aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/contrib/paranoia.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/contrib/paranoia.cc')
-rw-r--r--gcc-4.4.0/contrib/paranoia.cc2714
1 files changed, 2714 insertions, 0 deletions
diff --git a/gcc-4.4.0/contrib/paranoia.cc b/gcc-4.4.0/contrib/paranoia.cc
new file mode 100644
index 000000000..ce21d3520
--- /dev/null
+++ b/gcc-4.4.0/contrib/paranoia.cc
@@ -0,0 +1,2714 @@
+/* A C version of Kahan's Floating Point Test "Paranoia"
+
+Thos Sumner, UCSF, Feb. 1985
+David Gay, BTL, Jan. 1986
+
+This is a rewrite from the Pascal version by
+
+B. A. Wichmann, 18 Jan. 1985
+
+(and does NOT exhibit good C programming style).
+
+Adjusted to use Standard C headers 19 Jan. 1992 (dmg);
+
+(C) Apr 19 1983 in BASIC version by:
+Professor W. M. Kahan,
+567 Evans Hall
+Electrical Engineering & Computer Science Dept.
+University of California
+Berkeley, California 94720
+USA
+
+converted to Pascal by:
+B. A. Wichmann
+National Physical Laboratory
+Teddington Middx
+TW11 OLW
+UK
+
+converted to C by:
+
+David M. Gay and Thos Sumner
+AT&T Bell Labs Computer Center, Rm. U-76
+600 Mountain Avenue University of California
+Murray Hill, NJ 07974 San Francisco, CA 94143
+USA USA
+
+with simultaneous corrections to the Pascal source (reflected
+in the Pascal source available over netlib).
+[A couple of bug fixes from dgh = sun!dhough incorporated 31 July 1986.]
+
+Reports of results on various systems from all the versions
+of Paranoia are being collected by Richard Karpinski at the
+same address as Thos Sumner. This includes sample outputs,
+bug reports, and criticisms.
+
+You may copy this program freely if you acknowledge its source.
+Comments on the Pascal version to NPL, please.
+
+The following is from the introductory commentary from Wichmann's work:
+
+The BASIC program of Kahan is written in Microsoft BASIC using many
+facilities which have no exact analogy in Pascal. The Pascal
+version below cannot therefore be exactly the same. Rather than be
+a minimal transcription of the BASIC program, the Pascal coding
+follows the conventional style of block-structured languages. Hence
+the Pascal version could be useful in producing versions in other
+structured languages.
+
+Rather than use identifiers of minimal length (which therefore have
+little mnemonic significance), the Pascal version uses meaningful
+identifiers as follows [Note: A few changes have been made for C]:
+
+
+BASIC C BASIC C BASIC C
+
+A J S StickyBit
+A1 AInverse J0 NoErrors T
+B Radix [Failure] T0 Underflow
+B1 BInverse J1 NoErrors T2 ThirtyTwo
+B2 RadixD2 [SeriousDefect] T5 OneAndHalf
+B9 BMinusU2 J2 NoErrors T7 TwentySeven
+C [Defect] T8 TwoForty
+C1 CInverse J3 NoErrors U OneUlp
+D [Flaw] U0 UnderflowThreshold
+D4 FourD K PageNo U1
+E0 L Milestone U2
+E1 M V
+E2 Exp2 N V0
+E3 N1 V8
+E5 MinSqEr O Zero V9
+E6 SqEr O1 One W
+E7 MaxSqEr O2 Two X
+E8 O3 Three X1
+E9 O4 Four X8
+F1 MinusOne O5 Five X9 Random1
+F2 Half O8 Eight Y
+F3 Third O9 Nine Y1
+F6 P Precision Y2
+F9 Q Y9 Random2
+G1 GMult Q8 Z
+G2 GDiv Q9 Z0 PseudoZero
+G3 GAddSub R Z1
+H R1 RMult Z2
+H1 HInverse R2 RDiv Z9
+I R3 RAddSub
+IO NoTrials R4 RSqrt
+I3 IEEE R9 Random9
+
+SqRWrng
+
+All the variables in BASIC are true variables and in consequence,
+the program is more difficult to follow since the "constants" must
+be determined (the glossary is very helpful). The Pascal version
+uses Real constants, but checks are added to ensure that the values
+are correctly converted by the compiler.
+
+The major textual change to the Pascal version apart from the
+identifiersis that named procedures are used, inserting parameters
+wherehelpful. New procedures are also introduced. The
+correspondence is as follows:
+
+
+BASIC Pascal
+lines
+
+90- 140 Pause
+170- 250 Instructions
+380- 460 Heading
+480- 670 Characteristics
+690- 870 History
+2940-2950 Random
+3710-3740 NewD
+4040-4080 DoesYequalX
+4090-4110 PrintIfNPositive
+4640-4850 TestPartialUnderflow
+
+*/
+
+ /* This version of paranoia has been modified to work with GCC's internal
+ software floating point emulation library, as a sanity check of same.
+
+ I'm doing this in C++ so that I can do operator overloading and not
+ have to modify so damned much of the existing code. */
+
+ extern "C" {
+#include <stdio.h>
+#include <stddef.h>
+#include <limits.h>
+#include <string.h>
+#include <stdlib.h>
+#include <math.h>
+#include <unistd.h>
+#include <float.h>
+
+ /* This part is made all the more awful because many gcc headers are
+ not prepared at all to be parsed as C++. The biggest stickler
+ here is const structure members. So we include exactly the pieces
+ that we need. */
+
+#define GTY(x)
+
+#include "ansidecl.h"
+#include "auto-host.h"
+#include "hwint.h"
+
+#undef EXTRA_MODES_FILE
+
+ struct rtx_def;
+ typedef struct rtx_def *rtx;
+ struct rtvec_def;
+ typedef struct rtvec_def *rtvec;
+ union tree_node;
+ typedef union tree_node *tree;
+
+#define DEFTREECODE(SYM, STRING, TYPE, NARGS) SYM,
+ enum tree_code {
+#include "tree.def"
+ LAST_AND_UNUSED_TREE_CODE
+ };
+#undef DEFTREECODE
+
+#define ENUM_BITFIELD(X) enum X
+#define class klass
+
+#include "real.h"
+
+#undef class
+ }
+
+/* We never produce signals from the library. Thus setjmp need do nothing. */
+#undef setjmp
+#define setjmp(x) (0)
+
+static bool verbose = false;
+static int verbose_index = 0;
+
+/* ====================================================================== */
+/* The implementation of the abstract floating point class based on gcc's
+ real.c. I.e. the object of this exercise. Templated so that we can
+ all fp sizes. */
+
+class real_c_float
+{
+ public:
+ static const enum machine_mode MODE = SFmode;
+
+ private:
+ static const int external_max = 128 / 32;
+ static const int internal_max
+ = (sizeof (REAL_VALUE_TYPE) + sizeof (long) + 1) / sizeof (long);
+ long image[external_max < internal_max ? internal_max : external_max];
+
+ void from_long(long);
+ void from_str(const char *);
+ void binop(int code, const real_c_float&);
+ void unop(int code);
+ bool cmp(int code, const real_c_float&) const;
+
+ public:
+ real_c_float()
+ { }
+ real_c_float(long l)
+ { from_long(l); }
+ real_c_float(const char *s)
+ { from_str(s); }
+ real_c_float(const real_c_float &b)
+ { memcpy(image, b.image, sizeof(image)); }
+
+ const real_c_float& operator= (long l)
+ { from_long(l); return *this; }
+ const real_c_float& operator= (const char *s)
+ { from_str(s); return *this; }
+ const real_c_float& operator= (const real_c_float &b)
+ { memcpy(image, b.image, sizeof(image)); return *this; }
+
+ const real_c_float& operator+= (const real_c_float &b)
+ { binop(PLUS_EXPR, b); return *this; }
+ const real_c_float& operator-= (const real_c_float &b)
+ { binop(MINUS_EXPR, b); return *this; }
+ const real_c_float& operator*= (const real_c_float &b)
+ { binop(MULT_EXPR, b); return *this; }
+ const real_c_float& operator/= (const real_c_float &b)
+ { binop(RDIV_EXPR, b); return *this; }
+
+ real_c_float operator- () const
+ { real_c_float r(*this); r.unop(NEGATE_EXPR); return r; }
+ real_c_float abs () const
+ { real_c_float r(*this); r.unop(ABS_EXPR); return r; }
+
+ bool operator < (const real_c_float &b) const { return cmp(LT_EXPR, b); }
+ bool operator <= (const real_c_float &b) const { return cmp(LE_EXPR, b); }
+ bool operator == (const real_c_float &b) const { return cmp(EQ_EXPR, b); }
+ bool operator != (const real_c_float &b) const { return cmp(NE_EXPR, b); }
+ bool operator >= (const real_c_float &b) const { return cmp(GE_EXPR, b); }
+ bool operator > (const real_c_float &b) const { return cmp(GT_EXPR, b); }
+
+ const char * str () const;
+ const char * hex () const;
+ long integer () const;
+ int exp () const;
+ void ldexp (int);
+};
+
+void
+real_c_float::from_long (long l)
+{
+ REAL_VALUE_TYPE f;
+
+ real_from_integer (&f, MODE, l, l < 0 ? -1 : 0, 0);
+ real_to_target (image, &f, MODE);
+}
+
+void
+real_c_float::from_str (const char *s)
+{
+ REAL_VALUE_TYPE f;
+ const char *p = s;
+
+ if (*p == '-' || *p == '+')
+ p++;
+ if (strcasecmp(p, "inf") == 0)
+ {
+ real_inf (&f);
+ if (*s == '-')
+ real_arithmetic (&f, NEGATE_EXPR, &f, NULL);
+ }
+ else if (strcasecmp(p, "nan") == 0)
+ real_nan (&f, "", 1, MODE);
+ else
+ real_from_string (&f, s);
+
+ real_to_target (image, &f, MODE);
+}
+
+void
+real_c_float::binop (int code, const real_c_float &b)
+{
+ REAL_VALUE_TYPE ai, bi, ri;
+
+ real_from_target (&ai, image, MODE);
+ real_from_target (&bi, b.image, MODE);
+ real_arithmetic (&ri, code, &ai, &bi);
+ real_to_target (image, &ri, MODE);
+
+ if (verbose)
+ {
+ char ab[64], bb[64], rb[64];
+ const real_format *fmt = real_format_for_mode[MODE - QFmode];
+ const int digits = (fmt->p * fmt->log2_b + 3) / 4;
+ char symbol_for_code;
+
+ real_from_target (&ri, image, MODE);
+ real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
+ real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
+ real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
+
+ switch (code)
+ {
+ case PLUS_EXPR:
+ symbol_for_code = '+';
+ break;
+ case MINUS_EXPR:
+ symbol_for_code = '-';
+ break;
+ case MULT_EXPR:
+ symbol_for_code = '*';
+ break;
+ case RDIV_EXPR:
+ symbol_for_code = '/';
+ break;
+ default:
+ abort ();
+ }
+
+ fprintf (stderr, "%6d: %s %c %s = %s\n", verbose_index++,
+ ab, symbol_for_code, bb, rb);
+ }
+}
+
+void
+real_c_float::unop (int code)
+{
+ REAL_VALUE_TYPE ai, ri;
+
+ real_from_target (&ai, image, MODE);
+ real_arithmetic (&ri, code, &ai, NULL);
+ real_to_target (image, &ri, MODE);
+
+ if (verbose)
+ {
+ char ab[64], rb[64];
+ const real_format *fmt = real_format_for_mode[MODE - QFmode];
+ const int digits = (fmt->p * fmt->log2_b + 3) / 4;
+ const char *symbol_for_code;
+
+ real_from_target (&ri, image, MODE);
+ real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
+ real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
+
+ switch (code)
+ {
+ case NEGATE_EXPR:
+ symbol_for_code = "-";
+ break;
+ case ABS_EXPR:
+ symbol_for_code = "abs ";
+ break;
+ default:
+ abort ();
+ }
+
+ fprintf (stderr, "%6d: %s%s = %s\n", verbose_index++,
+ symbol_for_code, ab, rb);
+ }
+}
+
+bool
+real_c_float::cmp (int code, const real_c_float &b) const
+{
+ REAL_VALUE_TYPE ai, bi;
+ bool ret;
+
+ real_from_target (&ai, image, MODE);
+ real_from_target (&bi, b.image, MODE);
+ ret = real_compare (code, &ai, &bi);
+
+ if (verbose)
+ {
+ char ab[64], bb[64];
+ const real_format *fmt = real_format_for_mode[MODE - QFmode];
+ const int digits = (fmt->p * fmt->log2_b + 3) / 4;
+ const char *symbol_for_code;
+
+ real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
+ real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
+
+ switch (code)
+ {
+ case LT_EXPR:
+ symbol_for_code = "<";
+ break;
+ case LE_EXPR:
+ symbol_for_code = "<=";
+ break;
+ case EQ_EXPR:
+ symbol_for_code = "==";
+ break;
+ case NE_EXPR:
+ symbol_for_code = "!=";
+ break;
+ case GE_EXPR:
+ symbol_for_code = ">=";
+ break;
+ case GT_EXPR:
+ symbol_for_code = ">";
+ break;
+ default:
+ abort ();
+ }
+
+ fprintf (stderr, "%6d: %s %s %s = %s\n", verbose_index++,
+ ab, symbol_for_code, bb, (ret ? "true" : "false"));
+ }
+
+ return ret;
+}
+
+const char *
+real_c_float::str() const
+{
+ REAL_VALUE_TYPE f;
+ const real_format *fmt = real_format_for_mode[MODE - QFmode];
+ const int digits = int(fmt->p * fmt->log2_b * .30102999566398119521 + 1);
+
+ real_from_target (&f, image, MODE);
+ char *buf = new char[digits + 10];
+ real_to_decimal (buf, &f, digits+10, digits, 0);
+
+ return buf;
+}
+
+const char *
+real_c_float::hex() const
+{
+ REAL_VALUE_TYPE f;
+ const real_format *fmt = real_format_for_mode[MODE - QFmode];
+ const int digits = (fmt->p * fmt->log2_b + 3) / 4;
+
+ real_from_target (&f, image, MODE);
+ char *buf = new char[digits + 10];
+ real_to_hexadecimal (buf, &f, digits+10, digits, 0);
+
+ return buf;
+}
+
+long
+real_c_float::integer() const
+{
+ REAL_VALUE_TYPE f;
+ real_from_target (&f, image, MODE);
+ return real_to_integer (&f);
+}
+
+int
+real_c_float::exp() const
+{
+ REAL_VALUE_TYPE f;
+ real_from_target (&f, image, MODE);
+ return real_exponent (&f);
+}
+
+void
+real_c_float::ldexp (int exp)
+{
+ REAL_VALUE_TYPE ai;
+
+ real_from_target (&ai, image, MODE);
+ real_ldexp (&ai, &ai, exp);
+ real_to_target (image, &ai, MODE);
+}
+
+/* ====================================================================== */
+/* An implementation of the abstract floating point class that uses native
+ arithmetic. Exists for reference and debugging. */
+
+template<typename T>
+class native_float
+{
+ private:
+ // Force intermediate results back to memory.
+ volatile T image;
+
+ static T from_str (const char *);
+ static T do_abs (T);
+ static T verbose_binop (T, char, T, T);
+ static T verbose_unop (const char *, T, T);
+ static bool verbose_cmp (T, const char *, T, bool);
+
+ public:
+ native_float()
+ { }
+ native_float(long l)
+ { image = l; }
+ native_float(const char *s)
+ { image = from_str(s); }
+ native_float(const native_float &b)
+ { image = b.image; }
+
+ const native_float& operator= (long l)
+ { image = l; return *this; }
+ const native_float& operator= (const char *s)
+ { image = from_str(s); return *this; }
+ const native_float& operator= (const native_float &b)
+ { image = b.image; return *this; }
+
+ const native_float& operator+= (const native_float &b)
+ {
+ image = verbose_binop(image, '+', b.image, image + b.image);
+ return *this;
+ }
+ const native_float& operator-= (const native_float &b)
+ {
+ image = verbose_binop(image, '-', b.image, image - b.image);
+ return *this;
+ }
+ const native_float& operator*= (const native_float &b)
+ {
+ image = verbose_binop(image, '*', b.image, image * b.image);
+ return *this;
+ }
+ const native_float& operator/= (const native_float &b)
+ {
+ image = verbose_binop(image, '/', b.image, image / b.image);
+ return *this;
+ }
+
+ native_float operator- () const
+ {
+ native_float r;
+ r.image = verbose_unop("-", image, -image);
+ return r;
+ }
+ native_float abs () const
+ {
+ native_float r;
+ r.image = verbose_unop("abs ", image, do_abs(image));
+ return r;
+ }
+
+ bool operator < (const native_float &b) const
+ { return verbose_cmp(image, "<", b.image, image < b.image); }
+ bool operator <= (const native_float &b) const
+ { return verbose_cmp(image, "<=", b.image, image <= b.image); }
+ bool operator == (const native_float &b) const
+ { return verbose_cmp(image, "==", b.image, image == b.image); }
+ bool operator != (const native_float &b) const
+ { return verbose_cmp(image, "!=", b.image, image != b.image); }
+ bool operator >= (const native_float &b) const
+ { return verbose_cmp(image, ">=", b.image, image >= b.image); }
+ bool operator > (const native_float &b) const
+ { return verbose_cmp(image, ">", b.image, image > b.image); }
+
+ const char * str () const;
+ const char * hex () const;
+ long integer () const
+ { return long(image); }
+ int exp () const;
+ void ldexp (int);
+};
+
+template<typename T>
+inline T
+native_float<T>::from_str (const char *s)
+{
+ return strtold (s, NULL);
+}
+
+template<>
+inline float
+native_float<float>::from_str (const char *s)
+{
+ return strtof (s, NULL);
+}
+
+template<>
+inline double
+native_float<double>::from_str (const char *s)
+{
+ return strtod (s, NULL);
+}
+
+template<typename T>
+inline T
+native_float<T>::do_abs (T image)
+{
+ return fabsl (image);
+}
+
+template<>
+inline float
+native_float<float>::do_abs (float image)
+{
+ return fabsf (image);
+}
+
+template<>
+inline double
+native_float<double>::do_abs (double image)
+{
+ return fabs (image);
+}
+
+template<typename T>
+T
+native_float<T>::verbose_binop (T a, char symbol, T b, T r)
+{
+ if (verbose)
+ {
+ const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
+#ifdef NO_LONG_DOUBLE
+ fprintf (stderr, "%6d: %.*a %c %.*a = %.*a\n", verbose_index++,
+ digits, (double)a, symbol,
+ digits, (double)b, digits, (double)r);
+#else
+ fprintf (stderr, "%6d: %.*La %c %.*La = %.*La\n", verbose_index++,
+ digits, (long double)a, symbol,
+ digits, (long double)b, digits, (long double)r);
+#endif
+ }
+ return r;
+}
+
+template<typename T>
+T
+native_float<T>::verbose_unop (const char *symbol, T a, T r)
+{
+ if (verbose)
+ {
+ const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
+#ifdef NO_LONG_DOUBLE
+ fprintf (stderr, "%6d: %s%.*a = %.*a\n", verbose_index++,
+ symbol, digits, (double)a, digits, (double)r);
+#else
+ fprintf (stderr, "%6d: %s%.*La = %.*La\n", verbose_index++,
+ symbol, digits, (long double)a, digits, (long double)r);
+#endif
+ }
+ return r;
+}
+
+template<typename T>
+bool
+native_float<T>::verbose_cmp (T a, const char *symbol, T b, bool r)
+{
+ if (verbose)
+ {
+ const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
+#ifndef NO_LONG_DOUBLE
+ fprintf (stderr, "%6d: %.*a %s %.*a = %s\n", verbose_index++,
+ digits, (double)a, symbol,
+ digits, (double)b, (r ? "true" : "false"));
+#else
+ fprintf (stderr, "%6d: %.*La %s %.*La = %s\n", verbose_index++,
+ digits, (long double)a, symbol,
+ digits, (long double)b, (r ? "true" : "false"));
+#endif
+ }
+ return r;
+}
+
+template<typename T>
+const char *
+native_float<T>::str() const
+{
+ char *buf = new char[50];
+ const int digits = int(sizeof(T) * CHAR_BIT * .30102999566398119521 + 1);
+#ifndef NO_LONG_DOUBLE
+ sprintf (buf, "%.*e", digits - 1, (double) image);
+#else
+ sprintf (buf, "%.*Le", digits - 1, (long double) image);
+#endif
+ return buf;
+}
+
+template<typename T>
+const char *
+native_float<T>::hex() const
+{
+ char *buf = new char[50];
+ const int digits = int(sizeof(T) * CHAR_BIT / 4);
+#ifndef NO_LONG_DOUBLE
+ sprintf (buf, "%.*a", digits - 1, (double) image);
+#else
+ sprintf (buf, "%.*La", digits - 1, (long double) image);
+#endif
+ return buf;
+}
+
+template<typename T>
+int
+native_float<T>::exp() const
+{
+ int e;
+ frexp (image, &e);
+ return e;
+}
+
+template<typename T>
+void
+native_float<T>::ldexp (int exp)
+{
+ image = ldexpl (image, exp);
+}
+
+template<>
+void
+native_float<float>::ldexp (int exp)
+{
+ image = ldexpf (image, exp);
+}
+
+template<>
+void
+native_float<double>::ldexp (int exp)
+{
+ image = ::ldexp (image, exp);
+}
+
+/* ====================================================================== */
+/* Some libm routines that Paranoia expects to be available. */
+
+template<typename FLOAT>
+inline FLOAT
+FABS (const FLOAT &f)
+{
+ return f.abs();
+}
+
+template<typename FLOAT, typename RHS>
+inline FLOAT
+operator+ (const FLOAT &a, const RHS &b)
+{
+ return FLOAT(a) += FLOAT(b);
+}
+
+template<typename FLOAT, typename RHS>
+inline FLOAT
+operator- (const FLOAT &a, const RHS &b)
+{
+ return FLOAT(a) -= FLOAT(b);
+}
+
+template<typename FLOAT, typename RHS>
+inline FLOAT
+operator* (const FLOAT &a, const RHS &b)
+{
+ return FLOAT(a) *= FLOAT(b);
+}
+
+template<typename FLOAT, typename RHS>
+inline FLOAT
+operator/ (const FLOAT &a, const RHS &b)
+{
+ return FLOAT(a) /= FLOAT(b);
+}
+
+template<typename FLOAT>
+FLOAT
+FLOOR (const FLOAT &f)
+{
+ /* ??? This is only correct when F is representable as an integer. */
+ long i = f.integer();
+ FLOAT r;
+
+ r = i;
+ if (i < 0 && f != r)
+ r = i - 1;
+
+ return r;
+}
+
+template<typename FLOAT>
+FLOAT
+SQRT (const FLOAT &f)
+{
+#if 0
+ FLOAT zero = long(0);
+ FLOAT two = 2;
+ FLOAT one = 1;
+ FLOAT diff, diff2;
+ FLOAT z, t;
+
+ if (f == zero)
+ return zero;
+ if (f < zero)
+ return zero / zero;
+ if (f == one)
+ return f;
+
+ z = f;
+ z.ldexp (-f.exp() / 2);
+
+ diff2 = FABS (z * z - f);
+ if (diff2 > zero)
+ while (1)
+ {
+ t = (f / (two * z)) + (z / two);
+ diff = FABS (t * t - f);
+ if (diff >= diff2)
+ break;
+ z = t;
+ diff2 = diff;
+ }
+
+ return z;
+#elif defined(NO_LONG_DOUBLE)
+ double d;
+ char buf[64];
+
+ d = strtod (f.hex(), NULL);
+ d = sqrt (d);
+ sprintf(buf, "%.35a", d);
+
+ return FLOAT(buf);
+#else
+ long double ld;
+ char buf[64];
+
+ ld = strtold (f.hex(), NULL);
+ ld = sqrtl (ld);
+ sprintf(buf, "%.35La", ld);
+
+ return FLOAT(buf);
+#endif
+}
+
+template<typename FLOAT>
+FLOAT
+LOG (FLOAT x)
+{
+#if 0
+ FLOAT zero = long(0);
+ FLOAT one = 1;
+
+ if (x <= zero)
+ return zero / zero;
+ if (x == one)
+ return zero;
+
+ int exp = x.exp() - 1;
+ x.ldexp(-exp);
+
+ FLOAT xm1 = x - one;
+ FLOAT y = xm1;
+ long n = 2;
+
+ FLOAT sum = xm1;
+ while (1)
+ {
+ y *= xm1;
+ FLOAT term = y / FLOAT (n);
+ FLOAT next = sum + term;
+ if (next == sum)
+ break;
+ sum = next;
+ if (++n == 1000)
+ break;
+ }
+
+ if (exp)
+ sum += FLOAT (exp) * FLOAT(".69314718055994530941");
+
+ return sum;
+#elif defined (NO_LONG_DOUBLE)
+ double d;
+ char buf[64];
+
+ d = strtod (x.hex(), NULL);
+ d = log (d);
+ sprintf(buf, "%.35a", d);
+
+ return FLOAT(buf);
+#else
+ long double ld;
+ char buf[64];
+
+ ld = strtold (x.hex(), NULL);
+ ld = logl (ld);
+ sprintf(buf, "%.35La", ld);
+
+ return FLOAT(buf);
+#endif
+}
+
+template<typename FLOAT>
+FLOAT
+EXP (const FLOAT &x)
+{
+ /* Cheat. */
+#ifdef NO_LONG_DOUBLE
+ double d;
+ char buf[64];
+
+ d = strtod (x.hex(), NULL);
+ d = exp (d);
+ sprintf(buf, "%.35a", d);
+
+ return FLOAT(buf);
+#else
+ long double ld;
+ char buf[64];
+
+ ld = strtold (x.hex(), NULL);
+ ld = expl (ld);
+ sprintf(buf, "%.35La", ld);
+
+ return FLOAT(buf);
+#endif
+}
+
+template<typename FLOAT>
+FLOAT
+POW (const FLOAT &base, const FLOAT &exp)
+{
+ /* Cheat. */
+#ifdef NO_LONG_DOUBLE
+ double d1, d2;
+ char buf[64];
+
+ d1 = strtod (base.hex(), NULL);
+ d2 = strtod (exp.hex(), NULL);
+ d1 = pow (d1, d2);
+ sprintf(buf, "%.35a", d1);
+
+ return FLOAT(buf);
+#else
+ long double ld1, ld2;
+ char buf[64];
+
+ ld1 = strtold (base.hex(), NULL);
+ ld2 = strtold (exp.hex(), NULL);
+ ld1 = powl (ld1, ld2);
+ sprintf(buf, "%.35La", ld1);
+
+ return FLOAT(buf);
+#endif
+}
+
+/* ====================================================================== */
+/* Real Paranoia begins again here. We wrap the thing in a template so
+ that we can instantiate it for each floating point type we care for. */
+
+int NoTrials = 20; /*Number of tests for commutativity. */
+bool do_pause = false;
+
+enum Guard { No, Yes };
+enum Rounding { Other, Rounded, Chopped };
+enum Class { Failure, Serious, Defect, Flaw };
+
+template<typename FLOAT>
+struct Paranoia
+{
+ FLOAT Radix, BInvrse, RadixD2, BMinusU2;
+
+ /* Small floating point constants. */
+ FLOAT Zero;
+ FLOAT Half;
+ FLOAT One;
+ FLOAT Two;
+ FLOAT Three;
+ FLOAT Four;
+ FLOAT Five;
+ FLOAT Eight;
+ FLOAT Nine;
+ FLOAT TwentySeven;
+ FLOAT ThirtyTwo;
+ FLOAT TwoForty;
+ FLOAT MinusOne;
+ FLOAT OneAndHalf;
+
+ /* Declarations of Variables. */
+ int Indx;
+ char ch[8];
+ FLOAT AInvrse, A1;
+ FLOAT C, CInvrse;
+ FLOAT D, FourD;
+ FLOAT E0, E1, Exp2, E3, MinSqEr;
+ FLOAT SqEr, MaxSqEr, E9;
+ FLOAT Third;
+ FLOAT F6, F9;
+ FLOAT H, HInvrse;
+ int I;
+ FLOAT StickyBit, J;
+ FLOAT MyZero;
+ FLOAT Precision;
+ FLOAT Q, Q9;
+ FLOAT R, Random9;
+ FLOAT T, Underflow, S;
+ FLOAT OneUlp, UfThold, U1, U2;
+ FLOAT V, V0, V9;
+ FLOAT W;
+ FLOAT X, X1, X2, X8, Random1;
+ FLOAT Y, Y1, Y2, Random2;
+ FLOAT Z, PseudoZero, Z1, Z2, Z9;
+ int ErrCnt[4];
+ int Milestone;
+ int PageNo;
+ int M, N, N1;
+ Guard GMult, GDiv, GAddSub;
+ Rounding RMult, RDiv, RAddSub, RSqrt;
+ int Break, Done, NotMonot, Monot, Anomaly, IEEE, SqRWrng, UfNGrad;
+
+ /* Computed constants. */
+ /*U1 gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */
+ /*U2 gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */
+
+ int main ();
+
+ FLOAT Sign (FLOAT);
+ FLOAT Random ();
+ void Pause ();
+ void BadCond (int, const char *);
+ void SqXMinX (int);
+ void TstCond (int, int, const char *);
+ void notify (const char *);
+ void IsYeqX ();
+ void NewD ();
+ void PrintIfNPositive ();
+ void SR3750 ();
+ void TstPtUf ();
+
+ // Pretend we're bss.
+ Paranoia() { memset(this, 0, sizeof (*this)); }
+};
+
+template<typename FLOAT>
+int
+Paranoia<FLOAT>::main()
+{
+ /* First two assignments use integer right-hand sides. */
+ Zero = long(0);
+ One = long(1);
+ Two = long(2);
+ Three = long(3);
+ Four = long(4);
+ Five = long(5);
+ Eight = long(8);
+ Nine = long(9);
+ TwentySeven = long(27);
+ ThirtyTwo = long(32);
+ TwoForty = long(240);
+ MinusOne = long(-1);
+ Half = "0x1p-1";
+ OneAndHalf = "0x3p-1";
+ ErrCnt[Failure] = 0;
+ ErrCnt[Serious] = 0;
+ ErrCnt[Defect] = 0;
+ ErrCnt[Flaw] = 0;
+ PageNo = 1;
+ /*=============================================*/
+ Milestone = 7;
+ /*=============================================*/
+ printf ("Program is now RUNNING tests on small integers:\n");
+
+ TstCond (Failure, (Zero + Zero == Zero), "0+0 != 0");
+ TstCond (Failure, (One - One == Zero), "1-1 != 0");
+ TstCond (Failure, (One > Zero), "1 <= 0");
+ TstCond (Failure, (One + One == Two), "1+1 != 2");
+
+ Z = -Zero;
+ if (Z != Zero)
+ {
+ ErrCnt[Failure] = ErrCnt[Failure] + 1;
+ printf ("Comparison alleges that -0.0 is Non-zero!\n");
+ U2 = "0.001";
+ Radix = 1;
+ TstPtUf ();
+ }
+
+ TstCond (Failure, (Three == Two + One), "3 != 2+1");
+ TstCond (Failure, (Four == Three + One), "4 != 3+1");
+ TstCond (Failure, (Four + Two * (-Two) == Zero), "4 + 2*(-2) != 0");
+ TstCond (Failure, (Four - Three - One == Zero), "4-3-1 != 0");
+
+ TstCond (Failure, (MinusOne == (Zero - One)), "-1 != 0-1");
+ TstCond (Failure, (MinusOne + One == Zero), "-1+1 != 0");
+ TstCond (Failure, (One + MinusOne == Zero), "1+(-1) != 0");
+ TstCond (Failure, (MinusOne + FABS (One) == Zero), "-1+abs(1) != 0");
+ TstCond (Failure, (MinusOne + MinusOne * MinusOne == Zero),
+ "-1+(-1)*(-1) != 0");
+
+ TstCond (Failure, Half + MinusOne + Half == Zero, "1/2 + (-1) + 1/2 != 0");
+
+ /*=============================================*/
+ Milestone = 10;
+ /*=============================================*/
+
+ TstCond (Failure, (Nine == Three * Three), "9 != 3*3");
+ TstCond (Failure, (TwentySeven == Nine * Three), "27 != 9*3");
+ TstCond (Failure, (Eight == Four + Four), "8 != 4+4");
+ TstCond (Failure, (ThirtyTwo == Eight * Four), "32 != 8*4");
+ TstCond (Failure, (ThirtyTwo - TwentySeven - Four - One == Zero),
+ "32-27-4-1 != 0");
+
+ TstCond (Failure, Five == Four + One, "5 != 4+1");
+ TstCond (Failure, TwoForty == Four * Five * Three * Four, "240 != 4*5*3*4");
+ TstCond (Failure, TwoForty / Three - Four * Four * Five == Zero,
+ "240/3 - 4*4*5 != 0");
+ TstCond (Failure, TwoForty / Four - Five * Three * Four == Zero,
+ "240/4 - 5*3*4 != 0");
+ TstCond (Failure, TwoForty / Five - Four * Three * Four == Zero,
+ "240/5 - 4*3*4 != 0");
+
+ if (ErrCnt[Failure] == 0)
+ {
+ printf ("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n");
+ printf ("\n");
+ }
+ printf ("Searching for Radix and Precision.\n");
+ W = One;
+ do
+ {
+ W = W + W;
+ Y = W + One;
+ Z = Y - W;
+ Y = Z - One;
+ }
+ while (MinusOne + FABS (Y) < Zero);
+ /*.. now W is just big enough that |((W+1)-W)-1| >= 1 ... */
+ Precision = Zero;
+ Y = One;
+ do
+ {
+ Radix = W + Y;
+ Y = Y + Y;
+ Radix = Radix - W;
+ }
+ while (Radix == Zero);
+ if (Radix < Two)
+ Radix = One;
+ printf ("Radix = %s .\n", Radix.str());
+ if (Radix != One)
+ {
+ W = One;
+ do
+ {
+ Precision = Precision + One;
+ W = W * Radix;
+ Y = W + One;
+ }
+ while ((Y - W) == One);
+ }
+ /*... now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1
+ ... */
+ U1 = One / W;
+ U2 = Radix * U1;
+ printf ("Closest relative separation found is U1 = %s .\n\n", U1.str());
+ printf ("Recalculating radix and precision\n ");
+
+ /*save old values */
+ E0 = Radix;
+ E1 = U1;
+ E9 = U2;
+ E3 = Precision;
+
+ X = Four / Three;
+ Third = X - One;
+ F6 = Half - Third;
+ X = F6 + F6;
+ X = FABS (X - Third);
+ if (X < U2)
+ X = U2;
+
+ /*... now X = (unknown no.) ulps of 1+... */
+ do
+ {
+ U2 = X;
+ Y = Half * U2 + ThirtyTwo * U2 * U2;
+ Y = One + Y;
+ X = Y - One;
+ }
+ while (!((U2 <= X) || (X <= Zero)));
+
+ /*... now U2 == 1 ulp of 1 + ... */
+ X = Two / Three;
+ F6 = X - Half;
+ Third = F6 + F6;
+ X = Third - Half;
+ X = FABS (X + F6);
+ if (X < U1)
+ X = U1;
+
+ /*... now X == (unknown no.) ulps of 1 -... */
+ do
+ {
+ U1 = X;
+ Y = Half * U1 + ThirtyTwo * U1 * U1;
+ Y = Half - Y;
+ X = Half + Y;
+ Y = Half - X;
+ X = Half + Y;
+ }
+ while (!((U1 <= X) || (X <= Zero)));
+ /*... now U1 == 1 ulp of 1 - ... */
+ if (U1 == E1)
+ printf ("confirms closest relative separation U1 .\n");
+ else
+ printf ("gets better closest relative separation U1 = %s .\n", U1.str());
+ W = One / U1;
+ F9 = (Half - U1) + Half;
+
+ Radix = FLOOR (FLOAT ("0.01") + U2 / U1);
+ if (Radix == E0)
+ printf ("Radix confirmed.\n");
+ else
+ printf ("MYSTERY: recalculated Radix = %s .\n", Radix.str());
+ TstCond (Defect, Radix <= Eight + Eight,
+ "Radix is too big: roundoff problems");
+ TstCond (Flaw, (Radix == Two) || (Radix == 10)
+ || (Radix == One), "Radix is not as good as 2 or 10");
+ /*=============================================*/
+ Milestone = 20;
+ /*=============================================*/
+ TstCond (Failure, F9 - Half < Half,
+ "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?");
+ X = F9;
+ I = 1;
+ Y = X - Half;
+ Z = Y - Half;
+ TstCond (Failure, (X != One)
+ || (Z == Zero), "Comparison is fuzzy,X=1 but X-1/2-1/2 != 0");
+ X = One + U2;
+ I = 0;
+ /*=============================================*/
+ Milestone = 25;
+ /*=============================================*/
+ /*... BMinusU2 = nextafter(Radix, 0) */
+ BMinusU2 = Radix - One;
+ BMinusU2 = (BMinusU2 - U2) + One;
+ /* Purify Integers */
+ if (Radix != One)
+ {
+ X = -TwoForty * LOG (U1) / LOG (Radix);
+ Y = FLOOR (Half + X);
+ if (FABS (X - Y) * Four < One)
+ X = Y;
+ Precision = X / TwoForty;
+ Y = FLOOR (Half + Precision);
+ if (FABS (Precision - Y) * TwoForty < Half)
+ Precision = Y;
+ }
+ if ((Precision != FLOOR (Precision)) || (Radix == One))
+ {
+ printf ("Precision cannot be characterized by an Integer number\n");
+ printf
+ ("of significant digits but, by itself, this is a minor flaw.\n");
+ }
+ if (Radix == One)
+ printf
+ ("logarithmic encoding has precision characterized solely by U1.\n");
+ else
+ printf ("The number of significant digits of the Radix is %s .\n",
+ Precision.str());
+ TstCond (Serious, U2 * Nine * Nine * TwoForty < One,
+ "Precision worse than 5 decimal figures ");
+ /*=============================================*/
+ Milestone = 30;
+ /*=============================================*/
+ /* Test for extra-precise subexpressions */
+ X = FABS (((Four / Three - One) - One / Four) * Three - One / Four);
+ do
+ {
+ Z2 = X;
+ X = (One + (Half * Z2 + ThirtyTwo * Z2 * Z2)) - One;
+ }
+ while (!((Z2 <= X) || (X <= Zero)));
+ X = Y = Z = FABS ((Three / Four - Two / Three) * Three - One / Four);
+ do
+ {
+ Z1 = Z;
+ Z = (One / Two - ((One / Two - (Half * Z1 + ThirtyTwo * Z1 * Z1))
+ + One / Two)) + One / Two;
+ }
+ while (!((Z1 <= Z) || (Z <= Zero)));
+ do
+ {
+ do
+ {
+ Y1 = Y;
+ Y =
+ (Half - ((Half - (Half * Y1 + ThirtyTwo * Y1 * Y1)) + Half)) +
+ Half;
+ }
+ while (!((Y1 <= Y) || (Y <= Zero)));
+ X1 = X;
+ X = ((Half * X1 + ThirtyTwo * X1 * X1) - F9) + F9;
+ }
+ while (!((X1 <= X) || (X <= Zero)));
+ if ((X1 != Y1) || (X1 != Z1))
+ {
+ BadCond (Serious, "Disagreements among the values X1, Y1, Z1,\n");
+ printf ("respectively %s, %s, %s,\n", X1.str(), Y1.str(), Z1.str());
+ printf ("are symptoms of inconsistencies introduced\n");
+ printf ("by extra-precise evaluation of arithmetic subexpressions.\n");
+ notify ("Possibly some part of this");
+ if ((X1 == U1) || (Y1 == U1) || (Z1 == U1))
+ printf ("That feature is not tested further by this program.\n");
+ }
+ else
+ {
+ if ((Z1 != U1) || (Z2 != U2))
+ {
+ if ((Z1 >= U1) || (Z2 >= U2))
+ {
+ BadCond (Failure, "");
+ notify ("Precision");
+ printf ("\tU1 = %s, Z1 - U1 = %s\n", U1.str(), (Z1 - U1).str());
+ printf ("\tU2 = %s, Z2 - U2 = %s\n", U2.str(), (Z2 - U2).str());
+ }
+ else
+ {
+ if ((Z1 <= Zero) || (Z2 <= Zero))
+ {
+ printf ("Because of unusual Radix = %s", Radix.str());
+ printf (", or exact rational arithmetic a result\n");
+ printf ("Z1 = %s, or Z2 = %s ", Z1.str(), Z2.str());
+ notify ("of an\nextra-precision");
+ }
+ if (Z1 != Z2 || Z1 > Zero)
+ {
+ X = Z1 / U1;
+ Y = Z2 / U2;
+ if (Y > X)
+ X = Y;
+ Q = -LOG (X);
+ printf ("Some subexpressions appear to be calculated "
+ "extra precisely\n");
+ printf ("with about %s extra B-digits, i.e.\n",
+ (Q / LOG (Radix)).str());
+ printf ("roughly %s extra significant decimals.\n",
+ (Q / LOG (FLOAT (10))).str());
+ }
+ printf
+ ("That feature is not tested further by this program.\n");
+ }
+ }
+ }
+ Pause ();
+ /*=============================================*/
+ Milestone = 35;
+ /*=============================================*/
+ if (Radix >= Two)
+ {
+ X = W / (Radix * Radix);
+ Y = X + One;
+ Z = Y - X;
+ T = Z + U2;
+ X = T - Z;
+ TstCond (Failure, X == U2,
+ "Subtraction is not normalized X=Y,X+Z != Y+Z!");
+ if (X == U2)
+ printf ("Subtraction appears to be normalized, as it should be.");
+ }
+ printf ("\nChecking for guard digit in *, /, and -.\n");
+ Y = F9 * One;
+ Z = One * F9;
+ X = F9 - Half;
+ Y = (Y - Half) - X;
+ Z = (Z - Half) - X;
+ X = One + U2;
+ T = X * Radix;
+ R = Radix * X;
+ X = T - Radix;
+ X = X - Radix * U2;
+ T = R - Radix;
+ T = T - Radix * U2;
+ X = X * (Radix - One);
+ T = T * (Radix - One);
+ if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero))
+ GMult = Yes;
+ else
+ {
+ GMult = No;
+ TstCond (Serious, false, "* lacks a Guard Digit, so 1*X != X");
+ }
+ Z = Radix * U2;
+ X = One + Z;
+ Y = FABS ((X + Z) - X * X) - U2;
+ X = One - U2;
+ Z = FABS ((X - U2) - X * X) - U1;
+ TstCond (Failure, (Y <= Zero)
+ && (Z <= Zero), "* gets too many final digits wrong.\n");
+ Y = One - U2;
+ X = One + U2;
+ Z = One / Y;
+ Y = Z - X;
+ X = One / Three;
+ Z = Three / Nine;
+ X = X - Z;
+ T = Nine / TwentySeven;
+ Z = Z - T;
+ TstCond (Defect, X == Zero && Y == Zero && Z == Zero,
+ "Division lacks a Guard Digit, so error can exceed 1 ulp\n"
+ "or 1/3 and 3/9 and 9/27 may disagree");
+ Y = F9 / One;
+ X = F9 - Half;
+ Y = (Y - Half) - X;
+ X = One + U2;
+ T = X / One;
+ X = T - X;
+ if ((X == Zero) && (Y == Zero) && (Z == Zero))
+ GDiv = Yes;
+ else
+ {
+ GDiv = No;
+ TstCond (Serious, false, "Division lacks a Guard Digit, so X/1 != X");
+ }
+ X = One / (One + U2);
+ Y = X - Half - Half;
+ TstCond (Serious, Y < Zero, "Computed value of 1/1.000..1 >= 1");
+ X = One - U2;
+ Y = One + Radix * U2;
+ Z = X * Radix;
+ T = Y * Radix;
+ R = Z / Radix;
+ StickyBit = T / Radix;
+ X = R - X;
+ Y = StickyBit - Y;
+ TstCond (Failure, X == Zero && Y == Zero,
+ "* and/or / gets too many last digits wrong");
+ Y = One - U1;
+ X = One - F9;
+ Y = One - Y;
+ T = Radix - U2;
+ Z = Radix - BMinusU2;
+ T = Radix - T;
+ if ((X == U1) && (Y == U1) && (Z == U2) && (T == U2))
+ GAddSub = Yes;
+ else
+ {
+ GAddSub = No;
+ TstCond (Serious, false,
+ "- lacks Guard Digit, so cancellation is obscured");
+ }
+ if (F9 != One && F9 - One >= Zero)
+ {
+ BadCond (Serious, "comparison alleges (1-U1) < 1 although\n");
+ printf (" subtraction yields (1-U1) - 1 = 0 , thereby vitiating\n");
+ printf (" such precautions against division by zero as\n");
+ printf (" ... if (X == 1.0) {.....} else {.../(X-1.0)...}\n");
+ }
+ if (GMult == Yes && GDiv == Yes && GAddSub == Yes)
+ printf
+ (" *, /, and - appear to have guard digits, as they should.\n");
+ /*=============================================*/
+ Milestone = 40;
+ /*=============================================*/
+ Pause ();
+ printf ("Checking rounding on multiply, divide and add/subtract.\n");
+ RMult = Other;
+ RDiv = Other;
+ RAddSub = Other;
+ RadixD2 = Radix / Two;
+ A1 = Two;
+ Done = false;
+ do
+ {
+ AInvrse = Radix;
+ do
+ {
+ X = AInvrse;
+ AInvrse = AInvrse / A1;
+ }
+ while (!(FLOOR (AInvrse) != AInvrse));
+ Done = (X == One) || (A1 > Three);
+ if (!Done)
+ A1 = Nine + One;
+ }
+ while (!(Done));
+ if (X == One)
+ A1 = Radix;
+ AInvrse = One / A1;
+ X = A1;
+ Y = AInvrse;
+ Done = false;
+ do
+ {
+ Z = X * Y - Half;
+ TstCond (Failure, Z == Half, "X * (1/X) differs from 1");
+ Done = X == Radix;
+ X = Radix;
+ Y = One / X;
+ }
+ while (!(Done));
+ Y2 = One + U2;
+ Y1 = One - U2;
+ X = OneAndHalf - U2;
+ Y = OneAndHalf + U2;
+ Z = (X - U2) * Y2;
+ T = Y * Y1;
+ Z = Z - X;
+ T = T - X;
+ X = X * Y2;
+ Y = (Y + U2) * Y1;
+ X = X - OneAndHalf;
+ Y = Y - OneAndHalf;
+ if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T <= Zero))
+ {
+ X = (OneAndHalf + U2) * Y2;
+ Y = OneAndHalf - U2 - U2;
+ Z = OneAndHalf + U2 + U2;
+ T = (OneAndHalf - U2) * Y1;
+ X = X - (Z + U2);
+ StickyBit = Y * Y1;
+ S = Z * Y2;
+ T = T - Y;
+ Y = (U2 - Y) + StickyBit;
+ Z = S - (Z + U2 + U2);
+ StickyBit = (Y2 + U2) * Y1;
+ Y1 = Y2 * Y1;
+ StickyBit = StickyBit - Y2;
+ Y1 = Y1 - Half;
+ if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
+ && (StickyBit == Zero) && (Y1 == Half))
+ {
+ RMult = Rounded;
+ printf ("Multiplication appears to round correctly.\n");
+ }
+ else if ((X + U2 == Zero) && (Y < Zero) && (Z + U2 == Zero)
+ && (T < Zero) && (StickyBit + U2 == Zero) && (Y1 < Half))
+ {
+ RMult = Chopped;
+ printf ("Multiplication appears to chop.\n");
+ }
+ else
+ printf ("* is neither chopped nor correctly rounded.\n");
+ if ((RMult == Rounded) && (GMult == No))
+ notify ("Multiplication");
+ }
+ else
+ printf ("* is neither chopped nor correctly rounded.\n");
+ /*=============================================*/
+ Milestone = 45;
+ /*=============================================*/
+ Y2 = One + U2;
+ Y1 = One - U2;
+ Z = OneAndHalf + U2 + U2;
+ X = Z / Y2;
+ T = OneAndHalf - U2 - U2;
+ Y = (T - U2) / Y1;
+ Z = (Z + U2) / Y2;
+ X = X - OneAndHalf;
+ Y = Y - T;
+ T = T / Y1;
+ Z = Z - (OneAndHalf + U2);
+ T = (U2 - OneAndHalf) + T;
+ if (!((X > Zero) || (Y > Zero) || (Z > Zero) || (T > Zero)))
+ {
+ X = OneAndHalf / Y2;
+ Y = OneAndHalf - U2;
+ Z = OneAndHalf + U2;
+ X = X - Y;
+ T = OneAndHalf / Y1;
+ Y = Y / Y1;
+ T = T - (Z + U2);
+ Y = Y - Z;
+ Z = Z / Y2;
+ Y1 = (Y2 + U2) / Y2;
+ Z = Z - OneAndHalf;
+ Y2 = Y1 - Y2;
+ Y1 = (F9 - U1) / F9;
+ if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
+ && (Y2 == Zero) && (Y2 == Zero) && (Y1 - Half == F9 - Half))
+ {
+ RDiv = Rounded;
+ printf ("Division appears to round correctly.\n");
+ if (GDiv == No)
+ notify ("Division");
+ }
+ else if ((X < Zero) && (Y < Zero) && (Z < Zero) && (T < Zero)
+ && (Y2 < Zero) && (Y1 - Half < F9 - Half))
+ {
+ RDiv = Chopped;
+ printf ("Division appears to chop.\n");
+ }
+ }
+ if (RDiv == Other)
+ printf ("/ is neither chopped nor correctly rounded.\n");
+ BInvrse = One / Radix;
+ TstCond (Failure, (BInvrse * Radix - Half == Half),
+ "Radix * ( 1 / Radix ) differs from 1");
+ /*=============================================*/
+ Milestone = 50;
+ /*=============================================*/
+ TstCond (Failure, ((F9 + U1) - Half == Half)
+ && ((BMinusU2 + U2) - One == Radix - One),
+ "Incomplete carry-propagation in Addition");
+ X = One - U1 * U1;
+ Y = One + U2 * (One - U2);
+ Z = F9 - Half;
+ X = (X - Half) - Z;
+ Y = Y - One;
+ if ((X == Zero) && (Y == Zero))
+ {
+ RAddSub = Chopped;
+ printf ("Add/Subtract appears to be chopped.\n");
+ }
+ if (GAddSub == Yes)
+ {
+ X = (Half + U2) * U2;
+ Y = (Half - U2) * U2;
+ X = One + X;
+ Y = One + Y;
+ X = (One + U2) - X;
+ Y = One - Y;
+ if ((X == Zero) && (Y == Zero))
+ {
+ X = (Half + U2) * U1;
+ Y = (Half - U2) * U1;
+ X = One - X;
+ Y = One - Y;
+ X = F9 - X;
+ Y = One - Y;
+ if ((X == Zero) && (Y == Zero))
+ {
+ RAddSub = Rounded;
+ printf ("Addition/Subtraction appears to round correctly.\n");
+ if (GAddSub == No)
+ notify ("Add/Subtract");
+ }
+ else
+ printf ("Addition/Subtraction neither rounds nor chops.\n");
+ }
+ else
+ printf ("Addition/Subtraction neither rounds nor chops.\n");
+ }
+ else
+ printf ("Addition/Subtraction neither rounds nor chops.\n");
+ S = One;
+ X = One + Half * (One + Half);
+ Y = (One + U2) * Half;
+ Z = X - Y;
+ T = Y - X;
+ StickyBit = Z + T;
+ if (StickyBit != Zero)
+ {
+ S = Zero;
+ BadCond (Flaw, "(X - Y) + (Y - X) is non zero!\n");
+ }
+ StickyBit = Zero;
+ if ((GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes)
+ && (RMult == Rounded) && (RDiv == Rounded)
+ && (RAddSub == Rounded) && (FLOOR (RadixD2) == RadixD2))
+ {
+ printf ("Checking for sticky bit.\n");
+ X = (Half + U1) * U2;
+ Y = Half * U2;
+ Z = One + Y;
+ T = One + X;
+ if ((Z - One <= Zero) && (T - One >= U2))
+ {
+ Z = T + Y;
+ Y = Z - X;
+ if ((Z - T >= U2) && (Y - T == Zero))
+ {
+ X = (Half + U1) * U1;
+ Y = Half * U1;
+ Z = One - Y;
+ T = One - X;
+ if ((Z - One == Zero) && (T - F9 == Zero))
+ {
+ Z = (Half - U1) * U1;
+ T = F9 - Z;
+ Q = F9 - Y;
+ if ((T - F9 == Zero) && (F9 - U1 - Q == Zero))
+ {
+ Z = (One + U2) * OneAndHalf;
+ T = (OneAndHalf + U2) - Z + U2;
+ X = One + Half / Radix;
+ Y = One + Radix * U2;
+ Z = X * Y;
+ if (T == Zero && X + Radix * U2 - Z == Zero)
+ {
+ if (Radix != Two)
+ {
+ X = Two + U2;
+ Y = X / Two;
+ if ((Y - One == Zero))
+ StickyBit = S;
+ }
+ else
+ StickyBit = S;
+ }
+ }
+ }
+ }
+ }
+ }
+ if (StickyBit == One)
+ printf ("Sticky bit apparently used correctly.\n");
+ else
+ printf ("Sticky bit used incorrectly or not at all.\n");
+ TstCond (Flaw, !(GMult == No || GDiv == No || GAddSub == No ||
+ RMult == Other || RDiv == Other || RAddSub == Other),
+ "lack(s) of guard digits or failure(s) to correctly round or chop\n\
+(noted above) count as one flaw in the final tally below");
+ /*=============================================*/
+ Milestone = 60;
+ /*=============================================*/
+ printf ("\n");
+ printf ("Does Multiplication commute? ");
+ printf ("Testing on %d random pairs.\n", NoTrials);
+ Random9 = SQRT (FLOAT (3));
+ Random1 = Third;
+ I = 1;
+ do
+ {
+ X = Random ();
+ Y = Random ();
+ Z9 = Y * X;
+ Z = X * Y;
+ Z9 = Z - Z9;
+ I = I + 1;
+ }
+ while (!((I > NoTrials) || (Z9 != Zero)));
+ if (I == NoTrials)
+ {
+ Random1 = One + Half / Three;
+ Random2 = (U2 + U1) + One;
+ Z = Random1 * Random2;
+ Y = Random2 * Random1;
+ Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half /
+ Three) * ((U2 + U1) +
+ One);
+ }
+ if (!((I == NoTrials) || (Z9 == Zero)))
+ BadCond (Defect, "X * Y == Y * X trial fails.\n");
+ else
+ printf (" No failures found in %d integer pairs.\n", NoTrials);
+ /*=============================================*/
+ Milestone = 70;
+ /*=============================================*/
+ printf ("\nRunning test of square root(x).\n");
+ TstCond (Failure, (Zero == SQRT (Zero))
+ && (-Zero == SQRT (-Zero))
+ && (One == SQRT (One)), "Square root of 0.0, -0.0 or 1.0 wrong");
+ MinSqEr = Zero;
+ MaxSqEr = Zero;
+ J = Zero;
+ X = Radix;
+ OneUlp = U2;
+ SqXMinX (Serious);
+ X = BInvrse;
+ OneUlp = BInvrse * U1;
+ SqXMinX (Serious);
+ X = U1;
+ OneUlp = U1 * U1;
+ SqXMinX (Serious);
+ if (J != Zero)
+ Pause ();
+ printf ("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials);
+ J = Zero;
+ X = Two;
+ Y = Radix;
+ if ((Radix != One))
+ do
+ {
+ X = Y;
+ Y = Radix * Y;
+ }
+ while (!((Y - X >= NoTrials)));
+ OneUlp = X * U2;
+ I = 1;
+ while (I <= NoTrials)
+ {
+ X = X + One;
+ SqXMinX (Defect);
+ if (J > Zero)
+ break;
+ I = I + 1;
+ }
+ printf ("Test for sqrt monotonicity.\n");
+ I = -1;
+ X = BMinusU2;
+ Y = Radix;
+ Z = Radix + Radix * U2;
+ NotMonot = false;
+ Monot = false;
+ while (!(NotMonot || Monot))
+ {
+ I = I + 1;
+ X = SQRT (X);
+ Q = SQRT (Y);
+ Z = SQRT (Z);
+ if ((X > Q) || (Q > Z))
+ NotMonot = true;
+ else
+ {
+ Q = FLOOR (Q + Half);
+ if (!(I > 0 || Radix == Q * Q))
+ Monot = true;
+ else if (I > 0)
+ {
+ if (I > 1)
+ Monot = true;
+ else
+ {
+ Y = Y * BInvrse;
+ X = Y - U1;
+ Z = Y + U1;
+ }
+ }
+ else
+ {
+ Y = Q;
+ X = Y - U2;
+ Z = Y + U2;
+ }
+ }
+ }
+ if (Monot)
+ printf ("sqrt has passed a test for Monotonicity.\n");
+ else
+ {
+ BadCond (Defect, "");
+ printf ("sqrt(X) is non-monotonic for X near %s .\n", Y.str());
+ }
+ /*=============================================*/
+ Milestone = 110;
+ /*=============================================*/
+ printf ("Seeking Underflow thresholds UfThold and E0.\n");
+ D = U1;
+ if (Precision != FLOOR (Precision))
+ {
+ D = BInvrse;
+ X = Precision;
+ do
+ {
+ D = D * BInvrse;
+ X = X - One;
+ }
+ while (X > Zero);
+ }
+ Y = One;
+ Z = D;
+ /* ... D is power of 1/Radix < 1. */
+ do
+ {
+ C = Y;
+ Y = Z;
+ Z = Y * Y;
+ }
+ while ((Y > Z) && (Z + Z > Z));
+ Y = C;
+ Z = Y * D;
+ do
+ {
+ C = Y;
+ Y = Z;
+ Z = Y * D;
+ }
+ while ((Y > Z) && (Z + Z > Z));
+ if (Radix < Two)
+ HInvrse = Two;
+ else
+ HInvrse = Radix;
+ H = One / HInvrse;
+ /* ... 1/HInvrse == H == Min(1/Radix, 1/2) */
+ CInvrse = One / C;
+ E0 = C;
+ Z = E0 * H;
+ /* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */
+ do
+ {
+ Y = E0;
+ E0 = Z;
+ Z = E0 * H;
+ }
+ while ((E0 > Z) && (Z + Z > Z));
+ UfThold = E0;
+ E1 = Zero;
+ Q = Zero;
+ E9 = U2;
+ S = One + E9;
+ D = C * S;
+ if (D <= C)
+ {
+ E9 = Radix * U2;
+ S = One + E9;
+ D = C * S;
+ if (D <= C)
+ {
+ BadCond (Failure,
+ "multiplication gets too many last digits wrong.\n");
+ Underflow = E0;
+ Y1 = Zero;
+ PseudoZero = Z;
+ Pause ();
+ }
+ }
+ else
+ {
+ Underflow = D;
+ PseudoZero = Underflow * H;
+ UfThold = Zero;
+ do
+ {
+ Y1 = Underflow;
+ Underflow = PseudoZero;
+ if (E1 + E1 <= E1)
+ {
+ Y2 = Underflow * HInvrse;
+ E1 = FABS (Y1 - Y2);
+ Q = Y1;
+ if ((UfThold == Zero) && (Y1 != Y2))
+ UfThold = Y1;
+ }
+ PseudoZero = PseudoZero * H;
+ }
+ while ((Underflow > PseudoZero)
+ && (PseudoZero + PseudoZero > PseudoZero));
+ }
+ /* Comment line 4530 .. 4560 */
+ if (PseudoZero != Zero)
+ {
+ printf ("\n");
+ Z = PseudoZero;
+ /* ... Test PseudoZero for "phoney- zero" violates */
+ /* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero
+ ... */
+ if (PseudoZero <= Zero)
+ {
+ BadCond (Failure, "Positive expressions can underflow to an\n");
+ printf ("allegedly negative value\n");
+ printf ("PseudoZero that prints out as: %s .\n", PseudoZero.str());
+ X = -PseudoZero;
+ if (X <= Zero)
+ {
+ printf ("But -PseudoZero, which should be\n");
+ printf ("positive, isn't; it prints out as %s .\n", X.str());
+ }
+ }
+ else
+ {
+ BadCond (Flaw, "Underflow can stick at an allegedly positive\n");
+ printf ("value PseudoZero that prints out as %s .\n",
+ PseudoZero.str());
+ }
+ TstPtUf ();
+ }
+ /*=============================================*/
+ Milestone = 120;
+ /*=============================================*/
+ if (CInvrse * Y > CInvrse * Y1)
+ {
+ S = H * S;
+ E0 = Underflow;
+ }
+ if (!((E1 == Zero) || (E1 == E0)))
+ {
+ BadCond (Defect, "");
+ if (E1 < E0)
+ {
+ printf ("Products underflow at a higher");
+ printf (" threshold than differences.\n");
+ if (PseudoZero == Zero)
+ E0 = E1;
+ }
+ else
+ {
+ printf ("Difference underflows at a higher");
+ printf (" threshold than products.\n");
+ }
+ }
+ printf ("Smallest strictly positive number found is E0 = %s .\n", E0.str());
+ Z = E0;
+ TstPtUf ();
+ Underflow = E0;
+ if (N == 1)
+ Underflow = Y;
+ I = 4;
+ if (E1 == Zero)
+ I = 3;
+ if (UfThold == Zero)
+ I = I - 2;
+ UfNGrad = true;
+ switch (I)
+ {
+ case 1:
+ UfThold = Underflow;
+ if ((CInvrse * Q) != ((CInvrse * Y) * S))
+ {
+ UfThold = Y;
+ BadCond (Failure, "Either accuracy deteriorates as numbers\n");
+ printf ("approach a threshold = %s\n", UfThold.str());
+ printf (" coming down from %s\n", C.str());
+ printf
+ (" or else multiplication gets too many last digits wrong.\n");
+ }
+ Pause ();
+ break;
+
+ case 2:
+ BadCond (Failure,
+ "Underflow confuses Comparison, which alleges that\n");
+ printf ("Q == Y while denying that |Q - Y| == 0; these values\n");
+ printf ("print out as Q = %s, Y = %s .\n", Q.str(), Y2.str());
+ printf ("|Q - Y| = %s .\n", FABS (Q - Y2).str());
+ UfThold = Q;
+ break;
+
+ case 3:
+ X = X;
+ break;
+
+ case 4:
+ if ((Q == UfThold) && (E1 == E0) && (FABS (UfThold - E1 / E9) <= E1))
+ {
+ UfNGrad = false;
+ printf ("Underflow is gradual; it incurs Absolute Error =\n");
+ printf ("(roundoff in UfThold) < E0.\n");
+ Y = E0 * CInvrse;
+ Y = Y * (OneAndHalf + U2);
+ X = CInvrse * (One + U2);
+ Y = Y / X;
+ IEEE = (Y == E0);
+ }
+ }
+ if (UfNGrad)
+ {
+ printf ("\n");
+ if (setjmp (ovfl_buf))
+ {
+ printf ("Underflow / UfThold failed!\n");
+ R = H + H;
+ }
+ else
+ R = SQRT (Underflow / UfThold);
+ if (R <= H)
+ {
+ Z = R * UfThold;
+ X = Z * (One + R * H * (One + H));
+ }
+ else
+ {
+ Z = UfThold;
+ X = Z * (One + H * H * (One + H));
+ }
+ if (!((X == Z) || (X - Z != Zero)))
+ {
+ BadCond (Flaw, "");
+ printf ("X = %s\n\tis not equal to Z = %s .\n", X.str(), Z.str());
+ Z9 = X - Z;
+ printf ("yet X - Z yields %s .\n", Z9.str());
+ printf (" Should this NOT signal Underflow, ");
+ printf ("this is a SERIOUS DEFECT\nthat causes ");
+ printf ("confusion when innocent statements like\n");;
+ printf (" if (X == Z) ... else");
+ printf (" ... (f(X) - f(Z)) / (X - Z) ...\n");
+ printf ("encounter Division by Zero although actually\n");
+ if (setjmp (ovfl_buf))
+ printf ("X / Z fails!\n");
+ else
+ printf ("X / Z = 1 + %s .\n", ((X / Z - Half) - Half).str());
+ }
+ }
+ printf ("The Underflow threshold is %s, below which\n", UfThold.str());
+ printf ("calculation may suffer larger Relative error than ");
+ printf ("merely roundoff.\n");
+ Y2 = U1 * U1;
+ Y = Y2 * Y2;
+ Y2 = Y * U1;
+ if (Y2 <= UfThold)
+ {
+ if (Y > E0)
+ {
+ BadCond (Defect, "");
+ I = 5;
+ }
+ else
+ {
+ BadCond (Serious, "");
+ I = 4;
+ }
+ printf ("Range is too narrow; U1^%d Underflows.\n", I);
+ }
+ /*=============================================*/
+ Milestone = 130;
+ /*=============================================*/
+ Y = -FLOOR (Half - TwoForty * LOG (UfThold) / LOG (HInvrse)) / TwoForty;
+ Y2 = Y + Y;
+ printf ("Since underflow occurs below the threshold\n");
+ printf ("UfThold = (%s) ^ (%s)\nonly underflow ", HInvrse.str(), Y.str());
+ printf ("should afflict the expression\n\t(%s) ^ (%s);\n",
+ HInvrse.str(), Y2.str());
+ printf ("actually calculating yields:");
+ if (setjmp (ovfl_buf))
+ {
+ BadCond (Serious, "trap on underflow.\n");
+ }
+ else
+ {
+ V9 = POW (HInvrse, Y2);
+ printf (" %s .\n", V9.str());
+ if (!((V9 >= Zero) && (V9 <= (Radix + Radix + E9) * UfThold)))
+ {
+ BadCond (Serious, "this is not between 0 and underflow\n");
+ printf (" threshold = %s .\n", UfThold.str());
+ }
+ else if (!(V9 > UfThold * (One + E9)))
+ printf ("This computed value is O.K.\n");
+ else
+ {
+ BadCond (Defect, "this is not between 0 and underflow\n");
+ printf (" threshold = %s .\n", UfThold.str());
+ }
+ }
+ /*=============================================*/
+ Milestone = 160;
+ /*=============================================*/
+ Pause ();
+ printf ("Searching for Overflow threshold:\n");
+ printf ("This may generate an error.\n");
+ Y = -CInvrse;
+ V9 = HInvrse * Y;
+ if (setjmp (ovfl_buf))
+ {
+ I = 0;
+ V9 = Y;
+ goto overflow;
+ }
+ do
+ {
+ V = Y;
+ Y = V9;
+ V9 = HInvrse * Y;
+ }
+ while (V9 < Y);
+ I = 1;
+overflow:
+ Z = V9;
+ printf ("Can `Z = -Y' overflow?\n");
+ printf ("Trying it on Y = %s .\n", Y.str());
+ V9 = -Y;
+ V0 = V9;
+ if (V - Y == V + V0)
+ printf ("Seems O.K.\n");
+ else
+ {
+ printf ("finds a ");
+ BadCond (Flaw, "-(-Y) differs from Y.\n");
+ }
+ if (Z != Y)
+ {
+ BadCond (Serious, "");
+ printf ("overflow past %s\n\tshrinks to %s .\n", Y.str(), Z.str());
+ }
+ if (I)
+ {
+ Y = V * (HInvrse * U2 - HInvrse);
+ Z = Y + ((One - HInvrse) * U2) * V;
+ if (Z < V0)
+ Y = Z;
+ if (Y < V0)
+ V = Y;
+ if (V0 - V < V0)
+ V = V0;
+ }
+ else
+ {
+ V = Y * (HInvrse * U2 - HInvrse);
+ V = V + ((One - HInvrse) * U2) * Y;
+ }
+ printf ("Overflow threshold is V = %s .\n", V.str());
+ if (I)
+ printf ("Overflow saturates at V0 = %s .\n", V0.str());
+ else
+ printf ("There is no saturation value because "
+ "the system traps on overflow.\n");
+ V9 = V * One;
+ printf ("No Overflow should be signaled for V * 1 = %s\n", V9.str());
+ V9 = V / One;
+ printf (" nor for V / 1 = %s.\n", V9.str());
+ printf ("Any overflow signal separating this * from the one\n");
+ printf ("above is a DEFECT.\n");
+ /*=============================================*/
+ Milestone = 170;
+ /*=============================================*/
+ if (!(-V < V && -V0 < V0 && -UfThold < V && UfThold < V))
+ {
+ BadCond (Failure, "Comparisons involving ");
+ printf ("+-%s, +-%s\nand +-%s are confused by Overflow.",
+ V.str(), V0.str(), UfThold.str());
+ }
+ /*=============================================*/
+ Milestone = 175;
+ /*=============================================*/
+ printf ("\n");
+ for (Indx = 1; Indx <= 3; ++Indx)
+ {
+ switch (Indx)
+ {
+ case 1:
+ Z = UfThold;
+ break;
+ case 2:
+ Z = E0;
+ break;
+ case 3:
+ Z = PseudoZero;
+ break;
+ }
+ if (Z != Zero)
+ {
+ V9 = SQRT (Z);
+ Y = V9 * V9;
+ if (Y / (One - Radix * E9) < Z || Y > (One + Radix * E9) * Z)
+ { /* dgh: + E9 --> * E9 */
+ if (V9 > U1)
+ BadCond (Serious, "");
+ else
+ BadCond (Defect, "");
+ printf ("Comparison alleges that what prints as Z = %s\n",
+ Z.str());
+ printf (" is too far from sqrt(Z) ^ 2 = %s .\n", Y.str());
+ }
+ }
+ }
+ /*=============================================*/
+ Milestone = 180;
+ /*=============================================*/
+ for (Indx = 1; Indx <= 2; ++Indx)
+ {
+ if (Indx == 1)
+ Z = V;
+ else
+ Z = V0;
+ V9 = SQRT (Z);
+ X = (One - Radix * E9) * V9;
+ V9 = V9 * X;
+ if (((V9 < (One - Two * Radix * E9) * Z) || (V9 > Z)))
+ {
+ Y = V9;
+ if (X < W)
+ BadCond (Serious, "");
+ else
+ BadCond (Defect, "");
+ printf ("Comparison alleges that Z = %s\n", Z.str());
+ printf (" is too far from sqrt(Z) ^ 2 (%s) .\n", Y.str());
+ }
+ }
+ /*=============================================*/
+ Milestone = 190;
+ /*=============================================*/
+ Pause ();
+ X = UfThold * V;
+ Y = Radix * Radix;
+ if (X * Y < One || X > Y)
+ {
+ if (X * Y < U1 || X > Y / U1)
+ BadCond (Defect, "Badly");
+ else
+ BadCond (Flaw, "");
+
+ printf (" unbalanced range; UfThold * V = %s\n\t%s\n",
+ X.str(), "is too far from 1.\n");
+ }
+ /*=============================================*/
+ Milestone = 200;
+ /*=============================================*/
+ for (Indx = 1; Indx <= 5; ++Indx)
+ {
+ X = F9;
+ switch (Indx)
+ {
+ case 2:
+ X = One + U2;
+ break;
+ case 3:
+ X = V;
+ break;
+ case 4:
+ X = UfThold;
+ break;
+ case 5:
+ X = Radix;
+ }
+ Y = X;
+ if (setjmp (ovfl_buf))
+ printf (" X / X traps when X = %s\n", X.str());
+ else
+ {
+ V9 = (Y / X - Half) - Half;
+ if (V9 == Zero)
+ continue;
+ if (V9 == -U1 && Indx < 5)
+ BadCond (Flaw, "");
+ else
+ BadCond (Serious, "");
+ printf (" X / X differs from 1 when X = %s\n", X.str());
+ printf (" instead, X / X - 1/2 - 1/2 = %s .\n", V9.str());
+ }
+ }
+ /*=============================================*/
+ Milestone = 210;
+ /*=============================================*/
+ MyZero = Zero;
+ printf ("\n");
+ printf ("What message and/or values does Division by Zero produce?\n");
+ printf (" Trying to compute 1 / 0 produces ...");
+ if (!setjmp (ovfl_buf))
+ printf (" %s .\n", (One / MyZero).str());
+ printf ("\n Trying to compute 0 / 0 produces ...");
+ if (!setjmp (ovfl_buf))
+ printf (" %s .\n", (Zero / MyZero).str());
+ /*=============================================*/
+ Milestone = 220;
+ /*=============================================*/
+ Pause ();
+ printf ("\n");
+ {
+ static const char *msg[] = {
+ "FAILUREs encountered =",
+ "SERIOUS DEFECTs discovered =",
+ "DEFECTs discovered =",
+ "FLAWs discovered ="
+ };
+ int i;
+ for (i = 0; i < 4; i++)
+ if (ErrCnt[i])
+ printf ("The number of %-29s %d.\n", msg[i], ErrCnt[i]);
+ }
+ printf ("\n");
+ if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] + ErrCnt[Flaw]) > 0)
+ {
+ if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] == 0)
+ && (ErrCnt[Flaw] > 0))
+ {
+ printf ("The arithmetic diagnosed seems ");
+ printf ("Satisfactory though flawed.\n");
+ }
+ if ((ErrCnt[Failure] + ErrCnt[Serious] == 0) && (ErrCnt[Defect] > 0))
+ {
+ printf ("The arithmetic diagnosed may be Acceptable\n");
+ printf ("despite inconvenient Defects.\n");
+ }
+ if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0)
+ {
+ printf ("The arithmetic diagnosed has ");
+ printf ("unacceptable Serious Defects.\n");
+ }
+ if (ErrCnt[Failure] > 0)
+ {
+ printf ("Potentially fatal FAILURE may have spoiled this");
+ printf (" program's subsequent diagnoses.\n");
+ }
+ }
+ else
+ {
+ printf ("No failures, defects nor flaws have been discovered.\n");
+ if (!((RMult == Rounded) && (RDiv == Rounded)
+ && (RAddSub == Rounded) && (RSqrt == Rounded)))
+ printf ("The arithmetic diagnosed seems Satisfactory.\n");
+ else
+ {
+ if (StickyBit >= One &&
+ (Radix - Two) * (Radix - Nine - One) == Zero)
+ {
+ printf ("Rounding appears to conform to ");
+ printf ("the proposed IEEE standard P");
+ if ((Radix == Two) &&
+ ((Precision - Four * Three * Two) *
+ (Precision - TwentySeven - TwentySeven + One) == Zero))
+ printf ("754");
+ else
+ printf ("854");
+ if (IEEE)
+ printf (".\n");
+ else
+ {
+ printf (",\nexcept for possibly Double Rounding");
+ printf (" during Gradual Underflow.\n");
+ }
+ }
+ printf ("The arithmetic diagnosed appears to be Excellent!\n");
+ }
+ }
+ printf ("END OF TEST.\n");
+ return 0;
+}
+
+template<typename FLOAT>
+FLOAT
+Paranoia<FLOAT>::Sign (FLOAT X)
+{
+ return X >= FLOAT (long (0)) ? 1 : -1;
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::Pause ()
+{
+ if (do_pause)
+ {
+ fputs ("Press return...", stdout);
+ fflush (stdout);
+ getchar();
+ }
+ printf ("\nDiagnosis resumes after milestone Number %d", Milestone);
+ printf (" Page: %d\n\n", PageNo);
+ ++Milestone;
+ ++PageNo;
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::TstCond (int K, int Valid, const char *T)
+{
+ if (!Valid)
+ {
+ BadCond (K, T);
+ printf (".\n");
+ }
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::BadCond (int K, const char *T)
+{
+ static const char *msg[] = { "FAILURE", "SERIOUS DEFECT", "DEFECT", "FLAW" };
+
+ ErrCnt[K] = ErrCnt[K] + 1;
+ printf ("%s: %s", msg[K], T);
+}
+
+/* Random computes
+ X = (Random1 + Random9)^5
+ Random1 = X - FLOOR(X) + 0.000005 * X;
+ and returns the new value of Random1. */
+
+template<typename FLOAT>
+FLOAT
+Paranoia<FLOAT>::Random ()
+{
+ FLOAT X, Y;
+
+ X = Random1 + Random9;
+ Y = X * X;
+ Y = Y * Y;
+ X = X * Y;
+ Y = X - FLOOR (X);
+ Random1 = Y + X * FLOAT ("0.000005");
+ return (Random1);
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::SqXMinX (int ErrKind)
+{
+ FLOAT XA, XB;
+
+ XB = X * BInvrse;
+ XA = X - XB;
+ SqEr = ((SQRT (X * X) - XB) - XA) / OneUlp;
+ if (SqEr != Zero)
+ {
+ if (SqEr < MinSqEr)
+ MinSqEr = SqEr;
+ if (SqEr > MaxSqEr)
+ MaxSqEr = SqEr;
+ J = J + 1;
+ BadCond (ErrKind, "\n");
+ printf ("sqrt(%s) - %s = %s\n", (X * X).str(), X.str(),
+ (OneUlp * SqEr).str());
+ printf ("\tinstead of correct value 0 .\n");
+ }
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::NewD ()
+{
+ X = Z1 * Q;
+ X = FLOOR (Half - X / Radix) * Radix + X;
+ Q = (Q - X * Z) / Radix + X * X * (D / Radix);
+ Z = Z - Two * X * D;
+ if (Z <= Zero)
+ {
+ Z = -Z;
+ Z1 = -Z1;
+ }
+ D = Radix * D;
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::SR3750 ()
+{
+ if (!((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2)))
+ {
+ I = I + 1;
+ X2 = SQRT (X * D);
+ Y2 = (X2 - Z2) - (Y - Z2);
+ X2 = X8 / (Y - Half);
+ X2 = X2 - Half * X2 * X2;
+ SqEr = (Y2 + Half) + (Half - X2);
+ if (SqEr < MinSqEr)
+ MinSqEr = SqEr;
+ SqEr = Y2 - X2;
+ if (SqEr > MaxSqEr)
+ MaxSqEr = SqEr;
+ }
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::IsYeqX ()
+{
+ if (Y != X)
+ {
+ if (N <= 0)
+ {
+ if (Z == Zero && Q <= Zero)
+ printf ("WARNING: computing\n");
+ else
+ BadCond (Defect, "computing\n");
+ printf ("\t(%s) ^ (%s)\n", Z.str(), Q.str());
+ printf ("\tyielded %s;\n", Y.str());
+ printf ("\twhich compared unequal to correct %s ;\n", X.str());
+ printf ("\t\tthey differ by %s .\n", (Y - X).str());
+ }
+ N = N + 1; /* ... count discrepancies. */
+ }
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::PrintIfNPositive ()
+{
+ if (N > 0)
+ printf ("Similar discrepancies have occurred %d times.\n", N);
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::TstPtUf ()
+{
+ N = 0;
+ if (Z != Zero)
+ {
+ printf ("Since comparison denies Z = 0, evaluating ");
+ printf ("(Z + Z) / Z should be safe.\n");
+ if (setjmp (ovfl_buf))
+ goto very_serious;
+ Q9 = (Z + Z) / Z;
+ printf ("What the machine gets for (Z + Z) / Z is %s .\n", Q9.str());
+ if (FABS (Q9 - Two) < Radix * U2)
+ {
+ printf ("This is O.K., provided Over/Underflow");
+ printf (" has NOT just been signaled.\n");
+ }
+ else
+ {
+ if ((Q9 < One) || (Q9 > Two))
+ {
+ very_serious:
+ N = 1;
+ ErrCnt[Serious] = ErrCnt[Serious] + 1;
+ printf ("This is a VERY SERIOUS DEFECT!\n");
+ }
+ else
+ {
+ N = 1;
+ ErrCnt[Defect] = ErrCnt[Defect] + 1;
+ printf ("This is a DEFECT!\n");
+ }
+ }
+ V9 = Z * One;
+ Random1 = V9;
+ V9 = One * Z;
+ Random2 = V9;
+ V9 = Z / One;
+ if ((Z == Random1) && (Z == Random2) && (Z == V9))
+ {
+ if (N > 0)
+ Pause ();
+ }
+ else
+ {
+ N = 1;
+ BadCond (Defect, "What prints as Z = ");
+ printf ("%s\n\tcompares different from ", Z.str());
+ if (Z != Random1)
+ printf ("Z * 1 = %s ", Random1.str());
+ if (!((Z == Random2) || (Random2 == Random1)))
+ printf ("1 * Z == %s\n", Random2.str());
+ if (!(Z == V9))
+ printf ("Z / 1 = %s\n", V9.str());
+ if (Random2 != Random1)
+ {
+ ErrCnt[Defect] = ErrCnt[Defect] + 1;
+ BadCond (Defect, "Multiplication does not commute!\n");
+ printf ("\tComparison alleges that 1 * Z = %s\n", Random2.str());
+ printf ("\tdiffers from Z * 1 = %s\n", Random1.str());
+ }
+ Pause ();
+ }
+ }
+}
+
+template<typename FLOAT>
+void
+Paranoia<FLOAT>::notify (const char *s)
+{
+ printf ("%s test appears to be inconsistent...\n", s);
+ printf (" PLEASE NOTIFY KARPINKSI!\n");
+}
+
+/* ====================================================================== */
+
+int main(int ac, char **av)
+{
+ setbuf(stdout, NULL);
+ setbuf(stderr, NULL);
+
+ while (1)
+ switch (getopt (ac, av, "pvg:fdl"))
+ {
+ case -1:
+ return 0;
+ case 'p':
+ do_pause = true;
+ break;
+ case 'v':
+ verbose = true;
+ break;
+ case 'g':
+ {
+ static const struct {
+ const char *name;
+ const struct real_format *fmt;
+ } fmts[] = {
+#define F(x) { #x, &x##_format }
+ F(ieee_single),
+ F(ieee_double),
+ F(ieee_extended_motorola),
+ F(ieee_extended_intel_96),
+ F(ieee_extended_intel_128),
+ F(ibm_extended),
+ F(ieee_quad),
+ F(vax_f),
+ F(vax_d),
+ F(vax_g),
+ F(i370_single),
+ F(i370_double),
+ F(real_internal),
+#undef F
+ };
+
+ int i, n = sizeof (fmts)/sizeof(*fmts);
+
+ for (i = 0; i < n; ++i)
+ if (strcmp (fmts[i].name, optarg) == 0)
+ break;
+
+ if (i == n)
+ {
+ printf ("Unknown implementation \"%s\"; "
+ "available implementations:\n", optarg);
+ for (i = 0; i < n; ++i)
+ printf ("\t%s\n", fmts[i].name);
+ return 1;
+ }
+
+ // We cheat and use the same mode all the time, but vary
+ // the format used for that mode.
+ real_format_for_mode[int(real_c_float::MODE) - int(QFmode)]
+ = fmts[i].fmt;
+
+ Paranoia<real_c_float>().main();
+ break;
+ }
+
+ case 'f':
+ Paranoia < native_float<float> >().main();
+ break;
+ case 'd':
+ Paranoia < native_float<double> >().main();
+ break;
+ case 'l':
+#ifndef NO_LONG_DOUBLE
+ Paranoia < native_float<long double> >().main();
+#endif
+ break;
+
+ case '?':
+ puts ("-p\tpause between pages");
+ puts ("-g<FMT>\treal.c implementation FMT");
+ puts ("-f\tnative float");
+ puts ("-d\tnative double");
+ puts ("-l\tnative long double");
+ return 0;
+ }
+}
+
+/* GCC stuff referenced by real.o. */
+
+extern "C" void
+fancy_abort ()
+{
+ abort ();
+}
+
+int target_flags = 0;
+
+extern "C" int
+floor_log2_wide (unsigned HOST_WIDE_INT x)
+{
+ int log = -1;
+ while (x != 0)
+ log++,
+ x >>= 1;
+ return log;
+}