aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/exp_ch5.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/exp_ch5.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/exp_ch5.adb4744
1 files changed, 0 insertions, 4744 deletions
diff --git a/gcc-4.4.0/gcc/ada/exp_ch5.adb b/gcc-4.4.0/gcc/ada/exp_ch5.adb
deleted file mode 100644
index d1c9d884e..000000000
--- a/gcc-4.4.0/gcc/ada/exp_ch5.adb
+++ /dev/null
@@ -1,4744 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ C H 5 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Exp_Atag; use Exp_Atag;
-with Exp_Aggr; use Exp_Aggr;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Ch11; use Exp_Ch11;
-with Exp_Dbug; use Exp_Dbug;
-with Exp_Pakd; use Exp_Pakd;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Namet; use Namet;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sinfo; use Sinfo;
-with Sem; use Sem;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Ch13; use Sem_Ch13;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Snames; use Snames;
-with Stand; use Stand;
-with Stringt; use Stringt;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Uintp; use Uintp;
-with Validsw; use Validsw;
-
-package body Exp_Ch5 is
-
- function Change_Of_Representation (N : Node_Id) return Boolean;
- -- Determine if the right hand side of the assignment N is a type
- -- conversion which requires a change of representation. Called
- -- only for the array and record cases.
-
- procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
- -- N is an assignment which assigns an array value. This routine process
- -- the various special cases and checks required for such assignments,
- -- including change of representation. Rhs is normally simply the right
- -- hand side of the assignment, except that if the right hand side is
- -- a type conversion or a qualified expression, then the Rhs is the
- -- actual expression inside any such type conversions or qualifications.
-
- function Expand_Assign_Array_Loop
- (N : Node_Id;
- Larray : Entity_Id;
- Rarray : Entity_Id;
- L_Type : Entity_Id;
- R_Type : Entity_Id;
- Ndim : Pos;
- Rev : Boolean) return Node_Id;
- -- N is an assignment statement which assigns an array value. This routine
- -- expands the assignment into a loop (or nested loops for the case of a
- -- multi-dimensional array) to do the assignment component by component.
- -- Larray and Rarray are the entities of the actual arrays on the left
- -- hand and right hand sides. L_Type and R_Type are the types of these
- -- arrays (which may not be the same, due to either sliding, or to a
- -- change of representation case). Ndim is the number of dimensions and
- -- the parameter Rev indicates if the loops run normally (Rev = False),
- -- or reversed (Rev = True). The value returned is the constructed
- -- loop statement. Auxiliary declarations are inserted before node N
- -- using the standard Insert_Actions mechanism.
-
- procedure Expand_Assign_Record (N : Node_Id);
- -- N is an assignment of a non-tagged record value. This routine handles
- -- the case where the assignment must be made component by component,
- -- either because the target is not byte aligned, or there is a change
- -- of representation.
-
- procedure Expand_Non_Function_Return (N : Node_Id);
- -- Called by Expand_N_Simple_Return_Statement in case we're returning from
- -- a procedure body, entry body, accept statement, or extended return
- -- statement. Note that all non-function returns are simple return
- -- statements.
-
- procedure Expand_Simple_Function_Return (N : Node_Id);
- -- Expand simple return from function. In the case where we are returning
- -- from a function body this is called by Expand_N_Simple_Return_Statement.
-
- function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
- -- Generate the necessary code for controlled and tagged assignment,
- -- that is to say, finalization of the target before, adjustment of
- -- the target after and save and restore of the tag and finalization
- -- pointers which are not 'part of the value' and must not be changed
- -- upon assignment. N is the original Assignment node.
-
- ------------------------------
- -- Change_Of_Representation --
- ------------------------------
-
- function Change_Of_Representation (N : Node_Id) return Boolean is
- Rhs : constant Node_Id := Expression (N);
- begin
- return
- Nkind (Rhs) = N_Type_Conversion
- and then
- not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
- end Change_Of_Representation;
-
- -------------------------
- -- Expand_Assign_Array --
- -------------------------
-
- -- There are two issues here. First, do we let Gigi do a block move, or
- -- do we expand out into a loop? Second, we need to set the two flags
- -- Forwards_OK and Backwards_OK which show whether the block move (or
- -- corresponding loops) can be legitimately done in a forwards (low to
- -- high) or backwards (high to low) manner.
-
- procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
-
- Lhs : constant Node_Id := Name (N);
-
- Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
- Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
-
- L_Type : constant Entity_Id :=
- Underlying_Type (Get_Actual_Subtype (Act_Lhs));
- R_Type : Entity_Id :=
- Underlying_Type (Get_Actual_Subtype (Act_Rhs));
-
- L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
- R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
-
- Crep : constant Boolean := Change_Of_Representation (N);
-
- Larray : Node_Id;
- Rarray : Node_Id;
-
- Ndim : constant Pos := Number_Dimensions (L_Type);
-
- Loop_Required : Boolean := False;
- -- This switch is set to True if the array move must be done using
- -- an explicit front end generated loop.
-
- procedure Apply_Dereference (Arg : Node_Id);
- -- If the argument is an access to an array, and the assignment is
- -- converted into a procedure call, apply explicit dereference.
-
- function Has_Address_Clause (Exp : Node_Id) return Boolean;
- -- Test if Exp is a reference to an array whose declaration has
- -- an address clause, or it is a slice of such an array.
-
- function Is_Formal_Array (Exp : Node_Id) return Boolean;
- -- Test if Exp is a reference to an array which is either a formal
- -- parameter or a slice of a formal parameter. These are the cases
- -- where hidden aliasing can occur.
-
- function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
- -- Determine if Exp is a reference to an array variable which is other
- -- than an object defined in the current scope, or a slice of such
- -- an object. Such objects can be aliased to parameters (unlike local
- -- array references).
-
- -----------------------
- -- Apply_Dereference --
- -----------------------
-
- procedure Apply_Dereference (Arg : Node_Id) is
- Typ : constant Entity_Id := Etype (Arg);
- begin
- if Is_Access_Type (Typ) then
- Rewrite (Arg, Make_Explicit_Dereference (Loc,
- Prefix => Relocate_Node (Arg)));
- Analyze_And_Resolve (Arg, Designated_Type (Typ));
- end if;
- end Apply_Dereference;
-
- ------------------------
- -- Has_Address_Clause --
- ------------------------
-
- function Has_Address_Clause (Exp : Node_Id) return Boolean is
- begin
- return
- (Is_Entity_Name (Exp) and then
- Present (Address_Clause (Entity (Exp))))
- or else
- (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
- end Has_Address_Clause;
-
- ---------------------
- -- Is_Formal_Array --
- ---------------------
-
- function Is_Formal_Array (Exp : Node_Id) return Boolean is
- begin
- return
- (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
- or else
- (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
- end Is_Formal_Array;
-
- ------------------------
- -- Is_Non_Local_Array --
- ------------------------
-
- function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
- begin
- return (Is_Entity_Name (Exp)
- and then Scope (Entity (Exp)) /= Current_Scope)
- or else (Nkind (Exp) = N_Slice
- and then Is_Non_Local_Array (Prefix (Exp)));
- end Is_Non_Local_Array;
-
- -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
-
- Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
- Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
-
- Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
- Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
-
- -- Start of processing for Expand_Assign_Array
-
- begin
- -- Deal with length check. Note that the length check is done with
- -- respect to the right hand side as given, not a possible underlying
- -- renamed object, since this would generate incorrect extra checks.
-
- Apply_Length_Check (Rhs, L_Type);
-
- -- We start by assuming that the move can be done in either direction,
- -- i.e. that the two sides are completely disjoint.
-
- Set_Forwards_OK (N, True);
- Set_Backwards_OK (N, True);
-
- -- Normally it is only the slice case that can lead to overlap, and
- -- explicit checks for slices are made below. But there is one case
- -- where the slice can be implicit and invisible to us: when we have a
- -- one dimensional array, and either both operands are parameters, or
- -- one is a parameter (which can be a slice passed by reference) and the
- -- other is a non-local variable. In this case the parameter could be a
- -- slice that overlaps with the other operand.
-
- -- However, if the array subtype is a constrained first subtype in the
- -- parameter case, then we don't have to worry about overlap, since
- -- slice assignments aren't possible (other than for a slice denoting
- -- the whole array).
-
- -- Note: No overlap is possible if there is a change of representation,
- -- so we can exclude this case.
-
- if Ndim = 1
- and then not Crep
- and then
- ((Lhs_Formal and Rhs_Formal)
- or else
- (Lhs_Formal and Rhs_Non_Local_Var)
- or else
- (Rhs_Formal and Lhs_Non_Local_Var))
- and then
- (not Is_Constrained (Etype (Lhs))
- or else not Is_First_Subtype (Etype (Lhs)))
-
- -- In the case of compiling for the Java or .NET Virtual Machine,
- -- slices are always passed by making a copy, so we don't have to
- -- worry about overlap. We also want to prevent generation of "<"
- -- comparisons for array addresses, since that's a meaningless
- -- operation on the VM.
-
- and then VM_Target = No_VM
- then
- Set_Forwards_OK (N, False);
- Set_Backwards_OK (N, False);
-
- -- Note: the bit-packed case is not worrisome here, since if we have
- -- a slice passed as a parameter, it is always aligned on a byte
- -- boundary, and if there are no explicit slices, the assignment
- -- can be performed directly.
- end if;
-
- -- We certainly must use a loop for change of representation and also
- -- we use the operand of the conversion on the right hand side as the
- -- effective right hand side (the component types must match in this
- -- situation).
-
- if Crep then
- Act_Rhs := Get_Referenced_Object (Rhs);
- R_Type := Get_Actual_Subtype (Act_Rhs);
- Loop_Required := True;
-
- -- We require a loop if the left side is possibly bit unaligned
-
- elsif Possible_Bit_Aligned_Component (Lhs)
- or else
- Possible_Bit_Aligned_Component (Rhs)
- then
- Loop_Required := True;
-
- -- Arrays with controlled components are expanded into a loop to force
- -- calls to Adjust at the component level.
-
- elsif Has_Controlled_Component (L_Type) then
- Loop_Required := True;
-
- -- If object is atomic, we cannot tolerate a loop
-
- elsif Is_Atomic_Object (Act_Lhs)
- or else
- Is_Atomic_Object (Act_Rhs)
- then
- return;
-
- -- Loop is required if we have atomic components since we have to
- -- be sure to do any accesses on an element by element basis.
-
- elsif Has_Atomic_Components (L_Type)
- or else Has_Atomic_Components (R_Type)
- or else Is_Atomic (Component_Type (L_Type))
- or else Is_Atomic (Component_Type (R_Type))
- then
- Loop_Required := True;
-
- -- Case where no slice is involved
-
- elsif not L_Slice and not R_Slice then
-
- -- The following code deals with the case of unconstrained bit packed
- -- arrays. The problem is that the template for such arrays contains
- -- the bounds of the actual source level array, but the copy of an
- -- entire array requires the bounds of the underlying array. It would
- -- be nice if the back end could take care of this, but right now it
- -- does not know how, so if we have such a type, then we expand out
- -- into a loop, which is inefficient but works correctly. If we don't
- -- do this, we get the wrong length computed for the array to be
- -- moved. The two cases we need to worry about are:
-
- -- Explicit deference of an unconstrained packed array type as in the
- -- following example:
-
- -- procedure C52 is
- -- type BITS is array(INTEGER range <>) of BOOLEAN;
- -- pragma PACK(BITS);
- -- type A is access BITS;
- -- P1,P2 : A;
- -- begin
- -- P1 := new BITS (1 .. 65_535);
- -- P2 := new BITS (1 .. 65_535);
- -- P2.ALL := P1.ALL;
- -- end C52;
-
- -- A formal parameter reference with an unconstrained bit array type
- -- is the other case we need to worry about (here we assume the same
- -- BITS type declared above):
-
- -- procedure Write_All (File : out BITS; Contents : BITS);
- -- begin
- -- File.Storage := Contents;
- -- end Write_All;
-
- -- We expand to a loop in either of these two cases
-
- -- Question for future thought. Another potentially more efficient
- -- approach would be to create the actual subtype, and then do an
- -- unchecked conversion to this actual subtype ???
-
- Check_Unconstrained_Bit_Packed_Array : declare
-
- function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
- -- Function to perform required test for the first case, above
- -- (dereference of an unconstrained bit packed array).
-
- -----------------------
- -- Is_UBPA_Reference --
- -----------------------
-
- function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
- Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
- P_Type : Entity_Id;
- Des_Type : Entity_Id;
-
- begin
- if Present (Packed_Array_Type (Typ))
- and then Is_Array_Type (Packed_Array_Type (Typ))
- and then not Is_Constrained (Packed_Array_Type (Typ))
- then
- return True;
-
- elsif Nkind (Opnd) = N_Explicit_Dereference then
- P_Type := Underlying_Type (Etype (Prefix (Opnd)));
-
- if not Is_Access_Type (P_Type) then
- return False;
-
- else
- Des_Type := Designated_Type (P_Type);
- return
- Is_Bit_Packed_Array (Des_Type)
- and then not Is_Constrained (Des_Type);
- end if;
-
- else
- return False;
- end if;
- end Is_UBPA_Reference;
-
- -- Start of processing for Check_Unconstrained_Bit_Packed_Array
-
- begin
- if Is_UBPA_Reference (Lhs)
- or else
- Is_UBPA_Reference (Rhs)
- then
- Loop_Required := True;
-
- -- Here if we do not have the case of a reference to a bit packed
- -- unconstrained array case. In this case gigi can most certainly
- -- handle the assignment if a forwards move is allowed.
-
- -- (could it handle the backwards case also???)
-
- elsif Forwards_OK (N) then
- return;
- end if;
- end Check_Unconstrained_Bit_Packed_Array;
-
- -- The back end can always handle the assignment if the right side is a
- -- string literal (note that overlap is definitely impossible in this
- -- case). If the type is packed, a string literal is always converted
- -- into an aggregate, except in the case of a null slice, for which no
- -- aggregate can be written. In that case, rewrite the assignment as a
- -- null statement, a length check has already been emitted to verify
- -- that the range of the left-hand side is empty.
-
- -- Note that this code is not executed if we have an assignment of a
- -- string literal to a non-bit aligned component of a record, a case
- -- which cannot be handled by the backend.
-
- elsif Nkind (Rhs) = N_String_Literal then
- if String_Length (Strval (Rhs)) = 0
- and then Is_Bit_Packed_Array (L_Type)
- then
- Rewrite (N, Make_Null_Statement (Loc));
- Analyze (N);
- end if;
-
- return;
-
- -- If either operand is bit packed, then we need a loop, since we can't
- -- be sure that the slice is byte aligned. Similarly, if either operand
- -- is a possibly unaligned slice, then we need a loop (since the back
- -- end cannot handle unaligned slices).
-
- elsif Is_Bit_Packed_Array (L_Type)
- or else Is_Bit_Packed_Array (R_Type)
- or else Is_Possibly_Unaligned_Slice (Lhs)
- or else Is_Possibly_Unaligned_Slice (Rhs)
- then
- Loop_Required := True;
-
- -- If we are not bit-packed, and we have only one slice, then no overlap
- -- is possible except in the parameter case, so we can let the back end
- -- handle things.
-
- elsif not (L_Slice and R_Slice) then
- if Forwards_OK (N) then
- return;
- end if;
- end if;
-
- -- If the right-hand side is a string literal, introduce a temporary for
- -- it, for use in the generated loop that will follow.
-
- if Nkind (Rhs) = N_String_Literal then
- declare
- Temp : constant Entity_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
- Decl : Node_Id;
-
- begin
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Occurrence_Of (L_Type, Loc),
- Expression => Relocate_Node (Rhs));
-
- Insert_Action (N, Decl);
- Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
- R_Type := Etype (Temp);
- end;
- end if;
-
- -- Come here to complete the analysis
-
- -- Loop_Required: Set to True if we know that a loop is required
- -- regardless of overlap considerations.
-
- -- Forwards_OK: Set to False if we already know that a forwards
- -- move is not safe, else set to True.
-
- -- Backwards_OK: Set to False if we already know that a backwards
- -- move is not safe, else set to True
-
- -- Our task at this stage is to complete the overlap analysis, which can
- -- result in possibly setting Forwards_OK or Backwards_OK to False, and
- -- then generating the final code, either by deciding that it is OK
- -- after all to let Gigi handle it, or by generating appropriate code
- -- in the front end.
-
- declare
- L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
- R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
-
- Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
- Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
- Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
- Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
-
- Act_L_Array : Node_Id;
- Act_R_Array : Node_Id;
-
- Cleft_Lo : Node_Id;
- Cright_Lo : Node_Id;
- Condition : Node_Id;
-
- Cresult : Compare_Result;
-
- begin
- -- Get the expressions for the arrays. If we are dealing with a
- -- private type, then convert to the underlying type. We can do
- -- direct assignments to an array that is a private type, but we
- -- cannot assign to elements of the array without this extra
- -- unchecked conversion.
-
- if Nkind (Act_Lhs) = N_Slice then
- Larray := Prefix (Act_Lhs);
- else
- Larray := Act_Lhs;
-
- if Is_Private_Type (Etype (Larray)) then
- Larray :=
- Unchecked_Convert_To
- (Underlying_Type (Etype (Larray)), Larray);
- end if;
- end if;
-
- if Nkind (Act_Rhs) = N_Slice then
- Rarray := Prefix (Act_Rhs);
- else
- Rarray := Act_Rhs;
-
- if Is_Private_Type (Etype (Rarray)) then
- Rarray :=
- Unchecked_Convert_To
- (Underlying_Type (Etype (Rarray)), Rarray);
- end if;
- end if;
-
- -- If both sides are slices, we must figure out whether it is safe
- -- to do the move in one direction or the other. It is always safe
- -- if there is a change of representation since obviously two arrays
- -- with different representations cannot possibly overlap.
-
- if (not Crep) and L_Slice and R_Slice then
- Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
- Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
-
- -- If both left and right hand arrays are entity names, and refer
- -- to different entities, then we know that the move is safe (the
- -- two storage areas are completely disjoint).
-
- if Is_Entity_Name (Act_L_Array)
- and then Is_Entity_Name (Act_R_Array)
- and then Entity (Act_L_Array) /= Entity (Act_R_Array)
- then
- null;
-
- -- Otherwise, we assume the worst, which is that the two arrays
- -- are the same array. There is no need to check if we know that
- -- is the case, because if we don't know it, we still have to
- -- assume it!
-
- -- Generally if the same array is involved, then we have an
- -- overlapping case. We will have to really assume the worst (i.e.
- -- set neither of the OK flags) unless we can determine the lower
- -- or upper bounds at compile time and compare them.
-
- else
- Cresult :=
- Compile_Time_Compare
- (Left_Lo, Right_Lo, Assume_Valid => True);
-
- if Cresult = Unknown then
- Cresult :=
- Compile_Time_Compare
- (Left_Hi, Right_Hi, Assume_Valid => True);
- end if;
-
- case Cresult is
- when LT | LE | EQ => Set_Backwards_OK (N, False);
- when GT | GE => Set_Forwards_OK (N, False);
- when NE | Unknown => Set_Backwards_OK (N, False);
- Set_Forwards_OK (N, False);
- end case;
- end if;
- end if;
-
- -- If after that analysis, Forwards_OK is still True, and
- -- Loop_Required is False, meaning that we have not discovered some
- -- non-overlap reason for requiring a loop, then we can still let
- -- gigi handle it.
-
- if not Loop_Required then
-
- -- Assume gigi can handle it if Forwards_OK is set
-
- if Forwards_OK (N) then
- return;
-
- -- If Forwards_OK is not set, the back end will need something
- -- like memmove to handle the move. For now, this processing is
- -- activated using the .s debug flag (-gnatd.s).
-
- elsif Debug_Flag_Dot_S then
- return;
- end if;
- end if;
-
- -- At this stage we have to generate an explicit loop, and we have
- -- the following cases:
-
- -- Forwards_OK = True
-
- -- Rnn : right_index := right_index'First;
- -- for Lnn in left-index loop
- -- left (Lnn) := right (Rnn);
- -- Rnn := right_index'Succ (Rnn);
- -- end loop;
-
- -- Note: the above code MUST be analyzed with checks off, because
- -- otherwise the Succ could overflow. But in any case this is more
- -- efficient!
-
- -- Forwards_OK = False, Backwards_OK = True
-
- -- Rnn : right_index := right_index'Last;
- -- for Lnn in reverse left-index loop
- -- left (Lnn) := right (Rnn);
- -- Rnn := right_index'Pred (Rnn);
- -- end loop;
-
- -- Note: the above code MUST be analyzed with checks off, because
- -- otherwise the Pred could overflow. But in any case this is more
- -- efficient!
-
- -- Forwards_OK = Backwards_OK = False
-
- -- This only happens if we have the same array on each side. It is
- -- possible to create situations using overlays that violate this,
- -- but we simply do not promise to get this "right" in this case.
-
- -- There are two possible subcases. If the No_Implicit_Conditionals
- -- restriction is set, then we generate the following code:
-
- -- declare
- -- T : constant <operand-type> := rhs;
- -- begin
- -- lhs := T;
- -- end;
-
- -- If implicit conditionals are permitted, then we generate:
-
- -- if Left_Lo <= Right_Lo then
- -- <code for Forwards_OK = True above>
- -- else
- -- <code for Backwards_OK = True above>
- -- end if;
-
- -- In order to detect possible aliasing, we examine the renamed
- -- expression when the source or target is a renaming. However,
- -- the renaming may be intended to capture an address that may be
- -- affected by subsequent code, and therefore we must recover
- -- the actual entity for the expansion that follows, not the
- -- object it renames. In particular, if source or target designate
- -- a portion of a dynamically allocated object, the pointer to it
- -- may be reassigned but the renaming preserves the proper location.
-
- if Is_Entity_Name (Rhs)
- and then
- Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
- and then Nkind (Act_Rhs) = N_Slice
- then
- Rarray := Rhs;
- end if;
-
- if Is_Entity_Name (Lhs)
- and then
- Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
- and then Nkind (Act_Lhs) = N_Slice
- then
- Larray := Lhs;
- end if;
-
- -- Cases where either Forwards_OK or Backwards_OK is true
-
- if Forwards_OK (N) or else Backwards_OK (N) then
- if Needs_Finalization (Component_Type (L_Type))
- and then Base_Type (L_Type) = Base_Type (R_Type)
- and then Ndim = 1
- and then not No_Ctrl_Actions (N)
- then
- declare
- Proc : constant Entity_Id :=
- TSS (Base_Type (L_Type), TSS_Slice_Assign);
- Actuals : List_Id;
-
- begin
- Apply_Dereference (Larray);
- Apply_Dereference (Rarray);
- Actuals := New_List (
- Duplicate_Subexpr (Larray, Name_Req => True),
- Duplicate_Subexpr (Rarray, Name_Req => True),
- Duplicate_Subexpr (Left_Lo, Name_Req => True),
- Duplicate_Subexpr (Left_Hi, Name_Req => True),
- Duplicate_Subexpr (Right_Lo, Name_Req => True),
- Duplicate_Subexpr (Right_Hi, Name_Req => True));
-
- Append_To (Actuals,
- New_Occurrence_Of (
- Boolean_Literals (not Forwards_OK (N)), Loc));
-
- Rewrite (N,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Proc, Loc),
- Parameter_Associations => Actuals));
- end;
-
- else
- Rewrite (N,
- Expand_Assign_Array_Loop
- (N, Larray, Rarray, L_Type, R_Type, Ndim,
- Rev => not Forwards_OK (N)));
- end if;
-
- -- Case of both are false with No_Implicit_Conditionals
-
- elsif Restriction_Active (No_Implicit_Conditionals) then
- declare
- T : constant Entity_Id :=
- Make_Defining_Identifier (Loc, Chars => Name_T);
-
- begin
- Rewrite (N,
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => T,
- Constant_Present => True,
- Object_Definition =>
- New_Occurrence_Of (Etype (Rhs), Loc),
- Expression => Relocate_Node (Rhs))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Assignment_Statement (Loc,
- Name => Relocate_Node (Lhs),
- Expression => New_Occurrence_Of (T, Loc))))));
- end;
-
- -- Case of both are false with implicit conditionals allowed
-
- else
- -- Before we generate this code, we must ensure that the left and
- -- right side array types are defined. They may be itypes, and we
- -- cannot let them be defined inside the if, since the first use
- -- in the then may not be executed.
-
- Ensure_Defined (L_Type, N);
- Ensure_Defined (R_Type, N);
-
- -- We normally compare addresses to find out which way round to
- -- do the loop, since this is reliable, and handles the cases of
- -- parameters, conversions etc. But we can't do that in the bit
- -- packed case or the VM case, because addresses don't work there.
-
- if not Is_Bit_Packed_Array (L_Type) and then VM_Target = No_VM then
- Condition :=
- Make_Op_Le (Loc,
- Left_Opnd =>
- Unchecked_Convert_To (RTE (RE_Integer_Address),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Indexed_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_Move_Checks (Larray, True),
- Expressions => New_List (
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To
- (L_Index_Typ, Loc),
- Attribute_Name => Name_First))),
- Attribute_Name => Name_Address)),
-
- Right_Opnd =>
- Unchecked_Convert_To (RTE (RE_Integer_Address),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Indexed_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_Move_Checks (Rarray, True),
- Expressions => New_List (
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To
- (R_Index_Typ, Loc),
- Attribute_Name => Name_First))),
- Attribute_Name => Name_Address)));
-
- -- For the bit packed and VM cases we use the bounds. That's OK,
- -- because we don't have to worry about parameters, since they
- -- cannot cause overlap. Perhaps we should worry about weird slice
- -- conversions ???
-
- else
- -- Copy the bounds and reset the Analyzed flag, because the
- -- bounds of the index type itself may be universal, and must
- -- must be reaanalyzed to acquire the proper type for Gigi.
-
- Cleft_Lo := New_Copy_Tree (Left_Lo);
- Cright_Lo := New_Copy_Tree (Right_Lo);
- Set_Analyzed (Cleft_Lo, False);
- Set_Analyzed (Cright_Lo, False);
-
- Condition :=
- Make_Op_Le (Loc,
- Left_Opnd => Cleft_Lo,
- Right_Opnd => Cright_Lo);
- end if;
-
- if Needs_Finalization (Component_Type (L_Type))
- and then Base_Type (L_Type) = Base_Type (R_Type)
- and then Ndim = 1
- and then not No_Ctrl_Actions (N)
- then
-
- -- Call TSS procedure for array assignment, passing the
- -- explicit bounds of right and left hand sides.
-
- declare
- Proc : constant Entity_Id :=
- TSS (Base_Type (L_Type), TSS_Slice_Assign);
- Actuals : List_Id;
-
- begin
- Apply_Dereference (Larray);
- Apply_Dereference (Rarray);
- Actuals := New_List (
- Duplicate_Subexpr (Larray, Name_Req => True),
- Duplicate_Subexpr (Rarray, Name_Req => True),
- Duplicate_Subexpr (Left_Lo, Name_Req => True),
- Duplicate_Subexpr (Left_Hi, Name_Req => True),
- Duplicate_Subexpr (Right_Lo, Name_Req => True),
- Duplicate_Subexpr (Right_Hi, Name_Req => True));
-
- Append_To (Actuals,
- Make_Op_Not (Loc,
- Right_Opnd => Condition));
-
- Rewrite (N,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Proc, Loc),
- Parameter_Associations => Actuals));
- end;
-
- else
- Rewrite (N,
- Make_Implicit_If_Statement (N,
- Condition => Condition,
-
- Then_Statements => New_List (
- Expand_Assign_Array_Loop
- (N, Larray, Rarray, L_Type, R_Type, Ndim,
- Rev => False)),
-
- Else_Statements => New_List (
- Expand_Assign_Array_Loop
- (N, Larray, Rarray, L_Type, R_Type, Ndim,
- Rev => True))));
- end if;
- end if;
-
- Analyze (N, Suppress => All_Checks);
- end;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Assign_Array;
-
- ------------------------------
- -- Expand_Assign_Array_Loop --
- ------------------------------
-
- -- The following is an example of the loop generated for the case of a
- -- two-dimensional array:
-
- -- declare
- -- R2b : Tm1X1 := 1;
- -- begin
- -- for L1b in 1 .. 100 loop
- -- declare
- -- R4b : Tm1X2 := 1;
- -- begin
- -- for L3b in 1 .. 100 loop
- -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
- -- R4b := Tm1X2'succ(R4b);
- -- end loop;
- -- end;
- -- R2b := Tm1X1'succ(R2b);
- -- end loop;
- -- end;
-
- -- Here Rev is False, and Tm1Xn are the subscript types for the right hand
- -- side. The declarations of R2b and R4b are inserted before the original
- -- assignment statement.
-
- function Expand_Assign_Array_Loop
- (N : Node_Id;
- Larray : Entity_Id;
- Rarray : Entity_Id;
- L_Type : Entity_Id;
- R_Type : Entity_Id;
- Ndim : Pos;
- Rev : Boolean) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
-
- Lnn : array (1 .. Ndim) of Entity_Id;
- Rnn : array (1 .. Ndim) of Entity_Id;
- -- Entities used as subscripts on left and right sides
-
- L_Index_Type : array (1 .. Ndim) of Entity_Id;
- R_Index_Type : array (1 .. Ndim) of Entity_Id;
- -- Left and right index types
-
- Assign : Node_Id;
-
- F_Or_L : Name_Id;
- S_Or_P : Name_Id;
-
- begin
- if Rev then
- F_Or_L := Name_Last;
- S_Or_P := Name_Pred;
- else
- F_Or_L := Name_First;
- S_Or_P := Name_Succ;
- end if;
-
- -- Setup index types and subscript entities
-
- declare
- L_Index : Node_Id;
- R_Index : Node_Id;
-
- begin
- L_Index := First_Index (L_Type);
- R_Index := First_Index (R_Type);
-
- for J in 1 .. Ndim loop
- Lnn (J) :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('L'));
-
- Rnn (J) :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('R'));
-
- L_Index_Type (J) := Etype (L_Index);
- R_Index_Type (J) := Etype (R_Index);
-
- Next_Index (L_Index);
- Next_Index (R_Index);
- end loop;
- end;
-
- -- Now construct the assignment statement
-
- declare
- ExprL : constant List_Id := New_List;
- ExprR : constant List_Id := New_List;
-
- begin
- for J in 1 .. Ndim loop
- Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
- Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
- end loop;
-
- Assign :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
- Expressions => ExprL),
- Expression =>
- Make_Indexed_Component (Loc,
- Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
- Expressions => ExprR));
-
- -- We set assignment OK, since there are some cases, e.g. in object
- -- declarations, where we are actually assigning into a constant.
- -- If there really is an illegality, it was caught long before now,
- -- and was flagged when the original assignment was analyzed.
-
- Set_Assignment_OK (Name (Assign));
-
- -- Propagate the No_Ctrl_Actions flag to individual assignments
-
- Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
- end;
-
- -- Now construct the loop from the inside out, with the last subscript
- -- varying most rapidly. Note that Assign is first the raw assignment
- -- statement, and then subsequently the loop that wraps it up.
-
- for J in reverse 1 .. Ndim loop
- Assign :=
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Rnn (J),
- Object_Definition =>
- New_Occurrence_Of (R_Index_Type (J), Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
- Attribute_Name => F_Or_L))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Implicit_Loop_Statement (N,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => Lnn (J),
- Reverse_Present => Rev,
- Discrete_Subtype_Definition =>
- New_Reference_To (L_Index_Type (J), Loc))),
-
- Statements => New_List (
- Assign,
-
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn (J), Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (R_Index_Type (J), Loc),
- Attribute_Name => S_Or_P,
- Expressions => New_List (
- New_Occurrence_Of (Rnn (J), Loc)))))))));
- end loop;
-
- return Assign;
- end Expand_Assign_Array_Loop;
-
- --------------------------
- -- Expand_Assign_Record --
- --------------------------
-
- -- The only processing required is in the change of representation case,
- -- where we must expand the assignment to a series of field by field
- -- assignments.
-
- procedure Expand_Assign_Record (N : Node_Id) is
- Lhs : constant Node_Id := Name (N);
- Rhs : Node_Id := Expression (N);
-
- begin
- -- If change of representation, then extract the real right hand side
- -- from the type conversion, and proceed with component-wise assignment,
- -- since the two types are not the same as far as the back end is
- -- concerned.
-
- if Change_Of_Representation (N) then
- Rhs := Expression (Rhs);
-
- -- If this may be a case of a large bit aligned component, then proceed
- -- with component-wise assignment, to avoid possible clobbering of other
- -- components sharing bits in the first or last byte of the component to
- -- be assigned.
-
- elsif Possible_Bit_Aligned_Component (Lhs)
- or
- Possible_Bit_Aligned_Component (Rhs)
- then
- null;
-
- -- If neither condition met, then nothing special to do, the back end
- -- can handle assignment of the entire component as a single entity.
-
- else
- return;
- end if;
-
- -- At this stage we know that we must do a component wise assignment
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
- L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
- Decl : constant Node_Id := Declaration_Node (R_Typ);
- RDef : Node_Id;
- F : Entity_Id;
-
- function Find_Component
- (Typ : Entity_Id;
- Comp : Entity_Id) return Entity_Id;
- -- Find the component with the given name in the underlying record
- -- declaration for Typ. We need to use the actual entity because the
- -- type may be private and resolution by identifier alone would fail.
-
- function Make_Component_List_Assign
- (CL : Node_Id;
- U_U : Boolean := False) return List_Id;
- -- Returns a sequence of statements to assign the components that
- -- are referenced in the given component list. The flag U_U is
- -- used to force the usage of the inferred value of the variant
- -- part expression as the switch for the generated case statement.
-
- function Make_Field_Assign
- (C : Entity_Id;
- U_U : Boolean := False) return Node_Id;
- -- Given C, the entity for a discriminant or component, build an
- -- assignment for the corresponding field values. The flag U_U
- -- signals the presence of an Unchecked_Union and forces the usage
- -- of the inferred discriminant value of C as the right hand side
- -- of the assignment.
-
- function Make_Field_Assigns (CI : List_Id) return List_Id;
- -- Given CI, a component items list, construct series of statements
- -- for fieldwise assignment of the corresponding components.
-
- --------------------
- -- Find_Component --
- --------------------
-
- function Find_Component
- (Typ : Entity_Id;
- Comp : Entity_Id) return Entity_Id
- is
- Utyp : constant Entity_Id := Underlying_Type (Typ);
- C : Entity_Id;
-
- begin
- C := First_Entity (Utyp);
-
- while Present (C) loop
- if Chars (C) = Chars (Comp) then
- return C;
- end if;
- Next_Entity (C);
- end loop;
-
- raise Program_Error;
- end Find_Component;
-
- --------------------------------
- -- Make_Component_List_Assign --
- --------------------------------
-
- function Make_Component_List_Assign
- (CL : Node_Id;
- U_U : Boolean := False) return List_Id
- is
- CI : constant List_Id := Component_Items (CL);
- VP : constant Node_Id := Variant_Part (CL);
-
- Alts : List_Id;
- DC : Node_Id;
- DCH : List_Id;
- Expr : Node_Id;
- Result : List_Id;
- V : Node_Id;
-
- begin
- Result := Make_Field_Assigns (CI);
-
- if Present (VP) then
-
- V := First_Non_Pragma (Variants (VP));
- Alts := New_List;
- while Present (V) loop
-
- DCH := New_List;
- DC := First (Discrete_Choices (V));
- while Present (DC) loop
- Append_To (DCH, New_Copy_Tree (DC));
- Next (DC);
- end loop;
-
- Append_To (Alts,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => DCH,
- Statements =>
- Make_Component_List_Assign (Component_List (V))));
- Next_Non_Pragma (V);
- end loop;
-
- -- If we have an Unchecked_Union, use the value of the inferred
- -- discriminant of the variant part expression as the switch
- -- for the case statement. The case statement may later be
- -- folded.
-
- if U_U then
- Expr :=
- New_Copy (Get_Discriminant_Value (
- Entity (Name (VP)),
- Etype (Rhs),
- Discriminant_Constraint (Etype (Rhs))));
- else
- Expr :=
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Name (VP))));
- end if;
-
- Append_To (Result,
- Make_Case_Statement (Loc,
- Expression => Expr,
- Alternatives => Alts));
- end if;
-
- return Result;
- end Make_Component_List_Assign;
-
- -----------------------
- -- Make_Field_Assign --
- -----------------------
-
- function Make_Field_Assign
- (C : Entity_Id;
- U_U : Boolean := False) return Node_Id
- is
- A : Node_Id;
- Expr : Node_Id;
-
- begin
- -- In the case of an Unchecked_Union, use the discriminant
- -- constraint value as on the right hand side of the assignment.
-
- if U_U then
- Expr :=
- New_Copy (Get_Discriminant_Value (C,
- Etype (Rhs),
- Discriminant_Constraint (Etype (Rhs))));
- else
- Expr :=
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Selector_Name => New_Occurrence_Of (C, Loc));
- end if;
-
- A :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Lhs),
- Selector_Name =>
- New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
- Expression => Expr);
-
- -- Set Assignment_OK, so discriminants can be assigned
-
- Set_Assignment_OK (Name (A), True);
- return A;
- end Make_Field_Assign;
-
- ------------------------
- -- Make_Field_Assigns --
- ------------------------
-
- function Make_Field_Assigns (CI : List_Id) return List_Id is
- Item : Node_Id;
- Result : List_Id;
-
- begin
- Item := First (CI);
- Result := New_List;
- while Present (Item) loop
- if Nkind (Item) = N_Component_Declaration then
- Append_To
- (Result, Make_Field_Assign (Defining_Identifier (Item)));
- end if;
-
- Next (Item);
- end loop;
-
- return Result;
- end Make_Field_Assigns;
-
- -- Start of processing for Expand_Assign_Record
-
- begin
- -- Note that we use the base types for this processing. This results
- -- in some extra work in the constrained case, but the change of
- -- representation case is so unusual that it is not worth the effort.
-
- -- First copy the discriminants. This is done unconditionally. It
- -- is required in the unconstrained left side case, and also in the
- -- case where this assignment was constructed during the expansion
- -- of a type conversion (since initialization of discriminants is
- -- suppressed in this case). It is unnecessary but harmless in
- -- other cases.
-
- if Has_Discriminants (L_Typ) then
- F := First_Discriminant (R_Typ);
- while Present (F) loop
-
- -- If we are expanding the initialization of a derived record
- -- that constrains or renames discriminants of the parent, we
- -- must use the corresponding discriminant in the parent.
-
- declare
- CF : Entity_Id;
-
- begin
- if Inside_Init_Proc
- and then Present (Corresponding_Discriminant (F))
- then
- CF := Corresponding_Discriminant (F);
- else
- CF := F;
- end if;
-
- if Is_Unchecked_Union (Base_Type (R_Typ)) then
- Insert_Action (N, Make_Field_Assign (CF, True));
- else
- Insert_Action (N, Make_Field_Assign (CF));
- end if;
-
- Next_Discriminant (F);
- end;
- end loop;
- end if;
-
- -- We know the underlying type is a record, but its current view
- -- may be private. We must retrieve the usable record declaration.
-
- if Nkind (Decl) = N_Private_Type_Declaration
- and then Present (Full_View (R_Typ))
- then
- RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
- else
- RDef := Type_Definition (Decl);
- end if;
-
- if Nkind (RDef) = N_Record_Definition
- and then Present (Component_List (RDef))
- then
-
- if Is_Unchecked_Union (R_Typ) then
- Insert_Actions (N,
- Make_Component_List_Assign (Component_List (RDef), True));
- else
- Insert_Actions
- (N, Make_Component_List_Assign (Component_List (RDef)));
- end if;
-
- Rewrite (N, Make_Null_Statement (Loc));
- end if;
-
- end;
- end Expand_Assign_Record;
-
- -----------------------------------
- -- Expand_N_Assignment_Statement --
- -----------------------------------
-
- -- This procedure implements various cases where an assignment statement
- -- cannot just be passed on to the back end in untransformed state.
-
- procedure Expand_N_Assignment_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Lhs : constant Node_Id := Name (N);
- Rhs : constant Node_Id := Expression (N);
- Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
- Exp : Node_Id;
-
- begin
- -- Ada 2005 (AI-327): Handle assignment to priority of protected object
-
- -- Rewrite an assignment to X'Priority into a run-time call
-
- -- For example: X'Priority := New_Prio_Expr;
- -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
-
- -- Note that although X'Priority is notionally an object, it is quite
- -- deliberately not defined as an aliased object in the RM. This means
- -- that it works fine to rewrite it as a call, without having to worry
- -- about complications that would other arise from X'Priority'Access,
- -- which is illegal, because of the lack of aliasing.
-
- if Ada_Version >= Ada_05 then
- declare
- Call : Node_Id;
- Conctyp : Entity_Id;
- Ent : Entity_Id;
- Subprg : Entity_Id;
- RT_Subprg_Name : Node_Id;
-
- begin
- -- Handle chains of renamings
-
- Ent := Name (N);
- while Nkind (Ent) in N_Has_Entity
- and then Present (Entity (Ent))
- and then Present (Renamed_Object (Entity (Ent)))
- loop
- Ent := Renamed_Object (Entity (Ent));
- end loop;
-
- -- The attribute Priority applied to protected objects has been
- -- previously expanded into a call to the Get_Ceiling run-time
- -- subprogram.
-
- if Nkind (Ent) = N_Function_Call
- and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
- or else
- Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling))
- then
- -- Look for the enclosing concurrent type
-
- Conctyp := Current_Scope;
- while not Is_Concurrent_Type (Conctyp) loop
- Conctyp := Scope (Conctyp);
- end loop;
-
- pragma Assert (Is_Protected_Type (Conctyp));
-
- -- Generate the first actual of the call
-
- Subprg := Current_Scope;
- while not Present (Protected_Body_Subprogram (Subprg)) loop
- Subprg := Scope (Subprg);
- end loop;
-
- -- Select the appropriate run-time call
-
- if Number_Entries (Conctyp) = 0 then
- RT_Subprg_Name :=
- New_Reference_To (RTE (RE_Set_Ceiling), Loc);
- else
- RT_Subprg_Name :=
- New_Reference_To (RTE (RO_PE_Set_Ceiling), Loc);
- end if;
-
- Call :=
- Make_Procedure_Call_Statement (Loc,
- Name => RT_Subprg_Name,
- Parameter_Associations => New_List (
- New_Copy_Tree (First (Parameter_Associations (Ent))),
- Relocate_Node (Expression (N))));
-
- Rewrite (N, Call);
- Analyze (N);
- return;
- end if;
- end;
- end if;
-
- -- First deal with generation of range check if required. For now we do
- -- this only for discrete types.
-
- if Do_Range_Check (Rhs)
- and then Is_Discrete_Type (Typ)
- then
- Set_Do_Range_Check (Rhs, False);
- Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
- end if;
-
- -- Check for a special case where a high level transformation is
- -- required. If we have either of:
-
- -- P.field := rhs;
- -- P (sub) := rhs;
-
- -- where P is a reference to a bit packed array, then we have to unwind
- -- the assignment. The exact meaning of being a reference to a bit
- -- packed array is as follows:
-
- -- An indexed component whose prefix is a bit packed array is a
- -- reference to a bit packed array.
-
- -- An indexed component or selected component whose prefix is a
- -- reference to a bit packed array is itself a reference ot a
- -- bit packed array.
-
- -- The required transformation is
-
- -- Tnn : prefix_type := P;
- -- Tnn.field := rhs;
- -- P := Tnn;
-
- -- or
-
- -- Tnn : prefix_type := P;
- -- Tnn (subscr) := rhs;
- -- P := Tnn;
-
- -- Since P is going to be evaluated more than once, any subscripts
- -- in P must have their evaluation forced.
-
- if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
- and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
- then
- declare
- BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
- BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
- Tnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('T'));
-
- begin
- -- Insert the post assignment first, because we want to copy the
- -- BPAR_Expr tree before it gets analyzed in the context of the
- -- pre assignment. Note that we do not analyze the post assignment
- -- yet (we cannot till we have completed the analysis of the pre
- -- assignment). As usual, the analysis of this post assignment
- -- will happen on its own when we "run into" it after finishing
- -- the current assignment.
-
- Insert_After (N,
- Make_Assignment_Statement (Loc,
- Name => New_Copy_Tree (BPAR_Expr),
- Expression => New_Occurrence_Of (Tnn, Loc)));
-
- -- At this stage BPAR_Expr is a reference to a bit packed array
- -- where the reference was not expanded in the original tree,
- -- since it was on the left side of an assignment. But in the
- -- pre-assignment statement (the object definition), BPAR_Expr
- -- will end up on the right hand side, and must be reexpanded. To
- -- achieve this, we reset the analyzed flag of all selected and
- -- indexed components down to the actual indexed component for
- -- the packed array.
-
- Exp := BPAR_Expr;
- loop
- Set_Analyzed (Exp, False);
-
- if Nkind_In
- (Exp, N_Selected_Component, N_Indexed_Component)
- then
- Exp := Prefix (Exp);
- else
- exit;
- end if;
- end loop;
-
- -- Now we can insert and analyze the pre-assignment
-
- -- If the right-hand side requires a transient scope, it has
- -- already been placed on the stack. However, the declaration is
- -- inserted in the tree outside of this scope, and must reflect
- -- the proper scope for its variable. This awkward bit is forced
- -- by the stricter scope discipline imposed by GCC 2.97.
-
- declare
- Uses_Transient_Scope : constant Boolean :=
- Scope_Is_Transient
- and then N = Node_To_Be_Wrapped;
-
- begin
- if Uses_Transient_Scope then
- Push_Scope (Scope (Current_Scope));
- end if;
-
- Insert_Before_And_Analyze (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
- Expression => BPAR_Expr));
-
- if Uses_Transient_Scope then
- Pop_Scope;
- end if;
- end;
-
- -- Now fix up the original assignment and continue processing
-
- Rewrite (Prefix (Lhs),
- New_Occurrence_Of (Tnn, Loc));
-
- -- We do not need to reanalyze that assignment, and we do not need
- -- to worry about references to the temporary, but we do need to
- -- make sure that the temporary is not marked as a true constant
- -- since we now have a generated assignment to it!
-
- Set_Is_True_Constant (Tnn, False);
- end;
- end if;
-
- -- When we have the appropriate type of aggregate in the expression (it
- -- has been determined during analysis of the aggregate by setting the
- -- delay flag), let's perform in place assignment and thus avoid
- -- creating a temporary.
-
- if Is_Delayed_Aggregate (Rhs) then
- Convert_Aggr_In_Assignment (N);
- Rewrite (N, Make_Null_Statement (Loc));
- Analyze (N);
- return;
- end if;
-
- -- Apply discriminant check if required. If Lhs is an access type to a
- -- designated type with discriminants, we must always check.
-
- if Has_Discriminants (Etype (Lhs)) then
-
- -- Skip discriminant check if change of representation. Will be
- -- done when the change of representation is expanded out.
-
- if not Change_Of_Representation (N) then
- Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
- end if;
-
- -- If the type is private without discriminants, and the full type
- -- has discriminants (necessarily with defaults) a check may still be
- -- necessary if the Lhs is aliased. The private determinants must be
- -- visible to build the discriminant constraints.
-
- -- Only an explicit dereference that comes from source indicates
- -- aliasing. Access to formals of protected operations and entries
- -- create dereferences but are not semantic aliasings.
-
- elsif Is_Private_Type (Etype (Lhs))
- and then Has_Discriminants (Typ)
- and then Nkind (Lhs) = N_Explicit_Dereference
- and then Comes_From_Source (Lhs)
- then
- declare
- Lt : constant Entity_Id := Etype (Lhs);
- begin
- Set_Etype (Lhs, Typ);
- Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
- Apply_Discriminant_Check (Rhs, Typ, Lhs);
- Set_Etype (Lhs, Lt);
- end;
-
- -- If the Lhs has a private type with unknown discriminants, it
- -- may have a full view with discriminants, but those are nameable
- -- only in the underlying type, so convert the Rhs to it before
- -- potential checking.
-
- elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
- and then Has_Discriminants (Typ)
- then
- Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
- Apply_Discriminant_Check (Rhs, Typ, Lhs);
-
- -- In the access type case, we need the same discriminant check, and
- -- also range checks if we have an access to constrained array.
-
- elsif Is_Access_Type (Etype (Lhs))
- and then Is_Constrained (Designated_Type (Etype (Lhs)))
- then
- if Has_Discriminants (Designated_Type (Etype (Lhs))) then
-
- -- Skip discriminant check if change of representation. Will be
- -- done when the change of representation is expanded out.
-
- if not Change_Of_Representation (N) then
- Apply_Discriminant_Check (Rhs, Etype (Lhs));
- end if;
-
- elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
- Apply_Range_Check (Rhs, Etype (Lhs));
-
- if Is_Constrained (Etype (Lhs)) then
- Apply_Length_Check (Rhs, Etype (Lhs));
- end if;
-
- if Nkind (Rhs) = N_Allocator then
- declare
- Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
- C_Es : Check_Result;
-
- begin
- C_Es :=
- Get_Range_Checks
- (Lhs,
- Target_Typ,
- Etype (Designated_Type (Etype (Lhs))));
-
- Insert_Range_Checks
- (C_Es,
- N,
- Target_Typ,
- Sloc (Lhs),
- Lhs);
- end;
- end if;
- end if;
-
- -- Apply range check for access type case
-
- elsif Is_Access_Type (Etype (Lhs))
- and then Nkind (Rhs) = N_Allocator
- and then Nkind (Expression (Rhs)) = N_Qualified_Expression
- then
- Analyze_And_Resolve (Expression (Rhs));
- Apply_Range_Check
- (Expression (Rhs), Designated_Type (Etype (Lhs)));
- end if;
-
- -- Ada 2005 (AI-231): Generate the run-time check
-
- if Is_Access_Type (Typ)
- and then Can_Never_Be_Null (Etype (Lhs))
- and then not Can_Never_Be_Null (Etype (Rhs))
- then
- Apply_Constraint_Check (Rhs, Etype (Lhs));
- end if;
-
- -- Case of assignment to a bit packed array element
-
- if Nkind (Lhs) = N_Indexed_Component
- and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
- then
- Expand_Bit_Packed_Element_Set (N);
- return;
-
- -- Build-in-place function call case. Note that we're not yet doing
- -- build-in-place for user-written assignment statements (the assignment
- -- here came from an aggregate.)
-
- elsif Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (Rhs)
- then
- Make_Build_In_Place_Call_In_Assignment (N, Rhs);
-
- elsif Is_Tagged_Type (Typ) and then Is_Value_Type (Etype (Lhs)) then
-
- -- Nothing to do for valuetypes
- -- ??? Set_Scope_Is_Transient (False);
-
- return;
-
- elsif Is_Tagged_Type (Typ)
- or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
- then
- Tagged_Case : declare
- L : List_Id := No_List;
- Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
-
- begin
- -- In the controlled case, we need to make sure that function
- -- calls are evaluated before finalizing the target. In all cases,
- -- it makes the expansion easier if the side-effects are removed
- -- first.
-
- Remove_Side_Effects (Lhs);
- Remove_Side_Effects (Rhs);
-
- -- Avoid recursion in the mechanism
-
- Set_Analyzed (N);
-
- -- If dispatching assignment, we need to dispatch to _assign
-
- if Is_Class_Wide_Type (Typ)
-
- -- If the type is tagged, we may as well use the predefined
- -- primitive assignment. This avoids inlining a lot of code
- -- and in the class-wide case, the assignment is replaced by
- -- dispatch call to _assign. Note that this cannot be done when
- -- discriminant checks are locally suppressed (as in extension
- -- aggregate expansions) because otherwise the discriminant
- -- check will be performed within the _assign call. It is also
- -- suppressed for assignments created by the expander that
- -- correspond to initializations, where we do want to copy the
- -- tag (No_Ctrl_Actions flag set True) by the expander and we
- -- do not need to mess with tags ever (Expand_Ctrl_Actions flag
- -- is set True in this case).
-
- or else (Is_Tagged_Type (Typ)
- and then not Is_Value_Type (Etype (Lhs))
- and then Chars (Current_Scope) /= Name_uAssign
- and then Expand_Ctrl_Actions
- and then not Discriminant_Checks_Suppressed (Empty))
- then
- -- Fetch the primitive op _assign and proper type to call it.
- -- Because of possible conflicts between private and full view
- -- the proper type is fetched directly from the operation
- -- profile.
-
- declare
- Op : constant Entity_Id :=
- Find_Prim_Op (Typ, Name_uAssign);
- F_Typ : Entity_Id := Etype (First_Formal (Op));
-
- begin
- -- If the assignment is dispatching, make sure to use the
- -- proper type.
-
- if Is_Class_Wide_Type (Typ) then
- F_Typ := Class_Wide_Type (F_Typ);
- end if;
-
- L := New_List;
-
- -- In case of assignment to a class-wide tagged type, before
- -- the assignment we generate run-time check to ensure that
- -- the tags of source and target match.
-
- if Is_Class_Wide_Type (Typ)
- and then Is_Tagged_Type (Typ)
- and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
- then
- Append_To (L,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Lhs),
- Selector_Name =>
- Make_Identifier (Loc,
- Chars => Name_uTag)),
- Right_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Selector_Name =>
- Make_Identifier (Loc,
- Chars => Name_uTag))),
- Reason => CE_Tag_Check_Failed));
- end if;
-
- Append_To (L,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Op, Loc),
- Parameter_Associations => New_List (
- Unchecked_Convert_To (F_Typ,
- Duplicate_Subexpr (Lhs)),
- Unchecked_Convert_To (F_Typ,
- Duplicate_Subexpr (Rhs)))));
- end;
-
- else
- L := Make_Tag_Ctrl_Assignment (N);
-
- -- We can't afford to have destructive Finalization Actions in
- -- the Self assignment case, so if the target and the source
- -- are not obviously different, code is generated to avoid the
- -- self assignment case:
-
- -- if lhs'address /= rhs'address then
- -- <code for controlled and/or tagged assignment>
- -- end if;
-
- -- Skip this if Restriction (No_Finalization) is active
-
- if not Statically_Different (Lhs, Rhs)
- and then Expand_Ctrl_Actions
- and then not Restriction_Active (No_Finalization)
- then
- L := New_List (
- Make_Implicit_If_Statement (N,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr (Lhs),
- Attribute_Name => Name_Address),
-
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Attribute_Name => Name_Address)),
-
- Then_Statements => L));
- end if;
-
- -- We need to set up an exception handler for implementing
- -- 7.6.1(18). The remaining adjustments are tackled by the
- -- implementation of adjust for record_controllers (see
- -- s-finimp.adb).
-
- -- This is skipped if we have no finalization
-
- if Expand_Ctrl_Actions
- and then not Restriction_Active (No_Finalization)
- then
- L := New_List (
- Make_Block_Statement (Loc,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => L,
- Exception_Handlers => New_List (
- Make_Handler_For_Ctrl_Operation (Loc)))));
- end if;
- end if;
-
- Rewrite (N,
- Make_Block_Statement (Loc,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
-
- -- If no restrictions on aborts, protect the whole assignment
- -- for controlled objects as per 9.8(11).
-
- if Needs_Finalization (Typ)
- and then Expand_Ctrl_Actions
- and then Abort_Allowed
- then
- declare
- Blk : constant Entity_Id :=
- New_Internal_Entity
- (E_Block, Current_Scope, Sloc (N), 'B');
-
- begin
- Set_Scope (Blk, Current_Scope);
- Set_Etype (Blk, Standard_Void_Type);
- Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
-
- Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
- Set_At_End_Proc (Handled_Statement_Sequence (N),
- New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
- Expand_At_End_Handler
- (Handled_Statement_Sequence (N), Blk);
- end;
- end if;
-
- -- N has been rewritten to a block statement for which it is
- -- known by construction that no checks are necessary: analyze
- -- it with all checks suppressed.
-
- Analyze (N, Suppress => All_Checks);
- return;
- end Tagged_Case;
-
- -- Array types
-
- elsif Is_Array_Type (Typ) then
- declare
- Actual_Rhs : Node_Id := Rhs;
-
- begin
- while Nkind_In (Actual_Rhs, N_Type_Conversion,
- N_Qualified_Expression)
- loop
- Actual_Rhs := Expression (Actual_Rhs);
- end loop;
-
- Expand_Assign_Array (N, Actual_Rhs);
- return;
- end;
-
- -- Record types
-
- elsif Is_Record_Type (Typ) then
- Expand_Assign_Record (N);
- return;
-
- -- Scalar types. This is where we perform the processing related to the
- -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
- -- scalar values.
-
- elsif Is_Scalar_Type (Typ) then
-
- -- Case where right side is known valid
-
- if Expr_Known_Valid (Rhs) then
-
- -- Here the right side is valid, so it is fine. The case to deal
- -- with is when the left side is a local variable reference whose
- -- value is not currently known to be valid. If this is the case,
- -- and the assignment appears in an unconditional context, then we
- -- can mark the left side as now being valid.
-
- if Is_Local_Variable_Reference (Lhs)
- and then not Is_Known_Valid (Entity (Lhs))
- and then In_Unconditional_Context (N)
- then
- Set_Is_Known_Valid (Entity (Lhs), True);
- end if;
-
- -- Case where right side may be invalid in the sense of the RM
- -- reference above. The RM does not require that we check for the
- -- validity on an assignment, but it does require that the assignment
- -- of an invalid value not cause erroneous behavior.
-
- -- The general approach in GNAT is to use the Is_Known_Valid flag
- -- to avoid the need for validity checking on assignments. However
- -- in some cases, we have to do validity checking in order to make
- -- sure that the setting of this flag is correct.
-
- else
- -- Validate right side if we are validating copies
-
- if Validity_Checks_On
- and then Validity_Check_Copies
- then
- -- Skip this if left hand side is an array or record component
- -- and elementary component validity checks are suppressed.
-
- if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
- and then not Validity_Check_Components
- then
- null;
- else
- Ensure_Valid (Rhs);
- end if;
-
- -- We can propagate this to the left side where appropriate
-
- if Is_Local_Variable_Reference (Lhs)
- and then not Is_Known_Valid (Entity (Lhs))
- and then In_Unconditional_Context (N)
- then
- Set_Is_Known_Valid (Entity (Lhs), True);
- end if;
-
- -- Otherwise check to see what should be done
-
- -- If left side is a local variable, then we just set its flag to
- -- indicate that its value may no longer be valid, since we are
- -- copying a potentially invalid value.
-
- elsif Is_Local_Variable_Reference (Lhs) then
- Set_Is_Known_Valid (Entity (Lhs), False);
-
- -- Check for case of a nonlocal variable on the left side which
- -- is currently known to be valid. In this case, we simply ensure
- -- that the right side is valid. We only play the game of copying
- -- validity status for local variables, since we are doing this
- -- statically, not by tracing the full flow graph.
-
- elsif Is_Entity_Name (Lhs)
- and then Is_Known_Valid (Entity (Lhs))
- then
- -- Note: If Validity_Checking mode is set to none, we ignore
- -- the Ensure_Valid call so don't worry about that case here.
-
- Ensure_Valid (Rhs);
-
- -- In all other cases, we can safely copy an invalid value without
- -- worrying about the status of the left side. Since it is not a
- -- variable reference it will not be considered
- -- as being known to be valid in any case.
-
- else
- null;
- end if;
- end if;
- end if;
-
- -- Defend against invalid subscripts on left side if we are in standard
- -- validity checking mode. No need to do this if we are checking all
- -- subscripts.
-
- if Validity_Checks_On
- and then Validity_Check_Default
- and then not Validity_Check_Subscripts
- then
- Check_Valid_Lvalue_Subscripts (Lhs);
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Assignment_Statement;
-
- ------------------------------
- -- Expand_N_Block_Statement --
- ------------------------------
-
- -- Encode entity names defined in block statement
-
- procedure Expand_N_Block_Statement (N : Node_Id) is
- begin
- Qualify_Entity_Names (N);
- end Expand_N_Block_Statement;
-
- -----------------------------
- -- Expand_N_Case_Statement --
- -----------------------------
-
- procedure Expand_N_Case_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Expr : constant Node_Id := Expression (N);
- Alt : Node_Id;
- Len : Nat;
- Cond : Node_Id;
- Choice : Node_Id;
- Chlist : List_Id;
-
- begin
- -- Check for the situation where we know at compile time which branch
- -- will be taken
-
- if Compile_Time_Known_Value (Expr) then
- Alt := Find_Static_Alternative (N);
-
- -- Move statements from this alternative after the case statement.
- -- They are already analyzed, so will be skipped by the analyzer.
-
- Insert_List_After (N, Statements (Alt));
-
- -- That leaves the case statement as a shell. So now we can kill all
- -- other alternatives in the case statement.
-
- Kill_Dead_Code (Expression (N));
-
- declare
- A : Node_Id;
-
- begin
- -- Loop through case alternatives, skipping pragmas, and skipping
- -- the one alternative that we select (and therefore retain).
-
- A := First (Alternatives (N));
- while Present (A) loop
- if A /= Alt
- and then Nkind (A) = N_Case_Statement_Alternative
- then
- Kill_Dead_Code (Statements (A), Warn_On_Deleted_Code);
- end if;
-
- Next (A);
- end loop;
- end;
-
- Rewrite (N, Make_Null_Statement (Loc));
- return;
- end if;
-
- -- Here if the choice is not determined at compile time
-
- declare
- Last_Alt : constant Node_Id := Last (Alternatives (N));
-
- Others_Present : Boolean;
- Others_Node : Node_Id;
-
- Then_Stms : List_Id;
- Else_Stms : List_Id;
-
- begin
- if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
- Others_Present := True;
- Others_Node := Last_Alt;
- else
- Others_Present := False;
- end if;
-
- -- First step is to worry about possible invalid argument. The RM
- -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
- -- outside the base range), then Constraint_Error must be raised.
-
- -- Case of validity check required (validity checks are on, the
- -- expression is not known to be valid, and the case statement
- -- comes from source -- no need to validity check internally
- -- generated case statements).
-
- if Validity_Check_Default then
- Ensure_Valid (Expr);
- end if;
-
- -- If there is only a single alternative, just replace it with the
- -- sequence of statements since obviously that is what is going to
- -- be executed in all cases.
-
- Len := List_Length (Alternatives (N));
-
- if Len = 1 then
- -- We still need to evaluate the expression if it has any
- -- side effects.
-
- Remove_Side_Effects (Expression (N));
-
- Insert_List_After (N, Statements (First (Alternatives (N))));
-
- -- That leaves the case statement as a shell. The alternative that
- -- will be executed is reset to a null list. So now we can kill
- -- the entire case statement.
-
- Kill_Dead_Code (Expression (N));
- Rewrite (N, Make_Null_Statement (Loc));
- return;
- end if;
-
- -- An optimization. If there are only two alternatives, and only
- -- a single choice, then rewrite the whole case statement as an
- -- if statement, since this can result in subsequent optimizations.
- -- This helps not only with case statements in the source of a
- -- simple form, but also with generated code (discriminant check
- -- functions in particular)
-
- if Len = 2 then
- Chlist := Discrete_Choices (First (Alternatives (N)));
-
- if List_Length (Chlist) = 1 then
- Choice := First (Chlist);
-
- Then_Stms := Statements (First (Alternatives (N)));
- Else_Stms := Statements (Last (Alternatives (N)));
-
- -- For TRUE, generate "expression", not expression = true
-
- if Nkind (Choice) = N_Identifier
- and then Entity (Choice) = Standard_True
- then
- Cond := Expression (N);
-
- -- For FALSE, generate "expression" and switch then/else
-
- elsif Nkind (Choice) = N_Identifier
- and then Entity (Choice) = Standard_False
- then
- Cond := Expression (N);
- Else_Stms := Statements (First (Alternatives (N)));
- Then_Stms := Statements (Last (Alternatives (N)));
-
- -- For a range, generate "expression in range"
-
- elsif Nkind (Choice) = N_Range
- or else (Nkind (Choice) = N_Attribute_Reference
- and then Attribute_Name (Choice) = Name_Range)
- or else (Is_Entity_Name (Choice)
- and then Is_Type (Entity (Choice)))
- or else Nkind (Choice) = N_Subtype_Indication
- then
- Cond :=
- Make_In (Loc,
- Left_Opnd => Expression (N),
- Right_Opnd => Relocate_Node (Choice));
-
- -- For any other subexpression "expression = value"
-
- else
- Cond :=
- Make_Op_Eq (Loc,
- Left_Opnd => Expression (N),
- Right_Opnd => Relocate_Node (Choice));
- end if;
-
- -- Now rewrite the case as an IF
-
- Rewrite (N,
- Make_If_Statement (Loc,
- Condition => Cond,
- Then_Statements => Then_Stms,
- Else_Statements => Else_Stms));
- Analyze (N);
- return;
- end if;
- end if;
-
- -- If the last alternative is not an Others choice, replace it with
- -- an N_Others_Choice. Note that we do not bother to call Analyze on
- -- the modified case statement, since it's only effect would be to
- -- compute the contents of the Others_Discrete_Choices which is not
- -- needed by the back end anyway.
-
- -- The reason we do this is that the back end always needs some
- -- default for a switch, so if we have not supplied one in the
- -- processing above for validity checking, then we need to supply
- -- one here.
-
- if not Others_Present then
- Others_Node := Make_Others_Choice (Sloc (Last_Alt));
- Set_Others_Discrete_Choices
- (Others_Node, Discrete_Choices (Last_Alt));
- Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
- end if;
- end;
- end Expand_N_Case_Statement;
-
- -----------------------------
- -- Expand_N_Exit_Statement --
- -----------------------------
-
- -- The only processing required is to deal with a possible C/Fortran
- -- boolean value used as the condition for the exit statement.
-
- procedure Expand_N_Exit_Statement (N : Node_Id) is
- begin
- Adjust_Condition (Condition (N));
- end Expand_N_Exit_Statement;
-
- ----------------------------------------
- -- Expand_N_Extended_Return_Statement --
- ----------------------------------------
-
- -- If there is a Handled_Statement_Sequence, we rewrite this:
-
- -- return Result : T := <expression> do
- -- <handled_seq_of_stms>
- -- end return;
-
- -- to be:
-
- -- declare
- -- Result : T := <expression>;
- -- begin
- -- <handled_seq_of_stms>
- -- return Result;
- -- end;
-
- -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
-
- -- return Result : T := <expression>;
-
- -- to be:
-
- -- return <expression>;
-
- -- unless it's build-in-place or there's no <expression>, in which case
- -- we generate:
-
- -- declare
- -- Result : T := <expression>;
- -- begin
- -- return Result;
- -- end;
-
- -- Note that this case could have been written by the user as an extended
- -- return statement, or could have been transformed to this from a simple
- -- return statement.
-
- -- That is, we need to have a reified return object if there are statements
- -- (which might refer to it) or if we're doing build-in-place (so we can
- -- set its address to the final resting place or if there is no expression
- -- (in which case default initial values might need to be set).
-
- procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
-
- Return_Object_Entity : constant Entity_Id :=
- First_Entity (Return_Statement_Entity (N));
- Return_Object_Decl : constant Node_Id :=
- Parent (Return_Object_Entity);
- Parent_Function : constant Entity_Id :=
- Return_Applies_To (Return_Statement_Entity (N));
- Parent_Function_Typ : constant Entity_Id := Etype (Parent_Function);
- Is_Build_In_Place : constant Boolean :=
- Is_Build_In_Place_Function (Parent_Function);
-
- Return_Stm : Node_Id;
- Statements : List_Id;
- Handled_Stm_Seq : Node_Id;
- Result : Node_Id;
- Exp : Node_Id;
-
- function Has_Controlled_Parts (Typ : Entity_Id) return Boolean;
- -- Determine whether type Typ is controlled or contains a controlled
- -- subcomponent.
-
- function Move_Activation_Chain return Node_Id;
- -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
- -- with parameters:
- -- From current activation chain
- -- To activation chain passed in by the caller
- -- New_Master master passed in by the caller
-
- function Move_Final_List return Node_Id;
- -- Construct call to System.Finalization_Implementation.Move_Final_List
- -- with parameters:
- --
- -- From finalization list of the return statement
- -- To finalization list passed in by the caller
-
- --------------------------
- -- Has_Controlled_Parts --
- --------------------------
-
- function Has_Controlled_Parts (Typ : Entity_Id) return Boolean is
- begin
- return
- Is_Controlled (Typ)
- or else Has_Controlled_Component (Typ);
- end Has_Controlled_Parts;
-
- ---------------------------
- -- Move_Activation_Chain --
- ---------------------------
-
- function Move_Activation_Chain return Node_Id is
- Activation_Chain_Formal : constant Entity_Id :=
- Build_In_Place_Formal
- (Parent_Function, BIP_Activation_Chain);
- To : constant Node_Id :=
- New_Reference_To
- (Activation_Chain_Formal, Loc);
- Master_Formal : constant Entity_Id :=
- Build_In_Place_Formal
- (Parent_Function, BIP_Master);
- New_Master : constant Node_Id :=
- New_Reference_To (Master_Formal, Loc);
-
- Chain_Entity : Entity_Id;
- From : Node_Id;
-
- begin
- Chain_Entity := First_Entity (Return_Statement_Entity (N));
- while Chars (Chain_Entity) /= Name_uChain loop
- Chain_Entity := Next_Entity (Chain_Entity);
- end loop;
-
- From :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Chain_Entity, Loc),
- Attribute_Name => Name_Unrestricted_Access);
- -- ??? Not clear why "Make_Identifier (Loc, Name_uChain)" doesn't
- -- work, instead of "New_Reference_To (Chain_Entity, Loc)" above.
-
- return
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (RTE (RE_Move_Activation_Chain), Loc),
- Parameter_Associations => New_List (From, To, New_Master));
- end Move_Activation_Chain;
-
- ---------------------
- -- Move_Final_List --
- ---------------------
-
- function Move_Final_List return Node_Id is
- Flist : constant Entity_Id :=
- Finalization_Chain_Entity (Return_Statement_Entity (N));
-
- From : constant Node_Id := New_Reference_To (Flist, Loc);
-
- Caller_Final_List : constant Entity_Id :=
- Build_In_Place_Formal
- (Parent_Function, BIP_Final_List);
-
- To : constant Node_Id := New_Reference_To (Caller_Final_List, Loc);
-
- begin
- -- Catch cases where a finalization chain entity has not been
- -- associated with the return statement entity.
-
- pragma Assert (Present (Flist));
-
- -- Build required call
-
- return
- Make_If_Statement (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd => New_Copy (From),
- Right_Opnd => New_Node (N_Null, Loc)),
- Then_Statements =>
- New_List (
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (RTE (RE_Move_Final_List), Loc),
- Parameter_Associations => New_List (From, To))));
- end Move_Final_List;
-
- -- Start of processing for Expand_N_Extended_Return_Statement
-
- begin
- if Nkind (Return_Object_Decl) = N_Object_Declaration then
- Exp := Expression (Return_Object_Decl);
- else
- Exp := Empty;
- end if;
-
- Handled_Stm_Seq := Handled_Statement_Sequence (N);
-
- -- Build a simple_return_statement that returns the return object when
- -- there is a statement sequence, or no expression, or the result will
- -- be built in place. Note however that we currently do this for all
- -- composite cases, even though nonlimited composite results are not yet
- -- built in place (though we plan to do so eventually).
-
- if Present (Handled_Stm_Seq)
- or else Is_Composite_Type (Etype (Parent_Function))
- or else No (Exp)
- then
- if No (Handled_Stm_Seq) then
- Statements := New_List;
-
- -- If the extended return has a handled statement sequence, then wrap
- -- it in a block and use the block as the first statement.
-
- else
- Statements :=
- New_List (Make_Block_Statement (Loc,
- Declarations => New_List,
- Handled_Statement_Sequence => Handled_Stm_Seq));
- end if;
-
- -- If control gets past the above Statements, we have successfully
- -- completed the return statement. If the result type has controlled
- -- parts and the return is for a build-in-place function, then we
- -- call Move_Final_List to transfer responsibility for finalization
- -- of the return object to the caller. An alternative would be to
- -- declare a Success flag in the function, initialize it to False,
- -- and set it to True here. Then move the Move_Final_List call into
- -- the cleanup code, and check Success. If Success then make a call
- -- to Move_Final_List else do finalization. Then we can remove the
- -- abort-deferral and the nulling-out of the From parameter from
- -- Move_Final_List. Note that the current method is not quite correct
- -- in the rather obscure case of a select-then-abort statement whose
- -- abortable part contains the return statement.
-
- -- Check the type of the function to determine whether to move the
- -- finalization list. A special case arises when processing a simple
- -- return statement which has been rewritten as an extended return.
- -- In that case check the type of the returned object or the original
- -- expression.
-
- if Is_Build_In_Place
- and then
- (Has_Controlled_Parts (Parent_Function_Typ)
- or else (Is_Class_Wide_Type (Parent_Function_Typ)
- and then
- Has_Controlled_Parts (Root_Type (Parent_Function_Typ)))
- or else Has_Controlled_Parts (Etype (Return_Object_Entity))
- or else (Present (Exp)
- and then Has_Controlled_Parts (Etype (Exp))))
- then
- Append_To (Statements, Move_Final_List);
- end if;
-
- -- Similarly to the above Move_Final_List, if the result type
- -- contains tasks, we call Move_Activation_Chain. Later, the cleanup
- -- code will call Complete_Master, which will terminate any
- -- unactivated tasks belonging to the return statement master. But
- -- Move_Activation_Chain updates their master to be that of the
- -- caller, so they will not be terminated unless the return statement
- -- completes unsuccessfully due to exception, abort, goto, or exit.
- -- As a formality, we test whether the function requires the result
- -- to be built in place, though that's necessarily true for the case
- -- of result types with task parts.
-
- if Is_Build_In_Place and Has_Task (Etype (Parent_Function)) then
- Append_To (Statements, Move_Activation_Chain);
- end if;
-
- -- Build a simple_return_statement that returns the return object
-
- Return_Stm :=
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Return_Object_Entity, Loc));
- Append_To (Statements, Return_Stm);
-
- Handled_Stm_Seq :=
- Make_Handled_Sequence_Of_Statements (Loc, Statements);
- end if;
-
- -- Case where we build a block
-
- if Present (Handled_Stm_Seq) then
- Result :=
- Make_Block_Statement (Loc,
- Declarations => Return_Object_Declarations (N),
- Handled_Statement_Sequence => Handled_Stm_Seq);
-
- -- We set the entity of the new block statement to be that of the
- -- return statement. This is necessary so that various fields, such
- -- as Finalization_Chain_Entity carry over from the return statement
- -- to the block. Note that this block is unusual, in that its entity
- -- is an E_Return_Statement rather than an E_Block.
-
- Set_Identifier
- (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
-
- -- If the object decl was already rewritten as a renaming, then
- -- we don't want to do the object allocation and transformation of
- -- of the return object declaration to a renaming. This case occurs
- -- when the return object is initialized by a call to another
- -- build-in-place function, and that function is responsible for the
- -- allocation of the return object.
-
- if Is_Build_In_Place
- and then
- Nkind (Return_Object_Decl) = N_Object_Renaming_Declaration
- then
- Set_By_Ref (Return_Stm); -- Return build-in-place results by ref
-
- elsif Is_Build_In_Place then
-
- -- Locate the implicit access parameter associated with the
- -- caller-supplied return object and convert the return
- -- statement's return object declaration to a renaming of a
- -- dereference of the access parameter. If the return object's
- -- declaration includes an expression that has not already been
- -- expanded as separate assignments, then add an assignment
- -- statement to ensure the return object gets initialized.
-
- -- declare
- -- Result : T [:= <expression>];
- -- begin
- -- ...
-
- -- is converted to
-
- -- declare
- -- Result : T renames FuncRA.all;
- -- [Result := <expression;]
- -- begin
- -- ...
-
- declare
- Return_Obj_Id : constant Entity_Id :=
- Defining_Identifier (Return_Object_Decl);
- Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
- Return_Obj_Expr : constant Node_Id :=
- Expression (Return_Object_Decl);
- Result_Subt : constant Entity_Id :=
- Etype (Parent_Function);
- Constr_Result : constant Boolean :=
- Is_Constrained (Result_Subt);
- Obj_Alloc_Formal : Entity_Id;
- Object_Access : Entity_Id;
- Obj_Acc_Deref : Node_Id;
- Init_Assignment : Node_Id := Empty;
-
- begin
- -- Build-in-place results must be returned by reference
-
- Set_By_Ref (Return_Stm);
-
- -- Retrieve the implicit access parameter passed by the caller
-
- Object_Access :=
- Build_In_Place_Formal (Parent_Function, BIP_Object_Access);
-
- -- If the return object's declaration includes an expression
- -- and the declaration isn't marked as No_Initialization, then
- -- we need to generate an assignment to the object and insert
- -- it after the declaration before rewriting it as a renaming
- -- (otherwise we'll lose the initialization).
-
- if Present (Return_Obj_Expr)
- and then not No_Initialization (Return_Object_Decl)
- then
- Init_Assignment :=
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (Return_Obj_Id, Loc),
- Expression => Relocate_Node (Return_Obj_Expr));
- Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
- Set_Assignment_OK (Name (Init_Assignment));
- Set_No_Ctrl_Actions (Init_Assignment);
-
- Set_Parent (Name (Init_Assignment), Init_Assignment);
- Set_Parent (Expression (Init_Assignment), Init_Assignment);
-
- Set_Expression (Return_Object_Decl, Empty);
-
- if Is_Class_Wide_Type (Etype (Return_Obj_Id))
- and then not Is_Class_Wide_Type
- (Etype (Expression (Init_Assignment)))
- then
- Rewrite (Expression (Init_Assignment),
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Occurrence_Of
- (Etype (Return_Obj_Id), Loc),
- Expression =>
- Relocate_Node (Expression (Init_Assignment))));
- end if;
-
- -- In the case of functions where the calling context can
- -- determine the form of allocation needed, initialization
- -- is done with each part of the if statement that handles
- -- the different forms of allocation (this is true for
- -- unconstrained and tagged result subtypes).
-
- if Constr_Result
- and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
- then
- Insert_After (Return_Object_Decl, Init_Assignment);
- end if;
- end if;
-
- -- When the function's subtype is unconstrained, a run-time
- -- test is needed to determine the form of allocation to use
- -- for the return object. The function has an implicit formal
- -- parameter indicating this. If the BIP_Alloc_Form formal has
- -- the value one, then the caller has passed access to an
- -- existing object for use as the return object. If the value
- -- is two, then the return object must be allocated on the
- -- secondary stack. Otherwise, the object must be allocated in
- -- a storage pool (currently only supported for the global
- -- heap, user-defined storage pools TBD ???). We generate an
- -- if statement to test the implicit allocation formal and
- -- initialize a local access value appropriately, creating
- -- allocators in the secondary stack and global heap cases.
- -- The special formal also exists and must be tested when the
- -- function has a tagged result, even when the result subtype
- -- is constrained, because in general such functions can be
- -- called in dispatching contexts and must be handled similarly
- -- to functions with a class-wide result.
-
- if not Constr_Result
- or else Is_Tagged_Type (Underlying_Type (Result_Subt))
- then
- Obj_Alloc_Formal :=
- Build_In_Place_Formal (Parent_Function, BIP_Alloc_Form);
-
- declare
- Ref_Type : Entity_Id;
- Ptr_Type_Decl : Node_Id;
- Alloc_Obj_Id : Entity_Id;
- Alloc_Obj_Decl : Node_Id;
- Alloc_If_Stmt : Node_Id;
- SS_Allocator : Node_Id;
- Heap_Allocator : Node_Id;
-
- begin
- -- Reuse the itype created for the function's implicit
- -- access formal. This avoids the need to create a new
- -- access type here, plus it allows assigning the access
- -- formal directly without applying a conversion.
-
- -- Ref_Type := Etype (Object_Access);
-
- -- Create an access type designating the function's
- -- result subtype.
-
- Ref_Type :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
-
- Ptr_Type_Decl :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Ref_Type,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- All_Present => True,
- Subtype_Indication =>
- New_Reference_To (Return_Obj_Typ, Loc)));
-
- Insert_Before (Return_Object_Decl, Ptr_Type_Decl);
-
- -- Create an access object that will be initialized to an
- -- access value denoting the return object, either coming
- -- from an implicit access value passed in by the caller
- -- or from the result of an allocator.
-
- Alloc_Obj_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('R'));
- Set_Etype (Alloc_Obj_Id, Ref_Type);
-
- Alloc_Obj_Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Alloc_Obj_Id,
- Object_Definition => New_Reference_To
- (Ref_Type, Loc));
-
- Insert_Before (Return_Object_Decl, Alloc_Obj_Decl);
-
- -- Create allocators for both the secondary stack and
- -- global heap. If there's an initialization expression,
- -- then create these as initialized allocators.
-
- if Present (Return_Obj_Expr)
- and then not No_Initialization (Return_Object_Decl)
- then
- Heap_Allocator :=
- Make_Allocator (Loc,
- Expression =>
- Make_Qualified_Expression (Loc,
- Subtype_Mark =>
- New_Reference_To (Return_Obj_Typ, Loc),
- Expression =>
- New_Copy_Tree (Return_Obj_Expr)));
-
- SS_Allocator := New_Copy_Tree (Heap_Allocator);
-
- else
- -- If the function returns a class-wide type we cannot
- -- use the return type for the allocator. Instead we
- -- use the type of the expression, which must be an
- -- aggregate of a definite type.
-
- if Is_Class_Wide_Type (Return_Obj_Typ) then
- Heap_Allocator :=
- Make_Allocator (Loc,
- New_Reference_To
- (Etype (Return_Obj_Expr), Loc));
- else
- Heap_Allocator :=
- Make_Allocator (Loc,
- New_Reference_To (Return_Obj_Typ, Loc));
- end if;
-
- -- If the object requires default initialization then
- -- that will happen later following the elaboration of
- -- the object renaming. If we don't turn it off here
- -- then the object will be default initialized twice.
-
- Set_No_Initialization (Heap_Allocator);
-
- SS_Allocator := New_Copy_Tree (Heap_Allocator);
- end if;
-
- -- If the No_Allocators restriction is active, then only
- -- an allocator for secondary stack allocation is needed.
-
- if Restriction_Active (No_Allocators) then
- SS_Allocator := Heap_Allocator;
- Heap_Allocator := Make_Null (Loc);
-
- -- Otherwise the heap allocator may be needed, so we
- -- make another allocator for secondary stack allocation.
-
- else
- SS_Allocator := New_Copy_Tree (Heap_Allocator);
-
- -- The heap allocator is marked Comes_From_Source
- -- since it corresponds to an explicit user-written
- -- allocator (that is, it will only be executed on
- -- behalf of callers that call the function as
- -- initialization for such an allocator). This
- -- prevents errors when No_Implicit_Heap_Allocation
- -- is in force.
-
- Set_Comes_From_Source (Heap_Allocator, True);
- end if;
-
- -- The allocator is returned on the secondary stack. We
- -- don't do this on VM targets, since the SS is not used.
-
- if VM_Target = No_VM then
- Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
- Set_Procedure_To_Call
- (SS_Allocator, RTE (RE_SS_Allocate));
-
- -- The allocator is returned on the secondary stack,
- -- so indicate that the function return, as well as
- -- the block that encloses the allocator, must not
- -- release it. The flags must be set now because the
- -- decision to use the secondary stack is done very
- -- late in the course of expanding the return
- -- statement, past the point where these flags are
- -- normally set.
-
- Set_Sec_Stack_Needed_For_Return (Parent_Function);
- Set_Sec_Stack_Needed_For_Return
- (Return_Statement_Entity (N));
- Set_Uses_Sec_Stack (Parent_Function);
- Set_Uses_Sec_Stack (Return_Statement_Entity (N));
- end if;
-
- -- Create an if statement to test the BIP_Alloc_Form
- -- formal and initialize the access object to either the
- -- BIP_Object_Access formal (BIP_Alloc_Form = 0), the
- -- result of allocating the object in the secondary stack
- -- (BIP_Alloc_Form = 1), or else an allocator to create
- -- the return object in the heap (BIP_Alloc_Form = 2).
-
- -- ??? An unchecked type conversion must be made in the
- -- case of assigning the access object formal to the
- -- local access object, because a normal conversion would
- -- be illegal in some cases (such as converting access-
- -- to-unconstrained to access-to-constrained), but the
- -- the unchecked conversion will presumably fail to work
- -- right in just such cases. It's not clear at all how to
- -- handle this. ???
-
- Alloc_If_Stmt :=
- Make_If_Statement (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- New_Reference_To (Obj_Alloc_Formal, Loc),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- UI_From_Int (BIP_Allocation_Form'Pos
- (Caller_Allocation)))),
- Then_Statements =>
- New_List (Make_Assignment_Statement (Loc,
- Name =>
- New_Reference_To
- (Alloc_Obj_Id, Loc),
- Expression =>
- Make_Unchecked_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Reference_To (Ref_Type, Loc),
- Expression =>
- New_Reference_To
- (Object_Access, Loc)))),
- Elsif_Parts =>
- New_List (Make_Elsif_Part (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- New_Reference_To
- (Obj_Alloc_Formal, Loc),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- UI_From_Int (
- BIP_Allocation_Form'Pos
- (Secondary_Stack)))),
- Then_Statements =>
- New_List
- (Make_Assignment_Statement (Loc,
- Name =>
- New_Reference_To
- (Alloc_Obj_Id, Loc),
- Expression =>
- SS_Allocator)))),
- Else_Statements =>
- New_List (Make_Assignment_Statement (Loc,
- Name =>
- New_Reference_To
- (Alloc_Obj_Id, Loc),
- Expression =>
- Heap_Allocator)));
-
- -- If a separate initialization assignment was created
- -- earlier, append that following the assignment of the
- -- implicit access formal to the access object, to ensure
- -- that the return object is initialized in that case.
- -- In this situation, the target of the assignment must
- -- be rewritten to denote a dereference of the access to
- -- the return object passed in by the caller.
-
- if Present (Init_Assignment) then
- Rewrite (Name (Init_Assignment),
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Alloc_Obj_Id, Loc)));
- Set_Etype
- (Name (Init_Assignment), Etype (Return_Obj_Id));
-
- Append_To
- (Then_Statements (Alloc_If_Stmt),
- Init_Assignment);
- end if;
-
- Insert_Before (Return_Object_Decl, Alloc_If_Stmt);
-
- -- Remember the local access object for use in the
- -- dereference of the renaming created below.
-
- Object_Access := Alloc_Obj_Id;
- end;
- end if;
-
- -- Replace the return object declaration with a renaming of a
- -- dereference of the access value designating the return
- -- object.
-
- Obj_Acc_Deref :=
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Object_Access, Loc));
-
- Rewrite (Return_Object_Decl,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Return_Obj_Id,
- Access_Definition => Empty,
- Subtype_Mark => New_Occurrence_Of
- (Return_Obj_Typ, Loc),
- Name => Obj_Acc_Deref));
-
- Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
- end;
- end if;
-
- -- Case where we do not build a block
-
- else
- -- We're about to drop Return_Object_Declarations on the floor, so
- -- we need to insert it, in case it got expanded into useful code.
-
- Insert_List_Before (N, Return_Object_Declarations (N));
-
- -- Build simple_return_statement that returns the expression directly
-
- Return_Stm := Make_Simple_Return_Statement (Loc, Expression => Exp);
-
- Result := Return_Stm;
- end if;
-
- -- Set the flag to prevent infinite recursion
-
- Set_Comes_From_Extended_Return_Statement (Return_Stm);
-
- Rewrite (N, Result);
- Analyze (N);
- end Expand_N_Extended_Return_Statement;
-
- -----------------------------
- -- Expand_N_Goto_Statement --
- -----------------------------
-
- -- Add poll before goto if polling active
-
- procedure Expand_N_Goto_Statement (N : Node_Id) is
- begin
- Generate_Poll_Call (N);
- end Expand_N_Goto_Statement;
-
- ---------------------------
- -- Expand_N_If_Statement --
- ---------------------------
-
- -- First we deal with the case of C and Fortran convention boolean values,
- -- with zero/non-zero semantics.
-
- -- Second, we deal with the obvious rewriting for the cases where the
- -- condition of the IF is known at compile time to be True or False.
-
- -- Third, we remove elsif parts which have non-empty Condition_Actions
- -- and rewrite as independent if statements. For example:
-
- -- if x then xs
- -- elsif y then ys
- -- ...
- -- end if;
-
- -- becomes
- --
- -- if x then xs
- -- else
- -- <<condition actions of y>>
- -- if y then ys
- -- ...
- -- end if;
- -- end if;
-
- -- This rewriting is needed if at least one elsif part has a non-empty
- -- Condition_Actions list. We also do the same processing if there is a
- -- constant condition in an elsif part (in conjunction with the first
- -- processing step mentioned above, for the recursive call made to deal
- -- with the created inner if, this deals with properly optimizing the
- -- cases of constant elsif conditions).
-
- procedure Expand_N_If_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Hed : Node_Id;
- E : Node_Id;
- New_If : Node_Id;
-
- Warn_If_Deleted : constant Boolean :=
- Warn_On_Deleted_Code and then Comes_From_Source (N);
- -- Indicates whether we want warnings when we delete branches of the
- -- if statement based on constant condition analysis. We never want
- -- these warnings for expander generated code.
-
- begin
- Adjust_Condition (Condition (N));
-
- -- The following loop deals with constant conditions for the IF. We
- -- need a loop because as we eliminate False conditions, we grab the
- -- first elsif condition and use it as the primary condition.
-
- while Compile_Time_Known_Value (Condition (N)) loop
-
- -- If condition is True, we can simply rewrite the if statement now
- -- by replacing it by the series of then statements.
-
- if Is_True (Expr_Value (Condition (N))) then
-
- -- All the else parts can be killed
-
- Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
- Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
-
- Hed := Remove_Head (Then_Statements (N));
- Insert_List_After (N, Then_Statements (N));
- Rewrite (N, Hed);
- return;
-
- -- If condition is False, then we can delete the condition and
- -- the Then statements
-
- else
- -- We do not delete the condition if constant condition warnings
- -- are enabled, since otherwise we end up deleting the desired
- -- warning. Of course the backend will get rid of this True/False
- -- test anyway, so nothing is lost here.
-
- if not Constant_Condition_Warnings then
- Kill_Dead_Code (Condition (N));
- end if;
-
- Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
-
- -- If there are no elsif statements, then we simply replace the
- -- entire if statement by the sequence of else statements.
-
- if No (Elsif_Parts (N)) then
- if No (Else_Statements (N))
- or else Is_Empty_List (Else_Statements (N))
- then
- Rewrite (N,
- Make_Null_Statement (Sloc (N)));
- else
- Hed := Remove_Head (Else_Statements (N));
- Insert_List_After (N, Else_Statements (N));
- Rewrite (N, Hed);
- end if;
-
- return;
-
- -- If there are elsif statements, the first of them becomes the
- -- if/then section of the rebuilt if statement This is the case
- -- where we loop to reprocess this copied condition.
-
- else
- Hed := Remove_Head (Elsif_Parts (N));
- Insert_Actions (N, Condition_Actions (Hed));
- Set_Condition (N, Condition (Hed));
- Set_Then_Statements (N, Then_Statements (Hed));
-
- -- Hed might have been captured as the condition determining
- -- the current value for an entity. Now it is detached from
- -- the tree, so a Current_Value pointer in the condition might
- -- need to be updated.
-
- Set_Current_Value_Condition (N);
-
- if Is_Empty_List (Elsif_Parts (N)) then
- Set_Elsif_Parts (N, No_List);
- end if;
- end if;
- end if;
- end loop;
-
- -- Loop through elsif parts, dealing with constant conditions and
- -- possible expression actions that are present.
-
- if Present (Elsif_Parts (N)) then
- E := First (Elsif_Parts (N));
- while Present (E) loop
- Adjust_Condition (Condition (E));
-
- -- If there are condition actions, then rewrite the if statement
- -- as indicated above. We also do the same rewrite for a True or
- -- False condition. The further processing of this constant
- -- condition is then done by the recursive call to expand the
- -- newly created if statement
-
- if Present (Condition_Actions (E))
- or else Compile_Time_Known_Value (Condition (E))
- then
- -- Note this is not an implicit if statement, since it is part
- -- of an explicit if statement in the source (or of an implicit
- -- if statement that has already been tested).
-
- New_If :=
- Make_If_Statement (Sloc (E),
- Condition => Condition (E),
- Then_Statements => Then_Statements (E),
- Elsif_Parts => No_List,
- Else_Statements => Else_Statements (N));
-
- -- Elsif parts for new if come from remaining elsif's of parent
-
- while Present (Next (E)) loop
- if No (Elsif_Parts (New_If)) then
- Set_Elsif_Parts (New_If, New_List);
- end if;
-
- Append (Remove_Next (E), Elsif_Parts (New_If));
- end loop;
-
- Set_Else_Statements (N, New_List (New_If));
-
- if Present (Condition_Actions (E)) then
- Insert_List_Before (New_If, Condition_Actions (E));
- end if;
-
- Remove (E);
-
- if Is_Empty_List (Elsif_Parts (N)) then
- Set_Elsif_Parts (N, No_List);
- end if;
-
- Analyze (New_If);
- return;
-
- -- No special processing for that elsif part, move to next
-
- else
- Next (E);
- end if;
- end loop;
- end if;
-
- -- Some more optimizations applicable if we still have an IF statement
-
- if Nkind (N) /= N_If_Statement then
- return;
- end if;
-
- -- Another optimization, special cases that can be simplified
-
- -- if expression then
- -- return true;
- -- else
- -- return false;
- -- end if;
-
- -- can be changed to:
-
- -- return expression;
-
- -- and
-
- -- if expression then
- -- return false;
- -- else
- -- return true;
- -- end if;
-
- -- can be changed to:
-
- -- return not (expression);
-
- -- Only do these optimizations if we are at least at -O1 level
-
- if Optimization_Level > 0 then
- if Nkind (N) = N_If_Statement
- and then No (Elsif_Parts (N))
- and then Present (Else_Statements (N))
- and then List_Length (Then_Statements (N)) = 1
- and then List_Length (Else_Statements (N)) = 1
- then
- declare
- Then_Stm : constant Node_Id := First (Then_Statements (N));
- Else_Stm : constant Node_Id := First (Else_Statements (N));
-
- begin
- if Nkind (Then_Stm) = N_Simple_Return_Statement
- and then
- Nkind (Else_Stm) = N_Simple_Return_Statement
- then
- declare
- Then_Expr : constant Node_Id := Expression (Then_Stm);
- Else_Expr : constant Node_Id := Expression (Else_Stm);
-
- begin
- if Nkind (Then_Expr) = N_Identifier
- and then
- Nkind (Else_Expr) = N_Identifier
- then
- if Entity (Then_Expr) = Standard_True
- and then Entity (Else_Expr) = Standard_False
- then
- Rewrite (N,
- Make_Simple_Return_Statement (Loc,
- Expression => Relocate_Node (Condition (N))));
- Analyze (N);
- return;
-
- elsif Entity (Then_Expr) = Standard_False
- and then Entity (Else_Expr) = Standard_True
- then
- Rewrite (N,
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Op_Not (Loc,
- Right_Opnd =>
- Relocate_Node (Condition (N)))));
- Analyze (N);
- return;
- end if;
- end if;
- end;
- end if;
- end;
- end if;
- end if;
- end Expand_N_If_Statement;
-
- -----------------------------
- -- Expand_N_Loop_Statement --
- -----------------------------
-
- -- 1. Deal with while condition for C/Fortran boolean
- -- 2. Deal with loops with a non-standard enumeration type range
- -- 3. Deal with while loops where Condition_Actions is set
- -- 4. Insert polling call if required
-
- procedure Expand_N_Loop_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Isc : constant Node_Id := Iteration_Scheme (N);
-
- begin
- if Present (Isc) then
- Adjust_Condition (Condition (Isc));
- end if;
-
- if Is_Non_Empty_List (Statements (N)) then
- Generate_Poll_Call (First (Statements (N)));
- end if;
-
- -- Nothing more to do for plain loop with no iteration scheme
-
- if No (Isc) then
- return;
- end if;
-
- -- Note: we do not have to worry about validity checking of the for loop
- -- range bounds here, since they were frozen with constant declarations
- -- and it is during that process that the validity checking is done.
-
- -- Handle the case where we have a for loop with the range type being an
- -- enumeration type with non-standard representation. In this case we
- -- expand:
-
- -- for x in [reverse] a .. b loop
- -- ...
- -- end loop;
-
- -- to
-
- -- for xP in [reverse] integer
- -- range etype'Pos (a) .. etype'Pos (b) loop
- -- declare
- -- x : constant etype := Pos_To_Rep (xP);
- -- begin
- -- ...
- -- end;
- -- end loop;
-
- if Present (Loop_Parameter_Specification (Isc)) then
- declare
- LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
- Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
- Ltype : constant Entity_Id := Etype (Loop_Id);
- Btype : constant Entity_Id := Base_Type (Ltype);
- Expr : Node_Id;
- New_Id : Entity_Id;
-
- begin
- if not Is_Enumeration_Type (Btype)
- or else No (Enum_Pos_To_Rep (Btype))
- then
- return;
- end if;
-
- New_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name (Chars (Loop_Id), 'P'));
-
- -- If the type has a contiguous representation, successive values
- -- can be generated as offsets from the first literal.
-
- if Has_Contiguous_Rep (Btype) then
- Expr :=
- Unchecked_Convert_To (Btype,
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Integer_Literal (Loc,
- Enumeration_Rep (First_Literal (Btype))),
- Right_Opnd => New_Reference_To (New_Id, Loc)));
- else
- -- Use the constructed array Enum_Pos_To_Rep
-
- Expr :=
- Make_Indexed_Component (Loc,
- Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
- Expressions => New_List (New_Reference_To (New_Id, Loc)));
- end if;
-
- Rewrite (N,
- Make_Loop_Statement (Loc,
- Identifier => Identifier (N),
-
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => New_Id,
- Reverse_Present => Reverse_Present (LPS),
-
- Discrete_Subtype_Definition =>
- Make_Subtype_Indication (Loc,
-
- Subtype_Mark =>
- New_Reference_To (Standard_Natural, Loc),
-
- Constraint =>
- Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
-
- Low_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To (Btype, Loc),
-
- Attribute_Name => Name_Pos,
-
- Expressions => New_List (
- Relocate_Node
- (Type_Low_Bound (Ltype)))),
-
- High_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To (Btype, Loc),
-
- Attribute_Name => Name_Pos,
-
- Expressions => New_List (
- Relocate_Node
- (Type_High_Bound (Ltype))))))))),
-
- Statements => New_List (
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Loop_Id,
- Constant_Present => True,
- Object_Definition => New_Reference_To (Ltype, Loc),
- Expression => Expr)),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Statements (N)))),
-
- End_Label => End_Label (N)));
- Analyze (N);
- end;
-
- -- Second case, if we have a while loop with Condition_Actions set, then
- -- we change it into a plain loop:
-
- -- while C loop
- -- ...
- -- end loop;
-
- -- changed to:
-
- -- loop
- -- <<condition actions>>
- -- exit when not C;
- -- ...
- -- end loop
-
- elsif Present (Isc)
- and then Present (Condition_Actions (Isc))
- then
- declare
- ES : Node_Id;
-
- begin
- ES :=
- Make_Exit_Statement (Sloc (Condition (Isc)),
- Condition =>
- Make_Op_Not (Sloc (Condition (Isc)),
- Right_Opnd => Condition (Isc)));
-
- Prepend (ES, Statements (N));
- Insert_List_Before (ES, Condition_Actions (Isc));
-
- -- This is not an implicit loop, since it is generated in response
- -- to the loop statement being processed. If this is itself
- -- implicit, the restriction has already been checked. If not,
- -- it is an explicit loop.
-
- Rewrite (N,
- Make_Loop_Statement (Sloc (N),
- Identifier => Identifier (N),
- Statements => Statements (N),
- End_Label => End_Label (N)));
-
- Analyze (N);
- end;
- end if;
- end Expand_N_Loop_Statement;
-
- --------------------------------------
- -- Expand_N_Simple_Return_Statement --
- --------------------------------------
-
- procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
- begin
- -- Defend against previous errors (i.e. the return statement calls a
- -- function that is not available in configurable runtime).
-
- if Present (Expression (N))
- and then Nkind (Expression (N)) = N_Empty
- then
- return;
- end if;
-
- -- Distinguish the function and non-function cases:
-
- case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
-
- when E_Function |
- E_Generic_Function =>
- Expand_Simple_Function_Return (N);
-
- when E_Procedure |
- E_Generic_Procedure |
- E_Entry |
- E_Entry_Family |
- E_Return_Statement =>
- Expand_Non_Function_Return (N);
-
- when others =>
- raise Program_Error;
- end case;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Simple_Return_Statement;
-
- --------------------------------
- -- Expand_Non_Function_Return --
- --------------------------------
-
- procedure Expand_Non_Function_Return (N : Node_Id) is
- pragma Assert (No (Expression (N)));
-
- Loc : constant Source_Ptr := Sloc (N);
- Scope_Id : Entity_Id :=
- Return_Applies_To (Return_Statement_Entity (N));
- Kind : constant Entity_Kind := Ekind (Scope_Id);
- Call : Node_Id;
- Acc_Stat : Node_Id;
- Goto_Stat : Node_Id;
- Lab_Node : Node_Id;
-
- begin
- -- Call postconditions procedure if procedure with active postconditions
-
- if Ekind (Scope_Id) = E_Procedure
- and then Has_Postconditions (Scope_Id)
- then
- Insert_Action (N,
- Make_Procedure_Call_Statement (Loc,
- Name => Make_Identifier (Loc, Name_uPostconditions)));
- end if;
-
- -- If it is a return from a procedure do no extra steps
-
- if Kind = E_Procedure or else Kind = E_Generic_Procedure then
- return;
-
- -- If it is a nested return within an extended one, replace it with a
- -- return of the previously declared return object.
-
- elsif Kind = E_Return_Statement then
- Rewrite (N,
- Make_Simple_Return_Statement (Loc,
- Expression =>
- New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
- Set_Comes_From_Extended_Return_Statement (N);
- Set_Return_Statement_Entity (N, Scope_Id);
- Expand_Simple_Function_Return (N);
- return;
- end if;
-
- pragma Assert (Is_Entry (Scope_Id));
-
- -- Look at the enclosing block to see whether the return is from an
- -- accept statement or an entry body.
-
- for J in reverse 0 .. Scope_Stack.Last loop
- Scope_Id := Scope_Stack.Table (J).Entity;
- exit when Is_Concurrent_Type (Scope_Id);
- end loop;
-
- -- If it is a return from accept statement it is expanded as call to
- -- RTS Complete_Rendezvous and a goto to the end of the accept body.
-
- -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
- -- Expand_N_Accept_Alternative in exp_ch9.adb)
-
- if Is_Task_Type (Scope_Id) then
-
- Call :=
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To
- (RTE (RE_Complete_Rendezvous), Loc));
- Insert_Before (N, Call);
- -- why not insert actions here???
- Analyze (Call);
-
- Acc_Stat := Parent (N);
- while Nkind (Acc_Stat) /= N_Accept_Statement loop
- Acc_Stat := Parent (Acc_Stat);
- end loop;
-
- Lab_Node := Last (Statements
- (Handled_Statement_Sequence (Acc_Stat)));
-
- Goto_Stat := Make_Goto_Statement (Loc,
- Name => New_Occurrence_Of
- (Entity (Identifier (Lab_Node)), Loc));
-
- Set_Analyzed (Goto_Stat);
-
- Rewrite (N, Goto_Stat);
- Analyze (N);
-
- -- If it is a return from an entry body, put a Complete_Entry_Body call
- -- in front of the return.
-
- elsif Is_Protected_Type (Scope_Id) then
- Call :=
- Make_Procedure_Call_Statement (Loc,
- Name =>
- New_Reference_To (RTE (RE_Complete_Entry_Body), Loc),
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To
- (Find_Protection_Object (Current_Scope), Loc),
- Attribute_Name =>
- Name_Unchecked_Access)));
-
- Insert_Before (N, Call);
- Analyze (Call);
- end if;
- end Expand_Non_Function_Return;
-
- -----------------------------------
- -- Expand_Simple_Function_Return --
- -----------------------------------
-
- -- The "simple" comes from the syntax rule simple_return_statement.
- -- The semantics are not at all simple!
-
- procedure Expand_Simple_Function_Return (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
-
- Scope_Id : constant Entity_Id :=
- Return_Applies_To (Return_Statement_Entity (N));
- -- The function we are returning from
-
- R_Type : constant Entity_Id := Etype (Scope_Id);
- -- The result type of the function
-
- Utyp : constant Entity_Id := Underlying_Type (R_Type);
-
- Exp : constant Node_Id := Expression (N);
- pragma Assert (Present (Exp));
-
- Exptyp : constant Entity_Id := Etype (Exp);
- -- The type of the expression (not necessarily the same as R_Type)
-
- Subtype_Ind : Node_Id;
- -- If the result type of the function is class-wide and the
- -- expression has a specific type, then we use the expression's
- -- type as the type of the return object. In cases where the
- -- expression is an aggregate that is built in place, this avoids
- -- the need for an expensive conversion of the return object to
- -- the specific type on assignments to the individual components.
-
- begin
- if Is_Class_Wide_Type (R_Type)
- and then not Is_Class_Wide_Type (Etype (Exp))
- then
- Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
- else
- Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
- end if;
-
- -- For the case of a simple return that does not come from an extended
- -- return, in the case of Ada 2005 where we are returning a limited
- -- type, we rewrite "return <expression>;" to be:
-
- -- return _anon_ : <return_subtype> := <expression>
-
- -- The expansion produced by Expand_N_Extended_Return_Statement will
- -- contain simple return statements (for example, a block containing
- -- simple return of the return object), which brings us back here with
- -- Comes_From_Extended_Return_Statement set. The reason for the barrier
- -- checking for a simple return that does not come from an extended
- -- return is to avoid this infinite recursion.
-
- -- The reason for this design is that for Ada 2005 limited returns, we
- -- need to reify the return object, so we can build it "in place", and
- -- we need a block statement to hang finalization and tasking stuff.
-
- -- ??? In order to avoid disruption, we avoid translating to extended
- -- return except in the cases where we really need to (Ada 2005 for
- -- inherently limited). We might prefer to do this translation in all
- -- cases (except perhaps for the case of Ada 95 inherently limited),
- -- in order to fully exercise the Expand_N_Extended_Return_Statement
- -- code. This would also allow us to do the build-in-place optimization
- -- for efficiency even in cases where it is semantically not required.
-
- -- As before, we check the type of the return expression rather than the
- -- return type of the function, because the latter may be a limited
- -- class-wide interface type, which is not a limited type, even though
- -- the type of the expression may be.
-
- if not Comes_From_Extended_Return_Statement (N)
- and then Is_Inherently_Limited_Type (Etype (Expression (N)))
- and then Ada_Version >= Ada_05
- and then not Debug_Flag_Dot_L
- then
- declare
- Return_Object_Entity : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('R'));
- Obj_Decl : constant Node_Id :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Return_Object_Entity,
- Object_Definition => Subtype_Ind,
- Expression => Exp);
-
- Ext : constant Node_Id := Make_Extended_Return_Statement (Loc,
- Return_Object_Declarations => New_List (Obj_Decl));
- -- Do not perform this high-level optimization if the result type
- -- is an interface because the "this" pointer must be displaced.
-
- begin
- Rewrite (N, Ext);
- Analyze (N);
- return;
- end;
- end if;
-
- -- Here we have a simple return statement that is part of the expansion
- -- of an extended return statement (either written by the user, or
- -- generated by the above code).
-
- -- Always normalize C/Fortran boolean result. This is not always needed,
- -- but it seems a good idea to minimize the passing around of non-
- -- normalized values, and in any case this handles the processing of
- -- barrier functions for protected types, which turn the condition into
- -- a return statement.
-
- if Is_Boolean_Type (Exptyp)
- and then Nonzero_Is_True (Exptyp)
- then
- Adjust_Condition (Exp);
- Adjust_Result_Type (Exp, Exptyp);
- end if;
-
- -- Do validity check if enabled for returns
-
- if Validity_Checks_On
- and then Validity_Check_Returns
- then
- Ensure_Valid (Exp);
- end if;
-
- -- Check the result expression of a scalar function against the subtype
- -- of the function by inserting a conversion. This conversion must
- -- eventually be performed for other classes of types, but for now it's
- -- only done for scalars.
- -- ???
-
- if Is_Scalar_Type (Exptyp) then
- Rewrite (Exp, Convert_To (R_Type, Exp));
- Analyze (Exp);
- end if;
-
- -- Deal with returning variable length objects and controlled types
-
- -- Nothing to do if we are returning by reference, or this is not a
- -- type that requires special processing (indicated by the fact that
- -- it requires a cleanup scope for the secondary stack case).
-
- if Is_Inherently_Limited_Type (Exptyp)
- or else Is_Limited_Interface (Exptyp)
- then
- null;
-
- elsif not Requires_Transient_Scope (R_Type) then
-
- -- Mutable records with no variable length components are not
- -- returned on the sec-stack, so we need to make sure that the
- -- backend will only copy back the size of the actual value, and not
- -- the maximum size. We create an actual subtype for this purpose.
-
- declare
- Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
- Decl : Node_Id;
- Ent : Entity_Id;
- begin
- if Has_Discriminants (Ubt)
- and then not Is_Constrained (Ubt)
- and then not Has_Unchecked_Union (Ubt)
- then
- Decl := Build_Actual_Subtype (Ubt, Exp);
- Ent := Defining_Identifier (Decl);
- Insert_Action (Exp, Decl);
- Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
- Analyze_And_Resolve (Exp);
- end if;
- end;
-
- -- Here if secondary stack is used
-
- else
- -- Make sure that no surrounding block will reclaim the secondary
- -- stack on which we are going to put the result. Not only may this
- -- introduce secondary stack leaks but worse, if the reclamation is
- -- done too early, then the result we are returning may get
- -- clobbered.
-
- declare
- S : Entity_Id;
- begin
- S := Current_Scope;
- while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
- Set_Sec_Stack_Needed_For_Return (S, True);
- S := Enclosing_Dynamic_Scope (S);
- end loop;
- end;
-
- -- Optimize the case where the result is a function call. In this
- -- case either the result is already on the secondary stack, or is
- -- already being returned with the stack pointer depressed and no
- -- further processing is required except to set the By_Ref flag to
- -- ensure that gigi does not attempt an extra unnecessary copy.
- -- (actually not just unnecessary but harmfully wrong in the case
- -- of a controlled type, where gigi does not know how to do a copy).
- -- To make up for a gcc 2.8.1 deficiency (???), we perform
- -- the copy for array types if the constrained status of the
- -- target type is different from that of the expression.
-
- if Requires_Transient_Scope (Exptyp)
- and then
- (not Is_Array_Type (Exptyp)
- or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
- or else CW_Or_Has_Controlled_Part (Utyp))
- and then Nkind (Exp) = N_Function_Call
- then
- Set_By_Ref (N);
-
- -- Remove side effects from the expression now so that other parts
- -- of the expander do not have to reanalyze this node without this
- -- optimization
-
- Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
-
- -- For controlled types, do the allocation on the secondary stack
- -- manually in order to call adjust at the right time:
-
- -- type Anon1 is access R_Type;
- -- for Anon1'Storage_pool use ss_pool;
- -- Anon2 : anon1 := new R_Type'(expr);
- -- return Anon2.all;
-
- -- We do the same for classwide types that are not potentially
- -- controlled (by the virtue of restriction No_Finalization) because
- -- gigi is not able to properly allocate class-wide types.
-
- elsif CW_Or_Has_Controlled_Part (Utyp) then
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Temp : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('R'));
- Acc_Typ : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('A'));
- Alloc_Node : Node_Id;
-
- begin
- Set_Ekind (Acc_Typ, E_Access_Type);
-
- Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
-
- Alloc_Node :=
- Make_Allocator (Loc,
- Expression =>
- Make_Qualified_Expression (Loc,
- Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
- Expression => Relocate_Node (Exp)));
-
- -- We do not want discriminant checks on the declaration,
- -- given that it gets its value from the allocator.
-
- Set_No_Initialization (Alloc_Node);
-
- Insert_List_Before_And_Analyze (N, New_List (
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Acc_Typ,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- Subtype_Indication => Subtype_Ind)),
-
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Reference_To (Acc_Typ, Loc),
- Expression => Alloc_Node)));
-
- Rewrite (Exp,
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Temp, Loc)));
-
- Analyze_And_Resolve (Exp, R_Type);
- end;
-
- -- Otherwise use the gigi mechanism to allocate result on the
- -- secondary stack.
-
- else
- Check_Restriction (No_Secondary_Stack, N);
- Set_Storage_Pool (N, RTE (RE_SS_Pool));
-
- -- If we are generating code for the VM do not use
- -- SS_Allocate since everything is heap-allocated anyway.
-
- if VM_Target = No_VM then
- Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
- end if;
- end if;
- end if;
-
- -- Implement the rules of 6.5(8-10), which require a tag check in the
- -- case of a limited tagged return type, and tag reassignment for
- -- nonlimited tagged results. These actions are needed when the return
- -- type is a specific tagged type and the result expression is a
- -- conversion or a formal parameter, because in that case the tag of the
- -- expression might differ from the tag of the specific result type.
-
- if Is_Tagged_Type (Utyp)
- and then not Is_Class_Wide_Type (Utyp)
- and then (Nkind_In (Exp, N_Type_Conversion,
- N_Unchecked_Type_Conversion)
- or else (Is_Entity_Name (Exp)
- and then Ekind (Entity (Exp)) in Formal_Kind))
- then
- -- When the return type is limited, perform a check that the
- -- tag of the result is the same as the tag of the return type.
-
- if Is_Limited_Type (R_Type) then
- Insert_Action (Exp,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Exp),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (Utyp), Loc)),
- Right_Opnd =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt
- (Access_Disp_Table (Base_Type (Utyp)))),
- Loc))),
- Reason => CE_Tag_Check_Failed));
-
- -- If the result type is a specific nonlimited tagged type, then we
- -- have to ensure that the tag of the result is that of the result
- -- type. This is handled by making a copy of the expression in the
- -- case where it might have a different tag, namely when the
- -- expression is a conversion or a formal parameter. We create a new
- -- object of the result type and initialize it from the expression,
- -- which will implicitly force the tag to be set appropriately.
-
- else
- declare
- Result_Id : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('R'));
- Result_Exp : constant Node_Id :=
- New_Reference_To (Result_Id, Loc);
- Result_Obj : constant Node_Id :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Result_Id,
- Object_Definition =>
- New_Reference_To (R_Type, Loc),
- Constant_Present => True,
- Expression => Relocate_Node (Exp));
-
- begin
- Set_Assignment_OK (Result_Obj);
- Insert_Action (Exp, Result_Obj);
-
- Rewrite (Exp, Result_Exp);
- Analyze_And_Resolve (Exp, R_Type);
- end;
- end if;
-
- -- Ada 2005 (AI-344): If the result type is class-wide, then insert
- -- a check that the level of the return expression's underlying type
- -- is not deeper than the level of the master enclosing the function.
- -- Always generate the check when the type of the return expression
- -- is class-wide, when it's a type conversion, or when it's a formal
- -- parameter. Otherwise, suppress the check in the case where the
- -- return expression has a specific type whose level is known not to
- -- be statically deeper than the function's result type.
-
- -- Note: accessibility check is skipped in the VM case, since there
- -- does not seem to be any practical way to implement this check.
-
- elsif Ada_Version >= Ada_05
- and then VM_Target = No_VM
- and then Is_Class_Wide_Type (R_Type)
- and then not Scope_Suppress (Accessibility_Check)
- and then
- (Is_Class_Wide_Type (Etype (Exp))
- or else Nkind_In (Exp, N_Type_Conversion,
- N_Unchecked_Type_Conversion)
- or else (Is_Entity_Name (Exp)
- and then Ekind (Entity (Exp)) in Formal_Kind)
- or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
- Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
- then
- declare
- Tag_Node : Node_Id;
-
- begin
- -- Ada 2005 (AI-251): In class-wide interface objects we displace
- -- "this" to reference the base of the object --- required to get
- -- access to the TSD of the object.
-
- if Is_Class_Wide_Type (Etype (Exp))
- and then Is_Interface (Etype (Exp))
- and then Nkind (Exp) = N_Explicit_Dereference
- then
- Tag_Node :=
- Make_Explicit_Dereference (Loc,
- Unchecked_Convert_To (RTE (RE_Tag_Ptr),
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (RE_Base_Address), Loc),
- Parameter_Associations => New_List (
- Unchecked_Convert_To (RTE (RE_Address),
- Duplicate_Subexpr (Prefix (Exp)))))));
- else
- Tag_Node :=
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr (Exp),
- Attribute_Name => Name_Tag);
- end if;
-
- Insert_Action (Exp,
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Build_Get_Access_Level (Loc, Tag_Node),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
- Reason => PE_Accessibility_Check_Failed));
- end;
- end if;
-
- -- If we are returning an object that may not be bit-aligned, then
- -- copy the value into a temporary first. This copy may need to expand
- -- to a loop of component operations..
-
- if Is_Possibly_Unaligned_Slice (Exp)
- or else Is_Possibly_Unaligned_Object (Exp)
- then
- declare
- Tnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
- begin
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Constant_Present => True,
- Object_Definition => New_Occurrence_Of (R_Type, Loc),
- Expression => Relocate_Node (Exp)),
- Suppress => All_Checks);
- Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
- end;
- end if;
-
- -- Generate call to postcondition checks if they are present
-
- if Ekind (Scope_Id) = E_Function
- and then Has_Postconditions (Scope_Id)
- then
- -- We are going to reference the returned value twice in this case,
- -- once in the call to _Postconditions, and once in the actual return
- -- statement, but we can't have side effects happening twice, and in
- -- any case for efficiency we don't want to do the computation twice.
-
- -- If the returned expression is an entity name, we don't need to
- -- worry since it is efficient and safe to reference it twice, that's
- -- also true for literals other than string literals, and for the
- -- case of X.all where X is an entity name.
-
- if Is_Entity_Name (Exp)
- or else Nkind_In (Exp, N_Character_Literal,
- N_Integer_Literal,
- N_Real_Literal)
- or else (Nkind (Exp) = N_Explicit_Dereference
- and then Is_Entity_Name (Prefix (Exp)))
- then
- null;
-
- -- Otherwise we are going to need a temporary to capture the value
-
- else
- declare
- Tnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
-
- begin
- -- For a complex expression of an elementary type, capture
- -- value in the temporary and use it as the reference.
-
- if Is_Elementary_Type (R_Type) then
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Constant_Present => True,
- Object_Definition => New_Occurrence_Of (R_Type, Loc),
- Expression => Relocate_Node (Exp)),
- Suppress => All_Checks);
-
- Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
-
- -- If we have something we can rename, generate a renaming of
- -- the object and replace the expression with a reference
-
- elsif Is_Object_Reference (Exp) then
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Tnn,
- Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
- Name => Relocate_Node (Exp)),
- Suppress => All_Checks);
-
- Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
-
- -- Otherwise we have something like a string literal or an
- -- aggregate. We could copy the value, but that would be
- -- inefficient. Instead we make a reference to the value and
- -- capture this reference with a renaming, the expression is
- -- then replaced by a dereference of this renaming.
-
- else
- -- For now, copy the value, since the code below does not
- -- seem to work correctly ???
-
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Constant_Present => True,
- Object_Definition => New_Occurrence_Of (R_Type, Loc),
- Expression => Relocate_Node (Exp)),
- Suppress => All_Checks);
-
- Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
-
- -- Insert_Action (Exp,
- -- Make_Object_Renaming_Declaration (Loc,
- -- Defining_Identifier => Tnn,
- -- Access_Definition =>
- -- Make_Access_Definition (Loc,
- -- All_Present => True,
- -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
- -- Name =>
- -- Make_Reference (Loc,
- -- Prefix => Relocate_Node (Exp))),
- -- Suppress => All_Checks);
-
- -- Rewrite (Exp,
- -- Make_Explicit_Dereference (Loc,
- -- Prefix => New_Occurrence_Of (Tnn, Loc)));
- end if;
- end;
- end if;
-
- -- Generate call to _postconditions
-
- Insert_Action (Exp,
- Make_Procedure_Call_Statement (Loc,
- Name => Make_Identifier (Loc, Name_uPostconditions),
- Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
- end if;
-
- -- Ada 2005 (AI-251): If this return statement corresponds with an
- -- simple return statement associated with an extended return statement
- -- and the type of the returned object is an interface then generate an
- -- implicit conversion to force displacement of the "this" pointer.
-
- if Ada_Version >= Ada_05
- and then Comes_From_Extended_Return_Statement (N)
- and then Nkind (Expression (N)) = N_Identifier
- and then Is_Interface (Utyp)
- and then Utyp /= Underlying_Type (Exptyp)
- then
- Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
- Analyze_And_Resolve (Exp);
- end if;
- end Expand_Simple_Function_Return;
-
- ------------------------------
- -- Make_Tag_Ctrl_Assignment --
- ------------------------------
-
- function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
- Loc : constant Source_Ptr := Sloc (N);
- L : constant Node_Id := Name (N);
- T : constant Entity_Id := Underlying_Type (Etype (L));
-
- Ctrl_Act : constant Boolean := Needs_Finalization (T)
- and then not No_Ctrl_Actions (N);
-
- Save_Tag : constant Boolean := Is_Tagged_Type (T)
- and then not No_Ctrl_Actions (N)
- and then VM_Target = No_VM;
- -- Tags are not saved and restored when VM_Target because VM tags are
- -- represented implicitly in objects.
-
- Res : List_Id;
- Tag_Tmp : Entity_Id;
-
- Prev_Tmp : Entity_Id;
- Next_Tmp : Entity_Id;
- Ctrl_Ref : Node_Id;
-
- begin
- Res := New_List;
-
- -- Finalize the target of the assignment when controlled.
- -- We have two exceptions here:
-
- -- 1. If we are in an init proc since it is an initialization
- -- more than an assignment
-
- -- 2. If the left-hand side is a temporary that was not initialized
- -- (or the parent part of a temporary since it is the case in
- -- extension aggregates). Such a temporary does not come from
- -- source. We must examine the original node for the prefix, because
- -- it may be a component of an entry formal, in which case it has
- -- been rewritten and does not appear to come from source either.
-
- -- Case of init proc
-
- if not Ctrl_Act then
- null;
-
- -- The left hand side is an uninitialized temporary object
-
- elsif Nkind (L) = N_Type_Conversion
- and then Is_Entity_Name (Expression (L))
- and then Nkind (Parent (Entity (Expression (L))))
- = N_Object_Declaration
- and then No_Initialization (Parent (Entity (Expression (L))))
- then
- null;
-
- else
- Append_List_To (Res,
- Make_Final_Call (
- Ref => Duplicate_Subexpr_No_Checks (L),
- Typ => Etype (L),
- With_Detach => New_Reference_To (Standard_False, Loc)));
- end if;
-
- -- Save the Tag in a local variable Tag_Tmp
-
- if Save_Tag then
- Tag_Tmp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tag_Tmp,
- Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
- Expression =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (L),
- Selector_Name => New_Reference_To (First_Tag_Component (T),
- Loc))));
-
- -- Otherwise Tag_Tmp not used
-
- else
- Tag_Tmp := Empty;
- end if;
-
- if Ctrl_Act then
- if VM_Target /= No_VM then
-
- -- Cannot assign part of the object in a VM context, so instead
- -- fallback to the previous mechanism, even though it is not
- -- completely correct ???
-
- -- Save the Finalization Pointers in local variables Prev_Tmp and
- -- Next_Tmp. For objects with Has_Controlled_Component set, these
- -- pointers are in the Record_Controller
-
- Ctrl_Ref := Duplicate_Subexpr (L);
-
- if Has_Controlled_Component (T) then
- Ctrl_Ref :=
- Make_Selected_Component (Loc,
- Prefix => Ctrl_Ref,
- Selector_Name =>
- New_Reference_To (Controller_Component (T), Loc));
- end if;
-
- Prev_Tmp :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('B'));
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Prev_Tmp,
-
- Object_Definition =>
- New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
-
- Expression =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (RTE (RE_Finalizable), Ctrl_Ref),
- Selector_Name => Make_Identifier (Loc, Name_Prev))));
-
- Next_Tmp :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('C'));
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Next_Tmp,
-
- Object_Definition =>
- New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
-
- Expression =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (RTE (RE_Finalizable),
- New_Copy_Tree (Ctrl_Ref)),
- Selector_Name => Make_Identifier (Loc, Name_Next))));
-
- -- Do the Assignment
-
- Append_To (Res, Relocate_Node (N));
-
- else
- -- Regular (non VM) processing for controlled types and types with
- -- controlled components
-
- -- Variables of such types contain pointers used to chain them in
- -- finalization lists, in addition to user data. These pointers
- -- are specific to each object of the type, not to the value being
- -- assigned.
-
- -- Thus they need to be left intact during the assignment. We
- -- achieve this by constructing a Storage_Array subtype, and by
- -- overlaying objects of this type on the source and target of the
- -- assignment. The assignment is then rewritten to assignments of
- -- slices of these arrays, copying the user data, and leaving the
- -- pointers untouched.
-
- Controlled_Actions : declare
- Prev_Ref : Node_Id;
- -- A reference to the Prev component of the record controller
-
- First_After_Root : Node_Id := Empty;
- -- Index of first byte to be copied (used to skip
- -- Root_Controlled in controlled objects).
-
- Last_Before_Hole : Node_Id := Empty;
- -- Index of last byte to be copied before outermost record
- -- controller data.
-
- Hole_Length : Node_Id := Empty;
- -- Length of record controller data (Prev and Next pointers)
-
- First_After_Hole : Node_Id := Empty;
- -- Index of first byte to be copied after outermost record
- -- controller data.
-
- Expr, Source_Size : Node_Id;
- Source_Actual_Subtype : Entity_Id;
- -- Used for computation of the size of the data to be copied
-
- Range_Type : Entity_Id;
- Opaque_Type : Entity_Id;
-
- function Build_Slice
- (Rec : Entity_Id;
- Lo : Node_Id;
- Hi : Node_Id) return Node_Id;
- -- Build and return a slice of an array of type S overlaid on
- -- object Rec, with bounds specified by Lo and Hi. If either
- -- bound is empty, a default of S'First (respectively S'Last)
- -- is used.
-
- -----------------
- -- Build_Slice --
- -----------------
-
- function Build_Slice
- (Rec : Node_Id;
- Lo : Node_Id;
- Hi : Node_Id) return Node_Id
- is
- Lo_Bound : Node_Id;
- Hi_Bound : Node_Id;
-
- Opaque : constant Node_Id :=
- Unchecked_Convert_To (Opaque_Type,
- Make_Attribute_Reference (Loc,
- Prefix => Rec,
- Attribute_Name => Name_Address));
- -- Access value designating an opaque storage array of type
- -- S overlaid on record Rec.
-
- begin
- -- Compute slice bounds using S'First (1) and S'Last as
- -- default values when not specified by the caller.
-
- if No (Lo) then
- Lo_Bound := Make_Integer_Literal (Loc, 1);
- else
- Lo_Bound := Lo;
- end if;
-
- if No (Hi) then
- Hi_Bound := Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Range_Type, Loc),
- Attribute_Name => Name_Last);
- else
- Hi_Bound := Hi;
- end if;
-
- return Make_Slice (Loc,
- Prefix =>
- Opaque,
- Discrete_Range => Make_Range (Loc,
- Lo_Bound, Hi_Bound));
- end Build_Slice;
-
- -- Start of processing for Controlled_Actions
-
- begin
- -- Create a constrained subtype of Storage_Array whose size
- -- corresponds to the value being assigned.
-
- -- subtype G is Storage_Offset range
- -- 1 .. (Expr'Size + Storage_Unit - 1) / Storage_Unit
-
- Expr := Duplicate_Subexpr_No_Checks (Expression (N));
-
- if Nkind (Expr) = N_Qualified_Expression then
- Expr := Expression (Expr);
- end if;
-
- Source_Actual_Subtype := Etype (Expr);
-
- if Has_Discriminants (Source_Actual_Subtype)
- and then not Is_Constrained (Source_Actual_Subtype)
- then
- Append_To (Res,
- Build_Actual_Subtype (Source_Actual_Subtype, Expr));
- Source_Actual_Subtype := Defining_Identifier (Last (Res));
- end if;
-
- Source_Size :=
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Source_Actual_Subtype, Loc),
- Attribute_Name => Name_Size),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => System_Storage_Unit - 1));
-
- Source_Size :=
- Make_Op_Divide (Loc,
- Left_Opnd => Source_Size,
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => System_Storage_Unit));
-
- Range_Type :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('G'));
-
- Append_To (Res,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Range_Type,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark =>
- New_Reference_To (RTE (RE_Storage_Offset), Loc),
- Constraint => Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound => Source_Size)))));
-
- -- subtype S is Storage_Array (G)
-
- Append_To (Res,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('S')),
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark =>
- New_Reference_To (RTE (RE_Storage_Array), Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints =>
- New_List (New_Reference_To (Range_Type, Loc))))));
-
- -- type A is access S
-
- Opaque_Type :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('A'));
-
- Append_To (Res,
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Opaque_Type,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- Subtype_Indication =>
- New_Occurrence_Of (
- Defining_Identifier (Last (Res)), Loc))));
-
- -- Generate appropriate slice assignments
-
- First_After_Root := Make_Integer_Literal (Loc, 1);
-
- -- For the case of a controlled object, skip the
- -- Root_Controlled part.
-
- if Is_Controlled (T) then
- First_After_Root :=
- Make_Op_Add (Loc,
- First_After_Root,
- Make_Op_Divide (Loc,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (RTE (RE_Root_Controlled), Loc),
- Attribute_Name => Name_Size),
- Make_Integer_Literal (Loc, System_Storage_Unit)));
- end if;
-
- -- For the case of a record with controlled components, skip
- -- the Prev and Next components of the record controller.
- -- These components constitute a 'hole' in the middle of the
- -- data to be copied.
-
- if Has_Controlled_Component (T) then
- Prev_Ref :=
- Make_Selected_Component (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (L),
- Selector_Name =>
- New_Reference_To (Controller_Component (T), Loc)),
- Selector_Name => Make_Identifier (Loc, Name_Prev));
-
- -- Last index before hole: determined by position of
- -- the _Controller.Prev component.
-
- Last_Before_Hole :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('L'));
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Last_Before_Hole,
- Object_Definition => New_Occurrence_Of (
- RTE (RE_Storage_Offset), Loc),
- Constant_Present => True,
- Expression => Make_Op_Add (Loc,
- Make_Attribute_Reference (Loc,
- Prefix => Prev_Ref,
- Attribute_Name => Name_Position),
- Make_Attribute_Reference (Loc,
- Prefix => New_Copy_Tree (Prefix (Prev_Ref)),
- Attribute_Name => Name_Position))));
-
- -- Hole length: size of the Prev and Next components
-
- Hole_Length :=
- Make_Op_Multiply (Loc,
- Left_Opnd => Make_Integer_Literal (Loc, Uint_2),
- Right_Opnd =>
- Make_Op_Divide (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Copy_Tree (Prev_Ref),
- Attribute_Name => Name_Size),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => System_Storage_Unit)));
-
- -- First index after hole
-
- First_After_Hole :=
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('F'));
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => First_After_Hole,
- Object_Definition => New_Occurrence_Of (
- RTE (RE_Storage_Offset), Loc),
- Constant_Present => True,
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd =>
- New_Occurrence_Of (Last_Before_Hole, Loc),
- Right_Opnd => Hole_Length),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
-
- Last_Before_Hole :=
- New_Occurrence_Of (Last_Before_Hole, Loc);
- First_After_Hole :=
- New_Occurrence_Of (First_After_Hole, Loc);
- end if;
-
- -- Assign the first slice (possibly skipping Root_Controlled,
- -- up to the beginning of the record controller if present,
- -- up to the end of the object if not).
-
- Append_To (Res, Make_Assignment_Statement (Loc,
- Name => Build_Slice (
- Rec => Duplicate_Subexpr_No_Checks (L),
- Lo => First_After_Root,
- Hi => Last_Before_Hole),
-
- Expression => Build_Slice (
- Rec => Expression (N),
- Lo => First_After_Root,
- Hi => New_Copy_Tree (Last_Before_Hole))));
-
- if Present (First_After_Hole) then
-
- -- If a record controller is present, copy the second slice,
- -- from right after the _Controller.Next component up to the
- -- end of the object.
-
- Append_To (Res, Make_Assignment_Statement (Loc,
- Name => Build_Slice (
- Rec => Duplicate_Subexpr_No_Checks (L),
- Lo => First_After_Hole,
- Hi => Empty),
- Expression => Build_Slice (
- Rec => Duplicate_Subexpr_No_Checks (Expression (N)),
- Lo => New_Copy_Tree (First_After_Hole),
- Hi => Empty)));
- end if;
- end Controlled_Actions;
- end if;
-
- else
- Append_To (Res, Relocate_Node (N));
- end if;
-
- -- Restore the tag
-
- if Save_Tag then
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (L),
- Selector_Name => New_Reference_To (First_Tag_Component (T),
- Loc)),
- Expression => New_Reference_To (Tag_Tmp, Loc)));
- end if;
-
- if Ctrl_Act then
- if VM_Target /= No_VM then
- -- Restore the finalization pointers
-
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (RTE (RE_Finalizable),
- New_Copy_Tree (Ctrl_Ref)),
- Selector_Name => Make_Identifier (Loc, Name_Prev)),
- Expression => New_Reference_To (Prev_Tmp, Loc)));
-
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (RTE (RE_Finalizable),
- New_Copy_Tree (Ctrl_Ref)),
- Selector_Name => Make_Identifier (Loc, Name_Next)),
- Expression => New_Reference_To (Next_Tmp, Loc)));
- end if;
-
- -- Adjust the target after the assignment when controlled (not in the
- -- init proc since it is an initialization more than an assignment).
-
- Append_List_To (Res,
- Make_Adjust_Call (
- Ref => Duplicate_Subexpr_Move_Checks (L),
- Typ => Etype (L),
- Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
- With_Attach => Make_Integer_Literal (Loc, 0)));
- end if;
-
- return Res;
-
- exception
- -- Could use comment here ???
-
- when RE_Not_Available =>
- return Empty_List;
- end Make_Tag_Ctrl_Assignment;
-
-end Exp_Ch5;