aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/exp_ch4.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/exp_ch4.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/exp_ch4.adb9343
1 files changed, 9343 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/ada/exp_ch4.adb b/gcc-4.4.0/gcc/ada/exp_ch4.adb
new file mode 100644
index 000000000..9309c4850
--- /dev/null
+++ b/gcc-4.4.0/gcc/ada/exp_ch4.adb
@@ -0,0 +1,9343 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ C H 4 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Aggr; use Exp_Aggr;
+with Exp_Atag; use Exp_Atag;
+with Exp_Ch3; use Exp_Ch3;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch9; use Exp_Ch9;
+with Exp_Disp; use Exp_Disp;
+with Exp_Fixd; use Exp_Fixd;
+with Exp_Pakd; use Exp_Pakd;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Exp_VFpt; use Exp_VFpt;
+with Freeze; use Freeze;
+with Inline; use Inline;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Exp_Ch4 is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Binary_Op_Validity_Checks (N : Node_Id);
+ pragma Inline (Binary_Op_Validity_Checks);
+ -- Performs validity checks for a binary operator
+
+ procedure Build_Boolean_Array_Proc_Call
+ (N : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id);
+ -- If a boolean array assignment can be done in place, build call to
+ -- corresponding library procedure.
+
+ procedure Displace_Allocator_Pointer (N : Node_Id);
+ -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
+ -- Expand_Allocator_Expression. Allocating class-wide interface objects
+ -- this routine displaces the pointer to the allocated object to reference
+ -- the component referencing the corresponding secondary dispatch table.
+
+ procedure Expand_Allocator_Expression (N : Node_Id);
+ -- Subsidiary to Expand_N_Allocator, for the case when the expression
+ -- is a qualified expression or an aggregate.
+
+ procedure Expand_Array_Comparison (N : Node_Id);
+ -- This routine handles expansion of the comparison operators (N_Op_Lt,
+ -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
+ -- code for these operators is similar, differing only in the details of
+ -- the actual comparison call that is made. Special processing (call a
+ -- run-time routine)
+
+ function Expand_Array_Equality
+ (Nod : Node_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Bodies : List_Id;
+ Typ : Entity_Id) return Node_Id;
+ -- Expand an array equality into a call to a function implementing this
+ -- equality, and a call to it. Loc is the location for the generated nodes.
+ -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
+ -- on which to attach bodies of local functions that are created in the
+ -- process. It is the responsibility of the caller to insert those bodies
+ -- at the right place. Nod provides the Sloc value for the generated code.
+ -- Normally the types used for the generated equality routine are taken
+ -- from Lhs and Rhs. However, in some situations of generated code, the
+ -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
+ -- the type to be used for the formal parameters.
+
+ procedure Expand_Boolean_Operator (N : Node_Id);
+ -- Common expansion processing for Boolean operators (And, Or, Xor) for the
+ -- case of array type arguments.
+
+ function Expand_Composite_Equality
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Bodies : List_Id) return Node_Id;
+ -- Local recursive function used to expand equality for nested composite
+ -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
+ -- to attach bodies of local functions that are created in the process.
+ -- This is the responsibility of the caller to insert those bodies at the
+ -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
+ -- are the left and right sides for the comparison, and Typ is the type of
+ -- the arrays to compare.
+
+ procedure Expand_Concatenate_Other (Cnode : Node_Id; Opnds : List_Id);
+ -- This routine handles expansion of concatenation operations, where N is
+ -- the N_Op_Concat node being expanded and Operands is the list of operands
+ -- (at least two are present). The caller has dealt with converting any
+ -- singleton operands into singleton aggregates.
+
+ procedure Expand_Concatenate_String (Cnode : Node_Id; Opnds : List_Id);
+ -- Routine to expand concatenation of 2-5 operands (in the list Operands)
+ -- and replace node Cnode with the result of the concatenation. If there
+ -- are two operands, they can be string or character. If there are more
+ -- than two operands, then are always of type string (i.e. the caller has
+ -- already converted character operands to strings in this case).
+
+ procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
+ -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
+ -- fixed. We do not have such a type at runtime, so the purpose of this
+ -- routine is to find the real type by looking up the tree. We also
+ -- determine if the operation must be rounded.
+
+ function Get_Allocator_Final_List
+ (N : Node_Id;
+ T : Entity_Id;
+ PtrT : Entity_Id) return Entity_Id;
+ -- If the designated type is controlled, build final_list expression for
+ -- created object. If context is an access parameter, create a local access
+ -- type to have a usable finalization list.
+
+ function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
+ -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
+ -- discriminants if it has a constrained nominal type, unless the object
+ -- is a component of an enclosing Unchecked_Union object that is subject
+ -- to a per-object constraint and the enclosing object lacks inferable
+ -- discriminants.
+ --
+ -- An expression of an Unchecked_Union type has inferable discriminants
+ -- if it is either a name of an object with inferable discriminants or a
+ -- qualified expression whose subtype mark denotes a constrained subtype.
+
+ procedure Insert_Dereference_Action (N : Node_Id);
+ -- N is an expression whose type is an access. When the type of the
+ -- associated storage pool is derived from Checked_Pool, generate a
+ -- call to the 'Dereference' primitive operation.
+
+ function Make_Array_Comparison_Op
+ (Typ : Entity_Id;
+ Nod : Node_Id) return Node_Id;
+ -- Comparisons between arrays are expanded in line. This function produces
+ -- the body of the implementation of (a > b), where a and b are one-
+ -- dimensional arrays of some discrete type. The original node is then
+ -- expanded into the appropriate call to this function. Nod provides the
+ -- Sloc value for the generated code.
+
+ function Make_Boolean_Array_Op
+ (Typ : Entity_Id;
+ N : Node_Id) return Node_Id;
+ -- Boolean operations on boolean arrays are expanded in line. This function
+ -- produce the body for the node N, which is (a and b), (a or b), or (a xor
+ -- b). It is used only the normal case and not the packed case. The type
+ -- involved, Typ, is the Boolean array type, and the logical operations in
+ -- the body are simple boolean operations. Note that Typ is always a
+ -- constrained type (the caller has ensured this by using
+ -- Convert_To_Actual_Subtype if necessary).
+
+ procedure Rewrite_Comparison (N : Node_Id);
+ -- If N is the node for a comparison whose outcome can be determined at
+ -- compile time, then the node N can be rewritten with True or False. If
+ -- the outcome cannot be determined at compile time, the call has no
+ -- effect. If N is a type conversion, then this processing is applied to
+ -- its expression. If N is neither comparison nor a type conversion, the
+ -- call has no effect.
+
+ function Tagged_Membership (N : Node_Id) return Node_Id;
+ -- Construct the expression corresponding to the tagged membership test.
+ -- Deals with a second operand being (or not) a class-wide type.
+
+ function Safe_In_Place_Array_Op
+ (Lhs : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id) return Boolean;
+ -- In the context of an assignment, where the right-hand side is a boolean
+ -- operation on arrays, check whether operation can be performed in place.
+
+ procedure Unary_Op_Validity_Checks (N : Node_Id);
+ pragma Inline (Unary_Op_Validity_Checks);
+ -- Performs validity checks for a unary operator
+
+ -------------------------------
+ -- Binary_Op_Validity_Checks --
+ -------------------------------
+
+ procedure Binary_Op_Validity_Checks (N : Node_Id) is
+ begin
+ if Validity_Checks_On and Validity_Check_Operands then
+ Ensure_Valid (Left_Opnd (N));
+ Ensure_Valid (Right_Opnd (N));
+ end if;
+ end Binary_Op_Validity_Checks;
+
+ ------------------------------------
+ -- Build_Boolean_Array_Proc_Call --
+ ------------------------------------
+
+ procedure Build_Boolean_Array_Proc_Call
+ (N : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Kind : constant Node_Kind := Nkind (Expression (N));
+ Target : constant Node_Id :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Name (N),
+ Attribute_Name => Name_Address);
+
+ Arg1 : constant Node_Id := Op1;
+ Arg2 : Node_Id := Op2;
+ Call_Node : Node_Id;
+ Proc_Name : Entity_Id;
+
+ begin
+ if Kind = N_Op_Not then
+ if Nkind (Op1) in N_Binary_Op then
+
+ -- Use negated version of the binary operators
+
+ if Nkind (Op1) = N_Op_And then
+ Proc_Name := RTE (RE_Vector_Nand);
+
+ elsif Nkind (Op1) = N_Op_Or then
+ Proc_Name := RTE (RE_Vector_Nor);
+
+ else pragma Assert (Nkind (Op1) = N_Op_Xor);
+ Proc_Name := RTE (RE_Vector_Xor);
+ end if;
+
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Name, Loc),
+
+ Parameter_Associations => New_List (
+ Target,
+ Make_Attribute_Reference (Loc,
+ Prefix => Left_Opnd (Op1),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Right_Opnd (Op1),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Left_Opnd (Op1),
+ Attribute_Name => Name_Length)));
+
+ else
+ Proc_Name := RTE (RE_Vector_Not);
+
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Name, Loc),
+ Parameter_Associations => New_List (
+ Target,
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Op1,
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Op1,
+ Attribute_Name => Name_Length)));
+ end if;
+
+ else
+ -- We use the following equivalences:
+
+ -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
+ -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
+ -- (not X) xor (not Y) = X xor Y
+ -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
+
+ if Nkind (Op1) = N_Op_Not then
+ if Kind = N_Op_And then
+ Proc_Name := RTE (RE_Vector_Nor);
+
+ elsif Kind = N_Op_Or then
+ Proc_Name := RTE (RE_Vector_Nand);
+
+ else
+ Proc_Name := RTE (RE_Vector_Xor);
+ end if;
+
+ else
+ if Kind = N_Op_And then
+ Proc_Name := RTE (RE_Vector_And);
+
+ elsif Kind = N_Op_Or then
+ Proc_Name := RTE (RE_Vector_Or);
+
+ elsif Nkind (Op2) = N_Op_Not then
+ Proc_Name := RTE (RE_Vector_Nxor);
+ Arg2 := Right_Opnd (Op2);
+
+ else
+ Proc_Name := RTE (RE_Vector_Xor);
+ end if;
+ end if;
+
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc_Name, Loc),
+ Parameter_Associations => New_List (
+ Target,
+ Make_Attribute_Reference (Loc,
+ Prefix => Arg1,
+ Attribute_Name => Name_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix => Arg2,
+ Attribute_Name => Name_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix => Op1,
+ Attribute_Name => Name_Length)));
+ end if;
+
+ Rewrite (N, Call_Node);
+ Analyze (N);
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Build_Boolean_Array_Proc_Call;
+
+ --------------------------------
+ -- Displace_Allocator_Pointer --
+ --------------------------------
+
+ procedure Displace_Allocator_Pointer (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Orig_Node : constant Node_Id := Original_Node (N);
+ Dtyp : Entity_Id;
+ Etyp : Entity_Id;
+ PtrT : Entity_Id;
+
+ begin
+ -- Do nothing in case of VM targets: the virtual machine will handle
+ -- interfaces directly.
+
+ if VM_Target /= No_VM then
+ return;
+ end if;
+
+ pragma Assert (Nkind (N) = N_Identifier
+ and then Nkind (Orig_Node) = N_Allocator);
+
+ PtrT := Etype (Orig_Node);
+ Dtyp := Designated_Type (PtrT);
+ Etyp := Etype (Expression (Orig_Node));
+
+ if Is_Class_Wide_Type (Dtyp)
+ and then Is_Interface (Dtyp)
+ then
+ -- If the type of the allocator expression is not an interface type
+ -- we can generate code to reference the record component containing
+ -- the pointer to the secondary dispatch table.
+
+ if not Is_Interface (Etyp) then
+ declare
+ Saved_Typ : constant Entity_Id := Etype (Orig_Node);
+
+ begin
+ -- 1) Get access to the allocated object
+
+ Rewrite (N,
+ Make_Explicit_Dereference (Loc,
+ Relocate_Node (N)));
+ Set_Etype (N, Etyp);
+ Set_Analyzed (N);
+
+ -- 2) Add the conversion to displace the pointer to reference
+ -- the secondary dispatch table.
+
+ Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
+ Analyze_And_Resolve (N, Dtyp);
+
+ -- 3) The 'access to the secondary dispatch table will be used
+ -- as the value returned by the allocator.
+
+ Rewrite (N,
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (N),
+ Attribute_Name => Name_Access));
+ Set_Etype (N, Saved_Typ);
+ Set_Analyzed (N);
+ end;
+
+ -- If the type of the allocator expression is an interface type we
+ -- generate a run-time call to displace "this" to reference the
+ -- component containing the pointer to the secondary dispatch table
+ -- or else raise Constraint_Error if the actual object does not
+ -- implement the target interface. This case corresponds with the
+ -- following example:
+
+ -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
+ -- begin
+ -- return new Iface_2'Class'(Obj);
+ -- end Op;
+
+ else
+ Rewrite (N,
+ Unchecked_Convert_To (PtrT,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (RTE (RE_Displace), Loc),
+ Parameter_Associations => New_List (
+ Unchecked_Convert_To (RTE (RE_Address),
+ Relocate_Node (N)),
+
+ New_Occurrence_Of
+ (Elists.Node
+ (First_Elmt
+ (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
+ Loc)))));
+ Analyze_And_Resolve (N, PtrT);
+ end if;
+ end if;
+ end Displace_Allocator_Pointer;
+
+ ---------------------------------
+ -- Expand_Allocator_Expression --
+ ---------------------------------
+
+ procedure Expand_Allocator_Expression (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Exp : constant Node_Id := Expression (Expression (N));
+ PtrT : constant Entity_Id := Etype (N);
+ DesigT : constant Entity_Id := Designated_Type (PtrT);
+
+ procedure Apply_Accessibility_Check
+ (Ref : Node_Id;
+ Built_In_Place : Boolean := False);
+ -- Ada 2005 (AI-344): For an allocator with a class-wide designated
+ -- type, generate an accessibility check to verify that the level of the
+ -- type of the created object is not deeper than the level of the access
+ -- type. If the type of the qualified expression is class- wide, then
+ -- always generate the check (except in the case where it is known to be
+ -- unnecessary, see comment below). Otherwise, only generate the check
+ -- if the level of the qualified expression type is statically deeper
+ -- than the access type.
+ --
+ -- Although the static accessibility will generally have been performed
+ -- as a legality check, it won't have been done in cases where the
+ -- allocator appears in generic body, so a run-time check is needed in
+ -- general. One special case is when the access type is declared in the
+ -- same scope as the class-wide allocator, in which case the check can
+ -- never fail, so it need not be generated.
+ --
+ -- As an open issue, there seem to be cases where the static level
+ -- associated with the class-wide object's underlying type is not
+ -- sufficient to perform the proper accessibility check, such as for
+ -- allocators in nested subprograms or accept statements initialized by
+ -- class-wide formals when the actual originates outside at a deeper
+ -- static level. The nested subprogram case might require passing
+ -- accessibility levels along with class-wide parameters, and the task
+ -- case seems to be an actual gap in the language rules that needs to
+ -- be fixed by the ARG. ???
+
+ -------------------------------
+ -- Apply_Accessibility_Check --
+ -------------------------------
+
+ procedure Apply_Accessibility_Check
+ (Ref : Node_Id;
+ Built_In_Place : Boolean := False)
+ is
+ Ref_Node : Node_Id;
+
+ begin
+ -- Note: we skip the accessibility check for the VM case, since
+ -- there does not seem to be any practical way of implementing it.
+
+ if Ada_Version >= Ada_05
+ and then VM_Target = No_VM
+ and then Is_Class_Wide_Type (DesigT)
+ and then not Scope_Suppress (Accessibility_Check)
+ and then
+ (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
+ or else
+ (Is_Class_Wide_Type (Etype (Exp))
+ and then Scope (PtrT) /= Current_Scope))
+ then
+ -- If the allocator was built in place Ref is already a reference
+ -- to the access object initialized to the result of the allocator
+ -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
+ -- it is the entity associated with the object containing the
+ -- address of the allocated object.
+
+ if Built_In_Place then
+ Ref_Node := New_Copy (Ref);
+ else
+ Ref_Node := New_Reference_To (Ref, Loc);
+ end if;
+
+ Insert_Action (N,
+ Make_Raise_Program_Error (Loc,
+ Condition =>
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ Build_Get_Access_Level (Loc,
+ Make_Attribute_Reference (Loc,
+ Prefix => Ref_Node,
+ Attribute_Name => Name_Tag)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ Type_Access_Level (PtrT))),
+ Reason => PE_Accessibility_Check_Failed));
+ end if;
+ end Apply_Accessibility_Check;
+
+ -- Local variables
+
+ Indic : constant Node_Id := Subtype_Mark (Expression (N));
+ T : constant Entity_Id := Entity (Indic);
+ Flist : Node_Id;
+ Node : Node_Id;
+ Temp : Entity_Id;
+
+ TagT : Entity_Id := Empty;
+ -- Type used as source for tag assignment
+
+ TagR : Node_Id := Empty;
+ -- Target reference for tag assignment
+
+ Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
+
+ Tag_Assign : Node_Id;
+ Tmp_Node : Node_Id;
+
+ -- Start of processing for Expand_Allocator_Expression
+
+ begin
+ if Is_Tagged_Type (T) or else Needs_Finalization (T) then
+
+ -- Ada 2005 (AI-318-02): If the initialization expression is a call
+ -- to a build-in-place function, then access to the allocated object
+ -- must be passed to the function. Currently we limit such functions
+ -- to those with constrained limited result subtypes, but eventually
+ -- we plan to expand the allowed forms of functions that are treated
+ -- as build-in-place.
+
+ if Ada_Version >= Ada_05
+ and then Is_Build_In_Place_Function_Call (Exp)
+ then
+ Make_Build_In_Place_Call_In_Allocator (N, Exp);
+ Apply_Accessibility_Check (N, Built_In_Place => True);
+ return;
+ end if;
+
+ -- Actions inserted before:
+ -- Temp : constant ptr_T := new T'(Expression);
+ -- <no CW> Temp._tag := T'tag;
+ -- <CTRL> Adjust (Finalizable (Temp.all));
+ -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
+
+ -- We analyze by hand the new internal allocator to avoid
+ -- any recursion and inappropriate call to Initialize
+
+ -- We don't want to remove side effects when the expression must be
+ -- built in place. In the case of a build-in-place function call,
+ -- that could lead to a duplication of the call, which was already
+ -- substituted for the allocator.
+
+ if not Aggr_In_Place then
+ Remove_Side_Effects (Exp);
+ end if;
+
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ -- For a class wide allocation generate the following code:
+
+ -- type Equiv_Record is record ... end record;
+ -- implicit subtype CW is <Class_Wide_Subytpe>;
+ -- temp : PtrT := new CW'(CW!(expr));
+
+ if Is_Class_Wide_Type (T) then
+ Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
+
+ -- Ada 2005 (AI-251): If the expression is a class-wide interface
+ -- object we generate code to move up "this" to reference the
+ -- base of the object before allocating the new object.
+
+ -- Note that Exp'Address is recursively expanded into a call
+ -- to Base_Address (Exp.Tag)
+
+ if Is_Class_Wide_Type (Etype (Exp))
+ and then Is_Interface (Etype (Exp))
+ and then VM_Target = No_VM
+ then
+ Set_Expression
+ (Expression (N),
+ Unchecked_Convert_To (Entity (Indic),
+ Make_Explicit_Dereference (Loc,
+ Unchecked_Convert_To (RTE (RE_Tag_Ptr),
+ Make_Attribute_Reference (Loc,
+ Prefix => Exp,
+ Attribute_Name => Name_Address)))));
+
+ else
+ Set_Expression
+ (Expression (N),
+ Unchecked_Convert_To (Entity (Indic), Exp));
+ end if;
+
+ Analyze_And_Resolve (Expression (N), Entity (Indic));
+ end if;
+
+ -- Keep separate the management of allocators returning interfaces
+
+ if not Is_Interface (Directly_Designated_Type (PtrT)) then
+ if Aggr_In_Place then
+ Tmp_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression =>
+ Make_Allocator (Loc,
+ New_Reference_To (Etype (Exp), Loc)));
+
+ Set_Comes_From_Source
+ (Expression (Tmp_Node), Comes_From_Source (N));
+
+ Set_No_Initialization (Expression (Tmp_Node));
+ Insert_Action (N, Tmp_Node);
+
+ if Needs_Finalization (T)
+ and then Ekind (PtrT) = E_Anonymous_Access_Type
+ then
+ -- Create local finalization list for access parameter
+
+ Flist := Get_Allocator_Final_List (N, Base_Type (T), PtrT);
+ end if;
+
+ Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
+ else
+ Node := Relocate_Node (N);
+ Set_Analyzed (Node);
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression => Node));
+ end if;
+
+ -- Ada 2005 (AI-251): Handle allocators whose designated type is an
+ -- interface type. In this case we use the type of the qualified
+ -- expression to allocate the object.
+
+ else
+ declare
+ Def_Id : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('T'));
+ New_Decl : Node_Id;
+
+ begin
+ New_Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ All_Present => True,
+ Null_Exclusion_Present => False,
+ Constant_Present => False,
+ Subtype_Indication =>
+ New_Reference_To (Etype (Exp), Loc)));
+
+ Insert_Action (N, New_Decl);
+
+ -- Inherit the final chain to ensure that the expansion of the
+ -- aggregate is correct in case of controlled types
+
+ if Needs_Finalization (Directly_Designated_Type (PtrT)) then
+ Set_Associated_Final_Chain (Def_Id,
+ Associated_Final_Chain (PtrT));
+ end if;
+
+ -- Declare the object using the previous type declaration
+
+ if Aggr_In_Place then
+ Tmp_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Reference_To (Def_Id, Loc),
+ Expression =>
+ Make_Allocator (Loc,
+ New_Reference_To (Etype (Exp), Loc)));
+
+ Set_Comes_From_Source
+ (Expression (Tmp_Node), Comes_From_Source (N));
+
+ Set_No_Initialization (Expression (Tmp_Node));
+ Insert_Action (N, Tmp_Node);
+
+ if Needs_Finalization (T)
+ and then Ekind (PtrT) = E_Anonymous_Access_Type
+ then
+ -- Create local finalization list for access parameter
+
+ Flist :=
+ Get_Allocator_Final_List (N, Base_Type (T), PtrT);
+ end if;
+
+ Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
+ else
+ Node := Relocate_Node (N);
+ Set_Analyzed (Node);
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (Def_Id, Loc),
+ Expression => Node));
+ end if;
+
+ -- Generate an additional object containing the address of the
+ -- returned object. The type of this second object declaration
+ -- is the correct type required for the common processing that
+ -- is still performed by this subprogram. The displacement of
+ -- this pointer to reference the component associated with the
+ -- interface type will be done at the end of common processing.
+
+ New_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc,
+ New_Internal_Name ('P')),
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression => Unchecked_Convert_To (PtrT,
+ New_Reference_To (Temp, Loc)));
+
+ Insert_Action (N, New_Decl);
+
+ Tmp_Node := New_Decl;
+ Temp := Defining_Identifier (New_Decl);
+ end;
+ end if;
+
+ Apply_Accessibility_Check (Temp);
+
+ -- Generate the tag assignment
+
+ -- Suppress the tag assignment when VM_Target because VM tags are
+ -- represented implicitly in objects.
+
+ if VM_Target /= No_VM then
+ null;
+
+ -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
+ -- interface objects because in this case the tag does not change.
+
+ elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
+ pragma Assert (Is_Class_Wide_Type
+ (Directly_Designated_Type (Etype (N))));
+ null;
+
+ elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
+ TagT := T;
+ TagR := New_Reference_To (Temp, Loc);
+
+ elsif Is_Private_Type (T)
+ and then Is_Tagged_Type (Underlying_Type (T))
+ then
+ TagT := Underlying_Type (T);
+ TagR :=
+ Unchecked_Convert_To (Underlying_Type (T),
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Temp, Loc)));
+ end if;
+
+ if Present (TagT) then
+ Tag_Assign :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => TagR,
+ Selector_Name =>
+ New_Reference_To (First_Tag_Component (TagT), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Elists.Node (First_Elmt (Access_Disp_Table (TagT))),
+ Loc)));
+
+ -- The previous assignment has to be done in any case
+
+ Set_Assignment_OK (Name (Tag_Assign));
+ Insert_Action (N, Tag_Assign);
+ end if;
+
+ if Needs_Finalization (DesigT)
+ and then Needs_Finalization (T)
+ then
+ declare
+ Attach : Node_Id;
+ Apool : constant Entity_Id :=
+ Associated_Storage_Pool (PtrT);
+
+ begin
+ -- If it is an allocation on the secondary stack (i.e. a value
+ -- returned from a function), the object is attached on the
+ -- caller side as soon as the call is completed (see
+ -- Expand_Ctrl_Function_Call)
+
+ if Is_RTE (Apool, RE_SS_Pool) then
+ declare
+ F : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('F'));
+ begin
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => F,
+ Object_Definition => New_Reference_To (RTE
+ (RE_Finalizable_Ptr), Loc)));
+
+ Flist := New_Reference_To (F, Loc);
+ Attach := Make_Integer_Literal (Loc, 1);
+ end;
+
+ -- Normal case, not a secondary stack allocation
+
+ else
+ if Needs_Finalization (T)
+ and then Ekind (PtrT) = E_Anonymous_Access_Type
+ then
+ -- Create local finalization list for access parameter
+
+ Flist :=
+ Get_Allocator_Final_List (N, Base_Type (T), PtrT);
+ else
+ Flist := Find_Final_List (PtrT);
+ end if;
+
+ Attach := Make_Integer_Literal (Loc, 2);
+ end if;
+
+ -- Generate an Adjust call if the object will be moved. In Ada
+ -- 2005, the object may be inherently limited, in which case
+ -- there is no Adjust procedure, and the object is built in
+ -- place. In Ada 95, the object can be limited but not
+ -- inherently limited if this allocator came from a return
+ -- statement (we're allocating the result on the secondary
+ -- stack). In that case, the object will be moved, so we _do_
+ -- want to Adjust.
+
+ if not Aggr_In_Place
+ and then not Is_Inherently_Limited_Type (T)
+ then
+ Insert_Actions (N,
+ Make_Adjust_Call (
+ Ref =>
+
+ -- An unchecked conversion is needed in the classwide
+ -- case because the designated type can be an ancestor of
+ -- the subtype mark of the allocator.
+
+ Unchecked_Convert_To (T,
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Temp, Loc))),
+
+ Typ => T,
+ Flist_Ref => Flist,
+ With_Attach => Attach,
+ Allocator => True));
+ end if;
+ end;
+ end if;
+
+ Rewrite (N, New_Reference_To (Temp, Loc));
+ Analyze_And_Resolve (N, PtrT);
+
+ -- Ada 2005 (AI-251): Displace the pointer to reference the record
+ -- component containing the secondary dispatch table of the interface
+ -- type.
+
+ if Is_Interface (Directly_Designated_Type (PtrT)) then
+ Displace_Allocator_Pointer (N);
+ end if;
+
+ elsif Aggr_In_Place then
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+ Tmp_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Reference_To (PtrT, Loc),
+ Expression => Make_Allocator (Loc,
+ New_Reference_To (Etype (Exp), Loc)));
+
+ Set_Comes_From_Source
+ (Expression (Tmp_Node), Comes_From_Source (N));
+
+ Set_No_Initialization (Expression (Tmp_Node));
+ Insert_Action (N, Tmp_Node);
+ Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
+ Rewrite (N, New_Reference_To (Temp, Loc));
+ Analyze_And_Resolve (N, PtrT);
+
+ elsif Is_Access_Type (T)
+ and then Can_Never_Be_Null (T)
+ then
+ Install_Null_Excluding_Check (Exp);
+
+ elsif Is_Access_Type (DesigT)
+ and then Nkind (Exp) = N_Allocator
+ and then Nkind (Expression (Exp)) /= N_Qualified_Expression
+ then
+ -- Apply constraint to designated subtype indication
+
+ Apply_Constraint_Check (Expression (Exp),
+ Designated_Type (DesigT),
+ No_Sliding => True);
+
+ if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
+
+ -- Propagate constraint_error to enclosing allocator
+
+ Rewrite (Exp, New_Copy (Expression (Exp)));
+ end if;
+ else
+ -- First check against the type of the qualified expression
+ --
+ -- NOTE: The commented call should be correct, but for some reason
+ -- causes the compiler to bomb (sigsegv) on ACVC test c34007g, so for
+ -- now we just perform the old (incorrect) test against the
+ -- designated subtype with no sliding in the else part of the if
+ -- statement below. ???
+ --
+ -- Apply_Constraint_Check (Exp, T, No_Sliding => True);
+
+ -- A check is also needed in cases where the designated subtype is
+ -- constrained and differs from the subtype given in the qualified
+ -- expression. Note that the check on the qualified expression does
+ -- not allow sliding, but this check does (a relaxation from Ada 83).
+
+ if Is_Constrained (DesigT)
+ and then not Subtypes_Statically_Match (T, DesigT)
+ then
+ Apply_Constraint_Check
+ (Exp, DesigT, No_Sliding => False);
+
+ -- The nonsliding check should really be performed (unconditionally)
+ -- against the subtype of the qualified expression, but that causes a
+ -- problem with c34007g (see above), so for now we retain this.
+
+ else
+ Apply_Constraint_Check
+ (Exp, DesigT, No_Sliding => True);
+ end if;
+
+ -- For an access to unconstrained packed array, GIGI needs to see an
+ -- expression with a constrained subtype in order to compute the
+ -- proper size for the allocator.
+
+ if Is_Array_Type (T)
+ and then not Is_Constrained (T)
+ and then Is_Packed (T)
+ then
+ declare
+ ConstrT : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('A'));
+ Internal_Exp : constant Node_Id := Relocate_Node (Exp);
+ begin
+ Insert_Action (Exp,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => ConstrT,
+ Subtype_Indication =>
+ Make_Subtype_From_Expr (Exp, T)));
+ Freeze_Itype (ConstrT, Exp);
+ Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
+ end;
+ end if;
+
+ -- Ada 2005 (AI-318-02): If the initialization expression is a call
+ -- to a build-in-place function, then access to the allocated object
+ -- must be passed to the function. Currently we limit such functions
+ -- to those with constrained limited result subtypes, but eventually
+ -- we plan to expand the allowed forms of functions that are treated
+ -- as build-in-place.
+
+ if Ada_Version >= Ada_05
+ and then Is_Build_In_Place_Function_Call (Exp)
+ then
+ Make_Build_In_Place_Call_In_Allocator (N, Exp);
+ end if;
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_Allocator_Expression;
+
+ -----------------------------
+ -- Expand_Array_Comparison --
+ -----------------------------
+
+ -- Expansion is only required in the case of array types. For the unpacked
+ -- case, an appropriate runtime routine is called. For packed cases, and
+ -- also in some other cases where a runtime routine cannot be called, the
+ -- form of the expansion is:
+
+ -- [body for greater_nn; boolean_expression]
+
+ -- The body is built by Make_Array_Comparison_Op, and the form of the
+ -- Boolean expression depends on the operator involved.
+
+ procedure Expand_Array_Comparison (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Op1 : Node_Id := Left_Opnd (N);
+ Op2 : Node_Id := Right_Opnd (N);
+ Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
+ Ctyp : constant Entity_Id := Component_Type (Typ1);
+
+ Expr : Node_Id;
+ Func_Body : Node_Id;
+ Func_Name : Entity_Id;
+
+ Comp : RE_Id;
+
+ Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
+ -- True for byte addressable target
+
+ function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
+ -- Returns True if the length of the given operand is known to be less
+ -- than 4. Returns False if this length is known to be four or greater
+ -- or is not known at compile time.
+
+ ------------------------
+ -- Length_Less_Than_4 --
+ ------------------------
+
+ function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
+ Otyp : constant Entity_Id := Etype (Opnd);
+
+ begin
+ if Ekind (Otyp) = E_String_Literal_Subtype then
+ return String_Literal_Length (Otyp) < 4;
+
+ else
+ declare
+ Ityp : constant Entity_Id := Etype (First_Index (Otyp));
+ Lo : constant Node_Id := Type_Low_Bound (Ityp);
+ Hi : constant Node_Id := Type_High_Bound (Ityp);
+ Lov : Uint;
+ Hiv : Uint;
+
+ begin
+ if Compile_Time_Known_Value (Lo) then
+ Lov := Expr_Value (Lo);
+ else
+ return False;
+ end if;
+
+ if Compile_Time_Known_Value (Hi) then
+ Hiv := Expr_Value (Hi);
+ else
+ return False;
+ end if;
+
+ return Hiv < Lov + 3;
+ end;
+ end if;
+ end Length_Less_Than_4;
+
+ -- Start of processing for Expand_Array_Comparison
+
+ begin
+ -- Deal first with unpacked case, where we can call a runtime routine
+ -- except that we avoid this for targets for which are not addressable
+ -- by bytes, and for the JVM/CIL, since they do not support direct
+ -- addressing of array components.
+
+ if not Is_Bit_Packed_Array (Typ1)
+ and then Byte_Addressable
+ and then VM_Target = No_VM
+ then
+ -- The call we generate is:
+
+ -- Compare_Array_xn[_Unaligned]
+ -- (left'address, right'address, left'length, right'length) <op> 0
+
+ -- x = U for unsigned, S for signed
+ -- n = 8,16,32,64 for component size
+ -- Add _Unaligned if length < 4 and component size is 8.
+ -- <op> is the standard comparison operator
+
+ if Component_Size (Typ1) = 8 then
+ if Length_Less_Than_4 (Op1)
+ or else
+ Length_Less_Than_4 (Op2)
+ then
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U8_Unaligned;
+ else
+ Comp := RE_Compare_Array_S8_Unaligned;
+ end if;
+
+ else
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U8;
+ else
+ Comp := RE_Compare_Array_S8;
+ end if;
+ end if;
+
+ elsif Component_Size (Typ1) = 16 then
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U16;
+ else
+ Comp := RE_Compare_Array_S16;
+ end if;
+
+ elsif Component_Size (Typ1) = 32 then
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U32;
+ else
+ Comp := RE_Compare_Array_S32;
+ end if;
+
+ else pragma Assert (Component_Size (Typ1) = 64);
+ if Is_Unsigned_Type (Ctyp) then
+ Comp := RE_Compare_Array_U64;
+ else
+ Comp := RE_Compare_Array_S64;
+ end if;
+ end if;
+
+ Remove_Side_Effects (Op1, Name_Req => True);
+ Remove_Side_Effects (Op2, Name_Req => True);
+
+ Rewrite (Op1,
+ Make_Function_Call (Sloc (Op1),
+ Name => New_Occurrence_Of (RTE (Comp), Loc),
+
+ Parameter_Associations => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op1),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op2),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op1),
+ Attribute_Name => Name_Length),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Op2),
+ Attribute_Name => Name_Length))));
+
+ Rewrite (Op2,
+ Make_Integer_Literal (Sloc (Op2),
+ Intval => Uint_0));
+
+ Analyze_And_Resolve (Op1, Standard_Integer);
+ Analyze_And_Resolve (Op2, Standard_Integer);
+ return;
+ end if;
+
+ -- Cases where we cannot make runtime call
+
+ -- For (a <= b) we convert to not (a > b)
+
+ if Chars (N) = Name_Op_Le then
+ Rewrite (N,
+ Make_Op_Not (Loc,
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => Op1,
+ Right_Opnd => Op2)));
+ Analyze_And_Resolve (N, Standard_Boolean);
+ return;
+
+ -- For < the Boolean expression is
+ -- greater__nn (op2, op1)
+
+ elsif Chars (N) = Name_Op_Lt then
+ Func_Body := Make_Array_Comparison_Op (Typ1, N);
+
+ -- Switch operands
+
+ Op1 := Right_Opnd (N);
+ Op2 := Left_Opnd (N);
+
+ -- For (a >= b) we convert to not (a < b)
+
+ elsif Chars (N) = Name_Op_Ge then
+ Rewrite (N,
+ Make_Op_Not (Loc,
+ Right_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd => Op1,
+ Right_Opnd => Op2)));
+ Analyze_And_Resolve (N, Standard_Boolean);
+ return;
+
+ -- For > the Boolean expression is
+ -- greater__nn (op1, op2)
+
+ else
+ pragma Assert (Chars (N) = Name_Op_Gt);
+ Func_Body := Make_Array_Comparison_Op (Typ1, N);
+ end if;
+
+ Func_Name := Defining_Unit_Name (Specification (Func_Body));
+ Expr :=
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Func_Name, Loc),
+ Parameter_Associations => New_List (Op1, Op2));
+
+ Insert_Action (N, Func_Body);
+ Rewrite (N, Expr);
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_Array_Comparison;
+
+ ---------------------------
+ -- Expand_Array_Equality --
+ ---------------------------
+
+ -- Expand an equality function for multi-dimensional arrays. Here is an
+ -- example of such a function for Nb_Dimension = 2
+
+ -- function Enn (A : atyp; B : btyp) return boolean is
+ -- begin
+ -- if (A'length (1) = 0 or else A'length (2) = 0)
+ -- and then
+ -- (B'length (1) = 0 or else B'length (2) = 0)
+ -- then
+ -- return True; -- RM 4.5.2(22)
+ -- end if;
+
+ -- if A'length (1) /= B'length (1)
+ -- or else
+ -- A'length (2) /= B'length (2)
+ -- then
+ -- return False; -- RM 4.5.2(23)
+ -- end if;
+
+ -- declare
+ -- A1 : Index_T1 := A'first (1);
+ -- B1 : Index_T1 := B'first (1);
+ -- begin
+ -- loop
+ -- declare
+ -- A2 : Index_T2 := A'first (2);
+ -- B2 : Index_T2 := B'first (2);
+ -- begin
+ -- loop
+ -- if A (A1, A2) /= B (B1, B2) then
+ -- return False;
+ -- end if;
+
+ -- exit when A2 = A'last (2);
+ -- A2 := Index_T2'succ (A2);
+ -- B2 := Index_T2'succ (B2);
+ -- end loop;
+ -- end;
+
+ -- exit when A1 = A'last (1);
+ -- A1 := Index_T1'succ (A1);
+ -- B1 := Index_T1'succ (B1);
+ -- end loop;
+ -- end;
+
+ -- return true;
+ -- end Enn;
+
+ -- Note on the formal types used (atyp and btyp). If either of the arrays
+ -- is of a private type, we use the underlying type, and do an unchecked
+ -- conversion of the actual. If either of the arrays has a bound depending
+ -- on a discriminant, then we use the base type since otherwise we have an
+ -- escaped discriminant in the function.
+
+ -- If both arrays are constrained and have the same bounds, we can generate
+ -- a loop with an explicit iteration scheme using a 'Range attribute over
+ -- the first array.
+
+ function Expand_Array_Equality
+ (Nod : Node_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Bodies : List_Id;
+ Typ : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+ Decls : constant List_Id := New_List;
+ Index_List1 : constant List_Id := New_List;
+ Index_List2 : constant List_Id := New_List;
+
+ Actuals : List_Id;
+ Formals : List_Id;
+ Func_Name : Entity_Id;
+ Func_Body : Node_Id;
+
+ A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
+ B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
+
+ Ltyp : Entity_Id;
+ Rtyp : Entity_Id;
+ -- The parameter types to be used for the formals
+
+ function Arr_Attr
+ (Arr : Entity_Id;
+ Nam : Name_Id;
+ Num : Int) return Node_Id;
+ -- This builds the attribute reference Arr'Nam (Expr)
+
+ function Component_Equality (Typ : Entity_Id) return Node_Id;
+ -- Create one statement to compare corresponding components, designated
+ -- by a full set of indices.
+
+ function Get_Arg_Type (N : Node_Id) return Entity_Id;
+ -- Given one of the arguments, computes the appropriate type to be used
+ -- for that argument in the corresponding function formal
+
+ function Handle_One_Dimension
+ (N : Int;
+ Index : Node_Id) return Node_Id;
+ -- This procedure returns the following code
+ --
+ -- declare
+ -- Bn : Index_T := B'First (N);
+ -- begin
+ -- loop
+ -- xxx
+ -- exit when An = A'Last (N);
+ -- An := Index_T'Succ (An)
+ -- Bn := Index_T'Succ (Bn)
+ -- end loop;
+ -- end;
+ --
+ -- If both indices are constrained and identical, the procedure
+ -- returns a simpler loop:
+ --
+ -- for An in A'Range (N) loop
+ -- xxx
+ -- end loop
+ --
+ -- N is the dimension for which we are generating a loop. Index is the
+ -- N'th index node, whose Etype is Index_Type_n in the above code. The
+ -- xxx statement is either the loop or declare for the next dimension
+ -- or if this is the last dimension the comparison of corresponding
+ -- components of the arrays.
+ --
+ -- The actual way the code works is to return the comparison of
+ -- corresponding components for the N+1 call. That's neater!
+
+ function Test_Empty_Arrays return Node_Id;
+ -- This function constructs the test for both arrays being empty
+ -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
+ -- and then
+ -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
+
+ function Test_Lengths_Correspond return Node_Id;
+ -- This function constructs the test for arrays having different lengths
+ -- in at least one index position, in which case the resulting code is:
+
+ -- A'length (1) /= B'length (1)
+ -- or else
+ -- A'length (2) /= B'length (2)
+ -- or else
+ -- ...
+
+ --------------
+ -- Arr_Attr --
+ --------------
+
+ function Arr_Attr
+ (Arr : Entity_Id;
+ Nam : Name_Id;
+ Num : Int) return Node_Id
+ is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Nam,
+ Prefix => New_Reference_To (Arr, Loc),
+ Expressions => New_List (Make_Integer_Literal (Loc, Num)));
+ end Arr_Attr;
+
+ ------------------------
+ -- Component_Equality --
+ ------------------------
+
+ function Component_Equality (Typ : Entity_Id) return Node_Id is
+ Test : Node_Id;
+ L, R : Node_Id;
+
+ begin
+ -- if a(i1...) /= b(j1...) then return false; end if;
+
+ L :=
+ Make_Indexed_Component (Loc,
+ Prefix => Make_Identifier (Loc, Chars (A)),
+ Expressions => Index_List1);
+
+ R :=
+ Make_Indexed_Component (Loc,
+ Prefix => Make_Identifier (Loc, Chars (B)),
+ Expressions => Index_List2);
+
+ Test := Expand_Composite_Equality
+ (Nod, Component_Type (Typ), L, R, Decls);
+
+ -- If some (sub)component is an unchecked_union, the whole operation
+ -- will raise program error.
+
+ if Nkind (Test) = N_Raise_Program_Error then
+
+ -- This node is going to be inserted at a location where a
+ -- statement is expected: clear its Etype so analysis will set
+ -- it to the expected Standard_Void_Type.
+
+ Set_Etype (Test, Empty);
+ return Test;
+
+ else
+ return
+ Make_Implicit_If_Statement (Nod,
+ Condition => Make_Op_Not (Loc, Right_Opnd => Test),
+ Then_Statements => New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Standard_False, Loc))));
+ end if;
+ end Component_Equality;
+
+ ------------------
+ -- Get_Arg_Type --
+ ------------------
+
+ function Get_Arg_Type (N : Node_Id) return Entity_Id is
+ T : Entity_Id;
+ X : Node_Id;
+
+ begin
+ T := Etype (N);
+
+ if No (T) then
+ return Typ;
+
+ else
+ T := Underlying_Type (T);
+
+ X := First_Index (T);
+ while Present (X) loop
+ if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
+ or else
+ Denotes_Discriminant (Type_High_Bound (Etype (X)))
+ then
+ T := Base_Type (T);
+ exit;
+ end if;
+
+ Next_Index (X);
+ end loop;
+
+ return T;
+ end if;
+ end Get_Arg_Type;
+
+ --------------------------
+ -- Handle_One_Dimension --
+ ---------------------------
+
+ function Handle_One_Dimension
+ (N : Int;
+ Index : Node_Id) return Node_Id
+ is
+ Need_Separate_Indexes : constant Boolean :=
+ Ltyp /= Rtyp
+ or else not Is_Constrained (Ltyp);
+ -- If the index types are identical, and we are working with
+ -- constrained types, then we can use the same index for both
+ -- of the arrays.
+
+ An : constant Entity_Id := Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('A'));
+
+ Bn : Entity_Id;
+ Index_T : Entity_Id;
+ Stm_List : List_Id;
+ Loop_Stm : Node_Id;
+
+ begin
+ if N > Number_Dimensions (Ltyp) then
+ return Component_Equality (Ltyp);
+ end if;
+
+ -- Case where we generate a loop
+
+ Index_T := Base_Type (Etype (Index));
+
+ if Need_Separate_Indexes then
+ Bn :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('B'));
+ else
+ Bn := An;
+ end if;
+
+ Append (New_Reference_To (An, Loc), Index_List1);
+ Append (New_Reference_To (Bn, Loc), Index_List2);
+
+ Stm_List := New_List (
+ Handle_One_Dimension (N + 1, Next_Index (Index)));
+
+ if Need_Separate_Indexes then
+
+ -- Generate guard for loop, followed by increments of indices
+
+ Append_To (Stm_List,
+ Make_Exit_Statement (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => New_Reference_To (An, Loc),
+ Right_Opnd => Arr_Attr (A, Name_Last, N))));
+
+ Append_To (Stm_List,
+ Make_Assignment_Statement (Loc,
+ Name => New_Reference_To (An, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Index_T, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (New_Reference_To (An, Loc)))));
+
+ Append_To (Stm_List,
+ Make_Assignment_Statement (Loc,
+ Name => New_Reference_To (Bn, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Index_T, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (New_Reference_To (Bn, Loc)))));
+ end if;
+
+ -- If separate indexes, we need a declare block for An and Bn, and a
+ -- loop without an iteration scheme.
+
+ if Need_Separate_Indexes then
+ Loop_Stm :=
+ Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
+
+ return
+ Make_Block_Statement (Loc,
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => An,
+ Object_Definition => New_Reference_To (Index_T, Loc),
+ Expression => Arr_Attr (A, Name_First, N)),
+
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Bn,
+ Object_Definition => New_Reference_To (Index_T, Loc),
+ Expression => Arr_Attr (B, Name_First, N))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Loop_Stm)));
+
+ -- If no separate indexes, return loop statement with explicit
+ -- iteration scheme on its own
+
+ else
+ Loop_Stm :=
+ Make_Implicit_Loop_Statement (Nod,
+ Statements => Stm_List,
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => An,
+ Discrete_Subtype_Definition =>
+ Arr_Attr (A, Name_Range, N))));
+ return Loop_Stm;
+ end if;
+ end Handle_One_Dimension;
+
+ -----------------------
+ -- Test_Empty_Arrays --
+ -----------------------
+
+ function Test_Empty_Arrays return Node_Id is
+ Alist : Node_Id;
+ Blist : Node_Id;
+
+ Atest : Node_Id;
+ Btest : Node_Id;
+
+ begin
+ Alist := Empty;
+ Blist := Empty;
+ for J in 1 .. Number_Dimensions (Ltyp) loop
+ Atest :=
+ Make_Op_Eq (Loc,
+ Left_Opnd => Arr_Attr (A, Name_Length, J),
+ Right_Opnd => Make_Integer_Literal (Loc, 0));
+
+ Btest :=
+ Make_Op_Eq (Loc,
+ Left_Opnd => Arr_Attr (B, Name_Length, J),
+ Right_Opnd => Make_Integer_Literal (Loc, 0));
+
+ if No (Alist) then
+ Alist := Atest;
+ Blist := Btest;
+
+ else
+ Alist :=
+ Make_Or_Else (Loc,
+ Left_Opnd => Relocate_Node (Alist),
+ Right_Opnd => Atest);
+
+ Blist :=
+ Make_Or_Else (Loc,
+ Left_Opnd => Relocate_Node (Blist),
+ Right_Opnd => Btest);
+ end if;
+ end loop;
+
+ return
+ Make_And_Then (Loc,
+ Left_Opnd => Alist,
+ Right_Opnd => Blist);
+ end Test_Empty_Arrays;
+
+ -----------------------------
+ -- Test_Lengths_Correspond --
+ -----------------------------
+
+ function Test_Lengths_Correspond return Node_Id is
+ Result : Node_Id;
+ Rtest : Node_Id;
+
+ begin
+ Result := Empty;
+ for J in 1 .. Number_Dimensions (Ltyp) loop
+ Rtest :=
+ Make_Op_Ne (Loc,
+ Left_Opnd => Arr_Attr (A, Name_Length, J),
+ Right_Opnd => Arr_Attr (B, Name_Length, J));
+
+ if No (Result) then
+ Result := Rtest;
+ else
+ Result :=
+ Make_Or_Else (Loc,
+ Left_Opnd => Relocate_Node (Result),
+ Right_Opnd => Rtest);
+ end if;
+ end loop;
+
+ return Result;
+ end Test_Lengths_Correspond;
+
+ -- Start of processing for Expand_Array_Equality
+
+ begin
+ Ltyp := Get_Arg_Type (Lhs);
+ Rtyp := Get_Arg_Type (Rhs);
+
+ -- For now, if the argument types are not the same, go to the base type,
+ -- since the code assumes that the formals have the same type. This is
+ -- fixable in future ???
+
+ if Ltyp /= Rtyp then
+ Ltyp := Base_Type (Ltyp);
+ Rtyp := Base_Type (Rtyp);
+ pragma Assert (Ltyp = Rtyp);
+ end if;
+
+ -- Build list of formals for function
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type => New_Reference_To (Ltyp, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => B,
+ Parameter_Type => New_Reference_To (Rtyp, Loc)));
+
+ Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
+
+ -- Build statement sequence for function
+
+ Func_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Func_Name,
+ Parameter_Specifications => Formals,
+ Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
+
+ Declarations => Decls,
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+
+ Make_Implicit_If_Statement (Nod,
+ Condition => Test_Empty_Arrays,
+ Then_Statements => New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ New_Occurrence_Of (Standard_True, Loc)))),
+
+ Make_Implicit_If_Statement (Nod,
+ Condition => Test_Lengths_Correspond,
+ Then_Statements => New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ New_Occurrence_Of (Standard_False, Loc)))),
+
+ Handle_One_Dimension (1, First_Index (Ltyp)),
+
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Standard_True, Loc)))));
+
+ Set_Has_Completion (Func_Name, True);
+ Set_Is_Inlined (Func_Name);
+
+ -- If the array type is distinct from the type of the arguments, it
+ -- is the full view of a private type. Apply an unchecked conversion
+ -- to insure that analysis of the call succeeds.
+
+ declare
+ L, R : Node_Id;
+
+ begin
+ L := Lhs;
+ R := Rhs;
+
+ if No (Etype (Lhs))
+ or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
+ then
+ L := OK_Convert_To (Ltyp, Lhs);
+ end if;
+
+ if No (Etype (Rhs))
+ or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
+ then
+ R := OK_Convert_To (Rtyp, Rhs);
+ end if;
+
+ Actuals := New_List (L, R);
+ end;
+
+ Append_To (Bodies, Func_Body);
+
+ return
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Func_Name, Loc),
+ Parameter_Associations => Actuals);
+ end Expand_Array_Equality;
+
+ -----------------------------
+ -- Expand_Boolean_Operator --
+ -----------------------------
+
+ -- Note that we first get the actual subtypes of the operands, since we
+ -- always want to deal with types that have bounds.
+
+ procedure Expand_Boolean_Operator (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ -- Special case of bit packed array where both operands are known to be
+ -- properly aligned. In this case we use an efficient run time routine
+ -- to carry out the operation (see System.Bit_Ops).
+
+ if Is_Bit_Packed_Array (Typ)
+ and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
+ and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
+ then
+ Expand_Packed_Boolean_Operator (N);
+ return;
+ end if;
+
+ -- For the normal non-packed case, the general expansion is to build
+ -- function for carrying out the comparison (use Make_Boolean_Array_Op)
+ -- and then inserting it into the tree. The original operator node is
+ -- then rewritten as a call to this function. We also use this in the
+ -- packed case if either operand is a possibly unaligned object.
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ L : constant Node_Id := Relocate_Node (Left_Opnd (N));
+ R : constant Node_Id := Relocate_Node (Right_Opnd (N));
+ Func_Body : Node_Id;
+ Func_Name : Entity_Id;
+
+ begin
+ Convert_To_Actual_Subtype (L);
+ Convert_To_Actual_Subtype (R);
+ Ensure_Defined (Etype (L), N);
+ Ensure_Defined (Etype (R), N);
+ Apply_Length_Check (R, Etype (L));
+
+ if Nkind (N) = N_Op_Xor then
+ Silly_Boolean_Array_Xor_Test (N, Etype (L));
+ end if;
+
+ if Nkind (Parent (N)) = N_Assignment_Statement
+ and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
+ then
+ Build_Boolean_Array_Proc_Call (Parent (N), L, R);
+
+ elsif Nkind (Parent (N)) = N_Op_Not
+ and then Nkind (N) = N_Op_And
+ and then
+ Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
+ then
+ return;
+ else
+
+ Func_Body := Make_Boolean_Array_Op (Etype (L), N);
+ Func_Name := Defining_Unit_Name (Specification (Func_Body));
+ Insert_Action (N, Func_Body);
+
+ -- Now rewrite the expression with a call
+
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Func_Name, Loc),
+ Parameter_Associations =>
+ New_List (
+ L,
+ Make_Type_Conversion
+ (Loc, New_Reference_To (Etype (L), Loc), R))));
+
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end;
+ end Expand_Boolean_Operator;
+
+ -------------------------------
+ -- Expand_Composite_Equality --
+ -------------------------------
+
+ -- This function is only called for comparing internal fields of composite
+ -- types when these fields are themselves composites. This is a special
+ -- case because it is not possible to respect normal Ada visibility rules.
+
+ function Expand_Composite_Equality
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Bodies : List_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+ Full_Type : Entity_Id;
+ Prim : Elmt_Id;
+ Eq_Op : Entity_Id;
+
+ begin
+ if Is_Private_Type (Typ) then
+ Full_Type := Underlying_Type (Typ);
+ else
+ Full_Type := Typ;
+ end if;
+
+ -- Defense against malformed private types with no completion the error
+ -- will be diagnosed later by check_completion
+
+ if No (Full_Type) then
+ return New_Reference_To (Standard_False, Loc);
+ end if;
+
+ Full_Type := Base_Type (Full_Type);
+
+ if Is_Array_Type (Full_Type) then
+
+ -- If the operand is an elementary type other than a floating-point
+ -- type, then we can simply use the built-in block bitwise equality,
+ -- since the predefined equality operators always apply and bitwise
+ -- equality is fine for all these cases.
+
+ if Is_Elementary_Type (Component_Type (Full_Type))
+ and then not Is_Floating_Point_Type (Component_Type (Full_Type))
+ then
+ return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
+
+ -- For composite component types, and floating-point types, use the
+ -- expansion. This deals with tagged component types (where we use
+ -- the applicable equality routine) and floating-point, (where we
+ -- need to worry about negative zeroes), and also the case of any
+ -- composite type recursively containing such fields.
+
+ else
+ return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
+ end if;
+
+ elsif Is_Tagged_Type (Full_Type) then
+
+ -- Call the primitive operation "=" of this type
+
+ if Is_Class_Wide_Type (Full_Type) then
+ Full_Type := Root_Type (Full_Type);
+ end if;
+
+ -- If this is derived from an untagged private type completed with a
+ -- tagged type, it does not have a full view, so we use the primitive
+ -- operations of the private type. This check should no longer be
+ -- necessary when these types receive their full views ???
+
+ if Is_Private_Type (Typ)
+ and then not Is_Tagged_Type (Typ)
+ and then not Is_Controlled (Typ)
+ and then Is_Derived_Type (Typ)
+ and then No (Full_View (Typ))
+ then
+ Prim := First_Elmt (Collect_Primitive_Operations (Typ));
+ else
+ Prim := First_Elmt (Primitive_Operations (Full_Type));
+ end if;
+
+ loop
+ Eq_Op := Node (Prim);
+ exit when Chars (Eq_Op) = Name_Op_Eq
+ and then Etype (First_Formal (Eq_Op)) =
+ Etype (Next_Formal (First_Formal (Eq_Op)))
+ and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
+ Next_Elmt (Prim);
+ pragma Assert (Present (Prim));
+ end loop;
+
+ Eq_Op := Node (Prim);
+
+ return
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Eq_Op, Loc),
+ Parameter_Associations =>
+ New_List
+ (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
+ Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
+
+ elsif Is_Record_Type (Full_Type) then
+ Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
+
+ if Present (Eq_Op) then
+ if Etype (First_Formal (Eq_Op)) /= Full_Type then
+
+ -- Inherited equality from parent type. Convert the actuals to
+ -- match signature of operation.
+
+ declare
+ T : constant Entity_Id := Etype (First_Formal (Eq_Op));
+
+ begin
+ return
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Eq_Op, Loc),
+ Parameter_Associations =>
+ New_List (OK_Convert_To (T, Lhs),
+ OK_Convert_To (T, Rhs)));
+ end;
+
+ else
+ -- Comparison between Unchecked_Union components
+
+ if Is_Unchecked_Union (Full_Type) then
+ declare
+ Lhs_Type : Node_Id := Full_Type;
+ Rhs_Type : Node_Id := Full_Type;
+ Lhs_Discr_Val : Node_Id;
+ Rhs_Discr_Val : Node_Id;
+
+ begin
+ -- Lhs subtype
+
+ if Nkind (Lhs) = N_Selected_Component then
+ Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
+ end if;
+
+ -- Rhs subtype
+
+ if Nkind (Rhs) = N_Selected_Component then
+ Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
+ end if;
+
+ -- Lhs of the composite equality
+
+ if Is_Constrained (Lhs_Type) then
+
+ -- Since the enclosing record type can never be an
+ -- Unchecked_Union (this code is executed for records
+ -- that do not have variants), we may reference its
+ -- discriminant(s).
+
+ if Nkind (Lhs) = N_Selected_Component
+ and then Has_Per_Object_Constraint (
+ Entity (Selector_Name (Lhs)))
+ then
+ Lhs_Discr_Val :=
+ Make_Selected_Component (Loc,
+ Prefix => Prefix (Lhs),
+ Selector_Name =>
+ New_Copy (
+ Get_Discriminant_Value (
+ First_Discriminant (Lhs_Type),
+ Lhs_Type,
+ Stored_Constraint (Lhs_Type))));
+
+ else
+ Lhs_Discr_Val := New_Copy (
+ Get_Discriminant_Value (
+ First_Discriminant (Lhs_Type),
+ Lhs_Type,
+ Stored_Constraint (Lhs_Type)));
+
+ end if;
+ else
+ -- It is not possible to infer the discriminant since
+ -- the subtype is not constrained.
+
+ return
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction);
+ end if;
+
+ -- Rhs of the composite equality
+
+ if Is_Constrained (Rhs_Type) then
+ if Nkind (Rhs) = N_Selected_Component
+ and then Has_Per_Object_Constraint (
+ Entity (Selector_Name (Rhs)))
+ then
+ Rhs_Discr_Val :=
+ Make_Selected_Component (Loc,
+ Prefix => Prefix (Rhs),
+ Selector_Name =>
+ New_Copy (
+ Get_Discriminant_Value (
+ First_Discriminant (Rhs_Type),
+ Rhs_Type,
+ Stored_Constraint (Rhs_Type))));
+
+ else
+ Rhs_Discr_Val := New_Copy (
+ Get_Discriminant_Value (
+ First_Discriminant (Rhs_Type),
+ Rhs_Type,
+ Stored_Constraint (Rhs_Type)));
+
+ end if;
+ else
+ return
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction);
+ end if;
+
+ -- Call the TSS equality function with the inferred
+ -- discriminant values.
+
+ return
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Eq_Op, Loc),
+ Parameter_Associations => New_List (
+ Lhs,
+ Rhs,
+ Lhs_Discr_Val,
+ Rhs_Discr_Val));
+ end;
+ end if;
+
+ -- Shouldn't this be an else, we can't fall through the above
+ -- IF, right???
+
+ return
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Eq_Op, Loc),
+ Parameter_Associations => New_List (Lhs, Rhs));
+ end if;
+
+ else
+ return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
+ end if;
+
+ else
+ -- It can be a simple record or the full view of a scalar private
+
+ return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
+ end if;
+ end Expand_Composite_Equality;
+
+ ------------------------------
+ -- Expand_Concatenate_Other --
+ ------------------------------
+
+ -- Let n be the number of array operands to be concatenated, Base_Typ their
+ -- base type, Ind_Typ their index type, and Arr_Typ the original array type
+ -- to which the concatenation operator applies, then the following
+ -- subprogram is constructed:
+
+ -- [function Cnn (S1 : Base_Typ; ...; Sn : Base_Typ) return Base_Typ is
+ -- L : Ind_Typ;
+ -- begin
+ -- if S1'Length /= 0 then
+ -- L := XXX; --> XXX = S1'First if Arr_Typ is unconstrained
+ -- XXX = Arr_Typ'First otherwise
+ -- elsif S2'Length /= 0 then
+ -- L := YYY; --> YYY = S2'First if Arr_Typ is unconstrained
+ -- YYY = Arr_Typ'First otherwise
+ -- ...
+ -- elsif Sn-1'Length /= 0 then
+ -- L := ZZZ; --> ZZZ = Sn-1'First if Arr_Typ is unconstrained
+ -- ZZZ = Arr_Typ'First otherwise
+ -- else
+ -- return Sn;
+ -- end if;
+
+ -- declare
+ -- P : Ind_Typ;
+ -- H : Ind_Typ :=
+ -- Ind_Typ'Val ((((S1'Length - 1) + S2'Length) + ... + Sn'Length)
+ -- + Ind_Typ'Pos (L));
+ -- R : Base_Typ (L .. H);
+ -- begin
+ -- if S1'Length /= 0 then
+ -- P := S1'First;
+ -- loop
+ -- R (L) := S1 (P);
+ -- L := Ind_Typ'Succ (L);
+ -- exit when P = S1'Last;
+ -- P := Ind_Typ'Succ (P);
+ -- end loop;
+ -- end if;
+ --
+ -- if S2'Length /= 0 then
+ -- L := Ind_Typ'Succ (L);
+ -- loop
+ -- R (L) := S2 (P);
+ -- L := Ind_Typ'Succ (L);
+ -- exit when P = S2'Last;
+ -- P := Ind_Typ'Succ (P);
+ -- end loop;
+ -- end if;
+
+ -- ...
+
+ -- if Sn'Length /= 0 then
+ -- P := Sn'First;
+ -- loop
+ -- R (L) := Sn (P);
+ -- L := Ind_Typ'Succ (L);
+ -- exit when P = Sn'Last;
+ -- P := Ind_Typ'Succ (P);
+ -- end loop;
+ -- end if;
+
+ -- return R;
+ -- end;
+ -- end Cnn;]
+
+ procedure Expand_Concatenate_Other (Cnode : Node_Id; Opnds : List_Id) is
+ Loc : constant Source_Ptr := Sloc (Cnode);
+ Nb_Opnds : constant Nat := List_Length (Opnds);
+
+ Arr_Typ : constant Entity_Id := Etype (Entity (Cnode));
+ Base_Typ : constant Entity_Id := Base_Type (Etype (Cnode));
+ Ind_Typ : constant Entity_Id := Etype (First_Index (Base_Typ));
+
+ Func_Id : Node_Id;
+ Func_Spec : Node_Id;
+ Param_Specs : List_Id;
+
+ Func_Body : Node_Id;
+ Func_Decls : List_Id;
+ Func_Stmts : List_Id;
+
+ L_Decl : Node_Id;
+
+ If_Stmt : Node_Id;
+ Elsif_List : List_Id;
+
+ Declare_Block : Node_Id;
+ Declare_Decls : List_Id;
+ Declare_Stmts : List_Id;
+
+ H_Decl : Node_Id;
+ I_Decl : Node_Id;
+ H_Init : Node_Id;
+ P_Decl : Node_Id;
+ R_Decl : Node_Id;
+ R_Constr : Node_Id;
+ R_Range : Node_Id;
+
+ Params : List_Id;
+ Operand : Node_Id;
+
+ function Copy_Into_R_S (I : Nat; Last : Boolean) return List_Id;
+ -- Builds the sequence of statement:
+ -- P := Si'First;
+ -- loop
+ -- R (L) := Si (P);
+ -- L := Ind_Typ'Succ (L);
+ -- exit when P = Si'Last;
+ -- P := Ind_Typ'Succ (P);
+ -- end loop;
+ --
+ -- where i is the input parameter I given.
+ -- If the flag Last is true, the exit statement is emitted before
+ -- incrementing the lower bound, to prevent the creation out of
+ -- bound values.
+
+ function Init_L (I : Nat) return Node_Id;
+ -- Builds the statement:
+ -- L := Arr_Typ'First; If Arr_Typ is constrained
+ -- L := Si'First; otherwise (where I is the input param given)
+
+ function H return Node_Id;
+ -- Builds reference to identifier H
+
+ function Ind_Val (E : Node_Id) return Node_Id;
+ -- Builds expression Ind_Typ'Val (E);
+
+ function L return Node_Id;
+ -- Builds reference to identifier L
+
+ function L_Pos return Node_Id;
+ -- Builds expression Integer_Type'(Ind_Typ'Pos (L)). We qualify the
+ -- expression to avoid universal_integer computations whenever possible,
+ -- in the expression for the upper bound H.
+
+ function L_Succ return Node_Id;
+ -- Builds expression Ind_Typ'Succ (L)
+
+ function One return Node_Id;
+ -- Builds integer literal one
+
+ function P return Node_Id;
+ -- Builds reference to identifier P
+
+ function P_Succ return Node_Id;
+ -- Builds expression Ind_Typ'Succ (P)
+
+ function R return Node_Id;
+ -- Builds reference to identifier R
+
+ function S (I : Nat) return Node_Id;
+ -- Builds reference to identifier Si, where I is the value given
+
+ function S_First (I : Nat) return Node_Id;
+ -- Builds expression Si'First, where I is the value given
+
+ function S_Last (I : Nat) return Node_Id;
+ -- Builds expression Si'Last, where I is the value given
+
+ function S_Length (I : Nat) return Node_Id;
+ -- Builds expression Si'Length, where I is the value given
+
+ function S_Length_Test (I : Nat) return Node_Id;
+ -- Builds expression Si'Length /= 0, where I is the value given
+
+ -------------------
+ -- Copy_Into_R_S --
+ -------------------
+
+ function Copy_Into_R_S (I : Nat; Last : Boolean) return List_Id is
+ Stmts : constant List_Id := New_List;
+ P_Start : Node_Id;
+ Loop_Stmt : Node_Id;
+ R_Copy : Node_Id;
+ Exit_Stmt : Node_Id;
+ L_Inc : Node_Id;
+ P_Inc : Node_Id;
+
+ begin
+ -- First construct the initializations
+
+ P_Start := Make_Assignment_Statement (Loc,
+ Name => P,
+ Expression => S_First (I));
+ Append_To (Stmts, P_Start);
+
+ -- Then build the loop
+
+ R_Copy := Make_Assignment_Statement (Loc,
+ Name => Make_Indexed_Component (Loc,
+ Prefix => R,
+ Expressions => New_List (L)),
+ Expression => Make_Indexed_Component (Loc,
+ Prefix => S (I),
+ Expressions => New_List (P)));
+
+ L_Inc := Make_Assignment_Statement (Loc,
+ Name => L,
+ Expression => L_Succ);
+
+ Exit_Stmt := Make_Exit_Statement (Loc,
+ Condition => Make_Op_Eq (Loc, P, S_Last (I)));
+
+ P_Inc := Make_Assignment_Statement (Loc,
+ Name => P,
+ Expression => P_Succ);
+
+ if Last then
+ Loop_Stmt :=
+ Make_Implicit_Loop_Statement (Cnode,
+ Statements => New_List (R_Copy, Exit_Stmt, L_Inc, P_Inc));
+ else
+ Loop_Stmt :=
+ Make_Implicit_Loop_Statement (Cnode,
+ Statements => New_List (R_Copy, L_Inc, Exit_Stmt, P_Inc));
+ end if;
+
+ Append_To (Stmts, Loop_Stmt);
+
+ return Stmts;
+ end Copy_Into_R_S;
+
+ -------
+ -- H --
+ -------
+
+ function H return Node_Id is
+ begin
+ return Make_Identifier (Loc, Name_uH);
+ end H;
+
+ -------------
+ -- Ind_Val --
+ -------------
+
+ function Ind_Val (E : Node_Id) return Node_Id is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Val,
+ Expressions => New_List (E));
+ end Ind_Val;
+
+ ------------
+ -- Init_L --
+ ------------
+
+ function Init_L (I : Nat) return Node_Id is
+ E : Node_Id;
+
+ begin
+ if Is_Constrained (Arr_Typ) then
+ E := Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Arr_Typ, Loc),
+ Attribute_Name => Name_First);
+
+ else
+ E := S_First (I);
+ end if;
+
+ return Make_Assignment_Statement (Loc, Name => L, Expression => E);
+ end Init_L;
+
+ -------
+ -- L --
+ -------
+
+ function L return Node_Id is
+ begin
+ return Make_Identifier (Loc, Name_uL);
+ end L;
+
+ -----------
+ -- L_Pos --
+ -----------
+
+ function L_Pos return Node_Id is
+ Target_Type : Entity_Id;
+
+ begin
+ -- If the index type is an enumeration type, the computation can be
+ -- done in standard integer. Otherwise, choose a large enough integer
+ -- type to accommodate the index type computation.
+
+ if Is_Enumeration_Type (Ind_Typ)
+ or else Root_Type (Ind_Typ) = Standard_Integer
+ or else Root_Type (Ind_Typ) = Standard_Short_Integer
+ or else Root_Type (Ind_Typ) = Standard_Short_Short_Integer
+ or else Is_Modular_Integer_Type (Ind_Typ)
+ then
+ Target_Type := Standard_Integer;
+ else
+ Target_Type := Root_Type (Ind_Typ);
+ end if;
+
+ return
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => New_Reference_To (Target_Type, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (L)));
+ end L_Pos;
+
+ ------------
+ -- L_Succ --
+ ------------
+
+ function L_Succ return Node_Id is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (L));
+ end L_Succ;
+
+ ---------
+ -- One --
+ ---------
+
+ function One return Node_Id is
+ begin
+ return Make_Integer_Literal (Loc, 1);
+ end One;
+
+ -------
+ -- P --
+ -------
+
+ function P return Node_Id is
+ begin
+ return Make_Identifier (Loc, Name_uP);
+ end P;
+
+ ------------
+ -- P_Succ --
+ ------------
+
+ function P_Succ return Node_Id is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (P));
+ end P_Succ;
+
+ -------
+ -- R --
+ -------
+
+ function R return Node_Id is
+ begin
+ return Make_Identifier (Loc, Name_uR);
+ end R;
+
+ -------
+ -- S --
+ -------
+
+ function S (I : Nat) return Node_Id is
+ begin
+ return Make_Identifier (Loc, New_External_Name ('S', I));
+ end S;
+
+ -------------
+ -- S_First --
+ -------------
+
+ function S_First (I : Nat) return Node_Id is
+ begin
+ return Make_Attribute_Reference (Loc,
+ Prefix => S (I),
+ Attribute_Name => Name_First);
+ end S_First;
+
+ ------------
+ -- S_Last --
+ ------------
+
+ function S_Last (I : Nat) return Node_Id is
+ begin
+ return Make_Attribute_Reference (Loc,
+ Prefix => S (I),
+ Attribute_Name => Name_Last);
+ end S_Last;
+
+ --------------
+ -- S_Length --
+ --------------
+
+ function S_Length (I : Nat) return Node_Id is
+ begin
+ return Make_Attribute_Reference (Loc,
+ Prefix => S (I),
+ Attribute_Name => Name_Length);
+ end S_Length;
+
+ -------------------
+ -- S_Length_Test --
+ -------------------
+
+ function S_Length_Test (I : Nat) return Node_Id is
+ begin
+ return
+ Make_Op_Ne (Loc,
+ Left_Opnd => S_Length (I),
+ Right_Opnd => Make_Integer_Literal (Loc, 0));
+ end S_Length_Test;
+
+ -- Start of processing for Expand_Concatenate_Other
+
+ begin
+ -- Construct the parameter specs and the overall function spec
+
+ Param_Specs := New_List;
+ for I in 1 .. Nb_Opnds loop
+ Append_To
+ (Param_Specs,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, New_External_Name ('S', I)),
+ Parameter_Type => New_Reference_To (Base_Typ, Loc)));
+ end loop;
+
+ Func_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+ Func_Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Func_Id,
+ Parameter_Specifications => Param_Specs,
+ Result_Definition => New_Reference_To (Base_Typ, Loc));
+
+ -- Construct L's object declaration
+
+ L_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_uL),
+ Object_Definition => New_Reference_To (Ind_Typ, Loc));
+
+ Func_Decls := New_List (L_Decl);
+
+ -- Construct the if-then-elsif statements
+
+ Elsif_List := New_List;
+ for I in 2 .. Nb_Opnds - 1 loop
+ Append_To (Elsif_List, Make_Elsif_Part (Loc,
+ Condition => S_Length_Test (I),
+ Then_Statements => New_List (Init_L (I))));
+ end loop;
+
+ If_Stmt :=
+ Make_Implicit_If_Statement (Cnode,
+ Condition => S_Length_Test (1),
+ Then_Statements => New_List (Init_L (1)),
+ Elsif_Parts => Elsif_List,
+ Else_Statements => New_List (Make_Simple_Return_Statement (Loc,
+ Expression => S (Nb_Opnds))));
+
+ -- Construct the declaration for H
+
+ P_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_uP),
+ Object_Definition => New_Reference_To (Ind_Typ, Loc));
+
+ H_Init := Make_Op_Subtract (Loc, S_Length (1), One);
+ for I in 2 .. Nb_Opnds loop
+ H_Init := Make_Op_Add (Loc, H_Init, S_Length (I));
+ end loop;
+
+ -- If the index type is small modular type, we need to perform an
+ -- additional check that the upper bound fits in the index type.
+ -- Otherwise the computation of the upper bound can wrap around
+ -- and yield meaningless results. The constraint check has to be
+ -- explicit in the code, because the generated function is compiled
+ -- with checks disabled, for efficiency.
+
+ if Is_Modular_Integer_Type (Ind_Typ)
+ and then Esize (Ind_Typ) < Esize (Standard_Integer)
+ then
+ I_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_uI),
+ Object_Definition => New_Reference_To (Standard_Integer, Loc),
+ Expression =>
+ Make_Type_Conversion (Loc,
+ New_Reference_To (Standard_Integer, Loc),
+ Make_Op_Add (Loc, H_Init, L_Pos)));
+
+ H_Init :=
+ Ind_Val (
+ Make_Type_Conversion (Loc,
+ New_Reference_To (Ind_Typ, Loc),
+ New_Reference_To (Defining_Identifier (I_Decl), Loc)));
+
+ -- For other index types, computation is safe
+
+ else
+ H_Init := Ind_Val (Make_Op_Add (Loc, H_Init, L_Pos));
+ end if;
+
+ H_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_uH),
+ Object_Definition => New_Reference_To (Ind_Typ, Loc),
+ Expression => H_Init);
+
+ -- Construct the declaration for R
+
+ R_Range := Make_Range (Loc, Low_Bound => L, High_Bound => H);
+ R_Constr :=
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (R_Range));
+
+ R_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_uR),
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Base_Typ, Loc),
+ Constraint => R_Constr));
+
+ -- Construct the declarations for the declare block
+
+ Declare_Decls := New_List (P_Decl, H_Decl, R_Decl);
+
+ -- Add constraint check for the modular index case
+
+ if Is_Modular_Integer_Type (Ind_Typ)
+ and then Esize (Ind_Typ) < Esize (Standard_Integer)
+ then
+ Insert_After (P_Decl, I_Decl);
+
+ Insert_After (I_Decl,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ New_Reference_To (Defining_Identifier (I_Decl), Loc),
+ Right_Opnd =>
+ Make_Type_Conversion (Loc,
+ New_Reference_To (Standard_Integer, Loc),
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Last))),
+ Reason => CE_Range_Check_Failed));
+ end if;
+
+ -- Construct list of statements for the declare block
+
+ Declare_Stmts := New_List;
+ for I in 1 .. Nb_Opnds loop
+ Append_To (Declare_Stmts,
+ Make_Implicit_If_Statement (Cnode,
+ Condition => S_Length_Test (I),
+ Then_Statements => Copy_Into_R_S (I, I = Nb_Opnds)));
+ end loop;
+
+ Append_To
+ (Declare_Stmts, Make_Simple_Return_Statement (Loc, Expression => R));
+
+ -- Construct the declare block
+
+ Declare_Block := Make_Block_Statement (Loc,
+ Declarations => Declare_Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, Declare_Stmts));
+
+ -- Construct the list of function statements
+
+ Func_Stmts := New_List (If_Stmt, Declare_Block);
+
+ -- Construct the function body
+
+ Func_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification => Func_Spec,
+ Declarations => Func_Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, Func_Stmts));
+
+ -- Insert the newly generated function in the code. This is analyzed
+ -- with all checks off, since we have completed all the checks.
+
+ -- Note that this does *not* fix the array concatenation bug when the
+ -- low bound is Integer'first sibce that bug comes from the pointer
+ -- dereferencing an unconstrained array. And there we need a constraint
+ -- check to make sure the length of the concatenated array is ok. ???
+
+ Insert_Action (Cnode, Func_Body, Suppress => All_Checks);
+
+ -- Construct list of arguments for the function call
+
+ Params := New_List;
+ Operand := First (Opnds);
+ for I in 1 .. Nb_Opnds loop
+ Append_To (Params, Relocate_Node (Operand));
+ Next (Operand);
+ end loop;
+
+ -- Insert the function call
+
+ Rewrite
+ (Cnode,
+ Make_Function_Call (Loc, New_Reference_To (Func_Id, Loc), Params));
+
+ Analyze_And_Resolve (Cnode, Base_Typ);
+ Set_Is_Inlined (Func_Id);
+ end Expand_Concatenate_Other;
+
+ -------------------------------
+ -- Expand_Concatenate_String --
+ -------------------------------
+
+ procedure Expand_Concatenate_String (Cnode : Node_Id; Opnds : List_Id) is
+ Loc : constant Source_Ptr := Sloc (Cnode);
+ Opnd1 : constant Node_Id := First (Opnds);
+ Opnd2 : constant Node_Id := Next (Opnd1);
+ Typ1 : constant Entity_Id := Base_Type (Etype (Opnd1));
+ Typ2 : constant Entity_Id := Base_Type (Etype (Opnd2));
+
+ R : RE_Id;
+ -- RE_Id value for function to be called
+
+ begin
+ -- In all cases, we build a call to a routine giving the list of
+ -- arguments as the parameter list to the routine.
+
+ case List_Length (Opnds) is
+ when 2 =>
+ if Typ1 = Standard_Character then
+ if Typ2 = Standard_Character then
+ R := RE_Str_Concat_CC;
+
+ else
+ pragma Assert (Typ2 = Standard_String);
+ R := RE_Str_Concat_CS;
+ end if;
+
+ elsif Typ1 = Standard_String then
+ if Typ2 = Standard_Character then
+ R := RE_Str_Concat_SC;
+
+ else
+ pragma Assert (Typ2 = Standard_String);
+ R := RE_Str_Concat;
+ end if;
+
+ -- If we have anything other than Standard_Character or
+ -- Standard_String, then we must have had a serious error
+ -- earlier, so we just abandon the attempt at expansion.
+
+ else
+ pragma Assert (Serious_Errors_Detected > 0);
+ return;
+ end if;
+
+ when 3 =>
+ R := RE_Str_Concat_3;
+
+ when 4 =>
+ R := RE_Str_Concat_4;
+
+ when 5 =>
+ R := RE_Str_Concat_5;
+
+ when others =>
+ R := RE_Null;
+ raise Program_Error;
+ end case;
+
+ -- Now generate the appropriate call
+
+ Rewrite (Cnode,
+ Make_Function_Call (Sloc (Cnode),
+ Name => New_Occurrence_Of (RTE (R), Loc),
+ Parameter_Associations => Opnds));
+
+ Analyze_And_Resolve (Cnode, Standard_String);
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_Concatenate_String;
+
+ ------------------------
+ -- Expand_N_Allocator --
+ ------------------------
+
+ procedure Expand_N_Allocator (N : Node_Id) is
+ PtrT : constant Entity_Id := Etype (N);
+ Dtyp : constant Entity_Id := Designated_Type (PtrT);
+ Etyp : constant Entity_Id := Etype (Expression (N));
+ Loc : constant Source_Ptr := Sloc (N);
+ Desig : Entity_Id;
+ Temp : Entity_Id;
+ Nod : Node_Id;
+
+ procedure Complete_Coextension_Finalization;
+ -- Generate finalization calls for all nested coextensions of N. This
+ -- routine may allocate list controllers if necessary.
+
+ procedure Rewrite_Coextension (N : Node_Id);
+ -- Static coextensions have the same lifetime as the entity they
+ -- constrain. Such occurrences can be rewritten as aliased objects
+ -- and their unrestricted access used instead of the coextension.
+
+ ---------------------------------------
+ -- Complete_Coextension_Finalization --
+ ---------------------------------------
+
+ procedure Complete_Coextension_Finalization is
+ Coext : Node_Id;
+ Coext_Elmt : Elmt_Id;
+ Flist : Node_Id;
+ Ref : Node_Id;
+
+ function Inside_A_Return_Statement (N : Node_Id) return Boolean;
+ -- Determine whether node N is part of a return statement
+
+ function Needs_Initialization_Call (N : Node_Id) return Boolean;
+ -- Determine whether node N is a subtype indicator allocator which
+ -- acts a coextension. Such coextensions need initialization.
+
+ -------------------------------
+ -- Inside_A_Return_Statement --
+ -------------------------------
+
+ function Inside_A_Return_Statement (N : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind_In
+ (P, N_Extended_Return_Statement, N_Simple_Return_Statement)
+ then
+ return True;
+
+ -- Stop the traversal when we reach a subprogram body
+
+ elsif Nkind (P) = N_Subprogram_Body then
+ return False;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return False;
+ end Inside_A_Return_Statement;
+
+ -------------------------------
+ -- Needs_Initialization_Call --
+ -------------------------------
+
+ function Needs_Initialization_Call (N : Node_Id) return Boolean is
+ Obj_Decl : Node_Id;
+
+ begin
+ if Nkind (N) = N_Explicit_Dereference
+ and then Nkind (Prefix (N)) = N_Identifier
+ and then Nkind (Parent (Entity (Prefix (N)))) =
+ N_Object_Declaration
+ then
+ Obj_Decl := Parent (Entity (Prefix (N)));
+
+ return
+ Present (Expression (Obj_Decl))
+ and then Nkind (Expression (Obj_Decl)) = N_Allocator
+ and then Nkind (Expression (Expression (Obj_Decl))) /=
+ N_Qualified_Expression;
+ end if;
+
+ return False;
+ end Needs_Initialization_Call;
+
+ -- Start of processing for Complete_Coextension_Finalization
+
+ begin
+ -- When a coextension root is inside a return statement, we need to
+ -- use the finalization chain of the function's scope. This does not
+ -- apply for controlled named access types because in those cases we
+ -- can use the finalization chain of the type itself.
+
+ if Inside_A_Return_Statement (N)
+ and then
+ (Ekind (PtrT) = E_Anonymous_Access_Type
+ or else
+ (Ekind (PtrT) = E_Access_Type
+ and then No (Associated_Final_Chain (PtrT))))
+ then
+ declare
+ Decl : Node_Id;
+ Outer_S : Entity_Id;
+ S : Entity_Id := Current_Scope;
+
+ begin
+ while Present (S) and then S /= Standard_Standard loop
+ if Ekind (S) = E_Function then
+ Outer_S := Scope (S);
+
+ -- Retrieve the declaration of the body
+
+ Decl := Parent (Parent (
+ Corresponding_Body (Parent (Parent (S)))));
+ exit;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ -- Push the scope of the function body since we are inserting
+ -- the list before the body, but we are currently in the body
+ -- itself. Override the finalization list of PtrT since the
+ -- finalization context is now different.
+
+ Push_Scope (Outer_S);
+ Build_Final_List (Decl, PtrT);
+ Pop_Scope;
+ end;
+
+ -- The root allocator may not be controlled, but it still needs a
+ -- finalization list for all nested coextensions.
+
+ elsif No (Associated_Final_Chain (PtrT)) then
+ Build_Final_List (N, PtrT);
+ end if;
+
+ Flist :=
+ Make_Selected_Component (Loc,
+ Prefix =>
+ New_Reference_To (Associated_Final_Chain (PtrT), Loc),
+ Selector_Name =>
+ Make_Identifier (Loc, Name_F));
+
+ Coext_Elmt := First_Elmt (Coextensions (N));
+ while Present (Coext_Elmt) loop
+ Coext := Node (Coext_Elmt);
+
+ -- Generate:
+ -- typ! (coext.all)
+
+ if Nkind (Coext) = N_Identifier then
+ Ref :=
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Reference_To (Etype (Coext), Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Copy_Tree (Coext)));
+ else
+ Ref := New_Copy_Tree (Coext);
+ end if;
+
+ -- No initialization call if not allowed
+
+ Check_Restriction (No_Default_Initialization, N);
+
+ if not Restriction_Active (No_Default_Initialization) then
+
+ -- Generate:
+ -- initialize (Ref)
+ -- attach_to_final_list (Ref, Flist, 2)
+
+ if Needs_Initialization_Call (Coext) then
+ Insert_Actions (N,
+ Make_Init_Call (
+ Ref => Ref,
+ Typ => Etype (Coext),
+ Flist_Ref => Flist,
+ With_Attach => Make_Integer_Literal (Loc, Uint_2)));
+
+ -- Generate:
+ -- attach_to_final_list (Ref, Flist, 2)
+
+ else
+ Insert_Action (N,
+ Make_Attach_Call (
+ Obj_Ref => Ref,
+ Flist_Ref => New_Copy_Tree (Flist),
+ With_Attach => Make_Integer_Literal (Loc, Uint_2)));
+ end if;
+ end if;
+
+ Next_Elmt (Coext_Elmt);
+ end loop;
+ end Complete_Coextension_Finalization;
+
+ -------------------------
+ -- Rewrite_Coextension --
+ -------------------------
+
+ procedure Rewrite_Coextension (N : Node_Id) is
+ Temp : constant Node_Id :=
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('C'));
+
+ -- Generate:
+ -- Cnn : aliased Etyp;
+
+ Decl : constant Node_Id :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Aliased_Present => True,
+ Object_Definition =>
+ New_Occurrence_Of (Etyp, Loc));
+ Nod : Node_Id;
+
+ begin
+ if Nkind (Expression (N)) = N_Qualified_Expression then
+ Set_Expression (Decl, Expression (Expression (N)));
+ end if;
+
+ -- Find the proper insertion node for the declaration
+
+ Nod := Parent (N);
+ while Present (Nod) loop
+ exit when Nkind (Nod) in N_Statement_Other_Than_Procedure_Call
+ or else Nkind (Nod) = N_Procedure_Call_Statement
+ or else Nkind (Nod) in N_Declaration;
+ Nod := Parent (Nod);
+ end loop;
+
+ Insert_Before (Nod, Decl);
+ Analyze (Decl);
+
+ Rewrite (N,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Temp, Loc),
+ Attribute_Name => Name_Unrestricted_Access));
+
+ Analyze_And_Resolve (N, PtrT);
+ end Rewrite_Coextension;
+
+ -- Start of processing for Expand_N_Allocator
+
+ begin
+ -- RM E.2.3(22). We enforce that the expected type of an allocator
+ -- shall not be a remote access-to-class-wide-limited-private type
+
+ -- Why is this being done at expansion time, seems clearly wrong ???
+
+ Validate_Remote_Access_To_Class_Wide_Type (N);
+
+ -- Set the Storage Pool
+
+ Set_Storage_Pool (N, Associated_Storage_Pool (Root_Type (PtrT)));
+
+ if Present (Storage_Pool (N)) then
+ if Is_RTE (Storage_Pool (N), RE_SS_Pool) then
+ if VM_Target = No_VM then
+ Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
+ end if;
+
+ elsif Is_Class_Wide_Type (Etype (Storage_Pool (N))) then
+ Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
+
+ else
+ Set_Procedure_To_Call (N,
+ Find_Prim_Op (Etype (Storage_Pool (N)), Name_Allocate));
+ end if;
+ end if;
+
+ -- Under certain circumstances we can replace an allocator by an access
+ -- to statically allocated storage. The conditions, as noted in AARM
+ -- 3.10 (10c) are as follows:
+
+ -- Size and initial value is known at compile time
+ -- Access type is access-to-constant
+
+ -- The allocator is not part of a constraint on a record component,
+ -- because in that case the inserted actions are delayed until the
+ -- record declaration is fully analyzed, which is too late for the
+ -- analysis of the rewritten allocator.
+
+ if Is_Access_Constant (PtrT)
+ and then Nkind (Expression (N)) = N_Qualified_Expression
+ and then Compile_Time_Known_Value (Expression (Expression (N)))
+ and then Size_Known_At_Compile_Time (Etype (Expression
+ (Expression (N))))
+ and then not Is_Record_Type (Current_Scope)
+ then
+ -- Here we can do the optimization. For the allocator
+
+ -- new x'(y)
+
+ -- We insert an object declaration
+
+ -- Tnn : aliased x := y;
+
+ -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
+ -- marked as requiring static allocation.
+
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+
+ Desig := Subtype_Mark (Expression (N));
+
+ -- If context is constrained, use constrained subtype directly,
+ -- so that the constant is not labelled as having a nominally
+ -- unconstrained subtype.
+
+ if Entity (Desig) = Base_Type (Dtyp) then
+ Desig := New_Occurrence_Of (Dtyp, Loc);
+ end if;
+
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Aliased_Present => True,
+ Constant_Present => Is_Access_Constant (PtrT),
+ Object_Definition => Desig,
+ Expression => Expression (Expression (N))));
+
+ Rewrite (N,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Temp, Loc),
+ Attribute_Name => Name_Unrestricted_Access));
+
+ Analyze_And_Resolve (N, PtrT);
+
+ -- We set the variable as statically allocated, since we don't want
+ -- it going on the stack of the current procedure!
+
+ Set_Is_Statically_Allocated (Temp);
+ return;
+ end if;
+
+ -- Same if the allocator is an access discriminant for a local object:
+ -- instead of an allocator we create a local value and constrain the
+ -- the enclosing object with the corresponding access attribute.
+
+ if Is_Static_Coextension (N) then
+ Rewrite_Coextension (N);
+ return;
+ end if;
+
+ -- The current allocator creates an object which may contain nested
+ -- coextensions. Use the current allocator's finalization list to
+ -- generate finalization call for all nested coextensions.
+
+ if Is_Coextension_Root (N) then
+ Complete_Coextension_Finalization;
+ end if;
+
+ -- Handle case of qualified expression (other than optimization above)
+
+ if Nkind (Expression (N)) = N_Qualified_Expression then
+ Expand_Allocator_Expression (N);
+ return;
+ end if;
+
+ -- If the allocator is for a type which requires initialization, and
+ -- there is no initial value (i.e. operand is a subtype indication
+ -- rather than a qualified expression), then we must generate a call to
+ -- the initialization routine using an expressions action node:
+
+ -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
+
+ -- Here ptr_T is the pointer type for the allocator, and T is the
+ -- subtype of the allocator. A special case arises if the designated
+ -- type of the access type is a task or contains tasks. In this case
+ -- the call to Init (Temp.all ...) is replaced by code that ensures
+ -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
+ -- for details). In addition, if the type T is a task T, then the
+ -- first argument to Init must be converted to the task record type.
+
+ declare
+ T : constant Entity_Id := Entity (Expression (N));
+ Init : Entity_Id;
+ Arg1 : Node_Id;
+ Args : List_Id;
+ Decls : List_Id;
+ Decl : Node_Id;
+ Discr : Elmt_Id;
+ Flist : Node_Id;
+ Temp_Decl : Node_Id;
+ Temp_Type : Entity_Id;
+ Attach_Level : Uint;
+
+ begin
+ if No_Initialization (N) then
+ null;
+
+ -- Case of no initialization procedure present
+
+ elsif not Has_Non_Null_Base_Init_Proc (T) then
+
+ -- Case of simple initialization required
+
+ if Needs_Simple_Initialization (T) then
+ Check_Restriction (No_Default_Initialization, N);
+ Rewrite (Expression (N),
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark => New_Occurrence_Of (T, Loc),
+ Expression => Get_Simple_Init_Val (T, N)));
+
+ Analyze_And_Resolve (Expression (Expression (N)), T);
+ Analyze_And_Resolve (Expression (N), T);
+ Set_Paren_Count (Expression (Expression (N)), 1);
+ Expand_N_Allocator (N);
+
+ -- No initialization required
+
+ else
+ null;
+ end if;
+
+ -- Case of initialization procedure present, must be called
+
+ else
+ Check_Restriction (No_Default_Initialization, N);
+
+ if not Restriction_Active (No_Default_Initialization) then
+ Init := Base_Init_Proc (T);
+ Nod := N;
+ Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ -- Construct argument list for the initialization routine call
+
+ Arg1 :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Temp, Loc));
+ Set_Assignment_OK (Arg1);
+ Temp_Type := PtrT;
+
+ -- The initialization procedure expects a specific type. if the
+ -- context is access to class wide, indicate that the object
+ -- being allocated has the right specific type.
+
+ if Is_Class_Wide_Type (Dtyp) then
+ Arg1 := Unchecked_Convert_To (T, Arg1);
+ end if;
+
+ -- If designated type is a concurrent type or if it is private
+ -- type whose definition is a concurrent type, the first
+ -- argument in the Init routine has to be unchecked conversion
+ -- to the corresponding record type. If the designated type is
+ -- a derived type, we also convert the argument to its root
+ -- type.
+
+ if Is_Concurrent_Type (T) then
+ Arg1 :=
+ Unchecked_Convert_To (Corresponding_Record_Type (T), Arg1);
+
+ elsif Is_Private_Type (T)
+ and then Present (Full_View (T))
+ and then Is_Concurrent_Type (Full_View (T))
+ then
+ Arg1 :=
+ Unchecked_Convert_To
+ (Corresponding_Record_Type (Full_View (T)), Arg1);
+
+ elsif Etype (First_Formal (Init)) /= Base_Type (T) then
+ declare
+ Ftyp : constant Entity_Id := Etype (First_Formal (Init));
+ begin
+ Arg1 := OK_Convert_To (Etype (Ftyp), Arg1);
+ Set_Etype (Arg1, Ftyp);
+ end;
+ end if;
+
+ Args := New_List (Arg1);
+
+ -- For the task case, pass the Master_Id of the access type as
+ -- the value of the _Master parameter, and _Chain as the value
+ -- of the _Chain parameter (_Chain will be defined as part of
+ -- the generated code for the allocator).
+
+ -- In Ada 2005, the context may be a function that returns an
+ -- anonymous access type. In that case the Master_Id has been
+ -- created when expanding the function declaration.
+
+ if Has_Task (T) then
+ if No (Master_Id (Base_Type (PtrT))) then
+
+ -- If we have a non-library level task with restriction
+ -- No_Task_Hierarchy set, then no point in expanding.
+
+ if not Is_Library_Level_Entity (T)
+ and then Restriction_Active (No_Task_Hierarchy)
+ then
+ return;
+ end if;
+
+ -- The designated type was an incomplete type, and the
+ -- access type did not get expanded. Salvage it now.
+
+ pragma Assert (Present (Parent (Base_Type (PtrT))));
+ Expand_N_Full_Type_Declaration
+ (Parent (Base_Type (PtrT)));
+ end if;
+
+ -- If the context of the allocator is a declaration or an
+ -- assignment, we can generate a meaningful image for it,
+ -- even though subsequent assignments might remove the
+ -- connection between task and entity. We build this image
+ -- when the left-hand side is a simple variable, a simple
+ -- indexed assignment or a simple selected component.
+
+ if Nkind (Parent (N)) = N_Assignment_Statement then
+ declare
+ Nam : constant Node_Id := Name (Parent (N));
+
+ begin
+ if Is_Entity_Name (Nam) then
+ Decls :=
+ Build_Task_Image_Decls
+ (Loc,
+ New_Occurrence_Of
+ (Entity (Nam), Sloc (Nam)), T);
+
+ elsif Nkind_In
+ (Nam, N_Indexed_Component, N_Selected_Component)
+ and then Is_Entity_Name (Prefix (Nam))
+ then
+ Decls :=
+ Build_Task_Image_Decls
+ (Loc, Nam, Etype (Prefix (Nam)));
+ else
+ Decls := Build_Task_Image_Decls (Loc, T, T);
+ end if;
+ end;
+
+ elsif Nkind (Parent (N)) = N_Object_Declaration then
+ Decls :=
+ Build_Task_Image_Decls
+ (Loc, Defining_Identifier (Parent (N)), T);
+
+ else
+ Decls := Build_Task_Image_Decls (Loc, T, T);
+ end if;
+
+ Append_To (Args,
+ New_Reference_To
+ (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
+ Append_To (Args, Make_Identifier (Loc, Name_uChain));
+
+ Decl := Last (Decls);
+ Append_To (Args,
+ New_Occurrence_Of (Defining_Identifier (Decl), Loc));
+
+ -- Has_Task is false, Decls not used
+
+ else
+ Decls := No_List;
+ end if;
+
+ -- Add discriminants if discriminated type
+
+ declare
+ Dis : Boolean := False;
+ Typ : Entity_Id;
+
+ begin
+ if Has_Discriminants (T) then
+ Dis := True;
+ Typ := T;
+
+ elsif Is_Private_Type (T)
+ and then Present (Full_View (T))
+ and then Has_Discriminants (Full_View (T))
+ then
+ Dis := True;
+ Typ := Full_View (T);
+ end if;
+
+ if Dis then
+
+ -- If the allocated object will be constrained by the
+ -- default values for discriminants, then build a subtype
+ -- with those defaults, and change the allocated subtype
+ -- to that. Note that this happens in fewer cases in Ada
+ -- 2005 (AI-363).
+
+ if not Is_Constrained (Typ)
+ and then Present (Discriminant_Default_Value
+ (First_Discriminant (Typ)))
+ and then (Ada_Version < Ada_05
+ or else
+ not Has_Constrained_Partial_View (Typ))
+ then
+ Typ := Build_Default_Subtype (Typ, N);
+ Set_Expression (N, New_Reference_To (Typ, Loc));
+ end if;
+
+ Discr := First_Elmt (Discriminant_Constraint (Typ));
+ while Present (Discr) loop
+ Nod := Node (Discr);
+ Append (New_Copy_Tree (Node (Discr)), Args);
+
+ -- AI-416: when the discriminant constraint is an
+ -- anonymous access type make sure an accessibility
+ -- check is inserted if necessary (3.10.2(22.q/2))
+
+ if Ada_Version >= Ada_05
+ and then
+ Ekind (Etype (Nod)) = E_Anonymous_Access_Type
+ then
+ Apply_Accessibility_Check
+ (Nod, Typ, Insert_Node => Nod);
+ end if;
+
+ Next_Elmt (Discr);
+ end loop;
+ end if;
+ end;
+
+ -- We set the allocator as analyzed so that when we analyze the
+ -- expression actions node, we do not get an unwanted recursive
+ -- expansion of the allocator expression.
+
+ Set_Analyzed (N, True);
+ Nod := Relocate_Node (N);
+
+ -- Here is the transformation:
+ -- input: new T
+ -- output: Temp : constant ptr_T := new T;
+ -- Init (Temp.all, ...);
+ -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
+ -- <CTRL> Initialize (Finalizable (Temp.all));
+
+ -- Here ptr_T is the pointer type for the allocator, and is the
+ -- subtype of the allocator.
+
+ Temp_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (Temp_Type, Loc),
+ Expression => Nod);
+
+ Set_Assignment_OK (Temp_Decl);
+ Insert_Action (N, Temp_Decl, Suppress => All_Checks);
+
+ -- If the designated type is a task type or contains tasks,
+ -- create block to activate created tasks, and insert
+ -- declaration for Task_Image variable ahead of call.
+
+ if Has_Task (T) then
+ declare
+ L : constant List_Id := New_List;
+ Blk : Node_Id;
+ begin
+ Build_Task_Allocate_Block (L, Nod, Args);
+ Blk := Last (L);
+ Insert_List_Before (First (Declarations (Blk)), Decls);
+ Insert_Actions (N, L);
+ end;
+
+ else
+ Insert_Action (N,
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To (Init, Loc),
+ Parameter_Associations => Args));
+ end if;
+
+ if Needs_Finalization (T) then
+
+ -- Postpone the generation of a finalization call for the
+ -- current allocator if it acts as a coextension.
+
+ if Is_Dynamic_Coextension (N) then
+ if No (Coextensions (N)) then
+ Set_Coextensions (N, New_Elmt_List);
+ end if;
+
+ Append_Elmt (New_Copy_Tree (Arg1), Coextensions (N));
+
+ else
+ Flist :=
+ Get_Allocator_Final_List (N, Base_Type (T), PtrT);
+
+ -- Anonymous access types created for access parameters
+ -- are attached to an explicitly constructed controller,
+ -- which ensures that they can be finalized properly,
+ -- even if their deallocation might not happen. The list
+ -- associated with the controller is doubly-linked. For
+ -- other anonymous access types, the object may end up
+ -- on the global final list which is singly-linked.
+ -- Work needed for access discriminants in Ada 2005 ???
+
+ if Ekind (PtrT) = E_Anonymous_Access_Type
+ and then
+ Nkind (Associated_Node_For_Itype (PtrT))
+ not in N_Subprogram_Specification
+ then
+ Attach_Level := Uint_1;
+ else
+ Attach_Level := Uint_2;
+ end if;
+
+ Insert_Actions (N,
+ Make_Init_Call (
+ Ref => New_Copy_Tree (Arg1),
+ Typ => T,
+ Flist_Ref => Flist,
+ With_Attach => Make_Integer_Literal (Loc,
+ Intval => Attach_Level)));
+ end if;
+ end if;
+
+ Rewrite (N, New_Reference_To (Temp, Loc));
+ Analyze_And_Resolve (N, PtrT);
+ end if;
+ end if;
+ end;
+
+ -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
+ -- object that has been rewritten as a reference, we displace "this"
+ -- to reference properly its secondary dispatch table.
+
+ if Nkind (N) = N_Identifier
+ and then Is_Interface (Dtyp)
+ then
+ Displace_Allocator_Pointer (N);
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_N_Allocator;
+
+ -----------------------
+ -- Expand_N_And_Then --
+ -----------------------
+
+ -- Expand into conditional expression if Actions present, and also deal
+ -- with optimizing case of arguments being True or False.
+
+ procedure Expand_N_And_Then (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ Actlist : List_Id;
+
+ begin
+ -- Deal with non-standard booleans
+
+ if Is_Boolean_Type (Typ) then
+ Adjust_Condition (Left);
+ Adjust_Condition (Right);
+ Set_Etype (N, Standard_Boolean);
+ end if;
+
+ -- Check for cases where left argument is known to be True or False
+
+ if Compile_Time_Known_Value (Left) then
+
+ -- If left argument is True, change (True and then Right) to Right.
+ -- Any actions associated with Right will be executed unconditionally
+ -- and can thus be inserted into the tree unconditionally.
+
+ if Expr_Value_E (Left) = Standard_True then
+ if Present (Actions (N)) then
+ Insert_Actions (N, Actions (N));
+ end if;
+
+ Rewrite (N, Right);
+
+ -- If left argument is False, change (False and then Right) to False.
+ -- In this case we can forget the actions associated with Right,
+ -- since they will never be executed.
+
+ else pragma Assert (Expr_Value_E (Left) = Standard_False);
+ Kill_Dead_Code (Right);
+ Kill_Dead_Code (Actions (N));
+ Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
+ end if;
+
+ Adjust_Result_Type (N, Typ);
+ return;
+ end if;
+
+ -- If Actions are present, we expand
+
+ -- left and then right
+
+ -- into
+
+ -- if left then right else false end
+
+ -- with the actions becoming the Then_Actions of the conditional
+ -- expression. This conditional expression is then further expanded
+ -- (and will eventually disappear)
+
+ if Present (Actions (N)) then
+ Actlist := Actions (N);
+ Rewrite (N,
+ Make_Conditional_Expression (Loc,
+ Expressions => New_List (
+ Left,
+ Right,
+ New_Occurrence_Of (Standard_False, Loc))));
+
+ Set_Then_Actions (N, Actlist);
+ Analyze_And_Resolve (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ return;
+ end if;
+
+ -- No actions present, check for cases of right argument True/False
+
+ if Compile_Time_Known_Value (Right) then
+
+ -- Change (Left and then True) to Left. Note that we know there are
+ -- no actions associated with the True operand, since we just checked
+ -- for this case above.
+
+ if Expr_Value_E (Right) = Standard_True then
+ Rewrite (N, Left);
+
+ -- Change (Left and then False) to False, making sure to preserve any
+ -- side effects associated with the Left operand.
+
+ else pragma Assert (Expr_Value_E (Right) = Standard_False);
+ Remove_Side_Effects (Left);
+ Rewrite
+ (N, New_Occurrence_Of (Standard_False, Loc));
+ end if;
+ end if;
+
+ Adjust_Result_Type (N, Typ);
+ end Expand_N_And_Then;
+
+ -------------------------------------
+ -- Expand_N_Conditional_Expression --
+ -------------------------------------
+
+ -- Expand into expression actions if then/else actions present
+
+ procedure Expand_N_Conditional_Expression (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Cond : constant Node_Id := First (Expressions (N));
+ Thenx : constant Node_Id := Next (Cond);
+ Elsex : constant Node_Id := Next (Thenx);
+ Typ : constant Entity_Id := Etype (N);
+ Cnn : Entity_Id;
+ New_If : Node_Id;
+
+ begin
+ -- If either then or else actions are present, then given:
+
+ -- if cond then then-expr else else-expr end
+
+ -- we insert the following sequence of actions (using Insert_Actions):
+
+ -- Cnn : typ;
+ -- if cond then
+ -- <<then actions>>
+ -- Cnn := then-expr;
+ -- else
+ -- <<else actions>>
+ -- Cnn := else-expr
+ -- end if;
+
+ -- and replace the conditional expression by a reference to Cnn
+
+ if Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
+ Cnn := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+
+ New_If :=
+ Make_Implicit_If_Statement (N,
+ Condition => Relocate_Node (Cond),
+
+ Then_Statements => New_List (
+ Make_Assignment_Statement (Sloc (Thenx),
+ Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
+ Expression => Relocate_Node (Thenx))),
+
+ Else_Statements => New_List (
+ Make_Assignment_Statement (Sloc (Elsex),
+ Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
+ Expression => Relocate_Node (Elsex))));
+
+ Set_Assignment_OK (Name (First (Then_Statements (New_If))));
+ Set_Assignment_OK (Name (First (Else_Statements (New_If))));
+
+ if Present (Then_Actions (N)) then
+ Insert_List_Before
+ (First (Then_Statements (New_If)), Then_Actions (N));
+ end if;
+
+ if Present (Else_Actions (N)) then
+ Insert_List_Before
+ (First (Else_Statements (New_If)), Else_Actions (N));
+ end if;
+
+ Rewrite (N, New_Occurrence_Of (Cnn, Loc));
+
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Cnn,
+ Object_Definition => New_Occurrence_Of (Typ, Loc)));
+
+ Insert_Action (N, New_If);
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end Expand_N_Conditional_Expression;
+
+ -----------------------------------
+ -- Expand_N_Explicit_Dereference --
+ -----------------------------------
+
+ procedure Expand_N_Explicit_Dereference (N : Node_Id) is
+ begin
+ -- Insert explicit dereference call for the checked storage pool case
+
+ Insert_Dereference_Action (Prefix (N));
+ end Expand_N_Explicit_Dereference;
+
+ -----------------
+ -- Expand_N_In --
+ -----------------
+
+ procedure Expand_N_In (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Rtyp : constant Entity_Id := Etype (N);
+ Lop : constant Node_Id := Left_Opnd (N);
+ Rop : constant Node_Id := Right_Opnd (N);
+ Static : constant Boolean := Is_OK_Static_Expression (N);
+
+ procedure Substitute_Valid_Check;
+ -- Replaces node N by Lop'Valid. This is done when we have an explicit
+ -- test for the left operand being in range of its subtype.
+
+ ----------------------------
+ -- Substitute_Valid_Check --
+ ----------------------------
+
+ procedure Substitute_Valid_Check is
+ begin
+ Rewrite (N,
+ Make_Attribute_Reference (Loc,
+ Prefix => Relocate_Node (Lop),
+ Attribute_Name => Name_Valid));
+
+ Analyze_And_Resolve (N, Rtyp);
+
+ Error_Msg_N ("?explicit membership test may be optimized away", N);
+ Error_Msg_N ("\?use ''Valid attribute instead", N);
+ return;
+ end Substitute_Valid_Check;
+
+ -- Start of processing for Expand_N_In
+
+ begin
+ -- Check case of explicit test for an expression in range of its
+ -- subtype. This is suspicious usage and we replace it with a 'Valid
+ -- test and give a warning.
+
+ if Is_Scalar_Type (Etype (Lop))
+ and then Nkind (Rop) in N_Has_Entity
+ and then Etype (Lop) = Entity (Rop)
+ and then Comes_From_Source (N)
+ and then VM_Target = No_VM
+ then
+ Substitute_Valid_Check;
+ return;
+ end if;
+
+ -- Do validity check on operands
+
+ if Validity_Checks_On and Validity_Check_Operands then
+ Ensure_Valid (Left_Opnd (N));
+ Validity_Check_Range (Right_Opnd (N));
+ end if;
+
+ -- Case of explicit range
+
+ if Nkind (Rop) = N_Range then
+ declare
+ Lo : constant Node_Id := Low_Bound (Rop);
+ Hi : constant Node_Id := High_Bound (Rop);
+
+ Ltyp : constant Entity_Id := Etype (Lop);
+
+ Lo_Orig : constant Node_Id := Original_Node (Lo);
+ Hi_Orig : constant Node_Id := Original_Node (Hi);
+
+ Lcheck : constant Compare_Result :=
+ Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
+ Ucheck : constant Compare_Result :=
+ Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
+
+ Warn1 : constant Boolean :=
+ Constant_Condition_Warnings
+ and then Comes_From_Source (N);
+ -- This must be true for any of the optimization warnings, we
+ -- clearly want to give them only for source with the flag on.
+
+ Warn2 : constant Boolean :=
+ Warn1
+ and then Nkind (Original_Node (Rop)) = N_Range
+ and then Is_Integer_Type (Etype (Lo));
+ -- For the case where only one bound warning is elided, we also
+ -- insist on an explicit range and an integer type. The reason is
+ -- that the use of enumeration ranges including an end point is
+ -- common, as is the use of a subtype name, one of whose bounds
+ -- is the same as the type of the expression.
+
+ begin
+ -- If test is explicit x'first .. x'last, replace by valid check
+
+ if Is_Scalar_Type (Ltyp)
+ and then Nkind (Lo_Orig) = N_Attribute_Reference
+ and then Attribute_Name (Lo_Orig) = Name_First
+ and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
+ and then Entity (Prefix (Lo_Orig)) = Ltyp
+ and then Nkind (Hi_Orig) = N_Attribute_Reference
+ and then Attribute_Name (Hi_Orig) = Name_Last
+ and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
+ and then Entity (Prefix (Hi_Orig)) = Ltyp
+ and then Comes_From_Source (N)
+ and then VM_Target = No_VM
+ then
+ Substitute_Valid_Check;
+ return;
+ end if;
+
+ -- If bounds of type are known at compile time, and the end points
+ -- are known at compile time and identical, this is another case
+ -- for substituting a valid test. We only do this for discrete
+ -- types, since it won't arise in practice for float types.
+
+ if Comes_From_Source (N)
+ and then Is_Discrete_Type (Ltyp)
+ and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
+ and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
+ and then Compile_Time_Known_Value (Lo)
+ and then Compile_Time_Known_Value (Hi)
+ and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
+ and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
+
+ -- Kill warnings in instances, since they may be cases where we
+ -- have a test in the generic that makes sense with some types
+ -- and not with other types.
+
+ and then not In_Instance
+ then
+ Substitute_Valid_Check;
+ return;
+ end if;
+
+ -- If we have an explicit range, do a bit of optimization based
+ -- on range analysis (we may be able to kill one or both checks).
+
+ -- If either check is known to fail, replace result by False since
+ -- the other check does not matter. Preserve the static flag for
+ -- legality checks, because we are constant-folding beyond RM 4.9.
+
+ if Lcheck = LT or else Ucheck = GT then
+ if Warn1 and then not In_Instance then
+ Error_Msg_N ("?range test optimized away", N);
+ Error_Msg_N ("\?value is known to be out of range", N);
+ end if;
+
+ Rewrite (N,
+ New_Reference_To (Standard_False, Loc));
+ Analyze_And_Resolve (N, Rtyp);
+ Set_Is_Static_Expression (N, Static);
+
+ return;
+
+ -- If both checks are known to succeed, replace result by True,
+ -- since we know we are in range.
+
+ elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
+ if Warn1 and then not In_Instance then
+ Error_Msg_N ("?range test optimized away", N);
+ Error_Msg_N ("\?value is known to be in range", N);
+ end if;
+
+ Rewrite (N,
+ New_Reference_To (Standard_True, Loc));
+ Analyze_And_Resolve (N, Rtyp);
+ Set_Is_Static_Expression (N, Static);
+
+ return;
+
+ -- If lower bound check succeeds and upper bound check is not
+ -- known to succeed or fail, then replace the range check with
+ -- a comparison against the upper bound.
+
+ elsif Lcheck in Compare_GE then
+ if Warn2 and then not In_Instance then
+ Error_Msg_N ("?lower bound test optimized away", Lo);
+ Error_Msg_N ("\?value is known to be in range", Lo);
+ end if;
+
+ Rewrite (N,
+ Make_Op_Le (Loc,
+ Left_Opnd => Lop,
+ Right_Opnd => High_Bound (Rop)));
+ Analyze_And_Resolve (N, Rtyp);
+
+ return;
+
+ -- If upper bound check succeeds and lower bound check is not
+ -- known to succeed or fail, then replace the range check with
+ -- a comparison against the lower bound.
+
+ elsif Ucheck in Compare_LE then
+ if Warn2 and then not In_Instance then
+ Error_Msg_N ("?upper bound test optimized away", Hi);
+ Error_Msg_N ("\?value is known to be in range", Hi);
+ end if;
+
+ Rewrite (N,
+ Make_Op_Ge (Loc,
+ Left_Opnd => Lop,
+ Right_Opnd => Low_Bound (Rop)));
+ Analyze_And_Resolve (N, Rtyp);
+
+ return;
+ end if;
+ end;
+
+ -- For all other cases of an explicit range, nothing to be done
+
+ return;
+
+ -- Here right operand is a subtype mark
+
+ else
+ declare
+ Typ : Entity_Id := Etype (Rop);
+ Is_Acc : constant Boolean := Is_Access_Type (Typ);
+ Obj : Node_Id := Lop;
+ Cond : Node_Id := Empty;
+
+ begin
+ Remove_Side_Effects (Obj);
+
+ -- For tagged type, do tagged membership operation
+
+ if Is_Tagged_Type (Typ) then
+
+ -- No expansion will be performed when VM_Target, as the VM
+ -- back-ends will handle the membership tests directly (tags
+ -- are not explicitly represented in Java objects, so the
+ -- normal tagged membership expansion is not what we want).
+
+ if VM_Target = No_VM then
+ Rewrite (N, Tagged_Membership (N));
+ Analyze_And_Resolve (N, Rtyp);
+ end if;
+
+ return;
+
+ -- If type is scalar type, rewrite as x in t'first .. t'last.
+ -- This reason we do this is that the bounds may have the wrong
+ -- type if they come from the original type definition.
+
+ elsif Is_Scalar_Type (Typ) then
+ Rewrite (Rop,
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix => New_Reference_To (Typ, Loc)),
+
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Last,
+ Prefix => New_Reference_To (Typ, Loc))));
+ Analyze_And_Resolve (N, Rtyp);
+ return;
+
+ -- Ada 2005 (AI-216): Program_Error is raised when evaluating
+ -- a membership test if the subtype mark denotes a constrained
+ -- Unchecked_Union subtype and the expression lacks inferable
+ -- discriminants.
+
+ elsif Is_Unchecked_Union (Base_Type (Typ))
+ and then Is_Constrained (Typ)
+ and then not Has_Inferable_Discriminants (Lop)
+ then
+ Insert_Action (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction));
+
+ -- Prevent Gigi from generating incorrect code by rewriting
+ -- the test as a standard False.
+
+ Rewrite (N,
+ New_Occurrence_Of (Standard_False, Loc));
+
+ return;
+ end if;
+
+ -- Here we have a non-scalar type
+
+ if Is_Acc then
+ Typ := Designated_Type (Typ);
+ end if;
+
+ if not Is_Constrained (Typ) then
+ Rewrite (N,
+ New_Reference_To (Standard_True, Loc));
+ Analyze_And_Resolve (N, Rtyp);
+
+ -- For the constrained array case, we have to check the subscripts
+ -- for an exact match if the lengths are non-zero (the lengths
+ -- must match in any case).
+
+ elsif Is_Array_Type (Typ) then
+
+ Check_Subscripts : declare
+ function Construct_Attribute_Reference
+ (E : Node_Id;
+ Nam : Name_Id;
+ Dim : Nat) return Node_Id;
+ -- Build attribute reference E'Nam(Dim)
+
+ -----------------------------------
+ -- Construct_Attribute_Reference --
+ -----------------------------------
+
+ function Construct_Attribute_Reference
+ (E : Node_Id;
+ Nam : Name_Id;
+ Dim : Nat) return Node_Id
+ is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Prefix => E,
+ Attribute_Name => Nam,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, Dim)));
+ end Construct_Attribute_Reference;
+
+ -- Start processing for Check_Subscripts
+
+ begin
+ for J in 1 .. Number_Dimensions (Typ) loop
+ Evolve_And_Then (Cond,
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Construct_Attribute_Reference
+ (Duplicate_Subexpr_No_Checks (Obj),
+ Name_First, J),
+ Right_Opnd =>
+ Construct_Attribute_Reference
+ (New_Occurrence_Of (Typ, Loc), Name_First, J)));
+
+ Evolve_And_Then (Cond,
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Construct_Attribute_Reference
+ (Duplicate_Subexpr_No_Checks (Obj),
+ Name_Last, J),
+ Right_Opnd =>
+ Construct_Attribute_Reference
+ (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
+ end loop;
+
+ if Is_Acc then
+ Cond :=
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Obj,
+ Right_Opnd => Make_Null (Loc)),
+ Right_Opnd => Cond);
+ end if;
+
+ Rewrite (N, Cond);
+ Analyze_And_Resolve (N, Rtyp);
+ end Check_Subscripts;
+
+ -- These are the cases where constraint checks may be required,
+ -- e.g. records with possible discriminants
+
+ else
+ -- Expand the test into a series of discriminant comparisons.
+ -- The expression that is built is the negation of the one that
+ -- is used for checking discriminant constraints.
+
+ Obj := Relocate_Node (Left_Opnd (N));
+
+ if Has_Discriminants (Typ) then
+ Cond := Make_Op_Not (Loc,
+ Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
+
+ if Is_Acc then
+ Cond := Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Obj,
+ Right_Opnd => Make_Null (Loc)),
+ Right_Opnd => Cond);
+ end if;
+
+ else
+ Cond := New_Occurrence_Of (Standard_True, Loc);
+ end if;
+
+ Rewrite (N, Cond);
+ Analyze_And_Resolve (N, Rtyp);
+ end if;
+ end;
+ end if;
+ end Expand_N_In;
+
+ --------------------------------
+ -- Expand_N_Indexed_Component --
+ --------------------------------
+
+ procedure Expand_N_Indexed_Component (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ P : constant Node_Id := Prefix (N);
+ T : constant Entity_Id := Etype (P);
+
+ begin
+ -- A special optimization, if we have an indexed component that is
+ -- selecting from a slice, then we can eliminate the slice, since, for
+ -- example, x (i .. j)(k) is identical to x(k). The only difference is
+ -- the range check required by the slice. The range check for the slice
+ -- itself has already been generated. The range check for the
+ -- subscripting operation is ensured by converting the subject to
+ -- the subtype of the slice.
+
+ -- This optimization not only generates better code, avoiding slice
+ -- messing especially in the packed case, but more importantly bypasses
+ -- some problems in handling this peculiar case, for example, the issue
+ -- of dealing specially with object renamings.
+
+ if Nkind (P) = N_Slice then
+ Rewrite (N,
+ Make_Indexed_Component (Loc,
+ Prefix => Prefix (P),
+ Expressions => New_List (
+ Convert_To
+ (Etype (First_Index (Etype (P))),
+ First (Expressions (N))))));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
+ -- function, then additional actuals must be passed.
+
+ if Ada_Version >= Ada_05
+ and then Is_Build_In_Place_Function_Call (P)
+ then
+ Make_Build_In_Place_Call_In_Anonymous_Context (P);
+ end if;
+
+ -- If the prefix is an access type, then we unconditionally rewrite if
+ -- as an explicit deference. This simplifies processing for several
+ -- cases, including packed array cases and certain cases in which checks
+ -- must be generated. We used to try to do this only when it was
+ -- necessary, but it cleans up the code to do it all the time.
+
+ if Is_Access_Type (T) then
+ Insert_Explicit_Dereference (P);
+ Analyze_And_Resolve (P, Designated_Type (T));
+ end if;
+
+ -- Generate index and validity checks
+
+ Generate_Index_Checks (N);
+
+ if Validity_Checks_On and then Validity_Check_Subscripts then
+ Apply_Subscript_Validity_Checks (N);
+ end if;
+
+ -- All done for the non-packed case
+
+ if not Is_Packed (Etype (Prefix (N))) then
+ return;
+ end if;
+
+ -- For packed arrays that are not bit-packed (i.e. the case of an array
+ -- with one or more index types with a non-contiguous enumeration type),
+ -- we can always use the normal packed element get circuit.
+
+ if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
+ Expand_Packed_Element_Reference (N);
+ return;
+ end if;
+
+ -- For a reference to a component of a bit packed array, we have to
+ -- convert it to a reference to the corresponding Packed_Array_Type.
+ -- We only want to do this for simple references, and not for:
+
+ -- Left side of assignment, or prefix of left side of assignment, or
+ -- prefix of the prefix, to handle packed arrays of packed arrays,
+ -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
+
+ -- Renaming objects in renaming associations
+ -- This case is handled when a use of the renamed variable occurs
+
+ -- Actual parameters for a procedure call
+ -- This case is handled in Exp_Ch6.Expand_Actuals
+
+ -- The second expression in a 'Read attribute reference
+
+ -- The prefix of an address or size attribute reference
+
+ -- The following circuit detects these exceptions
+
+ declare
+ Child : Node_Id := N;
+ Parnt : Node_Id := Parent (N);
+
+ begin
+ loop
+ if Nkind (Parnt) = N_Unchecked_Expression then
+ null;
+
+ elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
+ N_Procedure_Call_Statement)
+ or else (Nkind (Parnt) = N_Parameter_Association
+ and then
+ Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
+ then
+ return;
+
+ elsif Nkind (Parnt) = N_Attribute_Reference
+ and then (Attribute_Name (Parnt) = Name_Address
+ or else
+ Attribute_Name (Parnt) = Name_Size)
+ and then Prefix (Parnt) = Child
+ then
+ return;
+
+ elsif Nkind (Parnt) = N_Assignment_Statement
+ and then Name (Parnt) = Child
+ then
+ return;
+
+ -- If the expression is an index of an indexed component, it must
+ -- be expanded regardless of context.
+
+ elsif Nkind (Parnt) = N_Indexed_Component
+ and then Child /= Prefix (Parnt)
+ then
+ Expand_Packed_Element_Reference (N);
+ return;
+
+ elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
+ and then Name (Parent (Parnt)) = Parnt
+ then
+ return;
+
+ elsif Nkind (Parnt) = N_Attribute_Reference
+ and then Attribute_Name (Parnt) = Name_Read
+ and then Next (First (Expressions (Parnt))) = Child
+ then
+ return;
+
+ elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
+ and then Prefix (Parnt) = Child
+ then
+ null;
+
+ else
+ Expand_Packed_Element_Reference (N);
+ return;
+ end if;
+
+ -- Keep looking up tree for unchecked expression, or if we are the
+ -- prefix of a possible assignment left side.
+
+ Child := Parnt;
+ Parnt := Parent (Child);
+ end loop;
+ end;
+ end Expand_N_Indexed_Component;
+
+ ---------------------
+ -- Expand_N_Not_In --
+ ---------------------
+
+ -- Replace a not in b by not (a in b) so that the expansions for (a in b)
+ -- can be done. This avoids needing to duplicate this expansion code.
+
+ procedure Expand_N_Not_In (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Cfs : constant Boolean := Comes_From_Source (N);
+
+ begin
+ Rewrite (N,
+ Make_Op_Not (Loc,
+ Right_Opnd =>
+ Make_In (Loc,
+ Left_Opnd => Left_Opnd (N),
+ Right_Opnd => Right_Opnd (N))));
+
+ -- We want this to appear as coming from source if original does (see
+ -- transformations in Expand_N_In).
+
+ Set_Comes_From_Source (N, Cfs);
+ Set_Comes_From_Source (Right_Opnd (N), Cfs);
+
+ -- Now analyze transformed node
+
+ Analyze_And_Resolve (N, Typ);
+ end Expand_N_Not_In;
+
+ -------------------
+ -- Expand_N_Null --
+ -------------------
+
+ -- The only replacement required is for the case of a null of type that is
+ -- an access to protected subprogram. We represent such access values as a
+ -- record, and so we must replace the occurrence of null by the equivalent
+ -- record (with a null address and a null pointer in it), so that the
+ -- backend creates the proper value.
+
+ procedure Expand_N_Null (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Agg : Node_Id;
+
+ begin
+ if Is_Access_Protected_Subprogram_Type (Typ) then
+ Agg :=
+ Make_Aggregate (Loc,
+ Expressions => New_List (
+ New_Occurrence_Of (RTE (RE_Null_Address), Loc),
+ Make_Null (Loc)));
+
+ Rewrite (N, Agg);
+ Analyze_And_Resolve (N, Equivalent_Type (Typ));
+
+ -- For subsequent semantic analysis, the node must retain its type.
+ -- Gigi in any case replaces this type by the corresponding record
+ -- type before processing the node.
+
+ Set_Etype (N, Typ);
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_N_Null;
+
+ ---------------------
+ -- Expand_N_Op_Abs --
+ ---------------------
+
+ procedure Expand_N_Op_Abs (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Expr : constant Node_Id := Right_Opnd (N);
+
+ begin
+ Unary_Op_Validity_Checks (N);
+
+ -- Deal with software overflow checking
+
+ if not Backend_Overflow_Checks_On_Target
+ and then Is_Signed_Integer_Type (Etype (N))
+ and then Do_Overflow_Check (N)
+ then
+ -- The only case to worry about is when the argument is equal to the
+ -- largest negative number, so what we do is to insert the check:
+
+ -- [constraint_error when Expr = typ'Base'First]
+
+ -- with the usual Duplicate_Subexpr use coding for expr
+
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Duplicate_Subexpr (Expr),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
+ Attribute_Name => Name_First)),
+ Reason => CE_Overflow_Check_Failed));
+ end if;
+
+ -- Vax floating-point types case
+
+ if Vax_Float (Etype (N)) then
+ Expand_Vax_Arith (N);
+ end if;
+ end Expand_N_Op_Abs;
+
+ ---------------------
+ -- Expand_N_Op_Add --
+ ---------------------
+
+ procedure Expand_N_Op_Add (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ -- N + 0 = 0 + N = N for integer types
+
+ if Is_Integer_Type (Typ) then
+ if Compile_Time_Known_Value (Right_Opnd (N))
+ and then Expr_Value (Right_Opnd (N)) = Uint_0
+ then
+ Rewrite (N, Left_Opnd (N));
+ return;
+
+ elsif Compile_Time_Known_Value (Left_Opnd (N))
+ and then Expr_Value (Left_Opnd (N)) = Uint_0
+ then
+ Rewrite (N, Right_Opnd (N));
+ return;
+ end if;
+ end if;
+
+ -- Arithmetic overflow checks for signed integer/fixed point types
+
+ if Is_Signed_Integer_Type (Typ)
+ or else Is_Fixed_Point_Type (Typ)
+ then
+ Apply_Arithmetic_Overflow_Check (N);
+ return;
+
+ -- Vax floating-point types case
+
+ elsif Vax_Float (Typ) then
+ Expand_Vax_Arith (N);
+ end if;
+ end Expand_N_Op_Add;
+
+ ---------------------
+ -- Expand_N_Op_And --
+ ---------------------
+
+ procedure Expand_N_Op_And (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Etype (N)) then
+ Expand_Boolean_Operator (N);
+
+ elsif Is_Boolean_Type (Etype (N)) then
+ Adjust_Condition (Left_Opnd (N));
+ Adjust_Condition (Right_Opnd (N));
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+ end Expand_N_Op_And;
+
+ ------------------------
+ -- Expand_N_Op_Concat --
+ ------------------------
+
+ Max_Available_String_Operands : Int := -1;
+ -- This is initialized the first time this routine is called. It records
+ -- a value of 0,2,3,4,5 depending on what Str_Concat_n procedures are
+ -- available in the run-time:
+ --
+ -- 0 None available
+ -- 2 RE_Str_Concat available, RE_Str_Concat_3 not available
+ -- 3 RE_Str_Concat/Concat_2 available, RE_Str_Concat_4 not available
+ -- 4 RE_Str_Concat/Concat_2/3 available, RE_Str_Concat_5 not available
+ -- 5 All routines including RE_Str_Concat_5 available
+
+ Char_Concat_Available : Boolean;
+ -- Records if the routines RE_Str_Concat_CC/CS/SC are available. True if
+ -- all three are available, False if any one of these is unavailable.
+
+ procedure Expand_N_Op_Concat (N : Node_Id) is
+ Opnds : List_Id;
+ -- List of operands to be concatenated
+
+ Opnd : Node_Id;
+ -- Single operand for concatenation
+
+ Cnode : Node_Id;
+ -- Node which is to be replaced by the result of concatenating the nodes
+ -- in the list Opnds.
+
+ Atyp : Entity_Id;
+ -- Array type of concatenation result type
+
+ Ctyp : Entity_Id;
+ -- Component type of concatenation represented by Cnode
+
+ begin
+ -- Initialize global variables showing run-time status
+
+ if Max_Available_String_Operands < 1 then
+
+ -- See what routines are available and set max operand count
+ -- according to the highest count available in the run-time.
+
+ if not RTE_Available (RE_Str_Concat) then
+ Max_Available_String_Operands := 0;
+
+ elsif not RTE_Available (RE_Str_Concat_3) then
+ Max_Available_String_Operands := 2;
+
+ elsif not RTE_Available (RE_Str_Concat_4) then
+ Max_Available_String_Operands := 3;
+
+ elsif not RTE_Available (RE_Str_Concat_5) then
+ Max_Available_String_Operands := 4;
+
+ else
+ Max_Available_String_Operands := 5;
+ end if;
+
+ Char_Concat_Available :=
+ RTE_Available (RE_Str_Concat_CC)
+ and then
+ RTE_Available (RE_Str_Concat_CS)
+ and then
+ RTE_Available (RE_Str_Concat_SC);
+ end if;
+
+ -- Ensure validity of both operands
+
+ Binary_Op_Validity_Checks (N);
+
+ -- If we are the left operand of a concatenation higher up the tree,
+ -- then do nothing for now, since we want to deal with a series of
+ -- concatenations as a unit.
+
+ if Nkind (Parent (N)) = N_Op_Concat
+ and then N = Left_Opnd (Parent (N))
+ then
+ return;
+ end if;
+
+ -- We get here with a concatenation whose left operand may be a
+ -- concatenation itself with a consistent type. We need to process
+ -- these concatenation operands from left to right, which means
+ -- from the deepest node in the tree to the highest node.
+
+ Cnode := N;
+ while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
+ Cnode := Left_Opnd (Cnode);
+ end loop;
+
+ -- Now Opnd is the deepest Opnd, and its parents are the concatenation
+ -- nodes above, so now we process bottom up, doing the operations. We
+ -- gather a string that is as long as possible up to five operands
+
+ -- The outer loop runs more than once if there are more than five
+ -- concatenations of type Standard.String, the most we handle for
+ -- this case, or if more than one concatenation type is involved.
+
+ Outer : loop
+ Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
+ Set_Parent (Opnds, N);
+
+ -- The inner loop gathers concatenation operands. We gather any
+ -- number of these in the non-string case, or if no concatenation
+ -- routines are available for string (since in that case we will
+ -- treat string like any other non-string case). Otherwise we only
+ -- gather as many operands as can be handled by the available
+ -- procedures in the run-time library (normally 5, but may be
+ -- less for the configurable run-time case).
+
+ Inner : while Cnode /= N
+ and then (Base_Type (Etype (Cnode)) /= Standard_String
+ or else
+ Max_Available_String_Operands = 0
+ or else
+ List_Length (Opnds) <
+ Max_Available_String_Operands)
+ and then Base_Type (Etype (Cnode)) =
+ Base_Type (Etype (Parent (Cnode)))
+ loop
+ Cnode := Parent (Cnode);
+ Append (Right_Opnd (Cnode), Opnds);
+ end loop Inner;
+
+ -- Here we process the collected operands. First we convert singleton
+ -- operands to singleton aggregates. This is skipped however for the
+ -- case of two operands of type String since we have special routines
+ -- for these cases.
+
+ Atyp := Base_Type (Etype (Cnode));
+ Ctyp := Base_Type (Component_Type (Etype (Cnode)));
+
+ if (List_Length (Opnds) > 2 or else Atyp /= Standard_String)
+ or else not Char_Concat_Available
+ then
+ Opnd := First (Opnds);
+ loop
+ if Base_Type (Etype (Opnd)) = Ctyp then
+ Rewrite (Opnd,
+ Make_Aggregate (Sloc (Cnode),
+ Expressions => New_List (Relocate_Node (Opnd))));
+ Analyze_And_Resolve (Opnd, Atyp);
+ end if;
+
+ Next (Opnd);
+ exit when No (Opnd);
+ end loop;
+ end if;
+
+ -- Now call appropriate continuation routine
+
+ if Atyp = Standard_String
+ and then Max_Available_String_Operands > 0
+ then
+ Expand_Concatenate_String (Cnode, Opnds);
+ else
+ Expand_Concatenate_Other (Cnode, Opnds);
+ end if;
+
+ exit Outer when Cnode = N;
+ Cnode := Parent (Cnode);
+ end loop Outer;
+ end Expand_N_Op_Concat;
+
+ ------------------------
+ -- Expand_N_Op_Divide --
+ ------------------------
+
+ procedure Expand_N_Op_Divide (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Lopnd : constant Node_Id := Left_Opnd (N);
+ Ropnd : constant Node_Id := Right_Opnd (N);
+ Ltyp : constant Entity_Id := Etype (Lopnd);
+ Rtyp : constant Entity_Id := Etype (Ropnd);
+ Typ : Entity_Id := Etype (N);
+ Rknow : constant Boolean := Is_Integer_Type (Typ)
+ and then
+ Compile_Time_Known_Value (Ropnd);
+ Rval : Uint;
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Rknow then
+ Rval := Expr_Value (Ropnd);
+ end if;
+
+ -- N / 1 = N for integer types
+
+ if Rknow and then Rval = Uint_1 then
+ Rewrite (N, Lopnd);
+ return;
+ end if;
+
+ -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
+ -- Is_Power_Of_2_For_Shift is set means that we know that our left
+ -- operand is an unsigned integer, as required for this to work.
+
+ if Nkind (Ropnd) = N_Op_Expon
+ and then Is_Power_Of_2_For_Shift (Ropnd)
+
+ -- We cannot do this transformation in configurable run time mode if we
+ -- have 64-bit -- integers and long shifts are not available.
+
+ and then
+ (Esize (Ltyp) <= 32
+ or else Support_Long_Shifts_On_Target)
+ then
+ Rewrite (N,
+ Make_Op_Shift_Right (Loc,
+ Left_Opnd => Lopnd,
+ Right_Opnd =>
+ Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Do required fixup of universal fixed operation
+
+ if Typ = Universal_Fixed then
+ Fixup_Universal_Fixed_Operation (N);
+ Typ := Etype (N);
+ end if;
+
+ -- Divisions with fixed-point results
+
+ if Is_Fixed_Point_Type (Typ) then
+
+ -- No special processing if Treat_Fixed_As_Integer is set, since
+ -- from a semantic point of view such operations are simply integer
+ -- operations and will be treated that way.
+
+ if not Treat_Fixed_As_Integer (N) then
+ if Is_Integer_Type (Rtyp) then
+ Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
+ else
+ Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
+ end if;
+ end if;
+
+ -- Other cases of division of fixed-point operands. Again we exclude the
+ -- case where Treat_Fixed_As_Integer is set.
+
+ elsif (Is_Fixed_Point_Type (Ltyp) or else
+ Is_Fixed_Point_Type (Rtyp))
+ and then not Treat_Fixed_As_Integer (N)
+ then
+ if Is_Integer_Type (Typ) then
+ Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
+ else
+ pragma Assert (Is_Floating_Point_Type (Typ));
+ Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
+ end if;
+
+ -- Mixed-mode operations can appear in a non-static universal context,
+ -- in which case the integer argument must be converted explicitly.
+
+ elsif Typ = Universal_Real
+ and then Is_Integer_Type (Rtyp)
+ then
+ Rewrite (Ropnd,
+ Convert_To (Universal_Real, Relocate_Node (Ropnd)));
+
+ Analyze_And_Resolve (Ropnd, Universal_Real);
+
+ elsif Typ = Universal_Real
+ and then Is_Integer_Type (Ltyp)
+ then
+ Rewrite (Lopnd,
+ Convert_To (Universal_Real, Relocate_Node (Lopnd)));
+
+ Analyze_And_Resolve (Lopnd, Universal_Real);
+
+ -- Non-fixed point cases, do integer zero divide and overflow checks
+
+ elsif Is_Integer_Type (Typ) then
+ Apply_Divide_Check (N);
+
+ -- Check for 64-bit division available, or long shifts if the divisor
+ -- is a small power of 2 (since such divides will be converted into
+ -- long shifts.
+
+ if Esize (Ltyp) > 32
+ and then not Support_64_Bit_Divides_On_Target
+ and then
+ (not Rknow
+ or else not Support_Long_Shifts_On_Target
+ or else (Rval /= Uint_2 and then
+ Rval /= Uint_4 and then
+ Rval /= Uint_8 and then
+ Rval /= Uint_16 and then
+ Rval /= Uint_32 and then
+ Rval /= Uint_64))
+ then
+ Error_Msg_CRT ("64-bit division", N);
+ end if;
+
+ -- Deal with Vax_Float
+
+ elsif Vax_Float (Typ) then
+ Expand_Vax_Arith (N);
+ return;
+ end if;
+ end Expand_N_Op_Divide;
+
+ --------------------
+ -- Expand_N_Op_Eq --
+ --------------------
+
+ procedure Expand_N_Op_Eq (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Lhs : constant Node_Id := Left_Opnd (N);
+ Rhs : constant Node_Id := Right_Opnd (N);
+ Bodies : constant List_Id := New_List;
+ A_Typ : constant Entity_Id := Etype (Lhs);
+
+ Typl : Entity_Id := A_Typ;
+ Op_Name : Entity_Id;
+ Prim : Elmt_Id;
+
+ procedure Build_Equality_Call (Eq : Entity_Id);
+ -- If a constructed equality exists for the type or for its parent,
+ -- build and analyze call, adding conversions if the operation is
+ -- inherited.
+
+ function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
+ -- Determines whether a type has a subcomponent of an unconstrained
+ -- Unchecked_Union subtype. Typ is a record type.
+
+ -------------------------
+ -- Build_Equality_Call --
+ -------------------------
+
+ procedure Build_Equality_Call (Eq : Entity_Id) is
+ Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
+ L_Exp : Node_Id := Relocate_Node (Lhs);
+ R_Exp : Node_Id := Relocate_Node (Rhs);
+
+ begin
+ if Base_Type (Op_Type) /= Base_Type (A_Typ)
+ and then not Is_Class_Wide_Type (A_Typ)
+ then
+ L_Exp := OK_Convert_To (Op_Type, L_Exp);
+ R_Exp := OK_Convert_To (Op_Type, R_Exp);
+ end if;
+
+ -- If we have an Unchecked_Union, we need to add the inferred
+ -- discriminant values as actuals in the function call. At this
+ -- point, the expansion has determined that both operands have
+ -- inferable discriminants.
+
+ if Is_Unchecked_Union (Op_Type) then
+ declare
+ Lhs_Type : constant Node_Id := Etype (L_Exp);
+ Rhs_Type : constant Node_Id := Etype (R_Exp);
+ Lhs_Discr_Val : Node_Id;
+ Rhs_Discr_Val : Node_Id;
+
+ begin
+ -- Per-object constrained selected components require special
+ -- attention. If the enclosing scope of the component is an
+ -- Unchecked_Union, we cannot reference its discriminants
+ -- directly. This is why we use the two extra parameters of
+ -- the equality function of the enclosing Unchecked_Union.
+
+ -- type UU_Type (Discr : Integer := 0) is
+ -- . . .
+ -- end record;
+ -- pragma Unchecked_Union (UU_Type);
+
+ -- 1. Unchecked_Union enclosing record:
+
+ -- type Enclosing_UU_Type (Discr : Integer := 0) is record
+ -- . . .
+ -- Comp : UU_Type (Discr);
+ -- . . .
+ -- end Enclosing_UU_Type;
+ -- pragma Unchecked_Union (Enclosing_UU_Type);
+
+ -- Obj1 : Enclosing_UU_Type;
+ -- Obj2 : Enclosing_UU_Type (1);
+
+ -- [. . .] Obj1 = Obj2 [. . .]
+
+ -- Generated code:
+
+ -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
+
+ -- A and B are the formal parameters of the equality function
+ -- of Enclosing_UU_Type. The function always has two extra
+ -- formals to capture the inferred discriminant values.
+
+ -- 2. Non-Unchecked_Union enclosing record:
+
+ -- type
+ -- Enclosing_Non_UU_Type (Discr : Integer := 0)
+ -- is record
+ -- . . .
+ -- Comp : UU_Type (Discr);
+ -- . . .
+ -- end Enclosing_Non_UU_Type;
+
+ -- Obj1 : Enclosing_Non_UU_Type;
+ -- Obj2 : Enclosing_Non_UU_Type (1);
+
+ -- ... Obj1 = Obj2 ...
+
+ -- Generated code:
+
+ -- if not (uu_typeEQ (obj1.comp, obj2.comp,
+ -- obj1.discr, obj2.discr)) then
+
+ -- In this case we can directly reference the discriminants of
+ -- the enclosing record.
+
+ -- Lhs of equality
+
+ if Nkind (Lhs) = N_Selected_Component
+ and then Has_Per_Object_Constraint
+ (Entity (Selector_Name (Lhs)))
+ then
+ -- Enclosing record is an Unchecked_Union, use formal A
+
+ if Is_Unchecked_Union (Scope
+ (Entity (Selector_Name (Lhs))))
+ then
+ Lhs_Discr_Val :=
+ Make_Identifier (Loc,
+ Chars => Name_A);
+
+ -- Enclosing record is of a non-Unchecked_Union type, it is
+ -- possible to reference the discriminant.
+
+ else
+ Lhs_Discr_Val :=
+ Make_Selected_Component (Loc,
+ Prefix => Prefix (Lhs),
+ Selector_Name =>
+ New_Copy
+ (Get_Discriminant_Value
+ (First_Discriminant (Lhs_Type),
+ Lhs_Type,
+ Stored_Constraint (Lhs_Type))));
+ end if;
+
+ -- Comment needed here ???
+
+ else
+ -- Infer the discriminant value
+
+ Lhs_Discr_Val :=
+ New_Copy
+ (Get_Discriminant_Value
+ (First_Discriminant (Lhs_Type),
+ Lhs_Type,
+ Stored_Constraint (Lhs_Type)));
+ end if;
+
+ -- Rhs of equality
+
+ if Nkind (Rhs) = N_Selected_Component
+ and then Has_Per_Object_Constraint
+ (Entity (Selector_Name (Rhs)))
+ then
+ if Is_Unchecked_Union
+ (Scope (Entity (Selector_Name (Rhs))))
+ then
+ Rhs_Discr_Val :=
+ Make_Identifier (Loc,
+ Chars => Name_B);
+
+ else
+ Rhs_Discr_Val :=
+ Make_Selected_Component (Loc,
+ Prefix => Prefix (Rhs),
+ Selector_Name =>
+ New_Copy (Get_Discriminant_Value (
+ First_Discriminant (Rhs_Type),
+ Rhs_Type,
+ Stored_Constraint (Rhs_Type))));
+
+ end if;
+ else
+ Rhs_Discr_Val :=
+ New_Copy (Get_Discriminant_Value (
+ First_Discriminant (Rhs_Type),
+ Rhs_Type,
+ Stored_Constraint (Rhs_Type)));
+
+ end if;
+
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Eq, Loc),
+ Parameter_Associations => New_List (
+ L_Exp,
+ R_Exp,
+ Lhs_Discr_Val,
+ Rhs_Discr_Val)));
+ end;
+
+ -- Normal case, not an unchecked union
+
+ else
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Eq, Loc),
+ Parameter_Associations => New_List (L_Exp, R_Exp)));
+ end if;
+
+ Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
+ end Build_Equality_Call;
+
+ ------------------------------------
+ -- Has_Unconstrained_UU_Component --
+ ------------------------------------
+
+ function Has_Unconstrained_UU_Component
+ (Typ : Node_Id) return Boolean
+ is
+ Tdef : constant Node_Id :=
+ Type_Definition (Declaration_Node (Base_Type (Typ)));
+ Clist : Node_Id;
+ Vpart : Node_Id;
+
+ function Component_Is_Unconstrained_UU
+ (Comp : Node_Id) return Boolean;
+ -- Determines whether the subtype of the component is an
+ -- unconstrained Unchecked_Union.
+
+ function Variant_Is_Unconstrained_UU
+ (Variant : Node_Id) return Boolean;
+ -- Determines whether a component of the variant has an unconstrained
+ -- Unchecked_Union subtype.
+
+ -----------------------------------
+ -- Component_Is_Unconstrained_UU --
+ -----------------------------------
+
+ function Component_Is_Unconstrained_UU
+ (Comp : Node_Id) return Boolean
+ is
+ begin
+ if Nkind (Comp) /= N_Component_Declaration then
+ return False;
+ end if;
+
+ declare
+ Sindic : constant Node_Id :=
+ Subtype_Indication (Component_Definition (Comp));
+
+ begin
+ -- Unconstrained nominal type. In the case of a constraint
+ -- present, the node kind would have been N_Subtype_Indication.
+
+ if Nkind (Sindic) = N_Identifier then
+ return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
+ end if;
+
+ return False;
+ end;
+ end Component_Is_Unconstrained_UU;
+
+ ---------------------------------
+ -- Variant_Is_Unconstrained_UU --
+ ---------------------------------
+
+ function Variant_Is_Unconstrained_UU
+ (Variant : Node_Id) return Boolean
+ is
+ Clist : constant Node_Id := Component_List (Variant);
+
+ begin
+ if Is_Empty_List (Component_Items (Clist)) then
+ return False;
+ end if;
+
+ -- We only need to test one component
+
+ declare
+ Comp : Node_Id := First (Component_Items (Clist));
+
+ begin
+ while Present (Comp) loop
+ if Component_Is_Unconstrained_UU (Comp) then
+ return True;
+ end if;
+
+ Next (Comp);
+ end loop;
+ end;
+
+ -- None of the components withing the variant were of
+ -- unconstrained Unchecked_Union type.
+
+ return False;
+ end Variant_Is_Unconstrained_UU;
+
+ -- Start of processing for Has_Unconstrained_UU_Component
+
+ begin
+ if Null_Present (Tdef) then
+ return False;
+ end if;
+
+ Clist := Component_List (Tdef);
+ Vpart := Variant_Part (Clist);
+
+ -- Inspect available components
+
+ if Present (Component_Items (Clist)) then
+ declare
+ Comp : Node_Id := First (Component_Items (Clist));
+
+ begin
+ while Present (Comp) loop
+
+ -- One component is sufficient
+
+ if Component_Is_Unconstrained_UU (Comp) then
+ return True;
+ end if;
+
+ Next (Comp);
+ end loop;
+ end;
+ end if;
+
+ -- Inspect available components withing variants
+
+ if Present (Vpart) then
+ declare
+ Variant : Node_Id := First (Variants (Vpart));
+
+ begin
+ while Present (Variant) loop
+
+ -- One component within a variant is sufficient
+
+ if Variant_Is_Unconstrained_UU (Variant) then
+ return True;
+ end if;
+
+ Next (Variant);
+ end loop;
+ end;
+ end if;
+
+ -- Neither the available components, nor the components inside the
+ -- variant parts were of an unconstrained Unchecked_Union subtype.
+
+ return False;
+ end Has_Unconstrained_UU_Component;
+
+ -- Start of processing for Expand_N_Op_Eq
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Ekind (Typl) = E_Private_Type then
+ Typl := Underlying_Type (Typl);
+ elsif Ekind (Typl) = E_Private_Subtype then
+ Typl := Underlying_Type (Base_Type (Typl));
+ else
+ null;
+ end if;
+
+ -- It may happen in error situations that the underlying type is not
+ -- set. The error will be detected later, here we just defend the
+ -- expander code.
+
+ if No (Typl) then
+ return;
+ end if;
+
+ Typl := Base_Type (Typl);
+
+ -- Boolean types (requiring handling of non-standard case)
+
+ if Is_Boolean_Type (Typl) then
+ Adjust_Condition (Left_Opnd (N));
+ Adjust_Condition (Right_Opnd (N));
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+
+ -- Array types
+
+ elsif Is_Array_Type (Typl) then
+
+ -- If we are doing full validity checking, and it is possible for the
+ -- array elements to be invalid then expand out array comparisons to
+ -- make sure that we check the array elements.
+
+ if Validity_Check_Operands
+ and then not Is_Known_Valid (Component_Type (Typl))
+ then
+ declare
+ Save_Force_Validity_Checks : constant Boolean :=
+ Force_Validity_Checks;
+ begin
+ Force_Validity_Checks := True;
+ Rewrite (N,
+ Expand_Array_Equality
+ (N,
+ Relocate_Node (Lhs),
+ Relocate_Node (Rhs),
+ Bodies,
+ Typl));
+ Insert_Actions (N, Bodies);
+ Analyze_And_Resolve (N, Standard_Boolean);
+ Force_Validity_Checks := Save_Force_Validity_Checks;
+ end;
+
+ -- Packed case where both operands are known aligned
+
+ elsif Is_Bit_Packed_Array (Typl)
+ and then not Is_Possibly_Unaligned_Object (Lhs)
+ and then not Is_Possibly_Unaligned_Object (Rhs)
+ then
+ Expand_Packed_Eq (N);
+
+ -- Where the component type is elementary we can use a block bit
+ -- comparison (if supported on the target) exception in the case
+ -- of floating-point (negative zero issues require element by
+ -- element comparison), and atomic types (where we must be sure
+ -- to load elements independently) and possibly unaligned arrays.
+
+ elsif Is_Elementary_Type (Component_Type (Typl))
+ and then not Is_Floating_Point_Type (Component_Type (Typl))
+ and then not Is_Atomic (Component_Type (Typl))
+ and then not Is_Possibly_Unaligned_Object (Lhs)
+ and then not Is_Possibly_Unaligned_Object (Rhs)
+ and then Support_Composite_Compare_On_Target
+ then
+ null;
+
+ -- For composite and floating-point cases, expand equality loop to
+ -- make sure of using proper comparisons for tagged types, and
+ -- correctly handling the floating-point case.
+
+ else
+ Rewrite (N,
+ Expand_Array_Equality
+ (N,
+ Relocate_Node (Lhs),
+ Relocate_Node (Rhs),
+ Bodies,
+ Typl));
+ Insert_Actions (N, Bodies, Suppress => All_Checks);
+ Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
+ end if;
+
+ -- Record Types
+
+ elsif Is_Record_Type (Typl) then
+
+ -- For tagged types, use the primitive "="
+
+ if Is_Tagged_Type (Typl) then
+
+ -- No need to do anything else compiling under restriction
+ -- No_Dispatching_Calls. During the semantic analysis we
+ -- already notified such violation.
+
+ if Restriction_Active (No_Dispatching_Calls) then
+ return;
+ end if;
+
+ -- If this is derived from an untagged private type completed with
+ -- a tagged type, it does not have a full view, so we use the
+ -- primitive operations of the private type. This check should no
+ -- longer be necessary when these types get their full views???
+
+ if Is_Private_Type (A_Typ)
+ and then not Is_Tagged_Type (A_Typ)
+ and then Is_Derived_Type (A_Typ)
+ and then No (Full_View (A_Typ))
+ then
+ -- Search for equality operation, checking that the operands
+ -- have the same type. Note that we must find a matching entry,
+ -- or something is very wrong!
+
+ Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
+
+ while Present (Prim) loop
+ exit when Chars (Node (Prim)) = Name_Op_Eq
+ and then Etype (First_Formal (Node (Prim))) =
+ Etype (Next_Formal (First_Formal (Node (Prim))))
+ and then
+ Base_Type (Etype (Node (Prim))) = Standard_Boolean;
+
+ Next_Elmt (Prim);
+ end loop;
+
+ pragma Assert (Present (Prim));
+ Op_Name := Node (Prim);
+
+ -- Find the type's predefined equality or an overriding
+ -- user- defined equality. The reason for not simply calling
+ -- Find_Prim_Op here is that there may be a user-defined
+ -- overloaded equality op that precedes the equality that we want,
+ -- so we have to explicitly search (e.g., there could be an
+ -- equality with two different parameter types).
+
+ else
+ if Is_Class_Wide_Type (Typl) then
+ Typl := Root_Type (Typl);
+ end if;
+
+ Prim := First_Elmt (Primitive_Operations (Typl));
+ while Present (Prim) loop
+ exit when Chars (Node (Prim)) = Name_Op_Eq
+ and then Etype (First_Formal (Node (Prim))) =
+ Etype (Next_Formal (First_Formal (Node (Prim))))
+ and then
+ Base_Type (Etype (Node (Prim))) = Standard_Boolean;
+
+ Next_Elmt (Prim);
+ end loop;
+
+ pragma Assert (Present (Prim));
+ Op_Name := Node (Prim);
+ end if;
+
+ Build_Equality_Call (Op_Name);
+
+ -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
+ -- predefined equality operator for a type which has a subcomponent
+ -- of an Unchecked_Union type whose nominal subtype is unconstrained.
+
+ elsif Has_Unconstrained_UU_Component (Typl) then
+ Insert_Action (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction));
+
+ -- Prevent Gigi from generating incorrect code by rewriting the
+ -- equality as a standard False.
+
+ Rewrite (N,
+ New_Occurrence_Of (Standard_False, Loc));
+
+ elsif Is_Unchecked_Union (Typl) then
+
+ -- If we can infer the discriminants of the operands, we make a
+ -- call to the TSS equality function.
+
+ if Has_Inferable_Discriminants (Lhs)
+ and then
+ Has_Inferable_Discriminants (Rhs)
+ then
+ Build_Equality_Call
+ (TSS (Root_Type (Typl), TSS_Composite_Equality));
+
+ else
+ -- Ada 2005 (AI-216): Program_Error is raised when evaluating
+ -- the predefined equality operator for an Unchecked_Union type
+ -- if either of the operands lack inferable discriminants.
+
+ Insert_Action (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction));
+
+ -- Prevent Gigi from generating incorrect code by rewriting
+ -- the equality as a standard False.
+
+ Rewrite (N,
+ New_Occurrence_Of (Standard_False, Loc));
+
+ end if;
+
+ -- If a type support function is present (for complex cases), use it
+
+ elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
+ Build_Equality_Call
+ (TSS (Root_Type (Typl), TSS_Composite_Equality));
+
+ -- Otherwise expand the component by component equality. Note that
+ -- we never use block-bit comparisons for records, because of the
+ -- problems with gaps. The backend will often be able to recombine
+ -- the separate comparisons that we generate here.
+
+ else
+ Remove_Side_Effects (Lhs);
+ Remove_Side_Effects (Rhs);
+ Rewrite (N,
+ Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
+
+ Insert_Actions (N, Bodies, Suppress => All_Checks);
+ Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
+ end if;
+ end if;
+
+ -- Test if result is known at compile time
+
+ Rewrite_Comparison (N);
+
+ -- If we still have comparison for Vax_Float, process it
+
+ if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
+ Expand_Vax_Comparison (N);
+ return;
+ end if;
+ end Expand_N_Op_Eq;
+
+ -----------------------
+ -- Expand_N_Op_Expon --
+ -----------------------
+
+ procedure Expand_N_Op_Expon (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Rtyp : constant Entity_Id := Root_Type (Typ);
+ Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
+ Bastyp : constant Node_Id := Etype (Base);
+ Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
+ Exptyp : constant Entity_Id := Etype (Exp);
+ Ovflo : constant Boolean := Do_Overflow_Check (N);
+ Expv : Uint;
+ Xnode : Node_Id;
+ Temp : Node_Id;
+ Rent : RE_Id;
+ Ent : Entity_Id;
+ Etyp : Entity_Id;
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ -- If either operand is of a private type, then we have the use of an
+ -- intrinsic operator, and we get rid of the privateness, by using root
+ -- types of underlying types for the actual operation. Otherwise the
+ -- private types will cause trouble if we expand multiplications or
+ -- shifts etc. We also do this transformation if the result type is
+ -- different from the base type.
+
+ if Is_Private_Type (Etype (Base))
+ or else
+ Is_Private_Type (Typ)
+ or else
+ Is_Private_Type (Exptyp)
+ or else
+ Rtyp /= Root_Type (Bastyp)
+ then
+ declare
+ Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
+ Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
+
+ begin
+ Rewrite (N,
+ Unchecked_Convert_To (Typ,
+ Make_Op_Expon (Loc,
+ Left_Opnd => Unchecked_Convert_To (Bt, Base),
+ Right_Opnd => Unchecked_Convert_To (Et, Exp))));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end;
+ end if;
+
+ -- Test for case of known right argument
+
+ if Compile_Time_Known_Value (Exp) then
+ Expv := Expr_Value (Exp);
+
+ -- We only fold small non-negative exponents. You might think we
+ -- could fold small negative exponents for the real case, but we
+ -- can't because we are required to raise Constraint_Error for
+ -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
+ -- See ACVC test C4A012B.
+
+ if Expv >= 0 and then Expv <= 4 then
+
+ -- X ** 0 = 1 (or 1.0)
+
+ if Expv = 0 then
+
+ -- Call Remove_Side_Effects to ensure that any side effects
+ -- in the ignored left operand (in particular function calls
+ -- to user defined functions) are properly executed.
+
+ Remove_Side_Effects (Base);
+
+ if Ekind (Typ) in Integer_Kind then
+ Xnode := Make_Integer_Literal (Loc, Intval => 1);
+ else
+ Xnode := Make_Real_Literal (Loc, Ureal_1);
+ end if;
+
+ -- X ** 1 = X
+
+ elsif Expv = 1 then
+ Xnode := Base;
+
+ -- X ** 2 = X * X
+
+ elsif Expv = 2 then
+ Xnode :=
+ Make_Op_Multiply (Loc,
+ Left_Opnd => Duplicate_Subexpr (Base),
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
+
+ -- X ** 3 = X * X * X
+
+ elsif Expv = 3 then
+ Xnode :=
+ Make_Op_Multiply (Loc,
+ Left_Opnd =>
+ Make_Op_Multiply (Loc,
+ Left_Opnd => Duplicate_Subexpr (Base),
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
+
+ -- X ** 4 ->
+ -- En : constant base'type := base * base;
+ -- ...
+ -- En * En
+
+ else -- Expv = 4
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
+
+ Insert_Actions (N, New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (Typ, Loc),
+ Expression =>
+ Make_Op_Multiply (Loc,
+ Left_Opnd => Duplicate_Subexpr (Base),
+ Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
+
+ Xnode :=
+ Make_Op_Multiply (Loc,
+ Left_Opnd => New_Reference_To (Temp, Loc),
+ Right_Opnd => New_Reference_To (Temp, Loc));
+ end if;
+
+ Rewrite (N, Xnode);
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+ end if;
+
+ -- Case of (2 ** expression) appearing as an argument of an integer
+ -- multiplication, or as the right argument of a division of a non-
+ -- negative integer. In such cases we leave the node untouched, setting
+ -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
+ -- of the higher level node converts it into a shift.
+
+ -- Note: this transformation is not applicable for a modular type with
+ -- a non-binary modulus in the multiplication case, since we get a wrong
+ -- result if the shift causes an overflow before the modular reduction.
+
+ if Nkind (Base) = N_Integer_Literal
+ and then Intval (Base) = 2
+ and then Is_Integer_Type (Root_Type (Exptyp))
+ and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
+ and then Is_Unsigned_Type (Exptyp)
+ and then not Ovflo
+ and then Nkind (Parent (N)) in N_Binary_Op
+ then
+ declare
+ P : constant Node_Id := Parent (N);
+ L : constant Node_Id := Left_Opnd (P);
+ R : constant Node_Id := Right_Opnd (P);
+
+ begin
+ if (Nkind (P) = N_Op_Multiply
+ and then not Non_Binary_Modulus (Typ)
+ and then
+ ((Is_Integer_Type (Etype (L)) and then R = N)
+ or else
+ (Is_Integer_Type (Etype (R)) and then L = N))
+ and then not Do_Overflow_Check (P))
+
+ or else
+ (Nkind (P) = N_Op_Divide
+ and then Is_Integer_Type (Etype (L))
+ and then Is_Unsigned_Type (Etype (L))
+ and then R = N
+ and then not Do_Overflow_Check (P))
+ then
+ Set_Is_Power_Of_2_For_Shift (N);
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Fall through if exponentiation must be done using a runtime routine
+
+ -- First deal with modular case
+
+ if Is_Modular_Integer_Type (Rtyp) then
+
+ -- Non-binary case, we call the special exponentiation routine for
+ -- the non-binary case, converting the argument to Long_Long_Integer
+ -- and passing the modulus value. Then the result is converted back
+ -- to the base type.
+
+ if Non_Binary_Modulus (Rtyp) then
+ Rewrite (N,
+ Convert_To (Typ,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
+ Parameter_Associations => New_List (
+ Convert_To (Standard_Integer, Base),
+ Make_Integer_Literal (Loc, Modulus (Rtyp)),
+ Exp))));
+
+ -- Binary case, in this case, we call one of two routines, either the
+ -- unsigned integer case, or the unsigned long long integer case,
+ -- with a final "and" operation to do the required mod.
+
+ else
+ if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
+ Ent := RTE (RE_Exp_Unsigned);
+ else
+ Ent := RTE (RE_Exp_Long_Long_Unsigned);
+ end if;
+
+ Rewrite (N,
+ Convert_To (Typ,
+ Make_Op_And (Loc,
+ Left_Opnd =>
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Ent, Loc),
+ Parameter_Associations => New_List (
+ Convert_To (Etype (First_Formal (Ent)), Base),
+ Exp)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
+
+ end if;
+
+ -- Common exit point for modular type case
+
+ Analyze_And_Resolve (N, Typ);
+ return;
+
+ -- Signed integer cases, done using either Integer or Long_Long_Integer.
+ -- It is not worth having routines for Short_[Short_]Integer, since for
+ -- most machines it would not help, and it would generate more code that
+ -- might need certification when a certified run time is required.
+
+ -- In the integer cases, we have two routines, one for when overflow
+ -- checks are required, and one when they are not required, since there
+ -- is a real gain in omitting checks on many machines.
+
+ elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
+ or else (Rtyp = Base_Type (Standard_Long_Integer)
+ and then
+ Esize (Standard_Long_Integer) > Esize (Standard_Integer))
+ or else (Rtyp = Universal_Integer)
+ then
+ Etyp := Standard_Long_Long_Integer;
+
+ if Ovflo then
+ Rent := RE_Exp_Long_Long_Integer;
+ else
+ Rent := RE_Exn_Long_Long_Integer;
+ end if;
+
+ elsif Is_Signed_Integer_Type (Rtyp) then
+ Etyp := Standard_Integer;
+
+ if Ovflo then
+ Rent := RE_Exp_Integer;
+ else
+ Rent := RE_Exn_Integer;
+ end if;
+
+ -- Floating-point cases, always done using Long_Long_Float. We do not
+ -- need separate routines for the overflow case here, since in the case
+ -- of floating-point, we generate infinities anyway as a rule (either
+ -- that or we automatically trap overflow), and if there is an infinity
+ -- generated and a range check is required, the check will fail anyway.
+
+ else
+ pragma Assert (Is_Floating_Point_Type (Rtyp));
+ Etyp := Standard_Long_Long_Float;
+ Rent := RE_Exn_Long_Long_Float;
+ end if;
+
+ -- Common processing for integer cases and floating-point cases.
+ -- If we are in the right type, we can call runtime routine directly
+
+ if Typ = Etyp
+ and then Rtyp /= Universal_Integer
+ and then Rtyp /= Universal_Real
+ then
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (RTE (Rent), Loc),
+ Parameter_Associations => New_List (Base, Exp)));
+
+ -- Otherwise we have to introduce conversions (conversions are also
+ -- required in the universal cases, since the runtime routine is
+ -- typed using one of the standard types.
+
+ else
+ Rewrite (N,
+ Convert_To (Typ,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (RTE (Rent), Loc),
+ Parameter_Associations => New_List (
+ Convert_To (Etyp, Base),
+ Exp))));
+ end if;
+
+ Analyze_And_Resolve (N, Typ);
+ return;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_N_Op_Expon;
+
+ --------------------
+ -- Expand_N_Op_Ge --
+ --------------------
+
+ procedure Expand_N_Op_Ge (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+ Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Typ1) then
+ Expand_Array_Comparison (N);
+ return;
+ end if;
+
+ if Is_Boolean_Type (Typ1) then
+ Adjust_Condition (Op1);
+ Adjust_Condition (Op2);
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+
+ Rewrite_Comparison (N);
+
+ -- If we still have comparison, and Vax_Float type, process it
+
+ if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
+ Expand_Vax_Comparison (N);
+ return;
+ end if;
+ end Expand_N_Op_Ge;
+
+ --------------------
+ -- Expand_N_Op_Gt --
+ --------------------
+
+ procedure Expand_N_Op_Gt (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+ Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Typ1) then
+ Expand_Array_Comparison (N);
+ return;
+ end if;
+
+ if Is_Boolean_Type (Typ1) then
+ Adjust_Condition (Op1);
+ Adjust_Condition (Op2);
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+
+ Rewrite_Comparison (N);
+
+ -- If we still have comparison, and Vax_Float type, process it
+
+ if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
+ Expand_Vax_Comparison (N);
+ return;
+ end if;
+ end Expand_N_Op_Gt;
+
+ --------------------
+ -- Expand_N_Op_Le --
+ --------------------
+
+ procedure Expand_N_Op_Le (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+ Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Typ1) then
+ Expand_Array_Comparison (N);
+ return;
+ end if;
+
+ if Is_Boolean_Type (Typ1) then
+ Adjust_Condition (Op1);
+ Adjust_Condition (Op2);
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+
+ Rewrite_Comparison (N);
+
+ -- If we still have comparison, and Vax_Float type, process it
+
+ if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
+ Expand_Vax_Comparison (N);
+ return;
+ end if;
+ end Expand_N_Op_Le;
+
+ --------------------
+ -- Expand_N_Op_Lt --
+ --------------------
+
+ procedure Expand_N_Op_Lt (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+ Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Typ1) then
+ Expand_Array_Comparison (N);
+ return;
+ end if;
+
+ if Is_Boolean_Type (Typ1) then
+ Adjust_Condition (Op1);
+ Adjust_Condition (Op2);
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+
+ Rewrite_Comparison (N);
+
+ -- If we still have comparison, and Vax_Float type, process it
+
+ if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
+ Expand_Vax_Comparison (N);
+ return;
+ end if;
+ end Expand_N_Op_Lt;
+
+ -----------------------
+ -- Expand_N_Op_Minus --
+ -----------------------
+
+ procedure Expand_N_Op_Minus (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Unary_Op_Validity_Checks (N);
+
+ if not Backend_Overflow_Checks_On_Target
+ and then Is_Signed_Integer_Type (Etype (N))
+ and then Do_Overflow_Check (N)
+ then
+ -- Software overflow checking expands -expr into (0 - expr)
+
+ Rewrite (N,
+ Make_Op_Subtract (Loc,
+ Left_Opnd => Make_Integer_Literal (Loc, 0),
+ Right_Opnd => Right_Opnd (N)));
+
+ Analyze_And_Resolve (N, Typ);
+
+ -- Vax floating-point types case
+
+ elsif Vax_Float (Etype (N)) then
+ Expand_Vax_Arith (N);
+ end if;
+ end Expand_N_Op_Minus;
+
+ ---------------------
+ -- Expand_N_Op_Mod --
+ ---------------------
+
+ procedure Expand_N_Op_Mod (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ DOC : constant Boolean := Do_Overflow_Check (N);
+ DDC : constant Boolean := Do_Division_Check (N);
+
+ LLB : Uint;
+ Llo : Uint;
+ Lhi : Uint;
+ LOK : Boolean;
+ Rlo : Uint;
+ Rhi : Uint;
+ ROK : Boolean;
+
+ pragma Warnings (Off, Lhi);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ Determine_Range (Right, ROK, Rlo, Rhi);
+ Determine_Range (Left, LOK, Llo, Lhi);
+
+ -- Convert mod to rem if operands are known non-negative. We do this
+ -- since it is quite likely that this will improve the quality of code,
+ -- (the operation now corresponds to the hardware remainder), and it
+ -- does not seem likely that it could be harmful.
+
+ if LOK and then Llo >= 0
+ and then
+ ROK and then Rlo >= 0
+ then
+ Rewrite (N,
+ Make_Op_Rem (Sloc (N),
+ Left_Opnd => Left_Opnd (N),
+ Right_Opnd => Right_Opnd (N)));
+
+ -- Instead of reanalyzing the node we do the analysis manually. This
+ -- avoids anomalies when the replacement is done in an instance and
+ -- is epsilon more efficient.
+
+ Set_Entity (N, Standard_Entity (S_Op_Rem));
+ Set_Etype (N, Typ);
+ Set_Do_Overflow_Check (N, DOC);
+ Set_Do_Division_Check (N, DDC);
+ Expand_N_Op_Rem (N);
+ Set_Analyzed (N);
+
+ -- Otherwise, normal mod processing
+
+ else
+ if Is_Integer_Type (Etype (N)) then
+ Apply_Divide_Check (N);
+ end if;
+
+ -- Apply optimization x mod 1 = 0. We don't really need that with
+ -- gcc, but it is useful with other back ends (e.g. AAMP), and is
+ -- certainly harmless.
+
+ if Is_Integer_Type (Etype (N))
+ and then Compile_Time_Known_Value (Right)
+ and then Expr_Value (Right) = Uint_1
+ then
+ -- Call Remove_Side_Effects to ensure that any side effects in
+ -- the ignored left operand (in particular function calls to
+ -- user defined functions) are properly executed.
+
+ Remove_Side_Effects (Left);
+
+ Rewrite (N, Make_Integer_Literal (Loc, 0));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Deal with annoying case of largest negative number remainder
+ -- minus one. Gigi does not handle this case correctly, because
+ -- it generates a divide instruction which may trap in this case.
+
+ -- In fact the check is quite easy, if the right operand is -1, then
+ -- the mod value is always 0, and we can just ignore the left operand
+ -- completely in this case.
+
+ -- The operand type may be private (e.g. in the expansion of an
+ -- intrinsic operation) so we must use the underlying type to get the
+ -- bounds, and convert the literals explicitly.
+
+ LLB :=
+ Expr_Value
+ (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
+
+ if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
+ and then
+ ((not LOK) or else (Llo = LLB))
+ then
+ Rewrite (N,
+ Make_Conditional_Expression (Loc,
+ Expressions => New_List (
+ Make_Op_Eq (Loc,
+ Left_Opnd => Duplicate_Subexpr (Right),
+ Right_Opnd =>
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, -1))),
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, Uint_0)),
+ Relocate_Node (N))));
+
+ Set_Analyzed (Next (Next (First (Expressions (N)))));
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end if;
+ end Expand_N_Op_Mod;
+
+ --------------------------
+ -- Expand_N_Op_Multiply --
+ --------------------------
+
+ procedure Expand_N_Op_Multiply (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Lop : constant Node_Id := Left_Opnd (N);
+ Rop : constant Node_Id := Right_Opnd (N);
+
+ Lp2 : constant Boolean :=
+ Nkind (Lop) = N_Op_Expon
+ and then Is_Power_Of_2_For_Shift (Lop);
+
+ Rp2 : constant Boolean :=
+ Nkind (Rop) = N_Op_Expon
+ and then Is_Power_Of_2_For_Shift (Rop);
+
+ Ltyp : constant Entity_Id := Etype (Lop);
+ Rtyp : constant Entity_Id := Etype (Rop);
+ Typ : Entity_Id := Etype (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ -- Special optimizations for integer types
+
+ if Is_Integer_Type (Typ) then
+
+ -- N * 0 = 0 for integer types
+
+ if Compile_Time_Known_Value (Rop)
+ and then Expr_Value (Rop) = Uint_0
+ then
+ -- Call Remove_Side_Effects to ensure that any side effects in
+ -- the ignored left operand (in particular function calls to
+ -- user defined functions) are properly executed.
+
+ Remove_Side_Effects (Lop);
+
+ Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Similar handling for 0 * N = 0
+
+ if Compile_Time_Known_Value (Lop)
+ and then Expr_Value (Lop) = Uint_0
+ then
+ Remove_Side_Effects (Rop);
+ Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- N * 1 = 1 * N = N for integer types
+
+ -- This optimisation is not done if we are going to
+ -- rewrite the product 1 * 2 ** N to a shift.
+
+ if Compile_Time_Known_Value (Rop)
+ and then Expr_Value (Rop) = Uint_1
+ and then not Lp2
+ then
+ Rewrite (N, Lop);
+ return;
+
+ elsif Compile_Time_Known_Value (Lop)
+ and then Expr_Value (Lop) = Uint_1
+ and then not Rp2
+ then
+ Rewrite (N, Rop);
+ return;
+ end if;
+ end if;
+
+ -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
+ -- Is_Power_Of_2_For_Shift is set means that we know that our left
+ -- operand is an integer, as required for this to work.
+
+ if Rp2 then
+ if Lp2 then
+
+ -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
+
+ Rewrite (N,
+ Make_Op_Expon (Loc,
+ Left_Opnd => Make_Integer_Literal (Loc, 2),
+ Right_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd => Right_Opnd (Lop),
+ Right_Opnd => Right_Opnd (Rop))));
+ Analyze_And_Resolve (N, Typ);
+ return;
+
+ else
+ Rewrite (N,
+ Make_Op_Shift_Left (Loc,
+ Left_Opnd => Lop,
+ Right_Opnd =>
+ Convert_To (Standard_Natural, Right_Opnd (Rop))));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Same processing for the operands the other way round
+
+ elsif Lp2 then
+ Rewrite (N,
+ Make_Op_Shift_Left (Loc,
+ Left_Opnd => Rop,
+ Right_Opnd =>
+ Convert_To (Standard_Natural, Right_Opnd (Lop))));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Do required fixup of universal fixed operation
+
+ if Typ = Universal_Fixed then
+ Fixup_Universal_Fixed_Operation (N);
+ Typ := Etype (N);
+ end if;
+
+ -- Multiplications with fixed-point results
+
+ if Is_Fixed_Point_Type (Typ) then
+
+ -- No special processing if Treat_Fixed_As_Integer is set, since from
+ -- a semantic point of view such operations are simply integer
+ -- operations and will be treated that way.
+
+ if not Treat_Fixed_As_Integer (N) then
+
+ -- Case of fixed * integer => fixed
+
+ if Is_Integer_Type (Rtyp) then
+ Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
+
+ -- Case of integer * fixed => fixed
+
+ elsif Is_Integer_Type (Ltyp) then
+ Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
+
+ -- Case of fixed * fixed => fixed
+
+ else
+ Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
+ end if;
+ end if;
+
+ -- Other cases of multiplication of fixed-point operands. Again we
+ -- exclude the cases where Treat_Fixed_As_Integer flag is set.
+
+ elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
+ and then not Treat_Fixed_As_Integer (N)
+ then
+ if Is_Integer_Type (Typ) then
+ Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
+ else
+ pragma Assert (Is_Floating_Point_Type (Typ));
+ Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
+ end if;
+
+ -- Mixed-mode operations can appear in a non-static universal context,
+ -- in which case the integer argument must be converted explicitly.
+
+ elsif Typ = Universal_Real
+ and then Is_Integer_Type (Rtyp)
+ then
+ Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
+
+ Analyze_And_Resolve (Rop, Universal_Real);
+
+ elsif Typ = Universal_Real
+ and then Is_Integer_Type (Ltyp)
+ then
+ Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
+
+ Analyze_And_Resolve (Lop, Universal_Real);
+
+ -- Non-fixed point cases, check software overflow checking required
+
+ elsif Is_Signed_Integer_Type (Etype (N)) then
+ Apply_Arithmetic_Overflow_Check (N);
+
+ -- Deal with VAX float case
+
+ elsif Vax_Float (Typ) then
+ Expand_Vax_Arith (N);
+ return;
+ end if;
+ end Expand_N_Op_Multiply;
+
+ --------------------
+ -- Expand_N_Op_Ne --
+ --------------------
+
+ procedure Expand_N_Op_Ne (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (Left_Opnd (N));
+
+ begin
+ -- Case of elementary type with standard operator
+
+ if Is_Elementary_Type (Typ)
+ and then Sloc (Entity (N)) = Standard_Location
+ then
+ Binary_Op_Validity_Checks (N);
+
+ -- Boolean types (requiring handling of non-standard case)
+
+ if Is_Boolean_Type (Typ) then
+ Adjust_Condition (Left_Opnd (N));
+ Adjust_Condition (Right_Opnd (N));
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+
+ Rewrite_Comparison (N);
+
+ -- If we still have comparison for Vax_Float, process it
+
+ if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
+ Expand_Vax_Comparison (N);
+ return;
+ end if;
+
+ -- For all cases other than elementary types, we rewrite node as the
+ -- negation of an equality operation, and reanalyze. The equality to be
+ -- used is defined in the same scope and has the same signature. This
+ -- signature must be set explicitly since in an instance it may not have
+ -- the same visibility as in the generic unit. This avoids duplicating
+ -- or factoring the complex code for record/array equality tests etc.
+
+ else
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Neg : Node_Id;
+ Ne : constant Entity_Id := Entity (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ Neg :=
+ Make_Op_Not (Loc,
+ Right_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Left_Opnd (N),
+ Right_Opnd => Right_Opnd (N)));
+ Set_Paren_Count (Right_Opnd (Neg), 1);
+
+ if Scope (Ne) /= Standard_Standard then
+ Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
+ end if;
+
+ -- For navigation purposes, the inequality is treated as an
+ -- implicit reference to the corresponding equality. Preserve the
+ -- Comes_From_ source flag so that the proper Xref entry is
+ -- generated.
+
+ Preserve_Comes_From_Source (Neg, N);
+ Preserve_Comes_From_Source (Right_Opnd (Neg), N);
+ Rewrite (N, Neg);
+ Analyze_And_Resolve (N, Standard_Boolean);
+ end;
+ end if;
+ end Expand_N_Op_Ne;
+
+ ---------------------
+ -- Expand_N_Op_Not --
+ ---------------------
+
+ -- If the argument is other than a Boolean array type, there is no special
+ -- expansion required.
+
+ -- For the packed case, we call the special routine in Exp_Pakd, except
+ -- that if the component size is greater than one, we use the standard
+ -- routine generating a gruesome loop (it is so peculiar to have packed
+ -- arrays with non-standard Boolean representations anyway, so it does not
+ -- matter that we do not handle this case efficiently).
+
+ -- For the unpacked case (and for the special packed case where we have non
+ -- standard Booleans, as discussed above), we generate and insert into the
+ -- tree the following function definition:
+
+ -- function Nnnn (A : arr) is
+ -- B : arr;
+ -- begin
+ -- for J in a'range loop
+ -- B (J) := not A (J);
+ -- end loop;
+ -- return B;
+ -- end Nnnn;
+
+ -- Here arr is the actual subtype of the parameter (and hence always
+ -- constrained). Then we replace the not with a call to this function.
+
+ procedure Expand_N_Op_Not (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Opnd : Node_Id;
+ Arr : Entity_Id;
+ A : Entity_Id;
+ B : Entity_Id;
+ J : Entity_Id;
+ A_J : Node_Id;
+ B_J : Node_Id;
+
+ Func_Name : Entity_Id;
+ Loop_Statement : Node_Id;
+
+ begin
+ Unary_Op_Validity_Checks (N);
+
+ -- For boolean operand, deal with non-standard booleans
+
+ if Is_Boolean_Type (Typ) then
+ Adjust_Condition (Right_Opnd (N));
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ return;
+ end if;
+
+ -- Only array types need any other processing
+
+ if not Is_Array_Type (Typ) then
+ return;
+ end if;
+
+ -- Case of array operand. If bit packed with a component size of 1,
+ -- handle it in Exp_Pakd if the operand is known to be aligned.
+
+ if Is_Bit_Packed_Array (Typ)
+ and then Component_Size (Typ) = 1
+ and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
+ then
+ Expand_Packed_Not (N);
+ return;
+ end if;
+
+ -- Case of array operand which is not bit-packed. If the context is
+ -- a safe assignment, call in-place operation, If context is a larger
+ -- boolean expression in the context of a safe assignment, expansion is
+ -- done by enclosing operation.
+
+ Opnd := Relocate_Node (Right_Opnd (N));
+ Convert_To_Actual_Subtype (Opnd);
+ Arr := Etype (Opnd);
+ Ensure_Defined (Arr, N);
+ Silly_Boolean_Array_Not_Test (N, Arr);
+
+ if Nkind (Parent (N)) = N_Assignment_Statement then
+ if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
+ Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
+ return;
+
+ -- Special case the negation of a binary operation
+
+ elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
+ and then Safe_In_Place_Array_Op
+ (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
+ then
+ Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
+ return;
+ end if;
+
+ elsif Nkind (Parent (N)) in N_Binary_Op
+ and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ then
+ declare
+ Op1 : constant Node_Id := Left_Opnd (Parent (N));
+ Op2 : constant Node_Id := Right_Opnd (Parent (N));
+ Lhs : constant Node_Id := Name (Parent (Parent (N)));
+
+ begin
+ if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
+ if N = Op1
+ and then Nkind (Op2) = N_Op_Not
+ then
+ -- (not A) op (not B) can be reduced to a single call
+
+ return;
+
+ elsif N = Op2
+ and then Nkind (Parent (N)) = N_Op_Xor
+ then
+ -- A xor (not B) can also be special-cased
+
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+
+ A := Make_Defining_Identifier (Loc, Name_uA);
+ B := Make_Defining_Identifier (Loc, Name_uB);
+ J := Make_Defining_Identifier (Loc, Name_uJ);
+
+ A_J :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (A, Loc),
+ Expressions => New_List (New_Reference_To (J, Loc)));
+
+ B_J :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (B, Loc),
+ Expressions => New_List (New_Reference_To (J, Loc)));
+
+ Loop_Statement :=
+ Make_Implicit_Loop_Statement (N,
+ Identifier => Empty,
+
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => J,
+ Discrete_Subtype_Definition =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Chars (A)),
+ Attribute_Name => Name_Range))),
+
+ Statements => New_List (
+ Make_Assignment_Statement (Loc,
+ Name => B_J,
+ Expression => Make_Op_Not (Loc, A_J))));
+
+ Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
+ Set_Is_Inlined (Func_Name);
+
+ Insert_Action (N,
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Func_Name,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type => New_Reference_To (Typ, Loc))),
+ Result_Definition => New_Reference_To (Typ, Loc)),
+
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => B,
+ Object_Definition => New_Reference_To (Arr, Loc))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Loop_Statement,
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ Make_Identifier (Loc, Chars (B)))))));
+
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Func_Name, Loc),
+ Parameter_Associations => New_List (Opnd)));
+
+ Analyze_And_Resolve (N, Typ);
+ end Expand_N_Op_Not;
+
+ --------------------
+ -- Expand_N_Op_Or --
+ --------------------
+
+ procedure Expand_N_Op_Or (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Etype (N)) then
+ Expand_Boolean_Operator (N);
+
+ elsif Is_Boolean_Type (Etype (N)) then
+ Adjust_Condition (Left_Opnd (N));
+ Adjust_Condition (Right_Opnd (N));
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+ end Expand_N_Op_Or;
+
+ ----------------------
+ -- Expand_N_Op_Plus --
+ ----------------------
+
+ procedure Expand_N_Op_Plus (N : Node_Id) is
+ begin
+ Unary_Op_Validity_Checks (N);
+ end Expand_N_Op_Plus;
+
+ ---------------------
+ -- Expand_N_Op_Rem --
+ ---------------------
+
+ procedure Expand_N_Op_Rem (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ LLB : Uint;
+ Llo : Uint;
+ Lhi : Uint;
+ LOK : Boolean;
+ Rlo : Uint;
+ Rhi : Uint;
+ ROK : Boolean;
+
+ pragma Warnings (Off, Lhi);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Integer_Type (Etype (N)) then
+ Apply_Divide_Check (N);
+ end if;
+
+ -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
+ -- but it is useful with other back ends (e.g. AAMP), and is certainly
+ -- harmless.
+
+ if Is_Integer_Type (Etype (N))
+ and then Compile_Time_Known_Value (Right)
+ and then Expr_Value (Right) = Uint_1
+ then
+ -- Call Remove_Side_Effects to ensure that any side effects in the
+ -- ignored left operand (in particular function calls to user defined
+ -- functions) are properly executed.
+
+ Remove_Side_Effects (Left);
+
+ Rewrite (N, Make_Integer_Literal (Loc, 0));
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- Deal with annoying case of largest negative number remainder minus
+ -- one. Gigi does not handle this case correctly, because it generates
+ -- a divide instruction which may trap in this case.
+
+ -- In fact the check is quite easy, if the right operand is -1, then
+ -- the remainder is always 0, and we can just ignore the left operand
+ -- completely in this case.
+
+ Determine_Range (Right, ROK, Rlo, Rhi);
+ Determine_Range (Left, LOK, Llo, Lhi);
+
+ -- The operand type may be private (e.g. in the expansion of an
+ -- intrinsic operation) so we must use the underlying type to get the
+ -- bounds, and convert the literals explicitly.
+
+ LLB :=
+ Expr_Value
+ (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
+
+ -- Now perform the test, generating code only if needed
+
+ if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
+ and then
+ ((not LOK) or else (Llo = LLB))
+ then
+ Rewrite (N,
+ Make_Conditional_Expression (Loc,
+ Expressions => New_List (
+ Make_Op_Eq (Loc,
+ Left_Opnd => Duplicate_Subexpr (Right),
+ Right_Opnd =>
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, -1))),
+
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, Uint_0)),
+
+ Relocate_Node (N))));
+
+ Set_Analyzed (Next (Next (First (Expressions (N)))));
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end Expand_N_Op_Rem;
+
+ -----------------------------
+ -- Expand_N_Op_Rotate_Left --
+ -----------------------------
+
+ procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
+ begin
+ Binary_Op_Validity_Checks (N);
+ end Expand_N_Op_Rotate_Left;
+
+ ------------------------------
+ -- Expand_N_Op_Rotate_Right --
+ ------------------------------
+
+ procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
+ begin
+ Binary_Op_Validity_Checks (N);
+ end Expand_N_Op_Rotate_Right;
+
+ ----------------------------
+ -- Expand_N_Op_Shift_Left --
+ ----------------------------
+
+ procedure Expand_N_Op_Shift_Left (N : Node_Id) is
+ begin
+ Binary_Op_Validity_Checks (N);
+ end Expand_N_Op_Shift_Left;
+
+ -----------------------------
+ -- Expand_N_Op_Shift_Right --
+ -----------------------------
+
+ procedure Expand_N_Op_Shift_Right (N : Node_Id) is
+ begin
+ Binary_Op_Validity_Checks (N);
+ end Expand_N_Op_Shift_Right;
+
+ ----------------------------------------
+ -- Expand_N_Op_Shift_Right_Arithmetic --
+ ----------------------------------------
+
+ procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
+ begin
+ Binary_Op_Validity_Checks (N);
+ end Expand_N_Op_Shift_Right_Arithmetic;
+
+ --------------------------
+ -- Expand_N_Op_Subtract --
+ --------------------------
+
+ procedure Expand_N_Op_Subtract (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ -- N - 0 = N for integer types
+
+ if Is_Integer_Type (Typ)
+ and then Compile_Time_Known_Value (Right_Opnd (N))
+ and then Expr_Value (Right_Opnd (N)) = 0
+ then
+ Rewrite (N, Left_Opnd (N));
+ return;
+ end if;
+
+ -- Arithmetic overflow checks for signed integer/fixed point types
+
+ if Is_Signed_Integer_Type (Typ)
+ or else Is_Fixed_Point_Type (Typ)
+ then
+ Apply_Arithmetic_Overflow_Check (N);
+
+ -- Vax floating-point types case
+
+ elsif Vax_Float (Typ) then
+ Expand_Vax_Arith (N);
+ end if;
+ end Expand_N_Op_Subtract;
+
+ ---------------------
+ -- Expand_N_Op_Xor --
+ ---------------------
+
+ procedure Expand_N_Op_Xor (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Binary_Op_Validity_Checks (N);
+
+ if Is_Array_Type (Etype (N)) then
+ Expand_Boolean_Operator (N);
+
+ elsif Is_Boolean_Type (Etype (N)) then
+ Adjust_Condition (Left_Opnd (N));
+ Adjust_Condition (Right_Opnd (N));
+ Set_Etype (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ end if;
+ end Expand_N_Op_Xor;
+
+ ----------------------
+ -- Expand_N_Or_Else --
+ ----------------------
+
+ -- Expand into conditional expression if Actions present, and also
+ -- deal with optimizing case of arguments being True or False.
+
+ procedure Expand_N_Or_Else (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ Actlist : List_Id;
+
+ begin
+ -- Deal with non-standard booleans
+
+ if Is_Boolean_Type (Typ) then
+ Adjust_Condition (Left);
+ Adjust_Condition (Right);
+ Set_Etype (N, Standard_Boolean);
+ end if;
+
+ -- Check for cases where left argument is known to be True or False
+
+ if Compile_Time_Known_Value (Left) then
+
+ -- If left argument is False, change (False or else Right) to Right.
+ -- Any actions associated with Right will be executed unconditionally
+ -- and can thus be inserted into the tree unconditionally.
+
+ if Expr_Value_E (Left) = Standard_False then
+ if Present (Actions (N)) then
+ Insert_Actions (N, Actions (N));
+ end if;
+
+ Rewrite (N, Right);
+
+ -- If left argument is True, change (True and then Right) to True. In
+ -- this case we can forget the actions associated with Right, since
+ -- they will never be executed.
+
+ else pragma Assert (Expr_Value_E (Left) = Standard_True);
+ Kill_Dead_Code (Right);
+ Kill_Dead_Code (Actions (N));
+ Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
+ end if;
+
+ Adjust_Result_Type (N, Typ);
+ return;
+ end if;
+
+ -- If Actions are present, we expand
+
+ -- left or else right
+
+ -- into
+
+ -- if left then True else right end
+
+ -- with the actions becoming the Else_Actions of the conditional
+ -- expression. This conditional expression is then further expanded
+ -- (and will eventually disappear)
+
+ if Present (Actions (N)) then
+ Actlist := Actions (N);
+ Rewrite (N,
+ Make_Conditional_Expression (Loc,
+ Expressions => New_List (
+ Left,
+ New_Occurrence_Of (Standard_True, Loc),
+ Right)));
+
+ Set_Else_Actions (N, Actlist);
+ Analyze_And_Resolve (N, Standard_Boolean);
+ Adjust_Result_Type (N, Typ);
+ return;
+ end if;
+
+ -- No actions present, check for cases of right argument True/False
+
+ if Compile_Time_Known_Value (Right) then
+
+ -- Change (Left or else False) to Left. Note that we know there are
+ -- no actions associated with the True operand, since we just checked
+ -- for this case above.
+
+ if Expr_Value_E (Right) = Standard_False then
+ Rewrite (N, Left);
+
+ -- Change (Left or else True) to True, making sure to preserve any
+ -- side effects associated with the Left operand.
+
+ else pragma Assert (Expr_Value_E (Right) = Standard_True);
+ Remove_Side_Effects (Left);
+ Rewrite
+ (N, New_Occurrence_Of (Standard_True, Loc));
+ end if;
+ end if;
+
+ Adjust_Result_Type (N, Typ);
+ end Expand_N_Or_Else;
+
+ -----------------------------------
+ -- Expand_N_Qualified_Expression --
+ -----------------------------------
+
+ procedure Expand_N_Qualified_Expression (N : Node_Id) is
+ Operand : constant Node_Id := Expression (N);
+ Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
+
+ begin
+ -- Do validity check if validity checking operands
+
+ if Validity_Checks_On
+ and then Validity_Check_Operands
+ then
+ Ensure_Valid (Operand);
+ end if;
+
+ -- Apply possible constraint check
+
+ Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
+ end Expand_N_Qualified_Expression;
+
+ ---------------------------------
+ -- Expand_N_Selected_Component --
+ ---------------------------------
+
+ -- If the selector is a discriminant of a concurrent object, rewrite the
+ -- prefix to denote the corresponding record type.
+
+ procedure Expand_N_Selected_Component (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Par : constant Node_Id := Parent (N);
+ P : constant Node_Id := Prefix (N);
+ Ptyp : Entity_Id := Underlying_Type (Etype (P));
+ Disc : Entity_Id;
+ New_N : Node_Id;
+ Dcon : Elmt_Id;
+
+ function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
+ -- Gigi needs a temporary for prefixes that depend on a discriminant,
+ -- unless the context of an assignment can provide size information.
+ -- Don't we have a general routine that does this???
+
+ -----------------------
+ -- In_Left_Hand_Side --
+ -----------------------
+
+ function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
+ begin
+ return (Nkind (Parent (Comp)) = N_Assignment_Statement
+ and then Comp = Name (Parent (Comp)))
+ or else (Present (Parent (Comp))
+ and then Nkind (Parent (Comp)) in N_Subexpr
+ and then In_Left_Hand_Side (Parent (Comp)));
+ end In_Left_Hand_Side;
+
+ -- Start of processing for Expand_N_Selected_Component
+
+ begin
+ -- Insert explicit dereference if required
+
+ if Is_Access_Type (Ptyp) then
+ Insert_Explicit_Dereference (P);
+ Analyze_And_Resolve (P, Designated_Type (Ptyp));
+
+ if Ekind (Etype (P)) = E_Private_Subtype
+ and then Is_For_Access_Subtype (Etype (P))
+ then
+ Set_Etype (P, Base_Type (Etype (P)));
+ end if;
+
+ Ptyp := Etype (P);
+ end if;
+
+ -- Deal with discriminant check required
+
+ if Do_Discriminant_Check (N) then
+
+ -- Present the discriminant checking function to the backend, so that
+ -- it can inline the call to the function.
+
+ Add_Inlined_Body
+ (Discriminant_Checking_Func
+ (Original_Record_Component (Entity (Selector_Name (N)))));
+
+ -- Now reset the flag and generate the call
+
+ Set_Do_Discriminant_Check (N, False);
+ Generate_Discriminant_Check (N);
+ end if;
+
+ -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
+ -- function, then additional actuals must be passed.
+
+ if Ada_Version >= Ada_05
+ and then Is_Build_In_Place_Function_Call (P)
+ then
+ Make_Build_In_Place_Call_In_Anonymous_Context (P);
+ end if;
+
+ -- Gigi cannot handle unchecked conversions that are the prefix of a
+ -- selected component with discriminants. This must be checked during
+ -- expansion, because during analysis the type of the selector is not
+ -- known at the point the prefix is analyzed. If the conversion is the
+ -- target of an assignment, then we cannot force the evaluation.
+
+ if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
+ and then Has_Discriminants (Etype (N))
+ and then not In_Left_Hand_Side (N)
+ then
+ Force_Evaluation (Prefix (N));
+ end if;
+
+ -- Remaining processing applies only if selector is a discriminant
+
+ if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
+
+ -- If the selector is a discriminant of a constrained record type,
+ -- we may be able to rewrite the expression with the actual value
+ -- of the discriminant, a useful optimization in some cases.
+
+ if Is_Record_Type (Ptyp)
+ and then Has_Discriminants (Ptyp)
+ and then Is_Constrained (Ptyp)
+ then
+ -- Do this optimization for discrete types only, and not for
+ -- access types (access discriminants get us into trouble!)
+
+ if not Is_Discrete_Type (Etype (N)) then
+ null;
+
+ -- Don't do this on the left hand of an assignment statement.
+ -- Normally one would think that references like this would
+ -- not occur, but they do in generated code, and mean that
+ -- we really do want to assign the discriminant!
+
+ elsif Nkind (Par) = N_Assignment_Statement
+ and then Name (Par) = N
+ then
+ null;
+
+ -- Don't do this optimization for the prefix of an attribute or
+ -- the operand of an object renaming declaration since these are
+ -- contexts where we do not want the value anyway.
+
+ elsif (Nkind (Par) = N_Attribute_Reference
+ and then Prefix (Par) = N)
+ or else Is_Renamed_Object (N)
+ then
+ null;
+
+ -- Don't do this optimization if we are within the code for a
+ -- discriminant check, since the whole point of such a check may
+ -- be to verify the condition on which the code below depends!
+
+ elsif Is_In_Discriminant_Check (N) then
+ null;
+
+ -- Green light to see if we can do the optimization. There is
+ -- still one condition that inhibits the optimization below but
+ -- now is the time to check the particular discriminant.
+
+ else
+ -- Loop through discriminants to find the matching discriminant
+ -- constraint to see if we can copy it.
+
+ Disc := First_Discriminant (Ptyp);
+ Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
+ Discr_Loop : while Present (Dcon) loop
+
+ -- Check if this is the matching discriminant
+
+ if Disc = Entity (Selector_Name (N)) then
+
+ -- Here we have the matching discriminant. Check for
+ -- the case of a discriminant of a component that is
+ -- constrained by an outer discriminant, which cannot
+ -- be optimized away.
+
+ if
+ Denotes_Discriminant
+ (Node (Dcon), Check_Concurrent => True)
+ then
+ exit Discr_Loop;
+
+ -- In the context of a case statement, the expression may
+ -- have the base type of the discriminant, and we need to
+ -- preserve the constraint to avoid spurious errors on
+ -- missing cases.
+
+ elsif Nkind (Parent (N)) = N_Case_Statement
+ and then Etype (Node (Dcon)) /= Etype (Disc)
+ then
+ Rewrite (N,
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Disc), Loc),
+ Expression =>
+ New_Copy_Tree (Node (Dcon))));
+ Analyze_And_Resolve (N, Etype (Disc));
+
+ -- In case that comes out as a static expression,
+ -- reset it (a selected component is never static).
+
+ Set_Is_Static_Expression (N, False);
+ return;
+
+ -- Otherwise we can just copy the constraint, but the
+ -- result is certainly not static! In some cases the
+ -- discriminant constraint has been analyzed in the
+ -- context of the original subtype indication, but for
+ -- itypes the constraint might not have been analyzed
+ -- yet, and this must be done now.
+
+ else
+ Rewrite (N, New_Copy_Tree (Node (Dcon)));
+ Analyze_And_Resolve (N);
+ Set_Is_Static_Expression (N, False);
+ return;
+ end if;
+ end if;
+
+ Next_Elmt (Dcon);
+ Next_Discriminant (Disc);
+ end loop Discr_Loop;
+
+ -- Note: the above loop should always find a matching
+ -- discriminant, but if it does not, we just missed an
+ -- optimization due to some glitch (perhaps a previous error),
+ -- so ignore.
+
+ end if;
+ end if;
+
+ -- The only remaining processing is in the case of a discriminant of
+ -- a concurrent object, where we rewrite the prefix to denote the
+ -- corresponding record type. If the type is derived and has renamed
+ -- discriminants, use corresponding discriminant, which is the one
+ -- that appears in the corresponding record.
+
+ if not Is_Concurrent_Type (Ptyp) then
+ return;
+ end if;
+
+ Disc := Entity (Selector_Name (N));
+
+ if Is_Derived_Type (Ptyp)
+ and then Present (Corresponding_Discriminant (Disc))
+ then
+ Disc := Corresponding_Discriminant (Disc);
+ end if;
+
+ New_N :=
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
+ New_Copy_Tree (P)),
+ Selector_Name => Make_Identifier (Loc, Chars (Disc)));
+
+ Rewrite (N, New_N);
+ Analyze (N);
+ end if;
+ end Expand_N_Selected_Component;
+
+ --------------------
+ -- Expand_N_Slice --
+ --------------------
+
+ procedure Expand_N_Slice (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Pfx : constant Node_Id := Prefix (N);
+ Ptp : Entity_Id := Etype (Pfx);
+
+ function Is_Procedure_Actual (N : Node_Id) return Boolean;
+ -- Check whether the argument is an actual for a procedure call, in
+ -- which case the expansion of a bit-packed slice is deferred until the
+ -- call itself is expanded. The reason this is required is that we might
+ -- have an IN OUT or OUT parameter, and the copy out is essential, and
+ -- that copy out would be missed if we created a temporary here in
+ -- Expand_N_Slice. Note that we don't bother to test specifically for an
+ -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
+ -- is harmless to defer expansion in the IN case, since the call
+ -- processing will still generate the appropriate copy in operation,
+ -- which will take care of the slice.
+
+ procedure Make_Temporary;
+ -- Create a named variable for the value of the slice, in cases where
+ -- the back-end cannot handle it properly, e.g. when packed types or
+ -- unaligned slices are involved.
+
+ -------------------------
+ -- Is_Procedure_Actual --
+ -------------------------
+
+ function Is_Procedure_Actual (N : Node_Id) return Boolean is
+ Par : Node_Id := Parent (N);
+
+ begin
+ loop
+ -- If our parent is a procedure call we can return
+
+ if Nkind (Par) = N_Procedure_Call_Statement then
+ return True;
+
+ -- If our parent is a type conversion, keep climbing the tree,
+ -- since a type conversion can be a procedure actual. Also keep
+ -- climbing if parameter association or a qualified expression,
+ -- since these are additional cases that do can appear on
+ -- procedure actuals.
+
+ elsif Nkind_In (Par, N_Type_Conversion,
+ N_Parameter_Association,
+ N_Qualified_Expression)
+ then
+ Par := Parent (Par);
+
+ -- Any other case is not what we are looking for
+
+ else
+ return False;
+ end if;
+ end loop;
+ end Is_Procedure_Actual;
+
+ --------------------
+ -- Make_Temporary --
+ --------------------
+
+ procedure Make_Temporary is
+ Decl : Node_Id;
+ Ent : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+ begin
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Ent,
+ Object_Definition => New_Occurrence_Of (Typ, Loc));
+
+ Set_No_Initialization (Decl);
+
+ Insert_Actions (N, New_List (
+ Decl,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Ent, Loc),
+ Expression => Relocate_Node (N))));
+
+ Rewrite (N, New_Occurrence_Of (Ent, Loc));
+ Analyze_And_Resolve (N, Typ);
+ end Make_Temporary;
+
+ -- Start of processing for Expand_N_Slice
+
+ begin
+ -- Special handling for access types
+
+ if Is_Access_Type (Ptp) then
+
+ Ptp := Designated_Type (Ptp);
+
+ Rewrite (Pfx,
+ Make_Explicit_Dereference (Sloc (N),
+ Prefix => Relocate_Node (Pfx)));
+
+ Analyze_And_Resolve (Pfx, Ptp);
+ end if;
+
+ -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
+ -- function, then additional actuals must be passed.
+
+ if Ada_Version >= Ada_05
+ and then Is_Build_In_Place_Function_Call (Pfx)
+ then
+ Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
+ end if;
+
+ -- Range checks are potentially also needed for cases involving a slice
+ -- indexed by a subtype indication, but Do_Range_Check can currently
+ -- only be set for expressions ???
+
+ if not Index_Checks_Suppressed (Ptp)
+ and then (not Is_Entity_Name (Pfx)
+ or else not Index_Checks_Suppressed (Entity (Pfx)))
+ and then Nkind (Discrete_Range (N)) /= N_Subtype_Indication
+
+ -- Do not enable range check to nodes associated with the frontend
+ -- expansion of the dispatch table. We first check if Ada.Tags is
+ -- already loaded to avoid the addition of an undesired dependence
+ -- on such run-time unit.
+
+ and then
+ (VM_Target /= No_VM
+ or else not
+ (RTU_Loaded (Ada_Tags)
+ and then Nkind (Prefix (N)) = N_Selected_Component
+ and then Present (Entity (Selector_Name (Prefix (N))))
+ and then Entity (Selector_Name (Prefix (N))) =
+ RTE_Record_Component (RE_Prims_Ptr)))
+ then
+ Enable_Range_Check (Discrete_Range (N));
+ end if;
+
+ -- The remaining case to be handled is packed slices. We can leave
+ -- packed slices as they are in the following situations:
+
+ -- 1. Right or left side of an assignment (we can handle this
+ -- situation correctly in the assignment statement expansion).
+
+ -- 2. Prefix of indexed component (the slide is optimized away in this
+ -- case, see the start of Expand_N_Slice.)
+
+ -- 3. Object renaming declaration, since we want the name of the
+ -- slice, not the value.
+
+ -- 4. Argument to procedure call, since copy-in/copy-out handling may
+ -- be required, and this is handled in the expansion of call
+ -- itself.
+
+ -- 5. Prefix of an address attribute (this is an error which is caught
+ -- elsewhere, and the expansion would interfere with generating the
+ -- error message).
+
+ if not Is_Packed (Typ) then
+
+ -- Apply transformation for actuals of a function call, where
+ -- Expand_Actuals is not used.
+
+ if Nkind (Parent (N)) = N_Function_Call
+ and then Is_Possibly_Unaligned_Slice (N)
+ then
+ Make_Temporary;
+ end if;
+
+ elsif Nkind (Parent (N)) = N_Assignment_Statement
+ or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ and then Parent (N) = Name (Parent (Parent (N))))
+ then
+ return;
+
+ elsif Nkind (Parent (N)) = N_Indexed_Component
+ or else Is_Renamed_Object (N)
+ or else Is_Procedure_Actual (N)
+ then
+ return;
+
+ elsif Nkind (Parent (N)) = N_Attribute_Reference
+ and then Attribute_Name (Parent (N)) = Name_Address
+ then
+ return;
+
+ else
+ Make_Temporary;
+ end if;
+ end Expand_N_Slice;
+
+ ------------------------------
+ -- Expand_N_Type_Conversion --
+ ------------------------------
+
+ procedure Expand_N_Type_Conversion (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Operand : constant Node_Id := Expression (N);
+ Target_Type : constant Entity_Id := Etype (N);
+ Operand_Type : Entity_Id := Etype (Operand);
+
+ procedure Handle_Changed_Representation;
+ -- This is called in the case of record and array type conversions to
+ -- see if there is a change of representation to be handled. Change of
+ -- representation is actually handled at the assignment statement level,
+ -- and what this procedure does is rewrite node N conversion as an
+ -- assignment to temporary. If there is no change of representation,
+ -- then the conversion node is unchanged.
+
+ procedure Real_Range_Check;
+ -- Handles generation of range check for real target value
+
+ -----------------------------------
+ -- Handle_Changed_Representation --
+ -----------------------------------
+
+ procedure Handle_Changed_Representation is
+ Temp : Entity_Id;
+ Decl : Node_Id;
+ Odef : Node_Id;
+ Disc : Node_Id;
+ N_Ix : Node_Id;
+ Cons : List_Id;
+
+ begin
+ -- Nothing else to do if no change of representation
+
+ if Same_Representation (Operand_Type, Target_Type) then
+ return;
+
+ -- The real change of representation work is done by the assignment
+ -- statement processing. So if this type conversion is appearing as
+ -- the expression of an assignment statement, nothing needs to be
+ -- done to the conversion.
+
+ elsif Nkind (Parent (N)) = N_Assignment_Statement then
+ return;
+
+ -- Otherwise we need to generate a temporary variable, and do the
+ -- change of representation assignment into that temporary variable.
+ -- The conversion is then replaced by a reference to this variable.
+
+ else
+ Cons := No_List;
+
+ -- If type is unconstrained we have to add a constraint, copied
+ -- from the actual value of the left hand side.
+
+ if not Is_Constrained (Target_Type) then
+ if Has_Discriminants (Operand_Type) then
+ Disc := First_Discriminant (Operand_Type);
+
+ if Disc /= First_Stored_Discriminant (Operand_Type) then
+ Disc := First_Stored_Discriminant (Operand_Type);
+ end if;
+
+ Cons := New_List;
+ while Present (Disc) loop
+ Append_To (Cons,
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr_Move_Checks (Operand),
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (Disc))));
+ Next_Discriminant (Disc);
+ end loop;
+
+ elsif Is_Array_Type (Operand_Type) then
+ N_Ix := First_Index (Target_Type);
+ Cons := New_List;
+
+ for J in 1 .. Number_Dimensions (Operand_Type) loop
+
+ -- We convert the bounds explicitly. We use an unchecked
+ -- conversion because bounds checks are done elsewhere.
+
+ Append_To (Cons,
+ Make_Range (Loc,
+ Low_Bound =>
+ Unchecked_Convert_To (Etype (N_Ix),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks
+ (Operand, Name_Req => True),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)))),
+
+ High_Bound =>
+ Unchecked_Convert_To (Etype (N_Ix),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks
+ (Operand, Name_Req => True),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))))));
+
+ Next_Index (N_Ix);
+ end loop;
+ end if;
+ end if;
+
+ Odef := New_Occurrence_Of (Target_Type, Loc);
+
+ if Present (Cons) then
+ Odef :=
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => Odef,
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Cons));
+ end if;
+
+ Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => Odef);
+
+ Set_No_Initialization (Decl, True);
+
+ -- Insert required actions. It is essential to suppress checks
+ -- since we have suppressed default initialization, which means
+ -- that the variable we create may have no discriminants.
+
+ Insert_Actions (N,
+ New_List (
+ Decl,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Temp, Loc),
+ Expression => Relocate_Node (N))),
+ Suppress => All_Checks);
+
+ Rewrite (N, New_Occurrence_Of (Temp, Loc));
+ return;
+ end if;
+ end Handle_Changed_Representation;
+
+ ----------------------
+ -- Real_Range_Check --
+ ----------------------
+
+ -- Case of conversions to floating-point or fixed-point. If range checks
+ -- are enabled and the target type has a range constraint, we convert:
+
+ -- typ (x)
+
+ -- to
+
+ -- Tnn : typ'Base := typ'Base (x);
+ -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
+ -- Tnn
+
+ -- This is necessary when there is a conversion of integer to float or
+ -- to fixed-point to ensure that the correct checks are made. It is not
+ -- necessary for float to float where it is enough to simply set the
+ -- Do_Range_Check flag.
+
+ procedure Real_Range_Check is
+ Btyp : constant Entity_Id := Base_Type (Target_Type);
+ Lo : constant Node_Id := Type_Low_Bound (Target_Type);
+ Hi : constant Node_Id := Type_High_Bound (Target_Type);
+ Xtyp : constant Entity_Id := Etype (Operand);
+ Conv : Node_Id;
+ Tnn : Entity_Id;
+
+ begin
+ -- Nothing to do if conversion was rewritten
+
+ if Nkind (N) /= N_Type_Conversion then
+ return;
+ end if;
+
+ -- Nothing to do if range checks suppressed, or target has the same
+ -- range as the base type (or is the base type).
+
+ if Range_Checks_Suppressed (Target_Type)
+ or else (Lo = Type_Low_Bound (Btyp)
+ and then
+ Hi = Type_High_Bound (Btyp))
+ then
+ return;
+ end if;
+
+ -- Nothing to do if expression is an entity on which checks have been
+ -- suppressed.
+
+ if Is_Entity_Name (Operand)
+ and then Range_Checks_Suppressed (Entity (Operand))
+ then
+ return;
+ end if;
+
+ -- Nothing to do if bounds are all static and we can tell that the
+ -- expression is within the bounds of the target. Note that if the
+ -- operand is of an unconstrained floating-point type, then we do
+ -- not trust it to be in range (might be infinite)
+
+ declare
+ S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
+ S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
+
+ begin
+ if (not Is_Floating_Point_Type (Xtyp)
+ or else Is_Constrained (Xtyp))
+ and then Compile_Time_Known_Value (S_Lo)
+ and then Compile_Time_Known_Value (S_Hi)
+ and then Compile_Time_Known_Value (Hi)
+ and then Compile_Time_Known_Value (Lo)
+ then
+ declare
+ D_Lov : constant Ureal := Expr_Value_R (Lo);
+ D_Hiv : constant Ureal := Expr_Value_R (Hi);
+ S_Lov : Ureal;
+ S_Hiv : Ureal;
+
+ begin
+ if Is_Real_Type (Xtyp) then
+ S_Lov := Expr_Value_R (S_Lo);
+ S_Hiv := Expr_Value_R (S_Hi);
+ else
+ S_Lov := UR_From_Uint (Expr_Value (S_Lo));
+ S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
+ end if;
+
+ if D_Hiv > D_Lov
+ and then S_Lov >= D_Lov
+ and then S_Hiv <= D_Hiv
+ then
+ Set_Do_Range_Check (Operand, False);
+ return;
+ end if;
+ end;
+ end if;
+ end;
+
+ -- For float to float conversions, we are done
+
+ if Is_Floating_Point_Type (Xtyp)
+ and then
+ Is_Floating_Point_Type (Btyp)
+ then
+ return;
+ end if;
+
+ -- Otherwise rewrite the conversion as described above
+
+ Conv := Relocate_Node (N);
+ Rewrite
+ (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
+ Set_Etype (Conv, Btyp);
+
+ -- Enable overflow except for case of integer to float conversions,
+ -- where it is never required, since we can never have overflow in
+ -- this case.
+
+ if not Is_Integer_Type (Etype (Operand)) then
+ Enable_Overflow_Check (Conv);
+ end if;
+
+ Tnn :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ Insert_Actions (N, New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Tnn,
+ Object_Definition => New_Occurrence_Of (Btyp, Loc),
+ Expression => Conv),
+
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd => New_Occurrence_Of (Tnn, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix =>
+ New_Occurrence_Of (Target_Type, Loc))),
+
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => New_Occurrence_Of (Tnn, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Last,
+ Prefix =>
+ New_Occurrence_Of (Target_Type, Loc)))),
+ Reason => CE_Range_Check_Failed)));
+
+ Rewrite (N, New_Occurrence_Of (Tnn, Loc));
+ Analyze_And_Resolve (N, Btyp);
+ end Real_Range_Check;
+
+ -- Start of processing for Expand_N_Type_Conversion
+
+ begin
+ -- Nothing at all to do if conversion is to the identical type so remove
+ -- the conversion completely, it is useless.
+
+ if Operand_Type = Target_Type then
+ Rewrite (N, Relocate_Node (Operand));
+ return;
+ end if;
+
+ -- Nothing to do if this is the second argument of read. This is a
+ -- "backwards" conversion that will be handled by the specialized code
+ -- in attribute processing.
+
+ if Nkind (Parent (N)) = N_Attribute_Reference
+ and then Attribute_Name (Parent (N)) = Name_Read
+ and then Next (First (Expressions (Parent (N)))) = N
+ then
+ return;
+ end if;
+
+ -- Here if we may need to expand conversion
+
+ -- Do validity check if validity checking operands
+
+ if Validity_Checks_On
+ and then Validity_Check_Operands
+ then
+ Ensure_Valid (Operand);
+ end if;
+
+ -- Special case of converting from non-standard boolean type
+
+ if Is_Boolean_Type (Operand_Type)
+ and then (Nonzero_Is_True (Operand_Type))
+ then
+ Adjust_Condition (Operand);
+ Set_Etype (Operand, Standard_Boolean);
+ Operand_Type := Standard_Boolean;
+ end if;
+
+ -- Case of converting to an access type
+
+ if Is_Access_Type (Target_Type) then
+
+ -- Apply an accessibility check when the conversion operand is an
+ -- access parameter (or a renaming thereof), unless conversion was
+ -- expanded from an Unchecked_ or Unrestricted_Access attribute.
+ -- Note that other checks may still need to be applied below (such
+ -- as tagged type checks).
+
+ if Is_Entity_Name (Operand)
+ and then
+ (Is_Formal (Entity (Operand))
+ or else
+ (Present (Renamed_Object (Entity (Operand)))
+ and then Is_Entity_Name (Renamed_Object (Entity (Operand)))
+ and then Is_Formal
+ (Entity (Renamed_Object (Entity (Operand))))))
+ and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
+ and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
+ or else Attribute_Name (Original_Node (N)) = Name_Access)
+ then
+ Apply_Accessibility_Check
+ (Operand, Target_Type, Insert_Node => Operand);
+
+ -- If the level of the operand type is statically deeper than the
+ -- level of the target type, then force Program_Error. Note that this
+ -- can only occur for cases where the attribute is within the body of
+ -- an instantiation (otherwise the conversion will already have been
+ -- rejected as illegal). Note: warnings are issued by the analyzer
+ -- for the instance cases.
+
+ elsif In_Instance_Body
+ and then Type_Access_Level (Operand_Type) >
+ Type_Access_Level (Target_Type)
+ then
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Target_Type);
+
+ -- When the operand is a selected access discriminant the check needs
+ -- to be made against the level of the object denoted by the prefix
+ -- of the selected name. Force Program_Error for this case as well
+ -- (this accessibility violation can only happen if within the body
+ -- of an instantiation).
+
+ elsif In_Instance_Body
+ and then Ekind (Operand_Type) = E_Anonymous_Access_Type
+ and then Nkind (Operand) = N_Selected_Component
+ and then Object_Access_Level (Operand) >
+ Type_Access_Level (Target_Type)
+ then
+ Rewrite (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Target_Type);
+ end if;
+ end if;
+
+ -- Case of conversions of tagged types and access to tagged types
+
+ -- When needed, that is to say when the expression is class-wide, Add
+ -- runtime a tag check for (strict) downward conversion by using the
+ -- membership test, generating:
+
+ -- [constraint_error when Operand not in Target_Type'Class]
+
+ -- or in the access type case
+
+ -- [constraint_error
+ -- when Operand /= null
+ -- and then Operand.all not in
+ -- Designated_Type (Target_Type)'Class]
+
+ if (Is_Access_Type (Target_Type)
+ and then Is_Tagged_Type (Designated_Type (Target_Type)))
+ or else Is_Tagged_Type (Target_Type)
+ then
+ -- Do not do any expansion in the access type case if the parent is a
+ -- renaming, since this is an error situation which will be caught by
+ -- Sem_Ch8, and the expansion can interfere with this error check.
+
+ if Is_Access_Type (Target_Type)
+ and then Is_Renamed_Object (N)
+ then
+ return;
+ end if;
+
+ -- Otherwise, proceed with processing tagged conversion
+
+ declare
+ Actual_Op_Typ : Entity_Id;
+ Actual_Targ_Typ : Entity_Id;
+ Make_Conversion : Boolean := False;
+ Root_Op_Typ : Entity_Id;
+
+ procedure Make_Tag_Check (Targ_Typ : Entity_Id);
+ -- Create a membership check to test whether Operand is a member
+ -- of Targ_Typ. If the original Target_Type is an access, include
+ -- a test for null value. The check is inserted at N.
+
+ --------------------
+ -- Make_Tag_Check --
+ --------------------
+
+ procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
+ Cond : Node_Id;
+
+ begin
+ -- Generate:
+ -- [Constraint_Error
+ -- when Operand /= null
+ -- and then Operand.all not in Targ_Typ]
+
+ if Is_Access_Type (Target_Type) then
+ Cond :=
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
+ Right_Opnd => Make_Null (Loc)),
+
+ Right_Opnd =>
+ Make_Not_In (Loc,
+ Left_Opnd =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => Duplicate_Subexpr_No_Checks (Operand)),
+ Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
+
+ -- Generate:
+ -- [Constraint_Error when Operand not in Targ_Typ]
+
+ else
+ Cond :=
+ Make_Not_In (Loc,
+ Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
+ Right_Opnd => New_Reference_To (Targ_Typ, Loc));
+ end if;
+
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Cond,
+ Reason => CE_Tag_Check_Failed));
+ end Make_Tag_Check;
+
+ -- Start of processing
+
+ begin
+ if Is_Access_Type (Target_Type) then
+ Actual_Op_Typ := Designated_Type (Operand_Type);
+ Actual_Targ_Typ := Designated_Type (Target_Type);
+
+ else
+ Actual_Op_Typ := Operand_Type;
+ Actual_Targ_Typ := Target_Type;
+ end if;
+
+ Root_Op_Typ := Root_Type (Actual_Op_Typ);
+
+ -- Ada 2005 (AI-251): Handle interface type conversion
+
+ if Is_Interface (Actual_Op_Typ) then
+ Expand_Interface_Conversion (N, Is_Static => False);
+ return;
+ end if;
+
+ if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
+
+ -- Create a runtime tag check for a downward class-wide type
+ -- conversion.
+
+ if Is_Class_Wide_Type (Actual_Op_Typ)
+ and then Root_Op_Typ /= Actual_Targ_Typ
+ and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ)
+ then
+ Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
+ Make_Conversion := True;
+ end if;
+
+ -- AI05-0073: If the result subtype of the function is defined
+ -- by an access_definition designating a specific tagged type
+ -- T, a check is made that the result value is null or the tag
+ -- of the object designated by the result value identifies T.
+ -- Constraint_Error is raised if this check fails.
+
+ if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
+ declare
+ Func : Entity_Id;
+ Func_Typ : Entity_Id;
+
+ begin
+ -- Climb scope stack looking for the enclosing function
+
+ Func := Current_Scope;
+ while Present (Func)
+ and then Ekind (Func) /= E_Function
+ loop
+ Func := Scope (Func);
+ end loop;
+
+ -- The function's return subtype must be defined using
+ -- an access definition.
+
+ if Nkind (Result_Definition (Parent (Func))) =
+ N_Access_Definition
+ then
+ Func_Typ := Directly_Designated_Type (Etype (Func));
+
+ -- The return subtype denotes a specific tagged type,
+ -- in other words, a non class-wide type.
+
+ if Is_Tagged_Type (Func_Typ)
+ and then not Is_Class_Wide_Type (Func_Typ)
+ then
+ Make_Tag_Check (Actual_Targ_Typ);
+ Make_Conversion := True;
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- We have generated a tag check for either a class-wide type
+ -- conversion or for AI05-0073.
+
+ if Make_Conversion then
+ declare
+ Conv : Node_Id;
+ begin
+ Conv :=
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
+ Expression => Relocate_Node (Expression (N)));
+ Rewrite (N, Conv);
+ Analyze_And_Resolve (N, Target_Type);
+ end;
+ end if;
+ end if;
+ end;
+
+ -- Case of other access type conversions
+
+ elsif Is_Access_Type (Target_Type) then
+ Apply_Constraint_Check (Operand, Target_Type);
+
+ -- Case of conversions from a fixed-point type
+
+ -- These conversions require special expansion and processing, found in
+ -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
+ -- since from a semantic point of view, these are simple integer
+ -- conversions, which do not need further processing.
+
+ elsif Is_Fixed_Point_Type (Operand_Type)
+ and then not Conversion_OK (N)
+ then
+ -- We should never see universal fixed at this case, since the
+ -- expansion of the constituent divide or multiply should have
+ -- eliminated the explicit mention of universal fixed.
+
+ pragma Assert (Operand_Type /= Universal_Fixed);
+
+ -- Check for special case of the conversion to universal real that
+ -- occurs as a result of the use of a round attribute. In this case,
+ -- the real type for the conversion is taken from the target type of
+ -- the Round attribute and the result must be marked as rounded.
+
+ if Target_Type = Universal_Real
+ and then Nkind (Parent (N)) = N_Attribute_Reference
+ and then Attribute_Name (Parent (N)) = Name_Round
+ then
+ Set_Rounded_Result (N);
+ Set_Etype (N, Etype (Parent (N)));
+ end if;
+
+ -- Otherwise do correct fixed-conversion, but skip these if the
+ -- Conversion_OK flag is set, because from a semantic point of
+ -- view these are simple integer conversions needing no further
+ -- processing (the backend will simply treat them as integers)
+
+ if not Conversion_OK (N) then
+ if Is_Fixed_Point_Type (Etype (N)) then
+ Expand_Convert_Fixed_To_Fixed (N);
+ Real_Range_Check;
+
+ elsif Is_Integer_Type (Etype (N)) then
+ Expand_Convert_Fixed_To_Integer (N);
+
+ else
+ pragma Assert (Is_Floating_Point_Type (Etype (N)));
+ Expand_Convert_Fixed_To_Float (N);
+ Real_Range_Check;
+ end if;
+ end if;
+
+ -- Case of conversions to a fixed-point type
+
+ -- These conversions require special expansion and processing, found in
+ -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
+ -- since from a semantic point of view, these are simple integer
+ -- conversions, which do not need further processing.
+
+ elsif Is_Fixed_Point_Type (Target_Type)
+ and then not Conversion_OK (N)
+ then
+ if Is_Integer_Type (Operand_Type) then
+ Expand_Convert_Integer_To_Fixed (N);
+ Real_Range_Check;
+ else
+ pragma Assert (Is_Floating_Point_Type (Operand_Type));
+ Expand_Convert_Float_To_Fixed (N);
+ Real_Range_Check;
+ end if;
+
+ -- Case of float-to-integer conversions
+
+ -- We also handle float-to-fixed conversions with Conversion_OK set
+ -- since semantically the fixed-point target is treated as though it
+ -- were an integer in such cases.
+
+ elsif Is_Floating_Point_Type (Operand_Type)
+ and then
+ (Is_Integer_Type (Target_Type)
+ or else
+ (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
+ then
+ -- One more check here, gcc is still not able to do conversions of
+ -- this type with proper overflow checking, and so gigi is doing an
+ -- approximation of what is required by doing floating-point compares
+ -- with the end-point. But that can lose precision in some cases, and
+ -- give a wrong result. Converting the operand to Universal_Real is
+ -- helpful, but still does not catch all cases with 64-bit integers
+ -- on targets with only 64-bit floats
+
+ -- The above comment seems obsoleted by Apply_Float_Conversion_Check
+ -- Can this code be removed ???
+
+ if Do_Range_Check (Operand) then
+ Rewrite (Operand,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Universal_Real, Loc),
+ Expression =>
+ Relocate_Node (Operand)));
+
+ Set_Etype (Operand, Universal_Real);
+ Enable_Range_Check (Operand);
+ Set_Do_Range_Check (Expression (Operand), False);
+ end if;
+
+ -- Case of array conversions
+
+ -- Expansion of array conversions, add required length/range checks but
+ -- only do this if there is no change of representation. For handling of
+ -- this case, see Handle_Changed_Representation.
+
+ elsif Is_Array_Type (Target_Type) then
+
+ if Is_Constrained (Target_Type) then
+ Apply_Length_Check (Operand, Target_Type);
+ else
+ Apply_Range_Check (Operand, Target_Type);
+ end if;
+
+ Handle_Changed_Representation;
+
+ -- Case of conversions of discriminated types
+
+ -- Add required discriminant checks if target is constrained. Again this
+ -- change is skipped if we have a change of representation.
+
+ elsif Has_Discriminants (Target_Type)
+ and then Is_Constrained (Target_Type)
+ then
+ Apply_Discriminant_Check (Operand, Target_Type);
+ Handle_Changed_Representation;
+
+ -- Case of all other record conversions. The only processing required
+ -- is to check for a change of representation requiring the special
+ -- assignment processing.
+
+ elsif Is_Record_Type (Target_Type) then
+
+ -- Ada 2005 (AI-216): Program_Error is raised when converting from
+ -- a derived Unchecked_Union type to an unconstrained type that is
+ -- not Unchecked_Union if the operand lacks inferable discriminants.
+
+ if Is_Derived_Type (Operand_Type)
+ and then Is_Unchecked_Union (Base_Type (Operand_Type))
+ and then not Is_Constrained (Target_Type)
+ and then not Is_Unchecked_Union (Base_Type (Target_Type))
+ and then not Has_Inferable_Discriminants (Operand)
+ then
+ -- To prevent Gigi from generating illegal code, we generate a
+ -- Program_Error node, but we give it the target type of the
+ -- conversion.
+
+ declare
+ PE : constant Node_Id := Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction);
+
+ begin
+ Set_Etype (PE, Target_Type);
+ Rewrite (N, PE);
+
+ end;
+ else
+ Handle_Changed_Representation;
+ end if;
+
+ -- Case of conversions of enumeration types
+
+ elsif Is_Enumeration_Type (Target_Type) then
+
+ -- Special processing is required if there is a change of
+ -- representation (from enumeration representation clauses)
+
+ if not Same_Representation (Target_Type, Operand_Type) then
+
+ -- Convert: x(y) to x'val (ytyp'val (y))
+
+ Rewrite (N,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Target_Type, Loc),
+ Attribute_Name => Name_Val,
+ Expressions => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Operand_Type, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (Operand)))));
+
+ Analyze_And_Resolve (N, Target_Type);
+ end if;
+
+ -- Case of conversions to floating-point
+
+ elsif Is_Floating_Point_Type (Target_Type) then
+ Real_Range_Check;
+ end if;
+
+ -- At this stage, either the conversion node has been transformed into
+ -- some other equivalent expression, or left as a conversion that can
+ -- be handled by Gigi. The conversions that Gigi can handle are the
+ -- following:
+
+ -- Conversions with no change of representation or type
+
+ -- Numeric conversions involving integer, floating- and fixed-point
+ -- values. Fixed-point values are allowed only if Conversion_OK is
+ -- set, i.e. if the fixed-point values are to be treated as integers.
+
+ -- No other conversions should be passed to Gigi
+
+ -- Check: are these rules stated in sinfo??? if so, why restate here???
+
+ -- The only remaining step is to generate a range check if we still have
+ -- a type conversion at this stage and Do_Range_Check is set. For now we
+ -- do this only for conversions of discrete types.
+
+ if Nkind (N) = N_Type_Conversion
+ and then Is_Discrete_Type (Etype (N))
+ then
+ declare
+ Expr : constant Node_Id := Expression (N);
+ Ftyp : Entity_Id;
+ Ityp : Entity_Id;
+
+ begin
+ if Do_Range_Check (Expr)
+ and then Is_Discrete_Type (Etype (Expr))
+ then
+ Set_Do_Range_Check (Expr, False);
+
+ -- Before we do a range check, we have to deal with treating a
+ -- fixed-point operand as an integer. The way we do this is
+ -- simply to do an unchecked conversion to an appropriate
+ -- integer type large enough to hold the result.
+
+ -- This code is not active yet, because we are only dealing
+ -- with discrete types so far ???
+
+ if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
+ and then Treat_Fixed_As_Integer (Expr)
+ then
+ Ftyp := Base_Type (Etype (Expr));
+
+ if Esize (Ftyp) >= Esize (Standard_Integer) then
+ Ityp := Standard_Long_Long_Integer;
+ else
+ Ityp := Standard_Integer;
+ end if;
+
+ Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
+ end if;
+
+ -- Reset overflow flag, since the range check will include
+ -- dealing with possible overflow, and generate the check If
+ -- Address is either a source type or target type, suppress
+ -- range check to avoid typing anomalies when it is a visible
+ -- integer type.
+
+ Set_Do_Overflow_Check (N, False);
+ if not Is_Descendent_Of_Address (Etype (Expr))
+ and then not Is_Descendent_Of_Address (Target_Type)
+ then
+ Generate_Range_Check
+ (Expr, Target_Type, CE_Range_Check_Failed);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Final step, if the result is a type conversion involving Vax_Float
+ -- types, then it is subject for further special processing.
+
+ if Nkind (N) = N_Type_Conversion
+ and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
+ then
+ Expand_Vax_Conversion (N);
+ return;
+ end if;
+ end Expand_N_Type_Conversion;
+
+ -----------------------------------
+ -- Expand_N_Unchecked_Expression --
+ -----------------------------------
+
+ -- Remove the unchecked expression node from the tree. It's job was simply
+ -- to make sure that its constituent expression was handled with checks
+ -- off, and now that that is done, we can remove it from the tree, and
+ -- indeed must, since gigi does not expect to see these nodes.
+
+ procedure Expand_N_Unchecked_Expression (N : Node_Id) is
+ Exp : constant Node_Id := Expression (N);
+
+ begin
+ Set_Assignment_OK (Exp, Assignment_OK (N) or Assignment_OK (Exp));
+ Rewrite (N, Exp);
+ end Expand_N_Unchecked_Expression;
+
+ ----------------------------------------
+ -- Expand_N_Unchecked_Type_Conversion --
+ ----------------------------------------
+
+ -- If this cannot be handled by Gigi and we haven't already made a
+ -- temporary for it, do it now.
+
+ procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
+ Target_Type : constant Entity_Id := Etype (N);
+ Operand : constant Node_Id := Expression (N);
+ Operand_Type : constant Entity_Id := Etype (Operand);
+
+ begin
+ -- If we have a conversion of a compile time known value to a target
+ -- type and the value is in range of the target type, then we can simply
+ -- replace the construct by an integer literal of the correct type. We
+ -- only apply this to integer types being converted. Possibly it may
+ -- apply in other cases, but it is too much trouble to worry about.
+
+ -- Note that we do not do this transformation if the Kill_Range_Check
+ -- flag is set, since then the value may be outside the expected range.
+ -- This happens in the Normalize_Scalars case.
+
+ -- We also skip this if either the target or operand type is biased
+ -- because in this case, the unchecked conversion is supposed to
+ -- preserve the bit pattern, not the integer value.
+
+ if Is_Integer_Type (Target_Type)
+ and then not Has_Biased_Representation (Target_Type)
+ and then Is_Integer_Type (Operand_Type)
+ and then not Has_Biased_Representation (Operand_Type)
+ and then Compile_Time_Known_Value (Operand)
+ and then not Kill_Range_Check (N)
+ then
+ declare
+ Val : constant Uint := Expr_Value (Operand);
+
+ begin
+ if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
+ and then
+ Compile_Time_Known_Value (Type_High_Bound (Target_Type))
+ and then
+ Val >= Expr_Value (Type_Low_Bound (Target_Type))
+ and then
+ Val <= Expr_Value (Type_High_Bound (Target_Type))
+ then
+ Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
+
+ -- If Address is the target type, just set the type to avoid a
+ -- spurious type error on the literal when Address is a visible
+ -- integer type.
+
+ if Is_Descendent_Of_Address (Target_Type) then
+ Set_Etype (N, Target_Type);
+ else
+ Analyze_And_Resolve (N, Target_Type);
+ end if;
+
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Nothing to do if conversion is safe
+
+ if Safe_Unchecked_Type_Conversion (N) then
+ return;
+ end if;
+
+ -- Otherwise force evaluation unless Assignment_OK flag is set (this
+ -- flag indicates ??? -- more comments needed here)
+
+ if Assignment_OK (N) then
+ null;
+ else
+ Force_Evaluation (N);
+ end if;
+ end Expand_N_Unchecked_Type_Conversion;
+
+ ----------------------------
+ -- Expand_Record_Equality --
+ ----------------------------
+
+ -- For non-variant records, Equality is expanded when needed into:
+
+ -- and then Lhs.Discr1 = Rhs.Discr1
+ -- and then ...
+ -- and then Lhs.Discrn = Rhs.Discrn
+ -- and then Lhs.Cmp1 = Rhs.Cmp1
+ -- and then ...
+ -- and then Lhs.Cmpn = Rhs.Cmpn
+
+ -- The expression is folded by the back-end for adjacent fields. This
+ -- function is called for tagged record in only one occasion: for imple-
+ -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
+ -- otherwise the primitive "=" is used directly.
+
+ function Expand_Record_Equality
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Bodies : List_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+
+ Result : Node_Id;
+ C : Entity_Id;
+
+ First_Time : Boolean := True;
+
+ function Suitable_Element (C : Entity_Id) return Entity_Id;
+ -- Return the first field to compare beginning with C, skipping the
+ -- inherited components.
+
+ ----------------------
+ -- Suitable_Element --
+ ----------------------
+
+ function Suitable_Element (C : Entity_Id) return Entity_Id is
+ begin
+ if No (C) then
+ return Empty;
+
+ elsif Ekind (C) /= E_Discriminant
+ and then Ekind (C) /= E_Component
+ then
+ return Suitable_Element (Next_Entity (C));
+
+ elsif Is_Tagged_Type (Typ)
+ and then C /= Original_Record_Component (C)
+ then
+ return Suitable_Element (Next_Entity (C));
+
+ elsif Chars (C) = Name_uController
+ or else Chars (C) = Name_uTag
+ then
+ return Suitable_Element (Next_Entity (C));
+
+ elsif Is_Interface (Etype (C)) then
+ return Suitable_Element (Next_Entity (C));
+
+ else
+ return C;
+ end if;
+ end Suitable_Element;
+
+ -- Start of processing for Expand_Record_Equality
+
+ begin
+ -- Generates the following code: (assuming that Typ has one Discr and
+ -- component C2 is also a record)
+
+ -- True
+ -- and then Lhs.Discr1 = Rhs.Discr1
+ -- and then Lhs.C1 = Rhs.C1
+ -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
+ -- and then ...
+ -- and then Lhs.Cmpn = Rhs.Cmpn
+
+ Result := New_Reference_To (Standard_True, Loc);
+ C := Suitable_Element (First_Entity (Typ));
+
+ while Present (C) loop
+ declare
+ New_Lhs : Node_Id;
+ New_Rhs : Node_Id;
+ Check : Node_Id;
+
+ begin
+ if First_Time then
+ First_Time := False;
+ New_Lhs := Lhs;
+ New_Rhs := Rhs;
+ else
+ New_Lhs := New_Copy_Tree (Lhs);
+ New_Rhs := New_Copy_Tree (Rhs);
+ end if;
+
+ Check :=
+ Expand_Composite_Equality (Nod, Etype (C),
+ Lhs =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Lhs,
+ Selector_Name => New_Reference_To (C, Loc)),
+ Rhs =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Rhs,
+ Selector_Name => New_Reference_To (C, Loc)),
+ Bodies => Bodies);
+
+ -- If some (sub)component is an unchecked_union, the whole
+ -- operation will raise program error.
+
+ if Nkind (Check) = N_Raise_Program_Error then
+ Result := Check;
+ Set_Etype (Result, Standard_Boolean);
+ exit;
+ else
+ Result :=
+ Make_And_Then (Loc,
+ Left_Opnd => Result,
+ Right_Opnd => Check);
+ end if;
+ end;
+
+ C := Suitable_Element (Next_Entity (C));
+ end loop;
+
+ return Result;
+ end Expand_Record_Equality;
+
+ -------------------------------------
+ -- Fixup_Universal_Fixed_Operation --
+ -------------------------------------
+
+ procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
+ Conv : constant Node_Id := Parent (N);
+
+ begin
+ -- We must have a type conversion immediately above us
+
+ pragma Assert (Nkind (Conv) = N_Type_Conversion);
+
+ -- Normally the type conversion gives our target type. The exception
+ -- occurs in the case of the Round attribute, where the conversion
+ -- will be to universal real, and our real type comes from the Round
+ -- attribute (as well as an indication that we must round the result)
+
+ if Nkind (Parent (Conv)) = N_Attribute_Reference
+ and then Attribute_Name (Parent (Conv)) = Name_Round
+ then
+ Set_Etype (N, Etype (Parent (Conv)));
+ Set_Rounded_Result (N);
+
+ -- Normal case where type comes from conversion above us
+
+ else
+ Set_Etype (N, Etype (Conv));
+ end if;
+ end Fixup_Universal_Fixed_Operation;
+
+ ------------------------------
+ -- Get_Allocator_Final_List --
+ ------------------------------
+
+ function Get_Allocator_Final_List
+ (N : Node_Id;
+ T : Entity_Id;
+ PtrT : Entity_Id) return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Owner : Entity_Id := PtrT;
+ -- The entity whose finalization list must be used to attach the
+ -- allocated object.
+
+ begin
+ if Ekind (PtrT) = E_Anonymous_Access_Type then
+
+ -- If the context is an access parameter, we need to create a
+ -- non-anonymous access type in order to have a usable final list,
+ -- because there is otherwise no pool to which the allocated object
+ -- can belong. We create both the type and the finalization chain
+ -- here, because freezing an internal type does not create such a
+ -- chain. The Final_Chain that is thus created is shared by the
+ -- access parameter. The access type is tested against the result
+ -- type of the function to exclude allocators whose type is an
+ -- anonymous access result type. We freeze the type at once to
+ -- ensure that it is properly decorated for the back-end, even
+ -- if the context and current scope is a loop.
+
+ if Nkind (Associated_Node_For_Itype (PtrT))
+ in N_Subprogram_Specification
+ and then
+ PtrT /=
+ Etype (Defining_Unit_Name (Associated_Node_For_Itype (PtrT)))
+ then
+ Owner := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
+ Insert_Action (N,
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Owner,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ Subtype_Indication =>
+ New_Occurrence_Of (T, Loc))));
+
+ Freeze_Before (N, Owner);
+ Build_Final_List (N, Owner);
+ Set_Associated_Final_Chain (PtrT, Associated_Final_Chain (Owner));
+
+ -- Ada 2005 (AI-318-02): If the context is a return object
+ -- declaration, then the anonymous return subtype is defined to have
+ -- the same accessibility level as that of the function's result
+ -- subtype, which means that we want the scope where the function is
+ -- declared.
+
+ elsif Nkind (Associated_Node_For_Itype (PtrT)) = N_Object_Declaration
+ and then Ekind (Scope (PtrT)) = E_Return_Statement
+ then
+ Owner := Scope (Return_Applies_To (Scope (PtrT)));
+
+ -- Case of an access discriminant, or (Ada 2005), of an anonymous
+ -- access component or anonymous access function result: find the
+ -- final list associated with the scope of the type. (In the
+ -- anonymous access component kind, a list controller will have
+ -- been allocated when freezing the record type, and PtrT has an
+ -- Associated_Final_Chain attribute designating it.)
+
+ elsif No (Associated_Final_Chain (PtrT)) then
+ Owner := Scope (PtrT);
+ end if;
+ end if;
+
+ return Find_Final_List (Owner);
+ end Get_Allocator_Final_List;
+
+ ---------------------------------
+ -- Has_Inferable_Discriminants --
+ ---------------------------------
+
+ function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
+
+ function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
+ -- Determines whether the left-most prefix of a selected component is a
+ -- formal parameter in a subprogram. Assumes N is a selected component.
+
+ --------------------------------
+ -- Prefix_Is_Formal_Parameter --
+ --------------------------------
+
+ function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
+ Sel_Comp : Node_Id := N;
+
+ begin
+ -- Move to the left-most prefix by climbing up the tree
+
+ while Present (Parent (Sel_Comp))
+ and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
+ loop
+ Sel_Comp := Parent (Sel_Comp);
+ end loop;
+
+ return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
+ end Prefix_Is_Formal_Parameter;
+
+ -- Start of processing for Has_Inferable_Discriminants
+
+ begin
+ -- For identifiers and indexed components, it is sufficient to have a
+ -- constrained Unchecked_Union nominal subtype.
+
+ if Nkind_In (N, N_Identifier, N_Indexed_Component) then
+ return Is_Unchecked_Union (Base_Type (Etype (N)))
+ and then
+ Is_Constrained (Etype (N));
+
+ -- For selected components, the subtype of the selector must be a
+ -- constrained Unchecked_Union. If the component is subject to a
+ -- per-object constraint, then the enclosing object must have inferable
+ -- discriminants.
+
+ elsif Nkind (N) = N_Selected_Component then
+ if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
+
+ -- A small hack. If we have a per-object constrained selected
+ -- component of a formal parameter, return True since we do not
+ -- know the actual parameter association yet.
+
+ if Prefix_Is_Formal_Parameter (N) then
+ return True;
+ end if;
+
+ -- Otherwise, check the enclosing object and the selector
+
+ return Has_Inferable_Discriminants (Prefix (N))
+ and then
+ Has_Inferable_Discriminants (Selector_Name (N));
+ end if;
+
+ -- The call to Has_Inferable_Discriminants will determine whether
+ -- the selector has a constrained Unchecked_Union nominal type.
+
+ return Has_Inferable_Discriminants (Selector_Name (N));
+
+ -- A qualified expression has inferable discriminants if its subtype
+ -- mark is a constrained Unchecked_Union subtype.
+
+ elsif Nkind (N) = N_Qualified_Expression then
+ return Is_Unchecked_Union (Subtype_Mark (N))
+ and then
+ Is_Constrained (Subtype_Mark (N));
+
+ end if;
+
+ return False;
+ end Has_Inferable_Discriminants;
+
+ -------------------------------
+ -- Insert_Dereference_Action --
+ -------------------------------
+
+ procedure Insert_Dereference_Action (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
+ Pnod : constant Node_Id := Parent (N);
+
+ function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
+ -- Return true if type of P is derived from Checked_Pool;
+
+ -----------------------------
+ -- Is_Checked_Storage_Pool --
+ -----------------------------
+
+ function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
+ T : Entity_Id;
+
+ begin
+ if No (P) then
+ return False;
+ end if;
+
+ T := Etype (P);
+ while T /= Etype (T) loop
+ if Is_RTE (T, RE_Checked_Pool) then
+ return True;
+ else
+ T := Etype (T);
+ end if;
+ end loop;
+
+ return False;
+ end Is_Checked_Storage_Pool;
+
+ -- Start of processing for Insert_Dereference_Action
+
+ begin
+ pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
+
+ if not (Is_Checked_Storage_Pool (Pool)
+ and then Comes_From_Source (Original_Node (Pnod)))
+ then
+ return;
+ end if;
+
+ Insert_Action (N,
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To (
+ Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
+
+ Parameter_Associations => New_List (
+
+ -- Pool
+
+ New_Reference_To (Pool, Loc),
+
+ -- Storage_Address. We use the attribute Pool_Address, which uses
+ -- the pointer itself to find the address of the object, and which
+ -- handles unconstrained arrays properly by computing the address
+ -- of the template. i.e. the correct address of the corresponding
+ -- allocation.
+
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr_Move_Checks (N),
+ Attribute_Name => Name_Pool_Address),
+
+ -- Size_In_Storage_Elements
+
+ Make_Op_Divide (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Explicit_Dereference (Loc,
+ Duplicate_Subexpr_Move_Checks (N)),
+ Attribute_Name => Name_Size),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, System_Storage_Unit)),
+
+ -- Alignment
+
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Explicit_Dereference (Loc,
+ Duplicate_Subexpr_Move_Checks (N)),
+ Attribute_Name => Name_Alignment))));
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Insert_Dereference_Action;
+
+ ------------------------------
+ -- Make_Array_Comparison_Op --
+ ------------------------------
+
+ -- This is a hand-coded expansion of the following generic function:
+
+ -- generic
+ -- type elem is (<>);
+ -- type index is (<>);
+ -- type a is array (index range <>) of elem;
+
+ -- function Gnnn (X : a; Y: a) return boolean is
+ -- J : index := Y'first;
+
+ -- begin
+ -- if X'length = 0 then
+ -- return false;
+
+ -- elsif Y'length = 0 then
+ -- return true;
+
+ -- else
+ -- for I in X'range loop
+ -- if X (I) = Y (J) then
+ -- if J = Y'last then
+ -- exit;
+ -- else
+ -- J := index'succ (J);
+ -- end if;
+
+ -- else
+ -- return X (I) > Y (J);
+ -- end if;
+ -- end loop;
+
+ -- return X'length > Y'length;
+ -- end if;
+ -- end Gnnn;
+
+ -- Note that since we are essentially doing this expansion by hand, we
+ -- do not need to generate an actual or formal generic part, just the
+ -- instantiated function itself.
+
+ function Make_Array_Comparison_Op
+ (Typ : Entity_Id;
+ Nod : Node_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+
+ X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
+ Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
+ I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
+ J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
+
+ Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
+
+ Loop_Statement : Node_Id;
+ Loop_Body : Node_Id;
+ If_Stat : Node_Id;
+ Inner_If : Node_Id;
+ Final_Expr : Node_Id;
+ Func_Body : Node_Id;
+ Func_Name : Entity_Id;
+ Formals : List_Id;
+ Length1 : Node_Id;
+ Length2 : Node_Id;
+
+ begin
+ -- if J = Y'last then
+ -- exit;
+ -- else
+ -- J := index'succ (J);
+ -- end if;
+
+ Inner_If :=
+ Make_Implicit_If_Statement (Nod,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => New_Reference_To (J, Loc),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Y, Loc),
+ Attribute_Name => Name_Last)),
+
+ Then_Statements => New_List (
+ Make_Exit_Statement (Loc)),
+
+ Else_Statements =>
+ New_List (
+ Make_Assignment_Statement (Loc,
+ Name => New_Reference_To (J, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Index, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (New_Reference_To (J, Loc))))));
+
+ -- if X (I) = Y (J) then
+ -- if ... end if;
+ -- else
+ -- return X (I) > Y (J);
+ -- end if;
+
+ Loop_Body :=
+ Make_Implicit_If_Statement (Nod,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (X, Loc),
+ Expressions => New_List (New_Reference_To (I, Loc))),
+
+ Right_Opnd =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (Y, Loc),
+ Expressions => New_List (New_Reference_To (J, Loc)))),
+
+ Then_Statements => New_List (Inner_If),
+
+ Else_Statements => New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression =>
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (X, Loc),
+ Expressions => New_List (New_Reference_To (I, Loc))),
+
+ Right_Opnd =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (Y, Loc),
+ Expressions => New_List (
+ New_Reference_To (J, Loc)))))));
+
+ -- for I in X'range loop
+ -- if ... end if;
+ -- end loop;
+
+ Loop_Statement :=
+ Make_Implicit_Loop_Statement (Nod,
+ Identifier => Empty,
+
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => I,
+ Discrete_Subtype_Definition =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (X, Loc),
+ Attribute_Name => Name_Range))),
+
+ Statements => New_List (Loop_Body));
+
+ -- if X'length = 0 then
+ -- return false;
+ -- elsif Y'length = 0 then
+ -- return true;
+ -- else
+ -- for ... loop ... end loop;
+ -- return X'length > Y'length;
+ -- end if;
+
+ Length1 :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (X, Loc),
+ Attribute_Name => Name_Length);
+
+ Length2 :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Y, Loc),
+ Attribute_Name => Name_Length);
+
+ Final_Expr :=
+ Make_Op_Gt (Loc,
+ Left_Opnd => Length1,
+ Right_Opnd => Length2);
+
+ If_Stat :=
+ Make_Implicit_If_Statement (Nod,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (X, Loc),
+ Attribute_Name => Name_Length),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, 0)),
+
+ Then_Statements =>
+ New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Reference_To (Standard_False, Loc))),
+
+ Elsif_Parts => New_List (
+ Make_Elsif_Part (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Y, Loc),
+ Attribute_Name => Name_Length),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, 0)),
+
+ Then_Statements =>
+ New_List (
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Reference_To (Standard_True, Loc))))),
+
+ Else_Statements => New_List (
+ Loop_Statement,
+ Make_Simple_Return_Statement (Loc,
+ Expression => Final_Expr)));
+
+ -- (X : a; Y: a)
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => X,
+ Parameter_Type => New_Reference_To (Typ, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Y,
+ Parameter_Type => New_Reference_To (Typ, Loc)));
+
+ -- function Gnnn (...) return boolean is
+ -- J : index := Y'first;
+ -- begin
+ -- if ... end if;
+ -- end Gnnn;
+
+ Func_Name := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
+
+ Func_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Func_Name,
+ Parameter_Specifications => Formals,
+ Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
+
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => J,
+ Object_Definition => New_Reference_To (Index, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Y, Loc),
+ Attribute_Name => Name_First))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (If_Stat)));
+
+ return Func_Body;
+ end Make_Array_Comparison_Op;
+
+ ---------------------------
+ -- Make_Boolean_Array_Op --
+ ---------------------------
+
+ -- For logical operations on boolean arrays, expand in line the following,
+ -- replacing 'and' with 'or' or 'xor' where needed:
+
+ -- function Annn (A : typ; B: typ) return typ is
+ -- C : typ;
+ -- begin
+ -- for J in A'range loop
+ -- C (J) := A (J) op B (J);
+ -- end loop;
+ -- return C;
+ -- end Annn;
+
+ -- Here typ is the boolean array type
+
+ function Make_Boolean_Array_Op
+ (Typ : Entity_Id;
+ N : Node_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
+ B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
+ C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
+ J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
+
+ A_J : Node_Id;
+ B_J : Node_Id;
+ C_J : Node_Id;
+ Op : Node_Id;
+
+ Formals : List_Id;
+ Func_Name : Entity_Id;
+ Func_Body : Node_Id;
+ Loop_Statement : Node_Id;
+
+ begin
+ A_J :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (A, Loc),
+ Expressions => New_List (New_Reference_To (J, Loc)));
+
+ B_J :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (B, Loc),
+ Expressions => New_List (New_Reference_To (J, Loc)));
+
+ C_J :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Reference_To (C, Loc),
+ Expressions => New_List (New_Reference_To (J, Loc)));
+
+ if Nkind (N) = N_Op_And then
+ Op :=
+ Make_Op_And (Loc,
+ Left_Opnd => A_J,
+ Right_Opnd => B_J);
+
+ elsif Nkind (N) = N_Op_Or then
+ Op :=
+ Make_Op_Or (Loc,
+ Left_Opnd => A_J,
+ Right_Opnd => B_J);
+
+ else
+ Op :=
+ Make_Op_Xor (Loc,
+ Left_Opnd => A_J,
+ Right_Opnd => B_J);
+ end if;
+
+ Loop_Statement :=
+ Make_Implicit_Loop_Statement (N,
+ Identifier => Empty,
+
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => J,
+ Discrete_Subtype_Definition =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (A, Loc),
+ Attribute_Name => Name_Range))),
+
+ Statements => New_List (
+ Make_Assignment_Statement (Loc,
+ Name => C_J,
+ Expression => Op)));
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type => New_Reference_To (Typ, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => B,
+ Parameter_Type => New_Reference_To (Typ, Loc)));
+
+ Func_Name :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+ Set_Is_Inlined (Func_Name);
+
+ Func_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Func_Name,
+ Parameter_Specifications => Formals,
+ Result_Definition => New_Reference_To (Typ, Loc)),
+
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => C,
+ Object_Definition => New_Reference_To (Typ, Loc))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Loop_Statement,
+ Make_Simple_Return_Statement (Loc,
+ Expression => New_Reference_To (C, Loc)))));
+
+ return Func_Body;
+ end Make_Boolean_Array_Op;
+
+ ------------------------
+ -- Rewrite_Comparison --
+ ------------------------
+
+ procedure Rewrite_Comparison (N : Node_Id) is
+ begin
+ if Nkind (N) = N_Type_Conversion then
+ Rewrite_Comparison (Expression (N));
+ return;
+
+ elsif Nkind (N) not in N_Op_Compare then
+ return;
+ end if;
+
+ declare
+ Typ : constant Entity_Id := Etype (N);
+ Op1 : constant Node_Id := Left_Opnd (N);
+ Op2 : constant Node_Id := Right_Opnd (N);
+
+ Res : constant Compare_Result :=
+ Compile_Time_Compare (Op1, Op2, Assume_Valid => True);
+ -- Res indicates if compare outcome can be compile time determined
+
+ True_Result : Boolean;
+ False_Result : Boolean;
+
+ begin
+ case N_Op_Compare (Nkind (N)) is
+ when N_Op_Eq =>
+ True_Result := Res = EQ;
+ False_Result := Res = LT or else Res = GT or else Res = NE;
+
+ when N_Op_Ge =>
+ True_Result := Res in Compare_GE;
+ False_Result := Res = LT;
+
+ if Res = LE
+ and then Constant_Condition_Warnings
+ and then Comes_From_Source (Original_Node (N))
+ and then Nkind (Original_Node (N)) = N_Op_Ge
+ and then not In_Instance
+ and then Is_Integer_Type (Etype (Left_Opnd (N)))
+ and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
+ then
+ Error_Msg_N
+ ("can never be greater than, could replace by ""'=""?", N);
+ end if;
+
+ when N_Op_Gt =>
+ True_Result := Res = GT;
+ False_Result := Res in Compare_LE;
+
+ when N_Op_Lt =>
+ True_Result := Res = LT;
+ False_Result := Res in Compare_GE;
+
+ when N_Op_Le =>
+ True_Result := Res in Compare_LE;
+ False_Result := Res = GT;
+
+ if Res = GE
+ and then Constant_Condition_Warnings
+ and then Comes_From_Source (Original_Node (N))
+ and then Nkind (Original_Node (N)) = N_Op_Le
+ and then not In_Instance
+ and then Is_Integer_Type (Etype (Left_Opnd (N)))
+ and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
+ then
+ Error_Msg_N
+ ("can never be less than, could replace by ""'=""?", N);
+ end if;
+
+ when N_Op_Ne =>
+ True_Result := Res = NE or else Res = GT or else Res = LT;
+ False_Result := Res = EQ;
+ end case;
+
+ if True_Result then
+ Rewrite (N,
+ Convert_To (Typ,
+ New_Occurrence_Of (Standard_True, Sloc (N))));
+ Analyze_And_Resolve (N, Typ);
+ Warn_On_Known_Condition (N);
+
+ elsif False_Result then
+ Rewrite (N,
+ Convert_To (Typ,
+ New_Occurrence_Of (Standard_False, Sloc (N))));
+ Analyze_And_Resolve (N, Typ);
+ Warn_On_Known_Condition (N);
+ end if;
+ end;
+ end Rewrite_Comparison;
+
+ ----------------------------
+ -- Safe_In_Place_Array_Op --
+ ----------------------------
+
+ function Safe_In_Place_Array_Op
+ (Lhs : Node_Id;
+ Op1 : Node_Id;
+ Op2 : Node_Id) return Boolean
+ is
+ Target : Entity_Id;
+
+ function Is_Safe_Operand (Op : Node_Id) return Boolean;
+ -- Operand is safe if it cannot overlap part of the target of the
+ -- operation. If the operand and the target are identical, the operand
+ -- is safe. The operand can be empty in the case of negation.
+
+ function Is_Unaliased (N : Node_Id) return Boolean;
+ -- Check that N is a stand-alone entity
+
+ ------------------
+ -- Is_Unaliased --
+ ------------------
+
+ function Is_Unaliased (N : Node_Id) return Boolean is
+ begin
+ return
+ Is_Entity_Name (N)
+ and then No (Address_Clause (Entity (N)))
+ and then No (Renamed_Object (Entity (N)));
+ end Is_Unaliased;
+
+ ---------------------
+ -- Is_Safe_Operand --
+ ---------------------
+
+ function Is_Safe_Operand (Op : Node_Id) return Boolean is
+ begin
+ if No (Op) then
+ return True;
+
+ elsif Is_Entity_Name (Op) then
+ return Is_Unaliased (Op);
+
+ elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
+ return Is_Unaliased (Prefix (Op));
+
+ elsif Nkind (Op) = N_Slice then
+ return
+ Is_Unaliased (Prefix (Op))
+ and then Entity (Prefix (Op)) /= Target;
+
+ elsif Nkind (Op) = N_Op_Not then
+ return Is_Safe_Operand (Right_Opnd (Op));
+
+ else
+ return False;
+ end if;
+ end Is_Safe_Operand;
+
+ -- Start of processing for Is_Safe_In_Place_Array_Op
+
+ begin
+ -- Skip this processing if the component size is different from system
+ -- storage unit (since at least for NOT this would cause problems).
+
+ if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
+ return False;
+
+ -- Cannot do in place stuff on VM_Target since cannot pass addresses
+
+ elsif VM_Target /= No_VM then
+ return False;
+
+ -- Cannot do in place stuff if non-standard Boolean representation
+
+ elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
+ return False;
+
+ elsif not Is_Unaliased (Lhs) then
+ return False;
+ else
+ Target := Entity (Lhs);
+
+ return
+ Is_Safe_Operand (Op1)
+ and then Is_Safe_Operand (Op2);
+ end if;
+ end Safe_In_Place_Array_Op;
+
+ -----------------------
+ -- Tagged_Membership --
+ -----------------------
+
+ -- There are two different cases to consider depending on whether the right
+ -- operand is a class-wide type or not. If not we just compare the actual
+ -- tag of the left expr to the target type tag:
+ --
+ -- Left_Expr.Tag = Right_Type'Tag;
+ --
+ -- If it is a class-wide type we use the RT function CW_Membership which is
+ -- usually implemented by looking in the ancestor tables contained in the
+ -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
+
+ -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
+ -- function IW_Membership which is usually implemented by looking in the
+ -- table of abstract interface types plus the ancestor table contained in
+ -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
+
+ function Tagged_Membership (N : Node_Id) return Node_Id is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Left_Type : Entity_Id;
+ Right_Type : Entity_Id;
+ Obj_Tag : Node_Id;
+
+ begin
+ Left_Type := Etype (Left);
+ Right_Type := Etype (Right);
+
+ if Is_Class_Wide_Type (Left_Type) then
+ Left_Type := Root_Type (Left_Type);
+ end if;
+
+ Obj_Tag :=
+ Make_Selected_Component (Loc,
+ Prefix => Relocate_Node (Left),
+ Selector_Name =>
+ New_Reference_To (First_Tag_Component (Left_Type), Loc));
+
+ if Is_Class_Wide_Type (Right_Type) then
+
+ -- No need to issue a run-time check if we statically know that the
+ -- result of this membership test is always true. For example,
+ -- considering the following declarations:
+
+ -- type Iface is interface;
+ -- type T is tagged null record;
+ -- type DT is new T and Iface with null record;
+
+ -- Obj1 : T;
+ -- Obj2 : DT;
+
+ -- These membership tests are always true:
+
+ -- Obj1 in T'Class
+ -- Obj2 in T'Class;
+ -- Obj2 in Iface'Class;
+
+ -- We do not need to handle cases where the membership is illegal.
+ -- For example:
+
+ -- Obj1 in DT'Class; -- Compile time error
+ -- Obj1 in Iface'Class; -- Compile time error
+
+ if not Is_Class_Wide_Type (Left_Type)
+ and then (Is_Ancestor (Etype (Right_Type), Left_Type)
+ or else (Is_Interface (Etype (Right_Type))
+ and then Interface_Present_In_Ancestor
+ (Typ => Left_Type,
+ Iface => Etype (Right_Type))))
+ then
+ return New_Reference_To (Standard_True, Loc);
+ end if;
+
+ -- Ada 2005 (AI-251): Class-wide applied to interfaces
+
+ if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
+
+ -- Support to: "Iface_CW_Typ in Typ'Class"
+
+ or else Is_Interface (Left_Type)
+ then
+ -- Issue error if IW_Membership operation not available in a
+ -- configurable run time setting.
+
+ if not RTE_Available (RE_IW_Membership) then
+ Error_Msg_CRT
+ ("dynamic membership test on interface types", N);
+ return Empty;
+ end if;
+
+ return
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
+ Parameter_Associations => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => Obj_Tag,
+ Attribute_Name => Name_Address),
+ New_Reference_To (
+ Node (First_Elmt
+ (Access_Disp_Table (Root_Type (Right_Type)))),
+ Loc)));
+
+ -- Ada 95: Normal case
+
+ else
+ return
+ Build_CW_Membership (Loc,
+ Obj_Tag_Node => Obj_Tag,
+ Typ_Tag_Node =>
+ New_Reference_To (
+ Node (First_Elmt
+ (Access_Disp_Table (Root_Type (Right_Type)))),
+ Loc));
+ end if;
+
+ -- Right_Type is not a class-wide type
+
+ else
+ -- No need to check the tag of the object if Right_Typ is abstract
+
+ if Is_Abstract_Type (Right_Type) then
+ return New_Reference_To (Standard_False, Loc);
+
+ else
+ return
+ Make_Op_Eq (Loc,
+ Left_Opnd => Obj_Tag,
+ Right_Opnd =>
+ New_Reference_To
+ (Node (First_Elmt (Access_Disp_Table (Right_Type))), Loc));
+ end if;
+ end if;
+ end Tagged_Membership;
+
+ ------------------------------
+ -- Unary_Op_Validity_Checks --
+ ------------------------------
+
+ procedure Unary_Op_Validity_Checks (N : Node_Id) is
+ begin
+ if Validity_Checks_On and Validity_Check_Operands then
+ Ensure_Valid (Right_Opnd (N));
+ end if;
+ end Unary_Op_Validity_Checks;
+
+end Exp_Ch4;