aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/boehm-gc/cord/cordbscs.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.0/boehm-gc/cord/cordbscs.c')
-rw-r--r--gcc-4.4.0/boehm-gc/cord/cordbscs.c919
1 files changed, 0 insertions, 919 deletions
diff --git a/gcc-4.4.0/boehm-gc/cord/cordbscs.c b/gcc-4.4.0/boehm-gc/cord/cordbscs.c
deleted file mode 100644
index d83f4067d..000000000
--- a/gcc-4.4.0/boehm-gc/cord/cordbscs.c
+++ /dev/null
@@ -1,919 +0,0 @@
-/*
- * Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved.
- *
- * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
- * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
- *
- * Permission is hereby granted to use or copy this program
- * for any purpose, provided the above notices are retained on all copies.
- * Permission to modify the code and to distribute modified code is granted,
- * provided the above notices are retained, and a notice that the code was
- * modified is included with the above copyright notice.
- *
- * Author: Hans-J. Boehm (boehm@parc.xerox.com)
- */
-/* Boehm, October 3, 1994 5:19 pm PDT */
-# include "gc.h"
-# include "cord.h"
-# include <stdlib.h>
-# include <stdio.h>
-# include <string.h>
-
-/* An implementation of the cord primitives. These are the only */
-/* Functions that understand the representation. We perform only */
-/* minimal checks on arguments to these functions. Out of bounds */
-/* arguments to the iteration functions may result in client functions */
-/* invoked on garbage data. In most cases, client functions should be */
-/* programmed defensively enough that this does not result in memory */
-/* smashes. */
-
-typedef void (* oom_fn)(void);
-
-oom_fn CORD_oom_fn = (oom_fn) 0;
-
-# define OUT_OF_MEMORY { if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \
- ABORT("Out of memory\n"); }
-# define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); }
-
-typedef unsigned long word;
-
-typedef union {
- struct Concatenation {
- char null;
- char header;
- char depth; /* concatenation nesting depth. */
- unsigned char left_len;
- /* Length of left child if it is sufficiently */
- /* short; 0 otherwise. */
-# define MAX_LEFT_LEN 255
- word len;
- CORD left; /* length(left) > 0 */
- CORD right; /* length(right) > 0 */
- } concatenation;
- struct Function {
- char null;
- char header;
- char depth; /* always 0 */
- char left_len; /* always 0 */
- word len;
- CORD_fn fn;
- void * client_data;
- } function;
- struct Generic {
- char null;
- char header;
- char depth;
- char left_len;
- word len;
- } generic;
- char string[1];
-} CordRep;
-
-# define CONCAT_HDR 1
-
-# define FN_HDR 4
-# define SUBSTR_HDR 6
- /* Substring nodes are a special case of function nodes. */
- /* The client_data field is known to point to a substr_args */
- /* structure, and the function is either CORD_apply_access_fn */
- /* or CORD_index_access_fn. */
-
-/* The following may be applied only to function and concatenation nodes: */
-#define IS_CONCATENATION(s) (((CordRep *)s)->generic.header == CONCAT_HDR)
-
-#define IS_FUNCTION(s) ((((CordRep *)s)->generic.header & FN_HDR) != 0)
-
-#define IS_SUBSTR(s) (((CordRep *)s)->generic.header == SUBSTR_HDR)
-
-#define LEN(s) (((CordRep *)s) -> generic.len)
-#define DEPTH(s) (((CordRep *)s) -> generic.depth)
-#define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s))
-
-#define LEFT_LEN(c) ((c) -> left_len != 0? \
- (c) -> left_len \
- : (CORD_IS_STRING((c) -> left) ? \
- (c) -> len - GEN_LEN((c) -> right) \
- : LEN((c) -> left)))
-
-#define SHORT_LIMIT (sizeof(CordRep) - 1)
- /* Cords shorter than this are C strings */
-
-
-/* Dump the internal representation of x to stdout, with initial */
-/* indentation level n. */
-void CORD_dump_inner(CORD x, unsigned n)
-{
- register size_t i;
-
- for (i = 0; i < (size_t)n; i++) {
- fputs(" ", stdout);
- }
- if (x == 0) {
- fputs("NIL\n", stdout);
- } else if (CORD_IS_STRING(x)) {
- for (i = 0; i <= SHORT_LIMIT; i++) {
- if (x[i] == '\0') break;
- putchar(x[i]);
- }
- if (x[i] != '\0') fputs("...", stdout);
- putchar('\n');
- } else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc =
- &(((CordRep *)x) -> concatenation);
- printf("Concatenation: %p (len: %d, depth: %d)\n",
- x, (int)(conc -> len), (int)(conc -> depth));
- CORD_dump_inner(conc -> left, n+1);
- CORD_dump_inner(conc -> right, n+1);
- } else /* function */{
- register struct Function * func =
- &(((CordRep *)x) -> function);
- if (IS_SUBSTR(x)) printf("(Substring) ");
- printf("Function: %p (len: %d): ", x, (int)(func -> len));
- for (i = 0; i < 20 && i < func -> len; i++) {
- putchar((*(func -> fn))(i, func -> client_data));
- }
- if (i < func -> len) fputs("...", stdout);
- putchar('\n');
- }
-}
-
-/* Dump the internal representation of x to stdout */
-void CORD_dump(CORD x)
-{
- CORD_dump_inner(x, 0);
- fflush(stdout);
-}
-
-CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
-{
- register size_t result_len;
- register size_t lenx;
- register int depth;
-
- if (x == CORD_EMPTY) return(y);
- if (leny == 0) return(x);
- if (CORD_IS_STRING(x)) {
- lenx = strlen(x);
- result_len = lenx + leny;
- if (result_len <= SHORT_LIMIT) {
- register char * result = GC_MALLOC_ATOMIC(result_len+1);
-
- if (result == 0) OUT_OF_MEMORY;
- memcpy(result, x, lenx);
- memcpy(result + lenx, y, leny);
- result[result_len] = '\0';
- return((CORD) result);
- } else {
- depth = 1;
- }
- } else {
- register CORD right;
- register CORD left;
- register char * new_right;
- register size_t right_len;
-
- lenx = LEN(x);
-
- if (leny <= SHORT_LIMIT/2
- && IS_CONCATENATION(x)
- && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) {
- /* Merge y into right part of x. */
- if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) {
- right_len = lenx - LEN(left);
- } else if (((CordRep *)x) -> concatenation.left_len != 0) {
- right_len = lenx - ((CordRep *)x) -> concatenation.left_len;
- } else {
- right_len = strlen(right);
- }
- result_len = right_len + leny; /* length of new_right */
- if (result_len <= SHORT_LIMIT) {
- new_right = GC_MALLOC_ATOMIC(result_len + 1);
- memcpy(new_right, right, right_len);
- memcpy(new_right + right_len, y, leny);
- new_right[result_len] = '\0';
- y = new_right;
- leny = result_len;
- x = left;
- lenx -= right_len;
- /* Now fall through to concatenate the two pieces: */
- }
- if (CORD_IS_STRING(x)) {
- depth = 1;
- } else {
- depth = DEPTH(x) + 1;
- }
- } else {
- depth = DEPTH(x) + 1;
- }
- result_len = lenx + leny;
- }
- {
- /* The general case; lenx, result_len is known: */
- register struct Concatenation * result;
-
- result = GC_NEW(struct Concatenation);
- if (result == 0) OUT_OF_MEMORY;
- result->header = CONCAT_HDR;
- result->depth = depth;
- if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
- result->len = result_len;
- result->left = x;
- result->right = y;
- if (depth >= MAX_DEPTH) {
- return(CORD_balance((CORD)result));
- } else {
- return((CORD) result);
- }
- }
-}
-
-
-CORD CORD_cat(CORD x, CORD y)
-{
- register size_t result_len;
- register int depth;
- register size_t lenx;
-
- if (x == CORD_EMPTY) return(y);
- if (y == CORD_EMPTY) return(x);
- if (CORD_IS_STRING(y)) {
- return(CORD_cat_char_star(x, y, strlen(y)));
- } else if (CORD_IS_STRING(x)) {
- lenx = strlen(x);
- depth = DEPTH(y) + 1;
- } else {
- register int depthy = DEPTH(y);
-
- lenx = LEN(x);
- depth = DEPTH(x) + 1;
- if (depthy >= depth) depth = depthy + 1;
- }
- result_len = lenx + LEN(y);
- {
- register struct Concatenation * result;
-
- result = GC_NEW(struct Concatenation);
- if (result == 0) OUT_OF_MEMORY;
- result->header = CONCAT_HDR;
- result->depth = depth;
- if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
- result->len = result_len;
- result->left = x;
- result->right = y;
- if (depth >= MAX_DEPTH) {
- return(CORD_balance((CORD)result));
- } else {
- return((CORD) result);
- }
- }
-}
-
-
-
-CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len)
-{
- if (len <= 0) return(0);
- if (len <= SHORT_LIMIT) {
- register char * result;
- register size_t i;
- char buf[SHORT_LIMIT+1];
- register char c;
-
- for (i = 0; i < len; i++) {
- c = (*fn)(i, client_data);
- if (c == '\0') goto gen_case;
- buf[i] = c;
- }
- buf[i] = '\0';
- result = GC_MALLOC_ATOMIC(len+1);
- if (result == 0) OUT_OF_MEMORY;
- strcpy(result, buf);
- result[len] = '\0';
- return((CORD) result);
- }
- gen_case:
- {
- register struct Function * result;
-
- result = GC_NEW(struct Function);
- if (result == 0) OUT_OF_MEMORY;
- result->header = FN_HDR;
- /* depth is already 0 */
- result->len = len;
- result->fn = fn;
- result->client_data = client_data;
- return((CORD) result);
- }
-}
-
-size_t CORD_len(CORD x)
-{
- if (x == 0) {
- return(0);
- } else {
- return(GEN_LEN(x));
- }
-}
-
-struct substr_args {
- CordRep * sa_cord;
- size_t sa_index;
-};
-
-char CORD_index_access_fn(size_t i, void * client_data)
-{
- register struct substr_args *descr = (struct substr_args *)client_data;
-
- return(((char *)(descr->sa_cord))[i + descr->sa_index]);
-}
-
-char CORD_apply_access_fn(size_t i, void * client_data)
-{
- register struct substr_args *descr = (struct substr_args *)client_data;
- register struct Function * fn_cord = &(descr->sa_cord->function);
-
- return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data));
-}
-
-/* A version of CORD_substr that simply returns a function node, thus */
-/* postponing its work. The fourth argument is a function that may */
-/* be used for efficient access to the ith character. */
-/* Assumes i >= 0 and i + n < length(x). */
-CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f)
-{
- register struct substr_args * sa = GC_NEW(struct substr_args);
- CORD result;
-
- if (sa == 0) OUT_OF_MEMORY;
- sa->sa_cord = (CordRep *)x;
- sa->sa_index = i;
- result = CORD_from_fn(f, (void *)sa, n);
- ((CordRep *)result) -> function.header = SUBSTR_HDR;
- return (result);
-}
-
-# define SUBSTR_LIMIT (10 * SHORT_LIMIT)
- /* Substrings of function nodes and flat strings shorter than */
- /* this are flat strings. Othewise we use a functional */
- /* representation, which is significantly slower to access. */
-
-/* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/
-CORD CORD_substr_checked(CORD x, size_t i, size_t n)
-{
- if (CORD_IS_STRING(x)) {
- if (n > SUBSTR_LIMIT) {
- return(CORD_substr_closure(x, i, n, CORD_index_access_fn));
- } else {
- register char * result = GC_MALLOC_ATOMIC(n+1);
-
- if (result == 0) OUT_OF_MEMORY;
- strncpy(result, x+i, n);
- result[n] = '\0';
- return(result);
- }
- } else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
- register size_t left_len;
- register size_t right_len;
-
- left_len = LEFT_LEN(conc);
- right_len = conc -> len - left_len;
- if (i >= left_len) {
- if (n == right_len) return(conc -> right);
- return(CORD_substr_checked(conc -> right, i - left_len, n));
- } else if (i+n <= left_len) {
- if (n == left_len) return(conc -> left);
- return(CORD_substr_checked(conc -> left, i, n));
- } else {
- /* Need at least one character from each side. */
- register CORD left_part;
- register CORD right_part;
- register size_t left_part_len = left_len - i;
-
- if (i == 0) {
- left_part = conc -> left;
- } else {
- left_part = CORD_substr_checked(conc -> left, i, left_part_len);
- }
- if (i + n == right_len + left_len) {
- right_part = conc -> right;
- } else {
- right_part = CORD_substr_checked(conc -> right, 0,
- n - left_part_len);
- }
- return(CORD_cat(left_part, right_part));
- }
- } else /* function */ {
- if (n > SUBSTR_LIMIT) {
- if (IS_SUBSTR(x)) {
- /* Avoid nesting substring nodes. */
- register struct Function * f = &(((CordRep *)x) -> function);
- register struct substr_args *descr =
- (struct substr_args *)(f -> client_data);
-
- return(CORD_substr_closure((CORD)descr->sa_cord,
- i + descr->sa_index,
- n, f -> fn));
- } else {
- return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
- }
- } else {
- char * result;
- register struct Function * f = &(((CordRep *)x) -> function);
- char buf[SUBSTR_LIMIT+1];
- register char * p = buf;
- register char c;
- register int j;
- register int lim = i + n;
-
- for (j = i; j < lim; j++) {
- c = (*(f -> fn))(j, f -> client_data);
- if (c == '\0') {
- return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
- }
- *p++ = c;
- }
- *p = '\0';
- result = GC_MALLOC_ATOMIC(n+1);
- if (result == 0) OUT_OF_MEMORY;
- strcpy(result, buf);
- return(result);
- }
- }
-}
-
-CORD CORD_substr(CORD x, size_t i, size_t n)
-{
- register size_t len = CORD_len(x);
-
- if (i >= len || n <= 0) return(0);
- /* n < 0 is impossible in a correct C implementation, but */
- /* quite possible under SunOS 4.X. */
- if (i + n > len) n = len - i;
-# ifndef __STDC__
- if (i < 0) ABORT("CORD_substr: second arg. negative");
- /* Possible only if both client and C implementation are buggy. */
- /* But empirically this happens frequently. */
-# endif
- return(CORD_substr_checked(x, i, n));
-}
-
-/* See cord.h for definition. We assume i is in range. */
-int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1,
- CORD_batched_iter_fn f2, void * client_data)
-{
- if (x == 0) return(0);
- if (CORD_IS_STRING(x)) {
- register const char *p = x+i;
-
- if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big");
- if (f2 != CORD_NO_FN) {
- return((*f2)(p, client_data));
- } else {
- while (*p) {
- if ((*f1)(*p, client_data)) return(1);
- p++;
- }
- return(0);
- }
- } else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
-
-
- if (i > 0) {
- register size_t left_len = LEFT_LEN(conc);
-
- if (i >= left_len) {
- return(CORD_iter5(conc -> right, i - left_len, f1, f2,
- client_data));
- }
- }
- if (CORD_iter5(conc -> left, i, f1, f2, client_data)) {
- return(1);
- }
- return(CORD_iter5(conc -> right, 0, f1, f2, client_data));
- } else /* function */ {
- register struct Function * f = &(((CordRep *)x) -> function);
- register size_t j;
- register size_t lim = f -> len;
-
- for (j = i; j < lim; j++) {
- if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
- return(1);
- }
- }
- return(0);
- }
-}
-
-#undef CORD_iter
-int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data)
-{
- return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data));
-}
-
-int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data)
-{
- if (x == 0) return(0);
- if (CORD_IS_STRING(x)) {
- register const char *p = x + i;
- register char c;
-
- for(;;) {
- c = *p;
- if (c == '\0') ABORT("2nd arg to CORD_riter4 too big");
- if ((*f1)(c, client_data)) return(1);
- if (p == x) break;
- p--;
- }
- return(0);
- } else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
- register CORD left_part = conc -> left;
- register size_t left_len;
-
- left_len = LEFT_LEN(conc);
- if (i >= left_len) {
- if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) {
- return(1);
- }
- return(CORD_riter4(left_part, left_len - 1, f1, client_data));
- } else {
- return(CORD_riter4(left_part, i, f1, client_data));
- }
- } else /* function */ {
- register struct Function * f = &(((CordRep *)x) -> function);
- register size_t j;
-
- for (j = i; ; j--) {
- if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
- return(1);
- }
- if (j == 0) return(0);
- }
- }
-}
-
-int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data)
-{
- return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data));
-}
-
-/*
- * The following functions are concerned with balancing cords.
- * Strategy:
- * Scan the cord from left to right, keeping the cord scanned so far
- * as a forest of balanced trees of exponentialy decreasing length.
- * When a new subtree needs to be added to the forest, we concatenate all
- * shorter ones to the new tree in the appropriate order, and then insert
- * the result into the forest.
- * Crucial invariants:
- * 1. The concatenation of the forest (in decreasing order) with the
- * unscanned part of the rope is equal to the rope being balanced.
- * 2. All trees in the forest are balanced.
- * 3. forest[i] has depth at most i.
- */
-
-typedef struct {
- CORD c;
- size_t len; /* Actual length of c */
-} ForestElement;
-
-static size_t min_len [ MAX_DEPTH ];
-
-static int min_len_init = 0;
-
-int CORD_max_len;
-
-typedef ForestElement Forest [ MAX_DEPTH ];
- /* forest[i].len >= fib(i+1) */
- /* The string is the concatenation */
- /* of the forest in order of DECREASING */
- /* indices. */
-
-void CORD_init_min_len()
-{
- register int i;
- register size_t last, previous, current;
-
- min_len[0] = previous = 1;
- min_len[1] = last = 2;
- for (i = 2; i < MAX_DEPTH; i++) {
- current = last + previous;
- if (current < last) /* overflow */ current = last;
- min_len[i] = current;
- previous = last;
- last = current;
- }
- CORD_max_len = last - 1;
- min_len_init = 1;
-}
-
-
-void CORD_init_forest(ForestElement * forest, size_t max_len)
-{
- register int i;
-
- for (i = 0; i < MAX_DEPTH; i++) {
- forest[i].c = 0;
- if (min_len[i] > max_len) return;
- }
- ABORT("Cord too long");
-}
-
-/* Add a leaf to the appropriate level in the forest, cleaning */
-/* out lower levels as necessary. */
-/* Also works if x is a balanced tree of concatenations; however */
-/* in this case an extra concatenation node may be inserted above x; */
-/* This node should not be counted in the statement of the invariants. */
-void CORD_add_forest(ForestElement * forest, CORD x, size_t len)
-{
- register int i = 0;
- register CORD sum = CORD_EMPTY;
- register size_t sum_len = 0;
-
- while (len > min_len[i + 1]) {
- if (forest[i].c != 0) {
- sum = CORD_cat(forest[i].c, sum);
- sum_len += forest[i].len;
- forest[i].c = 0;
- }
- i++;
- }
- /* Sum has depth at most 1 greter than what would be required */
- /* for balance. */
- sum = CORD_cat(sum, x);
- sum_len += len;
- /* If x was a leaf, then sum is now balanced. To see this */
- /* consider the two cases in which forest[i-1] either is or is */
- /* not empty. */
- while (sum_len >= min_len[i]) {
- if (forest[i].c != 0) {
- sum = CORD_cat(forest[i].c, sum);
- sum_len += forest[i].len;
- /* This is again balanced, since sum was balanced, and has */
- /* allowable depth that differs from i by at most 1. */
- forest[i].c = 0;
- }
- i++;
- }
- i--;
- forest[i].c = sum;
- forest[i].len = sum_len;
-}
-
-CORD CORD_concat_forest(ForestElement * forest, size_t expected_len)
-{
- register int i = 0;
- CORD sum = 0;
- size_t sum_len = 0;
-
- while (sum_len != expected_len) {
- if (forest[i].c != 0) {
- sum = CORD_cat(forest[i].c, sum);
- sum_len += forest[i].len;
- }
- i++;
- }
- return(sum);
-}
-
-/* Insert the frontier of x into forest. Balanced subtrees are */
-/* treated as leaves. This potentially adds one to the depth */
-/* of the final tree. */
-void CORD_balance_insert(CORD x, size_t len, ForestElement * forest)
-{
- register int depth;
-
- if (CORD_IS_STRING(x)) {
- CORD_add_forest(forest, x, len);
- } else if (IS_CONCATENATION(x)
- && ((depth = DEPTH(x)) >= MAX_DEPTH
- || len < min_len[depth])) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
- size_t left_len = LEFT_LEN(conc);
-
- CORD_balance_insert(conc -> left, left_len, forest);
- CORD_balance_insert(conc -> right, len - left_len, forest);
- } else /* function or balanced */ {
- CORD_add_forest(forest, x, len);
- }
-}
-
-
-CORD CORD_balance(CORD x)
-{
- Forest forest;
- register size_t len;
-
- if (x == 0) return(0);
- if (CORD_IS_STRING(x)) return(x);
- if (!min_len_init) CORD_init_min_len();
- len = LEN(x);
- CORD_init_forest(forest, len);
- CORD_balance_insert(x, len, forest);
- return(CORD_concat_forest(forest, len));
-}
-
-
-/* Position primitives */
-
-/* Private routines to deal with the hard cases only: */
-
-/* P contains a prefix of the path to cur_pos. Extend it to a full */
-/* path and set up leaf info. */
-/* Return 0 if past the end of cord, 1 o.w. */
-void CORD__extend_path(register CORD_pos p)
-{
- register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]);
- register CORD top = current_pe -> pe_cord;
- register size_t pos = p[0].cur_pos;
- register size_t top_pos = current_pe -> pe_start_pos;
- register size_t top_len = GEN_LEN(top);
-
- /* Fill in the rest of the path. */
- while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) {
- register struct Concatenation * conc =
- &(((CordRep *)top) -> concatenation);
- register size_t left_len;
-
- left_len = LEFT_LEN(conc);
- current_pe++;
- if (pos >= top_pos + left_len) {
- current_pe -> pe_cord = top = conc -> right;
- current_pe -> pe_start_pos = top_pos = top_pos + left_len;
- top_len -= left_len;
- } else {
- current_pe -> pe_cord = top = conc -> left;
- current_pe -> pe_start_pos = top_pos;
- top_len = left_len;
- }
- p[0].path_len++;
- }
- /* Fill in leaf description for fast access. */
- if (CORD_IS_STRING(top)) {
- p[0].cur_leaf = top;
- p[0].cur_start = top_pos;
- p[0].cur_end = top_pos + top_len;
- } else {
- p[0].cur_end = 0;
- }
- if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID;
-}
-
-char CORD__pos_fetch(register CORD_pos p)
-{
- /* Leaf is a function node */
- struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]);
- CORD leaf = pe -> pe_cord;
- register struct Function * f = &(((CordRep *)leaf) -> function);
-
- if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf");
- return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data));
-}
-
-void CORD__next(register CORD_pos p)
-{
- register size_t cur_pos = p[0].cur_pos + 1;
- register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
- register CORD leaf = current_pe -> pe_cord;
-
- /* Leaf is not a string or we're at end of leaf */
- p[0].cur_pos = cur_pos;
- if (!CORD_IS_STRING(leaf)) {
- /* Function leaf */
- register struct Function * f = &(((CordRep *)leaf) -> function);
- register size_t start_pos = current_pe -> pe_start_pos;
- register size_t end_pos = start_pos + f -> len;
-
- if (cur_pos < end_pos) {
- /* Fill cache and return. */
- register size_t i;
- register size_t limit = cur_pos + FUNCTION_BUF_SZ;
- register CORD_fn fn = f -> fn;
- register void * client_data = f -> client_data;
-
- if (limit > end_pos) {
- limit = end_pos;
- }
- for (i = cur_pos; i < limit; i++) {
- p[0].function_buf[i - cur_pos] =
- (*fn)(i - start_pos, client_data);
- }
- p[0].cur_start = cur_pos;
- p[0].cur_leaf = p[0].function_buf;
- p[0].cur_end = limit;
- return;
- }
- }
- /* End of leaf */
- /* Pop the stack until we find two concatenation nodes with the */
- /* same start position: this implies we were in left part. */
- {
- while (p[0].path_len > 0
- && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) {
- p[0].path_len--;
- current_pe--;
- }
- if (p[0].path_len == 0) {
- p[0].path_len = CORD_POS_INVALID;
- return;
- }
- }
- p[0].path_len--;
- CORD__extend_path(p);
-}
-
-void CORD__prev(register CORD_pos p)
-{
- register struct CORD_pe * pe = &(p[0].path[p[0].path_len]);
-
- if (p[0].cur_pos == 0) {
- p[0].path_len = CORD_POS_INVALID;
- return;
- }
- p[0].cur_pos--;
- if (p[0].cur_pos >= pe -> pe_start_pos) return;
-
- /* Beginning of leaf */
-
- /* Pop the stack until we find two concatenation nodes with the */
- /* different start position: this implies we were in right part. */
- {
- register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
-
- while (p[0].path_len > 0
- && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) {
- p[0].path_len--;
- current_pe--;
- }
- }
- p[0].path_len--;
- CORD__extend_path(p);
-}
-
-#undef CORD_pos_fetch
-#undef CORD_next
-#undef CORD_prev
-#undef CORD_pos_to_index
-#undef CORD_pos_to_cord
-#undef CORD_pos_valid
-
-char CORD_pos_fetch(register CORD_pos p)
-{
- if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) {
- return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]);
- } else {
- return(CORD__pos_fetch(p));
- }
-}
-
-void CORD_next(CORD_pos p)
-{
- if (p[0].cur_pos < p[0].cur_end - 1) {
- p[0].cur_pos++;
- } else {
- CORD__next(p);
- }
-}
-
-void CORD_prev(CORD_pos p)
-{
- if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) {
- p[0].cur_pos--;
- } else {
- CORD__prev(p);
- }
-}
-
-size_t CORD_pos_to_index(CORD_pos p)
-{
- return(p[0].cur_pos);
-}
-
-CORD CORD_pos_to_cord(CORD_pos p)
-{
- return(p[0].path[0].pe_cord);
-}
-
-int CORD_pos_valid(CORD_pos p)
-{
- return(p[0].path_len != CORD_POS_INVALID);
-}
-
-void CORD_set_pos(CORD_pos p, CORD x, size_t i)
-{
- if (x == CORD_EMPTY) {
- p[0].path_len = CORD_POS_INVALID;
- return;
- }
- p[0].path[0].pe_cord = x;
- p[0].path[0].pe_start_pos = 0;
- p[0].path_len = 0;
- p[0].cur_pos = i;
- CORD__extend_path(p);
-}