scope (It.Nam) = Standard_Standard
- and then Base_Type (It.Typ) =
- Base_Type (Etype (Abstract_Op))
- then
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- elsif Is_Overloaded (N)
- and then Present (Univ_Type)
- then
- -- If both operands have a universal interpretation,
- -- it is still necessary to remove interpretations that
- -- yield Address. Any remaining ambiguities will be
- -- removed in Disambiguate.
-
- Get_First_Interp (N, I, It);
- while Present (It.Nam) loop
- if Is_Descendent_Of_Address (It.Typ) then
- Remove_Interp (I);
-
- elsif not Is_Type (It.Nam) then
- Set_Entity (N, It.Nam);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
- end;
- end if;
-
- elsif Nkind (N) = N_Function_Call
- and then
- (Nkind (Name (N)) = N_Operator_Symbol
- or else
- (Nkind (Name (N)) = N_Expanded_Name
- and then
- Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
- then
-
- declare
- Arg1 : constant Node_Id := First (Parameter_Associations (N));
- U1 : constant Boolean :=
- Present (Universal_Interpretation (Arg1));
- U2 : constant Boolean :=
- Present (Next (Arg1)) and then
- Present (Universal_Interpretation (Next (Arg1)));
-
- begin
- if U1 then
- Remove_Address_Interpretations (First_Op);
- end if;
-
- if U2 then
- Remove_Address_Interpretations (Second_Op);
- end if;
-
- if not (U1 and U2) then
- Get_First_Interp (N, I, It);
- while Present (It.Nam) loop
- if Scope (It.Nam) = Standard_Standard
- and then It.Typ = Base_Type (Etype (Abstract_Op))
- then
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
- end;
- end if;
-
- -- If the removal has left no valid interpretations, emit an error
- -- message now and label node as illegal.
-
- if Present (Abstract_Op) then
- Get_First_Interp (N, I, It);
-
- if No (It.Nam) then
-
- -- Removal of abstract operation left no viable candidate
-
- Set_Etype (N, Any_Type);
- Error_Msg_Sloc := Sloc (Abstract_Op);
- Error_Msg_NE
- ("cannot call abstract operation& declared#", N, Abstract_Op);
-
- -- In Ada 2005, an abstract operation may disable predefined
- -- operators. Since the context is not yet known, we mark the
- -- predefined operators as potentially hidden. Do not include
- -- predefined operators when addresses are involved since this
- -- case is handled separately.
-
- elsif Ada_Version >= Ada_05
- and then not Address_Kludge
- then
- while Present (It.Nam) loop
- if Is_Numeric_Type (It.Typ)
- and then Scope (It.Typ) = Standard_Standard
- then
- Set_Abstract_Op (I, Abstract_Op);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end if;
- end if;
- end if;
- end Remove_Abstract_Operations;
-
- -----------------------
- -- Try_Indirect_Call --
- -----------------------
-
- function Try_Indirect_Call
- (N : Node_Id;
- Nam : Entity_Id;
- Typ : Entity_Id) return Boolean
- is
- Actual : Node_Id;
- Formal : Entity_Id;
-
- Call_OK : Boolean;
- pragma Warnings (Off, Call_OK);
-
- begin
- Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
-
- Actual := First_Actual (N);
- Formal := First_Formal (Designated_Type (Typ));
- while Present (Actual) and then Present (Formal) loop
- if not Has_Compatible_Type (Actual, Etype (Formal)) then
- return False;
- end if;
-
- Next (Actual);
- Next_Formal (Formal);
- end loop;
-
- if No (Actual) and then No (Formal) then
- Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
-
- -- Nam is a candidate interpretation for the name in the call,
- -- if it is not an indirect call.
-
- if not Is_Type (Nam)
- and then Is_Entity_Name (Name (N))
- then
- Set_Entity (Name (N), Nam);
- end if;
-
- return True;
- else
- return False;
- end if;
- end Try_Indirect_Call;
-
- ----------------------
- -- Try_Indexed_Call --
- ----------------------
-
- function Try_Indexed_Call
- (N : Node_Id;
- Nam : Entity_Id;
- Typ : Entity_Id;
- Skip_First : Boolean) return Boolean
- is
- Loc : constant Source_Ptr := Sloc (N);
- Actuals : constant List_Id := Parameter_Associations (N);
- Actual : Node_Id;
- Index : Entity_Id;
-
- begin
- Actual := First (Actuals);
-
- -- If the call was originally written in prefix form, skip the first
- -- actual, which is obviously not defaulted.
-
- if Skip_First then
- Next (Actual);
- end if;
-
- Index := First_Index (Typ);
- while Present (Actual) and then Present (Index) loop
-
- -- If the parameter list has a named association, the expression
- -- is definitely a call and not an indexed component.
-
- if Nkind (Actual) = N_Parameter_Association then
- return False;
- end if;
-
- if Is_Entity_Name (Actual)
- and then Is_Type (Entity (Actual))
- and then No (Next (Actual))
- then
- Rewrite (N,
- Make_Slice (Loc,
- Prefix => Make_Function_Call (Loc,
- Name => Relocate_Node (Name (N))),
- Discrete_Range =>
- New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
-
- Analyze (N);
- return True;
-
- elsif not Has_Compatible_Type (Actual, Etype (Index)) then
- return False;
- end if;
-
- Next (Actual);
- Next_Index (Index);
- end loop;
-
- if No (Actual) and then No (Index) then
- Add_One_Interp (N, Nam, Component_Type (Typ));
-
- -- Nam is a candidate interpretation for the name in the call,
- -- if it is not an indirect call.
-
- if not Is_Type (Nam)
- and then Is_Entity_Name (Name (N))
- then
- Set_Entity (Name (N), Nam);
- end if;
-
- return True;
- else
- return False;
- end if;
- end Try_Indexed_Call;
-
- --------------------------
- -- Try_Object_Operation --
- --------------------------
-
- function Try_Object_Operation (N : Node_Id) return Boolean is
- K : constant Node_Kind := Nkind (Parent (N));
- Is_Subprg_Call : constant Boolean := Nkind_In
- (K, N_Procedure_Call_Statement,
- N_Function_Call);
- Loc : constant Source_Ptr := Sloc (N);
- Obj : constant Node_Id := Prefix (N);
- Subprog : constant Node_Id :=
- Make_Identifier (Sloc (Selector_Name (N)),
- Chars => Chars (Selector_Name (N)));
- -- Identifier on which possible interpretations will be collected
-
- Report_Error : Boolean := False;
- -- If no candidate interpretation matches the context, redo the
- -- analysis with error enabled to provide additional information.
-
- Actual : Node_Id;
- Candidate : Entity_Id := Empty;
- New_Call_Node : Node_Id := Empty;
- Node_To_Replace : Node_Id;
- Obj_Type : Entity_Id := Etype (Obj);
- Success : Boolean := False;
-
- function Valid_Candidate
- (Success : Boolean;
- Call : Node_Id;
- Subp : Entity_Id) return Entity_Id;
- -- If the subprogram is a valid interpretation, record it, and add
- -- to the list of interpretations of Subprog.
-
- procedure Complete_Object_Operation
- (Call_Node : Node_Id;
- Node_To_Replace : Node_Id);
- -- Make Subprog the name of Call_Node, replace Node_To_Replace with
- -- Call_Node, insert the object (or its dereference) as the first actual
- -- in the call, and complete the analysis of the call.
-
- procedure Report_Ambiguity (Op : Entity_Id);
- -- If a prefixed procedure call is ambiguous, indicate whether the
- -- call includes an implicit dereference or an implicit 'Access.
-
- procedure Transform_Object_Operation
- (Call_Node : out Node_Id;
- Node_To_Replace : out Node_Id);
- -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
- -- Call_Node is the resulting subprogram call, Node_To_Replace is
- -- either N or the parent of N, and Subprog is a reference to the
- -- subprogram we are trying to match.
-
- function Try_Class_Wide_Operation
- (Call_Node : Node_Id;
- Node_To_Replace : Node_Id) return Boolean;
- -- Traverse all ancestor types looking for a class-wide subprogram
- -- for which the current operation is a valid non-dispatching call.
-
- procedure Try_One_Prefix_Interpretation (T : Entity_Id);
- -- If prefix is overloaded, its interpretation may include different
- -- tagged types, and we must examine the primitive operations and
- -- the class-wide operations of each in order to find candidate
- -- interpretations for the call as a whole.
-
- function Try_Primitive_Operation
- (Call_Node : Node_Id;
- Node_To_Replace : Node_Id) return Boolean;
- -- Traverse the list of primitive subprograms looking for a dispatching
- -- operation for which the current node is a valid call .
-
- ---------------------
- -- Valid_Candidate --
- ---------------------
-
- function Valid_Candidate
- (Success : Boolean;
- Call : Node_Id;
- Subp : Entity_Id) return Entity_Id
- is
- Comp_Type : Entity_Id;
-
- begin
- -- If the subprogram is a valid interpretation, record it in global
- -- variable Subprog, to collect all possible overloadings.
-
- if Success then
- if Subp /= Entity (Subprog) then
- Add_One_Interp (Subprog, Subp, Etype (Subp));
- end if;
- end if;
-
- -- If the call may be an indexed call, retrieve component type of
- -- resulting expression, and add possible interpretation.
-
- Comp_Type := Empty;
-
- if Nkind (Call) = N_Function_Call
- and then Nkind (Parent (N)) = N_Indexed_Component
- and then Needs_One_Actual (Subp)
- then
- if Is_Array_Type (Etype (Subp)) then
- Comp_Type := Component_Type (Etype (Subp));
-
- elsif Is_Access_Type (Etype (Subp))
- and then Is_Array_Type (Designated_Type (Etype (Subp)))
- then
- Comp_Type := Component_Type (Designated_Type (Etype (Subp)));
- end if;
- end if;
-
- if Present (Comp_Type)
- and then Etype (Subprog) /= Comp_Type
- then
- Add_One_Interp (Subprog, Subp, Comp_Type);
- end if;
-
- if Etype (Call) /= Any_Type then
- return Subp;
- else
- return Empty;
- end if;
- end Valid_Candidate;
-
- -------------------------------
- -- Complete_Object_Operation --
- -------------------------------
-
- procedure Complete_Object_Operation
- (Call_Node : Node_Id;
- Node_To_Replace : Node_Id)
- is
- Control : constant Entity_Id := First_Formal (Entity (Subprog));
- Formal_Type : constant Entity_Id := Etype (Control);
- First_Actual : Node_Id;
-
- begin
- -- Place the name of the operation, with its interpretations,
- -- on the rewritten call.
-
- Set_Name (Call_Node, Subprog);
-
- First_Actual := First (Parameter_Associations (Call_Node));
-
- -- For cross-reference purposes, treat the new node as being in
- -- the source if the original one is.
-
- Set_Comes_From_Source (Subprog, Comes_From_Source (N));
- Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
-
- if Nkind (N) = N_Selected_Component
- and then not Inside_A_Generic
- then
- Set_Entity (Selector_Name (N), Entity (Subprog));
- end if;
-
- -- If need be, rewrite first actual as an explicit dereference
- -- If the call is overloaded, the rewriting can only be done
- -- once the primitive operation is identified.
-
- if Is_Overloaded (Subprog) then
-
- -- The prefix itself may be overloaded, and its interpretations
- -- must be propagated to the new actual in the call.
-
- if Is_Overloaded (Obj) then
- Save_Interps (Obj, First_Actual);
- end if;
-
- Rewrite (First_Actual, Obj);
-
- elsif not Is_Access_Type (Formal_Type)
- and then Is_Access_Type (Etype (Obj))
- then
- Rewrite (First_Actual,
- Make_Explicit_Dereference (Sloc (Obj), Obj));
- Analyze (First_Actual);
-
- -- If we need to introduce an explicit dereference, verify that
- -- the resulting actual is compatible with the mode of the formal.
-
- if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
- and then Is_Access_Constant (Etype (Obj))
- then
- Error_Msg_NE
- ("expect variable in call to&", Prefix (N), Entity (Subprog));
- end if;
-
- -- Conversely, if the formal is an access parameter and the object
- -- is not, replace the actual with a 'Access reference. Its analysis
- -- will check that the object is aliased.
-
- elsif Is_Access_Type (Formal_Type)
- and then not Is_Access_Type (Etype (Obj))
- then
- -- A special case: A.all'access is illegal if A is an access to a
- -- constant and the context requires an access to a variable.
-
- if not Is_Access_Constant (Formal_Type) then
- if (Nkind (Obj) = N_Explicit_Dereference
- and then Is_Access_Constant (Etype (Prefix (Obj))))
- or else not Is_Variable (Obj)
- then
- Error_Msg_NE
- ("actual for& must be a variable", Obj, Control);
- end if;
- end if;
-
- Rewrite (First_Actual,
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Access,
- Prefix => Relocate_Node (Obj)));
-
- if not Is_Aliased_View (Obj) then
- Error_Msg_NE
- ("object in prefixed call to& must be aliased"
- & " (RM-2005 4.3.1 (13))",
- Prefix (First_Actual), Subprog);
- end if;
-
- Analyze (First_Actual);
-
- else
- if Is_Overloaded (Obj) then
- Save_Interps (Obj, First_Actual);
- end if;
-
- Rewrite (First_Actual, Obj);
- end if;
-
- Rewrite (Node_To_Replace, Call_Node);
-
- -- Propagate the interpretations collected in subprog to the new
- -- function call node, to be resolved from context.
-
- if Is_Overloaded (Subprog) then
- Save_Interps (Subprog, Node_To_Replace);
- else
- Analyze (Node_To_Replace);
- end if;
- end Complete_Object_Operation;
-
- ----------------------
- -- Report_Ambiguity --
- ----------------------
-
- procedure Report_Ambiguity (Op : Entity_Id) is
- Access_Formal : constant Boolean :=
- Is_Access_Type (Etype (First_Formal (Op)));
- Access_Actual : constant Boolean :=
- Is_Access_Type (Etype (Prefix (N)));
-
- begin
- Error_Msg_Sloc := Sloc (Op);
-
- if Access_Formal and then not Access_Actual then
- if Nkind (Parent (Op)) = N_Full_Type_Declaration then
- Error_Msg_N
- ("\possible interpretation"
- & " (inherited, with implicit 'Access) #", N);
- else
- Error_Msg_N
- ("\possible interpretation (with implicit 'Access) #", N);
- end if;
-
- elsif not Access_Formal and then Access_Actual then
- if Nkind (Parent (Op)) = N_Full_Type_Declaration then
- Error_Msg_N
- ("\possible interpretation"
- & " ( inherited, with implicit dereference) #", N);
- else
- Error_Msg_N
- ("\possible interpretation (with implicit dereference) #", N);
- end if;
-
- else
- if Nkind (Parent (Op)) = N_Full_Type_Declaration then
- Error_Msg_N ("\possible interpretation (inherited)#", N);
- else
- Error_Msg_N ("\possible interpretation#", N);
- end if;
- end if;
- end Report_Ambiguity;
-
- --------------------------------
- -- Transform_Object_Operation --
- --------------------------------
-
- procedure Transform_Object_Operation
- (Call_Node : out Node_Id;
- Node_To_Replace : out Node_Id)
- is
- Dummy : constant Node_Id := New_Copy (Obj);
- -- Placeholder used as a first parameter in the call, replaced
- -- eventually by the proper object.
-
- Parent_Node : constant Node_Id := Parent (N);
-
- Actual : Node_Id;
- Actuals : List_Id;
-
- begin
- -- Common case covering 1) Call to a procedure and 2) Call to a
- -- function that has some additional actuals.
-
- if Nkind_In (Parent_Node, N_Function_Call,
- N_Procedure_Call_Statement)
-
- -- N is a selected component node containing the name of the
- -- subprogram. If N is not the name of the parent node we must
- -- not replace the parent node by the new construct. This case
- -- occurs when N is a parameterless call to a subprogram that
- -- is an actual parameter of a call to another subprogram. For
- -- example:
- -- Some_Subprogram (..., Obj.Operation, ...)
-
- and then Name (Parent_Node) = N
- then
- Node_To_Replace := Parent_Node;
-
- Actuals := Parameter_Associations (Parent_Node);
-
- if Present (Actuals) then
- Prepend (Dummy, Actuals);
- else
- Actuals := New_List (Dummy);
- end if;
-
- if Nkind (Parent_Node) = N_Procedure_Call_Statement then
- Call_Node :=
- Make_Procedure_Call_Statement (Loc,
- Name => New_Copy (Subprog),
- Parameter_Associations => Actuals);
-
- else
- Call_Node :=
- Make_Function_Call (Loc,
- Name => New_Copy (Subprog),
- Parameter_Associations => Actuals);
-
- end if;
-
- -- Before analysis, a function call appears as an indexed component
- -- if there are no named associations.
-
- elsif Nkind (Parent_Node) = N_Indexed_Component
- and then N = Prefix (Parent_Node)
- then
- Node_To_Replace := Parent_Node;
-
- Actuals := Expressions (Parent_Node);
-
- Actual := First (Actuals);
- while Present (Actual) loop
- Analyze (Actual);
- Next (Actual);
- end loop;
-
- Prepend (Dummy, Actuals);
-
- Call_Node :=
- Make_Function_Call (Loc,
- Name => New_Copy (Subprog),
- Parameter_Associations => Actuals);
-
- -- Parameterless call: Obj.F is rewritten as F (Obj)
-
- else
- Node_To_Replace := N;
-
- Call_Node :=
- Make_Function_Call (Loc,
- Name => New_Copy (Subprog),
- Parameter_Associations => New_List (Dummy));
- end if;
- end Transform_Object_Operation;
-
- ------------------------------
- -- Try_Class_Wide_Operation --
- ------------------------------
-
- function Try_Class_Wide_Operation
- (Call_Node : Node_Id;
- Node_To_Replace : Node_Id) return Boolean
- is
- Anc_Type : Entity_Id;
- Matching_Op : Entity_Id := Empty;
- Error : Boolean;
-
- procedure Traverse_Homonyms
- (Anc_Type : Entity_Id;
- Error : out Boolean);
- -- Traverse the homonym chain of the subprogram searching for those
- -- homonyms whose first formal has the Anc_Type's class-wide type,
- -- or an anonymous access type designating the class-wide type. If
- -- an ambiguity is detected, then Error is set to True.
-
- procedure Traverse_Interfaces
- (Anc_Type : Entity_Id;
- Error : out Boolean);
- -- Traverse the list of interfaces, if any, associated with Anc_Type
- -- and search for acceptable class-wide homonyms associated with each
- -- interface. If an ambiguity is detected, then Error is set to True.
-
- -----------------------
- -- Traverse_Homonyms --
- -----------------------
-
- procedure Traverse_Homonyms
- (Anc_Type : Entity_Id;
- Error : out Boolean)
- is
- Cls_Type : Entity_Id;
- Hom : Entity_Id;
- Hom_Ref : Node_Id;
- Success : Boolean;
-
- begin
- Error := False;
-
- Cls_Type := Class_Wide_Type (Anc_Type);
-
- Hom := Current_Entity (Subprog);
-
- -- Find operation whose first parameter is of the class-wide
- -- type, a subtype thereof, or an anonymous access to same.
-
- while Present (Hom) loop
- if (Ekind (Hom) = E_Procedure
- or else
- Ekind (Hom) = E_Function)
- and then Scope (Hom) = Scope (Anc_Type)
- and then Present (First_Formal (Hom))
- and then
- (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
- or else
- (Is_Access_Type (Etype (First_Formal (Hom)))
- and then
- Ekind (Etype (First_Formal (Hom))) =
- E_Anonymous_Access_Type
- and then
- Base_Type
- (Designated_Type (Etype (First_Formal (Hom)))) =
- Cls_Type))
- then
- Set_Etype (Call_Node, Any_Type);
- Set_Is_Overloaded (Call_Node, False);
- Success := False;
-
- if No (Matching_Op) then
- Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
- Set_Etype (Call_Node, Any_Type);
- Set_Parent (Call_Node, Parent (Node_To_Replace));
-
- Set_Name (Call_Node, Hom_Ref);
-
- Analyze_One_Call
- (N => Call_Node,
- Nam => Hom,
- Report => Report_Error,
- Success => Success,
- Skip_First => True);
-
- Matching_Op :=
- Valid_Candidate (Success, Call_Node, Hom);
-
- else
- Analyze_One_Call
- (N => Call_Node,
- Nam => Hom,
- Report => Report_Error,
- Success => Success,
- Skip_First => True);
-
- if Present (Valid_Candidate (Success, Call_Node, Hom))
- and then Nkind (Call_Node) /= N_Function_Call
- then
- Error_Msg_NE ("ambiguous call to&", N, Hom);
- Report_Ambiguity (Matching_Op);
- Report_Ambiguity (Hom);
- Error := True;
- return;
- end if;
- end if;
- end if;
-
- Hom := Homonym (Hom);
- end loop;
- end Traverse_Homonyms;
-
- -------------------------
- -- Traverse_Interfaces --
- -------------------------
-
- procedure Traverse_Interfaces
- (Anc_Type : Entity_Id;
- Error : out Boolean)
- is
- Intface_List : constant List_Id :=
- Abstract_Interface_List (Anc_Type);
- Intface : Node_Id;
-
- begin
- Error := False;
-
- if Is_Non_Empty_List (Intface_List) then
- Intface := First (Intface_List);
- while Present (Intface) loop
-
- -- Look for acceptable class-wide homonyms associated with
- -- the interface.
-
- Traverse_Homonyms (Etype (Intface), Error);
-
- if Error then
- return;
- end if;
-
- -- Continue the search by looking at each of the interface's
- -- associated interface ancestors.
-
- Traverse_Interfaces (Etype (Intface), Error);
-
- if Error then
- return;
- end if;
-
- Next (Intface);
- end loop;
- end if;
- end Traverse_Interfaces;
-
- -- Start of processing for Try_Class_Wide_Operation
-
- begin
- -- Loop through ancestor types (including interfaces), traversing
- -- the homonym chain of the subprogram, trying out those homonyms
- -- whose first formal has the class-wide type of the ancestor, or
- -- an anonymous access type designating the class-wide type.
-
- Anc_Type := Obj_Type;
- loop
- -- Look for a match among homonyms associated with the ancestor
-
- Traverse_Homonyms (Anc_Type, Error);
-
- if Error then
- return True;
- end if;
-
- -- Continue the search for matches among homonyms associated with
- -- any interfaces implemented by the ancestor.
-
- Traverse_Interfaces (Anc_Type, Error);
-
- if Error then
- return True;
- end if;
-
- exit when Etype (Anc_Type) = Anc_Type;
- Anc_Type := Etype (Anc_Type);
- end loop;
-
- if Present (Matching_Op) then
- Set_Etype (Call_Node, Etype (Matching_Op));
- end if;
-
- return Present (Matching_Op);
- end Try_Class_Wide_Operation;
-
- -----------------------------------
- -- Try_One_Prefix_Interpretation --
- -----------------------------------
-
- procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
- begin
- Obj_Type := T;
-
- if Is_Access_Type (Obj_Type) then
- Obj_Type := Designated_Type (Obj_Type);
- end if;
-
- if Ekind (Obj_Type) = E_Private_Subtype then
- Obj_Type := Base_Type (Obj_Type);
- end if;
-
- if Is_Class_Wide_Type (Obj_Type) then
- Obj_Type := Etype (Class_Wide_Type (Obj_Type));
- end if;
-
- -- The type may have be obtained through a limited_with clause,
- -- in which case the primitive operations are available on its
- -- non-limited view. If still incomplete, retrieve full view.
-
- if Ekind (Obj_Type) = E_Incomplete_Type
- and then From_With_Type (Obj_Type)
- then
- Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
- end if;
-
- -- If the object is not tagged, or the type is still an incomplete
- -- type, this is not a prefixed call.
-
- if not Is_Tagged_Type (Obj_Type)
- or else Is_Incomplete_Type (Obj_Type)
- then
- return;
- end if;
-
- if Try_Primitive_Operation
- (Call_Node => New_Call_Node,
- Node_To_Replace => Node_To_Replace)
- or else
- Try_Class_Wide_Operation
- (Call_Node => New_Call_Node,
- Node_To_Replace => Node_To_Replace)
- then
- null;
- end if;
- end Try_One_Prefix_Interpretation;
-
- -----------------------------
- -- Try_Primitive_Operation --
- -----------------------------
-
- function Try_Primitive_Operation
- (Call_Node : Node_Id;
- Node_To_Replace : Node_Id) return Boolean
- is
- Elmt : Elmt_Id;
- Prim_Op : Entity_Id;
- Matching_Op : Entity_Id := Empty;
- Prim_Op_Ref : Node_Id := Empty;
-
- Corr_Type : Entity_Id := Empty;
- -- If the prefix is a synchronized type, the controlling type of
- -- the primitive operation is the corresponding record type, else
- -- this is the object type itself.
-
- Success : Boolean := False;
-
- function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
- -- For tagged types the candidate interpretations are found in
- -- the list of primitive operations of the type and its ancestors.
- -- For formal tagged types we have to find the operations declared
- -- in the same scope as the type (including in the generic formal
- -- part) because the type itself carries no primitive operations,
- -- except for formal derived types that inherit the operations of
- -- the parent and progenitors.
- -- If the context is a generic subprogram body, the generic formals
- -- are visible by name, but are not in the entity list of the
- -- subprogram because that list starts with the subprogram formals.
- -- We retrieve the candidate operations from the generic declaration.
-
- function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
- -- Verify that the prefix, dereferenced if need be, is a valid
- -- controlling argument in a call to Op. The remaining actuals
- -- are checked in the subsequent call to Analyze_One_Call.
-
- ------------------------------
- -- Collect_Generic_Type_Ops --
- ------------------------------
-
- function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
- Bas : constant Entity_Id := Base_Type (T);
- Candidates : constant Elist_Id := New_Elmt_List;
- Subp : Entity_Id;
- Formal : Entity_Id;
-
- procedure Check_Candidate;
- -- The operation is a candidate if its first parameter is a
- -- controlling operand of the desired type.
-
- -----------------------
- -- Check_Candidate; --
- -----------------------
-
- procedure Check_Candidate is
- begin
- Formal := First_Formal (Subp);
-
- if Present (Formal)
- and then Is_Controlling_Formal (Formal)
- and then
- (Base_Type (Etype (Formal)) = Bas
- or else
- (Is_Access_Type (Etype (Formal))
- and then Designated_Type (Etype (Formal)) = Bas))
- then
- Append_Elmt (Subp, Candidates);
- end if;
- end Check_Candidate;
-
- -- Start of processing for Collect_Generic_Type_Ops
-
- begin
- if Is_Derived_Type (T) then
- return Primitive_Operations (T);
-
- elsif Ekind (Scope (T)) = E_Procedure
- or else Ekind (Scope (T)) = E_Function
- then
- -- Scan the list of generic formals to find subprograms
- -- that may have a first controlling formal of the type.
-
- declare
- Decl : Node_Id;
-
- begin
- Decl :=
- First (Generic_Formal_Declarations
- (Unit_Declaration_Node (Scope (T))));
- while Present (Decl) loop
- if Nkind (Decl) in N_Formal_Subprogram_Declaration then
- Subp := Defining_Entity (Decl);
- Check_Candidate;
- end if;
-
- Next (Decl);
- end loop;
- end;
-
- return Candidates;
-
- else
- -- Scan the list of entities declared in the same scope as
- -- the type. In general this will be an open scope, given that
- -- the call we are analyzing can only appear within a generic
- -- declaration or body (either the one that declares T, or a
- -- child unit).
-
- Subp := First_Entity (Scope (T));
- while Present (Subp) loop
- if Is_Overloadable (Subp) then
- Check_Candidate;
- end if;
-
- Next_Entity (Subp);
- end loop;
-
- return Candidates;
- end if;
- end Collect_Generic_Type_Ops;
-
- -----------------------------
- -- Valid_First_Argument_Of --
- -----------------------------
-
- function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
- Typ : Entity_Id := Etype (First_Formal (Op));
-
- begin
- if Is_Concurrent_Type (Typ)
- and then Present (Corresponding_Record_Type (Typ))
- then
- Typ := Corresponding_Record_Type (Typ);
- end if;
-
- -- Simple case. Object may be a subtype of the tagged type or
- -- may be the corresponding record of a synchronized type.
-
- return Obj_Type = Typ
- or else Base_Type (Obj_Type) = Typ
- or else Corr_Type = Typ
-
- -- Prefix can be dereferenced
-
- or else
- (Is_Access_Type (Corr_Type)
- and then Designated_Type (Corr_Type) = Typ)
-
- -- Formal is an access parameter, for which the object
- -- can provide an access.
-
- or else
- (Ekind (Typ) = E_Anonymous_Access_Type
- and then Designated_Type (Typ) = Base_Type (Corr_Type));
- end Valid_First_Argument_Of;
-
- -- Start of processing for Try_Primitive_Operation
-
- begin
- -- Look for subprograms in the list of primitive operations. The name
- -- must be identical, and the kind of call indicates the expected
- -- kind of operation (function or procedure). If the type is a
- -- (tagged) synchronized type, the primitive ops are attached to the
- -- corresponding record (base) type.
-
- if Is_Concurrent_Type (Obj_Type) then
- if not Present (Corresponding_Record_Type (Obj_Type)) then
- return False;
- end if;
-
- Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
- Elmt := First_Elmt (Primitive_Operations (Corr_Type));
-
- elsif not Is_Generic_Type (Obj_Type) then
- Corr_Type := Obj_Type;
- Elmt := First_Elmt (Primitive_Operations (Obj_Type));
-
- else
- Corr_Type := Obj_Type;
- Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
- end if;
-
- while Present (Elmt) loop
- Prim_Op := Node (Elmt);
-
- if Chars (Prim_Op) = Chars (Subprog)
- and then Present (First_Formal (Prim_Op))
- and then Valid_First_Argument_Of (Prim_Op)
- and then
- (Nkind (Call_Node) = N_Function_Call)
- = (Ekind (Prim_Op) = E_Function)
- then
- -- Ada 2005 (AI-251): If this primitive operation corresponds
- -- with an immediate ancestor interface there is no need to add
- -- it to the list of interpretations; the corresponding aliased
- -- primitive is also in this list of primitive operations and
- -- will be used instead.
-
- if (Present (Interface_Alias (Prim_Op))
- and then Is_Ancestor (Find_Dispatching_Type
- (Alias (Prim_Op)), Corr_Type))
- or else
-
- -- Do not consider hidden primitives unless the type is
- -- in an open scope or we are within an instance, where
- -- visibility is known to be correct.
-
- (Is_Hidden (Prim_Op)
- and then not Is_Immediately_Visible (Obj_Type)
- and then not In_Instance)
- then
- goto Continue;
- end if;
-
- Set_Etype (Call_Node, Any_Type);
- Set_Is_Overloaded (Call_Node, False);
-
- if No (Matching_Op) then
- Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
- Candidate := Prim_Op;
-
- Set_Parent (Call_Node, Parent (Node_To_Replace));
-
- Set_Name (Call_Node, Prim_Op_Ref);
- Success := False;
-
- Analyze_One_Call
- (N => Call_Node,
- Nam => Prim_Op,
- Report => Report_Error,
- Success => Success,
- Skip_First => True);
-
- Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
-
- -- More than one interpretation, collect for subsequent
- -- disambiguation. If this is a procedure call and there
- -- is another match, report ambiguity now.
-
- else
- Analyze_One_Call
- (N => Call_Node,
- Nam => Prim_Op,
- Report => Report_Error,
- Success => Success,
- Skip_First => True);
-
- if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
- and then Nkind (Call_Node) /= N_Function_Call
- then
- Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
- Report_Ambiguity (Matching_Op);
- Report_Ambiguity (Prim_Op);
- return True;
- end if;
- end if;
- end if;
-
- <<Continue>>
- Next_Elmt (Elmt);
- end loop;
-
- if Present (Matching_Op) then
- Set_Etype (Call_Node, Etype (Matching_Op));
- end if;
-
- return Present (Matching_Op);
- end Try_Primitive_Operation;
-
- -- Start of processing for Try_Object_Operation
-
- begin
- Analyze_Expression (Obj);
-
- -- Analyze the actuals if node is known to be a subprogram call
-
- if Is_Subprg_Call and then N = Name (Parent (N)) then
- Actual := First (Parameter_Associations (Parent (N)));
- while Present (Actual) loop
- Analyze_Expression (Actual);
- Next (Actual);
- end loop;
- end if;
-
- -- Build a subprogram call node, using a copy of Obj as its first
- -- actual. This is a placeholder, to be replaced by an explicit
- -- dereference when needed.
-
- Transform_Object_Operation
- (Call_Node => New_Call_Node,
- Node_To_Replace => Node_To_Replace);
-
- Set_Etype (New_Call_Node, Any_Type);
- Set_Etype (Subprog, Any_Type);
- Set_Parent (New_Call_Node, Parent (Node_To_Replace));
-
- if not Is_Overloaded (Obj) then
- Try_One_Prefix_Interpretation (Obj_Type);
-
- else
- declare
- I : Interp_Index;
- It : Interp;
- begin
- Get_First_Interp (Obj, I, It);
- while Present (It.Nam) loop
- Try_One_Prefix_Interpretation (It.Typ);
- Get_Next_Interp (I, It);
- end loop;
- end;
- end if;
-
- if Etype (New_Call_Node) /= Any_Type then
- Complete_Object_Operation
- (Call_Node => New_Call_Node,
- Node_To_Replace => Node_To_Replace);
- return True;
-
- elsif Present (Candidate) then
-
- -- The argument list is not type correct. Re-analyze with error
- -- reporting enabled, and use one of the possible candidates.
- -- In All_Errors_Mode, re-analyze all failed interpretations.
-
- if All_Errors_Mode then
- Report_Error := True;
- if Try_Primitive_Operation
- (Call_Node => New_Call_Node,
- Node_To_Replace => Node_To_Replace)
-
- or else
- Try_Class_Wide_Operation
- (Call_Node => New_Call_Node,
- Node_To_Replace => Node_To_Replace)
- then
- null;
- end if;
-
- else
- Analyze_One_Call
- (N => New_Call_Node,
- Nam => Candidate,
- Report => True,
- Success => Success,
- Skip_First => True);
- end if;
-
- -- No need for further errors
-
- return True;
-
- else
- -- There was no candidate operation, so report it as an error
- -- in the caller: Analyze_Selected_Component.
-
- return False;
- end if;
- end Try_Object_Operation;
-
- ---------
- -- wpo --
- ---------
-
- procedure wpo (T : Entity_Id) is
- Op : Entity_Id;
- E : Elmt_Id;
-
- begin
- if not Is_Tagged_Type (T) then
- return;
- end if;
-
- E := First_Elmt (Primitive_Operations (Base_Type (T)));
- while Present (E) loop
- Op := Node (E);
- Write_Int (Int (Op));
- Write_Str (" === ");
- Write_Name (Chars (Op));
- Write_Str (" in ");
- Write_Name (Chars (Scope (Op)));
- Next_Elmt (E);
- Write_Eol;
- end loop;
- end wpo;
-
-end Sem_Ch4;