aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/ada/exp_ch3.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/gcc/ada/exp_ch3.adb')
-rw-r--r--gcc-4.4.0/gcc/ada/exp_ch3.adb8584
1 files changed, 0 insertions, 8584 deletions
diff --git a/gcc-4.4.0/gcc/ada/exp_ch3.adb b/gcc-4.4.0/gcc/ada/exp_ch3.adb
deleted file mode 100644
index 4f9df51c1..000000000
--- a/gcc-4.4.0/gcc/ada/exp_ch3.adb
+++ /dev/null
@@ -1,8584 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ C H 3 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Exp_Aggr; use Exp_Aggr;
-with Exp_Atag; use Exp_Atag;
-with Exp_Ch4; use Exp_Ch4;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Ch9; use Exp_Ch9;
-with Exp_Ch11; use Exp_Ch11;
-with Exp_Disp; use Exp_Disp;
-with Exp_Dist; use Exp_Dist;
-with Exp_Smem; use Exp_Smem;
-with Exp_Strm; use Exp_Strm;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Freeze; use Freeze;
-with Nlists; use Nlists;
-with Namet; use Namet;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Attr; use Sem_Attr;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Disp; use Sem_Disp;
-with Sem_Eval; use Sem_Eval;
-with Sem_Mech; use Sem_Mech;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Sinfo; use Sinfo;
-with Stand; use Stand;
-with Snames; use Snames;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Validsw; use Validsw;
-
-package body Exp_Ch3 is
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Add_Final_Chain (Def_Id : Entity_Id) return Entity_Id;
- -- Add the declaration of a finalization list to the freeze actions for
- -- Def_Id, and return its defining identifier.
-
- procedure Adjust_Discriminants (Rtype : Entity_Id);
- -- This is used when freezing a record type. It attempts to construct
- -- more restrictive subtypes for discriminants so that the max size of
- -- the record can be calculated more accurately. See the body of this
- -- procedure for details.
-
- procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
- -- Build initialization procedure for given array type. Nod is a node
- -- used for attachment of any actions required in its construction.
- -- It also supplies the source location used for the procedure.
-
- function Build_Discriminant_Formals
- (Rec_Id : Entity_Id;
- Use_Dl : Boolean) return List_Id;
- -- This function uses the discriminants of a type to build a list of
- -- formal parameters, used in the following function. If the flag Use_Dl
- -- is set, the list is built using the already defined discriminals
- -- of the type. Otherwise new identifiers are created, with the source
- -- names of the discriminants.
-
- function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
- -- This function builds a static aggregate that can serve as the initial
- -- value for an array type whose bounds are static, and whose component
- -- type is a composite type that has a static equivalent aggregate.
- -- The equivalent array aggregate is used both for object initialization
- -- and for component initialization, when used in the following function.
-
- function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
- -- This function builds a static aggregate that can serve as the initial
- -- value for a record type whose components are scalar and initialized
- -- with compile-time values, or arrays with similar initialization or
- -- defaults. When possible, initialization of an object of the type can
- -- be achieved by using a copy of the aggregate as an initial value, thus
- -- removing the implicit call that would otherwise constitute elaboration
- -- code.
-
- function Build_Master_Renaming
- (N : Node_Id;
- T : Entity_Id) return Entity_Id;
- -- If the designated type of an access type is a task type or contains
- -- tasks, we make sure that a _Master variable is declared in the current
- -- scope, and then declare a renaming for it:
- --
- -- atypeM : Master_Id renames _Master;
- --
- -- where atyp is the name of the access type. This declaration is used when
- -- an allocator for the access type is expanded. The node is the full
- -- declaration of the designated type that contains tasks. The renaming
- -- declaration is inserted before N, and after the Master declaration.
-
- procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
- -- Build record initialization procedure. N is the type declaration
- -- node, and Pe is the corresponding entity for the record type.
-
- procedure Build_Slice_Assignment (Typ : Entity_Id);
- -- Build assignment procedure for one-dimensional arrays of controlled
- -- types. Other array and slice assignments are expanded in-line, but
- -- the code expansion for controlled components (when control actions
- -- are active) can lead to very large blocks that GCC3 handles poorly.
-
- procedure Build_Variant_Record_Equality (Typ : Entity_Id);
- -- Create An Equality function for the non-tagged variant record 'Typ'
- -- and attach it to the TSS list
-
- procedure Check_Stream_Attributes (Typ : Entity_Id);
- -- Check that if a limited extension has a parent with user-defined stream
- -- attributes, and does not itself have user-defined stream-attributes,
- -- then any limited component of the extension also has the corresponding
- -- user-defined stream attributes.
-
- procedure Clean_Task_Names
- (Typ : Entity_Id;
- Proc_Id : Entity_Id);
- -- If an initialization procedure includes calls to generate names
- -- for task subcomponents, indicate that secondary stack cleanup is
- -- needed after an initialization. Typ is the component type, and Proc_Id
- -- the initialization procedure for the enclosing composite type.
-
- procedure Expand_Tagged_Root (T : Entity_Id);
- -- Add a field _Tag at the beginning of the record. This field carries
- -- the value of the access to the Dispatch table. This procedure is only
- -- called on root type, the _Tag field being inherited by the descendants.
-
- procedure Expand_Record_Controller (T : Entity_Id);
- -- T must be a record type that Has_Controlled_Component. Add a field
- -- _controller of type Record_Controller or Limited_Record_Controller
- -- in the record T.
-
- procedure Freeze_Array_Type (N : Node_Id);
- -- Freeze an array type. Deals with building the initialization procedure,
- -- creating the packed array type for a packed array and also with the
- -- creation of the controlling procedures for the controlled case. The
- -- argument N is the N_Freeze_Entity node for the type.
-
- procedure Freeze_Enumeration_Type (N : Node_Id);
- -- Freeze enumeration type with non-standard representation. Builds the
- -- array and function needed to convert between enumeration pos and
- -- enumeration representation values. N is the N_Freeze_Entity node
- -- for the type.
-
- procedure Freeze_Record_Type (N : Node_Id);
- -- Freeze record type. Builds all necessary discriminant checking
- -- and other ancillary functions, and builds dispatch tables where
- -- needed. The argument N is the N_Freeze_Entity node. This processing
- -- applies only to E_Record_Type entities, not to class wide types,
- -- record subtypes, or private types.
-
- procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
- -- Treat user-defined stream operations as renaming_as_body if the
- -- subprogram they rename is not frozen when the type is frozen.
-
- procedure Initialization_Warning (E : Entity_Id);
- -- If static elaboration of the package is requested, indicate
- -- when a type does meet the conditions for static initialization. If
- -- E is a type, it has components that have no static initialization.
- -- if E is an entity, its initial expression is not compile-time known.
-
- function Init_Formals (Typ : Entity_Id) return List_Id;
- -- This function builds the list of formals for an initialization routine.
- -- The first formal is always _Init with the given type. For task value
- -- record types and types containing tasks, three additional formals are
- -- added:
- --
- -- _Master : Master_Id
- -- _Chain : in out Activation_Chain
- -- _Task_Name : String
- --
- -- The caller must append additional entries for discriminants if required.
-
- function In_Runtime (E : Entity_Id) return Boolean;
- -- Check if E is defined in the RTL (in a child of Ada or System). Used
- -- to avoid to bring in the overhead of _Input, _Output for tagged types.
-
- function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
- -- Returns true if E has variable size components
-
- function Make_Eq_Case
- (E : Entity_Id;
- CL : Node_Id;
- Discr : Entity_Id := Empty) return List_Id;
- -- Building block for variant record equality. Defined to share the code
- -- between the tagged and non-tagged case. Given a Component_List node CL,
- -- it generates an 'if' followed by a 'case' statement that compares all
- -- components of local temporaries named X and Y (that are declared as
- -- formals at some upper level). E provides the Sloc to be used for the
- -- generated code. Discr is used as the case statement switch in the case
- -- of Unchecked_Union equality.
-
- function Make_Eq_If
- (E : Entity_Id;
- L : List_Id) return Node_Id;
- -- Building block for variant record equality. Defined to share the code
- -- between the tagged and non-tagged case. Given the list of components
- -- (or discriminants) L, it generates a return statement that compares all
- -- components of local temporaries named X and Y (that are declared as
- -- formals at some upper level). E provides the Sloc to be used for the
- -- generated code.
-
- procedure Make_Predefined_Primitive_Specs
- (Tag_Typ : Entity_Id;
- Predef_List : out List_Id;
- Renamed_Eq : out Entity_Id);
- -- Create a list with the specs of the predefined primitive operations.
- -- For tagged types that are interfaces all these primitives are defined
- -- abstract.
- --
- -- The following entries are present for all tagged types, and provide
- -- the results of the corresponding attribute applied to the object.
- -- Dispatching is required in general, since the result of the attribute
- -- will vary with the actual object subtype.
- --
- -- _alignment provides result of 'Alignment attribute
- -- _size provides result of 'Size attribute
- -- typSR provides result of 'Read attribute
- -- typSW provides result of 'Write attribute
- -- typSI provides result of 'Input attribute
- -- typSO provides result of 'Output attribute
- --
- -- The following entries are additionally present for non-limited tagged
- -- types, and implement additional dispatching operations for predefined
- -- operations:
- --
- -- _equality implements "=" operator
- -- _assign implements assignment operation
- -- typDF implements deep finalization
- -- typDA implements deep adjust
- --
- -- The latter two are empty procedures unless the type contains some
- -- controlled components that require finalization actions (the deep
- -- in the name refers to the fact that the action applies to components).
- --
- -- The list is returned in Predef_List. The Parameter Renamed_Eq either
- -- returns the value Empty, or else the defining unit name for the
- -- predefined equality function in the case where the type has a primitive
- -- operation that is a renaming of predefined equality (but only if there
- -- is also an overriding user-defined equality function). The returned
- -- Renamed_Eq will be passed to the corresponding parameter of
- -- Predefined_Primitive_Bodies.
-
- function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
- -- returns True if there are representation clauses for type T that are not
- -- inherited. If the result is false, the init_proc and the discriminant
- -- checking functions of the parent can be reused by a derived type.
-
- procedure Make_Controlling_Function_Wrappers
- (Tag_Typ : Entity_Id;
- Decl_List : out List_Id;
- Body_List : out List_Id);
- -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
- -- associated with inherited functions with controlling results which
- -- are not overridden. The body of each wrapper function consists solely
- -- of a return statement whose expression is an extension aggregate
- -- invoking the inherited subprogram's parent subprogram and extended
- -- with a null association list.
-
- procedure Make_Null_Procedure_Specs
- (Tag_Typ : Entity_Id;
- Decl_List : out List_Id);
- -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
- -- null procedures inherited from an interface type that have not been
- -- overridden. Only one null procedure will be created for a given set of
- -- inherited null procedures with homographic profiles.
-
- function Predef_Spec_Or_Body
- (Loc : Source_Ptr;
- Tag_Typ : Entity_Id;
- Name : Name_Id;
- Profile : List_Id;
- Ret_Type : Entity_Id := Empty;
- For_Body : Boolean := False) return Node_Id;
- -- This function generates the appropriate expansion for a predefined
- -- primitive operation specified by its name, parameter profile and
- -- return type (Empty means this is a procedure). If For_Body is false,
- -- then the returned node is a subprogram declaration. If For_Body is
- -- true, then the returned node is a empty subprogram body containing
- -- no declarations and no statements.
-
- function Predef_Stream_Attr_Spec
- (Loc : Source_Ptr;
- Tag_Typ : Entity_Id;
- Name : TSS_Name_Type;
- For_Body : Boolean := False) return Node_Id;
- -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
- -- input and output attribute whose specs are constructed in Exp_Strm.
-
- function Predef_Deep_Spec
- (Loc : Source_Ptr;
- Tag_Typ : Entity_Id;
- Name : TSS_Name_Type;
- For_Body : Boolean := False) return Node_Id;
- -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
- -- and _deep_finalize
-
- function Predefined_Primitive_Bodies
- (Tag_Typ : Entity_Id;
- Renamed_Eq : Entity_Id) return List_Id;
- -- Create the bodies of the predefined primitives that are described in
- -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
- -- the defining unit name of the type's predefined equality as returned
- -- by Make_Predefined_Primitive_Specs.
-
- function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
- -- Freeze entities of all predefined primitive operations. This is needed
- -- because the bodies of these operations do not normally do any freezing.
-
- function Stream_Operation_OK
- (Typ : Entity_Id;
- Operation : TSS_Name_Type) return Boolean;
- -- Check whether the named stream operation must be emitted for a given
- -- type. The rules for inheritance of stream attributes by type extensions
- -- are enforced by this function. Furthermore, various restrictions prevent
- -- the generation of these operations, as a useful optimization or for
- -- certification purposes.
-
- ---------------------
- -- Add_Final_Chain --
- ---------------------
-
- function Add_Final_Chain (Def_Id : Entity_Id) return Entity_Id is
- Loc : constant Source_Ptr := Sloc (Def_Id);
- Flist : Entity_Id;
-
- begin
- Flist :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (Def_Id), 'L'));
-
- Append_Freeze_Action (Def_Id,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Flist,
- Object_Definition =>
- New_Reference_To (RTE (RE_List_Controller), Loc)));
-
- return Flist;
- end Add_Final_Chain;
-
- --------------------------
- -- Adjust_Discriminants --
- --------------------------
-
- -- This procedure attempts to define subtypes for discriminants that are
- -- more restrictive than those declared. Such a replacement is possible if
- -- we can demonstrate that values outside the restricted range would cause
- -- constraint errors in any case. The advantage of restricting the
- -- discriminant types in this way is that the maximum size of the variant
- -- record can be calculated more conservatively.
-
- -- An example of a situation in which we can perform this type of
- -- restriction is the following:
-
- -- subtype B is range 1 .. 10;
- -- type Q is array (B range <>) of Integer;
-
- -- type V (N : Natural) is record
- -- C : Q (1 .. N);
- -- end record;
-
- -- In this situation, we can restrict the upper bound of N to 10, since
- -- any larger value would cause a constraint error in any case.
-
- -- There are many situations in which such restriction is possible, but
- -- for now, we just look for cases like the above, where the component
- -- in question is a one dimensional array whose upper bound is one of
- -- the record discriminants. Also the component must not be part of
- -- any variant part, since then the component does not always exist.
-
- procedure Adjust_Discriminants (Rtype : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (Rtype);
- Comp : Entity_Id;
- Ctyp : Entity_Id;
- Ityp : Entity_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- P : Node_Id;
- Loval : Uint;
- Discr : Entity_Id;
- Dtyp : Entity_Id;
- Dhi : Node_Id;
- Dhiv : Uint;
- Ahi : Node_Id;
- Ahiv : Uint;
- Tnn : Entity_Id;
-
- begin
- Comp := First_Component (Rtype);
- while Present (Comp) loop
-
- -- If our parent is a variant, quit, we do not look at components
- -- that are in variant parts, because they may not always exist.
-
- P := Parent (Comp); -- component declaration
- P := Parent (P); -- component list
-
- exit when Nkind (Parent (P)) = N_Variant;
-
- -- We are looking for a one dimensional array type
-
- Ctyp := Etype (Comp);
-
- if not Is_Array_Type (Ctyp)
- or else Number_Dimensions (Ctyp) > 1
- then
- goto Continue;
- end if;
-
- -- The lower bound must be constant, and the upper bound is a
- -- discriminant (which is a discriminant of the current record).
-
- Ityp := Etype (First_Index (Ctyp));
- Lo := Type_Low_Bound (Ityp);
- Hi := Type_High_Bound (Ityp);
-
- if not Compile_Time_Known_Value (Lo)
- or else Nkind (Hi) /= N_Identifier
- or else No (Entity (Hi))
- or else Ekind (Entity (Hi)) /= E_Discriminant
- then
- goto Continue;
- end if;
-
- -- We have an array with appropriate bounds
-
- Loval := Expr_Value (Lo);
- Discr := Entity (Hi);
- Dtyp := Etype (Discr);
-
- -- See if the discriminant has a known upper bound
-
- Dhi := Type_High_Bound (Dtyp);
-
- if not Compile_Time_Known_Value (Dhi) then
- goto Continue;
- end if;
-
- Dhiv := Expr_Value (Dhi);
-
- -- See if base type of component array has known upper bound
-
- Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
-
- if not Compile_Time_Known_Value (Ahi) then
- goto Continue;
- end if;
-
- Ahiv := Expr_Value (Ahi);
-
- -- The condition for doing the restriction is that the high bound
- -- of the discriminant is greater than the low bound of the array,
- -- and is also greater than the high bound of the base type index.
-
- if Dhiv > Loval and then Dhiv > Ahiv then
-
- -- We can reset the upper bound of the discriminant type to
- -- whichever is larger, the low bound of the component, or
- -- the high bound of the base type array index.
-
- -- We build a subtype that is declared as
-
- -- subtype Tnn is discr_type range discr_type'First .. max;
-
- -- And insert this declaration into the tree. The type of the
- -- discriminant is then reset to this more restricted subtype.
-
- Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
-
- Insert_Action (Declaration_Node (Rtype),
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Tnn,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
- Constraint =>
- Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
- Low_Bound =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_First,
- Prefix => New_Occurrence_Of (Dtyp, Loc)),
- High_Bound =>
- Make_Integer_Literal (Loc,
- Intval => UI_Max (Loval, Ahiv)))))));
-
- Set_Etype (Discr, Tnn);
- end if;
-
- <<Continue>>
- Next_Component (Comp);
- end loop;
- end Adjust_Discriminants;
-
- ---------------------------
- -- Build_Array_Init_Proc --
- ---------------------------
-
- procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
- Loc : constant Source_Ptr := Sloc (Nod);
- Comp_Type : constant Entity_Id := Component_Type (A_Type);
- Index_List : List_Id;
- Proc_Id : Entity_Id;
- Body_Stmts : List_Id;
- Has_Default_Init : Boolean;
-
- function Init_Component return List_Id;
- -- Create one statement to initialize one array component, designated
- -- by a full set of indices.
-
- function Init_One_Dimension (N : Int) return List_Id;
- -- Create loop to initialize one dimension of the array. The single
- -- statement in the loop body initializes the inner dimensions if any,
- -- or else the single component. Note that this procedure is called
- -- recursively, with N being the dimension to be initialized. A call
- -- with N greater than the number of dimensions simply generates the
- -- component initialization, terminating the recursion.
-
- --------------------
- -- Init_Component --
- --------------------
-
- function Init_Component return List_Id is
- Comp : Node_Id;
-
- begin
- Comp :=
- Make_Indexed_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Expressions => Index_List);
-
- if Needs_Simple_Initialization (Comp_Type) then
- Set_Assignment_OK (Comp);
- return New_List (
- Make_Assignment_Statement (Loc,
- Name => Comp,
- Expression =>
- Get_Simple_Init_Val
- (Comp_Type, Nod, Component_Size (A_Type))));
-
- else
- Clean_Task_Names (Comp_Type, Proc_Id);
- return
- Build_Initialization_Call
- (Loc, Comp, Comp_Type,
- In_Init_Proc => True,
- Enclos_Type => A_Type);
- end if;
- end Init_Component;
-
- ------------------------
- -- Init_One_Dimension --
- ------------------------
-
- function Init_One_Dimension (N : Int) return List_Id is
- Index : Entity_Id;
-
- begin
- -- If the component does not need initializing, then there is nothing
- -- to do here, so we return a null body. This occurs when generating
- -- the dummy Init_Proc needed for Initialize_Scalars processing.
-
- if not Has_Non_Null_Base_Init_Proc (Comp_Type)
- and then not Needs_Simple_Initialization (Comp_Type)
- and then not Has_Task (Comp_Type)
- then
- return New_List (Make_Null_Statement (Loc));
-
- -- If all dimensions dealt with, we simply initialize the component
-
- elsif N > Number_Dimensions (A_Type) then
- return Init_Component;
-
- -- Here we generate the required loop
-
- else
- Index :=
- Make_Defining_Identifier (Loc, New_External_Name ('J', N));
-
- Append (New_Reference_To (Index, Loc), Index_List);
-
- return New_List (
- Make_Implicit_Loop_Statement (Nod,
- Identifier => Empty,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => Index,
- Discrete_Subtype_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Attribute_Name => Name_Range,
- Expressions => New_List (
- Make_Integer_Literal (Loc, N))))),
- Statements => Init_One_Dimension (N + 1)));
- end if;
- end Init_One_Dimension;
-
- -- Start of processing for Build_Array_Init_Proc
-
- begin
- -- Nothing to generate in the following cases:
-
- -- 1. Initialization is suppressed for the type
- -- 2. The type is a value type, in the CIL sense.
- -- 3. An initialization already exists for the base type
-
- if Suppress_Init_Proc (A_Type)
- or else Is_Value_Type (Comp_Type)
- or else Present (Base_Init_Proc (A_Type))
- then
- return;
- end if;
-
- Index_List := New_List;
-
- -- We need an initialization procedure if any of the following is true:
-
- -- 1. The component type has an initialization procedure
- -- 2. The component type needs simple initialization
- -- 3. Tasks are present
- -- 4. The type is marked as a public entity
-
- -- The reason for the public entity test is to deal properly with the
- -- Initialize_Scalars pragma. This pragma can be set in the client and
- -- not in the declaring package, this means the client will make a call
- -- to the initialization procedure (because one of conditions 1-3 must
- -- apply in this case), and we must generate a procedure (even if it is
- -- null) to satisfy the call in this case.
-
- -- Exception: do not build an array init_proc for a type whose root
- -- type is Standard.String or Standard.Wide_[Wide_]String, since there
- -- is no place to put the code, and in any case we handle initialization
- -- of such types (in the Initialize_Scalars case, that's the only time
- -- the issue arises) in a special manner anyway which does not need an
- -- init_proc.
-
- Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
- or else Needs_Simple_Initialization (Comp_Type)
- or else Has_Task (Comp_Type);
-
- if Has_Default_Init
- or else (not Restriction_Active (No_Initialize_Scalars)
- and then Is_Public (A_Type)
- and then Root_Type (A_Type) /= Standard_String
- and then Root_Type (A_Type) /= Standard_Wide_String
- and then Root_Type (A_Type) /= Standard_Wide_Wide_String)
- then
- Proc_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Make_Init_Proc_Name (A_Type));
-
- -- If No_Default_Initialization restriction is active, then we don't
- -- want to build an init_proc, but we need to mark that an init_proc
- -- would be needed if this restriction was not active (so that we can
- -- detect attempts to call it), so set a dummy init_proc in place.
- -- This is only done though when actual default initialization is
- -- needed (and not done when only Is_Public is True), since otherwise
- -- objects such as arrays of scalars could be wrongly flagged as
- -- violating the restriction.
-
- if Restriction_Active (No_Default_Initialization) then
- if Has_Default_Init then
- Set_Init_Proc (A_Type, Proc_Id);
- end if;
-
- return;
- end if;
-
- Body_Stmts := Init_One_Dimension (1);
-
- Discard_Node (
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name => Proc_Id,
- Parameter_Specifications => Init_Formals (A_Type)),
- Declarations => New_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Body_Stmts)));
-
- Set_Ekind (Proc_Id, E_Procedure);
- Set_Is_Public (Proc_Id, Is_Public (A_Type));
- Set_Is_Internal (Proc_Id);
- Set_Has_Completion (Proc_Id);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Proc_Id);
- end if;
-
- -- Set inlined unless controlled stuff or tasks around, in which
- -- case we do not want to inline, because nested stuff may cause
- -- difficulties in inter-unit inlining, and furthermore there is
- -- in any case no point in inlining such complex init procs.
-
- if not Has_Task (Proc_Id)
- and then not Needs_Finalization (Proc_Id)
- then
- Set_Is_Inlined (Proc_Id);
- end if;
-
- -- Associate Init_Proc with type, and determine if the procedure
- -- is null (happens because of the Initialize_Scalars pragma case,
- -- where we have to generate a null procedure in case it is called
- -- by a client with Initialize_Scalars set). Such procedures have
- -- to be generated, but do not have to be called, so we mark them
- -- as null to suppress the call.
-
- Set_Init_Proc (A_Type, Proc_Id);
-
- if List_Length (Body_Stmts) = 1
- and then Nkind (First (Body_Stmts)) = N_Null_Statement
- then
- Set_Is_Null_Init_Proc (Proc_Id);
-
- else
- -- Try to build a static aggregate to initialize statically
- -- objects of the type. This can only be done for constrained
- -- one-dimensional arrays with static bounds.
-
- Set_Static_Initialization
- (Proc_Id,
- Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
- end if;
- end if;
- end Build_Array_Init_Proc;
-
- -----------------------------
- -- Build_Class_Wide_Master --
- -----------------------------
-
- procedure Build_Class_Wide_Master (T : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (T);
- M_Id : Entity_Id;
- Decl : Node_Id;
- P : Node_Id;
- Par : Node_Id;
-
- begin
- -- Nothing to do if there is no task hierarchy
-
- if Restriction_Active (No_Task_Hierarchy) then
- return;
- end if;
-
- -- Find declaration that created the access type: either a type
- -- declaration, or an object declaration with an access definition,
- -- in which case the type is anonymous.
-
- if Is_Itype (T) then
- P := Associated_Node_For_Itype (T);
- else
- P := Parent (T);
- end if;
-
- -- Nothing to do if we already built a master entity for this scope
-
- if not Has_Master_Entity (Scope (T)) then
-
- -- First build the master entity
- -- _Master : constant Master_Id := Current_Master.all;
- -- and insert it just before the current declaration.
-
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uMaster),
- Constant_Present => True,
- Object_Definition => New_Reference_To (Standard_Integer, Loc),
- Expression =>
- Make_Explicit_Dereference (Loc,
- New_Reference_To (RTE (RE_Current_Master), Loc)));
-
- Insert_Action (P, Decl);
- Analyze (Decl);
- Set_Has_Master_Entity (Scope (T));
-
- -- Now mark the containing scope as a task master
-
- Par := P;
- while Nkind (Par) /= N_Compilation_Unit loop
- Par := Parent (Par);
-
- -- If we fall off the top, we are at the outer level, and the
- -- environment task is our effective master, so nothing to mark.
-
- if Nkind_In
- (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
- then
- Set_Is_Task_Master (Par, True);
- exit;
- end if;
- end loop;
- end if;
-
- -- Now define the renaming of the master_id
-
- M_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (T), 'M'));
-
- Decl :=
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => M_Id,
- Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
- Name => Make_Identifier (Loc, Name_uMaster));
- Insert_Before (P, Decl);
- Analyze (Decl);
-
- Set_Master_Id (T, M_Id);
-
- exception
- when RE_Not_Available =>
- return;
- end Build_Class_Wide_Master;
-
- --------------------------------
- -- Build_Discr_Checking_Funcs --
- --------------------------------
-
- procedure Build_Discr_Checking_Funcs (N : Node_Id) is
- Rec_Id : Entity_Id;
- Loc : Source_Ptr;
- Enclosing_Func_Id : Entity_Id;
- Sequence : Nat := 1;
- Type_Def : Node_Id;
- V : Node_Id;
-
- function Build_Case_Statement
- (Case_Id : Entity_Id;
- Variant : Node_Id) return Node_Id;
- -- Build a case statement containing only two alternatives. The first
- -- alternative corresponds exactly to the discrete choices given on the
- -- variant with contains the components that we are generating the
- -- checks for. If the discriminant is one of these return False. The
- -- second alternative is an OTHERS choice that will return True
- -- indicating the discriminant did not match.
-
- function Build_Dcheck_Function
- (Case_Id : Entity_Id;
- Variant : Node_Id) return Entity_Id;
- -- Build the discriminant checking function for a given variant
-
- procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
- -- Builds the discriminant checking function for each variant of the
- -- given variant part of the record type.
-
- --------------------------
- -- Build_Case_Statement --
- --------------------------
-
- function Build_Case_Statement
- (Case_Id : Entity_Id;
- Variant : Node_Id) return Node_Id
- is
- Alt_List : constant List_Id := New_List;
- Actuals_List : List_Id;
- Case_Node : Node_Id;
- Case_Alt_Node : Node_Id;
- Choice : Node_Id;
- Choice_List : List_Id;
- D : Entity_Id;
- Return_Node : Node_Id;
-
- begin
- Case_Node := New_Node (N_Case_Statement, Loc);
-
- -- Replace the discriminant which controls the variant, with the name
- -- of the formal of the checking function.
-
- Set_Expression (Case_Node,
- Make_Identifier (Loc, Chars (Case_Id)));
-
- Choice := First (Discrete_Choices (Variant));
-
- if Nkind (Choice) = N_Others_Choice then
- Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
- else
- Choice_List := New_Copy_List (Discrete_Choices (Variant));
- end if;
-
- if not Is_Empty_List (Choice_List) then
- Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
- Set_Discrete_Choices (Case_Alt_Node, Choice_List);
-
- -- In case this is a nested variant, we need to return the result
- -- of the discriminant checking function for the immediately
- -- enclosing variant.
-
- if Present (Enclosing_Func_Id) then
- Actuals_List := New_List;
-
- D := First_Discriminant (Rec_Id);
- while Present (D) loop
- Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
- Next_Discriminant (D);
- end loop;
-
- Return_Node :=
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Function_Call (Loc,
- Name =>
- New_Reference_To (Enclosing_Func_Id, Loc),
- Parameter_Associations =>
- Actuals_List));
-
- else
- Return_Node :=
- Make_Simple_Return_Statement (Loc,
- Expression =>
- New_Reference_To (Standard_False, Loc));
- end if;
-
- Set_Statements (Case_Alt_Node, New_List (Return_Node));
- Append (Case_Alt_Node, Alt_List);
- end if;
-
- Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
- Choice_List := New_List (New_Node (N_Others_Choice, Loc));
- Set_Discrete_Choices (Case_Alt_Node, Choice_List);
-
- Return_Node :=
- Make_Simple_Return_Statement (Loc,
- Expression =>
- New_Reference_To (Standard_True, Loc));
-
- Set_Statements (Case_Alt_Node, New_List (Return_Node));
- Append (Case_Alt_Node, Alt_List);
-
- Set_Alternatives (Case_Node, Alt_List);
- return Case_Node;
- end Build_Case_Statement;
-
- ---------------------------
- -- Build_Dcheck_Function --
- ---------------------------
-
- function Build_Dcheck_Function
- (Case_Id : Entity_Id;
- Variant : Node_Id) return Entity_Id
- is
- Body_Node : Node_Id;
- Func_Id : Entity_Id;
- Parameter_List : List_Id;
- Spec_Node : Node_Id;
-
- begin
- Body_Node := New_Node (N_Subprogram_Body, Loc);
- Sequence := Sequence + 1;
-
- Func_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
-
- Spec_Node := New_Node (N_Function_Specification, Loc);
- Set_Defining_Unit_Name (Spec_Node, Func_Id);
-
- Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
-
- Set_Parameter_Specifications (Spec_Node, Parameter_List);
- Set_Result_Definition (Spec_Node,
- New_Reference_To (Standard_Boolean, Loc));
- Set_Specification (Body_Node, Spec_Node);
- Set_Declarations (Body_Node, New_List);
-
- Set_Handled_Statement_Sequence (Body_Node,
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Build_Case_Statement (Case_Id, Variant))));
-
- Set_Ekind (Func_Id, E_Function);
- Set_Mechanism (Func_Id, Default_Mechanism);
- Set_Is_Inlined (Func_Id, True);
- Set_Is_Pure (Func_Id, True);
- Set_Is_Public (Func_Id, Is_Public (Rec_Id));
- Set_Is_Internal (Func_Id, True);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Func_Id);
- end if;
-
- Analyze (Body_Node);
-
- Append_Freeze_Action (Rec_Id, Body_Node);
- Set_Dcheck_Function (Variant, Func_Id);
- return Func_Id;
- end Build_Dcheck_Function;
-
- ----------------------------
- -- Build_Dcheck_Functions --
- ----------------------------
-
- procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
- Component_List_Node : Node_Id;
- Decl : Entity_Id;
- Discr_Name : Entity_Id;
- Func_Id : Entity_Id;
- Variant : Node_Id;
- Saved_Enclosing_Func_Id : Entity_Id;
-
- begin
- -- Build the discriminant-checking function for each variant, and
- -- label all components of that variant with the function's name.
- -- We only Generate a discriminant-checking function when the
- -- variant is not empty, to prevent the creation of dead code.
- -- The exception to that is when Frontend_Layout_On_Target is set,
- -- because the variant record size function generated in package
- -- Layout needs to generate calls to all discriminant-checking
- -- functions, including those for empty variants.
-
- Discr_Name := Entity (Name (Variant_Part_Node));
- Variant := First_Non_Pragma (Variants (Variant_Part_Node));
-
- while Present (Variant) loop
- Component_List_Node := Component_List (Variant);
-
- if not Null_Present (Component_List_Node)
- or else Frontend_Layout_On_Target
- then
- Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
- Decl :=
- First_Non_Pragma (Component_Items (Component_List_Node));
-
- while Present (Decl) loop
- Set_Discriminant_Checking_Func
- (Defining_Identifier (Decl), Func_Id);
-
- Next_Non_Pragma (Decl);
- end loop;
-
- if Present (Variant_Part (Component_List_Node)) then
- Saved_Enclosing_Func_Id := Enclosing_Func_Id;
- Enclosing_Func_Id := Func_Id;
- Build_Dcheck_Functions (Variant_Part (Component_List_Node));
- Enclosing_Func_Id := Saved_Enclosing_Func_Id;
- end if;
- end if;
-
- Next_Non_Pragma (Variant);
- end loop;
- end Build_Dcheck_Functions;
-
- -- Start of processing for Build_Discr_Checking_Funcs
-
- begin
- -- Only build if not done already
-
- if not Discr_Check_Funcs_Built (N) then
- Type_Def := Type_Definition (N);
-
- if Nkind (Type_Def) = N_Record_Definition then
- if No (Component_List (Type_Def)) then -- null record.
- return;
- else
- V := Variant_Part (Component_List (Type_Def));
- end if;
-
- else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
- if No (Component_List (Record_Extension_Part (Type_Def))) then
- return;
- else
- V := Variant_Part
- (Component_List (Record_Extension_Part (Type_Def)));
- end if;
- end if;
-
- Rec_Id := Defining_Identifier (N);
-
- if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
- Loc := Sloc (N);
- Enclosing_Func_Id := Empty;
- Build_Dcheck_Functions (V);
- end if;
-
- Set_Discr_Check_Funcs_Built (N);
- end if;
- end Build_Discr_Checking_Funcs;
-
- --------------------------------
- -- Build_Discriminant_Formals --
- --------------------------------
-
- function Build_Discriminant_Formals
- (Rec_Id : Entity_Id;
- Use_Dl : Boolean) return List_Id
- is
- Loc : Source_Ptr := Sloc (Rec_Id);
- Parameter_List : constant List_Id := New_List;
- D : Entity_Id;
- Formal : Entity_Id;
- Param_Spec_Node : Node_Id;
-
- begin
- if Has_Discriminants (Rec_Id) then
- D := First_Discriminant (Rec_Id);
- while Present (D) loop
- Loc := Sloc (D);
-
- if Use_Dl then
- Formal := Discriminal (D);
- else
- Formal := Make_Defining_Identifier (Loc, Chars (D));
- end if;
-
- Param_Spec_Node :=
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Formal,
- Parameter_Type =>
- New_Reference_To (Etype (D), Loc));
- Append (Param_Spec_Node, Parameter_List);
- Next_Discriminant (D);
- end loop;
- end if;
-
- return Parameter_List;
- end Build_Discriminant_Formals;
-
- --------------------------------------
- -- Build_Equivalent_Array_Aggregate --
- --------------------------------------
-
- function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (T);
- Comp_Type : constant Entity_Id := Component_Type (T);
- Index_Type : constant Entity_Id := Etype (First_Index (T));
- Proc : constant Entity_Id := Base_Init_Proc (T);
- Lo, Hi : Node_Id;
- Aggr : Node_Id;
- Expr : Node_Id;
-
- begin
- if not Is_Constrained (T)
- or else Number_Dimensions (T) > 1
- or else No (Proc)
- then
- Initialization_Warning (T);
- return Empty;
- end if;
-
- Lo := Type_Low_Bound (Index_Type);
- Hi := Type_High_Bound (Index_Type);
-
- if not Compile_Time_Known_Value (Lo)
- or else not Compile_Time_Known_Value (Hi)
- then
- Initialization_Warning (T);
- return Empty;
- end if;
-
- if Is_Record_Type (Comp_Type)
- and then Present (Base_Init_Proc (Comp_Type))
- then
- Expr := Static_Initialization (Base_Init_Proc (Comp_Type));
-
- if No (Expr) then
- Initialization_Warning (T);
- return Empty;
- end if;
-
- else
- Initialization_Warning (T);
- return Empty;
- end if;
-
- Aggr := Make_Aggregate (Loc, No_List, New_List);
- Set_Etype (Aggr, T);
- Set_Aggregate_Bounds (Aggr,
- Make_Range (Loc,
- Low_Bound => New_Copy (Lo),
- High_Bound => New_Copy (Hi)));
- Set_Parent (Aggr, Parent (Proc));
-
- Append_To (Component_Associations (Aggr),
- Make_Component_Association (Loc,
- Choices =>
- New_List (
- Make_Range (Loc,
- Low_Bound => New_Copy (Lo),
- High_Bound => New_Copy (Hi))),
- Expression => Expr));
-
- if Static_Array_Aggregate (Aggr) then
- return Aggr;
- else
- Initialization_Warning (T);
- return Empty;
- end if;
- end Build_Equivalent_Array_Aggregate;
-
- ---------------------------------------
- -- Build_Equivalent_Record_Aggregate --
- ---------------------------------------
-
- function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
- Agg : Node_Id;
- Comp : Entity_Id;
-
- -- Start of processing for Build_Equivalent_Record_Aggregate
-
- begin
- if not Is_Record_Type (T)
- or else Has_Discriminants (T)
- or else Is_Limited_Type (T)
- or else Has_Non_Standard_Rep (T)
- then
- Initialization_Warning (T);
- return Empty;
- end if;
-
- Comp := First_Component (T);
-
- -- A null record needs no warning
-
- if No (Comp) then
- return Empty;
- end if;
-
- while Present (Comp) loop
-
- -- Array components are acceptable if initialized by a positional
- -- aggregate with static components.
-
- if Is_Array_Type (Etype (Comp)) then
- declare
- Comp_Type : constant Entity_Id := Component_Type (Etype (Comp));
-
- begin
- if Nkind (Parent (Comp)) /= N_Component_Declaration
- or else No (Expression (Parent (Comp)))
- or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
- then
- Initialization_Warning (T);
- return Empty;
-
- elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
- and then
- (not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
- or else not Compile_Time_Known_Value
- (Type_High_Bound (Comp_Type)))
- then
- Initialization_Warning (T);
- return Empty;
-
- elsif
- not Static_Array_Aggregate (Expression (Parent (Comp)))
- then
- Initialization_Warning (T);
- return Empty;
- end if;
- end;
-
- elsif Is_Scalar_Type (Etype (Comp)) then
- if Nkind (Parent (Comp)) /= N_Component_Declaration
- or else No (Expression (Parent (Comp)))
- or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
- then
- Initialization_Warning (T);
- return Empty;
- end if;
-
- -- For now, other types are excluded
-
- else
- Initialization_Warning (T);
- return Empty;
- end if;
-
- Next_Component (Comp);
- end loop;
-
- -- All components have static initialization. Build positional
- -- aggregate from the given expressions or defaults.
-
- Agg := Make_Aggregate (Sloc (T), New_List, New_List);
- Set_Parent (Agg, Parent (T));
-
- Comp := First_Component (T);
- while Present (Comp) loop
- Append
- (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
- Next_Component (Comp);
- end loop;
-
- Analyze_And_Resolve (Agg, T);
- return Agg;
- end Build_Equivalent_Record_Aggregate;
-
- -------------------------------
- -- Build_Initialization_Call --
- -------------------------------
-
- -- References to a discriminant inside the record type declaration can
- -- appear either in the subtype_indication to constrain a record or an
- -- array, or as part of a larger expression given for the initial value
- -- of a component. In both of these cases N appears in the record
- -- initialization procedure and needs to be replaced by the formal
- -- parameter of the initialization procedure which corresponds to that
- -- discriminant.
-
- -- In the example below, references to discriminants D1 and D2 in proc_1
- -- are replaced by references to formals with the same name
- -- (discriminals)
-
- -- A similar replacement is done for calls to any record initialization
- -- procedure for any components that are themselves of a record type.
-
- -- type R (D1, D2 : Integer) is record
- -- X : Integer := F * D1;
- -- Y : Integer := F * D2;
- -- end record;
-
- -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
- -- begin
- -- Out_2.D1 := D1;
- -- Out_2.D2 := D2;
- -- Out_2.X := F * D1;
- -- Out_2.Y := F * D2;
- -- end;
-
- function Build_Initialization_Call
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- Typ : Entity_Id;
- In_Init_Proc : Boolean := False;
- Enclos_Type : Entity_Id := Empty;
- Discr_Map : Elist_Id := New_Elmt_List;
- With_Default_Init : Boolean := False) return List_Id
- is
- First_Arg : Node_Id;
- Args : List_Id;
- Decls : List_Id;
- Decl : Node_Id;
- Discr : Entity_Id;
- Arg : Node_Id;
- Proc : constant Entity_Id := Base_Init_Proc (Typ);
- Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
- Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
- Res : constant List_Id := New_List;
- Full_Type : Entity_Id := Typ;
- Controller_Typ : Entity_Id;
-
- begin
- -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
- -- is active (in which case we make the call anyway, since in the
- -- actual compiled client it may be non null).
- -- Also nothing to do for value types.
-
- if (Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars)
- or else Is_Value_Type (Typ)
- or else Is_Value_Type (Component_Type (Typ))
- then
- return Empty_List;
- end if;
-
- -- Go to full view if private type. In the case of successive
- -- private derivations, this can require more than one step.
-
- while Is_Private_Type (Full_Type)
- and then Present (Full_View (Full_Type))
- loop
- Full_Type := Full_View (Full_Type);
- end loop;
-
- -- If Typ is derived, the procedure is the initialization procedure for
- -- the root type. Wrap the argument in an conversion to make it type
- -- honest. Actually it isn't quite type honest, because there can be
- -- conflicts of views in the private type case. That is why we set
- -- Conversion_OK in the conversion node.
-
- if (Is_Record_Type (Typ)
- or else Is_Array_Type (Typ)
- or else Is_Private_Type (Typ))
- and then Init_Type /= Base_Type (Typ)
- then
- First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
- Set_Etype (First_Arg, Init_Type);
-
- else
- First_Arg := Id_Ref;
- end if;
-
- Args := New_List (Convert_Concurrent (First_Arg, Typ));
-
- -- In the tasks case, add _Master as the value of the _Master parameter
- -- and _Chain as the value of the _Chain parameter. At the outer level,
- -- these will be variables holding the corresponding values obtained
- -- from GNARL. At inner levels, they will be the parameters passed down
- -- through the outer routines.
-
- if Has_Task (Full_Type) then
- if Restriction_Active (No_Task_Hierarchy) then
-
- -- See comments in System.Tasking.Initialization.Init_RTS
- -- for the value 3 (should be rtsfindable constant ???)
-
- Append_To (Args, Make_Integer_Literal (Loc, 3));
-
- else
- Append_To (Args, Make_Identifier (Loc, Name_uMaster));
- end if;
-
- Append_To (Args, Make_Identifier (Loc, Name_uChain));
-
- -- Ada 2005 (AI-287): In case of default initialized components
- -- with tasks, we generate a null string actual parameter.
- -- This is just a workaround that must be improved later???
-
- if With_Default_Init then
- Append_To (Args,
- Make_String_Literal (Loc,
- Strval => ""));
-
- else
- Decls :=
- Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
- Decl := Last (Decls);
-
- Append_To (Args,
- New_Occurrence_Of (Defining_Identifier (Decl), Loc));
- Append_List (Decls, Res);
- end if;
-
- else
- Decls := No_List;
- Decl := Empty;
- end if;
-
- -- Add discriminant values if discriminants are present
-
- if Has_Discriminants (Full_Init_Type) then
- Discr := First_Discriminant (Full_Init_Type);
-
- while Present (Discr) loop
-
- -- If this is a discriminated concurrent type, the init_proc
- -- for the corresponding record is being called. Use that type
- -- directly to find the discriminant value, to handle properly
- -- intervening renamed discriminants.
-
- declare
- T : Entity_Id := Full_Type;
-
- begin
- if Is_Protected_Type (T) then
- T := Corresponding_Record_Type (T);
-
- elsif Is_Private_Type (T)
- and then Present (Underlying_Full_View (T))
- and then Is_Protected_Type (Underlying_Full_View (T))
- then
- T := Corresponding_Record_Type (Underlying_Full_View (T));
- end if;
-
- Arg :=
- Get_Discriminant_Value (
- Discr,
- T,
- Discriminant_Constraint (Full_Type));
- end;
-
- if In_Init_Proc then
-
- -- Replace any possible references to the discriminant in the
- -- call to the record initialization procedure with references
- -- to the appropriate formal parameter.
-
- if Nkind (Arg) = N_Identifier
- and then Ekind (Entity (Arg)) = E_Discriminant
- then
- Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
-
- -- Case of access discriminants. We replace the reference
- -- to the type by a reference to the actual object
-
- elsif Nkind (Arg) = N_Attribute_Reference
- and then Is_Access_Type (Etype (Arg))
- and then Is_Entity_Name (Prefix (Arg))
- and then Is_Type (Entity (Prefix (Arg)))
- then
- Arg :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Copy (Prefix (Id_Ref)),
- Attribute_Name => Name_Unrestricted_Access);
-
- -- Otherwise make a copy of the default expression. Note that
- -- we use the current Sloc for this, because we do not want the
- -- call to appear to be at the declaration point. Within the
- -- expression, replace discriminants with their discriminals.
-
- else
- Arg :=
- New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
- end if;
-
- else
- if Is_Constrained (Full_Type) then
- Arg := Duplicate_Subexpr_No_Checks (Arg);
- else
- -- The constraints come from the discriminant default exps,
- -- they must be reevaluated, so we use New_Copy_Tree but we
- -- ensure the proper Sloc (for any embedded calls).
-
- Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
- end if;
- end if;
-
- -- Ada 2005 (AI-287): In case of default initialized components,
- -- we need to generate the corresponding selected component node
- -- to access the discriminant value. In other cases this is not
- -- required because we are inside the init proc and we use the
- -- corresponding formal.
-
- if With_Default_Init
- and then Nkind (Id_Ref) = N_Selected_Component
- and then Nkind (Arg) = N_Identifier
- then
- Append_To (Args,
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Prefix (Id_Ref)),
- Selector_Name => Arg));
- else
- Append_To (Args, Arg);
- end if;
-
- Next_Discriminant (Discr);
- end loop;
- end if;
-
- -- If this is a call to initialize the parent component of a derived
- -- tagged type, indicate that the tag should not be set in the parent.
-
- if Is_Tagged_Type (Full_Init_Type)
- and then not Is_CPP_Class (Full_Init_Type)
- and then Nkind (Id_Ref) = N_Selected_Component
- and then Chars (Selector_Name (Id_Ref)) = Name_uParent
- then
- Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
- end if;
-
- Append_To (Res,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Occurrence_Of (Proc, Loc),
- Parameter_Associations => Args));
-
- if Needs_Finalization (Typ)
- and then Nkind (Id_Ref) = N_Selected_Component
- then
- if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
- Append_List_To (Res,
- Make_Init_Call (
- Ref => New_Copy_Tree (First_Arg),
- Typ => Typ,
- Flist_Ref =>
- Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
- With_Attach => Make_Integer_Literal (Loc, 1)));
-
- -- If the enclosing type is an extension with new controlled
- -- components, it has his own record controller. If the parent
- -- also had a record controller, attach it to the new one.
-
- -- Build_Init_Statements relies on the fact that in this specific
- -- case the last statement of the result is the attach call to
- -- the controller. If this is changed, it must be synchronized.
-
- elsif Present (Enclos_Type)
- and then Has_New_Controlled_Component (Enclos_Type)
- and then Has_Controlled_Component (Typ)
- then
- if Is_Inherently_Limited_Type (Typ) then
- Controller_Typ := RTE (RE_Limited_Record_Controller);
- else
- Controller_Typ := RTE (RE_Record_Controller);
- end if;
-
- Append_List_To (Res,
- Make_Init_Call (
- Ref =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (First_Arg),
- Selector_Name => Make_Identifier (Loc, Name_uController)),
- Typ => Controller_Typ,
- Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
- With_Attach => Make_Integer_Literal (Loc, 1)));
- end if;
- end if;
-
- return Res;
-
- exception
- when RE_Not_Available =>
- return Empty_List;
- end Build_Initialization_Call;
-
- ---------------------------
- -- Build_Master_Renaming --
- ---------------------------
-
- function Build_Master_Renaming
- (N : Node_Id;
- T : Entity_Id) return Entity_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
- M_Id : Entity_Id;
- Decl : Node_Id;
-
- begin
- -- Nothing to do if there is no task hierarchy
-
- if Restriction_Active (No_Task_Hierarchy) then
- return Empty;
- end if;
-
- M_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (T), 'M'));
-
- Decl :=
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => M_Id,
- Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
- Name => Make_Identifier (Loc, Name_uMaster));
- Insert_Before (N, Decl);
- Analyze (Decl);
- return M_Id;
-
- exception
- when RE_Not_Available =>
- return Empty;
- end Build_Master_Renaming;
-
- ---------------------------
- -- Build_Master_Renaming --
- ---------------------------
-
- procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
- M_Id : Entity_Id;
-
- begin
- -- Nothing to do if there is no task hierarchy
-
- if Restriction_Active (No_Task_Hierarchy) then
- return;
- end if;
-
- M_Id := Build_Master_Renaming (N, T);
- Set_Master_Id (T, M_Id);
-
- exception
- when RE_Not_Available =>
- return;
- end Build_Master_Renaming;
-
- ----------------------------
- -- Build_Record_Init_Proc --
- ----------------------------
-
- procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
- Loc : Source_Ptr := Sloc (N);
- Discr_Map : constant Elist_Id := New_Elmt_List;
- Proc_Id : Entity_Id;
- Rec_Type : Entity_Id;
- Set_Tag : Entity_Id := Empty;
-
- function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
- -- Build a assignment statement node which assigns to record component
- -- its default expression if defined. The assignment left hand side is
- -- marked Assignment_OK so that initialization of limited private
- -- records works correctly, Return also the adjustment call for
- -- controlled objects
-
- procedure Build_Discriminant_Assignments (Statement_List : List_Id);
- -- If the record has discriminants, adds assignment statements to
- -- statement list to initialize the discriminant values from the
- -- arguments of the initialization procedure.
-
- function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
- -- Build a list representing a sequence of statements which initialize
- -- components of the given component list. This may involve building
- -- case statements for the variant parts.
-
- function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
- -- Given a non-tagged type-derivation that declares discriminants,
- -- such as
- --
- -- type R (R1, R2 : Integer) is record ... end record;
- --
- -- type D (D1 : Integer) is new R (1, D1);
- --
- -- we make the _init_proc of D be
- --
- -- procedure _init_proc(X : D; D1 : Integer) is
- -- begin
- -- _init_proc( R(X), 1, D1);
- -- end _init_proc;
- --
- -- This function builds the call statement in this _init_proc.
-
- procedure Build_Init_Procedure;
- -- Build the tree corresponding to the procedure specification and body
- -- of the initialization procedure (by calling all the preceding
- -- auxiliary routines), and install it as the _init TSS.
-
- procedure Build_Offset_To_Top_Functions;
- -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
- -- and body of the Offset_To_Top function that is generated when the
- -- parent of a type with discriminants has secondary dispatch tables.
-
- procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
- -- Add range checks to components of discriminated records. S is a
- -- subtype indication of a record component. Check_List is a list
- -- to which the check actions are appended.
-
- function Component_Needs_Simple_Initialization
- (T : Entity_Id) return Boolean;
- -- Determines if a component needs simple initialization, given its type
- -- T. This is the same as Needs_Simple_Initialization except for the
- -- following difference: the types Tag and Interface_Tag, that are
- -- access types which would normally require simple initialization to
- -- null, do not require initialization as components, since they are
- -- explicitly initialized by other means.
-
- procedure Constrain_Array
- (SI : Node_Id;
- Check_List : List_Id);
- -- Called from Build_Record_Checks.
- -- Apply a list of index constraints to an unconstrained array type.
- -- The first parameter is the entity for the resulting subtype.
- -- Check_List is a list to which the check actions are appended.
-
- procedure Constrain_Index
- (Index : Node_Id;
- S : Node_Id;
- Check_List : List_Id);
- -- Process an index constraint in a constrained array declaration.
- -- The constraint can be a subtype name, or a range with or without
- -- an explicit subtype mark. The index is the corresponding index of the
- -- unconstrained array. S is the range expression. Check_List is a list
- -- to which the check actions are appended (called from
- -- Build_Record_Checks).
-
- function Parent_Subtype_Renaming_Discrims return Boolean;
- -- Returns True for base types N that rename discriminants, else False
-
- function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
- -- Determines whether a record initialization procedure needs to be
- -- generated for the given record type.
-
- ----------------------
- -- Build_Assignment --
- ----------------------
-
- function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
- Exp : Node_Id := N;
- Lhs : Node_Id;
- Typ : constant Entity_Id := Underlying_Type (Etype (Id));
- Kind : Node_Kind := Nkind (N);
- Res : List_Id;
-
- begin
- Loc := Sloc (N);
- Lhs :=
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Selector_Name => New_Occurrence_Of (Id, Loc));
- Set_Assignment_OK (Lhs);
-
- -- Case of an access attribute applied to the current instance.
- -- Replace the reference to the type by a reference to the actual
- -- object. (Note that this handles the case of the top level of
- -- the expression being given by such an attribute, but does not
- -- cover uses nested within an initial value expression. Nested
- -- uses are unlikely to occur in practice, but are theoretically
- -- possible. It is not clear how to handle them without fully
- -- traversing the expression. ???
-
- if Kind = N_Attribute_Reference
- and then (Attribute_Name (N) = Name_Unchecked_Access
- or else
- Attribute_Name (N) = Name_Unrestricted_Access)
- and then Is_Entity_Name (Prefix (N))
- and then Is_Type (Entity (Prefix (N)))
- and then Entity (Prefix (N)) = Rec_Type
- then
- Exp :=
- Make_Attribute_Reference (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Attribute_Name => Name_Unrestricted_Access);
- end if;
-
- -- Take a copy of Exp to ensure that later copies of this component
- -- declaration in derived types see the original tree, not a node
- -- rewritten during expansion of the init_proc.
-
- Exp := New_Copy_Tree (Exp);
-
- Res := New_List (
- Make_Assignment_Statement (Loc,
- Name => Lhs,
- Expression => Exp));
-
- Set_No_Ctrl_Actions (First (Res));
-
- -- Adjust the tag if tagged (because of possible view conversions).
- -- Suppress the tag adjustment when VM_Target because VM tags are
- -- represented implicitly in objects.
-
- if Is_Tagged_Type (Typ) and then VM_Target = No_VM then
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Lhs),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (Typ), Loc)),
-
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Typ))), Loc))));
- end if;
-
- -- Adjust the component if controlled except if it is an aggregate
- -- that will be expanded inline
-
- if Kind = N_Qualified_Expression then
- Kind := Nkind (Expression (N));
- end if;
-
- if Needs_Finalization (Typ)
- and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
- and then not Is_Inherently_Limited_Type (Typ)
- then
- Append_List_To (Res,
- Make_Adjust_Call (
- Ref => New_Copy_Tree (Lhs),
- Typ => Etype (Id),
- Flist_Ref =>
- Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
- With_Attach => Make_Integer_Literal (Loc, 1)));
- end if;
-
- return Res;
-
- exception
- when RE_Not_Available =>
- return Empty_List;
- end Build_Assignment;
-
- ------------------------------------
- -- Build_Discriminant_Assignments --
- ------------------------------------
-
- procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
- D : Entity_Id;
- Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
-
- begin
- if Has_Discriminants (Rec_Type)
- and then not Is_Unchecked_Union (Rec_Type)
- then
- D := First_Discriminant (Rec_Type);
-
- while Present (D) loop
- -- Don't generate the assignment for discriminants in derived
- -- tagged types if the discriminant is a renaming of some
- -- ancestor discriminant. This initialization will be done
- -- when initializing the _parent field of the derived record.
-
- if Is_Tagged and then
- Present (Corresponding_Discriminant (D))
- then
- null;
-
- else
- Loc := Sloc (D);
- Append_List_To (Statement_List,
- Build_Assignment (D,
- New_Reference_To (Discriminal (D), Loc)));
- end if;
-
- Next_Discriminant (D);
- end loop;
- end if;
- end Build_Discriminant_Assignments;
-
- --------------------------
- -- Build_Init_Call_Thru --
- --------------------------
-
- function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
- Parent_Proc : constant Entity_Id :=
- Base_Init_Proc (Etype (Rec_Type));
-
- Parent_Type : constant Entity_Id :=
- Etype (First_Formal (Parent_Proc));
-
- Uparent_Type : constant Entity_Id :=
- Underlying_Type (Parent_Type);
-
- First_Discr_Param : Node_Id;
-
- Parent_Discr : Entity_Id;
- First_Arg : Node_Id;
- Args : List_Id;
- Arg : Node_Id;
- Res : List_Id;
-
- begin
- -- First argument (_Init) is the object to be initialized.
- -- ??? not sure where to get a reasonable Loc for First_Arg
-
- First_Arg :=
- OK_Convert_To (Parent_Type,
- New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
-
- Set_Etype (First_Arg, Parent_Type);
-
- Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
-
- -- In the tasks case,
- -- add _Master as the value of the _Master parameter
- -- add _Chain as the value of the _Chain parameter.
- -- add _Task_Name as the value of the _Task_Name parameter.
- -- At the outer level, these will be variables holding the
- -- corresponding values obtained from GNARL or the expander.
- --
- -- At inner levels, they will be the parameters passed down through
- -- the outer routines.
-
- First_Discr_Param := Next (First (Parameters));
-
- if Has_Task (Rec_Type) then
- if Restriction_Active (No_Task_Hierarchy) then
-
- -- See comments in System.Tasking.Initialization.Init_RTS
- -- for the value 3.
-
- Append_To (Args, Make_Integer_Literal (Loc, 3));
- else
- Append_To (Args, Make_Identifier (Loc, Name_uMaster));
- end if;
-
- Append_To (Args, Make_Identifier (Loc, Name_uChain));
- Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
- First_Discr_Param := Next (Next (Next (First_Discr_Param)));
- end if;
-
- -- Append discriminant values
-
- if Has_Discriminants (Uparent_Type) then
- pragma Assert (not Is_Tagged_Type (Uparent_Type));
-
- Parent_Discr := First_Discriminant (Uparent_Type);
- while Present (Parent_Discr) loop
-
- -- Get the initial value for this discriminant
- -- ??? needs to be cleaned up to use parent_Discr_Constr
- -- directly.
-
- declare
- Discr_Value : Elmt_Id :=
- First_Elmt
- (Stored_Constraint (Rec_Type));
-
- Discr : Entity_Id :=
- First_Stored_Discriminant (Uparent_Type);
- begin
- while Original_Record_Component (Parent_Discr) /= Discr loop
- Next_Stored_Discriminant (Discr);
- Next_Elmt (Discr_Value);
- end loop;
-
- Arg := Node (Discr_Value);
- end;
-
- -- Append it to the list
-
- if Nkind (Arg) = N_Identifier
- and then Ekind (Entity (Arg)) = E_Discriminant
- then
- Append_To (Args,
- New_Reference_To (Discriminal (Entity (Arg)), Loc));
-
- -- Case of access discriminants. We replace the reference
- -- to the type by a reference to the actual object.
-
- -- Is above comment right??? Use of New_Copy below seems mighty
- -- suspicious ???
-
- else
- Append_To (Args, New_Copy (Arg));
- end if;
-
- Next_Discriminant (Parent_Discr);
- end loop;
- end if;
-
- Res :=
- New_List (
- Make_Procedure_Call_Statement (Loc,
- Name => New_Occurrence_Of (Parent_Proc, Loc),
- Parameter_Associations => Args));
-
- return Res;
- end Build_Init_Call_Thru;
-
- -----------------------------------
- -- Build_Offset_To_Top_Functions --
- -----------------------------------
-
- procedure Build_Offset_To_Top_Functions is
-
- procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
- -- Generate:
- -- function Fxx (O : in Rec_Typ) return Storage_Offset is
- -- begin
- -- return O.Iface_Comp'Position;
- -- end Fxx;
-
- ------------------------------
- -- Build_Offset_To_Top_Body --
- ------------------------------
-
- procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
- Body_Node : Node_Id;
- Func_Id : Entity_Id;
- Spec_Node : Node_Id;
-
- begin
- Func_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('F'));
-
- Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);
-
- -- Generate
- -- function Fxx (O : in Rec_Typ) return Storage_Offset;
-
- Spec_Node := New_Node (N_Function_Specification, Loc);
- Set_Defining_Unit_Name (Spec_Node, Func_Id);
- Set_Parameter_Specifications (Spec_Node, New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_uO),
- In_Present => True,
- Parameter_Type => New_Reference_To (Rec_Type, Loc))));
- Set_Result_Definition (Spec_Node,
- New_Reference_To (RTE (RE_Storage_Offset), Loc));
-
- -- Generate
- -- function Fxx (O : in Rec_Typ) return Storage_Offset is
- -- begin
- -- return O.Iface_Comp'Position;
- -- end Fxx;
-
- Body_Node := New_Node (N_Subprogram_Body, Loc);
- Set_Specification (Body_Node, Spec_Node);
- Set_Declarations (Body_Node, New_List);
- Set_Handled_Statement_Sequence (Body_Node,
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uO),
- Selector_Name => New_Reference_To
- (Iface_Comp, Loc)),
- Attribute_Name => Name_Position)))));
-
- Set_Ekind (Func_Id, E_Function);
- Set_Mechanism (Func_Id, Default_Mechanism);
- Set_Is_Internal (Func_Id, True);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Func_Id);
- end if;
-
- Analyze (Body_Node);
-
- Append_Freeze_Action (Rec_Type, Body_Node);
- end Build_Offset_To_Top_Function;
-
- -- Local variables
-
- Ifaces_Comp_List : Elist_Id;
- Iface_Comp_Elmt : Elmt_Id;
- Iface_Comp : Node_Id;
-
- -- Start of processing for Build_Offset_To_Top_Functions
-
- begin
- -- Offset_To_Top_Functions are built only for derivations of types
- -- with discriminants that cover interface types.
- -- Nothing is needed either in case of virtual machines, since
- -- interfaces are handled directly by the VM.
-
- if not Is_Tagged_Type (Rec_Type)
- or else Etype (Rec_Type) = Rec_Type
- or else not Has_Discriminants (Etype (Rec_Type))
- or else VM_Target /= No_VM
- then
- return;
- end if;
-
- Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);
-
- -- For each interface type with secondary dispatch table we generate
- -- the Offset_To_Top_Functions (required to displace the pointer in
- -- interface conversions)
-
- Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
- while Present (Iface_Comp_Elmt) loop
- Iface_Comp := Node (Iface_Comp_Elmt);
- pragma Assert (Is_Interface (Related_Type (Iface_Comp)));
-
- -- If the interface is a parent of Rec_Type it shares the primary
- -- dispatch table and hence there is no need to build the function
-
- if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type) then
- Build_Offset_To_Top_Function (Iface_Comp);
- end if;
-
- Next_Elmt (Iface_Comp_Elmt);
- end loop;
- end Build_Offset_To_Top_Functions;
-
- --------------------------
- -- Build_Init_Procedure --
- --------------------------
-
- procedure Build_Init_Procedure is
- Body_Node : Node_Id;
- Handled_Stmt_Node : Node_Id;
- Parameters : List_Id;
- Proc_Spec_Node : Node_Id;
- Body_Stmts : List_Id;
- Record_Extension_Node : Node_Id;
- Init_Tags_List : List_Id;
-
- begin
- Body_Stmts := New_List;
- Body_Node := New_Node (N_Subprogram_Body, Loc);
- Set_Ekind (Proc_Id, E_Procedure);
-
- Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
- Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
-
- Parameters := Init_Formals (Rec_Type);
- Append_List_To (Parameters,
- Build_Discriminant_Formals (Rec_Type, True));
-
- -- For tagged types, we add a flag to indicate whether the routine
- -- is called to initialize a parent component in the init_proc of
- -- a type extension. If the flag is false, we do not set the tag
- -- because it has been set already in the extension.
-
- if Is_Tagged_Type (Rec_Type)
- and then not Is_CPP_Class (Rec_Type)
- then
- Set_Tag :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('P'));
-
- Append_To (Parameters,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Set_Tag,
- Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
- Expression => New_Occurrence_Of (Standard_True, Loc)));
- end if;
-
- Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
- Set_Specification (Body_Node, Proc_Spec_Node);
- Set_Declarations (Body_Node, New_List);
-
- if Parent_Subtype_Renaming_Discrims then
-
- -- N is a Derived_Type_Definition that renames the parameters
- -- of the ancestor type. We initialize it by expanding our
- -- discriminants and call the ancestor _init_proc with a
- -- type-converted object
-
- Append_List_To (Body_Stmts,
- Build_Init_Call_Thru (Parameters));
-
- elsif Nkind (Type_Definition (N)) = N_Record_Definition then
- Build_Discriminant_Assignments (Body_Stmts);
-
- if not Null_Present (Type_Definition (N)) then
- Append_List_To (Body_Stmts,
- Build_Init_Statements (
- Component_List (Type_Definition (N))));
- end if;
-
- else
- -- N is a Derived_Type_Definition with a possible non-empty
- -- extension. The initialization of a type extension consists
- -- in the initialization of the components in the extension.
-
- Build_Discriminant_Assignments (Body_Stmts);
-
- Record_Extension_Node :=
- Record_Extension_Part (Type_Definition (N));
-
- if not Null_Present (Record_Extension_Node) then
- declare
- Stmts : constant List_Id :=
- Build_Init_Statements (
- Component_List (Record_Extension_Node));
-
- begin
- -- The parent field must be initialized first because
- -- the offset of the new discriminants may depend on it
-
- Prepend_To (Body_Stmts, Remove_Head (Stmts));
- Append_List_To (Body_Stmts, Stmts);
- end;
- end if;
- end if;
-
- -- Add here the assignment to instantiate the Tag
-
- -- The assignment corresponds to the code:
-
- -- _Init._Tag := Typ'Tag;
-
- -- Suppress the tag assignment when VM_Target because VM tags are
- -- represented implicitly in objects. It is also suppressed in case
- -- of CPP_Class types because in this case the tag is initialized in
- -- the C++ side.
-
- if Is_Tagged_Type (Rec_Type)
- and then not Is_CPP_Class (Rec_Type)
- and then VM_Target = No_VM
- and then not No_Run_Time_Mode
- then
- -- Initialize the primary tag
-
- Init_Tags_List := New_List (
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (Rec_Type), Loc)),
-
- Expression =>
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
-
- -- Ada 2005 (AI-251): Initialize the secondary tags components
- -- located at fixed positions (tags whose position depends on
- -- variable size components are initialized later ---see below).
-
- if Ada_Version >= Ada_05
- and then not Is_Interface (Rec_Type)
- and then Has_Interfaces (Rec_Type)
- then
- Init_Secondary_Tags
- (Typ => Rec_Type,
- Target => Make_Identifier (Loc, Name_uInit),
- Stmts_List => Init_Tags_List,
- Fixed_Comps => True,
- Variable_Comps => False);
- end if;
-
- -- The tag must be inserted before the assignments to other
- -- components, because the initial value of the component may
- -- depend on the tag (eg. through a dispatching operation on
- -- an access to the current type). The tag assignment is not done
- -- when initializing the parent component of a type extension,
- -- because in that case the tag is set in the extension.
-
- -- Extensions of imported C++ classes add a final complication,
- -- because we cannot inhibit tag setting in the constructor for
- -- the parent. In that case we insert the tag initialization
- -- after the calls to initialize the parent.
-
- if not Is_CPP_Class (Root_Type (Rec_Type)) then
- Prepend_To (Body_Stmts,
- Make_If_Statement (Loc,
- Condition => New_Occurrence_Of (Set_Tag, Loc),
- Then_Statements => Init_Tags_List));
-
- -- CPP_Class derivation: In this case the dispatch table of the
- -- parent was built in the C++ side and we copy the table of the
- -- parent to initialize the new dispatch table.
-
- else
- declare
- Nod : Node_Id;
-
- begin
- -- We assume the first init_proc call is for the parent
-
- Nod := First (Body_Stmts);
- while Present (Next (Nod))
- and then (Nkind (Nod) /= N_Procedure_Call_Statement
- or else not Is_Init_Proc (Name (Nod)))
- loop
- Nod := Next (Nod);
- end loop;
-
- -- Generate:
- -- ancestor_constructor (_init.parent);
- -- if Arg2 then
- -- inherit_prim_ops (_init._tag, new_dt, num_prims);
- -- _init._tag := new_dt;
- -- end if;
-
- Prepend_To (Init_Tags_List,
- Build_Inherit_Prims (Loc,
- Typ => Rec_Type,
- Old_Tag_Node =>
- Make_Selected_Component (Loc,
- Prefix =>
- Make_Identifier (Loc,
- Chars => Name_uInit),
- Selector_Name =>
- New_Reference_To
- (First_Tag_Component (Rec_Type), Loc)),
- New_Tag_Node =>
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Rec_Type))),
- Loc),
- Num_Prims =>
- UI_To_Int
- (DT_Entry_Count (First_Tag_Component (Rec_Type)))));
-
- Insert_After (Nod,
- Make_If_Statement (Loc,
- Condition => New_Occurrence_Of (Set_Tag, Loc),
- Then_Statements => Init_Tags_List));
-
- -- We have inherited table of the parent from the CPP side.
- -- Now we fill the slots associated with Ada primitives.
- -- This needs more work to avoid its execution each time
- -- an object is initialized???
-
- declare
- E : Elmt_Id;
- Prim : Node_Id;
-
- begin
- E := First_Elmt (Primitive_Operations (Rec_Type));
- while Present (E) loop
- Prim := Node (E);
-
- if not Is_Imported (Prim)
- and then Convention (Prim) = Convention_CPP
- and then not Present (Interface_Alias (Prim))
- then
- Register_Primitive (Loc,
- Prim => Prim,
- Ins_Nod => Last (Init_Tags_List));
- end if;
-
- Next_Elmt (E);
- end loop;
- end;
- end;
- end if;
-
- -- Ada 2005 (AI-251): Initialize the secondary tag components
- -- located at variable positions. We delay the generation of this
- -- code until here because the value of the attribute 'Position
- -- applied to variable size components of the parent type that
- -- depend on discriminants is only safely read at runtime after
- -- the parent components have been initialized.
-
- if Ada_Version >= Ada_05
- and then not Is_Interface (Rec_Type)
- and then Has_Interfaces (Rec_Type)
- and then Has_Discriminants (Etype (Rec_Type))
- and then Is_Variable_Size_Record (Etype (Rec_Type))
- then
- Init_Tags_List := New_List;
-
- Init_Secondary_Tags
- (Typ => Rec_Type,
- Target => Make_Identifier (Loc, Name_uInit),
- Stmts_List => Init_Tags_List,
- Fixed_Comps => False,
- Variable_Comps => True);
-
- if Is_Non_Empty_List (Init_Tags_List) then
- Append_List_To (Body_Stmts, Init_Tags_List);
- end if;
- end if;
- end if;
-
- Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
- Set_Statements (Handled_Stmt_Node, Body_Stmts);
- Set_Exception_Handlers (Handled_Stmt_Node, No_List);
- Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Proc_Id);
- end if;
-
- -- Associate Init_Proc with type, and determine if the procedure
- -- is null (happens because of the Initialize_Scalars pragma case,
- -- where we have to generate a null procedure in case it is called
- -- by a client with Initialize_Scalars set). Such procedures have
- -- to be generated, but do not have to be called, so we mark them
- -- as null to suppress the call.
-
- Set_Init_Proc (Rec_Type, Proc_Id);
-
- if List_Length (Body_Stmts) = 1
- and then Nkind (First (Body_Stmts)) = N_Null_Statement
- and then VM_Target /= CLI_Target
- then
- -- Even though the init proc may be null at this time it might get
- -- some stuff added to it later by the CIL backend, so always keep
- -- it when VM_Target = CLI_Target.
-
- Set_Is_Null_Init_Proc (Proc_Id);
- end if;
- end Build_Init_Procedure;
-
- ---------------------------
- -- Build_Init_Statements --
- ---------------------------
-
- function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
- Check_List : constant List_Id := New_List;
- Alt_List : List_Id;
- Decl : Node_Id;
- Id : Entity_Id;
- Names : Node_Id;
- Statement_List : List_Id;
- Stmts : List_Id;
- Typ : Entity_Id;
- Variant : Node_Id;
-
- Per_Object_Constraint_Components : Boolean;
-
- function Has_Access_Constraint (E : Entity_Id) return Boolean;
- -- Components with access discriminants that depend on the current
- -- instance must be initialized after all other components.
-
- ---------------------------
- -- Has_Access_Constraint --
- ---------------------------
-
- function Has_Access_Constraint (E : Entity_Id) return Boolean is
- Disc : Entity_Id;
- T : constant Entity_Id := Etype (E);
-
- begin
- if Has_Per_Object_Constraint (E)
- and then Has_Discriminants (T)
- then
- Disc := First_Discriminant (T);
- while Present (Disc) loop
- if Is_Access_Type (Etype (Disc)) then
- return True;
- end if;
-
- Next_Discriminant (Disc);
- end loop;
-
- return False;
- else
- return False;
- end if;
- end Has_Access_Constraint;
-
- -- Start of processing for Build_Init_Statements
-
- begin
- if Null_Present (Comp_List) then
- return New_List (Make_Null_Statement (Loc));
- end if;
-
- Statement_List := New_List;
-
- -- Loop through visible declarations of task types and protected
- -- types moving any expanded code from the spec to the body of the
- -- init procedure
-
- if Is_Task_Record_Type (Rec_Type)
- or else Is_Protected_Record_Type (Rec_Type)
- then
- declare
- Decl : constant Node_Id :=
- Parent (Corresponding_Concurrent_Type (Rec_Type));
- Def : Node_Id;
- N1 : Node_Id;
- N2 : Node_Id;
-
- begin
- if Is_Task_Record_Type (Rec_Type) then
- Def := Task_Definition (Decl);
- else
- Def := Protected_Definition (Decl);
- end if;
-
- if Present (Def) then
- N1 := First (Visible_Declarations (Def));
- while Present (N1) loop
- N2 := N1;
- N1 := Next (N1);
-
- if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
- or else Nkind (N2) in N_Raise_xxx_Error
- or else Nkind (N2) = N_Procedure_Call_Statement
- then
- Append_To (Statement_List,
- New_Copy_Tree (N2, New_Scope => Proc_Id));
- Rewrite (N2, Make_Null_Statement (Sloc (N2)));
- Analyze (N2);
- end if;
- end loop;
- end if;
- end;
- end if;
-
- -- Loop through components, skipping pragmas, in 2 steps. The first
- -- step deals with regular components. The second step deals with
- -- components have per object constraints, and no explicit initia-
- -- lization.
-
- Per_Object_Constraint_Components := False;
-
- -- First step : regular components
-
- Decl := First_Non_Pragma (Component_Items (Comp_List));
- while Present (Decl) loop
- Loc := Sloc (Decl);
- Build_Record_Checks
- (Subtype_Indication (Component_Definition (Decl)), Check_List);
-
- Id := Defining_Identifier (Decl);
- Typ := Etype (Id);
-
- if Has_Access_Constraint (Id)
- and then No (Expression (Decl))
- then
- -- Skip processing for now and ask for a second pass
-
- Per_Object_Constraint_Components := True;
-
- else
- -- Case of explicit initialization
-
- if Present (Expression (Decl)) then
- Stmts := Build_Assignment (Id, Expression (Decl));
-
- -- Case of composite component with its own Init_Proc
-
- elsif not Is_Interface (Typ)
- and then Has_Non_Null_Base_Init_Proc (Typ)
- then
- Stmts :=
- Build_Initialization_Call
- (Loc,
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Selector_Name => New_Occurrence_Of (Id, Loc)),
- Typ,
- In_Init_Proc => True,
- Enclos_Type => Rec_Type,
- Discr_Map => Discr_Map);
-
- Clean_Task_Names (Typ, Proc_Id);
-
- -- Case of component needing simple initialization
-
- elsif Component_Needs_Simple_Initialization (Typ) then
- Stmts :=
- Build_Assignment
- (Id, Get_Simple_Init_Val (Typ, N, Esize (Id)));
-
- -- Nothing needed for this case
-
- else
- Stmts := No_List;
- end if;
-
- if Present (Check_List) then
- Append_List_To (Statement_List, Check_List);
- end if;
-
- if Present (Stmts) then
-
- -- Add the initialization of the record controller before
- -- the _Parent field is attached to it when the attachment
- -- can occur. It does not work to simply initialize the
- -- controller first: it must be initialized after the parent
- -- if the parent holds discriminants that can be used to
- -- compute the offset of the controller. We assume here that
- -- the last statement of the initialization call is the
- -- attachment of the parent (see Build_Initialization_Call)
-
- if Chars (Id) = Name_uController
- and then Rec_Type /= Etype (Rec_Type)
- and then Has_Controlled_Component (Etype (Rec_Type))
- and then Has_New_Controlled_Component (Rec_Type)
- and then Present (Last (Statement_List))
- then
- Insert_List_Before (Last (Statement_List), Stmts);
- else
- Append_List_To (Statement_List, Stmts);
- end if;
- end if;
- end if;
-
- Next_Non_Pragma (Decl);
- end loop;
-
- if Per_Object_Constraint_Components then
-
- -- Second pass: components with per-object constraints
-
- Decl := First_Non_Pragma (Component_Items (Comp_List));
- while Present (Decl) loop
- Loc := Sloc (Decl);
- Id := Defining_Identifier (Decl);
- Typ := Etype (Id);
-
- if Has_Access_Constraint (Id)
- and then No (Expression (Decl))
- then
- if Has_Non_Null_Base_Init_Proc (Typ) then
- Append_List_To (Statement_List,
- Build_Initialization_Call (Loc,
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Selector_Name => New_Occurrence_Of (Id, Loc)),
- Typ,
- In_Init_Proc => True,
- Enclos_Type => Rec_Type,
- Discr_Map => Discr_Map));
-
- Clean_Task_Names (Typ, Proc_Id);
-
- elsif Component_Needs_Simple_Initialization (Typ) then
- Append_List_To (Statement_List,
- Build_Assignment
- (Id, Get_Simple_Init_Val (Typ, N, Esize (Id))));
- end if;
- end if;
-
- Next_Non_Pragma (Decl);
- end loop;
- end if;
-
- -- Process the variant part
-
- if Present (Variant_Part (Comp_List)) then
- Alt_List := New_List;
- Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
- while Present (Variant) loop
- Loc := Sloc (Variant);
- Append_To (Alt_List,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices =>
- New_Copy_List (Discrete_Choices (Variant)),
- Statements =>
- Build_Init_Statements (Component_List (Variant))));
- Next_Non_Pragma (Variant);
- end loop;
-
- -- The expression of the case statement which is a reference
- -- to one of the discriminants is replaced by the appropriate
- -- formal parameter of the initialization procedure.
-
- Append_To (Statement_List,
- Make_Case_Statement (Loc,
- Expression =>
- New_Reference_To (Discriminal (
- Entity (Name (Variant_Part (Comp_List)))), Loc),
- Alternatives => Alt_List));
- end if;
-
- -- For a task record type, add the task create call and calls
- -- to bind any interrupt (signal) entries.
-
- if Is_Task_Record_Type (Rec_Type) then
-
- -- In the case of the restricted run time the ATCB has already
- -- been preallocated.
-
- if Restricted_Profile then
- Append_To (Statement_List,
- Make_Assignment_Statement (Loc,
- Name => Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
- Expression => Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Selector_Name =>
- Make_Identifier (Loc, Name_uATCB)),
- Attribute_Name => Name_Unchecked_Access)));
- end if;
-
- Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
-
- -- Generate the statements which map a string entry name to a
- -- task entry index. Note that the task may not have entries.
-
- if Entry_Names_OK then
- Names := Build_Entry_Names (Rec_Type);
-
- if Present (Names) then
- Append_To (Statement_List, Names);
- end if;
- end if;
-
- declare
- Task_Type : constant Entity_Id :=
- Corresponding_Concurrent_Type (Rec_Type);
- Task_Decl : constant Node_Id := Parent (Task_Type);
- Task_Def : constant Node_Id := Task_Definition (Task_Decl);
- Vis_Decl : Node_Id;
- Ent : Entity_Id;
-
- begin
- if Present (Task_Def) then
- Vis_Decl := First (Visible_Declarations (Task_Def));
- while Present (Vis_Decl) loop
- Loc := Sloc (Vis_Decl);
-
- if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
- if Get_Attribute_Id (Chars (Vis_Decl)) =
- Attribute_Address
- then
- Ent := Entity (Name (Vis_Decl));
-
- if Ekind (Ent) = E_Entry then
- Append_To (Statement_List,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (
- RTE (RE_Bind_Interrupt_To_Entry), Loc),
- Parameter_Associations => New_List (
- Make_Selected_Component (Loc,
- Prefix =>
- Make_Identifier (Loc, Name_uInit),
- Selector_Name =>
- Make_Identifier (Loc, Name_uTask_Id)),
- Entry_Index_Expression (
- Loc, Ent, Empty, Task_Type),
- Expression (Vis_Decl))));
- end if;
- end if;
- end if;
-
- Next (Vis_Decl);
- end loop;
- end if;
- end;
- end if;
-
- -- For a protected type, add statements generated by
- -- Make_Initialize_Protection.
-
- if Is_Protected_Record_Type (Rec_Type) then
- Append_List_To (Statement_List,
- Make_Initialize_Protection (Rec_Type));
-
- -- Generate the statements which map a string entry name to a
- -- protected entry index. Note that the protected type may not
- -- have entries.
-
- if Entry_Names_OK then
- Names := Build_Entry_Names (Rec_Type);
-
- if Present (Names) then
- Append_To (Statement_List, Names);
- end if;
- end if;
- end if;
-
- -- If no initializations when generated for component declarations
- -- corresponding to this Statement_List, append a null statement
- -- to the Statement_List to make it a valid Ada tree.
-
- if Is_Empty_List (Statement_List) then
- Append (New_Node (N_Null_Statement, Loc), Statement_List);
- end if;
-
- return Statement_List;
-
- exception
- when RE_Not_Available =>
- return Empty_List;
- end Build_Init_Statements;
-
- -------------------------
- -- Build_Record_Checks --
- -------------------------
-
- procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
- Subtype_Mark_Id : Entity_Id;
-
- begin
- if Nkind (S) = N_Subtype_Indication then
- Find_Type (Subtype_Mark (S));
- Subtype_Mark_Id := Entity (Subtype_Mark (S));
-
- -- Remaining processing depends on type
-
- case Ekind (Subtype_Mark_Id) is
-
- when Array_Kind =>
- Constrain_Array (S, Check_List);
-
- when others =>
- null;
- end case;
- end if;
- end Build_Record_Checks;
-
- -------------------------------------------
- -- Component_Needs_Simple_Initialization --
- -------------------------------------------
-
- function Component_Needs_Simple_Initialization
- (T : Entity_Id) return Boolean
- is
- begin
- return
- Needs_Simple_Initialization (T)
- and then not Is_RTE (T, RE_Tag)
-
- -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
-
- and then not Is_RTE (T, RE_Interface_Tag);
- end Component_Needs_Simple_Initialization;
-
- ---------------------
- -- Constrain_Array --
- ---------------------
-
- procedure Constrain_Array
- (SI : Node_Id;
- Check_List : List_Id)
- is
- C : constant Node_Id := Constraint (SI);
- Number_Of_Constraints : Nat := 0;
- Index : Node_Id;
- S, T : Entity_Id;
-
- begin
- T := Entity (Subtype_Mark (SI));
-
- if Ekind (T) in Access_Kind then
- T := Designated_Type (T);
- end if;
-
- S := First (Constraints (C));
-
- while Present (S) loop
- Number_Of_Constraints := Number_Of_Constraints + 1;
- Next (S);
- end loop;
-
- -- In either case, the index constraint must provide a discrete
- -- range for each index of the array type and the type of each
- -- discrete range must be the same as that of the corresponding
- -- index. (RM 3.6.1)
-
- S := First (Constraints (C));
- Index := First_Index (T);
- Analyze (Index);
-
- -- Apply constraints to each index type
-
- for J in 1 .. Number_Of_Constraints loop
- Constrain_Index (Index, S, Check_List);
- Next (Index);
- Next (S);
- end loop;
-
- end Constrain_Array;
-
- ---------------------
- -- Constrain_Index --
- ---------------------
-
- procedure Constrain_Index
- (Index : Node_Id;
- S : Node_Id;
- Check_List : List_Id)
- is
- T : constant Entity_Id := Etype (Index);
-
- begin
- if Nkind (S) = N_Range then
- Process_Range_Expr_In_Decl (S, T, Check_List);
- end if;
- end Constrain_Index;
-
- --------------------------------------
- -- Parent_Subtype_Renaming_Discrims --
- --------------------------------------
-
- function Parent_Subtype_Renaming_Discrims return Boolean is
- De : Entity_Id;
- Dp : Entity_Id;
-
- begin
- if Base_Type (Pe) /= Pe then
- return False;
- end if;
-
- if Etype (Pe) = Pe
- or else not Has_Discriminants (Pe)
- or else Is_Constrained (Pe)
- or else Is_Tagged_Type (Pe)
- then
- return False;
- end if;
-
- -- If there are no explicit stored discriminants we have inherited
- -- the root type discriminants so far, so no renamings occurred.
-
- if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
- return False;
- end if;
-
- -- Check if we have done some trivial renaming of the parent
- -- discriminants, i.e. something like
- --
- -- type DT (X1,X2: int) is new PT (X1,X2);
-
- De := First_Discriminant (Pe);
- Dp := First_Discriminant (Etype (Pe));
-
- while Present (De) loop
- pragma Assert (Present (Dp));
-
- if Corresponding_Discriminant (De) /= Dp then
- return True;
- end if;
-
- Next_Discriminant (De);
- Next_Discriminant (Dp);
- end loop;
-
- return Present (Dp);
- end Parent_Subtype_Renaming_Discrims;
-
- ------------------------
- -- Requires_Init_Proc --
- ------------------------
-
- function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
- Comp_Decl : Node_Id;
- Id : Entity_Id;
- Typ : Entity_Id;
-
- begin
- -- Definitely do not need one if specifically suppressed
-
- if Suppress_Init_Proc (Rec_Id) then
- return False;
- end if;
-
- -- If it is a type derived from a type with unknown discriminants,
- -- we cannot build an initialization procedure for it.
-
- if Has_Unknown_Discriminants (Rec_Id) then
- return False;
- end if;
-
- -- Otherwise we need to generate an initialization procedure if
- -- Is_CPP_Class is False and at least one of the following applies:
-
- -- 1. Discriminants are present, since they need to be initialized
- -- with the appropriate discriminant constraint expressions.
- -- However, the discriminant of an unchecked union does not
- -- count, since the discriminant is not present.
-
- -- 2. The type is a tagged type, since the implicit Tag component
- -- needs to be initialized with a pointer to the dispatch table.
-
- -- 3. The type contains tasks
-
- -- 4. One or more components has an initial value
-
- -- 5. One or more components is for a type which itself requires
- -- an initialization procedure.
-
- -- 6. One or more components is a type that requires simple
- -- initialization (see Needs_Simple_Initialization), except
- -- that types Tag and Interface_Tag are excluded, since fields
- -- of these types are initialized by other means.
-
- -- 7. The type is the record type built for a task type (since at
- -- the very least, Create_Task must be called)
-
- -- 8. The type is the record type built for a protected type (since
- -- at least Initialize_Protection must be called)
-
- -- 9. The type is marked as a public entity. The reason we add this
- -- case (even if none of the above apply) is to properly handle
- -- Initialize_Scalars. If a package is compiled without an IS
- -- pragma, and the client is compiled with an IS pragma, then
- -- the client will think an initialization procedure is present
- -- and call it, when in fact no such procedure is required, but
- -- since the call is generated, there had better be a routine
- -- at the other end of the call, even if it does nothing!)
-
- -- Note: the reason we exclude the CPP_Class case is because in this
- -- case the initialization is performed in the C++ side.
-
- if Is_CPP_Class (Rec_Id) then
- return False;
-
- elsif Is_Interface (Rec_Id) then
- return False;
-
- elsif (Has_Discriminants (Rec_Id)
- and then not Is_Unchecked_Union (Rec_Id))
- or else Is_Tagged_Type (Rec_Id)
- or else Is_Concurrent_Record_Type (Rec_Id)
- or else Has_Task (Rec_Id)
- then
- return True;
- end if;
-
- Id := First_Component (Rec_Id);
- while Present (Id) loop
- Comp_Decl := Parent (Id);
- Typ := Etype (Id);
-
- if Present (Expression (Comp_Decl))
- or else Has_Non_Null_Base_Init_Proc (Typ)
- or else Component_Needs_Simple_Initialization (Typ)
- then
- return True;
- end if;
-
- Next_Component (Id);
- end loop;
-
- -- As explained above, a record initialization procedure is needed
- -- for public types in case Initialize_Scalars applies to a client.
- -- However, such a procedure is not needed in the case where either
- -- of restrictions No_Initialize_Scalars or No_Default_Initialization
- -- apply. No_Initialize_Scalars excludes the possibility of using
- -- Initialize_Scalars in any partition, and No_Default_Initialization
- -- implies that no initialization should ever be done for objects of
- -- the type, so is incompatible with Initialize_Scalars.
-
- if not Restriction_Active (No_Initialize_Scalars)
- and then not Restriction_Active (No_Default_Initialization)
- and then Is_Public (Rec_Id)
- then
- return True;
- end if;
-
- return False;
- end Requires_Init_Proc;
-
- -- Start of processing for Build_Record_Init_Proc
-
- begin
- -- Check for value type, which means no initialization required
-
- Rec_Type := Defining_Identifier (N);
-
- if Is_Value_Type (Rec_Type) then
- return;
- end if;
-
- -- This may be full declaration of a private type, in which case
- -- the visible entity is a record, and the private entity has been
- -- exchanged with it in the private part of the current package.
- -- The initialization procedure is built for the record type, which
- -- is retrievable from the private entity.
-
- if Is_Incomplete_Or_Private_Type (Rec_Type) then
- Rec_Type := Underlying_Type (Rec_Type);
- end if;
-
- -- If there are discriminants, build the discriminant map to replace
- -- discriminants by their discriminals in complex bound expressions.
- -- These only arise for the corresponding records of synchronized types.
-
- if Is_Concurrent_Record_Type (Rec_Type)
- and then Has_Discriminants (Rec_Type)
- then
- declare
- Disc : Entity_Id;
- begin
- Disc := First_Discriminant (Rec_Type);
- while Present (Disc) loop
- Append_Elmt (Disc, Discr_Map);
- Append_Elmt (Discriminal (Disc), Discr_Map);
- Next_Discriminant (Disc);
- end loop;
- end;
- end if;
-
- -- Derived types that have no type extension can use the initialization
- -- procedure of their parent and do not need a procedure of their own.
- -- This is only correct if there are no representation clauses for the
- -- type or its parent, and if the parent has in fact been frozen so
- -- that its initialization procedure exists.
-
- if Is_Derived_Type (Rec_Type)
- and then not Is_Tagged_Type (Rec_Type)
- and then not Is_Unchecked_Union (Rec_Type)
- and then not Has_New_Non_Standard_Rep (Rec_Type)
- and then not Parent_Subtype_Renaming_Discrims
- and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
- then
- Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
-
- -- Otherwise if we need an initialization procedure, then build one,
- -- mark it as public and inlinable and as having a completion.
-
- elsif Requires_Init_Proc (Rec_Type)
- or else Is_Unchecked_Union (Rec_Type)
- then
- Proc_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Make_Init_Proc_Name (Rec_Type));
-
- -- If No_Default_Initialization restriction is active, then we don't
- -- want to build an init_proc, but we need to mark that an init_proc
- -- would be needed if this restriction was not active (so that we can
- -- detect attempts to call it), so set a dummy init_proc in place.
-
- if Restriction_Active (No_Default_Initialization) then
- Set_Init_Proc (Rec_Type, Proc_Id);
- return;
- end if;
-
- Build_Offset_To_Top_Functions;
- Build_Init_Procedure;
- Set_Is_Public (Proc_Id, Is_Public (Pe));
-
- -- The initialization of protected records is not worth inlining.
- -- In addition, when compiled for another unit for inlining purposes,
- -- it may make reference to entities that have not been elaborated
- -- yet. The initialization of controlled records contains a nested
- -- clean-up procedure that makes it impractical to inline as well,
- -- and leads to undefined symbols if inlined in a different unit.
- -- Similar considerations apply to task types.
-
- if not Is_Concurrent_Type (Rec_Type)
- and then not Has_Task (Rec_Type)
- and then not Needs_Finalization (Rec_Type)
- then
- Set_Is_Inlined (Proc_Id);
- end if;
-
- Set_Is_Internal (Proc_Id);
- Set_Has_Completion (Proc_Id);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Proc_Id);
- end if;
-
- declare
- Agg : constant Node_Id :=
- Build_Equivalent_Record_Aggregate (Rec_Type);
-
- procedure Collect_Itypes (Comp : Node_Id);
- -- Generate references to itypes in the aggregate, because
- -- the first use of the aggregate may be in a nested scope.
-
- --------------------
- -- Collect_Itypes --
- --------------------
-
- procedure Collect_Itypes (Comp : Node_Id) is
- Ref : Node_Id;
- Sub_Aggr : Node_Id;
- Typ : constant Entity_Id := Etype (Comp);
-
- begin
- if Is_Array_Type (Typ)
- and then Is_Itype (Typ)
- then
- Ref := Make_Itype_Reference (Loc);
- Set_Itype (Ref, Typ);
- Append_Freeze_Action (Rec_Type, Ref);
-
- Ref := Make_Itype_Reference (Loc);
- Set_Itype (Ref, Etype (First_Index (Typ)));
- Append_Freeze_Action (Rec_Type, Ref);
-
- Sub_Aggr := First (Expressions (Comp));
-
- -- Recurse on nested arrays
-
- while Present (Sub_Aggr) loop
- Collect_Itypes (Sub_Aggr);
- Next (Sub_Aggr);
- end loop;
- end if;
- end Collect_Itypes;
-
- begin
- -- If there is a static initialization aggregate for the type,
- -- generate itype references for the types of its (sub)components,
- -- to prevent out-of-scope errors in the resulting tree.
- -- The aggregate may have been rewritten as a Raise node, in which
- -- case there are no relevant itypes.
-
- if Present (Agg)
- and then Nkind (Agg) = N_Aggregate
- then
- Set_Static_Initialization (Proc_Id, Agg);
-
- declare
- Comp : Node_Id;
- begin
- Comp := First (Component_Associations (Agg));
- while Present (Comp) loop
- Collect_Itypes (Expression (Comp));
- Next (Comp);
- end loop;
- end;
- end if;
- end;
- end if;
- end Build_Record_Init_Proc;
-
- ----------------------------
- -- Build_Slice_Assignment --
- ----------------------------
-
- -- Generates the following subprogram:
-
- -- procedure Assign
- -- (Source, Target : Array_Type,
- -- Left_Lo, Left_Hi : Index;
- -- Right_Lo, Right_Hi : Index;
- -- Rev : Boolean)
- -- is
- -- Li1 : Index;
- -- Ri1 : Index;
-
- -- begin
-
- -- if Left_Hi < Left_Lo then
- -- return;
- -- end if;
-
- -- if Rev then
- -- Li1 := Left_Hi;
- -- Ri1 := Right_Hi;
- -- else
- -- Li1 := Left_Lo;
- -- Ri1 := Right_Lo;
- -- end if;
-
- -- loop
- -- Target (Li1) := Source (Ri1);
-
- -- if Rev then
- -- exit when Li1 = Left_Lo;
- -- Li1 := Index'pred (Li1);
- -- Ri1 := Index'pred (Ri1);
- -- else
- -- exit when Li1 = Left_Hi;
- -- Li1 := Index'succ (Li1);
- -- Ri1 := Index'succ (Ri1);
- -- end if;
- -- end loop;
- -- end Assign;
-
- procedure Build_Slice_Assignment (Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (Typ);
- Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
-
- -- Build formal parameters of procedure
-
- Larray : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('A'));
- Rarray : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('R'));
- Left_Lo : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('L'));
- Left_Hi : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('L'));
- Right_Lo : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('R'));
- Right_Hi : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('R'));
- Rev : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, Chars => New_Internal_Name ('D'));
- Proc_Name : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
-
- Lnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
- Rnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
- -- Subscripts for left and right sides
-
- Decls : List_Id;
- Loops : Node_Id;
- Stats : List_Id;
-
- begin
- -- Build declarations for indices
-
- Decls := New_List;
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Lnn,
- Object_Definition =>
- New_Occurrence_Of (Index, Loc)));
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Rnn,
- Object_Definition =>
- New_Occurrence_Of (Index, Loc)));
-
- Stats := New_List;
-
- -- Build test for empty slice case
-
- Append_To (Stats,
- Make_If_Statement (Loc,
- Condition =>
- Make_Op_Lt (Loc,
- Left_Opnd => New_Occurrence_Of (Left_Hi, Loc),
- Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
- Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));
-
- -- Build initializations for indices
-
- declare
- F_Init : constant List_Id := New_List;
- B_Init : constant List_Id := New_List;
-
- begin
- Append_To (F_Init,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Lnn, Loc),
- Expression => New_Occurrence_Of (Left_Lo, Loc)));
-
- Append_To (F_Init,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn, Loc),
- Expression => New_Occurrence_Of (Right_Lo, Loc)));
-
- Append_To (B_Init,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Lnn, Loc),
- Expression => New_Occurrence_Of (Left_Hi, Loc)));
-
- Append_To (B_Init,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn, Loc),
- Expression => New_Occurrence_Of (Right_Hi, Loc)));
-
- Append_To (Stats,
- Make_If_Statement (Loc,
- Condition => New_Occurrence_Of (Rev, Loc),
- Then_Statements => B_Init,
- Else_Statements => F_Init));
- end;
-
- -- Now construct the assignment statement
-
- Loops :=
- Make_Loop_Statement (Loc,
- Statements => New_List (
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Larray, Loc),
- Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
- Expression =>
- Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Rarray, Loc),
- Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
- End_Label => Empty);
-
- -- Build the exit condition and increment/decrement statements
-
- declare
- F_Ass : constant List_Id := New_List;
- B_Ass : constant List_Id := New_List;
-
- begin
- Append_To (F_Ass,
- Make_Exit_Statement (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => New_Occurrence_Of (Lnn, Loc),
- Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
-
- Append_To (F_Ass,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Lnn, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Index, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (
- New_Occurrence_Of (Lnn, Loc)))));
-
- Append_To (F_Ass,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Index, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (
- New_Occurrence_Of (Rnn, Loc)))));
-
- Append_To (B_Ass,
- Make_Exit_Statement (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => New_Occurrence_Of (Lnn, Loc),
- Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
-
- Append_To (B_Ass,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Lnn, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Index, Loc),
- Attribute_Name => Name_Pred,
- Expressions => New_List (
- New_Occurrence_Of (Lnn, Loc)))));
-
- Append_To (B_Ass,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Index, Loc),
- Attribute_Name => Name_Pred,
- Expressions => New_List (
- New_Occurrence_Of (Rnn, Loc)))));
-
- Append_To (Statements (Loops),
- Make_If_Statement (Loc,
- Condition => New_Occurrence_Of (Rev, Loc),
- Then_Statements => B_Ass,
- Else_Statements => F_Ass));
- end;
-
- Append_To (Stats, Loops);
-
- declare
- Spec : Node_Id;
- Formals : List_Id := New_List;
-
- begin
- Formals := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Larray,
- Out_Present => True,
- Parameter_Type =>
- New_Reference_To (Base_Type (Typ), Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Rarray,
- Parameter_Type =>
- New_Reference_To (Base_Type (Typ), Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Left_Lo,
- Parameter_Type =>
- New_Reference_To (Index, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Left_Hi,
- Parameter_Type =>
- New_Reference_To (Index, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Right_Lo,
- Parameter_Type =>
- New_Reference_To (Index, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Right_Hi,
- Parameter_Type =>
- New_Reference_To (Index, Loc)));
-
- Append_To (Formals,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Rev,
- Parameter_Type =>
- New_Reference_To (Standard_Boolean, Loc)));
-
- Spec :=
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name => Proc_Name,
- Parameter_Specifications => Formals);
-
- Discard_Node (
- Make_Subprogram_Body (Loc,
- Specification => Spec,
- Declarations => Decls,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Stats)));
- end;
-
- Set_TSS (Typ, Proc_Name);
- Set_Is_Pure (Proc_Name);
- end Build_Slice_Assignment;
-
- ------------------------------------
- -- Build_Variant_Record_Equality --
- ------------------------------------
-
- -- Generates:
-
- -- function _Equality (X, Y : T) return Boolean is
- -- begin
- -- -- Compare discriminants
-
- -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
- -- return False;
- -- end if;
-
- -- -- Compare components
-
- -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
- -- return False;
- -- end if;
-
- -- -- Compare variant part
-
- -- case X.D1 is
- -- when V1 =>
- -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
- -- return False;
- -- end if;
- -- ...
- -- when Vn =>
- -- if False or else X.Cn /= Y.Cn then
- -- return False;
- -- end if;
- -- end case;
-
- -- return True;
- -- end _Equality;
-
- procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (Typ);
-
- F : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
-
- X : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Name_X);
-
- Y : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Name_Y);
-
- Def : constant Node_Id := Parent (Typ);
- Comps : constant Node_Id := Component_List (Type_Definition (Def));
- Stmts : constant List_Id := New_List;
- Pspecs : constant List_Id := New_List;
-
- begin
- -- Derived Unchecked_Union types no longer inherit the equality function
- -- of their parent.
-
- if Is_Derived_Type (Typ)
- and then not Is_Unchecked_Union (Typ)
- and then not Has_New_Non_Standard_Rep (Typ)
- then
- declare
- Parent_Eq : constant Entity_Id :=
- TSS (Root_Type (Typ), TSS_Composite_Equality);
-
- begin
- if Present (Parent_Eq) then
- Copy_TSS (Parent_Eq, Typ);
- return;
- end if;
- end;
- end if;
-
- Discard_Node (
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => F,
- Parameter_Specifications => Pspecs,
- Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
- Declarations => New_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Stmts)));
-
- Append_To (Pspecs,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => X,
- Parameter_Type => New_Reference_To (Typ, Loc)));
-
- Append_To (Pspecs,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Y,
- Parameter_Type => New_Reference_To (Typ, Loc)));
-
- -- Unchecked_Unions require additional machinery to support equality.
- -- Two extra parameters (A and B) are added to the equality function
- -- parameter list in order to capture the inferred values of the
- -- discriminants in later calls.
-
- if Is_Unchecked_Union (Typ) then
- declare
- Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));
-
- A : constant Node_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Name_A);
-
- B : constant Node_Id :=
- Make_Defining_Identifier (Loc,
- Chars => Name_B);
-
- begin
- -- Add A and B to the parameter list
-
- Append_To (Pspecs,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => A,
- Parameter_Type => New_Reference_To (Discr_Type, Loc)));
-
- Append_To (Pspecs,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => B,
- Parameter_Type => New_Reference_To (Discr_Type, Loc)));
-
- -- Generate the following header code to compare the inferred
- -- discriminants:
-
- -- if a /= b then
- -- return False;
- -- end if;
-
- Append_To (Stmts,
- Make_If_Statement (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd => New_Reference_To (A, Loc),
- Right_Opnd => New_Reference_To (B, Loc)),
- Then_Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Standard_False, Loc)))));
-
- -- Generate component-by-component comparison. Note that we must
- -- propagate one of the inferred discriminant formals to act as
- -- the case statement switch.
-
- Append_List_To (Stmts,
- Make_Eq_Case (Typ, Comps, A));
-
- end;
-
- -- Normal case (not unchecked union)
-
- else
- Append_To (Stmts,
- Make_Eq_If (Typ,
- Discriminant_Specifications (Def)));
-
- Append_List_To (Stmts,
- Make_Eq_Case (Typ, Comps));
- end if;
-
- Append_To (Stmts,
- Make_Simple_Return_Statement (Loc,
- Expression => New_Reference_To (Standard_True, Loc)));
-
- Set_TSS (Typ, F);
- Set_Is_Pure (F);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (F);
- end if;
- end Build_Variant_Record_Equality;
-
- -----------------------------
- -- Check_Stream_Attributes --
- -----------------------------
-
- procedure Check_Stream_Attributes (Typ : Entity_Id) is
- Comp : Entity_Id;
- Par_Read : constant Boolean :=
- Stream_Attribute_Available (Typ, TSS_Stream_Read)
- and then not Has_Specified_Stream_Read (Typ);
- Par_Write : constant Boolean :=
- Stream_Attribute_Available (Typ, TSS_Stream_Write)
- and then not Has_Specified_Stream_Write (Typ);
-
- procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
- -- Check that Comp has a user-specified Nam stream attribute
-
- ----------------
- -- Check_Attr --
- ----------------
-
- procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
- begin
- if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
- Error_Msg_Name_1 := Nam;
- Error_Msg_N
- ("|component& in limited extension must have% attribute", Comp);
- end if;
- end Check_Attr;
-
- -- Start of processing for Check_Stream_Attributes
-
- begin
- if Par_Read or else Par_Write then
- Comp := First_Component (Typ);
- while Present (Comp) loop
- if Comes_From_Source (Comp)
- and then Original_Record_Component (Comp) = Comp
- and then Is_Limited_Type (Etype (Comp))
- then
- if Par_Read then
- Check_Attr (Name_Read, TSS_Stream_Read);
- end if;
-
- if Par_Write then
- Check_Attr (Name_Write, TSS_Stream_Write);
- end if;
- end if;
-
- Next_Component (Comp);
- end loop;
- end if;
- end Check_Stream_Attributes;
-
- -----------------------------
- -- Expand_Record_Extension --
- -----------------------------
-
- -- Add a field _parent at the beginning of the record extension. This is
- -- used to implement inheritance. Here are some examples of expansion:
-
- -- 1. no discriminants
- -- type T2 is new T1 with null record;
- -- gives
- -- type T2 is new T1 with record
- -- _Parent : T1;
- -- end record;
-
- -- 2. renamed discriminants
- -- type T2 (B, C : Int) is new T1 (A => B) with record
- -- _Parent : T1 (A => B);
- -- D : Int;
- -- end;
-
- -- 3. inherited discriminants
- -- type T2 is new T1 with record -- discriminant A inherited
- -- _Parent : T1 (A);
- -- D : Int;
- -- end;
-
- procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
- Indic : constant Node_Id := Subtype_Indication (Def);
- Loc : constant Source_Ptr := Sloc (Def);
- Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
- Par_Subtype : Entity_Id;
- Comp_List : Node_Id;
- Comp_Decl : Node_Id;
- Parent_N : Node_Id;
- D : Entity_Id;
- List_Constr : constant List_Id := New_List;
-
- begin
- -- Expand_Record_Extension is called directly from the semantics, so
- -- we must check to see whether expansion is active before proceeding
-
- if not Expander_Active then
- return;
- end if;
-
- -- This may be a derivation of an untagged private type whose full
- -- view is tagged, in which case the Derived_Type_Definition has no
- -- extension part. Build an empty one now.
-
- if No (Rec_Ext_Part) then
- Rec_Ext_Part :=
- Make_Record_Definition (Loc,
- End_Label => Empty,
- Component_List => Empty,
- Null_Present => True);
-
- Set_Record_Extension_Part (Def, Rec_Ext_Part);
- Mark_Rewrite_Insertion (Rec_Ext_Part);
- end if;
-
- Comp_List := Component_List (Rec_Ext_Part);
-
- Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
-
- -- If the derived type inherits its discriminants the type of the
- -- _parent field must be constrained by the inherited discriminants
-
- if Has_Discriminants (T)
- and then Nkind (Indic) /= N_Subtype_Indication
- and then not Is_Constrained (Entity (Indic))
- then
- D := First_Discriminant (T);
- while Present (D) loop
- Append_To (List_Constr, New_Occurrence_Of (D, Loc));
- Next_Discriminant (D);
- end loop;
-
- Par_Subtype :=
- Process_Subtype (
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => List_Constr)),
- Def);
-
- -- Otherwise the original subtype_indication is just what is needed
-
- else
- Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
- end if;
-
- Set_Parent_Subtype (T, Par_Subtype);
-
- Comp_Decl :=
- Make_Component_Declaration (Loc,
- Defining_Identifier => Parent_N,
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));
-
- if Null_Present (Rec_Ext_Part) then
- Set_Component_List (Rec_Ext_Part,
- Make_Component_List (Loc,
- Component_Items => New_List (Comp_Decl),
- Variant_Part => Empty,
- Null_Present => False));
- Set_Null_Present (Rec_Ext_Part, False);
-
- elsif Null_Present (Comp_List)
- or else Is_Empty_List (Component_Items (Comp_List))
- then
- Set_Component_Items (Comp_List, New_List (Comp_Decl));
- Set_Null_Present (Comp_List, False);
-
- else
- Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
- end if;
-
- Analyze (Comp_Decl);
- end Expand_Record_Extension;
-
- ------------------------------------
- -- Expand_N_Full_Type_Declaration --
- ------------------------------------
-
- procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
- Def_Id : constant Entity_Id := Defining_Identifier (N);
- B_Id : constant Entity_Id := Base_Type (Def_Id);
- Par_Id : Entity_Id;
- FN : Node_Id;
-
- procedure Build_Master (Def_Id : Entity_Id);
- -- Create the master associated with Def_Id
-
- ------------------
- -- Build_Master --
- ------------------
-
- procedure Build_Master (Def_Id : Entity_Id) is
- begin
- -- Anonymous access types are created for the components of the
- -- record parameter for an entry declaration. No master is created
- -- for such a type.
-
- if Has_Task (Designated_Type (Def_Id))
- and then Comes_From_Source (N)
- then
- Build_Master_Entity (Def_Id);
- Build_Master_Renaming (Parent (Def_Id), Def_Id);
-
- -- Create a class-wide master because a Master_Id must be generated
- -- for access-to-limited-class-wide types whose root may be extended
- -- with task components, and for access-to-limited-interfaces because
- -- they can be used to reference tasks implementing such interface.
-
- elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
- and then (Is_Limited_Type (Designated_Type (Def_Id))
- or else
- (Is_Interface (Designated_Type (Def_Id))
- and then
- Is_Limited_Interface (Designated_Type (Def_Id))))
- and then Tasking_Allowed
-
- -- Do not create a class-wide master for types whose convention is
- -- Java since these types cannot embed Ada tasks anyway. Note that
- -- the following test cannot catch the following case:
-
- -- package java.lang.Object is
- -- type Typ is tagged limited private;
- -- type Ref is access all Typ'Class;
- -- private
- -- type Typ is tagged limited ...;
- -- pragma Convention (Typ, Java)
- -- end;
-
- -- Because the convention appears after we have done the
- -- processing for type Ref.
-
- and then Convention (Designated_Type (Def_Id)) /= Convention_Java
- and then Convention (Designated_Type (Def_Id)) /= Convention_CIL
- then
- Build_Class_Wide_Master (Def_Id);
- end if;
- end Build_Master;
-
- -- Start of processing for Expand_N_Full_Type_Declaration
-
- begin
- if Is_Access_Type (Def_Id) then
- Build_Master (Def_Id);
-
- if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
- Expand_Access_Protected_Subprogram_Type (N);
- end if;
-
- elsif Ada_Version >= Ada_05
- and then Is_Array_Type (Def_Id)
- and then Is_Access_Type (Component_Type (Def_Id))
- and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
- then
- Build_Master (Component_Type (Def_Id));
-
- elsif Has_Task (Def_Id) then
- Expand_Previous_Access_Type (Def_Id);
-
- elsif Ada_Version >= Ada_05
- and then
- (Is_Record_Type (Def_Id)
- or else (Is_Array_Type (Def_Id)
- and then Is_Record_Type (Component_Type (Def_Id))))
- then
- declare
- Comp : Entity_Id;
- Typ : Entity_Id;
- M_Id : Entity_Id;
-
- begin
- -- Look for the first anonymous access type component
-
- if Is_Array_Type (Def_Id) then
- Comp := First_Entity (Component_Type (Def_Id));
- else
- Comp := First_Entity (Def_Id);
- end if;
-
- while Present (Comp) loop
- Typ := Etype (Comp);
-
- exit when Is_Access_Type (Typ)
- and then Ekind (Typ) = E_Anonymous_Access_Type;
-
- Next_Entity (Comp);
- end loop;
-
- -- If found we add a renaming declaration of master_id and we
- -- associate it to each anonymous access type component. Do
- -- nothing if the access type already has a master. This will be
- -- the case if the array type is the packed array created for a
- -- user-defined array type T, where the master_id is created when
- -- expanding the declaration for T.
-
- if Present (Comp)
- and then Ekind (Typ) = E_Anonymous_Access_Type
- and then not Restriction_Active (No_Task_Hierarchy)
- and then No (Master_Id (Typ))
-
- -- Do not consider run-times with no tasking support
-
- and then RTE_Available (RE_Current_Master)
- and then Has_Task (Non_Limited_Designated_Type (Typ))
- then
- Build_Master_Entity (Def_Id);
- M_Id := Build_Master_Renaming (N, Def_Id);
-
- if Is_Array_Type (Def_Id) then
- Comp := First_Entity (Component_Type (Def_Id));
- else
- Comp := First_Entity (Def_Id);
- end if;
-
- while Present (Comp) loop
- Typ := Etype (Comp);
-
- if Is_Access_Type (Typ)
- and then Ekind (Typ) = E_Anonymous_Access_Type
- then
- Set_Master_Id (Typ, M_Id);
- end if;
-
- Next_Entity (Comp);
- end loop;
- end if;
- end;
- end if;
-
- Par_Id := Etype (B_Id);
-
- -- The parent type is private then we need to inherit any TSS operations
- -- from the full view.
-
- if Ekind (Par_Id) in Private_Kind
- and then Present (Full_View (Par_Id))
- then
- Par_Id := Base_Type (Full_View (Par_Id));
- end if;
-
- if Nkind (Type_Definition (Original_Node (N))) =
- N_Derived_Type_Definition
- and then not Is_Tagged_Type (Def_Id)
- and then Present (Freeze_Node (Par_Id))
- and then Present (TSS_Elist (Freeze_Node (Par_Id)))
- then
- Ensure_Freeze_Node (B_Id);
- FN := Freeze_Node (B_Id);
-
- if No (TSS_Elist (FN)) then
- Set_TSS_Elist (FN, New_Elmt_List);
- end if;
-
- declare
- T_E : constant Elist_Id := TSS_Elist (FN);
- Elmt : Elmt_Id;
-
- begin
- Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
- while Present (Elmt) loop
- if Chars (Node (Elmt)) /= Name_uInit then
- Append_Elmt (Node (Elmt), T_E);
- end if;
-
- Next_Elmt (Elmt);
- end loop;
-
- -- If the derived type itself is private with a full view, then
- -- associate the full view with the inherited TSS_Elist as well.
-
- if Ekind (B_Id) in Private_Kind
- and then Present (Full_View (B_Id))
- then
- Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
- Set_TSS_Elist
- (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
- end if;
- end;
- end if;
- end Expand_N_Full_Type_Declaration;
-
- ---------------------------------
- -- Expand_N_Object_Declaration --
- ---------------------------------
-
- -- First we do special processing for objects of a tagged type where this
- -- is the point at which the type is frozen. The creation of the dispatch
- -- table and the initialization procedure have to be deferred to this
- -- point, since we reference previously declared primitive subprograms.
-
- -- For all types, we call an initialization procedure if there is one
-
- procedure Expand_N_Object_Declaration (N : Node_Id) is
- Def_Id : constant Entity_Id := Defining_Identifier (N);
- Expr : constant Node_Id := Expression (N);
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (Def_Id);
- Base_Typ : constant Entity_Id := Base_Type (Typ);
- Expr_Q : Node_Id;
- Id_Ref : Node_Id;
- New_Ref : Node_Id;
- BIP_Call : Boolean := False;
-
- Init_After : Node_Id := N;
- -- Node after which the init proc call is to be inserted. This is
- -- normally N, except for the case of a shared passive variable, in
- -- which case the init proc call must be inserted only after the bodies
- -- of the shared variable procedures have been seen.
-
- begin
- -- Don't do anything for deferred constants. All proper actions will
- -- be expanded during the full declaration.
-
- if No (Expr) and Constant_Present (N) then
- return;
- end if;
-
- -- Force construction of dispatch tables of library level tagged types
-
- if VM_Target = No_VM
- and then Static_Dispatch_Tables
- and then Is_Library_Level_Entity (Def_Id)
- and then Is_Library_Level_Tagged_Type (Base_Typ)
- and then (Ekind (Base_Typ) = E_Record_Type
- or else Ekind (Base_Typ) = E_Protected_Type
- or else Ekind (Base_Typ) = E_Task_Type)
- and then not Has_Dispatch_Table (Base_Typ)
- then
- declare
- New_Nodes : List_Id := No_List;
-
- begin
- if Is_Concurrent_Type (Base_Typ) then
- New_Nodes := Make_DT (Corresponding_Record_Type (Base_Typ), N);
- else
- New_Nodes := Make_DT (Base_Typ, N);
- end if;
-
- if not Is_Empty_List (New_Nodes) then
- Insert_List_Before (N, New_Nodes);
- end if;
- end;
- end if;
-
- -- Make shared memory routines for shared passive variable
-
- if Is_Shared_Passive (Def_Id) then
- Init_After := Make_Shared_Var_Procs (N);
- end if;
-
- -- If tasks being declared, make sure we have an activation chain
- -- defined for the tasks (has no effect if we already have one), and
- -- also that a Master variable is established and that the appropriate
- -- enclosing construct is established as a task master.
-
- if Has_Task (Typ) then
- Build_Activation_Chain_Entity (N);
- Build_Master_Entity (Def_Id);
- end if;
-
- -- Build a list controller for declarations where the type is anonymous
- -- access and the designated type is controlled. Only declarations from
- -- source files receive such controllers in order to provide the same
- -- lifespan for any potential coextensions that may be associated with
- -- the object. Finalization lists of internal controlled anonymous
- -- access objects are already handled in Expand_N_Allocator.
-
- if Comes_From_Source (N)
- and then Ekind (Typ) = E_Anonymous_Access_Type
- and then Is_Controlled (Directly_Designated_Type (Typ))
- and then No (Associated_Final_Chain (Typ))
- then
- Build_Final_List (N, Typ);
- end if;
-
- -- Default initialization required, and no expression present
-
- if No (Expr) then
-
- -- Expand Initialize call for controlled objects. One may wonder why
- -- the Initialize Call is not done in the regular Init procedure
- -- attached to the record type. That's because the init procedure is
- -- recursively called on each component, including _Parent, thus the
- -- Init call for a controlled object would generate not only one
- -- Initialize call as it is required but one for each ancestor of
- -- its type. This processing is suppressed if No_Initialization set.
-
- if not Needs_Finalization (Typ)
- or else No_Initialization (N)
- then
- null;
-
- elsif not Abort_Allowed
- or else not Comes_From_Source (N)
- then
- Insert_Actions_After (Init_After,
- Make_Init_Call (
- Ref => New_Occurrence_Of (Def_Id, Loc),
- Typ => Base_Type (Typ),
- Flist_Ref => Find_Final_List (Def_Id),
- With_Attach => Make_Integer_Literal (Loc, 1)));
-
- -- Abort allowed
-
- else
- -- We need to protect the initialize call
-
- -- begin
- -- Defer_Abort.all;
- -- Initialize (...);
- -- at end
- -- Undefer_Abort.all;
- -- end;
-
- -- ??? this won't protect the initialize call for controlled
- -- components which are part of the init proc, so this block
- -- should probably also contain the call to _init_proc but this
- -- requires some code reorganization...
-
- declare
- L : constant List_Id :=
- Make_Init_Call
- (Ref => New_Occurrence_Of (Def_Id, Loc),
- Typ => Base_Type (Typ),
- Flist_Ref => Find_Final_List (Def_Id),
- With_Attach => Make_Integer_Literal (Loc, 1));
-
- Blk : constant Node_Id :=
- Make_Block_Statement (Loc,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, L));
-
- begin
- Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
- Set_At_End_Proc (Handled_Statement_Sequence (Blk),
- New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
- Insert_Actions_After (Init_After, New_List (Blk));
- Expand_At_End_Handler
- (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
- end;
- end if;
-
- -- Call type initialization procedure if there is one. We build the
- -- call and put it immediately after the object declaration, so that
- -- it will be expanded in the usual manner. Note that this will
- -- result in proper handling of defaulted discriminants.
-
- -- Need call if there is a base init proc
-
- if Has_Non_Null_Base_Init_Proc (Typ)
-
- -- Suppress call if No_Initialization set on declaration
-
- and then not No_Initialization (N)
-
- -- Suppress call for special case of value type for VM
-
- and then not Is_Value_Type (Typ)
-
- -- Suppress call if Suppress_Init_Proc set on the type. This is
- -- needed for the derived type case, where Suppress_Initialization
- -- may be set for the derived type, even if there is an init proc
- -- defined for the root type.
-
- and then not Suppress_Init_Proc (Typ)
- then
- -- Return without initializing when No_Default_Initialization
- -- applies. Note that the actual restriction check occurs later,
- -- when the object is frozen, because we don't know yet whether
- -- the object is imported, which is a case where the check does
- -- not apply.
-
- if Restriction_Active (No_Default_Initialization) then
- return;
- end if;
-
- -- The call to the initialization procedure does NOT freeze the
- -- object being initialized. This is because the call is not a
- -- source level call. This works fine, because the only possible
- -- statements depending on freeze status that can appear after the
- -- _Init call are rep clauses which can safely appear after actual
- -- references to the object.
-
- Id_Ref := New_Reference_To (Def_Id, Loc);
- Set_Must_Not_Freeze (Id_Ref);
- Set_Assignment_OK (Id_Ref);
-
- declare
- Init_Expr : constant Node_Id :=
- Static_Initialization (Base_Init_Proc (Typ));
- begin
- if Present (Init_Expr) then
- Set_Expression
- (N, New_Copy_Tree (Init_Expr, New_Scope => Current_Scope));
- return;
- else
- Initialization_Warning (Id_Ref);
-
- Insert_Actions_After (Init_After,
- Build_Initialization_Call (Loc, Id_Ref, Typ));
- end if;
- end;
-
- -- If simple initialization is required, then set an appropriate
- -- simple initialization expression in place. This special
- -- initialization is required even though No_Init_Flag is present,
- -- but is not needed if there was an explicit initialization.
-
- -- An internally generated temporary needs no initialization because
- -- it will be assigned subsequently. In particular, there is no point
- -- in applying Initialize_Scalars to such a temporary.
-
- elsif Needs_Simple_Initialization (Typ)
- and then not Is_Internal (Def_Id)
- and then not Has_Init_Expression (N)
- then
- Set_No_Initialization (N, False);
- Set_Expression (N, Get_Simple_Init_Val (Typ, N, Esize (Def_Id)));
- Analyze_And_Resolve (Expression (N), Typ);
- end if;
-
- -- Generate attribute for Persistent_BSS if needed
-
- if Persistent_BSS_Mode
- and then Comes_From_Source (N)
- and then Is_Potentially_Persistent_Type (Typ)
- and then not Has_Init_Expression (N)
- and then Is_Library_Level_Entity (Def_Id)
- then
- declare
- Prag : Node_Id;
- begin
- Prag :=
- Make_Linker_Section_Pragma
- (Def_Id, Sloc (N), ".persistent.bss");
- Insert_After (N, Prag);
- Analyze (Prag);
- end;
- end if;
-
- -- If access type, then we know it is null if not initialized
-
- if Is_Access_Type (Typ) then
- Set_Is_Known_Null (Def_Id);
- end if;
-
- -- Explicit initialization present
-
- else
- -- Obtain actual expression from qualified expression
-
- if Nkind (Expr) = N_Qualified_Expression then
- Expr_Q := Expression (Expr);
- else
- Expr_Q := Expr;
- end if;
-
- -- When we have the appropriate type of aggregate in the expression
- -- (it has been determined during analysis of the aggregate by
- -- setting the delay flag), let's perform in place assignment and
- -- thus avoid creating a temporary.
-
- if Is_Delayed_Aggregate (Expr_Q) then
- Convert_Aggr_In_Object_Decl (N);
-
- else
- -- Ada 2005 (AI-318-02): If the initialization expression is a
- -- call to a build-in-place function, then access to the declared
- -- object must be passed to the function. Currently we limit such
- -- functions to those with constrained limited result subtypes,
- -- but eventually we plan to expand the allowed forms of functions
- -- that are treated as build-in-place.
-
- if Ada_Version >= Ada_05
- and then Is_Build_In_Place_Function_Call (Expr_Q)
- then
- Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
- BIP_Call := True;
- end if;
-
- -- In most cases, we must check that the initial value meets any
- -- constraint imposed by the declared type. However, there is one
- -- very important exception to this rule. If the entity has an
- -- unconstrained nominal subtype, then it acquired its constraints
- -- from the expression in the first place, and not only does this
- -- mean that the constraint check is not needed, but an attempt to
- -- perform the constraint check can cause order of elaboration
- -- problems.
-
- if not Is_Constr_Subt_For_U_Nominal (Typ) then
-
- -- If this is an allocator for an aggregate that has been
- -- allocated in place, delay checks until assignments are
- -- made, because the discriminants are not initialized.
-
- if Nkind (Expr) = N_Allocator
- and then No_Initialization (Expr)
- then
- null;
- else
- Apply_Constraint_Check (Expr, Typ);
- end if;
- end if;
-
- -- Ada 2005 (AI-251): Rewrite the expression that initializes a
- -- class-wide object to ensure that we copy the full object,
- -- unless we are targetting a VM where interfaces are handled by
- -- VM itself. Note that if the root type of Typ is an ancestor
- -- of Expr's type, both types share the same dispatch table and
- -- there is no need to displace the pointer.
-
- -- Replace
- -- CW : I'Class := Obj;
- -- by
- -- Temp : I'Class := I'Class (Base_Address (Obj'Address));
- -- CW : I'Class renames Displace (Temp, I'Tag);
-
- if Is_Interface (Typ)
- and then Is_Class_Wide_Type (Typ)
- and then
- (Is_Class_Wide_Type (Etype (Expr))
- or else
- not Is_Ancestor (Root_Type (Typ), Etype (Expr)))
- and then Comes_From_Source (Def_Id)
- and then VM_Target = No_VM
- then
- declare
- Decl_1 : Node_Id;
- Decl_2 : Node_Id;
-
- begin
- Decl_1 :=
- Make_Object_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('D')),
-
- Object_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of
- (Root_Type (Etype (Def_Id)), Loc),
- Attribute_Name => Name_Class),
-
- Expression =>
- Unchecked_Convert_To
- (Class_Wide_Type (Root_Type (Etype (Def_Id))),
- Make_Explicit_Dereference (Loc,
- Unchecked_Convert_To (RTE (RE_Tag_Ptr),
- Make_Function_Call (Loc,
- Name =>
- New_Reference_To (RTE (RE_Base_Address),
- Loc),
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Expr),
- Attribute_Name => Name_Address)))))));
-
- Insert_Action (N, Decl_1);
-
- Decl_2 :=
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc,
- New_Internal_Name ('D')),
-
- Subtype_Mark =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of
- (Root_Type (Etype (Def_Id)), Loc),
- Attribute_Name => Name_Class),
-
- Name =>
- Unchecked_Convert_To (
- Class_Wide_Type (Root_Type (Etype (Def_Id))),
- Make_Explicit_Dereference (Loc,
- Unchecked_Convert_To (RTE (RE_Tag_Ptr),
- Make_Function_Call (Loc,
- Name =>
- New_Reference_To (RTE (RE_Displace), Loc),
-
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To
- (Defining_Identifier (Decl_1), Loc),
- Attribute_Name => Name_Address),
-
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node
- (First_Elmt
- (Access_Disp_Table
- (Root_Type (Typ)))),
- Loc))))))));
-
- Rewrite (N, Decl_2);
- Analyze (N);
-
- -- Replace internal identifier of Decl_2 by the identifier
- -- found in the sources. We also have to exchange entities
- -- containing their defining identifiers to ensure the
- -- correct replacement of the object declaration by this
- -- object renaming declaration (because such definings
- -- identifier have been previously added by Enter_Name to
- -- the current scope). We must preserve the homonym chain
- -- of the source entity as well.
-
- Set_Chars (Defining_Identifier (N), Chars (Def_Id));
- Set_Homonym (Defining_Identifier (N), Homonym (Def_Id));
- Exchange_Entities (Defining_Identifier (N), Def_Id);
-
- return;
- end;
- end if;
-
- -- If the type is controlled and not inherently limited, then
- -- the target is adjusted after the copy and attached to the
- -- finalization list. However, no adjustment is done in the case
- -- where the object was initialized by a call to a function whose
- -- result is built in place, since no copy occurred. (Eventually
- -- we plan to support in-place function results for some cases
- -- of nonlimited types. ???)
-
- if Needs_Finalization (Typ)
- and then not Is_Inherently_Limited_Type (Typ)
- and then not BIP_Call
- then
- Insert_Actions_After (Init_After,
- Make_Adjust_Call (
- Ref => New_Reference_To (Def_Id, Loc),
- Typ => Base_Type (Typ),
- Flist_Ref => Find_Final_List (Def_Id),
- With_Attach => Make_Integer_Literal (Loc, 1)));
- end if;
-
- -- For tagged types, when an init value is given, the tag has to
- -- be re-initialized separately in order to avoid the propagation
- -- of a wrong tag coming from a view conversion unless the type
- -- is class wide (in this case the tag comes from the init value).
- -- Suppress the tag assignment when VM_Target because VM tags are
- -- represented implicitly in objects. Ditto for types that are
- -- CPP_CLASS, and for initializations that are aggregates, because
- -- they have to have the right tag.
-
- if Is_Tagged_Type (Typ)
- and then not Is_Class_Wide_Type (Typ)
- and then not Is_CPP_Class (Typ)
- and then VM_Target = No_VM
- and then Nkind (Expr) /= N_Aggregate
- then
- -- The re-assignment of the tag has to be done even if the
- -- object is a constant.
-
- New_Ref :=
- Make_Selected_Component (Loc,
- Prefix => New_Reference_To (Def_Id, Loc),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (Typ), Loc));
-
- Set_Assignment_OK (New_Ref);
-
- Insert_After (Init_After,
- Make_Assignment_Statement (Loc,
- Name => New_Ref,
- Expression =>
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node
- (First_Elmt
- (Access_Disp_Table (Base_Type (Typ)))),
- Loc))));
-
- -- For discrete types, set the Is_Known_Valid flag if the
- -- initializing value is known to be valid.
-
- elsif Is_Discrete_Type (Typ) and then Expr_Known_Valid (Expr) then
- Set_Is_Known_Valid (Def_Id);
-
- elsif Is_Access_Type (Typ) then
-
- -- For access types set the Is_Known_Non_Null flag if the
- -- initializing value is known to be non-null. We can also set
- -- Can_Never_Be_Null if this is a constant.
-
- if Known_Non_Null (Expr) then
- Set_Is_Known_Non_Null (Def_Id, True);
-
- if Constant_Present (N) then
- Set_Can_Never_Be_Null (Def_Id);
- end if;
- end if;
- end if;
-
- -- If validity checking on copies, validate initial expression.
- -- But skip this if declaration is for a generic type, since it
- -- makes no sense to validate generic types. Not clear if this
- -- can happen for legal programs, but it definitely can arise
- -- from previous instantiation errors.
-
- if Validity_Checks_On
- and then Validity_Check_Copies
- and then not Is_Generic_Type (Etype (Def_Id))
- then
- Ensure_Valid (Expr);
- Set_Is_Known_Valid (Def_Id);
- end if;
- end if;
-
- -- Cases where the back end cannot handle the initialization directly
- -- In such cases, we expand an assignment that will be appropriately
- -- handled by Expand_N_Assignment_Statement.
-
- -- The exclusion of the unconstrained case is wrong, but for now it
- -- is too much trouble ???
-
- if (Is_Possibly_Unaligned_Slice (Expr)
- or else (Is_Possibly_Unaligned_Object (Expr)
- and then not Represented_As_Scalar (Etype (Expr))))
-
- -- The exclusion of the unconstrained case is wrong, but for now
- -- it is too much trouble ???
-
- and then not (Is_Array_Type (Etype (Expr))
- and then not Is_Constrained (Etype (Expr)))
- then
- declare
- Stat : constant Node_Id :=
- Make_Assignment_Statement (Loc,
- Name => New_Reference_To (Def_Id, Loc),
- Expression => Relocate_Node (Expr));
- begin
- Set_Expression (N, Empty);
- Set_No_Initialization (N);
- Set_Assignment_OK (Name (Stat));
- Set_No_Ctrl_Actions (Stat);
- Insert_After_And_Analyze (Init_After, Stat);
- end;
- end if;
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Object_Declaration;
-
- ---------------------------------
- -- Expand_N_Subtype_Indication --
- ---------------------------------
-
- -- Add a check on the range of the subtype. The static case is partially
- -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
- -- to check here for the static case in order to avoid generating
- -- extraneous expanded code. Also deal with validity checking.
-
- procedure Expand_N_Subtype_Indication (N : Node_Id) is
- Ran : constant Node_Id := Range_Expression (Constraint (N));
- Typ : constant Entity_Id := Entity (Subtype_Mark (N));
-
- begin
- if Nkind (Constraint (N)) = N_Range_Constraint then
- Validity_Check_Range (Range_Expression (Constraint (N)));
- end if;
-
- if Nkind_In (Parent (N), N_Constrained_Array_Definition, N_Slice) then
- Apply_Range_Check (Ran, Typ);
- end if;
- end Expand_N_Subtype_Indication;
-
- ---------------------------
- -- Expand_N_Variant_Part --
- ---------------------------
-
- -- If the last variant does not contain the Others choice, replace it with
- -- an N_Others_Choice node since Gigi always wants an Others. Note that we
- -- do not bother to call Analyze on the modified variant part, since it's
- -- only effect would be to compute the Others_Discrete_Choices node
- -- laboriously, and of course we already know the list of choices that
- -- corresponds to the others choice (it's the list we are replacing!)
-
- procedure Expand_N_Variant_Part (N : Node_Id) is
- Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
- Others_Node : Node_Id;
- begin
- if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
- Others_Node := Make_Others_Choice (Sloc (Last_Var));
- Set_Others_Discrete_Choices
- (Others_Node, Discrete_Choices (Last_Var));
- Set_Discrete_Choices (Last_Var, New_List (Others_Node));
- end if;
- end Expand_N_Variant_Part;
-
- ---------------------------------
- -- Expand_Previous_Access_Type --
- ---------------------------------
-
- procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
- T : Entity_Id := First_Entity (Current_Scope);
-
- begin
- -- Find all access types declared in the current scope, whose
- -- designated type is Def_Id. If it does not have a Master_Id,
- -- create one now.
-
- while Present (T) loop
- if Is_Access_Type (T)
- and then Designated_Type (T) = Def_Id
- and then No (Master_Id (T))
- then
- Build_Master_Entity (Def_Id);
- Build_Master_Renaming (Parent (Def_Id), T);
- end if;
-
- Next_Entity (T);
- end loop;
- end Expand_Previous_Access_Type;
-
- ------------------------------
- -- Expand_Record_Controller --
- ------------------------------
-
- procedure Expand_Record_Controller (T : Entity_Id) is
- Def : Node_Id := Type_Definition (Parent (T));
- Comp_List : Node_Id;
- Comp_Decl : Node_Id;
- Loc : Source_Ptr;
- First_Comp : Node_Id;
- Controller_Type : Entity_Id;
- Ent : Entity_Id;
-
- begin
- if Nkind (Def) = N_Derived_Type_Definition then
- Def := Record_Extension_Part (Def);
- end if;
-
- if Null_Present (Def) then
- Set_Component_List (Def,
- Make_Component_List (Sloc (Def),
- Component_Items => Empty_List,
- Variant_Part => Empty,
- Null_Present => True));
- end if;
-
- Comp_List := Component_List (Def);
-
- if Null_Present (Comp_List)
- or else Is_Empty_List (Component_Items (Comp_List))
- then
- Loc := Sloc (Comp_List);
- else
- Loc := Sloc (First (Component_Items (Comp_List)));
- end if;
-
- if Is_Inherently_Limited_Type (T) then
- Controller_Type := RTE (RE_Limited_Record_Controller);
- else
- Controller_Type := RTE (RE_Record_Controller);
- end if;
-
- Ent := Make_Defining_Identifier (Loc, Name_uController);
-
- Comp_Decl :=
- Make_Component_Declaration (Loc,
- Defining_Identifier => Ent,
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Controller_Type, Loc)));
-
- if Null_Present (Comp_List)
- or else Is_Empty_List (Component_Items (Comp_List))
- then
- Set_Component_Items (Comp_List, New_List (Comp_Decl));
- Set_Null_Present (Comp_List, False);
-
- else
- -- The controller cannot be placed before the _Parent field since
- -- gigi lays out field in order and _parent must be first to preserve
- -- the polymorphism of tagged types.
-
- First_Comp := First (Component_Items (Comp_List));
-
- if not Is_Tagged_Type (T) then
- Insert_Before (First_Comp, Comp_Decl);
-
- -- if T is a tagged type, place controller declaration after parent
- -- field and after eventual tags of interface types.
-
- else
- while Present (First_Comp)
- and then
- (Chars (Defining_Identifier (First_Comp)) = Name_uParent
- or else Is_Tag (Defining_Identifier (First_Comp))
-
- -- Ada 2005 (AI-251): The following condition covers secondary
- -- tags but also the adjacent component containing the offset
- -- to the base of the object (component generated if the parent
- -- has discriminants --- see Add_Interface_Tag_Components).
- -- This is required to avoid the addition of the controller
- -- between the secondary tag and its adjacent component.
-
- or else Present
- (Related_Type
- (Defining_Identifier (First_Comp))))
- loop
- Next (First_Comp);
- end loop;
-
- -- An empty tagged extension might consist only of the parent
- -- component. Otherwise insert the controller before the first
- -- component that is neither parent nor tag.
-
- if Present (First_Comp) then
- Insert_Before (First_Comp, Comp_Decl);
- else
- Append (Comp_Decl, Component_Items (Comp_List));
- end if;
- end if;
- end if;
-
- Push_Scope (T);
- Analyze (Comp_Decl);
- Set_Ekind (Ent, E_Component);
- Init_Component_Location (Ent);
-
- -- Move the _controller entity ahead in the list of internal entities
- -- of the enclosing record so that it is selected instead of a
- -- potentially inherited one.
-
- declare
- E : constant Entity_Id := Last_Entity (T);
- Comp : Entity_Id;
-
- begin
- pragma Assert (Chars (E) = Name_uController);
-
- Set_Next_Entity (E, First_Entity (T));
- Set_First_Entity (T, E);
-
- Comp := Next_Entity (E);
- while Next_Entity (Comp) /= E loop
- Next_Entity (Comp);
- end loop;
-
- Set_Next_Entity (Comp, Empty);
- Set_Last_Entity (T, Comp);
- end;
-
- End_Scope;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Record_Controller;
-
- ------------------------
- -- Expand_Tagged_Root --
- ------------------------
-
- procedure Expand_Tagged_Root (T : Entity_Id) is
- Def : constant Node_Id := Type_Definition (Parent (T));
- Comp_List : Node_Id;
- Comp_Decl : Node_Id;
- Sloc_N : Source_Ptr;
-
- begin
- if Null_Present (Def) then
- Set_Component_List (Def,
- Make_Component_List (Sloc (Def),
- Component_Items => Empty_List,
- Variant_Part => Empty,
- Null_Present => True));
- end if;
-
- Comp_List := Component_List (Def);
-
- if Null_Present (Comp_List)
- or else Is_Empty_List (Component_Items (Comp_List))
- then
- Sloc_N := Sloc (Comp_List);
- else
- Sloc_N := Sloc (First (Component_Items (Comp_List)));
- end if;
-
- Comp_Decl :=
- Make_Component_Declaration (Sloc_N,
- Defining_Identifier => First_Tag_Component (T),
- Component_Definition =>
- Make_Component_Definition (Sloc_N,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));
-
- if Null_Present (Comp_List)
- or else Is_Empty_List (Component_Items (Comp_List))
- then
- Set_Component_Items (Comp_List, New_List (Comp_Decl));
- Set_Null_Present (Comp_List, False);
-
- else
- Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
- end if;
-
- -- We don't Analyze the whole expansion because the tag component has
- -- already been analyzed previously. Here we just insure that the tree
- -- is coherent with the semantic decoration
-
- Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Tagged_Root;
-
- ----------------------
- -- Clean_Task_Names --
- ----------------------
-
- procedure Clean_Task_Names
- (Typ : Entity_Id;
- Proc_Id : Entity_Id)
- is
- begin
- if Has_Task (Typ)
- and then not Restriction_Active (No_Implicit_Heap_Allocations)
- and then not Global_Discard_Names
- and then VM_Target = No_VM
- then
- Set_Uses_Sec_Stack (Proc_Id);
- end if;
- end Clean_Task_Names;
-
- -----------------------
- -- Freeze_Array_Type --
- -----------------------
-
- procedure Freeze_Array_Type (N : Node_Id) is
- Typ : constant Entity_Id := Entity (N);
- Comp_Typ : constant Entity_Id := Component_Type (Typ);
- Base : constant Entity_Id := Base_Type (Typ);
-
- begin
- if not Is_Bit_Packed_Array (Typ) then
-
- -- If the component contains tasks, so does the array type. This may
- -- not be indicated in the array type because the component may have
- -- been a private type at the point of definition. Same if component
- -- type is controlled.
-
- Set_Has_Task (Base, Has_Task (Comp_Typ));
- Set_Has_Controlled_Component (Base,
- Has_Controlled_Component (Comp_Typ)
- or else Is_Controlled (Comp_Typ));
-
- if No (Init_Proc (Base)) then
-
- -- If this is an anonymous array created for a declaration with
- -- an initial value, its init_proc will never be called. The
- -- initial value itself may have been expanded into assignments,
- -- in which case the object declaration is carries the
- -- No_Initialization flag.
-
- if Is_Itype (Base)
- and then Nkind (Associated_Node_For_Itype (Base)) =
- N_Object_Declaration
- and then (Present (Expression (Associated_Node_For_Itype (Base)))
- or else
- No_Initialization (Associated_Node_For_Itype (Base)))
- then
- null;
-
- -- We do not need an init proc for string or wide [wide] string,
- -- since the only time these need initialization in normalize or
- -- initialize scalars mode, and these types are treated specially
- -- and do not need initialization procedures.
-
- elsif Root_Type (Base) = Standard_String
- or else Root_Type (Base) = Standard_Wide_String
- or else Root_Type (Base) = Standard_Wide_Wide_String
- then
- null;
-
- -- Otherwise we have to build an init proc for the subtype
-
- else
- Build_Array_Init_Proc (Base, N);
- end if;
- end if;
-
- if Typ = Base then
- if Has_Controlled_Component (Base) then
- Build_Controlling_Procs (Base);
-
- if not Is_Limited_Type (Comp_Typ)
- and then Number_Dimensions (Typ) = 1
- then
- Build_Slice_Assignment (Typ);
- end if;
-
- elsif Ekind (Comp_Typ) = E_Anonymous_Access_Type
- and then Needs_Finalization (Directly_Designated_Type (Comp_Typ))
- then
- Set_Associated_Final_Chain (Comp_Typ, Add_Final_Chain (Typ));
- end if;
- end if;
-
- -- For packed case, default initialization, except if the component type
- -- is itself a packed structure with an initialization procedure, or
- -- initialize/normalize scalars active, and we have a base type, or the
- -- type is public, because in that case a client might specify
- -- Normalize_Scalars and there better be a public Init_Proc for it.
-
- elsif (Present (Init_Proc (Component_Type (Base)))
- and then No (Base_Init_Proc (Base)))
- or else (Init_Or_Norm_Scalars and then Base = Typ)
- or else Is_Public (Typ)
- then
- Build_Array_Init_Proc (Base, N);
- end if;
- end Freeze_Array_Type;
-
- -----------------------------
- -- Freeze_Enumeration_Type --
- -----------------------------
-
- procedure Freeze_Enumeration_Type (N : Node_Id) is
- Typ : constant Entity_Id := Entity (N);
- Loc : constant Source_Ptr := Sloc (Typ);
- Ent : Entity_Id;
- Lst : List_Id;
- Num : Nat;
- Arr : Entity_Id;
- Fent : Entity_Id;
- Ityp : Entity_Id;
- Is_Contiguous : Boolean;
- Pos_Expr : Node_Id;
- Last_Repval : Uint;
-
- Func : Entity_Id;
- pragma Warnings (Off, Func);
-
- begin
- -- Various optimizations possible if given representation is contiguous
-
- Is_Contiguous := True;
-
- Ent := First_Literal (Typ);
- Last_Repval := Enumeration_Rep (Ent);
-
- Next_Literal (Ent);
- while Present (Ent) loop
- if Enumeration_Rep (Ent) - Last_Repval /= 1 then
- Is_Contiguous := False;
- exit;
- else
- Last_Repval := Enumeration_Rep (Ent);
- end if;
-
- Next_Literal (Ent);
- end loop;
-
- if Is_Contiguous then
- Set_Has_Contiguous_Rep (Typ);
- Ent := First_Literal (Typ);
- Num := 1;
- Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));
-
- else
- -- Build list of literal references
-
- Lst := New_List;
- Num := 0;
-
- Ent := First_Literal (Typ);
- while Present (Ent) loop
- Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
- Num := Num + 1;
- Next_Literal (Ent);
- end loop;
- end if;
-
- -- Now build an array declaration
-
- -- typA : array (Natural range 0 .. num - 1) of ctype :=
- -- (v, v, v, v, v, ....)
-
- -- where ctype is the corresponding integer type. If the representation
- -- is contiguous, we only keep the first literal, which provides the
- -- offset for Pos_To_Rep computations.
-
- Arr :=
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name (Chars (Typ), 'A'));
-
- Append_Freeze_Action (Typ,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Arr,
- Constant_Present => True,
-
- Object_Definition =>
- Make_Constrained_Array_Definition (Loc,
- Discrete_Subtype_Definitions => New_List (
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
- Constraint =>
- Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
- Low_Bound =>
- Make_Integer_Literal (Loc, 0),
- High_Bound =>
- Make_Integer_Literal (Loc, Num - 1))))),
-
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Typ, Loc))),
-
- Expression =>
- Make_Aggregate (Loc,
- Expressions => Lst)));
-
- Set_Enum_Pos_To_Rep (Typ, Arr);
-
- -- Now we build the function that converts representation values to
- -- position values. This function has the form:
-
- -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
- -- begin
- -- case ityp!(A) is
- -- when enum-lit'Enum_Rep => return posval;
- -- when enum-lit'Enum_Rep => return posval;
- -- ...
- -- when others =>
- -- [raise Constraint_Error when F "invalid data"]
- -- return -1;
- -- end case;
- -- end;
-
- -- Note: the F parameter determines whether the others case (no valid
- -- representation) raises Constraint_Error or returns a unique value
- -- of minus one. The latter case is used, e.g. in 'Valid code.
-
- -- Note: the reason we use Enum_Rep values in the case here is to avoid
- -- the code generator making inappropriate assumptions about the range
- -- of the values in the case where the value is invalid. ityp is a
- -- signed or unsigned integer type of appropriate width.
-
- -- Note: if exceptions are not supported, then we suppress the raise
- -- and return -1 unconditionally (this is an erroneous program in any
- -- case and there is no obligation to raise Constraint_Error here!) We
- -- also do this if pragma Restrictions (No_Exceptions) is active.
-
- -- Is this right??? What about No_Exception_Propagation???
-
- -- Representations are signed
-
- if Enumeration_Rep (First_Literal (Typ)) < 0 then
-
- -- The underlying type is signed. Reset the Is_Unsigned_Type
- -- explicitly, because it might have been inherited from
- -- parent type.
-
- Set_Is_Unsigned_Type (Typ, False);
-
- if Esize (Typ) <= Standard_Integer_Size then
- Ityp := Standard_Integer;
- else
- Ityp := Universal_Integer;
- end if;
-
- -- Representations are unsigned
-
- else
- if Esize (Typ) <= Standard_Integer_Size then
- Ityp := RTE (RE_Unsigned);
- else
- Ityp := RTE (RE_Long_Long_Unsigned);
- end if;
- end if;
-
- -- The body of the function is a case statement. First collect case
- -- alternatives, or optimize the contiguous case.
-
- Lst := New_List;
-
- -- If representation is contiguous, Pos is computed by subtracting
- -- the representation of the first literal.
-
- if Is_Contiguous then
- Ent := First_Literal (Typ);
-
- if Enumeration_Rep (Ent) = Last_Repval then
-
- -- Another special case: for a single literal, Pos is zero
-
- Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
-
- else
- Pos_Expr :=
- Convert_To (Standard_Integer,
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Unchecked_Convert_To (Ityp,
- Make_Identifier (Loc, Name_uA)),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval =>
- Enumeration_Rep (First_Literal (Typ)))));
- end if;
-
- Append_To (Lst,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => New_List (
- Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
- Low_Bound =>
- Make_Integer_Literal (Loc,
- Intval => Enumeration_Rep (Ent)),
- High_Bound =>
- Make_Integer_Literal (Loc, Intval => Last_Repval))),
-
- Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => Pos_Expr))));
-
- else
- Ent := First_Literal (Typ);
- while Present (Ent) loop
- Append_To (Lst,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => New_List (
- Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
- Intval => Enumeration_Rep (Ent))),
-
- Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Integer_Literal (Loc,
- Intval => Enumeration_Pos (Ent))))));
-
- Next_Literal (Ent);
- end loop;
- end if;
-
- -- In normal mode, add the others clause with the test
-
- if not No_Exception_Handlers_Set then
- Append_To (Lst,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => New_List (Make_Others_Choice (Loc)),
- Statements => New_List (
- Make_Raise_Constraint_Error (Loc,
- Condition => Make_Identifier (Loc, Name_uF),
- Reason => CE_Invalid_Data),
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Integer_Literal (Loc, -1)))));
-
- -- If either of the restrictions No_Exceptions_Handlers/Propagation is
- -- active then return -1 (we cannot usefully raise Constraint_Error in
- -- this case). See description above for further details.
-
- else
- Append_To (Lst,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => New_List (Make_Others_Choice (Loc)),
- Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Integer_Literal (Loc, -1)))));
- end if;
-
- -- Now we can build the function body
-
- Fent :=
- Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
-
- Func :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Fent,
- Parameter_Specifications => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uA),
- Parameter_Type => New_Reference_To (Typ, Loc)),
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uF),
- Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
-
- Result_Definition => New_Reference_To (Standard_Integer, Loc)),
-
- Declarations => Empty_List,
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Case_Statement (Loc,
- Expression =>
- Unchecked_Convert_To (Ityp,
- Make_Identifier (Loc, Name_uA)),
- Alternatives => Lst))));
-
- Set_TSS (Typ, Fent);
- Set_Is_Pure (Fent);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Fent);
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Freeze_Enumeration_Type;
-
- ------------------------
- -- Freeze_Record_Type --
- ------------------------
-
- procedure Freeze_Record_Type (N : Node_Id) is
-
- procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id);
- -- Add to the list of primitives of Tagged_Types the internal entities
- -- associated with interface primitives that are located in secondary
- -- dispatch tables.
-
- -------------------------------------
- -- Add_Internal_Interface_Entities --
- -------------------------------------
-
- procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
- Elmt : Elmt_Id;
- Iface : Entity_Id;
- Iface_Elmt : Elmt_Id;
- Iface_Prim : Entity_Id;
- Ifaces_List : Elist_Id;
- New_Subp : Entity_Id := Empty;
- Prim : Entity_Id;
-
- begin
- pragma Assert (Ada_Version >= Ada_05
- and then Is_Record_Type (Tagged_Type)
- and then Is_Tagged_Type (Tagged_Type)
- and then Has_Interfaces (Tagged_Type)
- and then not Is_Interface (Tagged_Type));
-
- Collect_Interfaces (Tagged_Type, Ifaces_List);
-
- Iface_Elmt := First_Elmt (Ifaces_List);
- while Present (Iface_Elmt) loop
- Iface := Node (Iface_Elmt);
-
- -- Exclude from this processing interfaces that are parents
- -- of Tagged_Type because their primitives are located in the
- -- primary dispatch table (and hence no auxiliary internal
- -- entities are required to handle secondary dispatch tables
- -- in such case).
-
- if not Is_Ancestor (Iface, Tagged_Type) then
- Elmt := First_Elmt (Primitive_Operations (Iface));
- while Present (Elmt) loop
- Iface_Prim := Node (Elmt);
-
- if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
- Prim :=
- Find_Primitive_Covering_Interface
- (Tagged_Type => Tagged_Type,
- Iface_Prim => Iface_Prim);
-
- pragma Assert (Present (Prim));
-
- Derive_Subprogram
- (New_Subp => New_Subp,
- Parent_Subp => Iface_Prim,
- Derived_Type => Tagged_Type,
- Parent_Type => Iface);
-
- -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
- -- associated with interface types. These entities are
- -- only registered in the list of primitives of its
- -- corresponding tagged type because they are only used
- -- to fill the contents of the secondary dispatch tables.
- -- Therefore they are removed from the homonym chains.
-
- Set_Is_Hidden (New_Subp);
- Set_Is_Internal (New_Subp);
- Set_Alias (New_Subp, Prim);
- Set_Is_Abstract_Subprogram (New_Subp,
- Is_Abstract_Subprogram (Prim));
- Set_Interface_Alias (New_Subp, Iface_Prim);
-
- -- Internal entities associated with interface types are
- -- only registered in the list of primitives of the
- -- tagged type. They are only used to fill the contents
- -- of the secondary dispatch tables. Therefore they are
- -- not needed in the homonym chains.
-
- Remove_Homonym (New_Subp);
-
- -- Hidden entities associated with interfaces must have
- -- set the Has_Delay_Freeze attribute to ensure that, in
- -- case of locally defined tagged types (or compiling
- -- with static dispatch tables generation disabled) the
- -- corresponding entry of the secondary dispatch table is
- -- filled when such entity is frozen.
-
- Set_Has_Delayed_Freeze (New_Subp);
- end if;
-
- Next_Elmt (Elmt);
- end loop;
- end if;
-
- Next_Elmt (Iface_Elmt);
- end loop;
- end Add_Internal_Interface_Entities;
-
- -- Local variables
-
- Def_Id : constant Node_Id := Entity (N);
- Type_Decl : constant Node_Id := Parent (Def_Id);
- Comp : Entity_Id;
- Comp_Typ : Entity_Id;
- Has_Static_DT : Boolean := False;
- Predef_List : List_Id;
-
- Flist : Entity_Id := Empty;
- -- Finalization list allocated for the case of a type with anonymous
- -- access components whose designated type is potentially controlled.
-
- Renamed_Eq : Node_Id := Empty;
- -- Defining unit name for the predefined equality function in the case
- -- where the type has a primitive operation that is a renaming of
- -- predefined equality (but only if there is also an overriding
- -- user-defined equality function). Used to pass this entity from
- -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
-
- Wrapper_Decl_List : List_Id := No_List;
- Wrapper_Body_List : List_Id := No_List;
- Null_Proc_Decl_List : List_Id := No_List;
-
- -- Start of processing for Freeze_Record_Type
-
- begin
- -- Build discriminant checking functions if not a derived type (for
- -- derived types that are not tagged types, always use the discriminant
- -- checking functions of the parent type). However, for untagged types
- -- the derivation may have taken place before the parent was frozen, so
- -- we copy explicitly the discriminant checking functions from the
- -- parent into the components of the derived type.
-
- if not Is_Derived_Type (Def_Id)
- or else Has_New_Non_Standard_Rep (Def_Id)
- or else Is_Tagged_Type (Def_Id)
- then
- Build_Discr_Checking_Funcs (Type_Decl);
-
- elsif Is_Derived_Type (Def_Id)
- and then not Is_Tagged_Type (Def_Id)
-
- -- If we have a derived Unchecked_Union, we do not inherit the
- -- discriminant checking functions from the parent type since the
- -- discriminants are non existent.
-
- and then not Is_Unchecked_Union (Def_Id)
- and then Has_Discriminants (Def_Id)
- then
- declare
- Old_Comp : Entity_Id;
-
- begin
- Old_Comp :=
- First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
- Comp := First_Component (Def_Id);
- while Present (Comp) loop
- if Ekind (Comp) = E_Component
- and then Chars (Comp) = Chars (Old_Comp)
- then
- Set_Discriminant_Checking_Func (Comp,
- Discriminant_Checking_Func (Old_Comp));
- end if;
-
- Next_Component (Old_Comp);
- Next_Component (Comp);
- end loop;
- end;
- end if;
-
- if Is_Derived_Type (Def_Id)
- and then Is_Limited_Type (Def_Id)
- and then Is_Tagged_Type (Def_Id)
- then
- Check_Stream_Attributes (Def_Id);
- end if;
-
- -- Update task and controlled component flags, because some of the
- -- component types may have been private at the point of the record
- -- declaration.
-
- Comp := First_Component (Def_Id);
-
- while Present (Comp) loop
- Comp_Typ := Etype (Comp);
-
- if Has_Task (Comp_Typ) then
- Set_Has_Task (Def_Id);
-
- elsif Has_Controlled_Component (Comp_Typ)
- or else (Chars (Comp) /= Name_uParent
- and then Is_Controlled (Comp_Typ))
- then
- Set_Has_Controlled_Component (Def_Id);
-
- elsif Ekind (Comp_Typ) = E_Anonymous_Access_Type
- and then Needs_Finalization (Directly_Designated_Type (Comp_Typ))
- then
- if No (Flist) then
- Flist := Add_Final_Chain (Def_Id);
- end if;
-
- Set_Associated_Final_Chain (Comp_Typ, Flist);
- end if;
-
- Next_Component (Comp);
- end loop;
-
- -- Creation of the Dispatch Table. Note that a Dispatch Table is built
- -- for regular tagged types as well as for Ada types deriving from a C++
- -- Class, but not for tagged types directly corresponding to C++ classes
- -- In the later case we assume that it is created in the C++ side and we
- -- just use it.
-
- if Is_Tagged_Type (Def_Id) then
- Has_Static_DT :=
- Static_Dispatch_Tables
- and then Is_Library_Level_Tagged_Type (Def_Id);
-
- -- Add the _Tag component
-
- if Underlying_Type (Etype (Def_Id)) = Def_Id then
- Expand_Tagged_Root (Def_Id);
- end if;
-
- if Is_CPP_Class (Def_Id) then
- Set_All_DT_Position (Def_Id);
- Set_Default_Constructor (Def_Id);
-
- -- Create the tag entities with a minimum decoration
-
- if VM_Target = No_VM then
- Append_Freeze_Actions (Def_Id, Make_Tags (Def_Id));
- end if;
-
- else
- if not Has_Static_DT then
-
- -- Usually inherited primitives are not delayed but the first
- -- Ada extension of a CPP_Class is an exception since the
- -- address of the inherited subprogram has to be inserted in
- -- the new Ada Dispatch Table and this is a freezing action.
-
- -- Similarly, if this is an inherited operation whose parent is
- -- not frozen yet, it is not in the DT of the parent, and we
- -- generate an explicit freeze node for the inherited operation
- -- so that it is properly inserted in the DT of the current
- -- type.
-
- declare
- Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
- Subp : Entity_Id;
-
- begin
- while Present (Elmt) loop
- Subp := Node (Elmt);
-
- if Present (Alias (Subp)) then
- if Is_CPP_Class (Etype (Def_Id)) then
- Set_Has_Delayed_Freeze (Subp);
-
- elsif Has_Delayed_Freeze (Alias (Subp))
- and then not Is_Frozen (Alias (Subp))
- then
- Set_Is_Frozen (Subp, False);
- Set_Has_Delayed_Freeze (Subp);
- end if;
- end if;
-
- Next_Elmt (Elmt);
- end loop;
- end;
- end if;
-
- -- Unfreeze momentarily the type to add the predefined primitives
- -- operations. The reason we unfreeze is so that these predefined
- -- operations will indeed end up as primitive operations (which
- -- must be before the freeze point).
-
- Set_Is_Frozen (Def_Id, False);
-
- -- Do not add the spec of predefined primitives in case of
- -- CPP tagged type derivations that have convention CPP.
-
- if Is_CPP_Class (Root_Type (Def_Id))
- and then Convention (Def_Id) = Convention_CPP
- then
- null;
-
- -- Do not add the spec of the predefined primitives if we are
- -- compiling under restriction No_Dispatching_Calls
-
- elsif not Restriction_Active (No_Dispatching_Calls) then
- Make_Predefined_Primitive_Specs
- (Def_Id, Predef_List, Renamed_Eq);
- Insert_List_Before_And_Analyze (N, Predef_List);
- end if;
-
- -- Ada 2005 (AI-391): For a nonabstract null extension, create
- -- wrapper functions for each nonoverridden inherited function
- -- with a controlling result of the type. The wrapper for such
- -- a function returns an extension aggregate that invokes the
- -- the parent function.
-
- if Ada_Version >= Ada_05
- and then not Is_Abstract_Type (Def_Id)
- and then Is_Null_Extension (Def_Id)
- then
- Make_Controlling_Function_Wrappers
- (Def_Id, Wrapper_Decl_List, Wrapper_Body_List);
- Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
- end if;
-
- -- Ada 2005 (AI-251): For a nonabstract type extension, build
- -- null procedure declarations for each set of homographic null
- -- procedures that are inherited from interface types but not
- -- overridden. This is done to ensure that the dispatch table
- -- entry associated with such null primitives are properly filled.
-
- if Ada_Version >= Ada_05
- and then Etype (Def_Id) /= Def_Id
- and then not Is_Abstract_Type (Def_Id)
- then
- Make_Null_Procedure_Specs (Def_Id, Null_Proc_Decl_List);
- Insert_Actions (N, Null_Proc_Decl_List);
- end if;
-
- -- Ada 2005 (AI-251): Add internal entities associated with
- -- secondary dispatch tables to the list of primitives of tagged
- -- types that are not interfaces
-
- if Ada_Version >= Ada_05
- and then not Is_Interface (Def_Id)
- and then Has_Interfaces (Def_Id)
- then
- Add_Internal_Interface_Entities (Def_Id);
- end if;
-
- Set_Is_Frozen (Def_Id);
- Set_All_DT_Position (Def_Id);
-
- -- Add the controlled component before the freezing actions
- -- referenced in those actions.
-
- if Has_New_Controlled_Component (Def_Id) then
- Expand_Record_Controller (Def_Id);
- end if;
-
- -- Create and decorate the tags. Suppress their creation when
- -- VM_Target because the dispatching mechanism is handled
- -- internally by the VMs.
-
- if VM_Target = No_VM then
- Append_Freeze_Actions (Def_Id, Make_Tags (Def_Id));
-
- -- Generate dispatch table of locally defined tagged type.
- -- Dispatch tables of library level tagged types are built
- -- later (see Analyze_Declarations).
-
- if VM_Target = No_VM
- and then not Has_Static_DT
- then
- Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
- end if;
- end if;
-
- -- Make sure that the primitives Initialize, Adjust and Finalize
- -- are Frozen before other TSS subprograms. We don't want them
- -- Frozen inside.
-
- if Is_Controlled (Def_Id) then
- if not Is_Limited_Type (Def_Id) then
- Append_Freeze_Actions (Def_Id,
- Freeze_Entity
- (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
- end if;
-
- Append_Freeze_Actions (Def_Id,
- Freeze_Entity
- (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
-
- Append_Freeze_Actions (Def_Id,
- Freeze_Entity
- (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
- end if;
-
- -- Freeze rest of primitive operations. There is no need to handle
- -- the predefined primitives if we are compiling under restriction
- -- No_Dispatching_Calls
-
- if not Restriction_Active (No_Dispatching_Calls) then
- Append_Freeze_Actions
- (Def_Id, Predefined_Primitive_Freeze (Def_Id));
- end if;
- end if;
-
- -- In the non-tagged case, an equality function is provided only for
- -- variant records (that are not unchecked unions).
-
- elsif Has_Discriminants (Def_Id)
- and then not Is_Limited_Type (Def_Id)
- then
- declare
- Comps : constant Node_Id :=
- Component_List (Type_Definition (Type_Decl));
-
- begin
- if Present (Comps)
- and then Present (Variant_Part (Comps))
- then
- Build_Variant_Record_Equality (Def_Id);
- end if;
- end;
- end if;
-
- -- Before building the record initialization procedure, if we are
- -- dealing with a concurrent record value type, then we must go through
- -- the discriminants, exchanging discriminals between the concurrent
- -- type and the concurrent record value type. See the section "Handling
- -- of Discriminants" in the Einfo spec for details.
-
- if Is_Concurrent_Record_Type (Def_Id)
- and then Has_Discriminants (Def_Id)
- then
- declare
- Ctyp : constant Entity_Id :=
- Corresponding_Concurrent_Type (Def_Id);
- Conc_Discr : Entity_Id;
- Rec_Discr : Entity_Id;
- Temp : Entity_Id;
-
- begin
- Conc_Discr := First_Discriminant (Ctyp);
- Rec_Discr := First_Discriminant (Def_Id);
-
- while Present (Conc_Discr) loop
- Temp := Discriminal (Conc_Discr);
- Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
- Set_Discriminal (Rec_Discr, Temp);
-
- Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
- Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
-
- Next_Discriminant (Conc_Discr);
- Next_Discriminant (Rec_Discr);
- end loop;
- end;
- end if;
-
- if Has_Controlled_Component (Def_Id) then
- if No (Controller_Component (Def_Id)) then
- Expand_Record_Controller (Def_Id);
- end if;
-
- Build_Controlling_Procs (Def_Id);
- end if;
-
- Adjust_Discriminants (Def_Id);
-
- if VM_Target = No_VM or else not Is_Interface (Def_Id) then
-
- -- Do not need init for interfaces on e.g. CIL since they're
- -- abstract. Helps operation of peverify (the PE Verify tool).
-
- Build_Record_Init_Proc (Type_Decl, Def_Id);
- end if;
-
- -- For tagged type that are not interfaces, build bodies of primitive
- -- operations. Note that we do this after building the record
- -- initialization procedure, since the primitive operations may need
- -- the initialization routine. There is no need to add predefined
- -- primitives of interfaces because all their predefined primitives
- -- are abstract.
-
- if Is_Tagged_Type (Def_Id)
- and then not Is_Interface (Def_Id)
- then
- -- Do not add the body of predefined primitives in case of
- -- CPP tagged type derivations that have convention CPP.
-
- if Is_CPP_Class (Root_Type (Def_Id))
- and then Convention (Def_Id) = Convention_CPP
- then
- null;
-
- -- Do not add the body of the predefined primitives if we are
- -- compiling under restriction No_Dispatching_Calls or if we are
- -- compiling a CPP tagged type.
-
- elsif not Restriction_Active (No_Dispatching_Calls) then
- Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
- Append_Freeze_Actions (Def_Id, Predef_List);
- end if;
-
- -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
- -- inherited functions, then add their bodies to the freeze actions.
-
- if Present (Wrapper_Body_List) then
- Append_Freeze_Actions (Def_Id, Wrapper_Body_List);
- end if;
- end if;
- end Freeze_Record_Type;
-
- ------------------------------
- -- Freeze_Stream_Operations --
- ------------------------------
-
- procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
- Names : constant array (1 .. 4) of TSS_Name_Type :=
- (TSS_Stream_Input,
- TSS_Stream_Output,
- TSS_Stream_Read,
- TSS_Stream_Write);
- Stream_Op : Entity_Id;
-
- begin
- -- Primitive operations of tagged types are frozen when the dispatch
- -- table is constructed.
-
- if not Comes_From_Source (Typ)
- or else Is_Tagged_Type (Typ)
- then
- return;
- end if;
-
- for J in Names'Range loop
- Stream_Op := TSS (Typ, Names (J));
-
- if Present (Stream_Op)
- and then Is_Subprogram (Stream_Op)
- and then Nkind (Unit_Declaration_Node (Stream_Op)) =
- N_Subprogram_Declaration
- and then not Is_Frozen (Stream_Op)
- then
- Append_Freeze_Actions
- (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
- end if;
- end loop;
- end Freeze_Stream_Operations;
-
- -----------------
- -- Freeze_Type --
- -----------------
-
- -- Full type declarations are expanded at the point at which the type is
- -- frozen. The formal N is the Freeze_Node for the type. Any statements or
- -- declarations generated by the freezing (e.g. the procedure generated
- -- for initialization) are chained in the Actions field list of the freeze
- -- node using Append_Freeze_Actions.
-
- function Freeze_Type (N : Node_Id) return Boolean is
- Def_Id : constant Entity_Id := Entity (N);
- RACW_Seen : Boolean := False;
- Result : Boolean := False;
-
- begin
- -- Process associated access types needing special processing
-
- if Present (Access_Types_To_Process (N)) then
- declare
- E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
- begin
- while Present (E) loop
-
- if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
- Validate_RACW_Primitives (Node (E));
- RACW_Seen := True;
- end if;
-
- E := Next_Elmt (E);
- end loop;
- end;
-
- if RACW_Seen then
-
- -- If there are RACWs designating this type, make stubs now
-
- Remote_Types_Tagged_Full_View_Encountered (Def_Id);
- end if;
- end if;
-
- -- Freeze processing for record types
-
- if Is_Record_Type (Def_Id) then
- if Ekind (Def_Id) = E_Record_Type then
- Freeze_Record_Type (N);
-
- -- The subtype may have been declared before the type was frozen. If
- -- the type has controlled components it is necessary to create the
- -- entity for the controller explicitly because it did not exist at
- -- the point of the subtype declaration. Only the entity is needed,
- -- the back-end will obtain the layout from the type. This is only
- -- necessary if this is constrained subtype whose component list is
- -- not shared with the base type.
-
- elsif Ekind (Def_Id) = E_Record_Subtype
- and then Has_Discriminants (Def_Id)
- and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
- and then Present (Controller_Component (Def_Id))
- then
- declare
- Old_C : constant Entity_Id := Controller_Component (Def_Id);
- New_C : Entity_Id;
-
- begin
- if Scope (Old_C) = Base_Type (Def_Id) then
-
- -- The entity is the one in the parent. Create new one
-
- New_C := New_Copy (Old_C);
- Set_Parent (New_C, Parent (Old_C));
- Push_Scope (Def_Id);
- Enter_Name (New_C);
- End_Scope;
- end if;
- end;
-
- if Is_Itype (Def_Id)
- and then Is_Record_Type (Underlying_Type (Scope (Def_Id)))
- then
- -- The freeze node is only used to introduce the controller,
- -- the back-end has no use for it for a discriminated
- -- component.
-
- Set_Freeze_Node (Def_Id, Empty);
- Set_Has_Delayed_Freeze (Def_Id, False);
- Result := True;
- end if;
-
- -- Similar process if the controller of the subtype is not present
- -- but the parent has it. This can happen with constrained
- -- record components where the subtype is an itype.
-
- elsif Ekind (Def_Id) = E_Record_Subtype
- and then Is_Itype (Def_Id)
- and then No (Controller_Component (Def_Id))
- and then Present (Controller_Component (Etype (Def_Id)))
- then
- declare
- Old_C : constant Entity_Id :=
- Controller_Component (Etype (Def_Id));
- New_C : constant Entity_Id := New_Copy (Old_C);
-
- begin
- Set_Next_Entity (New_C, First_Entity (Def_Id));
- Set_First_Entity (Def_Id, New_C);
-
- -- The freeze node is only used to introduce the controller,
- -- the back-end has no use for it for a discriminated
- -- component.
-
- Set_Freeze_Node (Def_Id, Empty);
- Set_Has_Delayed_Freeze (Def_Id, False);
- Result := True;
- end;
- end if;
-
- -- Freeze processing for array types
-
- elsif Is_Array_Type (Def_Id) then
- Freeze_Array_Type (N);
-
- -- Freeze processing for access types
-
- -- For pool-specific access types, find out the pool object used for
- -- this type, needs actual expansion of it in some cases. Here are the
- -- different cases :
-
- -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
- -- ---> don't use any storage pool
-
- -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
- -- Expand:
- -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
-
- -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
- -- ---> Storage Pool is the specified one
-
- -- See GNAT Pool packages in the Run-Time for more details
-
- elsif Ekind (Def_Id) = E_Access_Type
- or else Ekind (Def_Id) = E_General_Access_Type
- then
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
- Pool_Object : Entity_Id;
-
- Freeze_Action_Typ : Entity_Id;
-
- begin
- -- Case 1
-
- -- Rep Clause "for Def_Id'Storage_Size use 0;"
- -- ---> don't use any storage pool
-
- if No_Pool_Assigned (Def_Id) then
- null;
-
- -- Case 2
-
- -- Rep Clause : for Def_Id'Storage_Size use Expr.
- -- ---> Expand:
- -- Def_Id__Pool : Stack_Bounded_Pool
- -- (Expr, DT'Size, DT'Alignment);
-
- elsif Has_Storage_Size_Clause (Def_Id) then
- declare
- DT_Size : Node_Id;
- DT_Align : Node_Id;
-
- begin
- -- For unconstrained composite types we give a size of zero
- -- so that the pool knows that it needs a special algorithm
- -- for variable size object allocation.
-
- if Is_Composite_Type (Desig_Type)
- and then not Is_Constrained (Desig_Type)
- then
- DT_Size :=
- Make_Integer_Literal (Loc, 0);
-
- DT_Align :=
- Make_Integer_Literal (Loc, Maximum_Alignment);
-
- else
- DT_Size :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Desig_Type, Loc),
- Attribute_Name => Name_Max_Size_In_Storage_Elements);
-
- DT_Align :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Desig_Type, Loc),
- Attribute_Name => Name_Alignment);
- end if;
-
- Pool_Object :=
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name (Chars (Def_Id), 'P'));
-
- -- We put the code associated with the pools in the entity
- -- that has the later freeze node, usually the access type
- -- but it can also be the designated_type; because the pool
- -- code requires both those types to be frozen
-
- if Is_Frozen (Desig_Type)
- and then (No (Freeze_Node (Desig_Type))
- or else Analyzed (Freeze_Node (Desig_Type)))
- then
- Freeze_Action_Typ := Def_Id;
-
- -- A Taft amendment type cannot get the freeze actions
- -- since the full view is not there.
-
- elsif Is_Incomplete_Or_Private_Type (Desig_Type)
- and then No (Full_View (Desig_Type))
- then
- Freeze_Action_Typ := Def_Id;
-
- else
- Freeze_Action_Typ := Desig_Type;
- end if;
-
- Append_Freeze_Action (Freeze_Action_Typ,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pool_Object,
- Object_Definition =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark =>
- New_Reference_To
- (RTE (RE_Stack_Bounded_Pool), Loc),
-
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => New_List (
-
- -- First discriminant is the Pool Size
-
- New_Reference_To (
- Storage_Size_Variable (Def_Id), Loc),
-
- -- Second discriminant is the element size
-
- DT_Size,
-
- -- Third discriminant is the alignment
-
- DT_Align)))));
- end;
-
- Set_Associated_Storage_Pool (Def_Id, Pool_Object);
-
- -- Case 3
-
- -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
- -- ---> Storage Pool is the specified one
-
- elsif Present (Associated_Storage_Pool (Def_Id)) then
-
- -- Nothing to do the associated storage pool has been attached
- -- when analyzing the rep. clause
-
- null;
- end if;
-
- -- For access-to-controlled types (including class-wide types and
- -- Taft-amendment types which potentially have controlled
- -- components), expand the list controller object that will store
- -- the dynamically allocated objects. Do not do this
- -- transformation for expander-generated access types, but do it
- -- for types that are the full view of types derived from other
- -- private types. Also suppress the list controller in the case
- -- of a designated type with convention Java, since this is used
- -- when binding to Java API specs, where there's no equivalent of
- -- a finalization list and we don't want to pull in the
- -- finalization support if not needed.
-
- if not Comes_From_Source (Def_Id)
- and then not Has_Private_Declaration (Def_Id)
- then
- null;
-
- elsif (Needs_Finalization (Desig_Type)
- and then Convention (Desig_Type) /= Convention_Java
- and then Convention (Desig_Type) /= Convention_CIL)
- or else
- (Is_Incomplete_Or_Private_Type (Desig_Type)
- and then No (Full_View (Desig_Type))
-
- -- An exception is made for types defined in the run-time
- -- because Ada.Tags.Tag itself is such a type and cannot
- -- afford this unnecessary overhead that would generates a
- -- loop in the expansion scheme...
-
- and then not In_Runtime (Def_Id)
-
- -- Another exception is if Restrictions (No_Finalization)
- -- is active, since then we know nothing is controlled.
-
- and then not Restriction_Active (No_Finalization))
-
- -- If the designated type is not frozen yet, its controlled
- -- status must be retrieved explicitly.
-
- or else (Is_Array_Type (Desig_Type)
- and then not Is_Frozen (Desig_Type)
- and then Needs_Finalization (Component_Type (Desig_Type)))
-
- -- The designated type has controlled anonymous access
- -- discriminants.
-
- or else Has_Controlled_Coextensions (Desig_Type)
- then
- Set_Associated_Final_Chain (Def_Id, Add_Final_Chain (Def_Id));
- end if;
- end;
-
- -- Freeze processing for enumeration types
-
- elsif Ekind (Def_Id) = E_Enumeration_Type then
-
- -- We only have something to do if we have a non-standard
- -- representation (i.e. at least one literal whose pos value
- -- is not the same as its representation)
-
- if Has_Non_Standard_Rep (Def_Id) then
- Freeze_Enumeration_Type (N);
- end if;
-
- -- Private types that are completed by a derivation from a private
- -- type have an internally generated full view, that needs to be
- -- frozen. This must be done explicitly because the two views share
- -- the freeze node, and the underlying full view is not visible when
- -- the freeze node is analyzed.
-
- elsif Is_Private_Type (Def_Id)
- and then Is_Derived_Type (Def_Id)
- and then Present (Full_View (Def_Id))
- and then Is_Itype (Full_View (Def_Id))
- and then Has_Private_Declaration (Full_View (Def_Id))
- and then Freeze_Node (Full_View (Def_Id)) = N
- then
- Set_Entity (N, Full_View (Def_Id));
- Result := Freeze_Type (N);
- Set_Entity (N, Def_Id);
-
- -- All other types require no expander action. There are such cases
- -- (e.g. task types and protected types). In such cases, the freeze
- -- nodes are there for use by Gigi.
-
- end if;
-
- Freeze_Stream_Operations (N, Def_Id);
- return Result;
-
- exception
- when RE_Not_Available =>
- return False;
- end Freeze_Type;
-
- -------------------------
- -- Get_Simple_Init_Val --
- -------------------------
-
- function Get_Simple_Init_Val
- (T : Entity_Id;
- N : Node_Id;
- Size : Uint := No_Uint) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
- Val : Node_Id;
- Result : Node_Id;
- Val_RE : RE_Id;
-
- Size_To_Use : Uint;
- -- This is the size to be used for computation of the appropriate
- -- initial value for the Normalize_Scalars and Initialize_Scalars case.
-
- IV_Attribute : constant Boolean :=
- Nkind (N) = N_Attribute_Reference
- and then Attribute_Name (N) = Name_Invalid_Value;
-
- Lo_Bound : Uint;
- Hi_Bound : Uint;
- -- These are the values computed by the procedure Check_Subtype_Bounds
-
- procedure Check_Subtype_Bounds;
- -- This procedure examines the subtype T, and its ancestor subtypes and
- -- derived types to determine the best known information about the
- -- bounds of the subtype. After the call Lo_Bound is set either to
- -- No_Uint if no information can be determined, or to a value which
- -- represents a known low bound, i.e. a valid value of the subtype can
- -- not be less than this value. Hi_Bound is similarly set to a known
- -- high bound (valid value cannot be greater than this).
-
- --------------------------
- -- Check_Subtype_Bounds --
- --------------------------
-
- procedure Check_Subtype_Bounds is
- ST1 : Entity_Id;
- ST2 : Entity_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- Loval : Uint;
- Hival : Uint;
-
- begin
- Lo_Bound := No_Uint;
- Hi_Bound := No_Uint;
-
- -- Loop to climb ancestor subtypes and derived types
-
- ST1 := T;
- loop
- if not Is_Discrete_Type (ST1) then
- return;
- end if;
-
- Lo := Type_Low_Bound (ST1);
- Hi := Type_High_Bound (ST1);
-
- if Compile_Time_Known_Value (Lo) then
- Loval := Expr_Value (Lo);
-
- if Lo_Bound = No_Uint or else Lo_Bound < Loval then
- Lo_Bound := Loval;
- end if;
- end if;
-
- if Compile_Time_Known_Value (Hi) then
- Hival := Expr_Value (Hi);
-
- if Hi_Bound = No_Uint or else Hi_Bound > Hival then
- Hi_Bound := Hival;
- end if;
- end if;
-
- ST2 := Ancestor_Subtype (ST1);
-
- if No (ST2) then
- ST2 := Etype (ST1);
- end if;
-
- exit when ST1 = ST2;
- ST1 := ST2;
- end loop;
- end Check_Subtype_Bounds;
-
- -- Start of processing for Get_Simple_Init_Val
-
- begin
- -- For a private type, we should always have an underlying type
- -- (because this was already checked in Needs_Simple_Initialization).
- -- What we do is to get the value for the underlying type and then do
- -- an Unchecked_Convert to the private type.
-
- if Is_Private_Type (T) then
- Val := Get_Simple_Init_Val (Underlying_Type (T), N, Size);
-
- -- A special case, if the underlying value is null, then qualify it
- -- with the underlying type, so that the null is properly typed
- -- Similarly, if it is an aggregate it must be qualified, because an
- -- unchecked conversion does not provide a context for it.
-
- if Nkind_In (Val, N_Null, N_Aggregate) then
- Val :=
- Make_Qualified_Expression (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Underlying_Type (T), Loc),
- Expression => Val);
- end if;
-
- Result := Unchecked_Convert_To (T, Val);
-
- -- Don't truncate result (important for Initialize/Normalize_Scalars)
-
- if Nkind (Result) = N_Unchecked_Type_Conversion
- and then Is_Scalar_Type (Underlying_Type (T))
- then
- Set_No_Truncation (Result);
- end if;
-
- return Result;
-
- -- For scalars, we must have normalize/initialize scalars case, or
- -- if the node N is an 'Invalid_Value attribute node.
-
- elsif Is_Scalar_Type (T) then
- pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);
-
- -- Compute size of object. If it is given by the caller, we can use
- -- it directly, otherwise we use Esize (T) as an estimate. As far as
- -- we know this covers all cases correctly.
-
- if Size = No_Uint or else Size <= Uint_0 then
- Size_To_Use := UI_Max (Uint_1, Esize (T));
- else
- Size_To_Use := Size;
- end if;
-
- -- Maximum size to use is 64 bits, since we will create values
- -- of type Unsigned_64 and the range must fit this type.
-
- if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
- Size_To_Use := Uint_64;
- end if;
-
- -- Check known bounds of subtype
-
- Check_Subtype_Bounds;
-
- -- Processing for Normalize_Scalars case
-
- if Normalize_Scalars and then not IV_Attribute then
-
- -- If zero is invalid, it is a convenient value to use that is
- -- for sure an appropriate invalid value in all situations.
-
- if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
- Val := Make_Integer_Literal (Loc, 0);
-
- -- Cases where all one bits is the appropriate invalid value
-
- -- For modular types, all 1 bits is either invalid or valid. If
- -- it is valid, then there is nothing that can be done since there
- -- are no invalid values (we ruled out zero already).
-
- -- For signed integer types that have no negative values, either
- -- there is room for negative values, or there is not. If there
- -- is, then all 1 bits may be interpreted as minus one, which is
- -- certainly invalid. Alternatively it is treated as the largest
- -- positive value, in which case the observation for modular types
- -- still applies.
-
- -- For float types, all 1-bits is a NaN (not a number), which is
- -- certainly an appropriately invalid value.
-
- elsif Is_Unsigned_Type (T)
- or else Is_Floating_Point_Type (T)
- or else Is_Enumeration_Type (T)
- then
- Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
-
- -- Resolve as Unsigned_64, because the largest number we
- -- can generate is out of range of universal integer.
-
- Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
-
- -- Case of signed types
-
- else
- declare
- Signed_Size : constant Uint :=
- UI_Min (Uint_63, Size_To_Use - 1);
-
- begin
- -- Normally we like to use the most negative number. The
- -- one exception is when this number is in the known
- -- subtype range and the largest positive number is not in
- -- the known subtype range.
-
- -- For this exceptional case, use largest positive value
-
- if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
- and then Lo_Bound <= (-(2 ** Signed_Size))
- and then Hi_Bound < 2 ** Signed_Size
- then
- Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
-
- -- Normal case of largest negative value
-
- else
- Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
- end if;
- end;
- end if;
-
- -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
-
- else
- -- For float types, use float values from System.Scalar_Values
-
- if Is_Floating_Point_Type (T) then
- if Root_Type (T) = Standard_Short_Float then
- Val_RE := RE_IS_Isf;
- elsif Root_Type (T) = Standard_Float then
- Val_RE := RE_IS_Ifl;
- elsif Root_Type (T) = Standard_Long_Float then
- Val_RE := RE_IS_Ilf;
- else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
- Val_RE := RE_IS_Ill;
- end if;
-
- -- If zero is invalid, use zero values from System.Scalar_Values
-
- elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
- if Size_To_Use <= 8 then
- Val_RE := RE_IS_Iz1;
- elsif Size_To_Use <= 16 then
- Val_RE := RE_IS_Iz2;
- elsif Size_To_Use <= 32 then
- Val_RE := RE_IS_Iz4;
- else
- Val_RE := RE_IS_Iz8;
- end if;
-
- -- For unsigned, use unsigned values from System.Scalar_Values
-
- elsif Is_Unsigned_Type (T) then
- if Size_To_Use <= 8 then
- Val_RE := RE_IS_Iu1;
- elsif Size_To_Use <= 16 then
- Val_RE := RE_IS_Iu2;
- elsif Size_To_Use <= 32 then
- Val_RE := RE_IS_Iu4;
- else
- Val_RE := RE_IS_Iu8;
- end if;
-
- -- For signed, use signed values from System.Scalar_Values
-
- else
- if Size_To_Use <= 8 then
- Val_RE := RE_IS_Is1;
- elsif Size_To_Use <= 16 then
- Val_RE := RE_IS_Is2;
- elsif Size_To_Use <= 32 then
- Val_RE := RE_IS_Is4;
- else
- Val_RE := RE_IS_Is8;
- end if;
- end if;
-
- Val := New_Occurrence_Of (RTE (Val_RE), Loc);
- end if;
-
- -- The final expression is obtained by doing an unchecked conversion
- -- of this result to the base type of the required subtype. We use
- -- the base type to avoid the unchecked conversion from chopping
- -- bits, and then we set Kill_Range_Check to preserve the "bad"
- -- value.
-
- Result := Unchecked_Convert_To (Base_Type (T), Val);
-
- -- Ensure result is not truncated, since we want the "bad" bits
- -- and also kill range check on result.
-
- if Nkind (Result) = N_Unchecked_Type_Conversion then
- Set_No_Truncation (Result);
- Set_Kill_Range_Check (Result, True);
- end if;
-
- return Result;
-
- -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
-
- elsif Root_Type (T) = Standard_String
- or else
- Root_Type (T) = Standard_Wide_String
- or else
- Root_Type (T) = Standard_Wide_Wide_String
- then
- pragma Assert (Init_Or_Norm_Scalars);
-
- return
- Make_Aggregate (Loc,
- Component_Associations => New_List (
- Make_Component_Association (Loc,
- Choices => New_List (
- Make_Others_Choice (Loc)),
- Expression =>
- Get_Simple_Init_Val
- (Component_Type (T), N, Esize (Root_Type (T))))));
-
- -- Access type is initialized to null
-
- elsif Is_Access_Type (T) then
- return
- Make_Null (Loc);
-
- -- No other possibilities should arise, since we should only be
- -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
- -- returned True, indicating one of the above cases held.
-
- else
- raise Program_Error;
- end if;
-
- exception
- when RE_Not_Available =>
- return Empty;
- end Get_Simple_Init_Val;
-
- ------------------------------
- -- Has_New_Non_Standard_Rep --
- ------------------------------
-
- function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
- begin
- if not Is_Derived_Type (T) then
- return Has_Non_Standard_Rep (T)
- or else Has_Non_Standard_Rep (Root_Type (T));
-
- -- If Has_Non_Standard_Rep is not set on the derived type, the
- -- representation is fully inherited.
-
- elsif not Has_Non_Standard_Rep (T) then
- return False;
-
- else
- return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
-
- -- May need a more precise check here: the First_Rep_Item may
- -- be a stream attribute, which does not affect the representation
- -- of the type ???
- end if;
- end Has_New_Non_Standard_Rep;
-
- ----------------
- -- In_Runtime --
- ----------------
-
- function In_Runtime (E : Entity_Id) return Boolean is
- S1 : Entity_Id;
-
- begin
- S1 := Scope (E);
- while Scope (S1) /= Standard_Standard loop
- S1 := Scope (S1);
- end loop;
-
- return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
- end In_Runtime;
-
- ----------------------------
- -- Initialization_Warning --
- ----------------------------
-
- procedure Initialization_Warning (E : Entity_Id) is
- Warning_Needed : Boolean;
-
- begin
- Warning_Needed := False;
-
- if Ekind (Current_Scope) = E_Package
- and then Static_Elaboration_Desired (Current_Scope)
- then
- if Is_Type (E) then
- if Is_Record_Type (E) then
- if Has_Discriminants (E)
- or else Is_Limited_Type (E)
- or else Has_Non_Standard_Rep (E)
- then
- Warning_Needed := True;
-
- else
- -- Verify that at least one component has an initialization
- -- expression. No need for a warning on a type if all its
- -- components have no initialization.
-
- declare
- Comp : Entity_Id;
-
- begin
- Comp := First_Component (E);
- while Present (Comp) loop
- if Ekind (Comp) = E_Discriminant
- or else
- (Nkind (Parent (Comp)) = N_Component_Declaration
- and then Present (Expression (Parent (Comp))))
- then
- Warning_Needed := True;
- exit;
- end if;
-
- Next_Component (Comp);
- end loop;
- end;
- end if;
-
- if Warning_Needed then
- Error_Msg_N
- ("Objects of the type cannot be initialized " &
- "statically by default?",
- Parent (E));
- end if;
- end if;
-
- else
- Error_Msg_N ("Object cannot be initialized statically?", E);
- end if;
- end if;
- end Initialization_Warning;
-
- ------------------
- -- Init_Formals --
- ------------------
-
- function Init_Formals (Typ : Entity_Id) return List_Id is
- Loc : constant Source_Ptr := Sloc (Typ);
- Formals : List_Id;
-
- begin
- -- First parameter is always _Init : in out typ. Note that we need
- -- this to be in/out because in the case of the task record value,
- -- there are default record fields (_Priority, _Size, -Task_Info)
- -- that may be referenced in the generated initialization routine.
-
- Formals := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uInit),
- In_Present => True,
- Out_Present => True,
- Parameter_Type => New_Reference_To (Typ, Loc)));
-
- -- For task record value, or type that contains tasks, add two more
- -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
- -- We also add these parameters for the task record type case.
-
- if Has_Task (Typ)
- or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
- then
- Append_To (Formals,
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uMaster),
- Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
-
- Append_To (Formals,
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uChain),
- In_Present => True,
- Out_Present => True,
- Parameter_Type =>
- New_Reference_To (RTE (RE_Activation_Chain), Loc)));
-
- Append_To (Formals,
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uTask_Name),
- In_Present => True,
- Parameter_Type =>
- New_Reference_To (Standard_String, Loc)));
- end if;
-
- return Formals;
-
- exception
- when RE_Not_Available =>
- return Empty_List;
- end Init_Formals;
-
- -------------------------
- -- Init_Secondary_Tags --
- -------------------------
-
- procedure Init_Secondary_Tags
- (Typ : Entity_Id;
- Target : Node_Id;
- Stmts_List : List_Id;
- Fixed_Comps : Boolean := True;
- Variable_Comps : Boolean := True)
- is
- Loc : constant Source_Ptr := Sloc (Target);
-
- procedure Inherit_CPP_Tag
- (Typ : Entity_Id;
- Iface : Entity_Id;
- Tag_Comp : Entity_Id;
- Iface_Tag : Node_Id);
- -- Inherit the C++ tag of the secondary dispatch table of Typ associated
- -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
-
- procedure Initialize_Tag
- (Typ : Entity_Id;
- Iface : Entity_Id;
- Tag_Comp : Entity_Id;
- Iface_Tag : Node_Id);
- -- Initialize the tag of the secondary dispatch table of Typ associated
- -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
- -- Compiling under the CPP full ABI compatibility mode, if the ancestor
- -- of Typ CPP tagged type we generate code to inherit the contents of
- -- the dispatch table directly from the ancestor.
-
- ---------------------
- -- Inherit_CPP_Tag --
- ---------------------
-
- procedure Inherit_CPP_Tag
- (Typ : Entity_Id;
- Iface : Entity_Id;
- Tag_Comp : Entity_Id;
- Iface_Tag : Node_Id)
- is
- begin
- pragma Assert (Is_CPP_Class (Etype (Typ)));
-
- Append_To (Stmts_List,
- Build_Inherit_Prims (Loc,
- Typ => Iface,
- Old_Tag_Node =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Reference_To (Tag_Comp, Loc)),
- New_Tag_Node =>
- New_Reference_To (Iface_Tag, Loc),
- Num_Prims =>
- UI_To_Int (DT_Entry_Count (First_Tag_Component (Iface)))));
- end Inherit_CPP_Tag;
-
- --------------------
- -- Initialize_Tag --
- --------------------
-
- procedure Initialize_Tag
- (Typ : Entity_Id;
- Iface : Entity_Id;
- Tag_Comp : Entity_Id;
- Iface_Tag : Node_Id)
- is
- Comp_Typ : Entity_Id;
- Offset_To_Top_Comp : Entity_Id := Empty;
-
- begin
- -- Initialize the pointer to the secondary DT associated with the
- -- interface.
-
- if not Is_Ancestor (Iface, Typ) then
- Append_To (Stmts_List,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Reference_To (Tag_Comp, Loc)),
- Expression =>
- New_Reference_To (Iface_Tag, Loc)));
- end if;
-
- Comp_Typ := Scope (Tag_Comp);
-
- -- Initialize the entries of the table of interfaces. We generate a
- -- different call when the parent of the type has variable size
- -- components.
-
- if Comp_Typ /= Etype (Comp_Typ)
- and then Is_Variable_Size_Record (Etype (Comp_Typ))
- and then Chars (Tag_Comp) /= Name_uTag
- then
- pragma Assert
- (Present (DT_Offset_To_Top_Func (Tag_Comp)));
-
- -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
- -- configurable run-time environment.
-
- if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
- Error_Msg_CRT
- ("variable size record with interface types", Typ);
- return;
- end if;
-
- -- Generate:
- -- Set_Dynamic_Offset_To_Top
- -- (This => Init,
- -- Interface_T => Iface'Tag,
- -- Offset_Value => n,
- -- Offset_Func => Fn'Address)
-
- Append_To (Stmts_List,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To
- (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix => New_Copy_Tree (Target),
- Attribute_Name => Name_Address),
-
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Iface))),
- Loc)),
-
- Unchecked_Convert_To
- (RTE (RE_Storage_Offset),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name =>
- New_Reference_To (Tag_Comp, Loc)),
- Attribute_Name => Name_Position)),
-
- Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To
- (DT_Offset_To_Top_Func (Tag_Comp), Loc),
- Attribute_Name => Name_Address)))));
-
- -- In this case the next component stores the value of the
- -- offset to the top.
-
- Offset_To_Top_Comp := Next_Entity (Tag_Comp);
- pragma Assert (Present (Offset_To_Top_Comp));
-
- Append_To (Stmts_List,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name => New_Reference_To
- (Offset_To_Top_Comp, Loc)),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name =>
- New_Reference_To (Tag_Comp, Loc)),
- Attribute_Name => Name_Position)));
-
- -- Normal case: No discriminants in the parent type
-
- else
- -- Don't need to set any value if this interface shares
- -- the primary dispatch table.
-
- if not Is_Ancestor (Iface, Typ) then
- Append_To (Stmts_List,
- Build_Set_Static_Offset_To_Top (Loc,
- Iface_Tag => New_Reference_To (Iface_Tag, Loc),
- Offset_Value =>
- Unchecked_Convert_To (RTE (RE_Storage_Offset),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name =>
- New_Reference_To (Tag_Comp, Loc)),
- Attribute_Name => Name_Position))));
- end if;
-
- -- Generate:
- -- Register_Interface_Offset
- -- (This => Init,
- -- Interface_T => Iface'Tag,
- -- Is_Constant => True,
- -- Offset_Value => n,
- -- Offset_Func => null);
-
- if RTE_Available (RE_Register_Interface_Offset) then
- Append_To (Stmts_List,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To
- (RTE (RE_Register_Interface_Offset), Loc),
- Parameter_Associations => New_List (
- Make_Attribute_Reference (Loc,
- Prefix => New_Copy_Tree (Target),
- Attribute_Name => Name_Address),
-
- Unchecked_Convert_To (RTE (RE_Tag),
- New_Reference_To
- (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),
-
- New_Occurrence_Of (Standard_True, Loc),
-
- Unchecked_Convert_To
- (RTE (RE_Storage_Offset),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => New_Copy_Tree (Target),
- Selector_Name =>
- New_Reference_To (Tag_Comp, Loc)),
- Attribute_Name => Name_Position)),
-
- Make_Null (Loc))));
- end if;
- end if;
- end Initialize_Tag;
-
- -- Local variables
-
- Full_Typ : Entity_Id;
- Ifaces_List : Elist_Id;
- Ifaces_Comp_List : Elist_Id;
- Ifaces_Tag_List : Elist_Id;
- Iface_Elmt : Elmt_Id;
- Iface_Comp_Elmt : Elmt_Id;
- Iface_Tag_Elmt : Elmt_Id;
- Tag_Comp : Node_Id;
- In_Variable_Pos : Boolean;
-
- -- Start of processing for Init_Secondary_Tags
-
- begin
- -- Handle private types
-
- if Present (Full_View (Typ)) then
- Full_Typ := Full_View (Typ);
- else
- Full_Typ := Typ;
- end if;
-
- Collect_Interfaces_Info
- (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
-
- Iface_Elmt := First_Elmt (Ifaces_List);
- Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
- Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List);
- while Present (Iface_Elmt) loop
- Tag_Comp := Node (Iface_Comp_Elmt);
-
- -- If we are compiling under the CPP full ABI compatibility mode and
- -- the ancestor is a CPP_Pragma tagged type then we generate code to
- -- inherit the contents of the dispatch table directly from the
- -- ancestor.
-
- if Is_CPP_Class (Etype (Full_Typ)) then
- Inherit_CPP_Tag (Full_Typ,
- Iface => Node (Iface_Elmt),
- Tag_Comp => Tag_Comp,
- Iface_Tag => Node (Iface_Tag_Elmt));
-
- -- Otherwise generate code to initialize the tag
-
- else
- -- Check if the parent of the record type has variable size
- -- components.
-
- In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
- and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));
-
- if (In_Variable_Pos and then Variable_Comps)
- or else (not In_Variable_Pos and then Fixed_Comps)
- then
- Initialize_Tag (Full_Typ,
- Iface => Node (Iface_Elmt),
- Tag_Comp => Tag_Comp,
- Iface_Tag => Node (Iface_Tag_Elmt));
- end if;
- end if;
-
- Next_Elmt (Iface_Elmt);
- Next_Elmt (Iface_Comp_Elmt);
- Next_Elmt (Iface_Tag_Elmt);
- end loop;
- end Init_Secondary_Tags;
-
- -----------------------------
- -- Is_Variable_Size_Record --
- -----------------------------
-
- function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
- Comp : Entity_Id;
- Comp_Typ : Entity_Id;
- Idx : Node_Id;
-
- function Is_Constant_Bound (Exp : Node_Id) return Boolean;
- -- To simplify handling of array components. Determines whether the
- -- given bound is constant (a constant or enumeration literal, or an
- -- integer literal) as opposed to per-object, through an expression
- -- or a discriminant.
-
- -----------------------
- -- Is_Constant_Bound --
- -----------------------
-
- function Is_Constant_Bound (Exp : Node_Id) return Boolean is
- begin
- if Nkind (Exp) = N_Integer_Literal then
- return True;
- else
- return
- Is_Entity_Name (Exp)
- and then Present (Entity (Exp))
- and then
- (Ekind (Entity (Exp)) = E_Constant
- or else Ekind (Entity (Exp)) = E_Enumeration_Literal);
- end if;
- end Is_Constant_Bound;
-
- -- Start of processing for Is_Variable_Sized_Record
-
- begin
- pragma Assert (Is_Record_Type (E));
-
- Comp := First_Entity (E);
- while Present (Comp) loop
- Comp_Typ := Etype (Comp);
-
- if Is_Record_Type (Comp_Typ) then
-
- -- Recursive call if the record type has discriminants
-
- if Has_Discriminants (Comp_Typ)
- and then Is_Variable_Size_Record (Comp_Typ)
- then
- return True;
- end if;
-
- elsif Is_Array_Type (Comp_Typ) then
-
- -- Check if some index is initialized with a non-constant value
-
- Idx := First_Index (Comp_Typ);
- while Present (Idx) loop
- if Nkind (Idx) = N_Range then
- if not Is_Constant_Bound (Low_Bound (Idx))
- or else
- not Is_Constant_Bound (High_Bound (Idx))
- then
- return True;
- end if;
- end if;
-
- Idx := Next_Index (Idx);
- end loop;
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- return False;
- end Is_Variable_Size_Record;
-
- ----------------------------------------
- -- Make_Controlling_Function_Wrappers --
- ----------------------------------------
-
- procedure Make_Controlling_Function_Wrappers
- (Tag_Typ : Entity_Id;
- Decl_List : out List_Id;
- Body_List : out List_Id)
- is
- Loc : constant Source_Ptr := Sloc (Tag_Typ);
- Prim_Elmt : Elmt_Id;
- Subp : Entity_Id;
- Actual_List : List_Id;
- Formal_List : List_Id;
- Formal : Entity_Id;
- Par_Formal : Entity_Id;
- Formal_Node : Node_Id;
- Func_Body : Node_Id;
- Func_Decl : Node_Id;
- Func_Spec : Node_Id;
- Return_Stmt : Node_Id;
-
- begin
- Decl_List := New_List;
- Body_List := New_List;
-
- Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
-
- while Present (Prim_Elmt) loop
- Subp := Node (Prim_Elmt);
-
- -- If a primitive function with a controlling result of the type has
- -- not been overridden by the user, then we must create a wrapper
- -- function here that effectively overrides it and invokes the
- -- (non-abstract) parent function. This can only occur for a null
- -- extension. Note that functions with anonymous controlling access
- -- results don't qualify and must be overridden. We also exclude
- -- Input attributes, since each type will have its own version of
- -- Input constructed by the expander. The test for Comes_From_Source
- -- is needed to distinguish inherited operations from renamings
- -- (which also have Alias set).
-
- -- The function may be abstract, or require_Overriding may be set
- -- for it, because tests for null extensions may already have reset
- -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
- -- set, functions that need wrappers are recognized by having an
- -- alias that returns the parent type.
-
- if Comes_From_Source (Subp)
- or else No (Alias (Subp))
- or else Ekind (Subp) /= E_Function
- or else not Has_Controlling_Result (Subp)
- or else Is_Access_Type (Etype (Subp))
- or else Is_Abstract_Subprogram (Alias (Subp))
- or else Is_TSS (Subp, TSS_Stream_Input)
- then
- goto Next_Prim;
-
- elsif Is_Abstract_Subprogram (Subp)
- or else Requires_Overriding (Subp)
- or else
- (Is_Null_Extension (Etype (Subp))
- and then Etype (Alias (Subp)) /= Etype (Subp))
- then
- Formal_List := No_List;
- Formal := First_Formal (Subp);
-
- if Present (Formal) then
- Formal_List := New_List;
-
- while Present (Formal) loop
- Append
- (Make_Parameter_Specification
- (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Sloc (Formal),
- Chars => Chars (Formal)),
- In_Present => In_Present (Parent (Formal)),
- Out_Present => Out_Present (Parent (Formal)),
- Null_Exclusion_Present =>
- Null_Exclusion_Present (Parent (Formal)),
- Parameter_Type =>
- New_Reference_To (Etype (Formal), Loc),
- Expression =>
- New_Copy_Tree (Expression (Parent (Formal)))),
- Formal_List);
-
- Next_Formal (Formal);
- end loop;
- end if;
-
- Func_Spec :=
- Make_Function_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc,
- Chars => Chars (Subp)),
- Parameter_Specifications => Formal_List,
- Result_Definition =>
- New_Reference_To (Etype (Subp), Loc));
-
- Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
- Append_To (Decl_List, Func_Decl);
-
- -- Build a wrapper body that calls the parent function. The body
- -- contains a single return statement that returns an extension
- -- aggregate whose ancestor part is a call to the parent function,
- -- passing the formals as actuals (with any controlling arguments
- -- converted to the types of the corresponding formals of the
- -- parent function, which might be anonymous access types), and
- -- having a null extension.
-
- Formal := First_Formal (Subp);
- Par_Formal := First_Formal (Alias (Subp));
- Formal_Node := First (Formal_List);
-
- if Present (Formal) then
- Actual_List := New_List;
- else
- Actual_List := No_List;
- end if;
-
- while Present (Formal) loop
- if Is_Controlling_Formal (Formal) then
- Append_To (Actual_List,
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Etype (Par_Formal), Loc),
- Expression =>
- New_Reference_To
- (Defining_Identifier (Formal_Node), Loc)));
- else
- Append_To
- (Actual_List,
- New_Reference_To
- (Defining_Identifier (Formal_Node), Loc));
- end if;
-
- Next_Formal (Formal);
- Next_Formal (Par_Formal);
- Next (Formal_Node);
- end loop;
-
- Return_Stmt :=
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Extension_Aggregate (Loc,
- Ancestor_Part =>
- Make_Function_Call (Loc,
- Name => New_Reference_To (Alias (Subp), Loc),
- Parameter_Associations => Actual_List),
- Null_Record_Present => True));
-
- Func_Body :=
- Make_Subprogram_Body (Loc,
- Specification => New_Copy_Tree (Func_Spec),
- Declarations => Empty_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (Return_Stmt)));
-
- Set_Defining_Unit_Name
- (Specification (Func_Body),
- Make_Defining_Identifier (Loc, Chars (Subp)));
-
- Append_To (Body_List, Func_Body);
-
- -- Replace the inherited function with the wrapper function
- -- in the primitive operations list.
-
- Override_Dispatching_Operation
- (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec));
- end if;
-
- <<Next_Prim>>
- Next_Elmt (Prim_Elmt);
- end loop;
- end Make_Controlling_Function_Wrappers;
-
- ------------------
- -- Make_Eq_Case --
- ------------------
-
- -- <Make_Eq_If shared components>
- -- case X.D1 is
- -- when V1 => <Make_Eq_Case> on subcomponents
- -- ...
- -- when Vn => <Make_Eq_Case> on subcomponents
- -- end case;
-
- function Make_Eq_Case
- (E : Entity_Id;
- CL : Node_Id;
- Discr : Entity_Id := Empty) return List_Id
- is
- Loc : constant Source_Ptr := Sloc (E);
- Result : constant List_Id := New_List;
- Variant : Node_Id;
- Alt_List : List_Id;
-
- begin
- Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
-
- if No (Variant_Part (CL)) then
- return Result;
- end if;
-
- Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
-
- if No (Variant) then
- return Result;
- end if;
-
- Alt_List := New_List;
-
- while Present (Variant) loop
- Append_To (Alt_List,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
- Statements => Make_Eq_Case (E, Component_List (Variant))));
-
- Next_Non_Pragma (Variant);
- end loop;
-
- -- If we have an Unchecked_Union, use one of the parameters that
- -- captures the discriminants.
-
- if Is_Unchecked_Union (E) then
- Append_To (Result,
- Make_Case_Statement (Loc,
- Expression => New_Reference_To (Discr, Loc),
- Alternatives => Alt_List));
-
- else
- Append_To (Result,
- Make_Case_Statement (Loc,
- Expression =>
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_X),
- Selector_Name => New_Copy (Name (Variant_Part (CL)))),
- Alternatives => Alt_List));
- end if;
-
- return Result;
- end Make_Eq_Case;
-
- ----------------
- -- Make_Eq_If --
- ----------------
-
- -- Generates:
-
- -- if
- -- X.C1 /= Y.C1
- -- or else
- -- X.C2 /= Y.C2
- -- ...
- -- then
- -- return False;
- -- end if;
-
- -- or a null statement if the list L is empty
-
- function Make_Eq_If
- (E : Entity_Id;
- L : List_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (E);
- C : Node_Id;
- Field_Name : Name_Id;
- Cond : Node_Id;
-
- begin
- if No (L) then
- return Make_Null_Statement (Loc);
-
- else
- Cond := Empty;
-
- C := First_Non_Pragma (L);
- while Present (C) loop
- Field_Name := Chars (Defining_Identifier (C));
-
- -- The tags must not be compared: they are not part of the value.
- -- Ditto for the controller component, if present.
-
- -- Note also that in the following, we use Make_Identifier for
- -- the component names. Use of New_Reference_To to identify the
- -- components would be incorrect because the wrong entities for
- -- discriminants could be picked up in the private type case.
-
- if Field_Name /= Name_uTag
- and then
- Field_Name /= Name_uController
- then
- Evolve_Or_Else (Cond,
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_X),
- Selector_Name =>
- Make_Identifier (Loc, Field_Name)),
-
- Right_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Make_Identifier (Loc, Name_Y),
- Selector_Name =>
- Make_Identifier (Loc, Field_Name))));
- end if;
-
- Next_Non_Pragma (C);
- end loop;
-
- if No (Cond) then
- return Make_Null_Statement (Loc);
-
- else
- return
- Make_Implicit_If_Statement (E,
- Condition => Cond,
- Then_Statements => New_List (
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Standard_False, Loc))));
- end if;
- end if;
- end Make_Eq_If;
-
- -------------------------------
- -- Make_Null_Procedure_Specs --
- -------------------------------
-
- procedure Make_Null_Procedure_Specs
- (Tag_Typ : Entity_Id;
- Decl_List : out List_Id)
- is
- Loc : constant Source_Ptr := Sloc (Tag_Typ);
- Formal : Entity_Id;
- Formal_List : List_Id;
- Parent_Subp : Entity_Id;
- Prim_Elmt : Elmt_Id;
- Proc_Spec : Node_Id;
- Proc_Decl : Node_Id;
- Subp : Entity_Id;
-
- function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean;
- -- Returns True if E is a null procedure that is an interface primitive
-
- ---------------------------------
- -- Is_Null_Interface_Primitive --
- ---------------------------------
-
- function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
- begin
- return Comes_From_Source (E)
- and then Is_Dispatching_Operation (E)
- and then Ekind (E) = E_Procedure
- and then Null_Present (Parent (E))
- and then Is_Interface (Find_Dispatching_Type (E));
- end Is_Null_Interface_Primitive;
-
- -- Start of processing for Make_Null_Procedure_Specs
-
- begin
- Decl_List := New_List;
- Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
- while Present (Prim_Elmt) loop
- Subp := Node (Prim_Elmt);
-
- -- If a null procedure inherited from an interface has not been
- -- overridden, then we build a null procedure declaration to
- -- override the inherited procedure.
-
- Parent_Subp := Alias (Subp);
-
- if Present (Parent_Subp)
- and then Is_Null_Interface_Primitive (Parent_Subp)
- then
- Formal_List := No_List;
- Formal := First_Formal (Subp);
-
- if Present (Formal) then
- Formal_List := New_List;
-
- while Present (Formal) loop
- Append
- (Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Sloc (Formal),
- Chars => Chars (Formal)),
- In_Present => In_Present (Parent (Formal)),
- Out_Present => Out_Present (Parent (Formal)),
- Null_Exclusion_Present =>
- Null_Exclusion_Present (Parent (Formal)),
- Parameter_Type =>
- New_Reference_To (Etype (Formal), Loc),
- Expression =>
- New_Copy_Tree (Expression (Parent (Formal)))),
- Formal_List);
-
- Next_Formal (Formal);
- end loop;
- end if;
-
- Proc_Spec :=
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc, Chars (Subp)),
- Parameter_Specifications => Formal_List);
- Set_Null_Present (Proc_Spec);
-
- Proc_Decl := Make_Subprogram_Declaration (Loc, Proc_Spec);
- Append_To (Decl_List, Proc_Decl);
- Analyze (Proc_Decl);
- end if;
-
- Next_Elmt (Prim_Elmt);
- end loop;
- end Make_Null_Procedure_Specs;
-
- -------------------------------------
- -- Make_Predefined_Primitive_Specs --
- -------------------------------------
-
- procedure Make_Predefined_Primitive_Specs
- (Tag_Typ : Entity_Id;
- Predef_List : out List_Id;
- Renamed_Eq : out Entity_Id)
- is
- Loc : constant Source_Ptr := Sloc (Tag_Typ);
- Res : constant List_Id := New_List;
- Prim : Elmt_Id;
- Eq_Needed : Boolean;
- Eq_Spec : Node_Id;
- Eq_Name : Name_Id := Name_Op_Eq;
-
- function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
- -- Returns true if Prim is a renaming of an unresolved predefined
- -- equality operation.
-
- -------------------------------
- -- Is_Predefined_Eq_Renaming --
- -------------------------------
-
- function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
- begin
- return Chars (Prim) /= Name_Op_Eq
- and then Present (Alias (Prim))
- and then Comes_From_Source (Prim)
- and then Is_Intrinsic_Subprogram (Alias (Prim))
- and then Chars (Alias (Prim)) = Name_Op_Eq;
- end Is_Predefined_Eq_Renaming;
-
- -- Start of processing for Make_Predefined_Primitive_Specs
-
- begin
- Renamed_Eq := Empty;
-
- -- Spec of _Size
-
- Append_To (Res, Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Name_uSize,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
-
- Ret_Type => Standard_Long_Long_Integer));
-
- -- Spec of _Alignment
-
- Append_To (Res, Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Name_uAlignment,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
-
- Ret_Type => Standard_Integer));
-
- -- Specs for dispatching stream attributes
-
- declare
- Stream_Op_TSS_Names :
- constant array (Integer range <>) of TSS_Name_Type :=
- (TSS_Stream_Read,
- TSS_Stream_Write,
- TSS_Stream_Input,
- TSS_Stream_Output);
-
- begin
- for Op in Stream_Op_TSS_Names'Range loop
- if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
- Append_To (Res,
- Predef_Stream_Attr_Spec (Loc, Tag_Typ,
- Stream_Op_TSS_Names (Op)));
- end if;
- end loop;
- end;
-
- -- Spec of "=" is expanded if the type is not limited and if a
- -- user defined "=" was not already declared for the non-full
- -- view of a private extension
-
- if not Is_Limited_Type (Tag_Typ) then
- Eq_Needed := True;
- Prim := First_Elmt (Primitive_Operations (Tag_Typ));
- while Present (Prim) loop
-
- -- If a primitive is encountered that renames the predefined
- -- equality operator before reaching any explicit equality
- -- primitive, then we still need to create a predefined
- -- equality function, because calls to it can occur via
- -- the renaming. A new name is created for the equality
- -- to avoid conflicting with any user-defined equality.
- -- (Note that this doesn't account for renamings of
- -- equality nested within subpackages???)
-
- if Is_Predefined_Eq_Renaming (Node (Prim)) then
- Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
-
- -- User-defined equality
-
- elsif Chars (Node (Prim)) = Name_Op_Eq
- and then Etype (First_Formal (Node (Prim))) =
- Etype (Next_Formal (First_Formal (Node (Prim))))
- and then Base_Type (Etype (Node (Prim))) = Standard_Boolean
- then
- if No (Alias (Node (Prim)))
- or else Nkind (Unit_Declaration_Node (Node (Prim))) =
- N_Subprogram_Renaming_Declaration
- then
- Eq_Needed := False;
- exit;
-
- -- If the parent is not an interface type and has an abstract
- -- equality function, the inherited equality is abstract as
- -- well, and no body can be created for it.
-
- elsif not Is_Interface (Etype (Tag_Typ))
- and then Present (Alias (Node (Prim)))
- and then Is_Abstract_Subprogram (Alias (Node (Prim)))
- then
- Eq_Needed := False;
- exit;
-
- -- If the type has an equality function corresponding with
- -- a primitive defined in an interface type, the inherited
- -- equality is abstract as well, and no body can be created
- -- for it.
-
- elsif Present (Alias (Node (Prim)))
- and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
- and then
- Is_Interface
- (Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
- then
- Eq_Needed := False;
- exit;
- end if;
- end if;
-
- Next_Elmt (Prim);
- end loop;
-
- -- If a renaming of predefined equality was found but there was no
- -- user-defined equality (so Eq_Needed is still true), then set the
- -- name back to Name_Op_Eq. But in the case where a user-defined
- -- equality was located after such a renaming, then the predefined
- -- equality function is still needed, so Eq_Needed must be set back
- -- to True.
-
- if Eq_Name /= Name_Op_Eq then
- if Eq_Needed then
- Eq_Name := Name_Op_Eq;
- else
- Eq_Needed := True;
- end if;
- end if;
-
- if Eq_Needed then
- Eq_Spec := Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Eq_Name,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_X),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_Y),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
- Ret_Type => Standard_Boolean);
- Append_To (Res, Eq_Spec);
-
- if Eq_Name /= Name_Op_Eq then
- Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
-
- Prim := First_Elmt (Primitive_Operations (Tag_Typ));
- while Present (Prim) loop
-
- -- Any renamings of equality that appeared before an
- -- overriding equality must be updated to refer to the
- -- entity for the predefined equality, otherwise calls via
- -- the renaming would get incorrectly resolved to call the
- -- user-defined equality function.
-
- if Is_Predefined_Eq_Renaming (Node (Prim)) then
- Set_Alias (Node (Prim), Renamed_Eq);
-
- -- Exit upon encountering a user-defined equality
-
- elsif Chars (Node (Prim)) = Name_Op_Eq
- and then No (Alias (Node (Prim)))
- then
- exit;
- end if;
-
- Next_Elmt (Prim);
- end loop;
- end if;
- end if;
-
- -- Spec for dispatching assignment
-
- Append_To (Res, Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Name_uAssign,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
- Out_Present => True,
- Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
- end if;
-
- -- Ada 2005: Generate declarations for the following primitive
- -- operations for limited interfaces and synchronized types that
- -- implement a limited interface.
-
- -- Disp_Asynchronous_Select
- -- Disp_Conditional_Select
- -- Disp_Get_Prim_Op_Kind
- -- Disp_Get_Task_Id
- -- Disp_Requeue
- -- Disp_Timed_Select
-
- -- These operations cannot be implemented on VM targets, so we simply
- -- disable their generation in this case. We also disable generation
- -- of these bodies if No_Dispatching_Calls is active.
-
- if Ada_Version >= Ada_05
- and then VM_Target = No_VM
- and then RTE_Available (RE_Select_Specific_Data)
- then
- -- These primitives are defined abstract in interface types
-
- if Is_Interface (Tag_Typ)
- and then Is_Limited_Record (Tag_Typ)
- then
- Append_To (Res,
- Make_Abstract_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Abstract_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Conditional_Select_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Abstract_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Abstract_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Abstract_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Requeue_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Abstract_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Timed_Select_Spec (Tag_Typ)));
-
- -- If the ancestor is an interface type we declare non-abstract
- -- primitives to override the abstract primitives of the interface
- -- type.
-
- elsif (not Is_Interface (Tag_Typ)
- and then Is_Interface (Etype (Tag_Typ))
- and then Is_Limited_Record (Etype (Tag_Typ)))
- or else
- (Is_Concurrent_Record_Type (Tag_Typ)
- and then Has_Interfaces (Tag_Typ))
- then
- Append_To (Res,
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Conditional_Select_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Requeue_Spec (Tag_Typ)));
-
- Append_To (Res,
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Disp_Timed_Select_Spec (Tag_Typ)));
- end if;
- end if;
-
- -- Specs for finalization actions that may be required in case a future
- -- extension contain a controlled element. We generate those only for
- -- root tagged types where they will get dummy bodies or when the type
- -- has controlled components and their body must be generated. It is
- -- also impossible to provide those for tagged types defined within
- -- s-finimp since it would involve circularity problems
-
- if In_Finalization_Root (Tag_Typ) then
- null;
-
- -- We also skip these if finalization is not available
-
- elsif Restriction_Active (No_Finalization) then
- null;
-
- elsif Etype (Tag_Typ) = Tag_Typ
- or else Needs_Finalization (Tag_Typ)
-
- -- Ada 2005 (AI-251): We must also generate these subprograms if
- -- the immediate ancestor is an interface to ensure the correct
- -- initialization of its dispatch table.
-
- or else (not Is_Interface (Tag_Typ)
- and then Is_Interface (Etype (Tag_Typ)))
-
- -- Ada 205 (AI-251): We must also generate these subprograms if
- -- the parent of an nonlimited interface is a limited interface
-
- or else (Is_Interface (Tag_Typ)
- and then not Is_Limited_Interface (Tag_Typ)
- and then Is_Limited_Interface (Etype (Tag_Typ)))
- then
- if not Is_Limited_Type (Tag_Typ) then
- Append_To (Res,
- Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
- end if;
-
- Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
- end if;
-
- Predef_List := Res;
- end Make_Predefined_Primitive_Specs;
-
- ---------------------------------
- -- Needs_Simple_Initialization --
- ---------------------------------
-
- function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
- begin
- -- Check for private type, in which case test applies to the underlying
- -- type of the private type.
-
- if Is_Private_Type (T) then
- declare
- RT : constant Entity_Id := Underlying_Type (T);
-
- begin
- if Present (RT) then
- return Needs_Simple_Initialization (RT);
- else
- return False;
- end if;
- end;
-
- -- Cases needing simple initialization are access types, and, if pragma
- -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
- -- types.
-
- elsif Is_Access_Type (T)
- or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
- then
- return True;
-
- -- If Initialize/Normalize_Scalars is in effect, string objects also
- -- need initialization, unless they are created in the course of
- -- expanding an aggregate (since in the latter case they will be
- -- filled with appropriate initializing values before they are used).
-
- elsif Init_Or_Norm_Scalars
- and then
- (Root_Type (T) = Standard_String
- or else Root_Type (T) = Standard_Wide_String
- or else Root_Type (T) = Standard_Wide_Wide_String)
- and then
- (not Is_Itype (T)
- or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
- then
- return True;
-
- else
- return False;
- end if;
- end Needs_Simple_Initialization;
-
- ----------------------
- -- Predef_Deep_Spec --
- ----------------------
-
- function Predef_Deep_Spec
- (Loc : Source_Ptr;
- Tag_Typ : Entity_Id;
- Name : TSS_Name_Type;
- For_Body : Boolean := False) return Node_Id
- is
- Prof : List_Id;
- Type_B : Entity_Id;
-
- begin
- if Name = TSS_Deep_Finalize then
- Prof := New_List;
- Type_B := Standard_Boolean;
-
- else
- Prof := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
- In_Present => True,
- Out_Present => True,
- Parameter_Type =>
- New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
- Type_B := Standard_Short_Short_Integer;
- end if;
-
- Append_To (Prof,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
- In_Present => True,
- Out_Present => True,
- Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
-
- Append_To (Prof,
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
- Parameter_Type => New_Reference_To (Type_B, Loc)));
-
- return Predef_Spec_Or_Body (Loc,
- Name => Make_TSS_Name (Tag_Typ, Name),
- Tag_Typ => Tag_Typ,
- Profile => Prof,
- For_Body => For_Body);
-
- exception
- when RE_Not_Available =>
- return Empty;
- end Predef_Deep_Spec;
-
- -------------------------
- -- Predef_Spec_Or_Body --
- -------------------------
-
- function Predef_Spec_Or_Body
- (Loc : Source_Ptr;
- Tag_Typ : Entity_Id;
- Name : Name_Id;
- Profile : List_Id;
- Ret_Type : Entity_Id := Empty;
- For_Body : Boolean := False) return Node_Id
- is
- Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
- Spec : Node_Id;
-
- begin
- Set_Is_Public (Id, Is_Public (Tag_Typ));
-
- -- The internal flag is set to mark these declarations because they have
- -- specific properties. First, they are primitives even if they are not
- -- defined in the type scope (the freezing point is not necessarily in
- -- the same scope). Second, the predefined equality can be overridden by
- -- a user-defined equality, no body will be generated in this case.
-
- Set_Is_Internal (Id);
-
- if not Debug_Generated_Code then
- Set_Debug_Info_Off (Id);
- end if;
-
- if No (Ret_Type) then
- Spec :=
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name => Id,
- Parameter_Specifications => Profile);
- else
- Spec :=
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Id,
- Parameter_Specifications => Profile,
- Result_Definition =>
- New_Reference_To (Ret_Type, Loc));
- end if;
-
- if Is_Interface (Tag_Typ) then
- return Make_Abstract_Subprogram_Declaration (Loc, Spec);
-
- -- If body case, return empty subprogram body. Note that this is ill-
- -- formed, because there is not even a null statement, and certainly not
- -- a return in the function case. The caller is expected to do surgery
- -- on the body to add the appropriate stuff.
-
- elsif For_Body then
- return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
-
- -- For the case of an Input attribute predefined for an abstract type,
- -- generate an abstract specification. This will never be called, but we
- -- need the slot allocated in the dispatching table so that attributes
- -- typ'Class'Input and typ'Class'Output will work properly.
-
- elsif Is_TSS (Name, TSS_Stream_Input)
- and then Is_Abstract_Type (Tag_Typ)
- then
- return Make_Abstract_Subprogram_Declaration (Loc, Spec);
-
- -- Normal spec case, where we return a subprogram declaration
-
- else
- return Make_Subprogram_Declaration (Loc, Spec);
- end if;
- end Predef_Spec_Or_Body;
-
- -----------------------------
- -- Predef_Stream_Attr_Spec --
- -----------------------------
-
- function Predef_Stream_Attr_Spec
- (Loc : Source_Ptr;
- Tag_Typ : Entity_Id;
- Name : TSS_Name_Type;
- For_Body : Boolean := False) return Node_Id
- is
- Ret_Type : Entity_Id;
-
- begin
- if Name = TSS_Stream_Input then
- Ret_Type := Tag_Typ;
- else
- Ret_Type := Empty;
- end if;
-
- return Predef_Spec_Or_Body (Loc,
- Name => Make_TSS_Name (Tag_Typ, Name),
- Tag_Typ => Tag_Typ,
- Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
- Ret_Type => Ret_Type,
- For_Body => For_Body);
- end Predef_Stream_Attr_Spec;
-
- ---------------------------------
- -- Predefined_Primitive_Bodies --
- ---------------------------------
-
- function Predefined_Primitive_Bodies
- (Tag_Typ : Entity_Id;
- Renamed_Eq : Entity_Id) return List_Id
- is
- Loc : constant Source_Ptr := Sloc (Tag_Typ);
- Res : constant List_Id := New_List;
- Decl : Node_Id;
- Prim : Elmt_Id;
- Eq_Needed : Boolean;
- Eq_Name : Name_Id;
- Ent : Entity_Id;
-
- pragma Warnings (Off, Ent);
-
- begin
- pragma Assert (not Is_Interface (Tag_Typ));
-
- -- See if we have a predefined "=" operator
-
- if Present (Renamed_Eq) then
- Eq_Needed := True;
- Eq_Name := Chars (Renamed_Eq);
-
- -- If the parent is an interface type then it has defined all the
- -- predefined primitives abstract and we need to check if the type
- -- has some user defined "=" function to avoid generating it.
-
- elsif Is_Interface (Etype (Tag_Typ)) then
- Eq_Needed := True;
- Eq_Name := Name_Op_Eq;
-
- Prim := First_Elmt (Primitive_Operations (Tag_Typ));
- while Present (Prim) loop
- if Chars (Node (Prim)) = Name_Op_Eq
- and then not Is_Internal (Node (Prim))
- then
- Eq_Needed := False;
- Eq_Name := No_Name;
- exit;
- end if;
-
- Next_Elmt (Prim);
- end loop;
-
- else
- Eq_Needed := False;
- Eq_Name := No_Name;
-
- Prim := First_Elmt (Primitive_Operations (Tag_Typ));
- while Present (Prim) loop
- if Chars (Node (Prim)) = Name_Op_Eq
- and then Is_Internal (Node (Prim))
- then
- Eq_Needed := True;
- Eq_Name := Name_Op_Eq;
- exit;
- end if;
-
- Next_Elmt (Prim);
- end loop;
- end if;
-
- -- Body of _Alignment
-
- Decl := Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Name_uAlignment,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
-
- Ret_Type => Standard_Integer,
- For_Body => True);
-
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc, New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => Make_Identifier (Loc, Name_X),
- Attribute_Name => Name_Alignment)))));
-
- Append_To (Res, Decl);
-
- -- Body of _Size
-
- Decl := Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Name_uSize,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
-
- Ret_Type => Standard_Long_Long_Integer,
- For_Body => True);
-
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc, New_List (
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => Make_Identifier (Loc, Name_X),
- Attribute_Name => Name_Size)))));
-
- Append_To (Res, Decl);
-
- -- Bodies for Dispatching stream IO routines. We need these only for
- -- non-limited types (in the limited case there is no dispatching).
- -- We also skip them if dispatching or finalization are not available.
-
- if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
- and then No (TSS (Tag_Typ, TSS_Stream_Read))
- then
- Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
- Append_To (Res, Decl);
- end if;
-
- if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
- and then No (TSS (Tag_Typ, TSS_Stream_Write))
- then
- Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
- Append_To (Res, Decl);
- end if;
-
- -- Skip body of _Input for the abstract case, since the corresponding
- -- spec is abstract (see Predef_Spec_Or_Body).
-
- if not Is_Abstract_Type (Tag_Typ)
- and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
- and then No (TSS (Tag_Typ, TSS_Stream_Input))
- then
- Build_Record_Or_Elementary_Input_Function
- (Loc, Tag_Typ, Decl, Ent);
- Append_To (Res, Decl);
- end if;
-
- if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
- and then No (TSS (Tag_Typ, TSS_Stream_Output))
- then
- Build_Record_Or_Elementary_Output_Procedure
- (Loc, Tag_Typ, Decl, Ent);
- Append_To (Res, Decl);
- end if;
-
- -- Ada 2005: Generate bodies for the following primitive operations for
- -- limited interfaces and synchronized types that implement a limited
- -- interface.
-
- -- disp_asynchronous_select
- -- disp_conditional_select
- -- disp_get_prim_op_kind
- -- disp_get_task_id
- -- disp_timed_select
-
- -- The interface versions will have null bodies
-
- -- These operations cannot be implemented on VM targets, so we simply
- -- disable their generation in this case. We also disable generation
- -- of these bodies if No_Dispatching_Calls is active.
-
- if Ada_Version >= Ada_05
- and then VM_Target = No_VM
- and then not Restriction_Active (No_Dispatching_Calls)
- and then not Is_Interface (Tag_Typ)
- and then
- ((Is_Interface (Etype (Tag_Typ))
- and then Is_Limited_Record (Etype (Tag_Typ)))
- or else (Is_Concurrent_Record_Type (Tag_Typ)
- and then Has_Interfaces (Tag_Typ)))
- and then RTE_Available (RE_Select_Specific_Data)
- then
- Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
- Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
- Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
- Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
- Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ));
- Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
- end if;
-
- if not Is_Limited_Type (Tag_Typ)
- and then not Is_Interface (Tag_Typ)
- then
- -- Body for equality
-
- if Eq_Needed then
- Decl :=
- Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Eq_Name,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_X),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_Y),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
-
- Ret_Type => Standard_Boolean,
- For_Body => True);
-
- declare
- Def : constant Node_Id := Parent (Tag_Typ);
- Stmts : constant List_Id := New_List;
- Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
- Comps : Node_Id := Empty;
- Typ_Def : Node_Id := Type_Definition (Def);
-
- begin
- if Variant_Case then
- if Nkind (Typ_Def) = N_Derived_Type_Definition then
- Typ_Def := Record_Extension_Part (Typ_Def);
- end if;
-
- if Present (Typ_Def) then
- Comps := Component_List (Typ_Def);
- end if;
-
- Variant_Case := Present (Comps)
- and then Present (Variant_Part (Comps));
- end if;
-
- if Variant_Case then
- Append_To (Stmts,
- Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
- Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
- Append_To (Stmts,
- Make_Simple_Return_Statement (Loc,
- Expression => New_Reference_To (Standard_True, Loc)));
-
- else
- Append_To (Stmts,
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Expand_Record_Equality (Tag_Typ,
- Typ => Tag_Typ,
- Lhs => Make_Identifier (Loc, Name_X),
- Rhs => Make_Identifier (Loc, Name_Y),
- Bodies => Declarations (Decl))));
- end if;
-
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc, Stmts));
- end;
- Append_To (Res, Decl);
- end if;
-
- -- Body for dispatching assignment
-
- Decl :=
- Predef_Spec_Or_Body (Loc,
- Tag_Typ => Tag_Typ,
- Name => Name_uAssign,
- Profile => New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
- Out_Present => True,
- Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
- Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
- For_Body => True);
-
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc, New_List (
- Make_Assignment_Statement (Loc,
- Name => Make_Identifier (Loc, Name_X),
- Expression => Make_Identifier (Loc, Name_Y)))));
-
- Append_To (Res, Decl);
- end if;
-
- -- Generate dummy bodies for finalization actions of types that have
- -- no controlled components.
-
- -- Skip this processing if we are in the finalization routine in the
- -- runtime itself, otherwise we get hopelessly circularly confused!
-
- if In_Finalization_Root (Tag_Typ) then
- null;
-
- -- Skip this if finalization is not available
-
- elsif Restriction_Active (No_Finalization) then
- null;
-
- elsif (Etype (Tag_Typ) = Tag_Typ
- or else Is_Controlled (Tag_Typ)
-
- -- Ada 2005 (AI-251): We must also generate these subprograms
- -- if the immediate ancestor of Tag_Typ is an interface to
- -- ensure the correct initialization of its dispatch table.
-
- or else (not Is_Interface (Tag_Typ)
- and then
- Is_Interface (Etype (Tag_Typ))))
- and then not Has_Controlled_Component (Tag_Typ)
- then
- if not Is_Limited_Type (Tag_Typ) then
- Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
-
- if Is_Controlled (Tag_Typ) then
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc,
- Make_Adjust_Call (
- Ref => Make_Identifier (Loc, Name_V),
- Typ => Tag_Typ,
- Flist_Ref => Make_Identifier (Loc, Name_L),
- With_Attach => Make_Identifier (Loc, Name_B))));
-
- else
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc, New_List (
- Make_Null_Statement (Loc))));
- end if;
-
- Append_To (Res, Decl);
- end if;
-
- Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
-
- if Is_Controlled (Tag_Typ) then
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc,
- Make_Final_Call (
- Ref => Make_Identifier (Loc, Name_V),
- Typ => Tag_Typ,
- With_Detach => Make_Identifier (Loc, Name_B))));
-
- else
- Set_Handled_Statement_Sequence (Decl,
- Make_Handled_Sequence_Of_Statements (Loc, New_List (
- Make_Null_Statement (Loc))));
- end if;
-
- Append_To (Res, Decl);
- end if;
-
- return Res;
- end Predefined_Primitive_Bodies;
-
- ---------------------------------
- -- Predefined_Primitive_Freeze --
- ---------------------------------
-
- function Predefined_Primitive_Freeze
- (Tag_Typ : Entity_Id) return List_Id
- is
- Loc : constant Source_Ptr := Sloc (Tag_Typ);
- Res : constant List_Id := New_List;
- Prim : Elmt_Id;
- Frnodes : List_Id;
-
- begin
- Prim := First_Elmt (Primitive_Operations (Tag_Typ));
- while Present (Prim) loop
- if Is_Predefined_Dispatching_Operation (Node (Prim)) then
- Frnodes := Freeze_Entity (Node (Prim), Loc);
-
- if Present (Frnodes) then
- Append_List_To (Res, Frnodes);
- end if;
- end if;
-
- Next_Elmt (Prim);
- end loop;
-
- return Res;
- end Predefined_Primitive_Freeze;
-
- -------------------------
- -- Stream_Operation_OK --
- -------------------------
-
- function Stream_Operation_OK
- (Typ : Entity_Id;
- Operation : TSS_Name_Type) return Boolean
- is
- Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;
-
- begin
- -- Special case of a limited type extension: a default implementation
- -- of the stream attributes Read or Write exists if that attribute
- -- has been specified or is available for an ancestor type; a default
- -- implementation of the attribute Output (resp. Input) exists if the
- -- attribute has been specified or Write (resp. Read) is available for
- -- an ancestor type. The last condition only applies under Ada 2005.
-
- if Is_Limited_Type (Typ)
- and then Is_Tagged_Type (Typ)
- then
- if Operation = TSS_Stream_Read then
- Has_Predefined_Or_Specified_Stream_Attribute :=
- Has_Specified_Stream_Read (Typ);
-
- elsif Operation = TSS_Stream_Write then
- Has_Predefined_Or_Specified_Stream_Attribute :=
- Has_Specified_Stream_Write (Typ);
-
- elsif Operation = TSS_Stream_Input then
- Has_Predefined_Or_Specified_Stream_Attribute :=
- Has_Specified_Stream_Input (Typ)
- or else
- (Ada_Version >= Ada_05
- and then Stream_Operation_OK (Typ, TSS_Stream_Read));
-
- elsif Operation = TSS_Stream_Output then
- Has_Predefined_Or_Specified_Stream_Attribute :=
- Has_Specified_Stream_Output (Typ)
- or else
- (Ada_Version >= Ada_05
- and then Stream_Operation_OK (Typ, TSS_Stream_Write));
- end if;
-
- -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
-
- if not Has_Predefined_Or_Specified_Stream_Attribute
- and then Is_Derived_Type (Typ)
- and then (Operation = TSS_Stream_Read
- or else Operation = TSS_Stream_Write)
- then
- Has_Predefined_Or_Specified_Stream_Attribute :=
- Present
- (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
- end if;
- end if;
-
- -- If the type is not limited, or else is limited but the attribute is
- -- explicitly specified or is predefined for the type, then return True,
- -- unless other conditions prevail, such as restrictions prohibiting
- -- streams or dispatching operations.
-
- -- We exclude the Input operation from being a predefined subprogram in
- -- the case where the associated type is an abstract extension, because
- -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
- -- we don't want an abstract version created because types derived from
- -- the abstract type may not even have Input available (for example if
- -- derived from a private view of the abstract type that doesn't have
- -- a visible Input), but a VM such as .NET or the Java VM can treat the
- -- operation as inherited anyway, and we don't want an abstract function
- -- to be (implicitly) inherited in that case because it can lead to a VM
- -- exception.
-
- return (not Is_Limited_Type (Typ)
- or else Has_Predefined_Or_Specified_Stream_Attribute)
- and then (Operation /= TSS_Stream_Input
- or else not Is_Abstract_Type (Typ)
- or else not Is_Derived_Type (Typ))
- and then not Has_Unknown_Discriminants (Typ)
- and then not (Is_Interface (Typ)
- and then (Is_Task_Interface (Typ)
- or else Is_Protected_Interface (Typ)
- or else Is_Synchronized_Interface (Typ)))
- and then not Restriction_Active (No_Streams)
- and then not Restriction_Active (No_Dispatch)
- and then not No_Run_Time_Mode
- and then RTE_Available (RE_Tag)
- and then RTE_Available (RE_Root_Stream_Type);
- end Stream_Operation_OK;
-
-end Exp_Ch3;