aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.3.1/libgcc/config/libbid/bid64_noncomp.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.3.1/libgcc/config/libbid/bid64_noncomp.c')
-rw-r--r--gcc-4.3.1/libgcc/config/libbid/bid64_noncomp.c959
1 files changed, 0 insertions, 959 deletions
diff --git a/gcc-4.3.1/libgcc/config/libbid/bid64_noncomp.c b/gcc-4.3.1/libgcc/config/libbid/bid64_noncomp.c
deleted file mode 100644
index a811c6fa6..000000000
--- a/gcc-4.3.1/libgcc/config/libbid/bid64_noncomp.c
+++ /dev/null
@@ -1,959 +0,0 @@
-/* Copyright (C) 2007 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-In addition to the permissions in the GNU General Public License, the
-Free Software Foundation gives you unlimited permission to link the
-compiled version of this file into combinations with other programs,
-and to distribute those combinations without any restriction coming
-from the use of this file. (The General Public License restrictions
-do apply in other respects; for example, they cover modification of
-the file, and distribution when not linked into a combine
-executable.)
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "bid_internal.h"
-
-static const UINT64 mult_factor[16] = {
- 1ull, 10ull, 100ull, 1000ull,
- 10000ull, 100000ull, 1000000ull, 10000000ull,
- 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
- 1000000000000ull, 10000000000000ull,
- 100000000000000ull, 1000000000000000ull
-};
-
-/*****************************************************************************
- * BID64 non-computational functions:
- * - bid64_isSigned
- * - bid64_isNormal
- * - bid64_isSubnormal
- * - bid64_isFinite
- * - bid64_isZero
- * - bid64_isInf
- * - bid64_isSignaling
- * - bid64_isCanonical
- * - bid64_isNaN
- * - bid64_copy
- * - bid64_negate
- * - bid64_abs
- * - bid64_copySign
- * - bid64_class
- * - bid64_sameQuantum
- * - bid64_totalOrder
- * - bid64_totalOrderMag
- * - bid64_radix
- ****************************************************************************/
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isSigned (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isSigned (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- res = ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
-}
-
-// return 1 iff x is not zero, nor NaN nor subnormal nor infinity
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isNormal (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isNormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- UINT128 sig_x_prime;
- UINT64 sig_x;
- unsigned int exp_x;
-
- if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN
- res = 0;
- } else {
- // decode number into exponent and significand
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- // check for zero or non-canonical
- if (sig_x > 9999999999999999ull || sig_x == 0) {
- res = 0; // zero or non-canonical
- BID_RETURN (res);
- }
- exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
- } else {
- sig_x = (x & MASK_BINARY_SIG1);
- if (sig_x == 0) {
- res = 0; // zero
- BID_RETURN (res);
- }
- exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
- }
- // if exponent is less than -383, the number may be subnormal
- // if (exp_x - 398 = -383) the number may be subnormal
- if (exp_x < 15) {
- __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]);
- if (sig_x_prime.w[1] == 0
- && sig_x_prime.w[0] < 1000000000000000ull) {
- res = 0; // subnormal
- } else {
- res = 1; // normal
- }
- } else {
- res = 1; // normal
- }
- }
- BID_RETURN (res);
-}
-
-// return 1 iff x is not zero, nor NaN nor normal nor infinity
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isSubnormal (int *pres,
- UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isSubnormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- UINT128 sig_x_prime;
- UINT64 sig_x;
- unsigned int exp_x;
-
- if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN
- res = 0;
- } else {
- // decode number into exponent and significand
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- // check for zero or non-canonical
- if (sig_x > 9999999999999999ull || sig_x == 0) {
- res = 0; // zero or non-canonical
- BID_RETURN (res);
- }
- exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
- } else {
- sig_x = (x & MASK_BINARY_SIG1);
- if (sig_x == 0) {
- res = 0; // zero
- BID_RETURN (res);
- }
- exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
- }
- // if exponent is less than -383, the number may be subnormal
- // if (exp_x - 398 = -383) the number may be subnormal
- if (exp_x < 15) {
- __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]);
- if (sig_x_prime.w[1] == 0
- && sig_x_prime.w[0] < 1000000000000000ull) {
- res = 1; // subnormal
- } else {
- res = 0; // normal
- }
- } else {
- res = 0; // normal
- }
- }
- BID_RETURN (res);
-}
-
-//iff x is zero, subnormal or normal (not infinity or NaN)
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isFinite (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isFinite (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- res = ((x & MASK_INF) != MASK_INF);
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isZero (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isZero (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- // if infinity or nan, return 0
- if ((x & MASK_INF) == MASK_INF) {
- res = 0;
- } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1]
- // => sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- // if(sig_x > 9999999999999999ull) {return 1;}
- res =
- (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
- 9999999999999999ull);
- } else {
- res = ((x & MASK_BINARY_SIG1) == 0);
- }
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isInf (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isInf (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- res = ((x & MASK_INF) == MASK_INF) && ((x & MASK_NAN) != MASK_NAN);
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isSignaling (int *pres,
- UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isSignaling (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- res = ((x & MASK_SNAN) == MASK_SNAN);
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isCanonical (int *pres,
- UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isCanonical (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- if ((x & MASK_NAN) == MASK_NAN) { // NaN
- if (x & 0x01fc000000000000ull) {
- res = 0;
- } else if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { // payload
- res = 0;
- } else {
- res = 1;
- }
- } else if ((x & MASK_INF) == MASK_INF) {
- if (x & 0x03ffffffffffffffull) {
- res = 0;
- } else {
- res = 1;
- }
- } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { // 54-bit coeff.
- res =
- (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) <=
- 9999999999999999ull);
- } else { // 53-bit coeff.
- res = 1;
- }
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_isNaN (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_isNaN (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
-
- res = ((x & MASK_NAN) == MASK_NAN);
- BID_RETURN (res);
-}
-
-// copies a floating-point operand x to destination y, with no change
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_copy (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_copy (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
-
- res = x;
- BID_RETURN (res);
-}
-
-// copies a floating-point operand x to destination y, reversing the sign
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_negate (UINT64 * pres,
- UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_negate (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
-
- res = x ^ MASK_SIGN;
- BID_RETURN (res);
-}
-
-// copies a floating-point operand x to destination y, changing the sign to positive
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_abs (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-UINT64
-bid64_abs (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
-
- res = x & ~MASK_SIGN;
- BID_RETURN (res);
-}
-
-// copies operand x to destination in the same format as x, but
-// with the sign of y
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_copySign (UINT64 * pres, UINT64 * px,
- UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
- UINT64 y = *py;
-#else
-UINT64
-bid64_copySign (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- UINT64 res;
-
- res = (x & ~MASK_SIGN) | (y & MASK_SIGN);
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_class (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_class (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- UINT128 sig_x_prime;
- UINT64 sig_x;
- int exp_x;
-
- if ((x & MASK_NAN) == MASK_NAN) {
- // is the NaN signaling?
- if ((x & MASK_SNAN) == MASK_SNAN) {
- res = signalingNaN;
- BID_RETURN (res);
- }
- // if NaN and not signaling, must be quietNaN
- res = quietNaN;
- BID_RETURN (res);
- } else if ((x & MASK_INF) == MASK_INF) {
- // is the Infinity negative?
- if ((x & MASK_SIGN) == MASK_SIGN) {
- res = negativeInfinity;
- } else {
- // otherwise, must be positive infinity
- res = positiveInfinity;
- }
- BID_RETURN (res);
- } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- // decode number into exponent and significand
- sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- // check for zero or non-canonical
- if (sig_x > 9999999999999999ull || sig_x == 0) {
- if ((x & MASK_SIGN) == MASK_SIGN) {
- res = negativeZero;
- } else {
- res = positiveZero;
- }
- BID_RETURN (res);
- }
- exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
- } else {
- sig_x = (x & MASK_BINARY_SIG1);
- if (sig_x == 0) {
- res =
- ((x & MASK_SIGN) == MASK_SIGN) ? negativeZero : positiveZero;
- BID_RETURN (res);
- }
- exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
- }
- // if exponent is less than -383, number may be subnormal
- // if (exp_x - 398 < -383)
- if (exp_x < 15) { // sig_x *10^exp_x
- __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]);
- if (sig_x_prime.w[1] == 0
- && (sig_x_prime.w[0] < 1000000000000000ull)) {
- res =
- ((x & MASK_SIGN) ==
- MASK_SIGN) ? negativeSubnormal : positiveSubnormal;
- BID_RETURN (res);
- }
- }
- // otherwise, normal number, determine the sign
- res =
- ((x & MASK_SIGN) == MASK_SIGN) ? negativeNormal : positiveNormal;
- BID_RETURN (res);
-}
-
-// true if the exponents of x and y are the same, false otherwise.
-// The special cases of sameQuantum (NaN, NaN) and sameQuantum (Inf, Inf) are
-// true.
-// If exactly one operand is infinite or exactly one operand is NaN, then false
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_sameQuantum (int *pres, UINT64 * px,
- UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
- UINT64 y = *py;
-#else
-int
-bid64_sameQuantum (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- unsigned int exp_x, exp_y;
-
- // if both operands are NaN, return true; if just one is NaN, return false
- if ((x & MASK_NAN) == MASK_NAN || ((y & MASK_NAN) == MASK_NAN)) {
- res = ((x & MASK_NAN) == MASK_NAN && (y & MASK_NAN) == MASK_NAN);
- BID_RETURN (res);
- }
- // if both operands are INF, return true; if just one is INF, return false
- if ((x & MASK_INF) == MASK_INF || (y & MASK_INF) == MASK_INF) {
- res = ((x & MASK_INF) == MASK_INF && (y & MASK_INF) == MASK_INF);
- BID_RETURN (res);
- }
- // decode exponents for both numbers, and return true if they match
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
- } else {
- exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
- }
- if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
- } else {
- exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
- }
- res = (exp_x == exp_y);
- BID_RETURN (res);
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_totalOrder (int *pres, UINT64 * px,
- UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
- UINT64 y = *py;
-#else
-int
-bid64_totalOrder (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- int exp_x, exp_y;
- UINT64 sig_x, sig_y, pyld_y, pyld_x;
- UINT128 sig_n_prime;
- char x_is_zero = 0, y_is_zero = 0;
-
- // NaN (CASE1)
- // if x and y are unordered numerically because either operand is NaN
- // (1) totalOrder(-NaN, number) is true
- // (2) totalOrder(number, +NaN) is true
- // (3) if x and y are both NaN:
- // i) negative sign bit < positive sign bit
- // ii) signaling < quiet for +NaN, reverse for -NaN
- // iii) lesser payload < greater payload for +NaN (reverse for -NaN)
- // iv) else if bitwise identical (in canonical form), return 1
- if ((x & MASK_NAN) == MASK_NAN) {
- // if x is -NaN
- if ((x & MASK_SIGN) == MASK_SIGN) {
- // return true, unless y is -NaN also
- if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) != MASK_SIGN) {
- res = 1; // y is a number, return 1
- BID_RETURN (res);
- } else { // if y and x are both -NaN
- // if x and y are both -sNaN or both -qNaN, we have to compare payloads
- // this xnor statement evaluates to true if both are sNaN or qNaN
- if (!
- (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) ==
- MASK_SNAN))) {
- // it comes down to the payload. we want to return true if x has a
- // larger payload, or if the payloads are equal (canonical forms
- // are bitwise identical)
- pyld_y = y & 0x0003ffffffffffffull;
- pyld_x = x & 0x0003ffffffffffffull;
- if (pyld_y > 999999999999999ull || pyld_y == 0) {
- // if y is zero, x must be less than or numerically equal
- // y's payload is 0
- res = 1;
- BID_RETURN (res);
- }
- // if x is zero and y isn't, x has the smaller payload
- // definitely (since we know y isn't 0 at this point)
- if (pyld_x > 999999999999999ull || pyld_x == 0) {
- // x's payload is 0
- res = 0;
- BID_RETURN (res);
- }
- res = (pyld_x >= pyld_y);
- BID_RETURN (res);
- } else {
- // either x = -sNaN and y = -qNaN or x = -qNaN and y = -sNaN
- res = (y & MASK_SNAN) == MASK_SNAN; // totalOrder(-qNaN, -sNaN) == 1
- BID_RETURN (res);
- }
- }
- } else { // x is +NaN
- // return false, unless y is +NaN also
- if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) == MASK_SIGN) {
- res = 0; // y is a number, return 1
- BID_RETURN (res);
- } else {
- // x and y are both +NaN;
- // must investigate payload if both quiet or both signaling
- // this xnor statement will be true if both x and y are +qNaN or +sNaN
- if (!
- (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) ==
- MASK_SNAN))) {
- // it comes down to the payload. we want to return true if x has a
- // smaller payload, or if the payloads are equal (canonical forms
- // are bitwise identical)
- pyld_y = y & 0x0003ffffffffffffull;
- pyld_x = x & 0x0003ffffffffffffull;
- // if x is zero and y isn't, x has the smaller
- // payload definitely (since we know y isn't 0 at this point)
- if (pyld_x > 999999999999999ull || pyld_x == 0) {
- res = 1;
- BID_RETURN (res);
- }
- if (pyld_y > 999999999999999ull || pyld_y == 0) {
- // if y is zero, x must be less than or numerically equal
- res = 0;
- BID_RETURN (res);
- }
- res = (pyld_x <= pyld_y);
- BID_RETURN (res);
- } else {
- // return true if y is +qNaN and x is +sNaN
- // (we know they're different bc of xor if_stmt above)
- res = ((x & MASK_SNAN) == MASK_SNAN);
- BID_RETURN (res);
- }
- }
- }
- } else if ((y & MASK_NAN) == MASK_NAN) {
- // x is certainly not NAN in this case.
- // return true if y is positive
- res = ((y & MASK_SIGN) != MASK_SIGN);
- BID_RETURN (res);
- }
- // SIMPLE (CASE2)
- // if all the bits are the same, these numbers are equal.
- if (x == y) {
- res = 1;
- BID_RETURN (res);
- }
- // OPPOSITE SIGNS (CASE 3)
- // if signs are opposite, return 1 if x is negative
- // (if x<y, totalOrder is true)
- if (((x & MASK_SIGN) == MASK_SIGN) ^ ((y & MASK_SIGN) == MASK_SIGN)) {
- res = (x & MASK_SIGN) == MASK_SIGN;
- BID_RETURN (res);
- }
- // INFINITY (CASE4)
- if ((x & MASK_INF) == MASK_INF) {
- // if x==neg_inf, return (y == neg_inf)?1:0;
- if ((x & MASK_SIGN) == MASK_SIGN) {
- res = 1;
- BID_RETURN (res);
- } else {
- // x is positive infinity, only return1 if y
- // is positive infinity as well
- // (we know y has same sign as x)
- res = ((y & MASK_INF) == MASK_INF);
- BID_RETURN (res);
- }
- } else if ((y & MASK_INF) == MASK_INF) {
- // x is finite, so:
- // if y is +inf, x<y
- // if y is -inf, x>y
- res = ((y & MASK_SIGN) != MASK_SIGN);
- BID_RETURN (res);
- }
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
- sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (sig_x > 9999999999999999ull || sig_x == 0) {
- x_is_zero = 1;
- }
- } else {
- exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
- sig_x = (x & MASK_BINARY_SIG1);
- if (sig_x == 0) {
- x_is_zero = 1;
- }
- }
-
- // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
- if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
- sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (sig_y > 9999999999999999ull || sig_y == 0) {
- y_is_zero = 1;
- }
- } else {
- exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
- sig_y = (y & MASK_BINARY_SIG1);
- if (sig_y == 0) {
- y_is_zero = 1;
- }
- }
-
- // ZERO (CASE 5)
- // if x and y represent the same entities, and
- // both are negative , return true iff exp_x <= exp_y
- if (x_is_zero && y_is_zero) {
- if (!((x & MASK_SIGN) == MASK_SIGN) ^
- ((y & MASK_SIGN) == MASK_SIGN)) {
- // if signs are the same:
- // totalOrder(x,y) iff exp_x >= exp_y for negative numbers
- // totalOrder(x,y) iff exp_x <= exp_y for positive numbers
- if (exp_x == exp_y) {
- res = 1;
- BID_RETURN (res);
- }
- res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- } else {
- // signs are different.
- // totalOrder(-0, +0) is true
- // totalOrder(+0, -0) is false
- res = ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- }
- }
- // if x is zero and y isn't, clearly x has the smaller payload.
- if (x_is_zero) {
- res = ((y & MASK_SIGN) != MASK_SIGN);
- BID_RETURN (res);
- }
- // if y is zero, and x isn't, clearly y has the smaller payload.
- if (y_is_zero) {
- res = ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- }
- // REDUNDANT REPRESENTATIONS (CASE6)
- // if both components are either bigger or smaller,
- // it is clear what needs to be done
- if (sig_x > sig_y && exp_x >= exp_y) {
- res = ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- }
- if (sig_x < sig_y && exp_x <= exp_y) {
- res = ((x & MASK_SIGN) != MASK_SIGN);
- BID_RETURN (res);
- }
- // if exp_x is 15 greater than exp_y, it is
- // definitely larger, so no need for compensation
- if (exp_x - exp_y > 15) {
- // difference cannot be greater than 10^15
- res = ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- }
- // if exp_x is 15 less than exp_y, it is
- // definitely smaller, no need for compensation
- if (exp_y - exp_x > 15) {
- res = ((x & MASK_SIGN) != MASK_SIGN);
- BID_RETURN (res);
- }
- // if |exp_x - exp_y| < 15, it comes down
- // to the compensated significand
- if (exp_x > exp_y) {
- // otherwise adjust the x significand upwards
- __mul_64x64_to_128MACH (sig_n_prime, sig_x,
- mult_factor[exp_x - exp_y]);
- // if x and y represent the same entities,
- // and both are negative, return true iff exp_x <= exp_y
- if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
- // case cannot occure, because all bits must
- // be the same - would have been caught if (x==y)
- res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- }
- // if positive, return 1 if adjusted x is smaller than y
- res = ((sig_n_prime.w[1] == 0)
- && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
- MASK_SIGN);
- BID_RETURN (res);
- }
- // adjust the y significand upwards
- __mul_64x64_to_128MACH (sig_n_prime, sig_y,
- mult_factor[exp_y - exp_x]);
-
- // if x and y represent the same entities,
- // and both are negative, return true iff exp_x <= exp_y
- if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
- // Cannot occur, because all bits must be the same.
- // Case would have been caught if (x==y)
- res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN);
- BID_RETURN (res);
- }
- // values are not equal, for positive numbers return 1
- // if x is less than y. 0 otherwise
- res = ((sig_n_prime.w[1] > 0)
- || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
- MASK_SIGN);
- BID_RETURN (res);
-}
-
-// totalOrderMag is TotalOrder(abs(x), abs(y))
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_totalOrderMag (int *pres, UINT64 * px,
- UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
- UINT64 y = *py;
-#else
-int
-bid64_totalOrderMag (UINT64 x,
- UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- int exp_x, exp_y;
- UINT64 sig_x, sig_y, pyld_y, pyld_x;
- UINT128 sig_n_prime;
- char x_is_zero = 0, y_is_zero = 0;
-
- // NaN (CASE 1)
- // if x and y are unordered numerically because either operand is NaN
- // (1) totalOrder(number, +NaN) is true
- // (2) if x and y are both NaN:
- // i) signaling < quiet for +NaN
- // ii) lesser payload < greater payload for +NaN
- // iii) else if bitwise identical (in canonical form), return 1
- if ((x & MASK_NAN) == MASK_NAN) {
- // x is +NaN
-
- // return false, unless y is +NaN also
- if ((y & MASK_NAN) != MASK_NAN) {
- res = 0; // y is a number, return 1
- BID_RETURN (res);
-
- } else {
-
- // x and y are both +NaN;
- // must investigate payload if both quiet or both signaling
- // this xnor statement will be true if both x and y are +qNaN or +sNaN
- if (!
- (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) ==
- MASK_SNAN))) {
- // it comes down to the payload. we want to return true if x has a
- // smaller payload, or if the payloads are equal (canonical forms
- // are bitwise identical)
- pyld_y = y & 0x0003ffffffffffffull;
- pyld_x = x & 0x0003ffffffffffffull;
- // if x is zero and y isn't, x has the smaller
- // payload definitely (since we know y isn't 0 at this point)
- if (pyld_x > 999999999999999ull || pyld_x == 0) {
- res = 1;
- BID_RETURN (res);
- }
-
- if (pyld_y > 999999999999999ull || pyld_y == 0) {
- // if y is zero, x must be less than or numerically equal
- res = 0;
- BID_RETURN (res);
- }
- res = (pyld_x <= pyld_y);
- BID_RETURN (res);
-
- } else {
- // return true if y is +qNaN and x is +sNaN
- // (we know they're different bc of xor if_stmt above)
- res = ((x & MASK_SNAN) == MASK_SNAN);
- BID_RETURN (res);
- }
- }
-
- } else if ((y & MASK_NAN) == MASK_NAN) {
- // x is certainly not NAN in this case.
- // return true if y is positive
- res = 1;
- BID_RETURN (res);
- }
- // SIMPLE (CASE2)
- // if all the bits (except sign bit) are the same,
- // these numbers are equal.
- if ((x & ~MASK_SIGN) == (y & ~MASK_SIGN)) {
- res = 1;
- BID_RETURN (res);
- }
- // INFINITY (CASE3)
- if ((x & MASK_INF) == MASK_INF) {
- // x is positive infinity, only return1
- // if y is positive infinity as well
- res = ((y & MASK_INF) == MASK_INF);
- BID_RETURN (res);
- } else if ((y & MASK_INF) == MASK_INF) {
- // x is finite, so:
- // if y is +inf, x<y
- res = 1;
- BID_RETURN (res);
- }
- // if steering bits are 11 (condition will be 0),
- // then exponent is G[0:w+1] =>
- if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
- sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (sig_x > 9999999999999999ull || sig_x == 0) {
- x_is_zero = 1;
- }
- } else {
- exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
- sig_x = (x & MASK_BINARY_SIG1);
- if (sig_x == 0) {
- x_is_zero = 1;
- }
- }
-
- // if steering bits are 11 (condition will be 0),
- // then exponent is G[0:w+1] =>
- if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
- exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
- sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
- if (sig_y > 9999999999999999ull || sig_y == 0) {
- y_is_zero = 1;
- }
- } else {
- exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
- sig_y = (y & MASK_BINARY_SIG1);
- if (sig_y == 0) {
- y_is_zero = 1;
- }
- }
-
- // ZERO (CASE 5)
- // if x and y represent the same entities,
- // and both are negative , return true iff exp_x <= exp_y
- if (x_is_zero && y_is_zero) {
- // totalOrder(x,y) iff exp_x <= exp_y for positive numbers
- res = (exp_x <= exp_y);
- BID_RETURN (res);
- }
- // if x is zero and y isn't, clearly x has the smaller payload.
- if (x_is_zero) {
- res = 1;
- BID_RETURN (res);
- }
- // if y is zero, and x isn't, clearly y has the smaller payload.
- if (y_is_zero) {
- res = 0;
- BID_RETURN (res);
- }
- // REDUNDANT REPRESENTATIONS (CASE6)
- // if both components are either bigger or smaller
- if (sig_x > sig_y && exp_x >= exp_y) {
- res = 0;
- BID_RETURN (res);
- }
- if (sig_x < sig_y && exp_x <= exp_y) {
- res = 1;
- BID_RETURN (res);
- }
- // if exp_x is 15 greater than exp_y, it is definitely
- // larger, so no need for compensation
- if (exp_x - exp_y > 15) {
- res = 0; // difference cannot be greater than 10^15
- BID_RETURN (res);
- }
- // if exp_x is 15 less than exp_y, it is definitely
- // smaller, no need for compensation
- if (exp_y - exp_x > 15) {
- res = 1;
- BID_RETURN (res);
- }
- // if |exp_x - exp_y| < 15, it comes down
- // to the compensated significand
- if (exp_x > exp_y) {
-
- // otherwise adjust the x significand upwards
- __mul_64x64_to_128MACH (sig_n_prime, sig_x,
- mult_factor[exp_x - exp_y]);
-
- // if x and y represent the same entities,
- // and both are negative, return true iff exp_x <= exp_y
- if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
- // case cannot occur, because all bits
- // must be the same - would have been caught if (x==y)
- res = (exp_x <= exp_y);
- BID_RETURN (res);
- }
- // if positive, return 1 if adjusted x is smaller than y
- res = ((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y);
- BID_RETURN (res);
- }
- // adjust the y significand upwards
- __mul_64x64_to_128MACH (sig_n_prime, sig_y,
- mult_factor[exp_y - exp_x]);
-
- // if x and y represent the same entities,
- // and both are negative, return true iff exp_x <= exp_y
- if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
- res = (exp_x <= exp_y);
- BID_RETURN (res);
- }
- // values are not equal, for positive numbers
- // return 1 if x is less than y. 0 otherwise
- res = ((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0]));
- BID_RETURN (res);
-
-}
-
-#if DECIMAL_CALL_BY_REFERENCE
-void
-bid64_radix (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
- UINT64 x = *px;
-#else
-int
-bid64_radix (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
-#endif
- int res;
- if (x) // dummy test
- res = 10;
- else
- res = 10;
- BID_RETURN (res);
-}