aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/s-strxdr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/s-strxdr.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/s-strxdr.adb1901
1 files changed, 0 insertions, 1901 deletions
diff --git a/gcc-4.4.0/gcc/ada/s-strxdr.adb b/gcc-4.4.0/gcc/ada/s-strxdr.adb
deleted file mode 100644
index 32ee8ee43..000000000
--- a/gcc-4.4.0/gcc/ada/s-strxdr.adb
+++ /dev/null
@@ -1,1901 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME COMPONENTS --
--- --
--- S Y S T E M . S T R E A M _ A T T R I B U T E S --
--- --
--- B o d y --
--- --
--- Copyright (C) 1996-2009, Free Software Foundation, Inc. --
--- --
--- GARLIC is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
--- This file is an alternate version of s-stratt.adb based on the XDR
--- standard. It is especially useful for exchanging streams between two
--- different systems with different basic type representations and endianness.
-
-with Ada.IO_Exceptions;
-with Ada.Streams; use Ada.Streams;
-with Ada.Unchecked_Conversion;
-
-package body System.Stream_Attributes is
-
- pragma Suppress (Range_Check);
- pragma Suppress (Overflow_Check);
-
- use UST;
-
- Data_Error : exception renames Ada.IO_Exceptions.End_Error;
- -- Exception raised if insufficient data read (End_Error is mandated by
- -- AI95-00132).
-
- SU : constant := System.Storage_Unit;
- -- The code in this body assumes that SU = 8
-
- BB : constant := 2 ** SU; -- Byte base
- BL : constant := 2 ** SU - 1; -- Byte last
- BS : constant := 2 ** (SU - 1); -- Byte sign
-
- US : constant := Unsigned'Size; -- Unsigned size
- UB : constant := (US - 1) / SU + 1; -- Unsigned byte
- UL : constant := 2 ** US - 1; -- Unsigned last
-
- subtype SE is Ada.Streams.Stream_Element;
- subtype SEA is Ada.Streams.Stream_Element_Array;
- subtype SEO is Ada.Streams.Stream_Element_Offset;
-
- generic function UC renames Ada.Unchecked_Conversion;
-
- type Field_Type is
- record
- E_Size : Integer; -- Exponent bit size
- E_Bias : Integer; -- Exponent bias
- F_Size : Integer; -- Fraction bit size
- E_Last : Integer; -- Max exponent value
- F_Mask : SE; -- Mask to apply on first fraction byte
- E_Bytes : SEO; -- N. of exponent bytes completely used
- F_Bytes : SEO; -- N. of fraction bytes completely used
- F_Bits : Integer; -- N. of bits used on first fraction word
- end record;
-
- type Precision is (Single, Double, Quadruple);
-
- Fields : constant array (Precision) of Field_Type := (
-
- -- Single precision
-
- (E_Size => 8,
- E_Bias => 127,
- F_Size => 23,
- E_Last => 2 ** 8 - 1,
- F_Mask => 16#7F#, -- 2 ** 7 - 1,
- E_Bytes => 2,
- F_Bytes => 3,
- F_Bits => 23 mod US),
-
- -- Double precision
-
- (E_Size => 11,
- E_Bias => 1023,
- F_Size => 52,
- E_Last => 2 ** 11 - 1,
- F_Mask => 16#0F#, -- 2 ** 4 - 1,
- E_Bytes => 2,
- F_Bytes => 7,
- F_Bits => 52 mod US),
-
- -- Quadruple precision
-
- (E_Size => 15,
- E_Bias => 16383,
- F_Size => 112,
- E_Last => 2 ** 8 - 1,
- F_Mask => 16#FF#, -- 2 ** 8 - 1,
- E_Bytes => 2,
- F_Bytes => 14,
- F_Bits => 112 mod US));
-
- -- The representation of all items requires a multiple of four bytes
- -- (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes
- -- are read or written to some byte stream such that byte m always
- -- precedes byte m+1. If the n bytes needed to contain the data are not
- -- a multiple of four, then the n bytes are followed by enough (0 to 3)
- -- residual zero bytes, r, to make the total byte count a multiple of 4.
-
- -- An XDR signed integer is a 32-bit datum that encodes an integer
- -- in the range [-2147483648,2147483647]. The integer is represented
- -- in two's complement notation. The most and least significant bytes
- -- are 0 and 3, respectively. Integers are declared as follows:
-
- -- (MSB) (LSB)
- -- +-------+-------+-------+-------+
- -- |byte 0 |byte 1 |byte 2 |byte 3 |
- -- +-------+-------+-------+-------+
- -- <------------32 bits------------>
-
- SSI_L : constant := 1;
- SI_L : constant := 2;
- I_L : constant := 4;
- LI_L : constant := 8;
- LLI_L : constant := 8;
-
- subtype XDR_S_SSI is SEA (1 .. SSI_L);
- subtype XDR_S_SI is SEA (1 .. SI_L);
- subtype XDR_S_I is SEA (1 .. I_L);
- subtype XDR_S_LI is SEA (1 .. LI_L);
- subtype XDR_S_LLI is SEA (1 .. LLI_L);
-
- function Short_Short_Integer_To_XDR_S_SSI is
- new Ada.Unchecked_Conversion (Short_Short_Integer, XDR_S_SSI);
- function XDR_S_SSI_To_Short_Short_Integer is
- new Ada.Unchecked_Conversion (XDR_S_SSI, Short_Short_Integer);
-
- function Short_Integer_To_XDR_S_SI is
- new Ada.Unchecked_Conversion (Short_Integer, XDR_S_SI);
- function XDR_S_SI_To_Short_Integer is
- new Ada.Unchecked_Conversion (XDR_S_SI, Short_Integer);
-
- function Integer_To_XDR_S_I is
- new Ada.Unchecked_Conversion (Integer, XDR_S_I);
- function XDR_S_I_To_Integer is
- new Ada.Unchecked_Conversion (XDR_S_I, Integer);
-
- function Long_Long_Integer_To_XDR_S_LI is
- new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LI);
- function XDR_S_LI_To_Long_Long_Integer is
- new Ada.Unchecked_Conversion (XDR_S_LI, Long_Long_Integer);
-
- function Long_Long_Integer_To_XDR_S_LLI is
- new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LLI);
- function XDR_S_LLI_To_Long_Long_Integer is
- new Ada.Unchecked_Conversion (XDR_S_LLI, Long_Long_Integer);
-
- -- An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
- -- integer in the range [0,4294967295]. It is represented by an unsigned
- -- binary number whose most and least significant bytes are 0 and 3,
- -- respectively. An unsigned integer is declared as follows:
-
- -- (MSB) (LSB)
- -- +-------+-------+-------+-------+
- -- |byte 0 |byte 1 |byte 2 |byte 3 |
- -- +-------+-------+-------+-------+
- -- <------------32 bits------------>
-
- SSU_L : constant := 1;
- SU_L : constant := 2;
- U_L : constant := 4;
- LU_L : constant := 8;
- LLU_L : constant := 8;
-
- subtype XDR_S_SSU is SEA (1 .. SSU_L);
- subtype XDR_S_SU is SEA (1 .. SU_L);
- subtype XDR_S_U is SEA (1 .. U_L);
- subtype XDR_S_LU is SEA (1 .. LU_L);
- subtype XDR_S_LLU is SEA (1 .. LLU_L);
-
- type XDR_SSU is mod BB ** SSU_L;
- type XDR_SU is mod BB ** SU_L;
- type XDR_U is mod BB ** U_L;
-
- function Short_Unsigned_To_XDR_S_SU is
- new Ada.Unchecked_Conversion (Short_Unsigned, XDR_S_SU);
- function XDR_S_SU_To_Short_Unsigned is
- new Ada.Unchecked_Conversion (XDR_S_SU, Short_Unsigned);
-
- function Unsigned_To_XDR_S_U is
- new Ada.Unchecked_Conversion (Unsigned, XDR_S_U);
- function XDR_S_U_To_Unsigned is
- new Ada.Unchecked_Conversion (XDR_S_U, Unsigned);
-
- function Long_Long_Unsigned_To_XDR_S_LU is
- new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LU);
- function XDR_S_LU_To_Long_Long_Unsigned is
- new Ada.Unchecked_Conversion (XDR_S_LU, Long_Long_Unsigned);
-
- function Long_Long_Unsigned_To_XDR_S_LLU is
- new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LLU);
- function XDR_S_LLU_To_Long_Long_Unsigned is
- new Ada.Unchecked_Conversion (XDR_S_LLU, Long_Long_Unsigned);
-
- -- The standard defines the floating-point data type "float" (32 bits
- -- or 4 bytes). The encoding used is the IEEE standard for normalized
- -- single-precision floating-point numbers.
-
- -- The standard defines the encoding used for the double-precision
- -- floating-point data type "double" (64 bits or 8 bytes). The encoding
- -- used is the IEEE standard for normalized double-precision floating-point
- -- numbers.
-
- SF_L : constant := 4; -- Single precision
- F_L : constant := 4; -- Single precision
- LF_L : constant := 8; -- Double precision
- LLF_L : constant := 16; -- Quadruple precision
-
- TM_L : constant := 8;
- subtype XDR_S_TM is SEA (1 .. TM_L);
- type XDR_TM is mod BB ** TM_L;
-
- type XDR_SA is mod 2 ** Standard'Address_Size;
- function To_XDR_SA is new UC (System.Address, XDR_SA);
- function To_XDR_SA is new UC (XDR_SA, System.Address);
-
- -- Enumerations have the same representation as signed integers.
- -- Enumerations are handy for describing subsets of the integers.
-
- -- Booleans are important enough and occur frequently enough to warrant
- -- their own explicit type in the standard. Booleans are declared as
- -- an enumeration, with FALSE = 0 and TRUE = 1.
-
- -- The standard defines a string of n (numbered 0 through n-1) ASCII
- -- bytes to be the number n encoded as an unsigned integer (as described
- -- above), and followed by the n bytes of the string. Byte m of the string
- -- always precedes byte m+1 of the string, and byte 0 of the string always
- -- follows the string's length. If n is not a multiple of four, then the
- -- n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
- -- the total byte count a multiple of four.
-
- -- To fit with XDR string, do not consider character as an enumeration
- -- type.
-
- C_L : constant := 1;
- subtype XDR_S_C is SEA (1 .. C_L);
-
- -- Consider Wide_Character as an enumeration type
-
- WC_L : constant := 4;
- subtype XDR_S_WC is SEA (1 .. WC_L);
- type XDR_WC is mod BB ** WC_L;
-
- -- Consider Wide_Wide_Character as an enumeration type
-
- WWC_L : constant := 8;
- subtype XDR_S_WWC is SEA (1 .. WWC_L);
- type XDR_WWC is mod BB ** WWC_L;
-
- -- Optimization: if we already have the correct Bit_Order, then some
- -- computations can be avoided since the source and the target will be
- -- identical anyway. They will be replaced by direct unchecked
- -- conversions.
-
- Optimize_Integers : constant Boolean :=
- Default_Bit_Order = High_Order_First;
-
- -----------------
- -- Block_IO_OK --
- -----------------
-
- function Block_IO_OK return Boolean is
- begin
- return False;
- end Block_IO_OK;
-
- ----------
- -- I_AD --
- ----------
-
- function I_AD (Stream : not null access RST) return Fat_Pointer is
- FP : Fat_Pointer;
-
- begin
- FP.P1 := I_AS (Stream).P1;
- FP.P2 := I_AS (Stream).P1;
-
- return FP;
- end I_AD;
-
- ----------
- -- I_AS --
- ----------
-
- function I_AS (Stream : not null access RST) return Thin_Pointer is
- S : XDR_S_TM;
- L : SEO;
- U : XDR_TM := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- else
- for N in S'Range loop
- U := U * BB + XDR_TM (S (N));
- end loop;
-
- return (P1 => To_XDR_SA (XDR_SA (U)));
- end if;
- end I_AS;
-
- ---------
- -- I_B --
- ---------
-
- function I_B (Stream : not null access RST) return Boolean is
- begin
- case I_SSU (Stream) is
- when 0 => return False;
- when 1 => return True;
- when others => raise Data_Error;
- end case;
- end I_B;
-
- ---------
- -- I_C --
- ---------
-
- function I_C (Stream : not null access RST) return Character is
- S : XDR_S_C;
- L : SEO;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- else
- -- Use Ada requirements on Character representation clause
-
- return Character'Val (S (1));
- end if;
- end I_C;
-
- ---------
- -- I_F --
- ---------
-
- function I_F (Stream : not null access RST) return Float is
- I : constant Precision := Single;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Last : Integer renames Fields (I).E_Last;
- F_Mask : SE renames Fields (I).F_Mask;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
-
- Positive : Boolean;
- Exponent : Long_Unsigned;
- Fraction : Long_Unsigned;
- Result : Float;
- S : SEA (1 .. F_L);
- L : SEO;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
- end if;
-
- -- Extract Fraction, Sign and Exponent
-
- Fraction := Long_Unsigned (S (F_L + 1 - F_Bytes) and F_Mask);
- for N in F_L + 2 - F_Bytes .. F_L loop
- Fraction := Fraction * BB + Long_Unsigned (S (N));
- end loop;
- Result := Float'Scaling (Float (Fraction), -F_Size);
-
- if BS <= S (1) then
- Positive := False;
- Exponent := Long_Unsigned (S (1) - BS);
- else
- Positive := True;
- Exponent := Long_Unsigned (S (1));
- end if;
-
- for N in 2 .. E_Bytes loop
- Exponent := Exponent * BB + Long_Unsigned (S (N));
- end loop;
- Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-
- -- NaN or Infinities
-
- if Integer (Exponent) = E_Last then
- raise Constraint_Error;
-
- elsif Exponent = 0 then
-
- -- Signed zeros
-
- if Fraction = 0 then
- null;
-
- -- Denormalized float
-
- else
- Result := Float'Scaling (Result, 1 - E_Bias);
- end if;
-
- -- Normalized float
-
- else
- Result := Float'Scaling
- (1.0 + Result, Integer (Exponent) - E_Bias);
- end if;
-
- if not Positive then
- Result := -Result;
- end if;
-
- return Result;
- end I_F;
-
- ---------
- -- I_I --
- ---------
-
- function I_I (Stream : not null access RST) return Integer is
- S : XDR_S_I;
- L : SEO;
- U : XDR_U := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_I_To_Integer (S);
-
- else
- for N in S'Range loop
- U := U * BB + XDR_U (S (N));
- end loop;
-
- -- Test sign and apply two complement notation
-
- if S (1) < BL then
- return Integer (U);
-
- else
- return Integer (-((XDR_U'Last xor U) + 1));
- end if;
- end if;
- end I_I;
-
- ----------
- -- I_LF --
- ----------
-
- function I_LF (Stream : not null access RST) return Long_Float is
- I : constant Precision := Double;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Last : Integer renames Fields (I).E_Last;
- F_Mask : SE renames Fields (I).F_Mask;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
-
- Positive : Boolean;
- Exponent : Long_Unsigned;
- Fraction : Long_Long_Unsigned;
- Result : Long_Float;
- S : SEA (1 .. LF_L);
- L : SEO;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
- end if;
-
- -- Extract Fraction, Sign and Exponent
-
- Fraction := Long_Long_Unsigned (S (LF_L + 1 - F_Bytes) and F_Mask);
- for N in LF_L + 2 - F_Bytes .. LF_L loop
- Fraction := Fraction * BB + Long_Long_Unsigned (S (N));
- end loop;
-
- Result := Long_Float'Scaling (Long_Float (Fraction), -F_Size);
-
- if BS <= S (1) then
- Positive := False;
- Exponent := Long_Unsigned (S (1) - BS);
- else
- Positive := True;
- Exponent := Long_Unsigned (S (1));
- end if;
-
- for N in 2 .. E_Bytes loop
- Exponent := Exponent * BB + Long_Unsigned (S (N));
- end loop;
-
- Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-
- -- NaN or Infinities
-
- if Integer (Exponent) = E_Last then
- raise Constraint_Error;
-
- elsif Exponent = 0 then
-
- -- Signed zeros
-
- if Fraction = 0 then
- null;
-
- -- Denormalized float
-
- else
- Result := Long_Float'Scaling (Result, 1 - E_Bias);
- end if;
-
- -- Normalized float
-
- else
- Result := Long_Float'Scaling
- (1.0 + Result, Integer (Exponent) - E_Bias);
- end if;
-
- if not Positive then
- Result := -Result;
- end if;
-
- return Result;
- end I_LF;
-
- ----------
- -- I_LI --
- ----------
-
- function I_LI (Stream : not null access RST) return Long_Integer is
- S : XDR_S_LI;
- L : SEO;
- U : Unsigned := 0;
- X : Long_Unsigned := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return Long_Integer (XDR_S_LI_To_Long_Long_Integer (S));
-
- else
-
- -- Compute using machine unsigned
- -- rather than long_long_unsigned
-
- for N in S'Range loop
- U := U * BB + Unsigned (S (N));
-
- -- We have filled an unsigned
-
- if N mod UB = 0 then
- X := Shift_Left (X, US) + Long_Unsigned (U);
- U := 0;
- end if;
- end loop;
-
- -- Test sign and apply two complement notation
-
- if S (1) < BL then
- return Long_Integer (X);
- else
- return Long_Integer (-((Long_Unsigned'Last xor X) + 1));
- end if;
-
- end if;
- end I_LI;
-
- -----------
- -- I_LLF --
- -----------
-
- function I_LLF (Stream : not null access RST) return Long_Long_Float is
- I : constant Precision := Quadruple;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Last : Integer renames Fields (I).E_Last;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
-
- Positive : Boolean;
- Exponent : Long_Unsigned;
- Fraction_1 : Long_Long_Unsigned := 0;
- Fraction_2 : Long_Long_Unsigned := 0;
- Result : Long_Long_Float;
- HF : constant Natural := F_Size / 2;
- S : SEA (1 .. LLF_L);
- L : SEO;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
- end if;
-
- -- Extract Fraction, Sign and Exponent
-
- for I in LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
- Fraction_1 := Fraction_1 * BB + Long_Long_Unsigned (S (I));
- end loop;
-
- for I in SEO (LLF_L - 6) .. SEO (LLF_L) loop
- Fraction_2 := Fraction_2 * BB + Long_Long_Unsigned (S (I));
- end loop;
-
- Result := Long_Long_Float'Scaling (Long_Long_Float (Fraction_2), -HF);
- Result := Long_Long_Float (Fraction_1) + Result;
- Result := Long_Long_Float'Scaling (Result, HF - F_Size);
-
- if BS <= S (1) then
- Positive := False;
- Exponent := Long_Unsigned (S (1) - BS);
- else
- Positive := True;
- Exponent := Long_Unsigned (S (1));
- end if;
-
- for N in 2 .. E_Bytes loop
- Exponent := Exponent * BB + Long_Unsigned (S (N));
- end loop;
-
- Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-
- -- NaN or Infinities
-
- if Integer (Exponent) = E_Last then
- raise Constraint_Error;
-
- elsif Exponent = 0 then
-
- -- Signed zeros
-
- if Fraction_1 = 0 and then Fraction_2 = 0 then
- null;
-
- -- Denormalized float
-
- else
- Result := Long_Long_Float'Scaling (Result, 1 - E_Bias);
- end if;
-
- -- Normalized float
-
- else
- Result := Long_Long_Float'Scaling
- (1.0 + Result, Integer (Exponent) - E_Bias);
- end if;
-
- if not Positive then
- Result := -Result;
- end if;
-
- return Result;
- end I_LLF;
-
- -----------
- -- I_LLI --
- -----------
-
- function I_LLI (Stream : not null access RST) return Long_Long_Integer is
- S : XDR_S_LLI;
- L : SEO;
- U : Unsigned := 0;
- X : Long_Long_Unsigned := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_LLI_To_Long_Long_Integer (S);
-
- else
- -- Compute using machine unsigned for computing
- -- rather than long_long_unsigned.
-
- for N in S'Range loop
- U := U * BB + Unsigned (S (N));
-
- -- We have filled an unsigned
-
- if N mod UB = 0 then
- X := Shift_Left (X, US) + Long_Long_Unsigned (U);
- U := 0;
- end if;
- end loop;
-
- -- Test sign and apply two complement notation
-
- if S (1) < BL then
- return Long_Long_Integer (X);
- else
- return Long_Long_Integer (-((Long_Long_Unsigned'Last xor X) + 1));
- end if;
- end if;
- end I_LLI;
-
- -----------
- -- I_LLU --
- -----------
-
- function I_LLU (Stream : not null access RST) return Long_Long_Unsigned is
- S : XDR_S_LLU;
- L : SEO;
- U : Unsigned := 0;
- X : Long_Long_Unsigned := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_LLU_To_Long_Long_Unsigned (S);
-
- else
- -- Compute using machine unsigned
- -- rather than long_long_unsigned.
-
- for N in S'Range loop
- U := U * BB + Unsigned (S (N));
-
- -- We have filled an unsigned
-
- if N mod UB = 0 then
- X := Shift_Left (X, US) + Long_Long_Unsigned (U);
- U := 0;
- end if;
- end loop;
-
- return X;
- end if;
- end I_LLU;
-
- ----------
- -- I_LU --
- ----------
-
- function I_LU (Stream : not null access RST) return Long_Unsigned is
- S : XDR_S_LU;
- L : SEO;
- U : Unsigned := 0;
- X : Long_Unsigned := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return Long_Unsigned (XDR_S_LU_To_Long_Long_Unsigned (S));
-
- else
- -- Compute using machine unsigned
- -- rather than long_unsigned.
-
- for N in S'Range loop
- U := U * BB + Unsigned (S (N));
-
- -- We have filled an unsigned
-
- if N mod UB = 0 then
- X := Shift_Left (X, US) + Long_Unsigned (U);
- U := 0;
- end if;
- end loop;
-
- return X;
- end if;
- end I_LU;
-
- ----------
- -- I_SF --
- ----------
-
- function I_SF (Stream : not null access RST) return Short_Float is
- I : constant Precision := Single;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Last : Integer renames Fields (I).E_Last;
- F_Mask : SE renames Fields (I).F_Mask;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
-
- Exponent : Long_Unsigned;
- Fraction : Long_Unsigned;
- Positive : Boolean;
- Result : Short_Float;
- S : SEA (1 .. SF_L);
- L : SEO;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
- end if;
-
- -- Extract Fraction, Sign and Exponent
-
- Fraction := Long_Unsigned (S (SF_L + 1 - F_Bytes) and F_Mask);
- for N in SF_L + 2 - F_Bytes .. SF_L loop
- Fraction := Fraction * BB + Long_Unsigned (S (N));
- end loop;
- Result := Short_Float'Scaling (Short_Float (Fraction), -F_Size);
-
- if BS <= S (1) then
- Positive := False;
- Exponent := Long_Unsigned (S (1) - BS);
- else
- Positive := True;
- Exponent := Long_Unsigned (S (1));
- end if;
-
- for N in 2 .. E_Bytes loop
- Exponent := Exponent * BB + Long_Unsigned (S (N));
- end loop;
- Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-
- -- NaN or Infinities
-
- if Integer (Exponent) = E_Last then
- raise Constraint_Error;
-
- elsif Exponent = 0 then
-
- -- Signed zeros
-
- if Fraction = 0 then
- null;
-
- -- Denormalized float
-
- else
- Result := Short_Float'Scaling (Result, 1 - E_Bias);
- end if;
-
- -- Normalized float
-
- else
- Result := Short_Float'Scaling
- (1.0 + Result, Integer (Exponent) - E_Bias);
- end if;
-
- if not Positive then
- Result := -Result;
- end if;
-
- return Result;
- end I_SF;
-
- ----------
- -- I_SI --
- ----------
-
- function I_SI (Stream : not null access RST) return Short_Integer is
- S : XDR_S_SI;
- L : SEO;
- U : XDR_SU := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_SI_To_Short_Integer (S);
-
- else
- for N in S'Range loop
- U := U * BB + XDR_SU (S (N));
- end loop;
-
- -- Test sign and apply two complement notation
-
- if S (1) < BL then
- return Short_Integer (U);
- else
- return Short_Integer (-((XDR_SU'Last xor U) + 1));
- end if;
- end if;
- end I_SI;
-
- -----------
- -- I_SSI --
- -----------
-
- function I_SSI (Stream : not null access RST) return Short_Short_Integer is
- S : XDR_S_SSI;
- L : SEO;
- U : XDR_SSU;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_SSI_To_Short_Short_Integer (S);
-
- else
- U := XDR_SSU (S (1));
-
- -- Test sign and apply two complement notation
-
- if S (1) < BL then
- return Short_Short_Integer (U);
- else
- return Short_Short_Integer (-((XDR_SSU'Last xor U) + 1));
- end if;
- end if;
- end I_SSI;
-
- -----------
- -- I_SSU --
- -----------
-
- function I_SSU (Stream : not null access RST) return Short_Short_Unsigned is
- S : XDR_S_SSU;
- L : SEO;
- U : XDR_SSU := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- else
- U := XDR_SSU (S (1));
- return Short_Short_Unsigned (U);
- end if;
- end I_SSU;
-
- ----------
- -- I_SU --
- ----------
-
- function I_SU (Stream : not null access RST) return Short_Unsigned is
- S : XDR_S_SU;
- L : SEO;
- U : XDR_SU := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_SU_To_Short_Unsigned (S);
-
- else
- for N in S'Range loop
- U := U * BB + XDR_SU (S (N));
- end loop;
-
- return Short_Unsigned (U);
- end if;
- end I_SU;
-
- ---------
- -- I_U --
- ---------
-
- function I_U (Stream : not null access RST) return Unsigned is
- S : XDR_S_U;
- L : SEO;
- U : XDR_U := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- elsif Optimize_Integers then
- return XDR_S_U_To_Unsigned (S);
-
- else
- for N in S'Range loop
- U := U * BB + XDR_U (S (N));
- end loop;
-
- return Unsigned (U);
- end if;
- end I_U;
-
- ----------
- -- I_WC --
- ----------
-
- function I_WC (Stream : not null access RST) return Wide_Character is
- S : XDR_S_WC;
- L : SEO;
- U : XDR_WC := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- else
- for N in S'Range loop
- U := U * BB + XDR_WC (S (N));
- end loop;
-
- -- Use Ada requirements on Wide_Character representation clause
-
- return Wide_Character'Val (U);
- end if;
- end I_WC;
-
- -----------
- -- I_WWC --
- -----------
-
- function I_WWC (Stream : not null access RST) return Wide_Wide_Character is
- S : XDR_S_WWC;
- L : SEO;
- U : XDR_WWC := 0;
-
- begin
- Ada.Streams.Read (Stream.all, S, L);
-
- if L /= S'Last then
- raise Data_Error;
-
- else
- for N in S'Range loop
- U := U * BB + XDR_WWC (S (N));
- end loop;
-
- -- Use Ada requirements on Wide_Wide_Character representation clause
-
- return Wide_Wide_Character'Val (U);
- end if;
- end I_WWC;
-
- ----------
- -- W_AD --
- ----------
-
- procedure W_AD (Stream : not null access RST; Item : Fat_Pointer) is
- S : XDR_S_TM;
- U : XDR_TM;
-
- begin
- U := XDR_TM (To_XDR_SA (Item.P1));
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- Ada.Streams.Write (Stream.all, S);
-
- U := XDR_TM (To_XDR_SA (Item.P2));
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- Ada.Streams.Write (Stream.all, S);
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end W_AD;
-
- ----------
- -- W_AS --
- ----------
-
- procedure W_AS (Stream : not null access RST; Item : Thin_Pointer) is
- S : XDR_S_TM;
- U : XDR_TM := XDR_TM (To_XDR_SA (Item.P1));
-
- begin
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- Ada.Streams.Write (Stream.all, S);
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end W_AS;
-
- ---------
- -- W_B --
- ---------
-
- procedure W_B (Stream : not null access RST; Item : Boolean) is
- begin
- if Item then
- W_SSU (Stream, 1);
- else
- W_SSU (Stream, 0);
- end if;
- end W_B;
-
- ---------
- -- W_C --
- ---------
-
- procedure W_C (Stream : not null access RST; Item : Character) is
- S : XDR_S_C;
-
- pragma Assert (C_L = 1);
-
- begin
- -- Use Ada requirements on Character representation clause
-
- S (1) := SE (Character'Pos (Item));
-
- Ada.Streams.Write (Stream.all, S);
- end W_C;
-
- ---------
- -- W_F --
- ---------
-
- procedure W_F (Stream : not null access RST; Item : Float) is
- I : constant Precision := Single;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
- F_Mask : SE renames Fields (I).F_Mask;
-
- Exponent : Long_Unsigned;
- Fraction : Long_Unsigned;
- Positive : Boolean;
- E : Integer;
- F : Float;
- S : SEA (1 .. F_L) := (others => 0);
-
- begin
- if not Item'Valid then
- raise Constraint_Error;
- end if;
-
- -- Compute Sign
-
- Positive := (0.0 <= Item);
- F := abs (Item);
-
- -- Signed zero
-
- if F = 0.0 then
- Exponent := 0;
- Fraction := 0;
-
- else
- E := Float'Exponent (F) - 1;
-
- -- Denormalized float
-
- if E <= -E_Bias then
- F := Float'Scaling (F, F_Size + E_Bias - 1);
- E := -E_Bias;
- else
- F := Float'Scaling (Float'Fraction (F), F_Size + 1);
- end if;
-
- -- Compute Exponent and Fraction
-
- Exponent := Long_Unsigned (E + E_Bias);
- Fraction := Long_Unsigned (F * 2.0) / 2;
- end if;
-
- -- Store Fraction
-
- for I in reverse F_L - F_Bytes + 1 .. F_L loop
- S (I) := SE (Fraction mod BB);
- Fraction := Fraction / BB;
- end loop;
-
- -- Remove implicit bit
-
- S (F_L - F_Bytes + 1) := S (F_L - F_Bytes + 1) and F_Mask;
-
- -- Store Exponent (not always at the beginning of a byte)
-
- Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
- for N in reverse 1 .. E_Bytes loop
- S (N) := SE (Exponent mod BB) + S (N);
- Exponent := Exponent / BB;
- end loop;
-
- -- Store Sign
-
- if not Positive then
- S (1) := S (1) + BS;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_F;
-
- ---------
- -- W_I --
- ---------
-
- procedure W_I (Stream : not null access RST; Item : Integer) is
- S : XDR_S_I;
- U : XDR_U;
-
- begin
- if Optimize_Integers then
- S := Integer_To_XDR_S_I (Item);
-
- else
- -- Test sign and apply two complement notation
-
- if Item < 0 then
- U := XDR_U'Last xor XDR_U (-(Item + 1));
- else
- U := XDR_U (Item);
- end if;
-
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_I;
-
- ----------
- -- W_LF --
- ----------
-
- procedure W_LF (Stream : not null access RST; Item : Long_Float) is
- I : constant Precision := Double;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
- F_Mask : SE renames Fields (I).F_Mask;
-
- Exponent : Long_Unsigned;
- Fraction : Long_Long_Unsigned;
- Positive : Boolean;
- E : Integer;
- F : Long_Float;
- S : SEA (1 .. LF_L) := (others => 0);
-
- begin
- if not Item'Valid then
- raise Constraint_Error;
- end if;
-
- -- Compute Sign
-
- Positive := (0.0 <= Item);
- F := abs (Item);
-
- -- Signed zero
-
- if F = 0.0 then
- Exponent := 0;
- Fraction := 0;
-
- else
- E := Long_Float'Exponent (F) - 1;
-
- -- Denormalized float
-
- if E <= -E_Bias then
- E := -E_Bias;
- F := Long_Float'Scaling (F, F_Size + E_Bias - 1);
- else
- F := Long_Float'Scaling (F, F_Size - E);
- end if;
-
- -- Compute Exponent and Fraction
-
- Exponent := Long_Unsigned (E + E_Bias);
- Fraction := Long_Long_Unsigned (F * 2.0) / 2;
- end if;
-
- -- Store Fraction
-
- for I in reverse LF_L - F_Bytes + 1 .. LF_L loop
- S (I) := SE (Fraction mod BB);
- Fraction := Fraction / BB;
- end loop;
-
- -- Remove implicit bit
-
- S (LF_L - F_Bytes + 1) := S (LF_L - F_Bytes + 1) and F_Mask;
-
- -- Store Exponent (not always at the beginning of a byte)
-
- Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
- for N in reverse 1 .. E_Bytes loop
- S (N) := SE (Exponent mod BB) + S (N);
- Exponent := Exponent / BB;
- end loop;
-
- -- Store Sign
-
- if not Positive then
- S (1) := S (1) + BS;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_LF;
-
- ----------
- -- W_LI --
- ----------
-
- procedure W_LI (Stream : not null access RST; Item : Long_Integer) is
- S : XDR_S_LI;
- U : Unsigned;
- X : Long_Unsigned;
-
- begin
- if Optimize_Integers then
- S := Long_Long_Integer_To_XDR_S_LI (Long_Long_Integer (Item));
-
- else
- -- Test sign and apply two complement notation
-
- if Item < 0 then
- X := Long_Unsigned'Last xor Long_Unsigned (-(Item + 1));
- else
- X := Long_Unsigned (Item);
- end if;
-
- -- Compute using machine unsigned
- -- rather than long_unsigned.
-
- for N in reverse S'Range loop
-
- -- We have filled an unsigned
-
- if (LU_L - N) mod UB = 0 then
- U := Unsigned (X and UL);
- X := Shift_Right (X, US);
- end if;
-
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_LI;
-
- -----------
- -- W_LLF --
- -----------
-
- procedure W_LLF (Stream : not null access RST; Item : Long_Long_Float) is
- I : constant Precision := Quadruple;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
-
- HFS : constant Integer := F_Size / 2;
-
- Exponent : Long_Unsigned;
- Fraction_1 : Long_Long_Unsigned;
- Fraction_2 : Long_Long_Unsigned;
- Positive : Boolean;
- E : Integer;
- F : Long_Long_Float := Item;
- S : SEA (1 .. LLF_L) := (others => 0);
-
- begin
- if not Item'Valid then
- raise Constraint_Error;
- end if;
-
- -- Compute Sign
-
- Positive := (0.0 <= Item);
- if F < 0.0 then
- F := -Item;
- end if;
-
- -- Signed zero
-
- if F = 0.0 then
- Exponent := 0;
- Fraction_1 := 0;
- Fraction_2 := 0;
-
- else
- E := Long_Long_Float'Exponent (F) - 1;
-
- -- Denormalized float
-
- if E <= -E_Bias then
- F := Long_Long_Float'Scaling (F, E_Bias - 1);
- E := -E_Bias;
- else
- F := Long_Long_Float'Scaling
- (Long_Long_Float'Fraction (F), 1);
- end if;
-
- -- Compute Exponent and Fraction
-
- Exponent := Long_Unsigned (E + E_Bias);
- F := Long_Long_Float'Scaling (F, F_Size - HFS);
- Fraction_1 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
- F := Long_Long_Float (F - Long_Long_Float (Fraction_1));
- F := Long_Long_Float'Scaling (F, HFS);
- Fraction_2 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
- end if;
-
- -- Store Fraction_1
-
- for I in reverse LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
- S (I) := SE (Fraction_1 mod BB);
- Fraction_1 := Fraction_1 / BB;
- end loop;
-
- -- Store Fraction_2
-
- for I in reverse LLF_L - 6 .. LLF_L loop
- S (SEO (I)) := SE (Fraction_2 mod BB);
- Fraction_2 := Fraction_2 / BB;
- end loop;
-
- -- Store Exponent (not always at the beginning of a byte)
-
- Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
- for N in reverse 1 .. E_Bytes loop
- S (N) := SE (Exponent mod BB) + S (N);
- Exponent := Exponent / BB;
- end loop;
-
- -- Store Sign
-
- if not Positive then
- S (1) := S (1) + BS;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_LLF;
-
- -----------
- -- W_LLI --
- -----------
-
- procedure W_LLI
- (Stream : not null access RST;
- Item : Long_Long_Integer)
- is
- S : XDR_S_LLI;
- U : Unsigned;
- X : Long_Long_Unsigned;
-
- begin
- if Optimize_Integers then
- S := Long_Long_Integer_To_XDR_S_LLI (Item);
-
- else
- -- Test sign and apply two complement notation
-
- if Item < 0 then
- X := Long_Long_Unsigned'Last xor Long_Long_Unsigned (-(Item + 1));
- else
- X := Long_Long_Unsigned (Item);
- end if;
-
- -- Compute using machine unsigned
- -- rather than long_long_unsigned.
-
- for N in reverse S'Range loop
-
- -- We have filled an unsigned
-
- if (LLU_L - N) mod UB = 0 then
- U := Unsigned (X and UL);
- X := Shift_Right (X, US);
- end if;
-
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_LLI;
-
- -----------
- -- W_LLU --
- -----------
-
- procedure W_LLU
- (Stream : not null access RST;
- Item : Long_Long_Unsigned)
- is
- S : XDR_S_LLU;
- U : Unsigned;
- X : Long_Long_Unsigned := Item;
-
- begin
- if Optimize_Integers then
- S := Long_Long_Unsigned_To_XDR_S_LLU (Item);
-
- else
- -- Compute using machine unsigned
- -- rather than long_long_unsigned.
-
- for N in reverse S'Range loop
-
- -- We have filled an unsigned
-
- if (LLU_L - N) mod UB = 0 then
- U := Unsigned (X and UL);
- X := Shift_Right (X, US);
- end if;
-
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_LLU;
-
- ----------
- -- W_LU --
- ----------
-
- procedure W_LU (Stream : not null access RST; Item : Long_Unsigned) is
- S : XDR_S_LU;
- U : Unsigned;
- X : Long_Unsigned := Item;
-
- begin
- if Optimize_Integers then
- S := Long_Long_Unsigned_To_XDR_S_LU (Long_Long_Unsigned (Item));
-
- else
- -- Compute using machine unsigned
- -- rather than long_unsigned.
-
- for N in reverse S'Range loop
-
- -- We have filled an unsigned
-
- if (LU_L - N) mod UB = 0 then
- U := Unsigned (X and UL);
- X := Shift_Right (X, US);
- end if;
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_LU;
-
- ----------
- -- W_SF --
- ----------
-
- procedure W_SF (Stream : not null access RST; Item : Short_Float) is
- I : constant Precision := Single;
- E_Size : Integer renames Fields (I).E_Size;
- E_Bias : Integer renames Fields (I).E_Bias;
- E_Bytes : SEO renames Fields (I).E_Bytes;
- F_Bytes : SEO renames Fields (I).F_Bytes;
- F_Size : Integer renames Fields (I).F_Size;
- F_Mask : SE renames Fields (I).F_Mask;
-
- Exponent : Long_Unsigned;
- Fraction : Long_Unsigned;
- Positive : Boolean;
- E : Integer;
- F : Short_Float;
- S : SEA (1 .. SF_L) := (others => 0);
-
- begin
- if not Item'Valid then
- raise Constraint_Error;
- end if;
-
- -- Compute Sign
-
- Positive := (0.0 <= Item);
- F := abs (Item);
-
- -- Signed zero
-
- if F = 0.0 then
- Exponent := 0;
- Fraction := 0;
-
- else
- E := Short_Float'Exponent (F) - 1;
-
- -- Denormalized float
-
- if E <= -E_Bias then
- E := -E_Bias;
- F := Short_Float'Scaling (F, F_Size + E_Bias - 1);
- else
- F := Short_Float'Scaling (F, F_Size - E);
- end if;
-
- -- Compute Exponent and Fraction
-
- Exponent := Long_Unsigned (E + E_Bias);
- Fraction := Long_Unsigned (F * 2.0) / 2;
- end if;
-
- -- Store Fraction
-
- for I in reverse SF_L - F_Bytes + 1 .. SF_L loop
- S (I) := SE (Fraction mod BB);
- Fraction := Fraction / BB;
- end loop;
-
- -- Remove implicit bit
-
- S (SF_L - F_Bytes + 1) := S (SF_L - F_Bytes + 1) and F_Mask;
-
- -- Store Exponent (not always at the beginning of a byte)
-
- Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
- for N in reverse 1 .. E_Bytes loop
- S (N) := SE (Exponent mod BB) + S (N);
- Exponent := Exponent / BB;
- end loop;
-
- -- Store Sign
-
- if not Positive then
- S (1) := S (1) + BS;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_SF;
-
- ----------
- -- W_SI --
- ----------
-
- procedure W_SI (Stream : not null access RST; Item : Short_Integer) is
- S : XDR_S_SI;
- U : XDR_SU;
-
- begin
- if Optimize_Integers then
- S := Short_Integer_To_XDR_S_SI (Item);
-
- else
- -- Test sign and apply two complement's notation
-
- if Item < 0 then
- U := XDR_SU'Last xor XDR_SU (-(Item + 1));
- else
- U := XDR_SU (Item);
- end if;
-
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_SI;
-
- -----------
- -- W_SSI --
- -----------
-
- procedure W_SSI
- (Stream : not null access RST;
- Item : Short_Short_Integer)
- is
- S : XDR_S_SSI;
- U : XDR_SSU;
-
- begin
- if Optimize_Integers then
- S := Short_Short_Integer_To_XDR_S_SSI (Item);
-
- else
- -- Test sign and apply two complement's notation
-
- if Item < 0 then
- U := XDR_SSU'Last xor XDR_SSU (-(Item + 1));
- else
- U := XDR_SSU (Item);
- end if;
-
- S (1) := SE (U);
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_SSI;
-
- -----------
- -- W_SSU --
- -----------
-
- procedure W_SSU
- (Stream : not null access RST;
- Item : Short_Short_Unsigned)
- is
- U : constant XDR_SSU := XDR_SSU (Item);
- S : XDR_S_SSU;
-
- begin
- S (1) := SE (U);
- Ada.Streams.Write (Stream.all, S);
- end W_SSU;
-
- ----------
- -- W_SU --
- ----------
-
- procedure W_SU (Stream : not null access RST; Item : Short_Unsigned) is
- S : XDR_S_SU;
- U : XDR_SU := XDR_SU (Item);
-
- begin
- if Optimize_Integers then
- S := Short_Unsigned_To_XDR_S_SU (Item);
-
- else
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_SU;
-
- ---------
- -- W_U --
- ---------
-
- procedure W_U (Stream : not null access RST; Item : Unsigned) is
- S : XDR_S_U;
- U : XDR_U := XDR_U (Item);
-
- begin
- if Optimize_Integers then
- S := Unsigned_To_XDR_S_U (Item);
-
- else
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end if;
-
- Ada.Streams.Write (Stream.all, S);
- end W_U;
-
- ----------
- -- W_WC --
- ----------
-
- procedure W_WC (Stream : not null access RST; Item : Wide_Character) is
- S : XDR_S_WC;
- U : XDR_WC;
-
- begin
- -- Use Ada requirements on Wide_Character representation clause
-
- U := XDR_WC (Wide_Character'Pos (Item));
-
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- Ada.Streams.Write (Stream.all, S);
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end W_WC;
-
- -----------
- -- W_WWC --
- -----------
-
- procedure W_WWC
- (Stream : not null access RST; Item : Wide_Wide_Character)
- is
- S : XDR_S_WWC;
- U : XDR_WWC;
-
- begin
- -- Use Ada requirements on Wide_Wide_Character representation clause
-
- U := XDR_WWC (Wide_Wide_Character'Pos (Item));
-
- for N in reverse S'Range loop
- S (N) := SE (U mod BB);
- U := U / BB;
- end loop;
-
- Ada.Streams.Write (Stream.all, S);
-
- if U /= 0 then
- raise Data_Error;
- end if;
- end W_WWC;
-
-end System.Stream_Attributes;