aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.3.1/gcc/ada/sem_ch6.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.3.1/gcc/ada/sem_ch6.adb')
-rw-r--r--gcc-4.3.1/gcc/ada/sem_ch6.adb7449
1 files changed, 7449 insertions, 0 deletions
diff --git a/gcc-4.3.1/gcc/ada/sem_ch6.adb b/gcc-4.3.1/gcc/ada/sem_ch6.adb
new file mode 100644
index 000000000..9aaa37f9f
--- /dev/null
+++ b/gcc-4.3.1/gcc/ada/sem_ch6.adb
@@ -0,0 +1,7449 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 6 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Itypes; use Itypes;
+with Lib.Xref; use Lib.Xref;
+with Layout; use Layout;
+with Namet; use Namet;
+with Lib; use Lib;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Output; use Output;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch4; use Sem_Ch4;
+with Sem_Ch5; use Sem_Ch5;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch10; use Sem_Ch10;
+with Sem_Ch12; use Sem_Ch12;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Elim; use Sem_Elim;
+with Sem_Eval; use Sem_Eval;
+with Sem_Mech; use Sem_Mech;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sem_Type; use Sem_Type;
+with Sem_Warn; use Sem_Warn;
+with Sinput; use Sinput;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Sinfo.CN; use Sinfo.CN;
+with Snames; use Snames;
+with Stringt; use Stringt;
+with Style;
+with Stylesw; use Stylesw;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Sem_Ch6 is
+
+ May_Hide_Profile : Boolean := False;
+ -- This flag is used to indicate that two formals in two subprograms being
+ -- checked for conformance differ only in that one is an access parameter
+ -- while the other is of a general access type with the same designated
+ -- type. In this case, if the rest of the signatures match, a call to
+ -- either subprogram may be ambiguous, which is worth a warning. The flag
+ -- is set in Compatible_Types, and the warning emitted in
+ -- New_Overloaded_Entity.
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Analyze_Return_Statement (N : Node_Id);
+ -- Common processing for simple_ and extended_return_statements
+
+ procedure Analyze_Function_Return (N : Node_Id);
+ -- Subsidiary to Analyze_Return_Statement. Called when the return statement
+ -- applies to a [generic] function.
+
+ procedure Analyze_Return_Type (N : Node_Id);
+ -- Subsidiary to Process_Formals: analyze subtype mark in function
+ -- specification, in a context where the formals are visible and hide
+ -- outer homographs.
+
+ procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
+ -- Analyze a generic subprogram body. N is the body to be analyzed, and
+ -- Gen_Id is the defining entity Id for the corresponding spec.
+
+ procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
+ -- If a subprogram has pragma Inline and inlining is active, use generic
+ -- machinery to build an unexpanded body for the subprogram. This body is
+ -- subsequenty used for inline expansions at call sites. If subprogram can
+ -- be inlined (depending on size and nature of local declarations) this
+ -- function returns true. Otherwise subprogram body is treated normally.
+ -- If proper warnings are enabled and the subprogram contains a construct
+ -- that cannot be inlined, the offending construct is flagged accordingly.
+
+ procedure Check_Conformance
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Ctype : Conformance_Type;
+ Errmsg : Boolean;
+ Conforms : out Boolean;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False;
+ Skip_Controlling_Formals : Boolean := False);
+ -- Given two entities, this procedure checks that the profiles associated
+ -- with these entities meet the conformance criterion given by the third
+ -- parameter. If they conform, Conforms is set True and control returns
+ -- to the caller. If they do not conform, Conforms is set to False, and
+ -- in addition, if Errmsg is True on the call, proper messages are output
+ -- to complain about the conformance failure. If Err_Loc is non_Empty
+ -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
+ -- error messages are placed on the appropriate part of the construct
+ -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
+ -- against a formal access-to-subprogram type so Get_Instance_Of must
+ -- be called.
+
+ procedure Check_Overriding_Indicator
+ (Subp : Entity_Id;
+ Overridden_Subp : Entity_Id;
+ Is_Primitive : Boolean);
+ -- Verify the consistency of an overriding_indicator given for subprogram
+ -- declaration, body, renaming, or instantiation. Overridden_Subp is set
+ -- if the scope where we are introducing the subprogram contains a
+ -- type-conformant subprogram that becomes hidden by the new subprogram.
+ -- Is_Primitive indicates whether the subprogram is primitive.
+
+ procedure Check_Subprogram_Order (N : Node_Id);
+ -- N is the N_Subprogram_Body node for a subprogram. This routine applies
+ -- the alpha ordering rule for N if this ordering requirement applicable.
+
+ procedure Check_Returns
+ (HSS : Node_Id;
+ Mode : Character;
+ Err : out Boolean;
+ Proc : Entity_Id := Empty);
+ -- Called to check for missing return statements in a function body, or for
+ -- returns present in a procedure body which has No_Return set. HSS is the
+ -- handled statement sequence for the subprogram body. This procedure
+ -- checks all flow paths to make sure they either have return (Mode = 'F',
+ -- used for functions) or do not have a return (Mode = 'P', used for
+ -- No_Return procedures). The flag Err is set if there are any control
+ -- paths not explicitly terminated by a return in the function case, and is
+ -- True otherwise. Proc is the entity for the procedure case and is used
+ -- in posting the warning message.
+
+ procedure Enter_Overloaded_Entity (S : Entity_Id);
+ -- This procedure makes S, a new overloaded entity, into the first visible
+ -- entity with that name.
+
+ procedure Install_Entity (E : Entity_Id);
+ -- Make single entity visible. Used for generic formals as well
+
+ procedure Install_Formals (Id : Entity_Id);
+ -- On entry to a subprogram body, make the formals visible. Note that
+ -- simply placing the subprogram on the scope stack is not sufficient:
+ -- the formals must become the current entities for their names.
+
+ function Is_Non_Overriding_Operation
+ (Prev_E : Entity_Id;
+ New_E : Entity_Id) return Boolean;
+ -- Enforce the rule given in 12.3(18): a private operation in an instance
+ -- overrides an inherited operation only if the corresponding operation
+ -- was overriding in the generic. This can happen for primitive operations
+ -- of types derived (in the generic unit) from formal private or formal
+ -- derived types.
+
+ procedure Make_Inequality_Operator (S : Entity_Id);
+ -- Create the declaration for an inequality operator that is implicitly
+ -- created by a user-defined equality operator that yields a boolean.
+
+ procedure May_Need_Actuals (Fun : Entity_Id);
+ -- Flag functions that can be called without parameters, i.e. those that
+ -- have no parameters, or those for which defaults exist for all parameters
+
+ procedure Set_Formal_Validity (Formal_Id : Entity_Id);
+ -- Formal_Id is an formal parameter entity. This procedure deals with
+ -- setting the proper validity status for this entity, which depends
+ -- on the kind of parameter and the validity checking mode.
+
+ ------------------------------
+ -- Analyze_Return_Statement --
+ ------------------------------
+
+ procedure Analyze_Return_Statement (N : Node_Id) is
+
+ pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
+ N_Extended_Return_Statement));
+
+ Returns_Object : constant Boolean :=
+ Nkind (N) = N_Extended_Return_Statement
+ or else
+ (Nkind (N) = N_Simple_Return_Statement
+ and then Present (Expression (N)));
+ -- True if we're returning something; that is, "return <expression>;"
+ -- or "return Result : T [:= ...]". False for "return;". Used for error
+ -- checking: If Returns_Object is True, N should apply to a function
+ -- body; otherwise N should apply to a procedure body, entry body,
+ -- accept statement, or extended return statement.
+
+ function Find_What_It_Applies_To return Entity_Id;
+ -- Find the entity representing the innermost enclosing body, accept
+ -- statement, or extended return statement. If the result is a callable
+ -- construct or extended return statement, then this will be the value
+ -- of the Return_Applies_To attribute. Otherwise, the program is
+ -- illegal. See RM-6.5(4/2).
+
+ -----------------------------
+ -- Find_What_It_Applies_To --
+ -----------------------------
+
+ function Find_What_It_Applies_To return Entity_Id is
+ Result : Entity_Id := Empty;
+
+ begin
+ -- Loop outward through the Scope_Stack, skipping blocks and loops
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Result := Scope_Stack.Table (J).Entity;
+ exit when Ekind (Result) /= E_Block and then
+ Ekind (Result) /= E_Loop;
+ end loop;
+
+ pragma Assert (Present (Result));
+ return Result;
+ end Find_What_It_Applies_To;
+
+ -- Local declarations
+
+ Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
+ Kind : constant Entity_Kind := Ekind (Scope_Id);
+ Loc : constant Source_Ptr := Sloc (N);
+ Stm_Entity : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Return_Statement, Current_Scope, Loc, 'R');
+
+ -- Start of processing for Analyze_Return_Statement
+
+ begin
+ Set_Return_Statement_Entity (N, Stm_Entity);
+
+ Set_Etype (Stm_Entity, Standard_Void_Type);
+ Set_Return_Applies_To (Stm_Entity, Scope_Id);
+
+ -- Place Return entity on scope stack, to simplify enforcement of 6.5
+ -- (4/2): an inner return statement will apply to this extended return.
+
+ if Nkind (N) = N_Extended_Return_Statement then
+ Push_Scope (Stm_Entity);
+ end if;
+
+ -- Check that pragma No_Return is obeyed
+
+ if No_Return (Scope_Id) then
+ Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
+ end if;
+
+ -- Warn on any unassigned OUT parameters if in procedure
+
+ if Ekind (Scope_Id) = E_Procedure then
+ Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
+ end if;
+
+ -- Check that functions return objects, and other things do not
+
+ if Kind = E_Function or else Kind = E_Generic_Function then
+ if not Returns_Object then
+ Error_Msg_N ("missing expression in return from function", N);
+ end if;
+
+ elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
+ if Returns_Object then
+ Error_Msg_N ("procedure cannot return value (use function)", N);
+ end if;
+
+ elsif Kind = E_Entry or else Kind = E_Entry_Family then
+ if Returns_Object then
+ if Is_Protected_Type (Scope (Scope_Id)) then
+ Error_Msg_N ("entry body cannot return value", N);
+ else
+ Error_Msg_N ("accept statement cannot return value", N);
+ end if;
+ end if;
+
+ elsif Kind = E_Return_Statement then
+
+ -- We are nested within another return statement, which must be an
+ -- extended_return_statement.
+
+ if Returns_Object then
+ Error_Msg_N
+ ("extended_return_statement cannot return value; " &
+ "use `""RETURN;""`", N);
+ end if;
+
+ else
+ Error_Msg_N ("illegal context for return statement", N);
+ end if;
+
+ if Kind = E_Function or else Kind = E_Generic_Function then
+ Analyze_Function_Return (N);
+ end if;
+
+ if Nkind (N) = N_Extended_Return_Statement then
+ End_Scope;
+ end if;
+
+ Kill_Current_Values (Last_Assignment_Only => True);
+ Check_Unreachable_Code (N);
+ end Analyze_Return_Statement;
+
+ ---------------------------------------------
+ -- Analyze_Abstract_Subprogram_Declaration --
+ ---------------------------------------------
+
+ procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
+ Designator : constant Entity_Id :=
+ Analyze_Subprogram_Specification (Specification (N));
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ Generate_Definition (Designator);
+ Set_Is_Abstract_Subprogram (Designator);
+ New_Overloaded_Entity (Designator);
+ Check_Delayed_Subprogram (Designator);
+
+ Set_Categorization_From_Scope (Designator, Scop);
+
+ if Ekind (Scope (Designator)) = E_Protected_Type then
+ Error_Msg_N
+ ("abstract subprogram not allowed in protected type", N);
+
+ -- Issue a warning if the abstract subprogram is neither a dispatching
+ -- operation nor an operation that overrides an inherited subprogram or
+ -- predefined operator, since this most likely indicates a mistake.
+
+ elsif Warn_On_Redundant_Constructs
+ and then not Is_Dispatching_Operation (Designator)
+ and then not Is_Overriding_Operation (Designator)
+ and then (not Is_Operator_Symbol_Name (Chars (Designator))
+ or else Scop /= Scope (Etype (First_Formal (Designator))))
+ then
+ Error_Msg_N
+ ("?abstract subprogram is not dispatching or overriding", N);
+ end if;
+
+ Generate_Reference_To_Formals (Designator);
+ end Analyze_Abstract_Subprogram_Declaration;
+
+ ----------------------------------------
+ -- Analyze_Extended_Return_Statement --
+ ----------------------------------------
+
+ procedure Analyze_Extended_Return_Statement (N : Node_Id) is
+ begin
+ Analyze_Return_Statement (N);
+ end Analyze_Extended_Return_Statement;
+
+ ----------------------------
+ -- Analyze_Function_Call --
+ ----------------------------
+
+ procedure Analyze_Function_Call (N : Node_Id) is
+ P : constant Node_Id := Name (N);
+ L : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id;
+
+ begin
+ Analyze (P);
+
+ -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
+ -- as B (A, X). If the rewriting is successful, the call has been
+ -- analyzed and we just return.
+
+ if Nkind (P) = N_Selected_Component
+ and then Name (N) /= P
+ and then Is_Rewrite_Substitution (N)
+ and then Present (Etype (N))
+ then
+ return;
+ end if;
+
+ -- If error analyzing name, then set Any_Type as result type and return
+
+ if Etype (P) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Otherwise analyze the parameters
+
+ if Present (L) then
+ Actual := First (L);
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ Analyze_Call (N);
+ end Analyze_Function_Call;
+
+ -----------------------------
+ -- Analyze_Function_Return --
+ -----------------------------
+
+ procedure Analyze_Function_Return (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
+ Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
+
+ R_Type : constant Entity_Id := Etype (Scope_Id);
+ -- Function result subtype
+
+ procedure Check_Limited_Return (Expr : Node_Id);
+ -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
+ -- limited types. Used only for simple return statements.
+ -- Expr is the expression returned.
+
+ procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
+ -- Check that the return_subtype_indication properly matches the result
+ -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
+
+ --------------------------
+ -- Check_Limited_Return --
+ --------------------------
+
+ procedure Check_Limited_Return (Expr : Node_Id) is
+ begin
+ -- Ada 2005 (AI-318-02): Return-by-reference types have been
+ -- removed and replaced by anonymous access results. This is an
+ -- incompatibility with Ada 95. Not clear whether this should be
+ -- enforced yet or perhaps controllable with special switch. ???
+
+ if Is_Limited_Type (R_Type)
+ and then Comes_From_Source (N)
+ and then not In_Instance_Body
+ and then not OK_For_Limited_Init_In_05 (Expr)
+ then
+ -- Error in Ada 2005
+
+ if Ada_Version >= Ada_05
+ and then not Debug_Flag_Dot_L
+ and then not GNAT_Mode
+ then
+ Error_Msg_N
+ ("(Ada 2005) cannot copy object of a limited type " &
+ "(RM-2005 6.5(5.5/2))", Expr);
+ if Is_Inherently_Limited_Type (R_Type) then
+ Error_Msg_N
+ ("\return by reference not permitted in Ada 2005", Expr);
+ end if;
+
+ -- Warn in Ada 95 mode, to give folks a heads up about this
+ -- incompatibility.
+
+ -- In GNAT mode, this is just a warning, to allow it to be
+ -- evilly turned off. Otherwise it is a real error.
+
+ elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
+ if Is_Inherently_Limited_Type (R_Type) then
+ Error_Msg_N
+ ("return by reference not permitted in Ada 2005 " &
+ "(RM-2005 6.5(5.5/2))?", Expr);
+ else
+ Error_Msg_N
+ ("cannot copy object of a limited type in Ada 2005 " &
+ "(RM-2005 6.5(5.5/2))?", Expr);
+ end if;
+
+ -- Ada 95 mode, compatibility warnings disabled
+
+ else
+ return; -- skip continuation messages below
+ end if;
+
+ Error_Msg_N
+ ("\consider switching to return of access type", Expr);
+ Explain_Limited_Type (R_Type, Expr);
+ end if;
+ end Check_Limited_Return;
+
+ -------------------------------------
+ -- Check_Return_Subtype_Indication --
+ -------------------------------------
+
+ procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
+ Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
+ R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
+ -- Subtype given in the extended return statement;
+ -- this must match R_Type.
+
+ Subtype_Ind : constant Node_Id :=
+ Object_Definition (Original_Node (Obj_Decl));
+
+ R_Type_Is_Anon_Access :
+ constant Boolean :=
+ Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
+ or else
+ Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
+ or else
+ Ekind (R_Type) = E_Anonymous_Access_Type;
+ -- True if return type of the function is an anonymous access type
+ -- Can't we make Is_Anonymous_Access_Type in einfo ???
+
+ R_Stm_Type_Is_Anon_Access :
+ constant Boolean :=
+ Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
+ or else
+ Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
+ or else
+ Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
+ -- True if type of the return object is an anonymous access type
+
+ begin
+ -- First, avoid cascade errors:
+
+ if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
+ return;
+ end if;
+
+ -- "return access T" case; check that the return statement also has
+ -- "access T", and that the subtypes statically match:
+
+ if R_Type_Is_Anon_Access then
+ if R_Stm_Type_Is_Anon_Access then
+ if Base_Type (Designated_Type (R_Stm_Type)) /=
+ Base_Type (Designated_Type (R_Type))
+ or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
+ then
+ Error_Msg_N
+ ("subtype must statically match function result subtype",
+ Subtype_Mark (Subtype_Ind));
+ end if;
+
+ else
+ Error_Msg_N ("must use anonymous access type", Subtype_Ind);
+ end if;
+
+ -- Subtype_indication case; check that the types are the same, and
+ -- statically match if appropriate:
+
+ elsif Base_Type (R_Stm_Type) = Base_Type (R_Type) then
+ if Is_Constrained (R_Type) then
+ if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
+ Error_Msg_N
+ ("subtype must statically match function result subtype",
+ Subtype_Ind);
+ end if;
+ end if;
+
+ -- If the function's result type doesn't match the return object
+ -- entity's type, then we check for the case where the result type
+ -- is class-wide, and allow the declaration if the type of the object
+ -- definition matches the class-wide type. This prevents rejection
+ -- in the case where the object declaration is initialized by a call
+ -- to a build-in-place function with a specific result type and the
+ -- object entity had its type changed to that specific type. (Note
+ -- that the ARG believes that return objects should be allowed to
+ -- have a type covered by a class-wide result type in any case, so
+ -- once that relaxation is made (see AI05-32), the above check for
+ -- type compatibility should be changed to test Covers rather than
+ -- equality, and then the following special test will no longer be
+ -- needed. ???)
+
+ elsif Is_Class_Wide_Type (R_Type)
+ and then
+ R_Type = Etype (Object_Definition (Original_Node (Obj_Decl)))
+ then
+ null;
+
+ else
+ Error_Msg_N
+ ("wrong type for return_subtype_indication", Subtype_Ind);
+ end if;
+ end Check_Return_Subtype_Indication;
+
+ ---------------------
+ -- Local Variables --
+ ---------------------
+
+ Expr : Node_Id;
+
+ -- Start of processing for Analyze_Function_Return
+
+ begin
+ Set_Return_Present (Scope_Id);
+
+ if Nkind (N) = N_Simple_Return_Statement then
+ Expr := Expression (N);
+ Analyze_And_Resolve (Expr, R_Type);
+ Check_Limited_Return (Expr);
+
+ else
+ -- Analyze parts specific to extended_return_statement:
+
+ declare
+ Obj_Decl : constant Node_Id :=
+ Last (Return_Object_Declarations (N));
+
+ HSS : constant Node_Id := Handled_Statement_Sequence (N);
+
+ begin
+ Expr := Expression (Obj_Decl);
+
+ -- Note: The check for OK_For_Limited_Init will happen in
+ -- Analyze_Object_Declaration; we treat it as a normal
+ -- object declaration.
+
+ Analyze (Obj_Decl);
+
+ Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
+ Check_Return_Subtype_Indication (Obj_Decl);
+
+ if Present (HSS) then
+ Analyze (HSS);
+
+ if Present (Exception_Handlers (HSS)) then
+
+ -- ???Has_Nested_Block_With_Handler needs to be set.
+ -- Probably by creating an actual N_Block_Statement.
+ -- Probably in Expand.
+
+ null;
+ end if;
+ end if;
+
+ Check_References (Stm_Entity);
+ end;
+ end if;
+
+ -- Case of Expr present (Etype check defends against previous errors)
+
+ if Present (Expr)
+ and then Present (Etype (Expr))
+ then
+ -- Apply constraint check. Note that this is done before the implicit
+ -- conversion of the expression done for anonymous access types to
+ -- ensure correct generation of the null-excluding check asssociated
+ -- with null-excluding expressions found in return statements.
+
+ Apply_Constraint_Check (Expr, R_Type);
+
+ -- Ada 2005 (AI-318-02): When the result type is an anonymous access
+ -- type, apply an implicit conversion of the expression to that type
+ -- to force appropriate static and run-time accessibility checks.
+
+ if Ada_Version >= Ada_05
+ and then Ekind (R_Type) = E_Anonymous_Access_Type
+ then
+ Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
+ Analyze_And_Resolve (Expr, R_Type);
+ end if;
+
+ if (Is_Class_Wide_Type (Etype (Expr))
+ or else Is_Dynamically_Tagged (Expr))
+ and then not Is_Class_Wide_Type (R_Type)
+ then
+ Error_Msg_N
+ ("dynamically tagged expression not allowed!", Expr);
+ end if;
+
+ -- ??? A real run-time accessibility check is needed in cases
+ -- involving dereferences of access parameters. For now we just
+ -- check the static cases.
+
+ if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
+ and then Is_Inherently_Limited_Type (Etype (Scope_Id))
+ and then Object_Access_Level (Expr) >
+ Subprogram_Access_Level (Scope_Id)
+ then
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Accessibility_Check_Failed));
+ Analyze (N);
+
+ Error_Msg_N
+ ("cannot return a local value by reference?", N);
+ Error_Msg_NE
+ ("\& will be raised at run time?",
+ N, Standard_Program_Error);
+ end if;
+
+ if Known_Null (Expr)
+ and then Nkind (Parent (Scope_Id)) = N_Function_Specification
+ and then Null_Exclusion_Present (Parent (Scope_Id))
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N => Expr,
+ Msg => "(Ada 2005) null not allowed for "
+ & "null-excluding return?",
+ Reason => CE_Null_Not_Allowed);
+ end if;
+ end if;
+ end Analyze_Function_Return;
+
+ -------------------------------------
+ -- Analyze_Generic_Subprogram_Body --
+ -------------------------------------
+
+ procedure Analyze_Generic_Subprogram_Body
+ (N : Node_Id;
+ Gen_Id : Entity_Id)
+ is
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
+ Kind : constant Entity_Kind := Ekind (Gen_Id);
+ Body_Id : Entity_Id;
+ New_N : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ -- Copy body and disable expansion while analyzing the generic For a
+ -- stub, do not copy the stub (which would load the proper body), this
+ -- will be done when the proper body is analyzed.
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Rewrite (N, New_N);
+ Start_Generic;
+ end if;
+
+ Spec := Specification (N);
+
+ -- Within the body of the generic, the subprogram is callable, and
+ -- behaves like the corresponding non-generic unit.
+
+ Body_Id := Defining_Entity (Spec);
+
+ if Kind = E_Generic_Procedure
+ and then Nkind (Spec) /= N_Procedure_Specification
+ then
+ Error_Msg_N ("invalid body for generic procedure ", Body_Id);
+ return;
+
+ elsif Kind = E_Generic_Function
+ and then Nkind (Spec) /= N_Function_Specification
+ then
+ Error_Msg_N ("invalid body for generic function ", Body_Id);
+ return;
+ end if;
+
+ Set_Corresponding_Body (Gen_Decl, Body_Id);
+
+ if Has_Completion (Gen_Id)
+ and then Nkind (Parent (N)) /= N_Subunit
+ then
+ Error_Msg_N ("duplicate generic body", N);
+ return;
+ else
+ Set_Has_Completion (Gen_Id);
+ end if;
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ Set_Ekind (Defining_Entity (Specification (N)), Kind);
+ else
+ Set_Corresponding_Spec (N, Gen_Id);
+ end if;
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
+ end if;
+
+ -- Make generic parameters immediately visible in the body. They are
+ -- needed to process the formals declarations. Then make the formals
+ -- visible in a separate step.
+
+ Push_Scope (Gen_Id);
+
+ declare
+ E : Entity_Id;
+ First_Ent : Entity_Id;
+
+ begin
+ First_Ent := First_Entity (Gen_Id);
+
+ E := First_Ent;
+ while Present (E) and then not Is_Formal (E) loop
+ Install_Entity (E);
+ Next_Entity (E);
+ end loop;
+
+ Set_Use (Generic_Formal_Declarations (Gen_Decl));
+
+ -- Now generic formals are visible, and the specification can be
+ -- analyzed, for subsequent conformance check.
+
+ Body_Id := Analyze_Subprogram_Specification (Spec);
+
+ -- Make formal parameters visible
+
+ if Present (E) then
+
+ -- E is the first formal parameter, we loop through the formals
+ -- installing them so that they will be visible.
+
+ Set_First_Entity (Gen_Id, E);
+ while Present (E) loop
+ Install_Entity (E);
+ Next_Formal (E);
+ end loop;
+ end if;
+
+ -- Visible generic entity is callable within its own body
+
+ Set_Ekind (Gen_Id, Ekind (Body_Id));
+ Set_Ekind (Body_Id, E_Subprogram_Body);
+ Set_Convention (Body_Id, Convention (Gen_Id));
+ Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
+ Set_Scope (Body_Id, Scope (Gen_Id));
+ Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+
+ -- No body to analyze, so restore state of generic unit
+
+ Set_Ekind (Gen_Id, Kind);
+ Set_Ekind (Body_Id, Kind);
+
+ if Present (First_Ent) then
+ Set_First_Entity (Gen_Id, First_Ent);
+ end if;
+
+ End_Scope;
+ return;
+ end if;
+
+ -- If this is a compilation unit, it must be made visible explicitly,
+ -- because the compilation of the declaration, unlike other library
+ -- unit declarations, does not. If it is not a unit, the following
+ -- is redundant but harmless.
+
+ Set_Is_Immediately_Visible (Gen_Id);
+ Reference_Body_Formals (Gen_Id, Body_Id);
+
+ if Is_Child_Unit (Gen_Id) then
+ Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
+ end if;
+
+ Set_Actual_Subtypes (N, Current_Scope);
+ Analyze_Declarations (Declarations (N));
+ Check_Completion;
+ Analyze (Handled_Statement_Sequence (N));
+
+ Save_Global_References (Original_Node (N));
+
+ -- Prior to exiting the scope, include generic formals again (if any
+ -- are present) in the set of local entities.
+
+ if Present (First_Ent) then
+ Set_First_Entity (Gen_Id, First_Ent);
+ end if;
+
+ Check_References (Gen_Id);
+ end;
+
+ Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
+ End_Scope;
+ Check_Subprogram_Order (N);
+
+ -- Outside of its body, unit is generic again
+
+ Set_Ekind (Gen_Id, Kind);
+ Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
+
+ if Style_Check then
+ Style.Check_Identifier (Body_Id, Gen_Id);
+ end if;
+ End_Generic;
+ end Analyze_Generic_Subprogram_Body;
+
+ -----------------------------
+ -- Analyze_Operator_Symbol --
+ -----------------------------
+
+ -- An operator symbol such as "+" or "and" may appear in context where the
+ -- literal denotes an entity name, such as "+"(x, y) or in context when it
+ -- is just a string, as in (conjunction = "or"). In these cases the parser
+ -- generates this node, and the semantics does the disambiguation. Other
+ -- such case are actuals in an instantiation, the generic unit in an
+ -- instantiation, and pragma arguments.
+
+ procedure Analyze_Operator_Symbol (N : Node_Id) is
+ Par : constant Node_Id := Parent (N);
+
+ begin
+ if (Nkind (Par) = N_Function_Call
+ and then N = Name (Par))
+ or else Nkind (Par) = N_Function_Instantiation
+ or else (Nkind (Par) = N_Indexed_Component
+ and then N = Prefix (Par))
+ or else (Nkind (Par) = N_Pragma_Argument_Association
+ and then not Is_Pragma_String_Literal (Par))
+ or else Nkind (Par) = N_Subprogram_Renaming_Declaration
+ or else (Nkind (Par) = N_Attribute_Reference
+ and then Attribute_Name (Par) /= Name_Value)
+ then
+ Find_Direct_Name (N);
+
+ else
+ Change_Operator_Symbol_To_String_Literal (N);
+ Analyze (N);
+ end if;
+ end Analyze_Operator_Symbol;
+
+ -----------------------------------
+ -- Analyze_Parameter_Association --
+ -----------------------------------
+
+ procedure Analyze_Parameter_Association (N : Node_Id) is
+ begin
+ Analyze (Explicit_Actual_Parameter (N));
+ end Analyze_Parameter_Association;
+
+ ----------------------------
+ -- Analyze_Procedure_Call --
+ ----------------------------
+
+ procedure Analyze_Procedure_Call (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Name (N);
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id;
+ New_N : Node_Id;
+
+ procedure Analyze_Call_And_Resolve;
+ -- Do Analyze and Resolve calls for procedure call
+
+ ------------------------------
+ -- Analyze_Call_And_Resolve --
+ ------------------------------
+
+ procedure Analyze_Call_And_Resolve is
+ begin
+ if Nkind (N) = N_Procedure_Call_Statement then
+ Analyze_Call (N);
+ Resolve (N, Standard_Void_Type);
+ else
+ Analyze (N);
+ end if;
+ end Analyze_Call_And_Resolve;
+
+ -- Start of processing for Analyze_Procedure_Call
+
+ begin
+ -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
+ -- a procedure call or an entry call. The prefix may denote an access
+ -- to subprogram type, in which case an implicit dereference applies.
+ -- If the prefix is an indexed component (without implicit defererence)
+ -- then the construct denotes a call to a member of an entire family.
+ -- If the prefix is a simple name, it may still denote a call to a
+ -- parameterless member of an entry family. Resolution of these various
+ -- interpretations is delicate.
+
+ Analyze (P);
+
+ -- If this is a call of the form Obj.Op, the call may have been
+ -- analyzed and possibly rewritten into a block, in which case
+ -- we are done.
+
+ if Analyzed (N) then
+ return;
+ end if;
+
+ -- If error analyzing prefix, then set Any_Type as result and return
+
+ if Etype (P) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Otherwise analyze the parameters
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ -- Special processing for Elab_Spec and Elab_Body calls
+
+ if Nkind (P) = N_Attribute_Reference
+ and then (Attribute_Name (P) = Name_Elab_Spec
+ or else Attribute_Name (P) = Name_Elab_Body)
+ then
+ if Present (Actuals) then
+ Error_Msg_N
+ ("no parameters allowed for this call", First (Actuals));
+ return;
+ end if;
+
+ Set_Etype (N, Standard_Void_Type);
+ Set_Analyzed (N);
+
+ elsif Is_Entity_Name (P)
+ and then Is_Record_Type (Etype (Entity (P)))
+ and then Remote_AST_I_Dereference (P)
+ then
+ return;
+
+ elsif Is_Entity_Name (P)
+ and then Ekind (Entity (P)) /= E_Entry_Family
+ then
+ if Is_Access_Type (Etype (P))
+ and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
+ and then No (Actuals)
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N ("missing explicit dereference in call", N);
+ end if;
+
+ Analyze_Call_And_Resolve;
+
+ -- If the prefix is the simple name of an entry family, this is
+ -- a parameterless call from within the task body itself.
+
+ elsif Is_Entity_Name (P)
+ and then Nkind (P) = N_Identifier
+ and then Ekind (Entity (P)) = E_Entry_Family
+ and then Present (Actuals)
+ and then No (Next (First (Actuals)))
+ then
+ -- Can be call to parameterless entry family. What appears to be the
+ -- sole argument is in fact the entry index. Rewrite prefix of node
+ -- accordingly. Source representation is unchanged by this
+ -- transformation.
+
+ New_N :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
+ Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
+ Expressions => Actuals);
+ Set_Name (N, New_N);
+ Set_Etype (New_N, Standard_Void_Type);
+ Set_Parameter_Associations (N, No_List);
+ Analyze_Call_And_Resolve;
+
+ elsif Nkind (P) = N_Explicit_Dereference then
+ if Ekind (Etype (P)) = E_Subprogram_Type then
+ Analyze_Call_And_Resolve;
+ else
+ Error_Msg_N ("expect access to procedure in call", P);
+ end if;
+
+ -- The name can be a selected component or an indexed component that
+ -- yields an access to subprogram. Such a prefix is legal if the call
+ -- has parameter associations.
+
+ elsif Is_Access_Type (Etype (P))
+ and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
+ then
+ if Present (Actuals) then
+ Analyze_Call_And_Resolve;
+ else
+ Error_Msg_N ("missing explicit dereference in call ", N);
+ end if;
+
+ -- If not an access to subprogram, then the prefix must resolve to the
+ -- name of an entry, entry family, or protected operation.
+
+ -- For the case of a simple entry call, P is a selected component where
+ -- the prefix is the task and the selector name is the entry. A call to
+ -- a protected procedure will have the same syntax. If the protected
+ -- object contains overloaded operations, the entity may appear as a
+ -- function, the context will select the operation whose type is Void.
+
+ elsif Nkind (P) = N_Selected_Component
+ and then (Ekind (Entity (Selector_Name (P))) = E_Entry
+ or else
+ Ekind (Entity (Selector_Name (P))) = E_Procedure
+ or else
+ Ekind (Entity (Selector_Name (P))) = E_Function)
+ then
+ Analyze_Call_And_Resolve;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
+ and then Present (Actuals)
+ and then No (Next (First (Actuals)))
+ then
+ -- Can be call to parameterless entry family. What appears to be the
+ -- sole argument is in fact the entry index. Rewrite prefix of node
+ -- accordingly. Source representation is unchanged by this
+ -- transformation.
+
+ New_N :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Copy (P),
+ Expressions => Actuals);
+ Set_Name (N, New_N);
+ Set_Etype (New_N, Standard_Void_Type);
+ Set_Parameter_Associations (N, No_List);
+ Analyze_Call_And_Resolve;
+
+ -- For the case of a reference to an element of an entry family, P is
+ -- an indexed component whose prefix is a selected component (task and
+ -- entry family), and whose index is the entry family index.
+
+ elsif Nkind (P) = N_Indexed_Component
+ and then Nkind (Prefix (P)) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
+ then
+ Analyze_Call_And_Resolve;
+
+ -- If the prefix is the name of an entry family, it is a call from
+ -- within the task body itself.
+
+ elsif Nkind (P) = N_Indexed_Component
+ and then Nkind (Prefix (P)) = N_Identifier
+ and then Ekind (Entity (Prefix (P))) = E_Entry_Family
+ then
+ New_N :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
+ Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
+ Rewrite (Prefix (P), New_N);
+ Analyze (P);
+ Analyze_Call_And_Resolve;
+
+ -- Anything else is an error
+
+ else
+ Error_Msg_N ("invalid procedure or entry call", N);
+ end if;
+ end Analyze_Procedure_Call;
+
+ -------------------------------------
+ -- Analyze_Simple_Return_Statement --
+ -------------------------------------
+
+ procedure Analyze_Simple_Return_Statement (N : Node_Id) is
+ begin
+ if Present (Expression (N)) then
+ Mark_Coextensions (N, Expression (N));
+ end if;
+
+ Analyze_Return_Statement (N);
+ end Analyze_Simple_Return_Statement;
+
+ -------------------------
+ -- Analyze_Return_Type --
+ -------------------------
+
+ procedure Analyze_Return_Type (N : Node_Id) is
+ Designator : constant Entity_Id := Defining_Entity (N);
+ Typ : Entity_Id := Empty;
+
+ begin
+ -- Normal case where result definition does not indicate an error
+
+ if Result_Definition (N) /= Error then
+ if Nkind (Result_Definition (N)) = N_Access_Definition then
+ Typ := Access_Definition (N, Result_Definition (N));
+ Set_Parent (Typ, Result_Definition (N));
+ Set_Is_Local_Anonymous_Access (Typ);
+ Set_Etype (Designator, Typ);
+
+ -- Subtype_Mark case
+
+ else
+ Find_Type (Result_Definition (N));
+ Typ := Entity (Result_Definition (N));
+ Set_Etype (Designator, Typ);
+
+ if Ekind (Typ) = E_Incomplete_Type
+ and then Is_Value_Type (Typ)
+ then
+ null;
+
+ elsif Ekind (Typ) = E_Incomplete_Type
+ or else (Is_Class_Wide_Type (Typ)
+ and then
+ Ekind (Root_Type (Typ)) = E_Incomplete_Type)
+ then
+ Error_Msg_N
+ ("invalid use of incomplete type", Result_Definition (N));
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
+
+ Null_Exclusion_Static_Checks (N);
+
+ -- Case where result definition does indicate an error
+
+ else
+ Set_Etype (Designator, Any_Type);
+ end if;
+ end Analyze_Return_Type;
+
+ -----------------------------
+ -- Analyze_Subprogram_Body --
+ -----------------------------
+
+ -- This procedure is called for regular subprogram bodies, generic bodies,
+ -- and for subprogram stubs of both kinds. In the case of stubs, only the
+ -- specification matters, and is used to create a proper declaration for
+ -- the subprogram, or to perform conformance checks.
+
+ procedure Analyze_Subprogram_Body (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Body_Spec : constant Node_Id := Specification (N);
+ Body_Id : Entity_Id := Defining_Entity (Body_Spec);
+ Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
+ Body_Deleted : constant Boolean := False;
+
+ HSS : Node_Id;
+ Spec_Id : Entity_Id;
+ Spec_Decl : Node_Id := Empty;
+ Last_Formal : Entity_Id := Empty;
+ Conformant : Boolean;
+ Missing_Ret : Boolean;
+ P_Ent : Entity_Id;
+
+ procedure Check_Anonymous_Return;
+ -- (Ada 2005): if a function returns an access type that denotes a task,
+ -- or a type that contains tasks, we must create a master entity for
+ -- the anonymous type, which typically will be used in an allocator
+ -- in the body of the function.
+
+ procedure Check_Inline_Pragma (Spec : in out Node_Id);
+ -- Look ahead to recognize a pragma that may appear after the body.
+ -- If there is a previous spec, check that it appears in the same
+ -- declarative part. If the pragma is Inline_Always, perform inlining
+ -- unconditionally, otherwise only if Front_End_Inlining is requested.
+ -- If the body acts as a spec, and inlining is required, we create a
+ -- subprogram declaration for it, in order to attach the body to inline.
+
+ procedure Copy_Parameter_List (Plist : List_Id);
+ -- Utility to create a parameter profile for a new subprogram spec,
+ -- when the subprogram has a body that acts as spec. This is done for
+ -- some cases of inlining, and for private protected ops.
+
+ procedure Verify_Overriding_Indicator;
+ -- If there was a previous spec, the entity has been entered in the
+ -- current scope previously. If the body itself carries an overriding
+ -- indicator, check that it is consistent with the known status of the
+ -- entity.
+
+ ----------------------------
+ -- Check_Anonymous_Return --
+ ----------------------------
+
+ procedure Check_Anonymous_Return is
+ Decl : Node_Id;
+ Scop : Entity_Id;
+
+ begin
+ if Present (Spec_Id) then
+ Scop := Spec_Id;
+ else
+ Scop := Body_Id;
+ end if;
+
+ if Ekind (Scop) = E_Function
+ and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
+ and then Has_Task (Designated_Type (Etype (Scop)))
+ and then Expander_Active
+ then
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uMaster),
+ Constant_Present => True,
+ Object_Definition =>
+ New_Reference_To (RTE (RE_Master_Id), Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ New_Reference_To (RTE (RE_Current_Master), Loc)));
+
+ if Present (Declarations (N)) then
+ Prepend (Decl, Declarations (N));
+ else
+ Set_Declarations (N, New_List (Decl));
+ end if;
+
+ Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
+ Set_Has_Master_Entity (Scop);
+ end if;
+ end Check_Anonymous_Return;
+
+ -------------------------
+ -- Check_Inline_Pragma --
+ -------------------------
+
+ procedure Check_Inline_Pragma (Spec : in out Node_Id) is
+ Prag : Node_Id;
+ Plist : List_Id;
+
+ begin
+ if not Expander_Active then
+ return;
+ end if;
+
+ if Is_List_Member (N)
+ and then Present (Next (N))
+ and then Nkind (Next (N)) = N_Pragma
+ then
+ Prag := Next (N);
+
+ if Nkind (Prag) = N_Pragma
+ and then
+ (Get_Pragma_Id (Chars (Prag)) = Pragma_Inline_Always
+ or else
+ (Front_End_Inlining
+ and then Get_Pragma_Id (Chars (Prag)) = Pragma_Inline))
+ and then
+ Chars
+ (Expression (First (Pragma_Argument_Associations (Prag))))
+ = Chars (Body_Id)
+ then
+ Prag := Next (N);
+ else
+ Prag := Empty;
+ end if;
+ else
+ Prag := Empty;
+ end if;
+
+ if Present (Prag) then
+ if Present (Spec_Id) then
+ if List_Containing (N) =
+ List_Containing (Unit_Declaration_Node (Spec_Id))
+ then
+ Analyze (Prag);
+ end if;
+
+ else
+ -- Create a subprogram declaration, to make treatment uniform
+
+ declare
+ Subp : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, Chars (Body_Id));
+ Decl : constant Node_Id :=
+ Make_Subprogram_Declaration (Loc,
+ Specification => New_Copy_Tree (Specification (N)));
+ begin
+ Set_Defining_Unit_Name (Specification (Decl), Subp);
+
+ if Present (First_Formal (Body_Id)) then
+ Plist := New_List;
+ Copy_Parameter_List (Plist);
+ Set_Parameter_Specifications
+ (Specification (Decl), Plist);
+ end if;
+
+ Insert_Before (N, Decl);
+ Analyze (Decl);
+ Analyze (Prag);
+ Set_Has_Pragma_Inline (Subp);
+
+ if Get_Pragma_Id (Chars (Prag)) = Pragma_Inline_Always then
+ Set_Is_Inlined (Subp);
+ Set_Next_Rep_Item (Prag, First_Rep_Item (Subp));
+ Set_First_Rep_Item (Subp, Prag);
+ end if;
+
+ Spec := Subp;
+ end;
+ end if;
+ end if;
+ end Check_Inline_Pragma;
+
+ -------------------------
+ -- Copy_Parameter_List --
+ -------------------------
+
+ procedure Copy_Parameter_List (Plist : List_Id) is
+ Formal : Entity_Id;
+
+ begin
+ Formal := First_Formal (Body_Id);
+
+ while Present (Formal) loop
+ Append
+ (Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => Chars (Formal)),
+ In_Present => In_Present (Parent (Formal)),
+ Out_Present => Out_Present (Parent (Formal)),
+ Parameter_Type =>
+ New_Reference_To (Etype (Formal), Loc),
+ Expression =>
+ New_Copy_Tree (Expression (Parent (Formal)))),
+ Plist);
+
+ Next_Formal (Formal);
+ end loop;
+ end Copy_Parameter_List;
+
+ ---------------------------------
+ -- Verify_Overriding_Indicator --
+ ---------------------------------
+
+ procedure Verify_Overriding_Indicator is
+ begin
+ if Must_Override (Body_Spec)
+ and then not Is_Overriding_Operation (Spec_Id)
+ then
+ Error_Msg_NE
+ ("subprogram& is not overriding", Body_Spec, Spec_Id);
+
+ elsif Must_Not_Override (Body_Spec) then
+ if Is_Overriding_Operation (Spec_Id) then
+ Error_Msg_NE
+ ("subprogram& overrides inherited operation",
+ Body_Spec, Spec_Id);
+
+ -- If this is not a primitive operation the overriding indicator
+ -- is altogether illegal.
+
+ elsif not Is_Primitive (Spec_Id) then
+ Error_Msg_N ("overriding indicator only allowed " &
+ "if subprogram is primitive",
+ Body_Spec);
+ end if;
+ end if;
+ end Verify_Overriding_Indicator;
+
+ -- Start of processing for Analyze_Subprogram_Body
+
+ begin
+ if Debug_Flag_C then
+ Write_Str ("==== Compiling subprogram body ");
+ Write_Name (Chars (Body_Id));
+ Write_Str (" from ");
+ Write_Location (Loc);
+ Write_Eol;
+ end if;
+
+ Trace_Scope (N, Body_Id, " Analyze subprogram: ");
+
+ -- Generic subprograms are handled separately. They always have a
+ -- generic specification. Determine whether current scope has a
+ -- previous declaration.
+
+ -- If the subprogram body is defined within an instance of the same
+ -- name, the instance appears as a package renaming, and will be hidden
+ -- within the subprogram.
+
+ if Present (Prev_Id)
+ and then not Is_Overloadable (Prev_Id)
+ and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
+ or else Comes_From_Source (Prev_Id))
+ then
+ if Is_Generic_Subprogram (Prev_Id) then
+ Spec_Id := Prev_Id;
+ Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
+ Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
+
+ Analyze_Generic_Subprogram_Body (N, Spec_Id);
+ return;
+
+ else
+ -- Previous entity conflicts with subprogram name. Attempting to
+ -- enter name will post error.
+
+ Enter_Name (Body_Id);
+ return;
+ end if;
+
+ -- Non-generic case, find the subprogram declaration, if one was seen,
+ -- or enter new overloaded entity in the current scope. If the
+ -- Current_Entity is the Body_Id itself, the unit is being analyzed as
+ -- part of the context of one of its subunits. No need to redo the
+ -- analysis.
+
+ elsif Prev_Id = Body_Id
+ and then Has_Completion (Body_Id)
+ then
+ return;
+
+ else
+ Body_Id := Analyze_Subprogram_Specification (Body_Spec);
+
+ if Nkind (N) = N_Subprogram_Body_Stub
+ or else No (Corresponding_Spec (N))
+ then
+ Spec_Id := Find_Corresponding_Spec (N);
+
+ -- If this is a duplicate body, no point in analyzing it
+
+ if Error_Posted (N) then
+ return;
+ end if;
+
+ -- A subprogram body should cause freezing of its own declaration,
+ -- but if there was no previous explicit declaration, then the
+ -- subprogram will get frozen too late (there may be code within
+ -- the body that depends on the subprogram having been frozen,
+ -- such as uses of extra formals), so we force it to be frozen
+ -- here. Same holds if the body and the spec are compilation
+ -- units.
+
+ if No (Spec_Id) then
+ Freeze_Before (N, Body_Id);
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+ Freeze_Before (N, Spec_Id);
+ end if;
+ else
+ Spec_Id := Corresponding_Spec (N);
+ end if;
+ end if;
+
+ -- Do not inline any subprogram that contains nested subprograms, since
+ -- the backend inlining circuit seems to generate uninitialized
+ -- references in this case. We know this happens in the case of front
+ -- end ZCX support, but it also appears it can happen in other cases as
+ -- well. The backend often rejects attempts to inline in the case of
+ -- nested procedures anyway, so little if anything is lost by this.
+ -- Note that this is test is for the benefit of the back-end. There is
+ -- a separate test for front-end inlining that also rejects nested
+ -- subprograms.
+
+ -- Do not do this test if errors have been detected, because in some
+ -- error cases, this code blows up, and we don't need it anyway if
+ -- there have been errors, since we won't get to the linker anyway.
+
+ if Comes_From_Source (Body_Id)
+ and then Serious_Errors_Detected = 0
+ then
+ P_Ent := Body_Id;
+ loop
+ P_Ent := Scope (P_Ent);
+ exit when No (P_Ent) or else P_Ent = Standard_Standard;
+
+ if Is_Subprogram (P_Ent) then
+ Set_Is_Inlined (P_Ent, False);
+
+ if Comes_From_Source (P_Ent)
+ and then Has_Pragma_Inline (P_Ent)
+ then
+ Cannot_Inline
+ ("cannot inline& (nested subprogram)?",
+ N, P_Ent);
+ end if;
+ end if;
+ end loop;
+ end if;
+
+ Check_Inline_Pragma (Spec_Id);
+
+ -- Case of fully private operation in the body of the protected type.
+ -- We must create a declaration for the subprogram, in order to attach
+ -- the protected subprogram that will be used in internal calls.
+
+ if No (Spec_Id)
+ and then Comes_From_Source (N)
+ and then Is_Protected_Type (Current_Scope)
+ then
+ declare
+ Decl : Node_Id;
+ Plist : List_Id;
+ Formal : Entity_Id;
+ New_Spec : Node_Id;
+
+ begin
+ Formal := First_Formal (Body_Id);
+
+ -- The protected operation always has at least one formal, namely
+ -- the object itself, but it is only placed in the parameter list
+ -- if expansion is enabled.
+
+ if Present (Formal)
+ or else Expander_Active
+ then
+ Plist := New_List;
+
+ else
+ Plist := No_List;
+ end if;
+
+ Copy_Parameter_List (Plist);
+
+ if Nkind (Body_Spec) = N_Procedure_Specification then
+ New_Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Sloc (Body_Id),
+ Chars => Chars (Body_Id)),
+ Parameter_Specifications => Plist);
+ else
+ New_Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Sloc (Body_Id),
+ Chars => Chars (Body_Id)),
+ Parameter_Specifications => Plist,
+ Result_Definition =>
+ New_Occurrence_Of (Etype (Body_Id), Loc));
+ end if;
+
+ Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification => New_Spec);
+ Insert_Before (N, Decl);
+ Spec_Id := Defining_Unit_Name (New_Spec);
+
+ -- Indicate that the entity comes from source, to ensure that
+ -- cross-reference information is properly generated. The body
+ -- itself is rewritten during expansion, and the body entity will
+ -- not appear in calls to the operation.
+
+ Set_Comes_From_Source (Spec_Id, True);
+ Analyze (Decl);
+ Set_Has_Completion (Spec_Id);
+ Set_Convention (Spec_Id, Convention_Protected);
+ end;
+
+ elsif Present (Spec_Id) then
+ Spec_Decl := Unit_Declaration_Node (Spec_Id);
+ Verify_Overriding_Indicator;
+
+ -- In general, the spec will be frozen when we start analyzing the
+ -- body. However, for internally generated operations, such as
+ -- wrapper functions for inherited operations with controlling
+ -- results, the spec may not have been frozen by the time we
+ -- expand the freeze actions that include the bodies. In particular,
+ -- extra formals for accessibility or for return-in-place may need
+ -- to be generated. Freeze nodes, if any, are inserted before the
+ -- current body.
+
+ if not Is_Frozen (Spec_Id)
+ and then Expander_Active
+ then
+ -- Force the generation of its freezing node to ensure proper
+ -- management of access types in the backend.
+
+ -- This is definitely needed for some cases, but it is not clear
+ -- why, to be investigated further???
+
+ Set_Has_Delayed_Freeze (Spec_Id);
+ Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
+ end if;
+ end if;
+
+ -- Place subprogram on scope stack, and make formals visible. If there
+ -- is a spec, the visible entity remains that of the spec.
+
+ if Present (Spec_Id) then
+ Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
+
+ if Is_Child_Unit (Spec_Id) then
+ Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
+ end if;
+
+ if Style_Check then
+ Style.Check_Identifier (Body_Id, Spec_Id);
+ end if;
+
+ Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
+ Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
+
+ if Is_Abstract_Subprogram (Spec_Id) then
+ Error_Msg_N ("an abstract subprogram cannot have a body", N);
+ return;
+ else
+ Set_Convention (Body_Id, Convention (Spec_Id));
+ Set_Has_Completion (Spec_Id);
+
+ if Is_Protected_Type (Scope (Spec_Id)) then
+ Set_Privals_Chain (Spec_Id, New_Elmt_List);
+ end if;
+
+ -- If this is a body generated for a renaming, do not check for
+ -- full conformance. The check is redundant, because the spec of
+ -- the body is a copy of the spec in the renaming declaration,
+ -- and the test can lead to spurious errors on nested defaults.
+
+ if Present (Spec_Decl)
+ and then not Comes_From_Source (N)
+ and then
+ (Nkind (Original_Node (Spec_Decl)) =
+ N_Subprogram_Renaming_Declaration
+ or else (Present (Corresponding_Body (Spec_Decl))
+ and then
+ Nkind (Unit_Declaration_Node
+ (Corresponding_Body (Spec_Decl))) =
+ N_Subprogram_Renaming_Declaration))
+ then
+ Conformant := True;
+ else
+ Check_Conformance
+ (Body_Id, Spec_Id,
+ Fully_Conformant, True, Conformant, Body_Id);
+ end if;
+
+ -- If the body is not fully conformant, we have to decide if we
+ -- should analyze it or not. If it has a really messed up profile
+ -- then we probably should not analyze it, since we will get too
+ -- many bogus messages.
+
+ -- Our decision is to go ahead in the non-fully conformant case
+ -- only if it is at least mode conformant with the spec. Note
+ -- that the call to Check_Fully_Conformant has issued the proper
+ -- error messages to complain about the lack of conformance.
+
+ if not Conformant
+ and then not Mode_Conformant (Body_Id, Spec_Id)
+ then
+ return;
+ end if;
+ end if;
+
+ if Spec_Id /= Body_Id then
+ Reference_Body_Formals (Spec_Id, Body_Id);
+ end if;
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Corresponding_Spec (N, Spec_Id);
+
+ -- Ada 2005 (AI-345): If the operation is a primitive operation
+ -- of a concurrent type, the type of the first parameter has been
+ -- replaced with the corresponding record, which is the proper
+ -- run-time structure to use. However, within the body there may
+ -- be uses of the formals that depend on primitive operations
+ -- of the type (in particular calls in prefixed form) for which
+ -- we need the original concurrent type. The operation may have
+ -- several controlling formals, so the replacement must be done
+ -- for all of them.
+
+ if Comes_From_Source (Spec_Id)
+ and then Present (First_Entity (Spec_Id))
+ and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
+ and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
+ and then
+ Present (Abstract_Interfaces (Etype (First_Entity (Spec_Id))))
+ and then
+ Present
+ (Corresponding_Concurrent_Type
+ (Etype (First_Entity (Spec_Id))))
+ then
+ declare
+ Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
+ Form : Entity_Id;
+
+ begin
+ Form := First_Formal (Spec_Id);
+ while Present (Form) loop
+ if Etype (Form) = Typ then
+ Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
+ end if;
+
+ Next_Formal (Form);
+ end loop;
+ end;
+ end if;
+
+ -- Now make the formals visible, and place subprogram
+ -- on scope stack.
+
+ Install_Formals (Spec_Id);
+ Last_Formal := Last_Entity (Spec_Id);
+ Push_Scope (Spec_Id);
+
+ -- Make sure that the subprogram is immediately visible. For
+ -- child units that have no separate spec this is indispensable.
+ -- Otherwise it is safe albeit redundant.
+
+ Set_Is_Immediately_Visible (Spec_Id);
+ end if;
+
+ Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
+ Set_Ekind (Body_Id, E_Subprogram_Body);
+ Set_Scope (Body_Id, Scope (Spec_Id));
+ Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
+
+ -- Case of subprogram body with no previous spec
+
+ else
+ if Style_Check
+ and then Comes_From_Source (Body_Id)
+ and then not Suppress_Style_Checks (Body_Id)
+ and then not In_Instance
+ then
+ Style.Body_With_No_Spec (N);
+ end if;
+
+ New_Overloaded_Entity (Body_Id);
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Acts_As_Spec (N);
+ Generate_Definition (Body_Id);
+ Generate_Reference
+ (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
+ Generate_Reference_To_Formals (Body_Id);
+ Install_Formals (Body_Id);
+ Push_Scope (Body_Id);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-251): Check wrong placement of abstract interface
+ -- primitives, and update anonymous access returns with limited views.
+
+ if Ada_Version >= Ada_05
+ and then Comes_From_Source (N)
+ then
+ declare
+ E : Entity_Id;
+ Etyp : Entity_Id;
+ Rtyp : Entity_Id;
+
+ begin
+ -- Check the type of the formals
+
+ E := First_Entity (Body_Id);
+ while Present (E) loop
+ Etyp := Etype (E);
+
+ if Is_Access_Type (Etyp) then
+ Etyp := Directly_Designated_Type (Etyp);
+ end if;
+
+ if not Is_Class_Wide_Type (Etyp)
+ and then Is_Interface (Etyp)
+ then
+ Error_Msg_Name_1 := Chars (Defining_Entity (N));
+ Error_Msg_N
+ ("(Ada 2005) abstract interface primitives must be" &
+ " defined in package specs", N);
+ exit;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ -- In case of functions, check the type of the result
+
+ if Ekind (Body_Id) = E_Function then
+ Etyp := Etype (Body_Id);
+
+ if Is_Access_Type (Etyp) then
+ Etyp := Directly_Designated_Type (Etyp);
+ end if;
+
+ if not Is_Class_Wide_Type (Etyp)
+ and then Is_Interface (Etyp)
+ then
+ Error_Msg_Name_1 := Chars (Defining_Entity (N));
+ Error_Msg_N
+ ("(Ada 2005) abstract interface primitives must be" &
+ " defined in package specs", N);
+ end if;
+ end if;
+
+ -- If the return type is an anonymous access type whose
+ -- designated type is the limited view of a class-wide type
+ -- and the non-limited view is available. update the return
+ -- type accordingly.
+
+ Rtyp := Etype (Current_Scope);
+
+ if Ekind (Rtyp) = E_Anonymous_Access_Type then
+ Etyp := Directly_Designated_Type (Rtyp);
+
+ if Is_Class_Wide_Type (Etyp)
+ and then From_With_Type (Etyp)
+ then
+ Set_Directly_Designated_Type
+ (Etype (Current_Scope), Available_View (Etyp));
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- If this is the proper body of a stub, we must verify that the stub
+ -- conforms to the body, and to the previous spec if one was present.
+ -- we know already that the body conforms to that spec. This test is
+ -- only required for subprograms that come from source.
+
+ if Nkind (Parent (N)) = N_Subunit
+ and then Comes_From_Source (N)
+ and then not Error_Posted (Body_Id)
+ and then Nkind (Corresponding_Stub (Parent (N))) =
+ N_Subprogram_Body_Stub
+ then
+ declare
+ Old_Id : constant Entity_Id :=
+ Defining_Entity
+ (Specification (Corresponding_Stub (Parent (N))));
+
+ Conformant : Boolean := False;
+
+ begin
+ if No (Spec_Id) then
+ Check_Fully_Conformant (Body_Id, Old_Id);
+
+ else
+ Check_Conformance
+ (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
+
+ if not Conformant then
+
+ -- The stub was taken to be a new declaration. Indicate
+ -- that it lacks a body.
+
+ Set_Has_Completion (Old_Id, False);
+ end if;
+ end if;
+ end;
+ end if;
+
+ Set_Has_Completion (Body_Id);
+ Check_Eliminated (Body_Id);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ return;
+
+ elsif Present (Spec_Id)
+ and then Expander_Active
+ and then
+ (Has_Pragma_Inline_Always (Spec_Id)
+ or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
+ then
+ Build_Body_To_Inline (N, Spec_Id);
+ end if;
+
+ -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
+ -- if its specification we have to install the private withed units.
+
+ if Is_Compilation_Unit (Body_Id)
+ and then Scope (Body_Id) = Standard_Standard
+ then
+ Install_Private_With_Clauses (Body_Id);
+ end if;
+
+ Check_Anonymous_Return;
+
+ -- Set the Protected_Formal field of each extra formal of the protected
+ -- subprogram to reference the corresponding extra formal of the
+ -- subprogram that implements it. For regular formals this occurs when
+ -- the protected subprogram's declaration is expanded, but the extra
+ -- formals don't get created until the subprogram is frozen. We need to
+ -- do this before analyzing the protected subprogram's body so that any
+ -- references to the original subprogram's extra formals will be changed
+ -- refer to the implementing subprogram's formals (see Expand_Formal).
+
+ if Present (Spec_Id)
+ and then Is_Protected_Type (Scope (Spec_Id))
+ and then Present (Protected_Body_Subprogram (Spec_Id))
+ then
+ declare
+ Impl_Subp : constant Entity_Id :=
+ Protected_Body_Subprogram (Spec_Id);
+ Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
+ Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
+ begin
+ while Present (Prot_Ext_Formal) loop
+ pragma Assert (Present (Impl_Ext_Formal));
+
+ Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
+
+ Next_Formal_With_Extras (Prot_Ext_Formal);
+ Next_Formal_With_Extras (Impl_Ext_Formal);
+ end loop;
+ end;
+ end if;
+
+ -- Now we can go on to analyze the body
+
+ HSS := Handled_Statement_Sequence (N);
+ Set_Actual_Subtypes (N, Current_Scope);
+ Analyze_Declarations (Declarations (N));
+ Check_Completion;
+ Analyze (HSS);
+ Process_End_Label (HSS, 't', Current_Scope);
+ End_Scope;
+ Check_Subprogram_Order (N);
+ Set_Analyzed (Body_Id);
+
+ -- If we have a separate spec, then the analysis of the declarations
+ -- caused the entities in the body to be chained to the spec id, but
+ -- we want them chained to the body id. Only the formal parameters
+ -- end up chained to the spec id in this case.
+
+ if Present (Spec_Id) then
+
+ -- We must conform to the categorization of our spec
+
+ Validate_Categorization_Dependency (N, Spec_Id);
+
+ -- And if this is a child unit, the parent units must conform
+
+ if Is_Child_Unit (Spec_Id) then
+ Validate_Categorization_Dependency
+ (Unit_Declaration_Node (Spec_Id), Spec_Id);
+ end if;
+
+ if Present (Last_Formal) then
+ Set_Next_Entity
+ (Last_Entity (Body_Id), Next_Entity (Last_Formal));
+ Set_Next_Entity (Last_Formal, Empty);
+ Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
+ Set_Last_Entity (Spec_Id, Last_Formal);
+
+ else
+ Set_First_Entity (Body_Id, First_Entity (Spec_Id));
+ Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
+ Set_First_Entity (Spec_Id, Empty);
+ Set_Last_Entity (Spec_Id, Empty);
+ end if;
+ end if;
+
+ -- If function, check return statements
+
+ if Nkind (Body_Spec) = N_Function_Specification then
+ declare
+ Id : Entity_Id;
+
+ begin
+ if Present (Spec_Id) then
+ Id := Spec_Id;
+ else
+ Id := Body_Id;
+ end if;
+
+ if Return_Present (Id) then
+ Check_Returns (HSS, 'F', Missing_Ret);
+
+ if Missing_Ret then
+ Set_Has_Missing_Return (Id);
+ end if;
+
+ elsif not Is_Machine_Code_Subprogram (Id)
+ and then not Body_Deleted
+ then
+ Error_Msg_N ("missing RETURN statement in function body", N);
+ end if;
+ end;
+
+ -- If procedure with No_Return, check returns
+
+ elsif Nkind (Body_Spec) = N_Procedure_Specification
+ and then Present (Spec_Id)
+ and then No_Return (Spec_Id)
+ then
+ Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
+ end if;
+
+ -- Now we are going to check for variables that are never modified in
+ -- the body of the procedure. We omit these checks if the first
+ -- statement of the procedure raises an exception. In particular this
+ -- deals with the common idiom of a stubbed function, which might
+ -- appear as something like
+
+ -- function F (A : Integer) return Some_Type;
+ -- X : Some_Type;
+ -- begin
+ -- raise Program_Error;
+ -- return X;
+ -- end F;
+
+ -- Here the purpose of X is simply to satisfy the (annoying)
+ -- requirement in Ada that there be at least one return, and we
+ -- certainly do not want to go posting warnings on X that it is not
+ -- initialized!
+
+ declare
+ Stm : Node_Id;
+
+ begin
+ -- Skip initial labels (for one thing this occurs when we are in
+ -- front end ZCX mode, but in any case it is irrelevant), and also
+ -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
+
+ Stm := First (Statements (HSS));
+ while Nkind (Stm) = N_Label
+ or else Nkind (Stm) in N_Push_xxx_Label
+ loop
+ Next (Stm);
+ end loop;
+
+ -- Do the test on the original statement before expansion
+
+ declare
+ Ostm : constant Node_Id := Original_Node (Stm);
+
+ begin
+ -- If explicit raise statement, return with no checks
+
+ if Nkind (Ostm) = N_Raise_Statement then
+ return;
+
+ -- Check for explicit call cases which likely raise an exception
+
+ elsif Nkind (Ostm) = N_Procedure_Call_Statement then
+ if Is_Entity_Name (Name (Ostm)) then
+ declare
+ Ent : constant Entity_Id := Entity (Name (Ostm));
+
+ begin
+ -- If the procedure is marked No_Return, then likely it
+ -- raises an exception, but in any case it is not coming
+ -- back here, so no need to check beyond the call.
+
+ if Ekind (Ent) = E_Procedure
+ and then No_Return (Ent)
+ then
+ return;
+
+ -- If the procedure name is Raise_Exception, then also
+ -- assume that it raises an exception. The main target
+ -- here is Ada.Exceptions.Raise_Exception, but this name
+ -- is pretty evocative in any context! Note that the
+ -- procedure in Ada.Exceptions is not marked No_Return
+ -- because of the annoying case of the null exception Id.
+
+ elsif Chars (Ent) = Name_Raise_Exception then
+ return;
+ end if;
+ end;
+ end if;
+ end if;
+ end;
+ end;
+
+ -- Check for variables that are never modified
+
+ declare
+ E1, E2 : Entity_Id;
+
+ begin
+ -- If there is a separate spec, then transfer Never_Set_In_Source
+ -- flags from out parameters to the corresponding entities in the
+ -- body. The reason we do that is we want to post error flags on
+ -- the body entities, not the spec entities.
+
+ if Present (Spec_Id) then
+ E1 := First_Entity (Spec_Id);
+ while Present (E1) loop
+ if Ekind (E1) = E_Out_Parameter then
+ E2 := First_Entity (Body_Id);
+ while Present (E2) loop
+ exit when Chars (E1) = Chars (E2);
+ Next_Entity (E2);
+ end loop;
+
+ if Present (E2) then
+ Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
+ end if;
+ end if;
+
+ Next_Entity (E1);
+ end loop;
+ end if;
+
+ -- Check references in body unless it was deleted. Note that the
+ -- check of Body_Deleted here is not just for efficiency, it is
+ -- necessary to avoid junk warnings on formal parameters.
+
+ if not Body_Deleted then
+ Check_References (Body_Id);
+ end if;
+ end;
+ end Analyze_Subprogram_Body;
+
+ ------------------------------------
+ -- Analyze_Subprogram_Declaration --
+ ------------------------------------
+
+ procedure Analyze_Subprogram_Declaration (N : Node_Id) is
+ Designator : constant Entity_Id :=
+ Analyze_Subprogram_Specification (Specification (N));
+ Scop : constant Entity_Id := Current_Scope;
+
+ -- Start of processing for Analyze_Subprogram_Declaration
+
+ begin
+ Generate_Definition (Designator);
+
+ -- Check for RCI unit subprogram declarations for illegal inlined
+ -- subprograms and subprograms having access parameter or limited
+ -- parameter without Read and Write attributes (RM E.2.3(12-13)).
+
+ Validate_RCI_Subprogram_Declaration (N);
+
+ Trace_Scope
+ (N,
+ Defining_Entity (N),
+ " Analyze subprogram spec: ");
+
+ if Debug_Flag_C then
+ Write_Str ("==== Compiling subprogram spec ");
+ Write_Name (Chars (Designator));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ end if;
+
+ New_Overloaded_Entity (Designator);
+ Check_Delayed_Subprogram (Designator);
+
+ -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
+ -- or null.
+
+ if Ada_Version >= Ada_05
+ and then Comes_From_Source (N)
+ and then Is_Dispatching_Operation (Designator)
+ then
+ declare
+ E : Entity_Id;
+ Etyp : Entity_Id;
+
+ begin
+ if Has_Controlling_Result (Designator) then
+ Etyp := Etype (Designator);
+
+ else
+ E := First_Entity (Designator);
+ while Present (E)
+ and then Is_Formal (E)
+ and then not Is_Controlling_Formal (E)
+ loop
+ Next_Entity (E);
+ end loop;
+
+ Etyp := Etype (E);
+ end if;
+
+ if Is_Access_Type (Etyp) then
+ Etyp := Directly_Designated_Type (Etyp);
+ end if;
+
+ if Is_Interface (Etyp)
+ and then not Is_Abstract_Subprogram (Designator)
+ and then not (Ekind (Designator) = E_Procedure
+ and then Null_Present (Specification (N)))
+ then
+ Error_Msg_Name_1 := Chars (Defining_Entity (N));
+ Error_Msg_N
+ ("(Ada 2005) interface subprogram % must be abstract or null",
+ N);
+ end if;
+ end;
+ end if;
+
+ -- What is the following code for, it used to be
+
+ -- ??? Set_Suppress_Elaboration_Checks
+ -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
+
+ -- The following seems equivalent, but a bit dubious
+
+ if Elaboration_Checks_Suppressed (Designator) then
+ Set_Kill_Elaboration_Checks (Designator);
+ end if;
+
+ if Scop /= Standard_Standard
+ and then not Is_Child_Unit (Designator)
+ then
+ Set_Categorization_From_Scope (Designator, Scop);
+ else
+ -- For a compilation unit, check for library-unit pragmas
+
+ Push_Scope (Designator);
+ Set_Categorization_From_Pragmas (N);
+ Validate_Categorization_Dependency (N, Designator);
+ Pop_Scope;
+ end if;
+
+ -- For a compilation unit, set body required. This flag will only be
+ -- reset if a valid Import or Interface pragma is processed later on.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Body_Required (Parent (N), True);
+
+ if Ada_Version >= Ada_05
+ and then Nkind (Specification (N)) = N_Procedure_Specification
+ and then Null_Present (Specification (N))
+ then
+ Error_Msg_N
+ ("null procedure cannot be declared at library level", N);
+ end if;
+ end if;
+
+ Generate_Reference_To_Formals (Designator);
+ Check_Eliminated (Designator);
+
+ -- Ada 2005: if procedure is declared with "is null" qualifier,
+ -- it requires no body.
+
+ if Nkind (Specification (N)) = N_Procedure_Specification
+ and then Null_Present (Specification (N))
+ then
+ Set_Has_Completion (Designator);
+ Set_Is_Inlined (Designator);
+
+ if Is_Protected_Type (Current_Scope) then
+ Error_Msg_N
+ ("protected operation cannot be a null procedure", N);
+ end if;
+ end if;
+ end Analyze_Subprogram_Declaration;
+
+ --------------------------------------
+ -- Analyze_Subprogram_Specification --
+ --------------------------------------
+
+ -- Reminder: N here really is a subprogram specification (not a subprogram
+ -- declaration). This procedure is called to analyze the specification in
+ -- both subprogram bodies and subprogram declarations (specs).
+
+ function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
+ Designator : constant Entity_Id := Defining_Entity (N);
+ Formal : Entity_Id;
+ Formal_Typ : Entity_Id;
+ Formals : constant List_Id := Parameter_Specifications (N);
+
+ -- Start of processing for Analyze_Subprogram_Specification
+
+ begin
+ Generate_Definition (Designator);
+
+ if Nkind (N) = N_Function_Specification then
+ Set_Ekind (Designator, E_Function);
+ Set_Mechanism (Designator, Default_Mechanism);
+
+ else
+ Set_Ekind (Designator, E_Procedure);
+ Set_Etype (Designator, Standard_Void_Type);
+ end if;
+
+ -- Introduce new scope for analysis of the formals and the return type
+
+ Set_Scope (Designator, Current_Scope);
+
+ if Present (Formals) then
+ Push_Scope (Designator);
+ Process_Formals (Formals, N);
+
+ -- Ada 2005 (AI-345): Allow the overriding of interface primitives
+ -- by subprograms which belong to a concurrent type implementing an
+ -- interface. Set the parameter type of each controlling formal to
+ -- the corresponding record type.
+
+ if Ada_Version >= Ada_05 then
+ Formal := First_Formal (Designator);
+ while Present (Formal) loop
+ Formal_Typ := Etype (Formal);
+
+ if (Ekind (Formal_Typ) = E_Protected_Type
+ or else Ekind (Formal_Typ) = E_Task_Type)
+ and then Present (Corresponding_Record_Type (Formal_Typ))
+ and then Present (Abstract_Interfaces
+ (Corresponding_Record_Type (Formal_Typ)))
+ then
+ Set_Etype (Formal,
+ Corresponding_Record_Type (Formal_Typ));
+ end if;
+
+ Formal := Next_Formal (Formal);
+ end loop;
+ end if;
+
+ End_Scope;
+
+ elsif Nkind (N) = N_Function_Specification then
+ Analyze_Return_Type (N);
+ end if;
+
+ if Nkind (N) = N_Function_Specification then
+ if Nkind (Designator) = N_Defining_Operator_Symbol then
+ Valid_Operator_Definition (Designator);
+ end if;
+
+ May_Need_Actuals (Designator);
+
+ -- Ada 2005 (AI-251): In case of primitives associated with abstract
+ -- interface types the following error message will be reported later
+ -- (see Analyze_Subprogram_Declaration).
+
+ if Is_Abstract_Type (Etype (Designator))
+ and then not Is_Interface (Etype (Designator))
+ and then Nkind (Parent (N))
+ /= N_Abstract_Subprogram_Declaration
+ and then (Nkind (Parent (N)))
+ /= N_Formal_Abstract_Subprogram_Declaration
+ and then (Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
+ or else not Is_Entity_Name (Name (Parent (N)))
+ or else not Is_Abstract_Subprogram
+ (Entity (Name (Parent (N)))))
+ then
+ Error_Msg_N
+ ("function that returns abstract type must be abstract", N);
+ end if;
+ end if;
+
+ return Designator;
+ end Analyze_Subprogram_Specification;
+
+ --------------------------
+ -- Build_Body_To_Inline --
+ --------------------------
+
+ procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
+ Decl : constant Node_Id := Unit_Declaration_Node (Subp);
+ Original_Body : Node_Id;
+ Body_To_Analyze : Node_Id;
+ Max_Size : constant := 10;
+ Stat_Count : Integer := 0;
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
+ -- Check for declarations that make inlining not worthwhile
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean;
+ -- Check for statements that make inlining not worthwhile: any tasking
+ -- statement, nested at any level. Keep track of total number of
+ -- elementary statements, as a measure of acceptable size.
+
+ function Has_Pending_Instantiation return Boolean;
+ -- If some enclosing body contains instantiations that appear before the
+ -- corresponding generic body, the enclosing body has a freeze node so
+ -- that it can be elaborated after the generic itself. This might
+ -- conflict with subsequent inlinings, so that it is unsafe to try to
+ -- inline in such a case.
+
+ function Has_Single_Return return Boolean;
+ -- In general we cannot inline functions that return unconstrained type.
+ -- However, we can handle such functions if all return statements return
+ -- a local variable that is the only declaration in the body of the
+ -- function. In that case the call can be replaced by that local
+ -- variable as is done for other inlined calls.
+
+ procedure Remove_Pragmas;
+ -- A pragma Unreferenced that mentions a formal parameter has no meaning
+ -- when the body is inlined and the formals are rewritten. Remove it
+ -- from body to inline. The analysis of the non-inlined body will handle
+ -- the pragma properly.
+
+ function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
+ -- If the body of the subprogram includes a call that returns an
+ -- unconstrained type, the secondary stack is involved, and it
+ -- is not worth inlining.
+
+ ------------------------------
+ -- Has_Excluded_Declaration --
+ ------------------------------
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
+ D : Node_Id;
+
+ function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
+ -- Nested subprograms make a given body ineligible for inlining, but
+ -- we make an exception for instantiations of unchecked conversion.
+ -- The body has not been analyzed yet, so check the name, and verify
+ -- that the visible entity with that name is the predefined unit.
+
+ -----------------------------
+ -- Is_Unchecked_Conversion --
+ -----------------------------
+
+ function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
+ Id : constant Node_Id := Name (D);
+ Conv : Entity_Id;
+
+ begin
+ if Nkind (Id) = N_Identifier
+ and then Chars (Id) = Name_Unchecked_Conversion
+ then
+ Conv := Current_Entity (Id);
+
+ elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
+ and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
+ then
+ Conv := Current_Entity (Selector_Name (Id));
+ else
+ return False;
+ end if;
+
+ return Present (Conv)
+ and then Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Conv)))
+ and then Is_Intrinsic_Subprogram (Conv);
+ end Is_Unchecked_Conversion;
+
+ -- Start of processing for Has_Excluded_Declaration
+
+ begin
+ D := First (Decls);
+ while Present (D) loop
+ if (Nkind (D) = N_Function_Instantiation
+ and then not Is_Unchecked_Conversion (D))
+ or else Nkind_In (D, N_Protected_Type_Declaration,
+ N_Package_Declaration,
+ N_Package_Instantiation,
+ N_Subprogram_Body,
+ N_Procedure_Instantiation,
+ N_Task_Type_Declaration)
+ then
+ Cannot_Inline
+ ("cannot inline & (non-allowed declaration)?", D, Subp);
+ return True;
+ end if;
+
+ Next (D);
+ end loop;
+
+ return False;
+ end Has_Excluded_Declaration;
+
+ ----------------------------
+ -- Has_Excluded_Statement --
+ ----------------------------
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean is
+ S : Node_Id;
+ E : Node_Id;
+
+ begin
+ S := First (Stats);
+ while Present (S) loop
+ Stat_Count := Stat_Count + 1;
+
+ if Nkind_In (S, N_Abort_Statement,
+ N_Asynchronous_Select,
+ N_Conditional_Entry_Call,
+ N_Delay_Relative_Statement,
+ N_Delay_Until_Statement,
+ N_Selective_Accept,
+ N_Timed_Entry_Call)
+ then
+ Cannot_Inline
+ ("cannot inline & (non-allowed statement)?", S, Subp);
+ return True;
+
+ elsif Nkind (S) = N_Block_Statement then
+ if Present (Declarations (S))
+ and then Has_Excluded_Declaration (Declarations (S))
+ then
+ return True;
+
+ elsif Present (Handled_Statement_Sequence (S))
+ and then
+ (Present
+ (Exception_Handlers (Handled_Statement_Sequence (S)))
+ or else
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (S))))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Case_Statement then
+ E := First (Alternatives (S));
+ while Present (E) loop
+ if Has_Excluded_Statement (Statements (E)) then
+ return True;
+ end if;
+
+ Next (E);
+ end loop;
+
+ elsif Nkind (S) = N_If_Statement then
+ if Has_Excluded_Statement (Then_Statements (S)) then
+ return True;
+ end if;
+
+ if Present (Elsif_Parts (S)) then
+ E := First (Elsif_Parts (S));
+ while Present (E) loop
+ if Has_Excluded_Statement (Then_Statements (E)) then
+ return True;
+ end if;
+ Next (E);
+ end loop;
+ end if;
+
+ if Present (Else_Statements (S))
+ and then Has_Excluded_Statement (Else_Statements (S))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Loop_Statement
+ and then Has_Excluded_Statement (Statements (S))
+ then
+ return True;
+ end if;
+
+ Next (S);
+ end loop;
+
+ return False;
+ end Has_Excluded_Statement;
+
+ -------------------------------
+ -- Has_Pending_Instantiation --
+ -------------------------------
+
+ function Has_Pending_Instantiation return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) loop
+ if Is_Compilation_Unit (S)
+ or else Is_Child_Unit (S)
+ then
+ return False;
+ elsif Ekind (S) = E_Package
+ and then Has_Forward_Instantiation (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end Has_Pending_Instantiation;
+
+ ------------------------
+ -- Has_Single_Return --
+ ------------------------
+
+ function Has_Single_Return return Boolean is
+ Return_Statement : Node_Id := Empty;
+
+ function Check_Return (N : Node_Id) return Traverse_Result;
+
+ ------------------
+ -- Check_Return --
+ ------------------
+
+ function Check_Return (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Simple_Return_Statement then
+ if Present (Expression (N))
+ and then Is_Entity_Name (Expression (N))
+ then
+ if No (Return_Statement) then
+ Return_Statement := N;
+ return OK;
+
+ elsif Chars (Expression (N)) =
+ Chars (Expression (Return_Statement))
+ then
+ return OK;
+
+ else
+ return Abandon;
+ end if;
+
+ else
+ -- Expression has wrong form
+
+ return Abandon;
+ end if;
+
+ else
+ return OK;
+ end if;
+ end Check_Return;
+
+ function Check_All_Returns is new Traverse_Func (Check_Return);
+
+ -- Start of processing for Has_Single_Return
+
+ begin
+ return Check_All_Returns (N) = OK
+ and then Present (Declarations (N))
+ and then Present (First (Declarations (N)))
+ and then Chars (Expression (Return_Statement)) =
+ Chars (Defining_Identifier (First (Declarations (N))));
+ end Has_Single_Return;
+
+ --------------------
+ -- Remove_Pragmas --
+ --------------------
+
+ procedure Remove_Pragmas is
+ Decl : Node_Id;
+ Nxt : Node_Id;
+
+ begin
+ Decl := First (Declarations (Body_To_Analyze));
+ while Present (Decl) loop
+ Nxt := Next (Decl);
+
+ if Nkind (Decl) = N_Pragma
+ and then Chars (Decl) = Name_Unreferenced
+ then
+ Remove (Decl);
+ end if;
+
+ Decl := Nxt;
+ end loop;
+ end Remove_Pragmas;
+
+ --------------------------
+ -- Uses_Secondary_Stack --
+ --------------------------
+
+ function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
+ function Check_Call (N : Node_Id) return Traverse_Result;
+ -- Look for function calls that return an unconstrained type
+
+ ----------------
+ -- Check_Call --
+ ----------------
+
+ function Check_Call (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Function_Call
+ and then Is_Entity_Name (Name (N))
+ and then Is_Composite_Type (Etype (Entity (Name (N))))
+ and then not Is_Constrained (Etype (Entity (Name (N))))
+ then
+ Cannot_Inline
+ ("cannot inline & (call returns unconstrained type)?",
+ N, Subp);
+ return Abandon;
+ else
+ return OK;
+ end if;
+ end Check_Call;
+
+ function Check_Calls is new Traverse_Func (Check_Call);
+
+ begin
+ return Check_Calls (Bod) = Abandon;
+ end Uses_Secondary_Stack;
+
+ -- Start of processing for Build_Body_To_Inline
+
+ begin
+ if Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Body_To_Inline (Decl))
+ then
+ return; -- Done already.
+
+ -- Functions that return unconstrained composite types require
+ -- secondary stack handling, and cannot currently be inlined, unless
+ -- all return statements return a local variable that is the first
+ -- local declaration in the body.
+
+ elsif Ekind (Subp) = E_Function
+ and then not Is_Scalar_Type (Etype (Subp))
+ and then not Is_Access_Type (Etype (Subp))
+ and then not Is_Constrained (Etype (Subp))
+ then
+ if not Has_Single_Return then
+ Cannot_Inline
+ ("cannot inline & (unconstrained return type)?", N, Subp);
+ return;
+ end if;
+
+ -- Ditto for functions that return controlled types, where controlled
+ -- actions interfere in complex ways with inlining.
+
+ elsif Ekind (Subp) = E_Function
+ and then Controlled_Type (Etype (Subp))
+ then
+ Cannot_Inline
+ ("cannot inline & (controlled return type)?", N, Subp);
+ return;
+ end if;
+
+ if Present (Declarations (N))
+ and then Has_Excluded_Declaration (Declarations (N))
+ then
+ return;
+ end if;
+
+ if Present (Handled_Statement_Sequence (N)) then
+ if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
+ Cannot_Inline
+ ("cannot inline& (exception handler)?",
+ First (Exception_Handlers (Handled_Statement_Sequence (N))),
+ Subp);
+ return;
+ elsif
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (N)))
+ then
+ return;
+ end if;
+ end if;
+
+ -- We do not inline a subprogram that is too large, unless it is
+ -- marked Inline_Always. This pragma does not suppress the other
+ -- checks on inlining (forbidden declarations, handlers, etc).
+
+ if Stat_Count > Max_Size
+ and then not Has_Pragma_Inline_Always (Subp)
+ then
+ Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
+ return;
+ end if;
+
+ if Has_Pending_Instantiation then
+ Cannot_Inline
+ ("cannot inline& (forward instance within enclosing body)?",
+ N, Subp);
+ return;
+ end if;
+
+ -- Within an instance, the body to inline must be treated as a nested
+ -- generic, so that the proper global references are preserved.
+
+ if In_Instance then
+ Save_Env (Scope (Current_Scope), Scope (Current_Scope));
+ Original_Body := Copy_Generic_Node (N, Empty, True);
+ else
+ Original_Body := Copy_Separate_Tree (N);
+ end if;
+
+ -- We need to capture references to the formals in order to substitute
+ -- the actuals at the point of inlining, i.e. instantiation. To treat
+ -- the formals as globals to the body to inline, we nest it within
+ -- a dummy parameterless subprogram, declared within the real one.
+ -- To avoid generating an internal name (which is never public, and
+ -- which affects serial numbers of other generated names), we use
+ -- an internal symbol that cannot conflict with user declarations.
+
+ Set_Parameter_Specifications (Specification (Original_Body), No_List);
+ Set_Defining_Unit_Name
+ (Specification (Original_Body),
+ Make_Defining_Identifier (Sloc (N), Name_uParent));
+ Set_Corresponding_Spec (Original_Body, Empty);
+
+ Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
+
+ -- Set return type of function, which is also global and does not need
+ -- to be resolved.
+
+ if Ekind (Subp) = E_Function then
+ Set_Result_Definition (Specification (Body_To_Analyze),
+ New_Occurrence_Of (Etype (Subp), Sloc (N)));
+ end if;
+
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List (Body_To_Analyze));
+ else
+ Append (Body_To_Analyze, Declarations (N));
+ end if;
+
+ Expander_Mode_Save_And_Set (False);
+ Remove_Pragmas;
+
+ Analyze (Body_To_Analyze);
+ Push_Scope (Defining_Entity (Body_To_Analyze));
+ Save_Global_References (Original_Body);
+ End_Scope;
+ Remove (Body_To_Analyze);
+
+ Expander_Mode_Restore;
+
+ if In_Instance then
+ Restore_Env;
+ end if;
+
+ -- If secondary stk used there is no point in inlining. We have
+ -- already issued the warning in this case, so nothing to do.
+
+ if Uses_Secondary_Stack (Body_To_Analyze) then
+ return;
+ end if;
+
+ Set_Body_To_Inline (Decl, Original_Body);
+ Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
+ Set_Is_Inlined (Subp);
+ end Build_Body_To_Inline;
+
+ -------------------
+ -- Cannot_Inline --
+ -------------------
+
+ procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
+ begin
+ -- Do not emit warning if this is a predefined unit which is not
+ -- the main unit. With validity checks enabled, some predefined
+ -- subprograms may contain nested subprograms and become ineligible
+ -- for inlining.
+
+ if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
+ and then not In_Extended_Main_Source_Unit (Subp)
+ then
+ null;
+
+ elsif Has_Pragma_Inline_Always (Subp) then
+
+ -- Remove last character (question mark) to make this into an error,
+ -- because the Inline_Always pragma cannot be obeyed.
+
+ Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
+
+ elsif Ineffective_Inline_Warnings then
+ Error_Msg_NE (Msg, N, Subp);
+ end if;
+ end Cannot_Inline;
+
+ -----------------------
+ -- Check_Conformance --
+ -----------------------
+
+ procedure Check_Conformance
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Ctype : Conformance_Type;
+ Errmsg : Boolean;
+ Conforms : out Boolean;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False;
+ Skip_Controlling_Formals : Boolean := False)
+ is
+ procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
+ -- Post error message for conformance error on given node. Two messages
+ -- are output. The first points to the previous declaration with a
+ -- general "no conformance" message. The second is the detailed reason,
+ -- supplied as Msg. The parameter N provide information for a possible
+ -- & insertion in the message, and also provides the location for
+ -- posting the message in the absence of a specified Err_Loc location.
+
+ -----------------------
+ -- Conformance_Error --
+ -----------------------
+
+ procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
+ Enode : Node_Id;
+
+ begin
+ Conforms := False;
+
+ if Errmsg then
+ if No (Err_Loc) then
+ Enode := N;
+ else
+ Enode := Err_Loc;
+ end if;
+
+ Error_Msg_Sloc := Sloc (Old_Id);
+
+ case Ctype is
+ when Type_Conformant =>
+ Error_Msg_N
+ ("not type conformant with declaration#!", Enode);
+
+ when Mode_Conformant =>
+ if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("not mode conformant with operation inherited#!",
+ Enode);
+ else
+ Error_Msg_N
+ ("not mode conformant with declaration#!", Enode);
+ end if;
+
+ when Subtype_Conformant =>
+ if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("not subtype conformant with operation inherited#!",
+ Enode);
+ else
+ Error_Msg_N
+ ("not subtype conformant with declaration#!", Enode);
+ end if;
+
+ when Fully_Conformant =>
+ if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
+ Error_Msg_N
+ ("not fully conformant with operation inherited#!",
+ Enode);
+ else
+ Error_Msg_N
+ ("not fully conformant with declaration#!", Enode);
+ end if;
+ end case;
+
+ Error_Msg_NE (Msg, Enode, N);
+ end if;
+ end Conformance_Error;
+
+ -- Local Variables
+
+ Old_Type : constant Entity_Id := Etype (Old_Id);
+ New_Type : constant Entity_Id := Etype (New_Id);
+ Old_Formal : Entity_Id;
+ New_Formal : Entity_Id;
+ Access_Types_Match : Boolean;
+ Old_Formal_Base : Entity_Id;
+ New_Formal_Base : Entity_Id;
+
+ -- Start of processing for Check_Conformance
+
+ begin
+ Conforms := True;
+
+ -- We need a special case for operators, since they don't appear
+ -- explicitly.
+
+ if Ctype = Type_Conformant then
+ if Ekind (New_Id) = E_Operator
+ and then Operator_Matches_Spec (New_Id, Old_Id)
+ then
+ return;
+ end if;
+ end if;
+
+ -- If both are functions/operators, check return types conform
+
+ if Old_Type /= Standard_Void_Type
+ and then New_Type /= Standard_Void_Type
+ then
+ if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
+ Conformance_Error ("\return type does not match!", New_Id);
+ return;
+ end if;
+
+ -- Ada 2005 (AI-231): In case of anonymous access types check the
+ -- null-exclusion and access-to-constant attributes match.
+
+ if Ada_Version >= Ada_05
+ and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
+ and then
+ (Can_Never_Be_Null (Old_Type)
+ /= Can_Never_Be_Null (New_Type)
+ or else Is_Access_Constant (Etype (Old_Type))
+ /= Is_Access_Constant (Etype (New_Type)))
+ then
+ Conformance_Error ("\return type does not match!", New_Id);
+ return;
+ end if;
+
+ -- If either is a function/operator and the other isn't, error
+
+ elsif Old_Type /= Standard_Void_Type
+ or else New_Type /= Standard_Void_Type
+ then
+ Conformance_Error ("\functions can only match functions!", New_Id);
+ return;
+ end if;
+
+ -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
+ -- If this is a renaming as body, refine error message to indicate that
+ -- the conflict is with the original declaration. If the entity is not
+ -- frozen, the conventions don't have to match, the one of the renamed
+ -- entity is inherited.
+
+ if Ctype >= Subtype_Conformant then
+ if Convention (Old_Id) /= Convention (New_Id) then
+
+ if not Is_Frozen (New_Id) then
+ null;
+
+ elsif Present (Err_Loc)
+ and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
+ and then Present (Corresponding_Spec (Err_Loc))
+ then
+ Error_Msg_Name_1 := Chars (New_Id);
+ Error_Msg_Name_2 :=
+ Name_Ada + Convention_Id'Pos (Convention (New_Id));
+
+ Conformance_Error ("\prior declaration for% has convention %!");
+
+ else
+ Conformance_Error ("\calling conventions do not match!");
+ end if;
+
+ return;
+
+ elsif Is_Formal_Subprogram (Old_Id)
+ or else Is_Formal_Subprogram (New_Id)
+ then
+ Conformance_Error ("\formal subprograms not allowed!");
+ return;
+ end if;
+ end if;
+
+ -- Deal with parameters
+
+ -- Note: we use the entity information, rather than going directly
+ -- to the specification in the tree. This is not only simpler, but
+ -- absolutely necessary for some cases of conformance tests between
+ -- operators, where the declaration tree simply does not exist!
+
+ Old_Formal := First_Formal (Old_Id);
+ New_Formal := First_Formal (New_Id);
+
+ while Present (Old_Formal) and then Present (New_Formal) loop
+ if Is_Controlling_Formal (Old_Formal)
+ and then Is_Controlling_Formal (New_Formal)
+ and then Skip_Controlling_Formals
+ then
+ goto Skip_Controlling_Formal;
+ end if;
+
+ if Ctype = Fully_Conformant then
+
+ -- Names must match. Error message is more accurate if we do
+ -- this before checking that the types of the formals match.
+
+ if Chars (Old_Formal) /= Chars (New_Formal) then
+ Conformance_Error ("\name & does not match!", New_Formal);
+
+ -- Set error posted flag on new formal as well to stop
+ -- junk cascaded messages in some cases.
+
+ Set_Error_Posted (New_Formal);
+ return;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
+ -- case occurs whenever a subprogram is being renamed and one of its
+ -- parameters imposes a null exclusion. For example:
+
+ -- type T is null record;
+ -- type Acc_T is access T;
+ -- subtype Acc_T_Sub is Acc_T;
+
+ -- procedure P (Obj : not null Acc_T_Sub); -- itype
+ -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
+ -- renames P;
+
+ Old_Formal_Base := Etype (Old_Formal);
+ New_Formal_Base := Etype (New_Formal);
+
+ if Get_Inst then
+ Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
+ New_Formal_Base := Get_Instance_Of (New_Formal_Base);
+ end if;
+
+ Access_Types_Match := Ada_Version >= Ada_05
+
+ -- Ensure that this rule is only applied when New_Id is a
+ -- renaming of Old_Id.
+
+ and then Nkind (Parent (Parent (New_Id))) =
+ N_Subprogram_Renaming_Declaration
+ and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
+ and then Present (Entity (Name (Parent (Parent (New_Id)))))
+ and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
+
+ -- Now handle the allowed access-type case
+
+ and then Is_Access_Type (Old_Formal_Base)
+ and then Is_Access_Type (New_Formal_Base)
+
+ -- The type kinds must match. The only exception occurs with
+ -- multiple generics of the form:
+
+ -- generic generic
+ -- type F is private; type A is private;
+ -- type F_Ptr is access F; type A_Ptr is access A;
+ -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
+ -- package F_Pack is ... package A_Pack is
+ -- package F_Inst is
+ -- new F_Pack (A, A_Ptr, A_P);
+
+ -- When checking for conformance between the parameters of A_P
+ -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
+ -- because the compiler has transformed A_Ptr into a subtype of
+ -- F_Ptr. We catch this case in the code below.
+
+ and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
+ or else
+ (Is_Generic_Type (Old_Formal_Base)
+ and then Is_Generic_Type (New_Formal_Base)
+ and then Is_Internal (New_Formal_Base)
+ and then Etype (Etype (New_Formal_Base)) =
+ Old_Formal_Base))
+ and then Directly_Designated_Type (Old_Formal_Base) =
+ Directly_Designated_Type (New_Formal_Base)
+ and then ((Is_Itype (Old_Formal_Base)
+ and then Can_Never_Be_Null (Old_Formal_Base))
+ or else
+ (Is_Itype (New_Formal_Base)
+ and then Can_Never_Be_Null (New_Formal_Base)));
+
+ -- Types must always match. In the visible part of an instance,
+ -- usual overloading rules for dispatching operations apply, and
+ -- we check base types (not the actual subtypes).
+
+ if In_Instance_Visible_Part
+ and then Is_Dispatching_Operation (New_Id)
+ then
+ if not Conforming_Types
+ (T1 => Base_Type (Etype (Old_Formal)),
+ T2 => Base_Type (Etype (New_Formal)),
+ Ctype => Ctype,
+ Get_Inst => Get_Inst)
+ and then not Access_Types_Match
+ then
+ Conformance_Error ("\type of & does not match!", New_Formal);
+ return;
+ end if;
+
+ elsif not Conforming_Types
+ (T1 => Old_Formal_Base,
+ T2 => New_Formal_Base,
+ Ctype => Ctype,
+ Get_Inst => Get_Inst)
+ and then not Access_Types_Match
+ then
+ Conformance_Error ("\type of & does not match!", New_Formal);
+ return;
+ end if;
+
+ -- For mode conformance, mode must match
+
+ if Ctype >= Mode_Conformant then
+ if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
+ Conformance_Error ("\mode of & does not match!", New_Formal);
+ return;
+
+ -- Part of mode conformance for access types is having the same
+ -- constant modifier.
+
+ elsif Access_Types_Match
+ and then Is_Access_Constant (Old_Formal_Base) /=
+ Is_Access_Constant (New_Formal_Base)
+ then
+ Conformance_Error
+ ("\constant modifier does not match!", New_Formal);
+ return;
+ end if;
+ end if;
+
+ if Ctype >= Subtype_Conformant then
+
+ -- Ada 2005 (AI-231): In case of anonymous access types check
+ -- the null-exclusion and access-to-constant attributes must
+ -- match.
+
+ if Ada_Version >= Ada_05
+ and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
+ and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
+ and then
+ (Can_Never_Be_Null (Old_Formal) /=
+ Can_Never_Be_Null (New_Formal)
+ or else
+ Is_Access_Constant (Etype (Old_Formal)) /=
+ Is_Access_Constant (Etype (New_Formal)))
+ then
+ -- It is allowed to omit the null-exclusion in case of stream
+ -- attribute subprograms. We recognize stream subprograms
+ -- through their TSS-generated suffix.
+
+ declare
+ TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
+ begin
+ if TSS_Name /= TSS_Stream_Read
+ and then TSS_Name /= TSS_Stream_Write
+ and then TSS_Name /= TSS_Stream_Input
+ and then TSS_Name /= TSS_Stream_Output
+ then
+ Conformance_Error
+ ("\type of & does not match!", New_Formal);
+ return;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Full conformance checks
+
+ if Ctype = Fully_Conformant then
+
+ -- We have checked already that names match
+
+ if Parameter_Mode (Old_Formal) = E_In_Parameter then
+
+ -- Check default expressions for in parameters
+
+ declare
+ NewD : constant Boolean :=
+ Present (Default_Value (New_Formal));
+ OldD : constant Boolean :=
+ Present (Default_Value (Old_Formal));
+ begin
+ if NewD or OldD then
+
+ -- The old default value has been analyzed because the
+ -- current full declaration will have frozen everything
+ -- before. The new default value has not been analyzed,
+ -- so analyze it now before we check for conformance.
+
+ if NewD then
+ Push_Scope (New_Id);
+ Analyze_Per_Use_Expression
+ (Default_Value (New_Formal), Etype (New_Formal));
+ End_Scope;
+ end if;
+
+ if not (NewD and OldD)
+ or else not Fully_Conformant_Expressions
+ (Default_Value (Old_Formal),
+ Default_Value (New_Formal))
+ then
+ Conformance_Error
+ ("\default expression for & does not match!",
+ New_Formal);
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- A couple of special checks for Ada 83 mode. These checks are
+ -- skipped if either entity is an operator in package Standard,
+ -- or if either old or new instance is not from the source program.
+
+ if Ada_Version = Ada_83
+ and then Sloc (Old_Id) > Standard_Location
+ and then Sloc (New_Id) > Standard_Location
+ and then Comes_From_Source (Old_Id)
+ and then Comes_From_Source (New_Id)
+ then
+ declare
+ Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
+ New_Param : constant Node_Id := Declaration_Node (New_Formal);
+
+ begin
+ -- Explicit IN must be present or absent in both cases. This
+ -- test is required only in the full conformance case.
+
+ if In_Present (Old_Param) /= In_Present (New_Param)
+ and then Ctype = Fully_Conformant
+ then
+ Conformance_Error
+ ("\(Ada 83) IN must appear in both declarations",
+ New_Formal);
+ return;
+ end if;
+
+ -- Grouping (use of comma in param lists) must be the same
+ -- This is where we catch a misconformance like:
+
+ -- A, B : Integer
+ -- A : Integer; B : Integer
+
+ -- which are represented identically in the tree except
+ -- for the setting of the flags More_Ids and Prev_Ids.
+
+ if More_Ids (Old_Param) /= More_Ids (New_Param)
+ or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
+ then
+ Conformance_Error
+ ("\grouping of & does not match!", New_Formal);
+ return;
+ end if;
+ end;
+ end if;
+
+ -- This label is required when skipping controlling formals
+
+ <<Skip_Controlling_Formal>>
+
+ Next_Formal (Old_Formal);
+ Next_Formal (New_Formal);
+ end loop;
+
+ if Present (Old_Formal) then
+ Conformance_Error ("\too few parameters!");
+ return;
+
+ elsif Present (New_Formal) then
+ Conformance_Error ("\too many parameters!", New_Formal);
+ return;
+ end if;
+ end Check_Conformance;
+
+ -----------------------
+ -- Check_Conventions --
+ -----------------------
+
+ procedure Check_Conventions (Typ : Entity_Id) is
+
+ function Skip_Check (Op : Entity_Id) return Boolean;
+ pragma Inline (Skip_Check);
+ -- A small optimization: skip the predefined dispatching operations,
+ -- since they always have the same convention. Also do not consider
+ -- abstract primitives since those are left by an erroneous overriding.
+ -- This function returns True for any operation that is thus exempted
+ -- exempted from checking.
+
+ procedure Check_Convention
+ (Op : Entity_Id;
+ Search_From : Elmt_Id);
+ -- Verify that the convention of inherited dispatching operation Op is
+ -- consistent among all subprograms it overrides. In order to minimize
+ -- the search, Search_From is utilized to designate a specific point in
+ -- the list rather than iterating over the whole list once more.
+
+ ----------------------
+ -- Check_Convention --
+ ----------------------
+
+ procedure Check_Convention
+ (Op : Entity_Id;
+ Search_From : Elmt_Id)
+ is
+ procedure Error_Msg_Operation (Op : Entity_Id);
+ -- Emit a continuation to an error message depicting the kind, name,
+ -- convention and source location of subprogram Op.
+
+ -------------------------
+ -- Error_Msg_Operation --
+ -------------------------
+
+ procedure Error_Msg_Operation (Op : Entity_Id) is
+ begin
+ Error_Msg_Name_1 := Chars (Op);
+
+ -- Error messages of primitive subprograms do not contain a
+ -- convention attribute since the convention may have been first
+ -- inherited from a parent subprogram, then changed by a pragma.
+
+ if Comes_From_Source (Op) then
+ Error_Msg_Sloc := Sloc (Op);
+ Error_Msg_N
+ ("\ primitive % defined #", Typ);
+
+ else
+ Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
+
+ if Present (Abstract_Interface_Alias (Op)) then
+ Error_Msg_Sloc := Sloc (Abstract_Interface_Alias (Op));
+ Error_Msg_N ("\\overridden operation % with " &
+ "convention % defined #", Typ);
+
+ else pragma Assert (Present (Alias (Op)));
+ Error_Msg_Sloc := Sloc (Alias (Op));
+ Error_Msg_N ("\\inherited operation % with " &
+ "convention % defined #", Typ);
+ end if;
+ end if;
+ end Error_Msg_Operation;
+
+ -- Local variables
+
+ Second_Prim_Op : Entity_Id;
+ Second_Prim_Op_Elmt : Elmt_Id;
+
+ -- Start of processing for Check_Convention
+
+ begin
+ Second_Prim_Op_Elmt := Next_Elmt (Search_From);
+ while Present (Second_Prim_Op_Elmt) loop
+ Second_Prim_Op := Node (Second_Prim_Op_Elmt);
+
+ if not Skip_Check (Second_Prim_Op)
+ and then Chars (Second_Prim_Op) = Chars (Op)
+ and then Type_Conformant (Second_Prim_Op, Op)
+ and then Convention (Second_Prim_Op) /= Convention (Op)
+ then
+ Error_Msg_N
+ ("inconsistent conventions in primitive operations", Typ);
+
+ Error_Msg_Operation (Op);
+ Error_Msg_Operation (Second_Prim_Op);
+
+ -- Avoid cascading errors
+
+ return;
+ end if;
+
+ Next_Elmt (Second_Prim_Op_Elmt);
+ end loop;
+ end Check_Convention;
+
+ ----------------
+ -- Skip_Check --
+ ----------------
+
+ function Skip_Check (Op : Entity_Id) return Boolean is
+ begin
+ return Is_Predefined_Dispatching_Operation (Op)
+ or else Is_Abstract_Subprogram (Op);
+ end Skip_Check;
+
+ -- Local variables
+
+ Prim_Op : Entity_Id;
+ Prim_Op_Elmt : Elmt_Id;
+
+ -- Start of processing for Check_Conventions
+
+ begin
+ -- The algorithm checks every overriding dispatching operation against
+ -- all the corresponding overridden dispatching operations, detecting
+ -- differences in coventions.
+
+ Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
+ while Present (Prim_Op_Elmt) loop
+ Prim_Op := Node (Prim_Op_Elmt);
+
+ -- A small optimization: skip the predefined dispatching operations
+ -- since they always have the same convention. Also avoid processing
+ -- of abstract primitives left from an erroneous overriding.
+
+ if not Skip_Check (Prim_Op) then
+ Check_Convention
+ (Op => Prim_Op,
+ Search_From => Prim_Op_Elmt);
+ end if;
+
+ Next_Elmt (Prim_Op_Elmt);
+ end loop;
+ end Check_Conventions;
+
+ ------------------------------
+ -- Check_Delayed_Subprogram --
+ ------------------------------
+
+ procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
+ F : Entity_Id;
+
+ procedure Possible_Freeze (T : Entity_Id);
+ -- T is the type of either a formal parameter or of the return type.
+ -- If T is not yet frozen and needs a delayed freeze, then the
+ -- subprogram itself must be delayed.
+
+ ---------------------
+ -- Possible_Freeze --
+ ---------------------
+
+ procedure Possible_Freeze (T : Entity_Id) is
+ begin
+ if Has_Delayed_Freeze (T)
+ and then not Is_Frozen (T)
+ then
+ Set_Has_Delayed_Freeze (Designator);
+
+ elsif Is_Access_Type (T)
+ and then Has_Delayed_Freeze (Designated_Type (T))
+ and then not Is_Frozen (Designated_Type (T))
+ then
+ Set_Has_Delayed_Freeze (Designator);
+ end if;
+ end Possible_Freeze;
+
+ -- Start of processing for Check_Delayed_Subprogram
+
+ begin
+ -- Never need to freeze abstract subprogram
+
+ if Ekind (Designator) /= E_Subprogram_Type
+ and then Is_Abstract_Subprogram (Designator)
+ then
+ null;
+ else
+ -- Need delayed freeze if return type itself needs a delayed
+ -- freeze and is not yet frozen.
+
+ Possible_Freeze (Etype (Designator));
+ Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
+
+ -- Need delayed freeze if any of the formal types themselves need
+ -- a delayed freeze and are not yet frozen.
+
+ F := First_Formal (Designator);
+ while Present (F) loop
+ Possible_Freeze (Etype (F));
+ Possible_Freeze (Base_Type (Etype (F))); -- needed ???
+ Next_Formal (F);
+ end loop;
+ end if;
+
+ -- Mark functions that return by reference. Note that it cannot be
+ -- done for delayed_freeze subprograms because the underlying
+ -- returned type may not be known yet (for private types)
+
+ if not Has_Delayed_Freeze (Designator)
+ and then Expander_Active
+ then
+ declare
+ Typ : constant Entity_Id := Etype (Designator);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if Is_Inherently_Limited_Type (Typ) then
+ Set_Returns_By_Ref (Designator);
+
+ elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
+ Set_Returns_By_Ref (Designator);
+ end if;
+ end;
+ end if;
+ end Check_Delayed_Subprogram;
+
+ ------------------------------------
+ -- Check_Discriminant_Conformance --
+ ------------------------------------
+
+ procedure Check_Discriminant_Conformance
+ (N : Node_Id;
+ Prev : Entity_Id;
+ Prev_Loc : Node_Id)
+ is
+ Old_Discr : Entity_Id := First_Discriminant (Prev);
+ New_Discr : Node_Id := First (Discriminant_Specifications (N));
+ New_Discr_Id : Entity_Id;
+ New_Discr_Type : Entity_Id;
+
+ procedure Conformance_Error (Msg : String; N : Node_Id);
+ -- Post error message for conformance error on given node. Two messages
+ -- are output. The first points to the previous declaration with a
+ -- general "no conformance" message. The second is the detailed reason,
+ -- supplied as Msg. The parameter N provide information for a possible
+ -- & insertion in the message.
+
+ -----------------------
+ -- Conformance_Error --
+ -----------------------
+
+ procedure Conformance_Error (Msg : String; N : Node_Id) is
+ begin
+ Error_Msg_Sloc := Sloc (Prev_Loc);
+ Error_Msg_N ("not fully conformant with declaration#!", N);
+ Error_Msg_NE (Msg, N, N);
+ end Conformance_Error;
+
+ -- Start of processing for Check_Discriminant_Conformance
+
+ begin
+ while Present (Old_Discr) and then Present (New_Discr) loop
+
+ New_Discr_Id := Defining_Identifier (New_Discr);
+
+ -- The subtype mark of the discriminant on the full type has not
+ -- been analyzed so we do it here. For an access discriminant a new
+ -- type is created.
+
+ if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
+ New_Discr_Type :=
+ Access_Definition (N, Discriminant_Type (New_Discr));
+
+ else
+ Analyze (Discriminant_Type (New_Discr));
+ New_Discr_Type := Etype (Discriminant_Type (New_Discr));
+ end if;
+
+ if not Conforming_Types
+ (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
+ then
+ Conformance_Error ("type of & does not match!", New_Discr_Id);
+ return;
+ else
+ -- Treat the new discriminant as an occurrence of the old one,
+ -- for navigation purposes, and fill in some semantic
+ -- information, for completeness.
+
+ Generate_Reference (Old_Discr, New_Discr_Id, 'r');
+ Set_Etype (New_Discr_Id, Etype (Old_Discr));
+ Set_Scope (New_Discr_Id, Scope (Old_Discr));
+ end if;
+
+ -- Names must match
+
+ if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
+ Conformance_Error ("name & does not match!", New_Discr_Id);
+ return;
+ end if;
+
+ -- Default expressions must match
+
+ declare
+ NewD : constant Boolean :=
+ Present (Expression (New_Discr));
+ OldD : constant Boolean :=
+ Present (Expression (Parent (Old_Discr)));
+
+ begin
+ if NewD or OldD then
+
+ -- The old default value has been analyzed and expanded,
+ -- because the current full declaration will have frozen
+ -- everything before. The new default values have not been
+ -- expanded, so expand now to check conformance.
+
+ if NewD then
+ Analyze_Per_Use_Expression
+ (Expression (New_Discr), New_Discr_Type);
+ end if;
+
+ if not (NewD and OldD)
+ or else not Fully_Conformant_Expressions
+ (Expression (Parent (Old_Discr)),
+ Expression (New_Discr))
+
+ then
+ Conformance_Error
+ ("default expression for & does not match!",
+ New_Discr_Id);
+ return;
+ end if;
+ end if;
+ end;
+
+ -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
+
+ if Ada_Version = Ada_83 then
+ declare
+ Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
+
+ begin
+ -- Grouping (use of comma in param lists) must be the same
+ -- This is where we catch a misconformance like:
+
+ -- A,B : Integer
+ -- A : Integer; B : Integer
+
+ -- which are represented identically in the tree except
+ -- for the setting of the flags More_Ids and Prev_Ids.
+
+ if More_Ids (Old_Disc) /= More_Ids (New_Discr)
+ or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
+ then
+ Conformance_Error
+ ("grouping of & does not match!", New_Discr_Id);
+ return;
+ end if;
+ end;
+ end if;
+
+ Next_Discriminant (Old_Discr);
+ Next (New_Discr);
+ end loop;
+
+ if Present (Old_Discr) then
+ Conformance_Error ("too few discriminants!", Defining_Identifier (N));
+ return;
+
+ elsif Present (New_Discr) then
+ Conformance_Error
+ ("too many discriminants!", Defining_Identifier (New_Discr));
+ return;
+ end if;
+ end Check_Discriminant_Conformance;
+
+ ----------------------------
+ -- Check_Fully_Conformant --
+ ----------------------------
+
+ procedure Check_Fully_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
+ end Check_Fully_Conformant;
+
+ ---------------------------
+ -- Check_Mode_Conformant --
+ ---------------------------
+
+ procedure Check_Mode_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
+ end Check_Mode_Conformant;
+
+ --------------------------------
+ -- Check_Overriding_Indicator --
+ --------------------------------
+
+ procedure Check_Overriding_Indicator
+ (Subp : Entity_Id;
+ Overridden_Subp : Entity_Id;
+ Is_Primitive : Boolean)
+ is
+ Decl : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ -- No overriding indicator for literals
+
+ if Ekind (Subp) = E_Enumeration_Literal then
+ return;
+
+ elsif Ekind (Subp) = E_Entry then
+ Decl := Parent (Subp);
+
+ else
+ Decl := Unit_Declaration_Node (Subp);
+ end if;
+
+ if Nkind_In (Decl, N_Subprogram_Body,
+ N_Subprogram_Body_Stub,
+ N_Subprogram_Declaration,
+ N_Abstract_Subprogram_Declaration,
+ N_Subprogram_Renaming_Declaration)
+ then
+ Spec := Specification (Decl);
+
+ elsif Nkind (Decl) = N_Entry_Declaration then
+ Spec := Decl;
+
+ else
+ return;
+ end if;
+
+ if Present (Overridden_Subp) then
+ if Must_Not_Override (Spec) then
+ Error_Msg_Sloc := Sloc (Overridden_Subp);
+
+ if Ekind (Subp) = E_Entry then
+ Error_Msg_NE
+ ("entry & overrides inherited operation #", Spec, Subp);
+ else
+ Error_Msg_NE
+ ("subprogram & overrides inherited operation #", Spec, Subp);
+ end if;
+ end if;
+
+ -- If Subp is an operator, it may override a predefined operation.
+ -- In that case overridden_subp is empty because of our implicit
+ -- representation for predefined operators. We have to check whether the
+ -- signature of Subp matches that of a predefined operator. Note that
+ -- first argument provides the name of the operator, and the second
+ -- argument the signature that may match that of a standard operation.
+
+ elsif Nkind (Subp) = N_Defining_Operator_Symbol
+ and then Must_Not_Override (Spec)
+ then
+ if Operator_Matches_Spec (Subp, Subp) then
+ Error_Msg_NE
+ ("subprogram & overrides predefined operator ",
+ Spec, Subp);
+ end if;
+
+ elsif Must_Override (Spec) then
+ if Ekind (Subp) = E_Entry then
+ Error_Msg_NE ("entry & is not overriding", Spec, Subp);
+
+ elsif Nkind (Subp) = N_Defining_Operator_Symbol then
+ if not Operator_Matches_Spec (Subp, Subp) then
+ Error_Msg_NE
+ ("subprogram & is not overriding", Spec, Subp);
+ end if;
+
+ else
+ Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
+ end if;
+
+ -- If the operation is marked "not overriding" and it's not primitive
+ -- then an error is issued, unless this is an operation of a task or
+ -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
+ -- has been specified have already been checked above.
+
+ elsif Must_Not_Override (Spec)
+ and then not Is_Primitive
+ and then Ekind (Subp) /= E_Entry
+ and then Ekind (Scope (Subp)) /= E_Protected_Type
+ then
+ Error_Msg_N
+ ("overriding indicator only allowed if subprogram is primitive",
+ Subp);
+
+ return;
+ end if;
+ end Check_Overriding_Indicator;
+
+ -------------------
+ -- Check_Returns --
+ -------------------
+
+ -- Note: this procedure needs to know far too much about how the expander
+ -- messes with exceptions. The use of the flag Exception_Junk and the
+ -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
+ -- works, but is not very clean. It would be better if the expansion
+ -- routines would leave Original_Node working nicely, and we could use
+ -- Original_Node here to ignore all the peculiar expander messing ???
+
+ procedure Check_Returns
+ (HSS : Node_Id;
+ Mode : Character;
+ Err : out Boolean;
+ Proc : Entity_Id := Empty)
+ is
+ Handler : Node_Id;
+
+ procedure Check_Statement_Sequence (L : List_Id);
+ -- Internal recursive procedure to check a list of statements for proper
+ -- termination by a return statement (or a transfer of control or a
+ -- compound statement that is itself internally properly terminated).
+
+ ------------------------------
+ -- Check_Statement_Sequence --
+ ------------------------------
+
+ procedure Check_Statement_Sequence (L : List_Id) is
+ Last_Stm : Node_Id;
+ Stm : Node_Id;
+ Kind : Node_Kind;
+
+ Raise_Exception_Call : Boolean;
+ -- Set True if statement sequence terminated by Raise_Exception call
+ -- or a Reraise_Occurrence call.
+
+ begin
+ Raise_Exception_Call := False;
+
+ -- Get last real statement
+
+ Last_Stm := Last (L);
+
+ -- Deal with digging out exception handler statement sequences that
+ -- have been transformed by the local raise to goto optimization.
+ -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
+ -- optimization has occurred, we are looking at something like:
+
+ -- begin
+ -- original stmts in block
+
+ -- exception \
+ -- when excep1 => |
+ -- goto L1; | omitted if No_Exception_Propagation
+ -- when excep2 => |
+ -- goto L2; /
+ -- end;
+
+ -- goto L3; -- skip handler when exception not raised
+
+ -- <<L1>> -- target label for local exception
+ -- begin
+ -- estmts1
+ -- end;
+
+ -- goto L3;
+
+ -- <<L2>>
+ -- begin
+ -- estmts2
+ -- end;
+
+ -- <<L3>>
+
+ -- and what we have to do is to dig out the estmts1 and estmts2
+ -- sequences (which were the original sequences of statements in
+ -- the exception handlers) and check them.
+
+ if Nkind (Last_Stm) = N_Label
+ and then Exception_Junk (Last_Stm)
+ then
+ Stm := Last_Stm;
+ loop
+ Prev (Stm);
+ exit when No (Stm);
+ exit when Nkind (Stm) /= N_Block_Statement;
+ exit when not Exception_Junk (Stm);
+ Prev (Stm);
+ exit when No (Stm);
+ exit when Nkind (Stm) /= N_Label;
+ exit when not Exception_Junk (Stm);
+ Check_Statement_Sequence
+ (Statements (Handled_Statement_Sequence (Next (Stm))));
+
+ Prev (Stm);
+ Last_Stm := Stm;
+ exit when No (Stm);
+ exit when Nkind (Stm) /= N_Goto_Statement;
+ exit when not Exception_Junk (Stm);
+ end loop;
+ end if;
+
+ -- Don't count pragmas
+
+ while Nkind (Last_Stm) = N_Pragma
+
+ -- Don't count call to SS_Release (can happen after Raise_Exception)
+
+ or else
+ (Nkind (Last_Stm) = N_Procedure_Call_Statement
+ and then
+ Nkind (Name (Last_Stm)) = N_Identifier
+ and then
+ Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
+
+ -- Don't count exception junk
+
+ or else
+ (Nkind_In (Last_Stm, N_Goto_Statement,
+ N_Label,
+ N_Object_Declaration)
+ and then Exception_Junk (Last_Stm))
+ or else Nkind (Last_Stm) in N_Push_xxx_Label
+ or else Nkind (Last_Stm) in N_Pop_xxx_Label
+ loop
+ Prev (Last_Stm);
+ end loop;
+
+ -- Here we have the "real" last statement
+
+ Kind := Nkind (Last_Stm);
+
+ -- Transfer of control, OK. Note that in the No_Return procedure
+ -- case, we already diagnosed any explicit return statements, so
+ -- we can treat them as OK in this context.
+
+ if Is_Transfer (Last_Stm) then
+ return;
+
+ -- Check cases of explicit non-indirect procedure calls
+
+ elsif Kind = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (Last_Stm))
+ then
+ -- Check call to Raise_Exception procedure which is treated
+ -- specially, as is a call to Reraise_Occurrence.
+
+ -- We suppress the warning in these cases since it is likely that
+ -- the programmer really does not expect to deal with the case
+ -- of Null_Occurrence, and thus would find a warning about a
+ -- missing return curious, and raising Program_Error does not
+ -- seem such a bad behavior if this does occur.
+
+ -- Note that in the Ada 2005 case for Raise_Exception, the actual
+ -- behavior will be to raise Constraint_Error (see AI-329).
+
+ if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
+ or else
+ Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
+ then
+ Raise_Exception_Call := True;
+
+ -- For Raise_Exception call, test first argument, if it is
+ -- an attribute reference for a 'Identity call, then we know
+ -- that the call cannot possibly return.
+
+ declare
+ Arg : constant Node_Id :=
+ Original_Node (First_Actual (Last_Stm));
+ begin
+ if Nkind (Arg) = N_Attribute_Reference
+ and then Attribute_Name (Arg) = Name_Identity
+ then
+ return;
+ end if;
+ end;
+ end if;
+
+ -- If statement, need to look inside if there is an else and check
+ -- each constituent statement sequence for proper termination.
+
+ elsif Kind = N_If_Statement
+ and then Present (Else_Statements (Last_Stm))
+ then
+ Check_Statement_Sequence (Then_Statements (Last_Stm));
+ Check_Statement_Sequence (Else_Statements (Last_Stm));
+
+ if Present (Elsif_Parts (Last_Stm)) then
+ declare
+ Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
+
+ begin
+ while Present (Elsif_Part) loop
+ Check_Statement_Sequence (Then_Statements (Elsif_Part));
+ Next (Elsif_Part);
+ end loop;
+ end;
+ end if;
+
+ return;
+
+ -- Case statement, check each case for proper termination
+
+ elsif Kind = N_Case_Statement then
+ declare
+ Case_Alt : Node_Id;
+ begin
+ Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
+ while Present (Case_Alt) loop
+ Check_Statement_Sequence (Statements (Case_Alt));
+ Next_Non_Pragma (Case_Alt);
+ end loop;
+ end;
+
+ return;
+
+ -- Block statement, check its handled sequence of statements
+
+ elsif Kind = N_Block_Statement then
+ declare
+ Err1 : Boolean;
+
+ begin
+ Check_Returns
+ (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
+
+ if Err1 then
+ Err := True;
+ end if;
+
+ return;
+ end;
+
+ -- Loop statement. If there is an iteration scheme, we can definitely
+ -- fall out of the loop. Similarly if there is an exit statement, we
+ -- can fall out. In either case we need a following return.
+
+ elsif Kind = N_Loop_Statement then
+ if Present (Iteration_Scheme (Last_Stm))
+ or else Has_Exit (Entity (Identifier (Last_Stm)))
+ then
+ null;
+
+ -- A loop with no exit statement or iteration scheme if either
+ -- an inifite loop, or it has some other exit (raise/return).
+ -- In either case, no warning is required.
+
+ else
+ return;
+ end if;
+
+ -- Timed entry call, check entry call and delay alternatives
+
+ -- Note: in expanded code, the timed entry call has been converted
+ -- to a set of expanded statements on which the check will work
+ -- correctly in any case.
+
+ elsif Kind = N_Timed_Entry_Call then
+ declare
+ ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
+ DCA : constant Node_Id := Delay_Alternative (Last_Stm);
+
+ begin
+ -- If statement sequence of entry call alternative is missing,
+ -- then we can definitely fall through, and we post the error
+ -- message on the entry call alternative itself.
+
+ if No (Statements (ECA)) then
+ Last_Stm := ECA;
+
+ -- If statement sequence of delay alternative is missing, then
+ -- we can definitely fall through, and we post the error
+ -- message on the delay alternative itself.
+
+ -- Note: if both ECA and DCA are missing the return, then we
+ -- post only one message, should be enough to fix the bugs.
+ -- If not we will get a message next time on the DCA when the
+ -- ECA is fixed!
+
+ elsif No (Statements (DCA)) then
+ Last_Stm := DCA;
+
+ -- Else check both statement sequences
+
+ else
+ Check_Statement_Sequence (Statements (ECA));
+ Check_Statement_Sequence (Statements (DCA));
+ return;
+ end if;
+ end;
+
+ -- Conditional entry call, check entry call and else part
+
+ -- Note: in expanded code, the conditional entry call has been
+ -- converted to a set of expanded statements on which the check
+ -- will work correctly in any case.
+
+ elsif Kind = N_Conditional_Entry_Call then
+ declare
+ ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
+
+ begin
+ -- If statement sequence of entry call alternative is missing,
+ -- then we can definitely fall through, and we post the error
+ -- message on the entry call alternative itself.
+
+ if No (Statements (ECA)) then
+ Last_Stm := ECA;
+
+ -- Else check statement sequence and else part
+
+ else
+ Check_Statement_Sequence (Statements (ECA));
+ Check_Statement_Sequence (Else_Statements (Last_Stm));
+ return;
+ end if;
+ end;
+ end if;
+
+ -- If we fall through, issue appropriate message
+
+ if Mode = 'F' then
+ if not Raise_Exception_Call then
+ Error_Msg_N
+ ("?RETURN statement missing following this statement!",
+ Last_Stm);
+ Error_Msg_N
+ ("\?Program_Error may be raised at run time!",
+ Last_Stm);
+ end if;
+
+ -- Note: we set Err even though we have not issued a warning
+ -- because we still have a case of a missing return. This is
+ -- an extremely marginal case, probably will never be noticed
+ -- but we might as well get it right.
+
+ Err := True;
+
+ -- Otherwise we have the case of a procedure marked No_Return
+
+ else
+ if not Raise_Exception_Call then
+ Error_Msg_N
+ ("?implied return after this statement " &
+ "will raise Program_Error",
+ Last_Stm);
+ Error_Msg_NE
+ ("\?procedure & is marked as No_Return!",
+ Last_Stm, Proc);
+ end if;
+
+ declare
+ RE : constant Node_Id :=
+ Make_Raise_Program_Error (Sloc (Last_Stm),
+ Reason => PE_Implicit_Return);
+ begin
+ Insert_After (Last_Stm, RE);
+ Analyze (RE);
+ end;
+ end if;
+ end Check_Statement_Sequence;
+
+ -- Start of processing for Check_Returns
+
+ begin
+ Err := False;
+ Check_Statement_Sequence (Statements (HSS));
+
+ if Present (Exception_Handlers (HSS)) then
+ Handler := First_Non_Pragma (Exception_Handlers (HSS));
+ while Present (Handler) loop
+ Check_Statement_Sequence (Statements (Handler));
+ Next_Non_Pragma (Handler);
+ end loop;
+ end if;
+ end Check_Returns;
+
+ ----------------------------
+ -- Check_Subprogram_Order --
+ ----------------------------
+
+ procedure Check_Subprogram_Order (N : Node_Id) is
+
+ function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
+ -- This is used to check if S1 > S2 in the sense required by this
+ -- test, for example nameab < namec, but name2 < name10.
+
+ -----------------------------
+ -- Subprogram_Name_Greater --
+ -----------------------------
+
+ function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
+ L1, L2 : Positive;
+ N1, N2 : Natural;
+
+ begin
+ -- Remove trailing numeric parts
+
+ L1 := S1'Last;
+ while S1 (L1) in '0' .. '9' loop
+ L1 := L1 - 1;
+ end loop;
+
+ L2 := S2'Last;
+ while S2 (L2) in '0' .. '9' loop
+ L2 := L2 - 1;
+ end loop;
+
+ -- If non-numeric parts non-equal, that's decisive
+
+ if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
+ return False;
+
+ elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
+ return True;
+
+ -- If non-numeric parts equal, compare suffixed numeric parts. Note
+ -- that a missing suffix is treated as numeric zero in this test.
+
+ else
+ N1 := 0;
+ while L1 < S1'Last loop
+ L1 := L1 + 1;
+ N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
+ end loop;
+
+ N2 := 0;
+ while L2 < S2'Last loop
+ L2 := L2 + 1;
+ N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
+ end loop;
+
+ return N1 > N2;
+ end if;
+ end Subprogram_Name_Greater;
+
+ -- Start of processing for Check_Subprogram_Order
+
+ begin
+ -- Check body in alpha order if this is option
+
+ if Style_Check
+ and then Style_Check_Order_Subprograms
+ and then Nkind (N) = N_Subprogram_Body
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (N)
+ then
+ declare
+ LSN : String_Ptr
+ renames Scope_Stack.Table
+ (Scope_Stack.Last).Last_Subprogram_Name;
+
+ Body_Id : constant Entity_Id :=
+ Defining_Entity (Specification (N));
+
+ begin
+ Get_Decoded_Name_String (Chars (Body_Id));
+
+ if LSN /= null then
+ if Subprogram_Name_Greater
+ (LSN.all, Name_Buffer (1 .. Name_Len))
+ then
+ Style.Subprogram_Not_In_Alpha_Order (Body_Id);
+ end if;
+
+ Free (LSN);
+ end if;
+
+ LSN := new String'(Name_Buffer (1 .. Name_Len));
+ end;
+ end if;
+ end Check_Subprogram_Order;
+
+ ------------------------------
+ -- Check_Subtype_Conformant --
+ ------------------------------
+
+ procedure Check_Subtype_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
+ end Check_Subtype_Conformant;
+
+ ---------------------------
+ -- Check_Type_Conformant --
+ ---------------------------
+
+ procedure Check_Type_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+ pragma Warnings (Off, Result);
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
+ end Check_Type_Conformant;
+
+ ----------------------
+ -- Conforming_Types --
+ ----------------------
+
+ function Conforming_Types
+ (T1 : Entity_Id;
+ T2 : Entity_Id;
+ Ctype : Conformance_Type;
+ Get_Inst : Boolean := False) return Boolean
+ is
+ Type_1 : Entity_Id := T1;
+ Type_2 : Entity_Id := T2;
+ Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
+
+ function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
+ -- If neither T1 nor T2 are generic actual types, or if they are in
+ -- different scopes (e.g. parent and child instances), then verify that
+ -- the base types are equal. Otherwise T1 and T2 must be on the same
+ -- subtype chain. The whole purpose of this procedure is to prevent
+ -- spurious ambiguities in an instantiation that may arise if two
+ -- distinct generic types are instantiated with the same actual.
+
+ function Find_Designated_Type (T : Entity_Id) return Entity_Id;
+ -- An access parameter can designate an incomplete type. If the
+ -- incomplete type is the limited view of a type from a limited_
+ -- with_clause, check whether the non-limited view is available. If
+ -- it is a (non-limited) incomplete type, get the full view.
+
+ function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
+ -- Returns True if and only if either T1 denotes a limited view of T2
+ -- or T2 denotes a limited view of T1. This can arise when the limited
+ -- with view of a type is used in a subprogram declaration and the
+ -- subprogram body is in the scope of a regular with clause for the
+ -- same unit. In such a case, the two type entities can be considered
+ -- identical for purposes of conformance checking.
+
+ ----------------------
+ -- Base_Types_Match --
+ ----------------------
+
+ function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
+ begin
+ if T1 = T2 then
+ return True;
+
+ elsif Base_Type (T1) = Base_Type (T2) then
+
+ -- The following is too permissive. A more precise test should
+ -- check that the generic actual is an ancestor subtype of the
+ -- other ???.
+
+ return not Is_Generic_Actual_Type (T1)
+ or else not Is_Generic_Actual_Type (T2)
+ or else Scope (T1) /= Scope (T2);
+
+ else
+ return False;
+ end if;
+ end Base_Types_Match;
+
+ --------------------------
+ -- Find_Designated_Type --
+ --------------------------
+
+ function Find_Designated_Type (T : Entity_Id) return Entity_Id is
+ Desig : Entity_Id;
+
+ begin
+ Desig := Directly_Designated_Type (T);
+
+ if Ekind (Desig) = E_Incomplete_Type then
+
+ -- If regular incomplete type, get full view if available
+
+ if Present (Full_View (Desig)) then
+ Desig := Full_View (Desig);
+
+ -- If limited view of a type, get non-limited view if available,
+ -- and check again for a regular incomplete type.
+
+ elsif Present (Non_Limited_View (Desig)) then
+ Desig := Get_Full_View (Non_Limited_View (Desig));
+ end if;
+ end if;
+
+ return Desig;
+ end Find_Designated_Type;
+
+ -------------------------------
+ -- Matches_Limited_With_View --
+ -------------------------------
+
+ function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
+ begin
+ -- In some cases a type imported through a limited_with clause, and
+ -- its nonlimited view are both visible, for example in an anonymous
+ -- access-to-class-wide type in a formal. Both entities designate the
+ -- same type.
+
+ if From_With_Type (T1)
+ and then T2 = Available_View (T1)
+ then
+ return True;
+
+ elsif From_With_Type (T2)
+ and then T1 = Available_View (T2)
+ then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Matches_Limited_With_View;
+
+ -- Start of processing for Conforming_Types
+
+ begin
+ -- The context is an instance association for a formal
+ -- access-to-subprogram type; the formal parameter types require
+ -- mapping because they may denote other formal parameters of the
+ -- generic unit.
+
+ if Get_Inst then
+ Type_1 := Get_Instance_Of (T1);
+ Type_2 := Get_Instance_Of (T2);
+ end if;
+
+ -- If one of the types is a view of the other introduced by a limited
+ -- with clause, treat these as conforming for all purposes.
+
+ if Matches_Limited_With_View (T1, T2) then
+ return True;
+
+ elsif Base_Types_Match (Type_1, Type_2) then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Type_2);
+
+ elsif Is_Incomplete_Or_Private_Type (Type_1)
+ and then Present (Full_View (Type_1))
+ and then Base_Types_Match (Full_View (Type_1), Type_2)
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
+
+ elsif Ekind (Type_2) = E_Incomplete_Type
+ and then Present (Full_View (Type_2))
+ and then Base_Types_Match (Type_1, Full_View (Type_2))
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
+
+ elsif Is_Private_Type (Type_2)
+ and then In_Instance
+ and then Present (Full_View (Type_2))
+ and then Base_Types_Match (Type_1, Full_View (Type_2))
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
+ end if;
+
+ -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
+ -- treated recursively because they carry a signature.
+
+ Are_Anonymous_Access_To_Subprogram_Types :=
+ Ekind (Type_1) = Ekind (Type_2)
+ and then
+ (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
+ or else
+ Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
+
+ -- Test anonymous access type case. For this case, static subtype
+ -- matching is required for mode conformance (RM 6.3.1(15)). We check
+ -- the base types because we may have built internal subtype entities
+ -- to handle null-excluding types (see Process_Formals).
+
+ if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
+ and then
+ Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
+ or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
+ then
+ declare
+ Desig_1 : Entity_Id;
+ Desig_2 : Entity_Id;
+
+ begin
+ -- In Ada2005, access constant indicators must match for
+ -- subtype conformance.
+
+ if Ada_Version >= Ada_05
+ and then Ctype >= Subtype_Conformant
+ and then
+ Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
+ then
+ return False;
+ end if;
+
+ Desig_1 := Find_Designated_Type (Type_1);
+
+ Desig_2 := Find_Designated_Type (Type_2);
+
+ -- If the context is an instance association for a formal
+ -- access-to-subprogram type; formal access parameter designated
+ -- types require mapping because they may denote other formal
+ -- parameters of the generic unit.
+
+ if Get_Inst then
+ Desig_1 := Get_Instance_Of (Desig_1);
+ Desig_2 := Get_Instance_Of (Desig_2);
+ end if;
+
+ -- It is possible for a Class_Wide_Type to be introduced for an
+ -- incomplete type, in which case there is a separate class_ wide
+ -- type for the full view. The types conform if their Etypes
+ -- conform, i.e. one may be the full view of the other. This can
+ -- only happen in the context of an access parameter, other uses
+ -- of an incomplete Class_Wide_Type are illegal.
+
+ if Is_Class_Wide_Type (Desig_1)
+ and then Is_Class_Wide_Type (Desig_2)
+ then
+ return
+ Conforming_Types
+ (Etype (Base_Type (Desig_1)),
+ Etype (Base_Type (Desig_2)), Ctype);
+
+ elsif Are_Anonymous_Access_To_Subprogram_Types then
+ if Ada_Version < Ada_05 then
+ return Ctype = Type_Conformant
+ or else
+ Subtypes_Statically_Match (Desig_1, Desig_2);
+
+ -- We must check the conformance of the signatures themselves
+
+ else
+ declare
+ Conformant : Boolean;
+ begin
+ Check_Conformance
+ (Desig_1, Desig_2, Ctype, False, Conformant);
+ return Conformant;
+ end;
+ end if;
+
+ else
+ return Base_Type (Desig_1) = Base_Type (Desig_2)
+ and then (Ctype = Type_Conformant
+ or else
+ Subtypes_Statically_Match (Desig_1, Desig_2));
+ end if;
+ end;
+
+ -- Otherwise definitely no match
+
+ else
+ if ((Ekind (Type_1) = E_Anonymous_Access_Type
+ and then Is_Access_Type (Type_2))
+ or else (Ekind (Type_2) = E_Anonymous_Access_Type
+ and then Is_Access_Type (Type_1)))
+ and then
+ Conforming_Types
+ (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
+ then
+ May_Hide_Profile := True;
+ end if;
+
+ return False;
+ end if;
+ end Conforming_Types;
+
+ --------------------------
+ -- Create_Extra_Formals --
+ --------------------------
+
+ procedure Create_Extra_Formals (E : Entity_Id) is
+ Formal : Entity_Id;
+ First_Extra : Entity_Id := Empty;
+ Last_Extra : Entity_Id;
+ Formal_Type : Entity_Id;
+ P_Formal : Entity_Id := Empty;
+
+ function Add_Extra_Formal
+ (Assoc_Entity : Entity_Id;
+ Typ : Entity_Id;
+ Scope : Entity_Id;
+ Suffix : String) return Entity_Id;
+ -- Add an extra formal to the current list of formals and extra formals.
+ -- The extra formal is added to the end of the list of extra formals,
+ -- and also returned as the result. These formals are always of mode IN.
+ -- The new formal has the type Typ, is declared in Scope, and its name
+ -- is given by a concatenation of the name of Assoc_Entity and Suffix.
+
+ ----------------------
+ -- Add_Extra_Formal --
+ ----------------------
+
+ function Add_Extra_Formal
+ (Assoc_Entity : Entity_Id;
+ Typ : Entity_Id;
+ Scope : Entity_Id;
+ Suffix : String) return Entity_Id
+ is
+ EF : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (Assoc_Entity),
+ Chars => New_External_Name (Chars (Assoc_Entity),
+ Suffix => Suffix));
+
+ begin
+ -- A little optimization. Never generate an extra formal for the
+ -- _init operand of an initialization procedure, since it could
+ -- never be used.
+
+ if Chars (Formal) = Name_uInit then
+ return Empty;
+ end if;
+
+ Set_Ekind (EF, E_In_Parameter);
+ Set_Actual_Subtype (EF, Typ);
+ Set_Etype (EF, Typ);
+ Set_Scope (EF, Scope);
+ Set_Mechanism (EF, Default_Mechanism);
+ Set_Formal_Validity (EF);
+
+ if No (First_Extra) then
+ First_Extra := EF;
+ Set_Extra_Formals (Scope, First_Extra);
+ end if;
+
+ if Present (Last_Extra) then
+ Set_Extra_Formal (Last_Extra, EF);
+ end if;
+
+ Last_Extra := EF;
+
+ return EF;
+ end Add_Extra_Formal;
+
+ -- Start of processing for Create_Extra_Formals
+
+ begin
+ -- We never generate extra formals if expansion is not active
+ -- because we don't need them unless we are generating code.
+
+ if not Expander_Active then
+ return;
+ end if;
+
+ -- If this is a derived subprogram then the subtypes of the parent
+ -- subprogram's formal parameters will be used to to determine the need
+ -- for extra formals.
+
+ if Is_Overloadable (E) and then Present (Alias (E)) then
+ P_Formal := First_Formal (Alias (E));
+ end if;
+
+ Last_Extra := Empty;
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ Last_Extra := Formal;
+ Next_Formal (Formal);
+ end loop;
+
+ -- If Extra_formals were already created, don't do it again. This
+ -- situation may arise for subprogram types created as part of
+ -- dispatching calls (see Expand_Dispatching_Call)
+
+ if Present (Last_Extra) and then
+ Present (Extra_Formal (Last_Extra))
+ then
+ return;
+ end if;
+
+ -- If the subprogram is a predefined dispatching subprogram then don't
+ -- generate any extra constrained or accessibility level formals. In
+ -- general we suppress these for internal subprograms (by not calling
+ -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
+ -- generated stream attributes do get passed through because extra
+ -- build-in-place formals are needed in some cases (limited 'Input).
+
+ if Is_Predefined_Dispatching_Operation (E) then
+ goto Test_For_BIP_Extras;
+ end if;
+
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+
+ -- Create extra formal for supporting the attribute 'Constrained.
+ -- The case of a private type view without discriminants also
+ -- requires the extra formal if the underlying type has defaulted
+ -- discriminants.
+
+ if Ekind (Formal) /= E_In_Parameter then
+ if Present (P_Formal) then
+ Formal_Type := Etype (P_Formal);
+ else
+ Formal_Type := Etype (Formal);
+ end if;
+
+ -- Do not produce extra formals for Unchecked_Union parameters.
+ -- Jump directly to the end of the loop.
+
+ if Is_Unchecked_Union (Base_Type (Formal_Type)) then
+ goto Skip_Extra_Formal_Generation;
+ end if;
+
+ if not Has_Discriminants (Formal_Type)
+ and then Ekind (Formal_Type) in Private_Kind
+ and then Present (Underlying_Type (Formal_Type))
+ then
+ Formal_Type := Underlying_Type (Formal_Type);
+ end if;
+
+ if Has_Discriminants (Formal_Type)
+ and then not Is_Constrained (Formal_Type)
+ and then not Is_Indefinite_Subtype (Formal_Type)
+ then
+ Set_Extra_Constrained
+ (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
+ end if;
+ end if;
+
+ -- Create extra formal for supporting accessibility checking. This
+ -- is done for both anonymous access formals and formals of named
+ -- access types that are marked as controlling formals. The latter
+ -- case can occur when Expand_Dispatching_Call creates a subprogram
+ -- type and substitutes the types of access-to-class-wide actuals
+ -- for the anonymous access-to-specific-type of controlling formals.
+ -- Base_Type is applied because in cases where there is a null
+ -- exclusion the formal may have an access subtype.
+
+ -- This is suppressed if we specifically suppress accessibility
+ -- checks at the package level for either the subprogram, or the
+ -- package in which it resides. However, we do not suppress it
+ -- simply if the scope has accessibility checks suppressed, since
+ -- this could cause trouble when clients are compiled with a
+ -- different suppression setting. The explicit checks at the
+ -- package level are safe from this point of view.
+
+ if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
+ or else (Is_Controlling_Formal (Formal)
+ and then Is_Access_Type (Base_Type (Etype (Formal)))))
+ and then not
+ (Explicit_Suppress (E, Accessibility_Check)
+ or else
+ Explicit_Suppress (Scope (E), Accessibility_Check))
+ and then
+ (No (P_Formal)
+ or else Present (Extra_Accessibility (P_Formal)))
+ then
+ -- Temporary kludge: for now we avoid creating the extra formal
+ -- for access parameters of protected operations because of
+ -- problem with the case of internal protected calls. ???
+
+ if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
+ and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
+ then
+ Set_Extra_Accessibility
+ (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
+ end if;
+ end if;
+
+ -- This label is required when skipping extra formal generation for
+ -- Unchecked_Union parameters.
+
+ <<Skip_Extra_Formal_Generation>>
+
+ if Present (P_Formal) then
+ Next_Formal (P_Formal);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ <<Test_For_BIP_Extras>>
+
+ -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
+ -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
+
+ if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
+ declare
+ Result_Subt : constant Entity_Id := Etype (E);
+
+ Discard : Entity_Id;
+ pragma Warnings (Off, Discard);
+
+ begin
+ -- In the case of functions with unconstrained result subtypes,
+ -- add a 3-state formal indicating whether the return object is
+ -- allocated by the caller (0), or should be allocated by the
+ -- callee on the secondary stack (1) or in the global heap (2).
+ -- For the moment we just use Natural for the type of this formal.
+ -- Note that this formal isn't usually needed in the case where
+ -- the result subtype is constrained, but it is needed when the
+ -- function has a tagged result, because generally such functions
+ -- can be called in a dispatching context and such calls must be
+ -- handled like calls to a class-wide function.
+
+ if not Is_Constrained (Result_Subt)
+ or else Is_Tagged_Type (Underlying_Type (Result_Subt))
+ then
+ Discard :=
+ Add_Extra_Formal
+ (E, Standard_Natural,
+ E, BIP_Formal_Suffix (BIP_Alloc_Form));
+ end if;
+
+ -- In the case of functions whose result type has controlled
+ -- parts, we have an extra formal of type
+ -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
+ -- is, we are passing a pointer to a finalization list (which is
+ -- itself a pointer). This extra formal is then passed along to
+ -- Move_Final_List in case of successful completion of a return
+ -- statement. We cannot pass an 'in out' parameter, because we
+ -- need to update the finalization list during an abort-deferred
+ -- region, rather than using copy-back after the function
+ -- returns. This is true even if we are able to get away with
+ -- having 'in out' parameters, which are normally illegal for
+ -- functions. This formal is also needed when the function has
+ -- a tagged result, because generally such functions can be called
+ -- in a dispatching context and such calls must be handled like
+ -- calls to class-wide functions.
+
+ if Controlled_Type (Result_Subt)
+ or else Is_Tagged_Type (Underlying_Type (Result_Subt))
+ then
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Finalizable_Ptr_Ptr),
+ E, BIP_Formal_Suffix (BIP_Final_List));
+ end if;
+
+ -- If the result type contains tasks, we have two extra formals:
+ -- the master of the tasks to be created, and the caller's
+ -- activation chain.
+
+ if Has_Task (Result_Subt) then
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Master_Id),
+ E, BIP_Formal_Suffix (BIP_Master));
+ Discard :=
+ Add_Extra_Formal
+ (E, RTE (RE_Activation_Chain_Access),
+ E, BIP_Formal_Suffix (BIP_Activation_Chain));
+ end if;
+
+ -- All build-in-place functions get an extra formal that will be
+ -- passed the address of the return object within the caller.
+
+ declare
+ Formal_Type : constant Entity_Id :=
+ Create_Itype
+ (E_Anonymous_Access_Type, E,
+ Scope_Id => Scope (E));
+ begin
+ Set_Directly_Designated_Type (Formal_Type, Result_Subt);
+ Set_Etype (Formal_Type, Formal_Type);
+ Init_Size_Align (Formal_Type);
+ Set_Depends_On_Private
+ (Formal_Type, Has_Private_Component (Formal_Type));
+ Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
+ Set_Is_Access_Constant (Formal_Type, False);
+
+ -- Ada 2005 (AI-50217): Propagate the attribute that indicates
+ -- the designated type comes from the limited view (for
+ -- back-end purposes).
+
+ Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
+
+ Layout_Type (Formal_Type);
+
+ Discard :=
+ Add_Extra_Formal
+ (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
+ end;
+ end;
+ end if;
+ end Create_Extra_Formals;
+
+ -----------------------------
+ -- Enter_Overloaded_Entity --
+ -----------------------------
+
+ procedure Enter_Overloaded_Entity (S : Entity_Id) is
+ E : Entity_Id := Current_Entity_In_Scope (S);
+ C_E : Entity_Id := Current_Entity (S);
+
+ begin
+ if Present (E) then
+ Set_Has_Homonym (E);
+ Set_Has_Homonym (S);
+ end if;
+
+ Set_Is_Immediately_Visible (S);
+ Set_Scope (S, Current_Scope);
+
+ -- Chain new entity if front of homonym in current scope, so that
+ -- homonyms are contiguous.
+
+ if Present (E)
+ and then E /= C_E
+ then
+ while Homonym (C_E) /= E loop
+ C_E := Homonym (C_E);
+ end loop;
+
+ Set_Homonym (C_E, S);
+
+ else
+ E := C_E;
+ Set_Current_Entity (S);
+ end if;
+
+ Set_Homonym (S, E);
+
+ Append_Entity (S, Current_Scope);
+ Set_Public_Status (S);
+
+ if Debug_Flag_E then
+ Write_Str ("New overloaded entity chain: ");
+ Write_Name (Chars (S));
+
+ E := S;
+ while Present (E) loop
+ Write_Str (" "); Write_Int (Int (E));
+ E := Homonym (E);
+ end loop;
+
+ Write_Eol;
+ end if;
+
+ -- Generate warning for hiding
+
+ if Warn_On_Hiding
+ and then Comes_From_Source (S)
+ and then In_Extended_Main_Source_Unit (S)
+ then
+ E := S;
+ loop
+ E := Homonym (E);
+ exit when No (E);
+
+ -- Warn unless genuine overloading
+
+ if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
+ and then (Is_Immediately_Visible (E)
+ or else
+ Is_Potentially_Use_Visible (S))
+ then
+ Error_Msg_Sloc := Sloc (E);
+ Error_Msg_N ("declaration of & hides one#?", S);
+ end if;
+ end loop;
+ end if;
+ end Enter_Overloaded_Entity;
+
+ -----------------------------
+ -- Find_Corresponding_Spec --
+ -----------------------------
+
+ function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
+ Spec : constant Node_Id := Specification (N);
+ Designator : constant Entity_Id := Defining_Entity (Spec);
+
+ E : Entity_Id;
+
+ begin
+ E := Current_Entity (Designator);
+ while Present (E) loop
+
+ -- We are looking for a matching spec. It must have the same scope,
+ -- and the same name, and either be type conformant, or be the case
+ -- of a library procedure spec and its body (which belong to one
+ -- another regardless of whether they are type conformant or not).
+
+ if Scope (E) = Current_Scope then
+ if Current_Scope = Standard_Standard
+ or else (Ekind (E) = Ekind (Designator)
+ and then Type_Conformant (E, Designator))
+ then
+ -- Within an instantiation, we know that spec and body are
+ -- subtype conformant, because they were subtype conformant
+ -- in the generic. We choose the subtype-conformant entity
+ -- here as well, to resolve spurious ambiguities in the
+ -- instance that were not present in the generic (i.e. when
+ -- two different types are given the same actual). If we are
+ -- looking for a spec to match a body, full conformance is
+ -- expected.
+
+ if In_Instance then
+ Set_Convention (Designator, Convention (E));
+
+ if Nkind (N) = N_Subprogram_Body
+ and then Present (Homonym (E))
+ and then not Fully_Conformant (E, Designator)
+ then
+ goto Next_Entity;
+
+ elsif not Subtype_Conformant (E, Designator) then
+ goto Next_Entity;
+ end if;
+ end if;
+
+ if not Has_Completion (E) then
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Corresponding_Spec (N, E);
+ end if;
+
+ Set_Has_Completion (E);
+ return E;
+
+ elsif Nkind (Parent (N)) = N_Subunit then
+
+ -- If this is the proper body of a subunit, the completion
+ -- flag is set when analyzing the stub.
+
+ return E;
+
+ -- If E is an internal function with a controlling result
+ -- that was created for an operation inherited by a null
+ -- extension, it may be overridden by a body without a previous
+ -- spec (one more reason why these should be shunned). In that
+ -- case remove the generated body, because the current one is
+ -- the explicit overriding.
+
+ elsif Ekind (E) = E_Function
+ and then Ada_Version >= Ada_05
+ and then not Comes_From_Source (E)
+ and then Has_Controlling_Result (E)
+ and then Is_Null_Extension (Etype (E))
+ and then Comes_From_Source (Spec)
+ then
+ Set_Has_Completion (E, False);
+
+ if Expander_Active then
+ Remove
+ (Unit_Declaration_Node
+ (Corresponding_Body (Unit_Declaration_Node (E))));
+ return E;
+
+ -- If expansion is disabled, the wrapper function has not
+ -- been generated, and this is the standard case of a late
+ -- body overriding an inherited operation.
+
+ else
+ return Empty;
+ end if;
+
+ -- If body already exists, this is an error unless the
+ -- previous declaration is the implicit declaration of
+ -- a derived subprogram, or this is a spurious overloading
+ -- in an instance.
+
+ elsif No (Alias (E))
+ and then not Is_Intrinsic_Subprogram (E)
+ and then not In_Instance
+ then
+ Error_Msg_Sloc := Sloc (E);
+ if Is_Imported (E) then
+ Error_Msg_NE
+ ("body not allowed for imported subprogram & declared#",
+ N, E);
+ else
+ Error_Msg_NE ("duplicate body for & declared#", N, E);
+ end if;
+ end if;
+
+ elsif Is_Child_Unit (E)
+ and then
+ Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
+ and then
+ Nkind (Parent (Unit_Declaration_Node (Designator))) =
+ N_Compilation_Unit
+ then
+ -- Child units cannot be overloaded, so a conformance mismatch
+ -- between body and a previous spec is an error.
+
+ Error_Msg_N
+ ("body of child unit does not match previous declaration", N);
+ end if;
+ end if;
+
+ <<Next_Entity>>
+ E := Homonym (E);
+ end loop;
+
+ -- On exit, we know that no previous declaration of subprogram exists
+
+ return Empty;
+ end Find_Corresponding_Spec;
+
+ ----------------------
+ -- Fully_Conformant --
+ ----------------------
+
+ function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+ begin
+ Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
+ return Result;
+ end Fully_Conformant;
+
+ ----------------------------------
+ -- Fully_Conformant_Expressions --
+ ----------------------------------
+
+ function Fully_Conformant_Expressions
+ (Given_E1 : Node_Id;
+ Given_E2 : Node_Id) return Boolean
+ is
+ E1 : constant Node_Id := Original_Node (Given_E1);
+ E2 : constant Node_Id := Original_Node (Given_E2);
+ -- We always test conformance on original nodes, since it is possible
+ -- for analysis and/or expansion to make things look as though they
+ -- conform when they do not, e.g. by converting 1+2 into 3.
+
+ function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
+ renames Fully_Conformant_Expressions;
+
+ function FCL (L1, L2 : List_Id) return Boolean;
+ -- Compare elements of two lists for conformance. Elements have to
+ -- be conformant, and actuals inserted as default parameters do not
+ -- match explicit actuals with the same value.
+
+ function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
+ -- Compare an operator node with a function call
+
+ ---------
+ -- FCL --
+ ---------
+
+ function FCL (L1, L2 : List_Id) return Boolean is
+ N1, N2 : Node_Id;
+
+ begin
+ if L1 = No_List then
+ N1 := Empty;
+ else
+ N1 := First (L1);
+ end if;
+
+ if L2 = No_List then
+ N2 := Empty;
+ else
+ N2 := First (L2);
+ end if;
+
+ -- Compare two lists, skipping rewrite insertions (we want to
+ -- compare the original trees, not the expanded versions!)
+
+ loop
+ if Is_Rewrite_Insertion (N1) then
+ Next (N1);
+ elsif Is_Rewrite_Insertion (N2) then
+ Next (N2);
+ elsif No (N1) then
+ return No (N2);
+ elsif No (N2) then
+ return False;
+ elsif not FCE (N1, N2) then
+ return False;
+ else
+ Next (N1);
+ Next (N2);
+ end if;
+ end loop;
+ end FCL;
+
+ ---------
+ -- FCO --
+ ---------
+
+ function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
+ Actuals : constant List_Id := Parameter_Associations (Call_Node);
+ Act : Node_Id;
+
+ begin
+ if No (Actuals)
+ or else Entity (Op_Node) /= Entity (Name (Call_Node))
+ then
+ return False;
+
+ else
+ Act := First (Actuals);
+
+ if Nkind (Op_Node) in N_Binary_Op then
+
+ if not FCE (Left_Opnd (Op_Node), Act) then
+ return False;
+ end if;
+
+ Next (Act);
+ end if;
+
+ return Present (Act)
+ and then FCE (Right_Opnd (Op_Node), Act)
+ and then No (Next (Act));
+ end if;
+ end FCO;
+
+ -- Start of processing for Fully_Conformant_Expressions
+
+ begin
+ -- Non-conformant if paren count does not match. Note: if some idiot
+ -- complains that we don't do this right for more than 3 levels of
+ -- parentheses, they will be treated with the respect they deserve!
+
+ if Paren_Count (E1) /= Paren_Count (E2) then
+ return False;
+
+ -- If same entities are referenced, then they are conformant even if
+ -- they have different forms (RM 8.3.1(19-20)).
+
+ elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
+ if Present (Entity (E1)) then
+ return Entity (E1) = Entity (E2)
+ or else (Chars (Entity (E1)) = Chars (Entity (E2))
+ and then Ekind (Entity (E1)) = E_Discriminant
+ and then Ekind (Entity (E2)) = E_In_Parameter);
+
+ elsif Nkind (E1) = N_Expanded_Name
+ and then Nkind (E2) = N_Expanded_Name
+ and then Nkind (Selector_Name (E1)) = N_Character_Literal
+ and then Nkind (Selector_Name (E2)) = N_Character_Literal
+ then
+ return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
+
+ else
+ -- Identifiers in component associations don't always have
+ -- entities, but their names must conform.
+
+ return Nkind (E1) = N_Identifier
+ and then Nkind (E2) = N_Identifier
+ and then Chars (E1) = Chars (E2);
+ end if;
+
+ elsif Nkind (E1) = N_Character_Literal
+ and then Nkind (E2) = N_Expanded_Name
+ then
+ return Nkind (Selector_Name (E2)) = N_Character_Literal
+ and then Chars (E1) = Chars (Selector_Name (E2));
+
+ elsif Nkind (E2) = N_Character_Literal
+ and then Nkind (E1) = N_Expanded_Name
+ then
+ return Nkind (Selector_Name (E1)) = N_Character_Literal
+ and then Chars (E2) = Chars (Selector_Name (E1));
+
+ elsif Nkind (E1) in N_Op
+ and then Nkind (E2) = N_Function_Call
+ then
+ return FCO (E1, E2);
+
+ elsif Nkind (E2) in N_Op
+ and then Nkind (E1) = N_Function_Call
+ then
+ return FCO (E2, E1);
+
+ -- Otherwise we must have the same syntactic entity
+
+ elsif Nkind (E1) /= Nkind (E2) then
+ return False;
+
+ -- At this point, we specialize by node type
+
+ else
+ case Nkind (E1) is
+
+ when N_Aggregate =>
+ return
+ FCL (Expressions (E1), Expressions (E2))
+ and then FCL (Component_Associations (E1),
+ Component_Associations (E2));
+
+ when N_Allocator =>
+ if Nkind (Expression (E1)) = N_Qualified_Expression
+ or else
+ Nkind (Expression (E2)) = N_Qualified_Expression
+ then
+ return FCE (Expression (E1), Expression (E2));
+
+ -- Check that the subtype marks and any constraints
+ -- are conformant
+
+ else
+ declare
+ Indic1 : constant Node_Id := Expression (E1);
+ Indic2 : constant Node_Id := Expression (E2);
+ Elt1 : Node_Id;
+ Elt2 : Node_Id;
+
+ begin
+ if Nkind (Indic1) /= N_Subtype_Indication then
+ return
+ Nkind (Indic2) /= N_Subtype_Indication
+ and then Entity (Indic1) = Entity (Indic2);
+
+ elsif Nkind (Indic2) /= N_Subtype_Indication then
+ return
+ Nkind (Indic1) /= N_Subtype_Indication
+ and then Entity (Indic1) = Entity (Indic2);
+
+ else
+ if Entity (Subtype_Mark (Indic1)) /=
+ Entity (Subtype_Mark (Indic2))
+ then
+ return False;
+ end if;
+
+ Elt1 := First (Constraints (Constraint (Indic1)));
+ Elt2 := First (Constraints (Constraint (Indic2)));
+
+ while Present (Elt1) and then Present (Elt2) loop
+ if not FCE (Elt1, Elt2) then
+ return False;
+ end if;
+
+ Next (Elt1);
+ Next (Elt2);
+ end loop;
+
+ return True;
+ end if;
+ end;
+ end if;
+
+ when N_Attribute_Reference =>
+ return
+ Attribute_Name (E1) = Attribute_Name (E2)
+ and then FCL (Expressions (E1), Expressions (E2));
+
+ when N_Binary_Op =>
+ return
+ Entity (E1) = Entity (E2)
+ and then FCE (Left_Opnd (E1), Left_Opnd (E2))
+ and then FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_And_Then | N_Or_Else | N_Membership_Test =>
+ return
+ FCE (Left_Opnd (E1), Left_Opnd (E2))
+ and then
+ FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Character_Literal =>
+ return
+ Char_Literal_Value (E1) = Char_Literal_Value (E2);
+
+ when N_Component_Association =>
+ return
+ FCL (Choices (E1), Choices (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ when N_Conditional_Expression =>
+ return
+ FCL (Expressions (E1), Expressions (E2));
+
+ when N_Explicit_Dereference =>
+ return
+ FCE (Prefix (E1), Prefix (E2));
+
+ when N_Extension_Aggregate =>
+ return
+ FCL (Expressions (E1), Expressions (E2))
+ and then Null_Record_Present (E1) =
+ Null_Record_Present (E2)
+ and then FCL (Component_Associations (E1),
+ Component_Associations (E2));
+
+ when N_Function_Call =>
+ return
+ FCE (Name (E1), Name (E2))
+ and then FCL (Parameter_Associations (E1),
+ Parameter_Associations (E2));
+
+ when N_Indexed_Component =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then FCL (Expressions (E1), Expressions (E2));
+
+ when N_Integer_Literal =>
+ return (Intval (E1) = Intval (E2));
+
+ when N_Null =>
+ return True;
+
+ when N_Operator_Symbol =>
+ return
+ Chars (E1) = Chars (E2);
+
+ when N_Others_Choice =>
+ return True;
+
+ when N_Parameter_Association =>
+ return
+ Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
+ and then FCE (Explicit_Actual_Parameter (E1),
+ Explicit_Actual_Parameter (E2));
+
+ when N_Qualified_Expression =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ when N_Range =>
+ return
+ FCE (Low_Bound (E1), Low_Bound (E2))
+ and then FCE (High_Bound (E1), High_Bound (E2));
+
+ when N_Real_Literal =>
+ return (Realval (E1) = Realval (E2));
+
+ when N_Selected_Component =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then FCE (Selector_Name (E1), Selector_Name (E2));
+
+ when N_Slice =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then FCE (Discrete_Range (E1), Discrete_Range (E2));
+
+ when N_String_Literal =>
+ declare
+ S1 : constant String_Id := Strval (E1);
+ S2 : constant String_Id := Strval (E2);
+ L1 : constant Nat := String_Length (S1);
+ L2 : constant Nat := String_Length (S2);
+
+ begin
+ if L1 /= L2 then
+ return False;
+
+ else
+ for J in 1 .. L1 loop
+ if Get_String_Char (S1, J) /=
+ Get_String_Char (S2, J)
+ then
+ return False;
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end;
+
+ when N_Type_Conversion =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ when N_Unary_Op =>
+ return
+ Entity (E1) = Entity (E2)
+ and then FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Unchecked_Type_Conversion =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ -- All other node types cannot appear in this context. Strictly
+ -- we should raise a fatal internal error. Instead we just ignore
+ -- the nodes. This means that if anyone makes a mistake in the
+ -- expander and mucks an expression tree irretrievably, the
+ -- result will be a failure to detect a (probably very obscure)
+ -- case of non-conformance, which is better than bombing on some
+ -- case where two expressions do in fact conform.
+
+ when others =>
+ return True;
+
+ end case;
+ end if;
+ end Fully_Conformant_Expressions;
+
+ ----------------------------------------
+ -- Fully_Conformant_Discrete_Subtypes --
+ ----------------------------------------
+
+ function Fully_Conformant_Discrete_Subtypes
+ (Given_S1 : Node_Id;
+ Given_S2 : Node_Id) return Boolean
+ is
+ S1 : constant Node_Id := Original_Node (Given_S1);
+ S2 : constant Node_Id := Original_Node (Given_S2);
+
+ function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
+ -- Special-case for a bound given by a discriminant, which in the body
+ -- is replaced with the discriminal of the enclosing type.
+
+ function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
+ -- Check both bounds
+
+ -----------------------
+ -- Conforming_Bounds --
+ -----------------------
+
+ function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
+ begin
+ if Is_Entity_Name (B1)
+ and then Is_Entity_Name (B2)
+ and then Ekind (Entity (B1)) = E_Discriminant
+ then
+ return Chars (B1) = Chars (B2);
+
+ else
+ return Fully_Conformant_Expressions (B1, B2);
+ end if;
+ end Conforming_Bounds;
+
+ -----------------------
+ -- Conforming_Ranges --
+ -----------------------
+
+ function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
+ begin
+ return
+ Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
+ and then
+ Conforming_Bounds (High_Bound (R1), High_Bound (R2));
+ end Conforming_Ranges;
+
+ -- Start of processing for Fully_Conformant_Discrete_Subtypes
+
+ begin
+ if Nkind (S1) /= Nkind (S2) then
+ return False;
+
+ elsif Is_Entity_Name (S1) then
+ return Entity (S1) = Entity (S2);
+
+ elsif Nkind (S1) = N_Range then
+ return Conforming_Ranges (S1, S2);
+
+ elsif Nkind (S1) = N_Subtype_Indication then
+ return
+ Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
+ and then
+ Conforming_Ranges
+ (Range_Expression (Constraint (S1)),
+ Range_Expression (Constraint (S2)));
+ else
+ return True;
+ end if;
+ end Fully_Conformant_Discrete_Subtypes;
+
+ --------------------
+ -- Install_Entity --
+ --------------------
+
+ procedure Install_Entity (E : Entity_Id) is
+ Prev : constant Entity_Id := Current_Entity (E);
+ begin
+ Set_Is_Immediately_Visible (E);
+ Set_Current_Entity (E);
+ Set_Homonym (E, Prev);
+ end Install_Entity;
+
+ ---------------------
+ -- Install_Formals --
+ ---------------------
+
+ procedure Install_Formals (Id : Entity_Id) is
+ F : Entity_Id;
+ begin
+ F := First_Formal (Id);
+ while Present (F) loop
+ Install_Entity (F);
+ Next_Formal (F);
+ end loop;
+ end Install_Formals;
+
+ ---------------------------------
+ -- Is_Non_Overriding_Operation --
+ ---------------------------------
+
+ function Is_Non_Overriding_Operation
+ (Prev_E : Entity_Id;
+ New_E : Entity_Id) return Boolean
+ is
+ Formal : Entity_Id;
+ F_Typ : Entity_Id;
+ G_Typ : Entity_Id := Empty;
+
+ function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
+ -- If F_Type is a derived type associated with a generic actual subtype,
+ -- then return its Generic_Parent_Type attribute, else return Empty.
+
+ function Types_Correspond
+ (P_Type : Entity_Id;
+ N_Type : Entity_Id) return Boolean;
+ -- Returns true if and only if the types (or designated types in the
+ -- case of anonymous access types) are the same or N_Type is derived
+ -- directly or indirectly from P_Type.
+
+ -----------------------------
+ -- Get_Generic_Parent_Type --
+ -----------------------------
+
+ function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
+ G_Typ : Entity_Id;
+ Indic : Node_Id;
+
+ begin
+ if Is_Derived_Type (F_Typ)
+ and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
+ then
+ -- The tree must be traversed to determine the parent subtype in
+ -- the generic unit, which unfortunately isn't always available
+ -- via semantic attributes. ??? (Note: The use of Original_Node
+ -- is needed for cases where a full derived type has been
+ -- rewritten.)
+
+ Indic := Subtype_Indication
+ (Type_Definition (Original_Node (Parent (F_Typ))));
+
+ if Nkind (Indic) = N_Subtype_Indication then
+ G_Typ := Entity (Subtype_Mark (Indic));
+ else
+ G_Typ := Entity (Indic);
+ end if;
+
+ if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
+ and then Present (Generic_Parent_Type (Parent (G_Typ)))
+ then
+ return Generic_Parent_Type (Parent (G_Typ));
+ end if;
+ end if;
+
+ return Empty;
+ end Get_Generic_Parent_Type;
+
+ ----------------------
+ -- Types_Correspond --
+ ----------------------
+
+ function Types_Correspond
+ (P_Type : Entity_Id;
+ N_Type : Entity_Id) return Boolean
+ is
+ Prev_Type : Entity_Id := Base_Type (P_Type);
+ New_Type : Entity_Id := Base_Type (N_Type);
+
+ begin
+ if Ekind (Prev_Type) = E_Anonymous_Access_Type then
+ Prev_Type := Designated_Type (Prev_Type);
+ end if;
+
+ if Ekind (New_Type) = E_Anonymous_Access_Type then
+ New_Type := Designated_Type (New_Type);
+ end if;
+
+ if Prev_Type = New_Type then
+ return True;
+
+ elsif not Is_Class_Wide_Type (New_Type) then
+ while Etype (New_Type) /= New_Type loop
+ New_Type := Etype (New_Type);
+ if New_Type = Prev_Type then
+ return True;
+ end if;
+ end loop;
+ end if;
+ return False;
+ end Types_Correspond;
+
+ -- Start of processing for Is_Non_Overriding_Operation
+
+ begin
+ -- In the case where both operations are implicit derived subprograms
+ -- then neither overrides the other. This can only occur in certain
+ -- obscure cases (e.g., derivation from homographs created in a generic
+ -- instantiation).
+
+ if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
+ return True;
+
+ elsif Ekind (Current_Scope) = E_Package
+ and then Is_Generic_Instance (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ and then Comes_From_Source (New_E)
+ then
+ -- We examine the formals and result subtype of the inherited
+ -- operation, to determine whether their type is derived from (the
+ -- instance of) a generic type.
+
+ Formal := First_Formal (Prev_E);
+
+ while Present (Formal) loop
+ F_Typ := Base_Type (Etype (Formal));
+
+ if Ekind (F_Typ) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (F_Typ);
+ end if;
+
+ G_Typ := Get_Generic_Parent_Type (F_Typ);
+
+ Next_Formal (Formal);
+ end loop;
+
+ if No (G_Typ) and then Ekind (Prev_E) = E_Function then
+ G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
+ end if;
+
+ if No (G_Typ) then
+ return False;
+ end if;
+
+ -- If the generic type is a private type, then the original
+ -- operation was not overriding in the generic, because there was
+ -- no primitive operation to override.
+
+ if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
+ and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
+ N_Formal_Private_Type_Definition
+ then
+ return True;
+
+ -- The generic parent type is the ancestor of a formal derived
+ -- type declaration. We need to check whether it has a primitive
+ -- operation that should be overridden by New_E in the generic.
+
+ else
+ declare
+ P_Formal : Entity_Id;
+ N_Formal : Entity_Id;
+ P_Typ : Entity_Id;
+ N_Typ : Entity_Id;
+ P_Prim : Entity_Id;
+ Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
+
+ begin
+ while Present (Prim_Elt) loop
+ P_Prim := Node (Prim_Elt);
+
+ if Chars (P_Prim) = Chars (New_E)
+ and then Ekind (P_Prim) = Ekind (New_E)
+ then
+ P_Formal := First_Formal (P_Prim);
+ N_Formal := First_Formal (New_E);
+ while Present (P_Formal) and then Present (N_Formal) loop
+ P_Typ := Etype (P_Formal);
+ N_Typ := Etype (N_Formal);
+
+ if not Types_Correspond (P_Typ, N_Typ) then
+ exit;
+ end if;
+
+ Next_Entity (P_Formal);
+ Next_Entity (N_Formal);
+ end loop;
+
+ -- Found a matching primitive operation belonging to the
+ -- formal ancestor type, so the new subprogram is
+ -- overriding.
+
+ if No (P_Formal)
+ and then No (N_Formal)
+ and then (Ekind (New_E) /= E_Function
+ or else
+ Types_Correspond
+ (Etype (P_Prim), Etype (New_E)))
+ then
+ return False;
+ end if;
+ end if;
+
+ Next_Elmt (Prim_Elt);
+ end loop;
+
+ -- If no match found, then the new subprogram does not
+ -- override in the generic (nor in the instance).
+
+ return True;
+ end;
+ end if;
+ else
+ return False;
+ end if;
+ end Is_Non_Overriding_Operation;
+
+ ------------------------------
+ -- Make_Inequality_Operator --
+ ------------------------------
+
+ -- S is the defining identifier of an equality operator. We build a
+ -- subprogram declaration with the right signature. This operation is
+ -- intrinsic, because it is always expanded as the negation of the
+ -- call to the equality function.
+
+ procedure Make_Inequality_Operator (S : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (S);
+ Decl : Node_Id;
+ Formals : List_Id;
+ Op_Name : Entity_Id;
+
+ FF : constant Entity_Id := First_Formal (S);
+ NF : constant Entity_Id := Next_Formal (FF);
+
+ begin
+ -- Check that equality was properly defined, ignore call if not
+
+ if No (NF) then
+ return;
+ end if;
+
+ declare
+ A : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (FF),
+ Chars => Chars (FF));
+
+ B : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (NF),
+ Chars => Chars (NF));
+
+ begin
+ Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type =>
+ New_Reference_To (Etype (First_Formal (S)),
+ Sloc (Etype (First_Formal (S))))),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => B,
+ Parameter_Type =>
+ New_Reference_To (Etype (Next_Formal (First_Formal (S))),
+ Sloc (Etype (Next_Formal (First_Formal (S)))))));
+
+ Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Op_Name,
+ Parameter_Specifications => Formals,
+ Result_Definition =>
+ New_Reference_To (Standard_Boolean, Loc)));
+
+ -- Insert inequality right after equality if it is explicit or after
+ -- the derived type when implicit. These entities are created only
+ -- for visibility purposes, and eventually replaced in the course of
+ -- expansion, so they do not need to be attached to the tree and seen
+ -- by the back-end. Keeping them internal also avoids spurious
+ -- freezing problems. The declaration is inserted in the tree for
+ -- analysis, and removed afterwards. If the equality operator comes
+ -- from an explicit declaration, attach the inequality immediately
+ -- after. Else the equality is inherited from a derived type
+ -- declaration, so insert inequality after that declaration.
+
+ if No (Alias (S)) then
+ Insert_After (Unit_Declaration_Node (S), Decl);
+ elsif Is_List_Member (Parent (S)) then
+ Insert_After (Parent (S), Decl);
+ else
+ Insert_After (Parent (Etype (First_Formal (S))), Decl);
+ end if;
+
+ Mark_Rewrite_Insertion (Decl);
+ Set_Is_Intrinsic_Subprogram (Op_Name);
+ Analyze (Decl);
+ Remove (Decl);
+ Set_Has_Completion (Op_Name);
+ Set_Corresponding_Equality (Op_Name, S);
+ Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
+ end;
+ end Make_Inequality_Operator;
+
+ ----------------------
+ -- May_Need_Actuals --
+ ----------------------
+
+ procedure May_Need_Actuals (Fun : Entity_Id) is
+ F : Entity_Id;
+ B : Boolean;
+
+ begin
+ F := First_Formal (Fun);
+ B := True;
+ while Present (F) loop
+ if No (Default_Value (F)) then
+ B := False;
+ exit;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ Set_Needs_No_Actuals (Fun, B);
+ end May_Need_Actuals;
+
+ ---------------------
+ -- Mode_Conformant --
+ ---------------------
+
+ function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+ begin
+ Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
+ return Result;
+ end Mode_Conformant;
+
+ ---------------------------
+ -- New_Overloaded_Entity --
+ ---------------------------
+
+ procedure New_Overloaded_Entity
+ (S : Entity_Id;
+ Derived_Type : Entity_Id := Empty)
+ is
+ Overridden_Subp : Entity_Id := Empty;
+ -- Set if the current scope has an operation that is type-conformant
+ -- with S, and becomes hidden by S.
+
+ Is_Primitive_Subp : Boolean;
+ -- Set to True if the new subprogram is primitive
+
+ E : Entity_Id;
+ -- Entity that S overrides
+
+ Prev_Vis : Entity_Id := Empty;
+ -- Predecessor of E in Homonym chain
+
+ procedure Check_For_Primitive_Subprogram
+ (Is_Primitive : out Boolean;
+ Is_Overriding : Boolean := False);
+ -- If the subprogram being analyzed is a primitive operation of the type
+ -- of a formal or result, set the Has_Primitive_Operations flag on the
+ -- type, and set Is_Primitive to True (otherwise set to False). Set the
+ -- corresponding flag on the entity itself for later use.
+
+ procedure Check_Synchronized_Overriding
+ (Def_Id : Entity_Id;
+ First_Hom : Entity_Id;
+ Overridden_Subp : out Entity_Id);
+ -- First determine if Def_Id is an entry or a subprogram either defined
+ -- in the scope of a task or protected type, or is a primitive of such
+ -- a type. Check whether Def_Id overrides a subprogram of an interface
+ -- implemented by the synchronized type, return the overridden entity
+ -- or Empty.
+
+ function Is_Private_Declaration (E : Entity_Id) return Boolean;
+ -- Check that E is declared in the private part of the current package,
+ -- or in the package body, where it may hide a previous declaration.
+ -- We can't use In_Private_Part by itself because this flag is also
+ -- set when freezing entities, so we must examine the place of the
+ -- declaration in the tree, and recognize wrapper packages as well.
+
+ ------------------------------------
+ -- Check_For_Primitive_Subprogram --
+ ------------------------------------
+
+ procedure Check_For_Primitive_Subprogram
+ (Is_Primitive : out Boolean;
+ Is_Overriding : Boolean := False)
+ is
+ Formal : Entity_Id;
+ F_Typ : Entity_Id;
+ B_Typ : Entity_Id;
+
+ function Visible_Part_Type (T : Entity_Id) return Boolean;
+ -- Returns true if T is declared in the visible part of
+ -- the current package scope; otherwise returns false.
+ -- Assumes that T is declared in a package.
+
+ procedure Check_Private_Overriding (T : Entity_Id);
+ -- Checks that if a primitive abstract subprogram of a visible
+ -- abstract type is declared in a private part, then it must
+ -- override an abstract subprogram declared in the visible part.
+ -- Also checks that if a primitive function with a controlling
+ -- result is declared in a private part, then it must override
+ -- a function declared in the visible part.
+
+ ------------------------------
+ -- Check_Private_Overriding --
+ ------------------------------
+
+ procedure Check_Private_Overriding (T : Entity_Id) is
+ begin
+ if Ekind (Current_Scope) = E_Package
+ and then In_Private_Part (Current_Scope)
+ and then Visible_Part_Type (T)
+ and then not In_Instance
+ then
+ if Is_Abstract_Type (T)
+ and then Is_Abstract_Subprogram (S)
+ and then (not Is_Overriding
+ or else not Is_Abstract_Subprogram (E))
+ then
+ Error_Msg_N ("abstract subprograms must be visible "
+ & "(RM 3.9.3(10))!", S);
+
+ elsif Ekind (S) = E_Function
+ and then Is_Tagged_Type (T)
+ and then T = Base_Type (Etype (S))
+ and then not Is_Overriding
+ then
+ Error_Msg_N
+ ("private function with tagged result must"
+ & " override visible-part function", S);
+ Error_Msg_N
+ ("\move subprogram to the visible part"
+ & " (RM 3.9.3(10))", S);
+ end if;
+ end if;
+ end Check_Private_Overriding;
+
+ -----------------------
+ -- Visible_Part_Type --
+ -----------------------
+
+ function Visible_Part_Type (T : Entity_Id) return Boolean is
+ P : constant Node_Id := Unit_Declaration_Node (Scope (T));
+ N : Node_Id;
+
+ begin
+ -- If the entity is a private type, then it must be
+ -- declared in a visible part.
+
+ if Ekind (T) in Private_Kind then
+ return True;
+ end if;
+
+ -- Otherwise, we traverse the visible part looking for its
+ -- corresponding declaration. We cannot use the declaration
+ -- node directly because in the private part the entity of a
+ -- private type is the one in the full view, which does not
+ -- indicate that it is the completion of something visible.
+
+ N := First (Visible_Declarations (Specification (P)));
+ while Present (N) loop
+ if Nkind (N) = N_Full_Type_Declaration
+ and then Present (Defining_Identifier (N))
+ and then T = Defining_Identifier (N)
+ then
+ return True;
+
+ elsif Nkind_In (N, N_Private_Type_Declaration,
+ N_Private_Extension_Declaration)
+ and then Present (Defining_Identifier (N))
+ and then T = Full_View (Defining_Identifier (N))
+ then
+ return True;
+ end if;
+
+ Next (N);
+ end loop;
+
+ return False;
+ end Visible_Part_Type;
+
+ -- Start of processing for Check_For_Primitive_Subprogram
+
+ begin
+ Is_Primitive := False;
+
+ if not Comes_From_Source (S) then
+ null;
+
+ -- If subprogram is at library level, it is not primitive operation
+
+ elsif Current_Scope = Standard_Standard then
+ null;
+
+ elsif ((Ekind (Current_Scope) = E_Package
+ or else Ekind (Current_Scope) = E_Generic_Package)
+ and then not In_Package_Body (Current_Scope))
+ or else Is_Overriding
+ then
+ -- For function, check return type
+
+ if Ekind (S) = E_Function then
+ if Ekind (Etype (S)) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (Etype (S));
+ else
+ F_Typ := Etype (S);
+ end if;
+
+ B_Typ := Base_Type (F_Typ);
+
+ if Scope (B_Typ) = Current_Scope
+ and then not Is_Class_Wide_Type (B_Typ)
+ and then not Is_Generic_Type (B_Typ)
+ then
+ Is_Primitive := True;
+ Set_Has_Primitive_Operations (B_Typ);
+ Set_Is_Primitive (S);
+ Check_Private_Overriding (B_Typ);
+ end if;
+ end if;
+
+ -- For all subprograms, check formals
+
+ Formal := First_Formal (S);
+ while Present (Formal) loop
+ if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (Etype (Formal));
+ else
+ F_Typ := Etype (Formal);
+ end if;
+
+ B_Typ := Base_Type (F_Typ);
+
+ if Ekind (B_Typ) = E_Access_Subtype then
+ B_Typ := Base_Type (B_Typ);
+ end if;
+
+ if Scope (B_Typ) = Current_Scope
+ and then not Is_Class_Wide_Type (B_Typ)
+ and then not Is_Generic_Type (B_Typ)
+ then
+ Is_Primitive := True;
+ Set_Is_Primitive (S);
+ Set_Has_Primitive_Operations (B_Typ);
+ Check_Private_Overriding (B_Typ);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+ end Check_For_Primitive_Subprogram;
+
+ -----------------------------------
+ -- Check_Synchronized_Overriding --
+ -----------------------------------
+
+ procedure Check_Synchronized_Overriding
+ (Def_Id : Entity_Id;
+ First_Hom : Entity_Id;
+ Overridden_Subp : out Entity_Id)
+ is
+ Formal_Typ : Entity_Id;
+ Ifaces_List : Elist_Id;
+ In_Scope : Boolean;
+ Typ : Entity_Id;
+
+ begin
+ Overridden_Subp := Empty;
+
+ -- Def_Id must be an entry or a subprogram
+
+ if Ekind (Def_Id) /= E_Entry
+ and then Ekind (Def_Id) /= E_Function
+ and then Ekind (Def_Id) /= E_Procedure
+ then
+ return;
+ end if;
+
+ -- Search for the concurrent declaration since it contains the list
+ -- of all implemented interfaces. In this case, the subprogram is
+ -- declared within the scope of a protected or a task type.
+
+ if Present (Scope (Def_Id))
+ and then Is_Concurrent_Type (Scope (Def_Id))
+ and then not Is_Generic_Actual_Type (Scope (Def_Id))
+ then
+ Typ := Scope (Def_Id);
+ In_Scope := True;
+
+ -- The subprogram may be a primitive of a concurrent type
+
+ elsif Present (First_Formal (Def_Id)) then
+ Formal_Typ := Etype (First_Formal (Def_Id));
+
+ if Is_Concurrent_Type (Formal_Typ)
+ and then not Is_Generic_Actual_Type (Formal_Typ)
+ then
+ Typ := Formal_Typ;
+ In_Scope := False;
+
+ -- This case occurs when the concurrent type is declared within
+ -- a generic unit. As a result the corresponding record has been
+ -- built and used as the type of the first formal, we just have
+ -- to retrieve the corresponding concurrent type.
+
+ elsif Is_Concurrent_Record_Type (Formal_Typ)
+ and then Present (Corresponding_Concurrent_Type (Formal_Typ))
+ then
+ Typ := Corresponding_Concurrent_Type (Formal_Typ);
+ In_Scope := False;
+
+ else
+ return;
+ end if;
+ else
+ return;
+ end if;
+
+ -- Gather all limited, protected and task interfaces that Typ
+ -- implements. There is no overriding to check if is an inherited
+ -- operation in a type derivation on for a generic actual.
+
+ if Nkind (Parent (Typ)) /= N_Full_Type_Declaration
+ and then
+ not Nkind_In (Parent (Def_Id), N_Subtype_Declaration,
+ N_Task_Type_Declaration,
+ N_Protected_Type_Declaration)
+ then
+ Collect_Abstract_Interfaces (Typ, Ifaces_List);
+
+ if not Is_Empty_Elmt_List (Ifaces_List) then
+ Overridden_Subp :=
+ Find_Overridden_Synchronized_Primitive
+ (Def_Id, First_Hom, Ifaces_List, In_Scope);
+ end if;
+ end if;
+ end Check_Synchronized_Overriding;
+
+ ----------------------------
+ -- Is_Private_Declaration --
+ ----------------------------
+
+ function Is_Private_Declaration (E : Entity_Id) return Boolean is
+ Priv_Decls : List_Id;
+ Decl : constant Node_Id := Unit_Declaration_Node (E);
+
+ begin
+ if Is_Package_Or_Generic_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ then
+ Priv_Decls :=
+ Private_Declarations (
+ Specification (Unit_Declaration_Node (Current_Scope)));
+
+ return In_Package_Body (Current_Scope)
+ or else
+ (Is_List_Member (Decl)
+ and then List_Containing (Decl) = Priv_Decls)
+ or else (Nkind (Parent (Decl)) = N_Package_Specification
+ and then not Is_Compilation_Unit (
+ Defining_Entity (Parent (Decl)))
+ and then List_Containing (Parent (Parent (Decl)))
+ = Priv_Decls);
+ else
+ return False;
+ end if;
+ end Is_Private_Declaration;
+
+ -- Start of processing for New_Overloaded_Entity
+
+ begin
+ -- We need to look for an entity that S may override. This must be a
+ -- homonym in the current scope, so we look for the first homonym of
+ -- S in the current scope as the starting point for the search.
+
+ E := Current_Entity_In_Scope (S);
+
+ -- If there is no homonym then this is definitely not overriding
+
+ if No (E) then
+ Enter_Overloaded_Entity (S);
+ Check_Dispatching_Operation (S, Empty);
+ Check_For_Primitive_Subprogram (Is_Primitive_Subp);
+
+ -- If subprogram has an explicit declaration, check whether it
+ -- has an overriding indicator.
+
+ if Comes_From_Source (S) then
+ Check_Synchronized_Overriding (S, Homonym (S), Overridden_Subp);
+ Check_Overriding_Indicator
+ (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
+ end if;
+
+ -- If there is a homonym that is not overloadable, then we have an
+ -- error, except for the special cases checked explicitly below.
+
+ elsif not Is_Overloadable (E) then
+
+ -- Check for spurious conflict produced by a subprogram that has the
+ -- same name as that of the enclosing generic package. The conflict
+ -- occurs within an instance, between the subprogram and the renaming
+ -- declaration for the package. After the subprogram, the package
+ -- renaming declaration becomes hidden.
+
+ if Ekind (E) = E_Package
+ and then Present (Renamed_Object (E))
+ and then Renamed_Object (E) = Current_Scope
+ and then Nkind (Parent (Renamed_Object (E))) =
+ N_Package_Specification
+ and then Present (Generic_Parent (Parent (Renamed_Object (E))))
+ then
+ Set_Is_Hidden (E);
+ Set_Is_Immediately_Visible (E, False);
+ Enter_Overloaded_Entity (S);
+ Set_Homonym (S, Homonym (E));
+ Check_Dispatching_Operation (S, Empty);
+ Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
+
+ -- If the subprogram is implicit it is hidden by the previous
+ -- declaration. However if it is dispatching, it must appear in the
+ -- dispatch table anyway, because it can be dispatched to even if it
+ -- cannot be called directly.
+
+ elsif Present (Alias (S))
+ and then not Comes_From_Source (S)
+ then
+ Set_Scope (S, Current_Scope);
+
+ if Is_Dispatching_Operation (Alias (S)) then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ return;
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- Generate message,with useful additionalwarning if in generic
+
+ if Is_Generic_Unit (E) then
+ Error_Msg_N ("previous generic unit cannot be overloaded", S);
+ Error_Msg_N ("\& conflicts with declaration#", S);
+ else
+ Error_Msg_N ("& conflicts with declaration#", S);
+ end if;
+
+ return;
+ end if;
+
+ -- E exists and is overloadable
+
+ else
+ -- Ada 2005 (AI-251): Derivation of abstract interface primitives
+ -- need no check against the homonym chain. They are directly added
+ -- to the list of primitive operations of Derived_Type.
+
+ if Ada_Version >= Ada_05
+ and then Present (Derived_Type)
+ and then Is_Dispatching_Operation (Alias (S))
+ and then Present (Find_Dispatching_Type (Alias (S)))
+ and then Is_Interface (Find_Dispatching_Type (Alias (S)))
+ and then not Is_Predefined_Dispatching_Operation (Alias (S))
+ then
+ goto Add_New_Entity;
+ end if;
+
+ Check_Synchronized_Overriding (S, E, Overridden_Subp);
+
+ -- Loop through E and its homonyms to determine if any of them is
+ -- the candidate for overriding by S.
+
+ while Present (E) loop
+
+ -- Definitely not interesting if not in the current scope
+
+ if Scope (E) /= Current_Scope then
+ null;
+
+ -- Check if we have type conformance
+
+ elsif Type_Conformant (E, S) then
+
+ -- If the old and new entities have the same profile and one
+ -- is not the body of the other, then this is an error, unless
+ -- one of them is implicitly declared.
+
+ -- There are some cases when both can be implicit, for example
+ -- when both a literal and a function that overrides it are
+ -- inherited in a derivation, or when an inhertited operation
+ -- of a tagged full type overrides the inherited operation of
+ -- a private extension. Ada 83 had a special rule for the the
+ -- literal case. In Ada95, the later implicit operation hides
+ -- the former, and the literal is always the former. In the
+ -- odd case where both are derived operations declared at the
+ -- same point, both operations should be declared, and in that
+ -- case we bypass the following test and proceed to the next
+ -- part (this can only occur for certain obscure cases
+ -- involving homographs in instances and can't occur for
+ -- dispatching operations ???). Note that the following
+ -- condition is less than clear. For example, it's not at all
+ -- clear why there's a test for E_Entry here. ???
+
+ if Present (Alias (S))
+ and then (No (Alias (E))
+ or else Comes_From_Source (E)
+ or else Is_Dispatching_Operation (E))
+ and then
+ (Ekind (E) = E_Entry
+ or else Ekind (E) /= E_Enumeration_Literal)
+ then
+ -- When an derived operation is overloaded it may be due to
+ -- the fact that the full view of a private extension
+ -- re-inherits. It has to be dealt with.
+
+ if Is_Package_Or_Generic_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ then
+ Check_Operation_From_Private_View (S, E);
+ end if;
+
+ -- In any case the implicit operation remains hidden by
+ -- the existing declaration, which is overriding.
+
+ Set_Is_Overriding_Operation (E);
+
+ if Comes_From_Source (E) then
+ Check_Overriding_Indicator (E, S, Is_Primitive => False);
+
+ -- Indicate that E overrides the operation from which
+ -- S is inherited.
+
+ if Present (Alias (S)) then
+ Set_Overridden_Operation (E, Alias (S));
+ else
+ Set_Overridden_Operation (E, S);
+ end if;
+ end if;
+
+ return;
+
+ -- Within an instance, the renaming declarations for
+ -- actual subprograms may become ambiguous, but they do
+ -- not hide each other.
+
+ elsif Ekind (E) /= E_Entry
+ and then not Comes_From_Source (E)
+ and then not Is_Generic_Instance (E)
+ and then (Present (Alias (E))
+ or else Is_Intrinsic_Subprogram (E))
+ and then (not In_Instance
+ or else No (Parent (E))
+ or else Nkind (Unit_Declaration_Node (E)) /=
+ N_Subprogram_Renaming_Declaration)
+ then
+ -- A subprogram child unit is not allowed to override
+ -- an inherited subprogram (10.1.1(20)).
+
+ if Is_Child_Unit (S) then
+ Error_Msg_N
+ ("child unit overrides inherited subprogram in parent",
+ S);
+ return;
+ end if;
+
+ if Is_Non_Overriding_Operation (E, S) then
+ Enter_Overloaded_Entity (S);
+ if No (Derived_Type)
+ or else Is_Tagged_Type (Derived_Type)
+ then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ return;
+ end if;
+
+ -- E is a derived operation or an internal operator which
+ -- is being overridden. Remove E from further visibility.
+ -- Furthermore, if E is a dispatching operation, it must be
+ -- replaced in the list of primitive operations of its type
+ -- (see Override_Dispatching_Operation).
+
+ Overridden_Subp := E;
+
+ declare
+ Prev : Entity_Id;
+
+ begin
+ Prev := First_Entity (Current_Scope);
+
+ while Present (Prev)
+ and then Next_Entity (Prev) /= E
+ loop
+ Next_Entity (Prev);
+ end loop;
+
+ -- It is possible for E to be in the current scope and
+ -- yet not in the entity chain. This can only occur in a
+ -- generic context where E is an implicit concatenation
+ -- in the formal part, because in a generic body the
+ -- entity chain starts with the formals.
+
+ pragma Assert
+ (Present (Prev) or else Chars (E) = Name_Op_Concat);
+
+ -- E must be removed both from the entity_list of the
+ -- current scope, and from the visibility chain
+
+ if Debug_Flag_E then
+ Write_Str ("Override implicit operation ");
+ Write_Int (Int (E));
+ Write_Eol;
+ end if;
+
+ -- If E is a predefined concatenation, it stands for four
+ -- different operations. As a result, a single explicit
+ -- declaration does not hide it. In a possible ambiguous
+ -- situation, Disambiguate chooses the user-defined op,
+ -- so it is correct to retain the previous internal one.
+
+ if Chars (E) /= Name_Op_Concat
+ or else Ekind (E) /= E_Operator
+ then
+ -- For nondispatching derived operations that are
+ -- overridden by a subprogram declared in the private
+ -- part of a package, we retain the derived
+ -- subprogram but mark it as not immediately visible.
+ -- If the derived operation was declared in the
+ -- visible part then this ensures that it will still
+ -- be visible outside the package with the proper
+ -- signature (calls from outside must also be
+ -- directed to this version rather than the
+ -- overriding one, unlike the dispatching case).
+ -- Calls from inside the package will still resolve
+ -- to the overriding subprogram since the derived one
+ -- is marked as not visible within the package.
+
+ -- If the private operation is dispatching, we achieve
+ -- the overriding by keeping the implicit operation
+ -- but setting its alias to be the overriding one. In
+ -- this fashion the proper body is executed in all
+ -- cases, but the original signature is used outside
+ -- of the package.
+
+ -- If the overriding is not in the private part, we
+ -- remove the implicit operation altogether.
+
+ if Is_Private_Declaration (S) then
+
+ if not Is_Dispatching_Operation (E) then
+ Set_Is_Immediately_Visible (E, False);
+ else
+ -- Work done in Override_Dispatching_Operation,
+ -- so nothing else need to be done here.
+
+ null;
+ end if;
+
+ else
+ -- Find predecessor of E in Homonym chain
+
+ if E = Current_Entity (E) then
+ Prev_Vis := Empty;
+ else
+ Prev_Vis := Current_Entity (E);
+ while Homonym (Prev_Vis) /= E loop
+ Prev_Vis := Homonym (Prev_Vis);
+ end loop;
+ end if;
+
+ if Prev_Vis /= Empty then
+
+ -- Skip E in the visibility chain
+
+ Set_Homonym (Prev_Vis, Homonym (E));
+
+ else
+ Set_Name_Entity_Id (Chars (E), Homonym (E));
+ end if;
+
+ Set_Next_Entity (Prev, Next_Entity (E));
+
+ if No (Next_Entity (Prev)) then
+ Set_Last_Entity (Current_Scope, Prev);
+ end if;
+
+ end if;
+ end if;
+
+ Enter_Overloaded_Entity (S);
+ Set_Is_Overriding_Operation (S);
+ Check_Overriding_Indicator (S, E, Is_Primitive => True);
+
+ -- Indicate that S overrides the operation from which
+ -- E is inherited.
+
+ if Comes_From_Source (S) then
+ if Present (Alias (E)) then
+ Set_Overridden_Operation (S, Alias (E));
+ else
+ Set_Overridden_Operation (S, E);
+ end if;
+ end if;
+
+ if Is_Dispatching_Operation (E) then
+
+ -- An overriding dispatching subprogram inherits the
+ -- convention of the overridden subprogram (by
+ -- AI-117).
+
+ Set_Convention (S, Convention (E));
+ Check_Dispatching_Operation (S, E);
+
+ else
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ Check_For_Primitive_Subprogram
+ (Is_Primitive_Subp, Is_Overriding => True);
+ goto Check_Inequality;
+ end;
+
+ -- Apparent redeclarations in instances can occur when two
+ -- formal types get the same actual type. The subprograms in
+ -- in the instance are legal, even if not callable from the
+ -- outside. Calls from within are disambiguated elsewhere.
+ -- For dispatching operations in the visible part, the usual
+ -- rules apply, and operations with the same profile are not
+ -- legal (B830001).
+
+ elsif (In_Instance_Visible_Part
+ and then not Is_Dispatching_Operation (E))
+ or else In_Instance_Not_Visible
+ then
+ null;
+
+ -- Here we have a real error (identical profile)
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- Avoid cascaded errors if the entity appears in
+ -- subsequent calls.
+
+ Set_Scope (S, Current_Scope);
+
+ -- Generate error, with extra useful warning for the case
+ -- of a generic instance with no completion.
+
+ if Is_Generic_Instance (S)
+ and then not Has_Completion (E)
+ then
+ Error_Msg_N
+ ("instantiation cannot provide body for&", S);
+ Error_Msg_N ("\& conflicts with declaration#", S);
+ else
+ Error_Msg_N ("& conflicts with declaration#", S);
+ end if;
+
+ return;
+ end if;
+
+ else
+ -- If one subprogram has an access parameter and the other
+ -- a parameter of an access type, calls to either might be
+ -- ambiguous. Verify that parameters match except for the
+ -- access parameter.
+
+ if May_Hide_Profile then
+ declare
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+ begin
+ F1 := First_Formal (S);
+ F2 := First_Formal (E);
+ while Present (F1) and then Present (F2) loop
+ if Is_Access_Type (Etype (F1)) then
+ if not Is_Access_Type (Etype (F2))
+ or else not Conforming_Types
+ (Designated_Type (Etype (F1)),
+ Designated_Type (Etype (F2)),
+ Type_Conformant)
+ then
+ May_Hide_Profile := False;
+ end if;
+
+ elsif
+ not Conforming_Types
+ (Etype (F1), Etype (F2), Type_Conformant)
+ then
+ May_Hide_Profile := False;
+ end if;
+
+ Next_Formal (F1);
+ Next_Formal (F2);
+ end loop;
+
+ if May_Hide_Profile
+ and then No (F1)
+ and then No (F2)
+ then
+ Error_Msg_NE ("calls to& may be ambiguous?", S, S);
+ end if;
+ end;
+ end if;
+ end if;
+
+ E := Homonym (E);
+ end loop;
+
+ <<Add_New_Entity>>
+
+ -- On exit, we know that S is a new entity
+
+ Enter_Overloaded_Entity (S);
+ Check_For_Primitive_Subprogram (Is_Primitive_Subp);
+ Check_Overriding_Indicator
+ (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
+
+ -- If S is a derived operation for an untagged type then by
+ -- definition it's not a dispatching operation (even if the parent
+ -- operation was dispatching), so we don't call
+ -- Check_Dispatching_Operation in that case.
+
+ if No (Derived_Type)
+ or else Is_Tagged_Type (Derived_Type)
+ then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+ end if;
+
+ -- If this is a user-defined equality operator that is not a derived
+ -- subprogram, create the corresponding inequality. If the operation is
+ -- dispatching, the expansion is done elsewhere, and we do not create
+ -- an explicit inequality operation.
+
+ <<Check_Inequality>>
+ if Chars (S) = Name_Op_Eq
+ and then Etype (S) = Standard_Boolean
+ and then Present (Parent (S))
+ and then not Is_Dispatching_Operation (S)
+ then
+ Make_Inequality_Operator (S);
+ end if;
+ end New_Overloaded_Entity;
+
+ ---------------------
+ -- Process_Formals --
+ ---------------------
+
+ procedure Process_Formals
+ (T : List_Id;
+ Related_Nod : Node_Id)
+ is
+ Param_Spec : Node_Id;
+ Formal : Entity_Id;
+ Formal_Type : Entity_Id;
+ Default : Node_Id;
+ Ptype : Entity_Id;
+
+ -- The following are used for setting Is_Only_Out_
+ Num_Out_Params : Nat := 0;
+ First_Out_Param : Entity_Id := Empty;
+
+ function Is_Class_Wide_Default (D : Node_Id) return Boolean;
+ -- Check whether the default has a class-wide type. After analysis the
+ -- default has the type of the formal, so we must also check explicitly
+ -- for an access attribute.
+
+ ---------------------------
+ -- Is_Class_Wide_Default --
+ ---------------------------
+
+ function Is_Class_Wide_Default (D : Node_Id) return Boolean is
+ begin
+ return Is_Class_Wide_Type (Designated_Type (Etype (D)))
+ or else (Nkind (D) = N_Attribute_Reference
+ and then Attribute_Name (D) = Name_Access
+ and then Is_Class_Wide_Type (Etype (Prefix (D))));
+ end Is_Class_Wide_Default;
+
+ -- Start of processing for Process_Formals
+
+ begin
+ -- In order to prevent premature use of the formals in the same formal
+ -- part, the Ekind is left undefined until all default expressions are
+ -- analyzed. The Ekind is established in a separate loop at the end.
+
+ Param_Spec := First (T);
+ while Present (Param_Spec) loop
+ Formal := Defining_Identifier (Param_Spec);
+ Set_Never_Set_In_Source (Formal, True);
+ Enter_Name (Formal);
+
+ -- Case of ordinary parameters
+
+ if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
+ Find_Type (Parameter_Type (Param_Spec));
+ Ptype := Parameter_Type (Param_Spec);
+
+ if Ptype = Error then
+ goto Continue;
+ end if;
+
+ Formal_Type := Entity (Ptype);
+
+ if Is_Incomplete_Type (Formal_Type)
+ or else
+ (Is_Class_Wide_Type (Formal_Type)
+ and then Is_Incomplete_Type (Root_Type (Formal_Type)))
+ then
+ -- Ada 2005 (AI-326): Tagged incomplete types allowed
+
+ if Is_Tagged_Type (Formal_Type) then
+ null;
+
+ -- Special handling of Value_Type for CIL case
+
+ elsif Is_Value_Type (Formal_Type) then
+ null;
+
+ elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
+ N_Access_Procedure_Definition)
+ then
+ Error_Msg_N ("invalid use of incomplete type", Param_Spec);
+
+ -- An incomplete type that is not tagged is allowed in an
+ -- access-to-subprogram type only if it is a local declaration
+ -- with a forthcoming completion (3.10.1 (9.2/2)).
+
+ elsif Scope (Formal_Type) /= Scope (Current_Scope) then
+ Error_Msg_N
+ ("invalid use of limited view of type", Param_Spec);
+ end if;
+
+ elsif Ekind (Formal_Type) = E_Void then
+ Error_Msg_NE ("premature use of&",
+ Parameter_Type (Param_Spec), Formal_Type);
+ end if;
+
+ -- Ada 2005 (AI-231): Create and decorate an internal subtype
+ -- declaration corresponding to the null-excluding type of the
+ -- formal in the enclosing scope. Finally, replace the parameter
+ -- type of the formal with the internal subtype.
+
+ if Ada_Version >= Ada_05
+ and then Null_Exclusion_Present (Param_Spec)
+ then
+ if not Is_Access_Type (Formal_Type) then
+ Error_Msg_N
+ ("`NOT NULL` allowed only for an access type", Param_Spec);
+
+ else
+ if Can_Never_Be_Null (Formal_Type)
+ and then Comes_From_Source (Related_Nod)
+ then
+ Error_Msg_NE
+ ("`NOT NULL` not allowed (& already excludes null)",
+ Param_Spec,
+ Formal_Type);
+ end if;
+
+ Formal_Type :=
+ Create_Null_Excluding_Itype
+ (T => Formal_Type,
+ Related_Nod => Related_Nod,
+ Scope_Id => Scope (Current_Scope));
+
+ -- If the designated type of the itype is an itype we
+ -- decorate it with the Has_Delayed_Freeze attribute to
+ -- avoid problems with the backend.
+
+ -- Example:
+ -- type T is access procedure;
+ -- procedure Op (O : not null T);
+
+ if Is_Itype (Directly_Designated_Type (Formal_Type)) then
+ Set_Has_Delayed_Freeze (Formal_Type);
+ end if;
+ end if;
+ end if;
+
+ -- An access formal type
+
+ else
+ Formal_Type :=
+ Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
+
+ -- No need to continue if we already notified errors
+
+ if not Present (Formal_Type) then
+ return;
+ end if;
+
+ -- Ada 2005 (AI-254)
+
+ declare
+ AD : constant Node_Id :=
+ Access_To_Subprogram_Definition
+ (Parameter_Type (Param_Spec));
+ begin
+ if Present (AD) and then Protected_Present (AD) then
+ Formal_Type :=
+ Replace_Anonymous_Access_To_Protected_Subprogram
+ (Param_Spec);
+ end if;
+ end;
+ end if;
+
+ Set_Etype (Formal, Formal_Type);
+ Default := Expression (Param_Spec);
+
+ if Present (Default) then
+ if Out_Present (Param_Spec) then
+ Error_Msg_N
+ ("default initialization only allowed for IN parameters",
+ Param_Spec);
+ end if;
+
+ -- Do the special preanalysis of the expression (see section on
+ -- "Handling of Default Expressions" in the spec of package Sem).
+
+ Analyze_Per_Use_Expression (Default, Formal_Type);
+
+ -- An access to constant cannot be the default for
+ -- an access parameter that is an access to variable.
+
+ if Ekind (Formal_Type) = E_Anonymous_Access_Type
+ and then not Is_Access_Constant (Formal_Type)
+ and then Is_Access_Type (Etype (Default))
+ and then Is_Access_Constant (Etype (Default))
+ then
+ Error_Msg_N
+ ("formal that is access to variable cannot be initialized " &
+ "with an access-to-constant expression", Default);
+ end if;
+
+ -- Check that the designated type of an access parameter's default
+ -- is not a class-wide type unless the parameter's designated type
+ -- is also class-wide.
+
+ if Ekind (Formal_Type) = E_Anonymous_Access_Type
+ and then not From_With_Type (Formal_Type)
+ and then Is_Class_Wide_Default (Default)
+ and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
+ then
+ Error_Msg_N
+ ("access to class-wide expression not allowed here", Default);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-231): Static checks
+
+ if Ada_Version >= Ada_05
+ and then Is_Access_Type (Etype (Formal))
+ and then Can_Never_Be_Null (Etype (Formal))
+ then
+ Null_Exclusion_Static_Checks (Param_Spec);
+ end if;
+
+ <<Continue>>
+ Next (Param_Spec);
+ end loop;
+
+ -- If this is the formal part of a function specification, analyze the
+ -- subtype mark in the context where the formals are visible but not
+ -- yet usable, and may hide outer homographs.
+
+ if Nkind (Related_Nod) = N_Function_Specification then
+ Analyze_Return_Type (Related_Nod);
+ end if;
+
+ -- Now set the kind (mode) of each formal
+
+ Param_Spec := First (T);
+
+ while Present (Param_Spec) loop
+ Formal := Defining_Identifier (Param_Spec);
+ Set_Formal_Mode (Formal);
+
+ if Ekind (Formal) = E_In_Parameter then
+ Set_Default_Value (Formal, Expression (Param_Spec));
+
+ if Present (Expression (Param_Spec)) then
+ Default := Expression (Param_Spec);
+
+ if Is_Scalar_Type (Etype (Default)) then
+ if Nkind
+ (Parameter_Type (Param_Spec)) /= N_Access_Definition
+ then
+ Formal_Type := Entity (Parameter_Type (Param_Spec));
+
+ else
+ Formal_Type := Access_Definition
+ (Related_Nod, Parameter_Type (Param_Spec));
+ end if;
+
+ Apply_Scalar_Range_Check (Default, Formal_Type);
+ end if;
+ end if;
+
+ elsif Ekind (Formal) = E_Out_Parameter then
+ Num_Out_Params := Num_Out_Params + 1;
+
+ if Num_Out_Params = 1 then
+ First_Out_Param := Formal;
+ end if;
+
+ elsif Ekind (Formal) = E_In_Out_Parameter then
+ Num_Out_Params := Num_Out_Params + 1;
+ end if;
+
+ Next (Param_Spec);
+ end loop;
+
+ if Present (First_Out_Param) and then Num_Out_Params = 1 then
+ Set_Is_Only_Out_Parameter (First_Out_Param);
+ end if;
+ end Process_Formals;
+
+ ----------------------------
+ -- Reference_Body_Formals --
+ ----------------------------
+
+ procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
+ Fs : Entity_Id;
+ Fb : Entity_Id;
+
+ begin
+ if Error_Posted (Spec) then
+ return;
+ end if;
+
+ -- Iterate over both lists. They may be of different lengths if the two
+ -- specs are not conformant.
+
+ Fs := First_Formal (Spec);
+ Fb := First_Formal (Bod);
+ while Present (Fs) and then Present (Fb) loop
+ Generate_Reference (Fs, Fb, 'b');
+
+ if Style_Check then
+ Style.Check_Identifier (Fb, Fs);
+ end if;
+
+ Set_Spec_Entity (Fb, Fs);
+ Set_Referenced (Fs, False);
+ Next_Formal (Fs);
+ Next_Formal (Fb);
+ end loop;
+ end Reference_Body_Formals;
+
+ -------------------------
+ -- Set_Actual_Subtypes --
+ -------------------------
+
+ procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Decl : Node_Id;
+ Formal : Entity_Id;
+ T : Entity_Id;
+ First_Stmt : Node_Id := Empty;
+ AS_Needed : Boolean;
+
+ begin
+ -- If this is an emtpy initialization procedure, no need to create
+ -- actual subtypes (small optimization).
+
+ if Ekind (Subp) = E_Procedure
+ and then Is_Null_Init_Proc (Subp)
+ then
+ return;
+ end if;
+
+ Formal := First_Formal (Subp);
+ while Present (Formal) loop
+ T := Etype (Formal);
+
+ -- We never need an actual subtype for a constrained formal
+
+ if Is_Constrained (T) then
+ AS_Needed := False;
+
+ -- If we have unknown discriminants, then we do not need an actual
+ -- subtype, or more accurately we cannot figure it out! Note that
+ -- all class-wide types have unknown discriminants.
+
+ elsif Has_Unknown_Discriminants (T) then
+ AS_Needed := False;
+
+ -- At this stage we have an unconstrained type that may need an
+ -- actual subtype. For sure the actual subtype is needed if we have
+ -- an unconstrained array type.
+
+ elsif Is_Array_Type (T) then
+ AS_Needed := True;
+
+ -- The only other case needing an actual subtype is an unconstrained
+ -- record type which is an IN parameter (we cannot generate actual
+ -- subtypes for the OUT or IN OUT case, since an assignment can
+ -- change the discriminant values. However we exclude the case of
+ -- initialization procedures, since discriminants are handled very
+ -- specially in this context, see the section entitled "Handling of
+ -- Discriminants" in Einfo.
+
+ -- We also exclude the case of Discrim_SO_Functions (functions used
+ -- in front end layout mode for size/offset values), since in such
+ -- functions only discriminants are referenced, and not only are such
+ -- subtypes not needed, but they cannot always be generated, because
+ -- of order of elaboration issues.
+
+ elsif Is_Record_Type (T)
+ and then Ekind (Formal) = E_In_Parameter
+ and then Chars (Formal) /= Name_uInit
+ and then not Is_Unchecked_Union (T)
+ and then not Is_Discrim_SO_Function (Subp)
+ then
+ AS_Needed := True;
+
+ -- All other cases do not need an actual subtype
+
+ else
+ AS_Needed := False;
+ end if;
+
+ -- Generate actual subtypes for unconstrained arrays and
+ -- unconstrained discriminated records.
+
+ if AS_Needed then
+ if Nkind (N) = N_Accept_Statement then
+
+ -- If expansion is active, The formal is replaced by a local
+ -- variable that renames the corresponding entry of the
+ -- parameter block, and it is this local variable that may
+ -- require an actual subtype.
+
+ if Expander_Active then
+ Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
+ else
+ Decl := Build_Actual_Subtype (T, Formal);
+ end if;
+
+ if Present (Handled_Statement_Sequence (N)) then
+ First_Stmt :=
+ First (Statements (Handled_Statement_Sequence (N)));
+ Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
+ Mark_Rewrite_Insertion (Decl);
+ else
+ -- If the accept statement has no body, there will be no
+ -- reference to the actuals, so no need to compute actual
+ -- subtypes.
+
+ return;
+ end if;
+
+ else
+ Decl := Build_Actual_Subtype (T, Formal);
+ Prepend (Decl, Declarations (N));
+ Mark_Rewrite_Insertion (Decl);
+ end if;
+
+ -- The declaration uses the bounds of an existing object, and
+ -- therefore needs no constraint checks.
+
+ Analyze (Decl, Suppress => All_Checks);
+
+ -- We need to freeze manually the generated type when it is
+ -- inserted anywhere else than in a declarative part.
+
+ if Present (First_Stmt) then
+ Insert_List_Before_And_Analyze (First_Stmt,
+ Freeze_Entity (Defining_Identifier (Decl), Loc));
+ end if;
+
+ if Nkind (N) = N_Accept_Statement
+ and then Expander_Active
+ then
+ Set_Actual_Subtype (Renamed_Object (Formal),
+ Defining_Identifier (Decl));
+ else
+ Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end Set_Actual_Subtypes;
+
+ ---------------------
+ -- Set_Formal_Mode --
+ ---------------------
+
+ procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
+ Spec : constant Node_Id := Parent (Formal_Id);
+
+ begin
+ -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
+ -- since we ensure that corresponding actuals are always valid at the
+ -- point of the call.
+
+ if Out_Present (Spec) then
+ if Ekind (Scope (Formal_Id)) = E_Function
+ or else Ekind (Scope (Formal_Id)) = E_Generic_Function
+ then
+ Error_Msg_N ("functions can only have IN parameters", Spec);
+ Set_Ekind (Formal_Id, E_In_Parameter);
+
+ elsif In_Present (Spec) then
+ Set_Ekind (Formal_Id, E_In_Out_Parameter);
+
+ else
+ Set_Ekind (Formal_Id, E_Out_Parameter);
+ Set_Never_Set_In_Source (Formal_Id, True);
+ Set_Is_True_Constant (Formal_Id, False);
+ Set_Current_Value (Formal_Id, Empty);
+ end if;
+
+ else
+ Set_Ekind (Formal_Id, E_In_Parameter);
+ end if;
+
+ -- Set Is_Known_Non_Null for access parameters since the language
+ -- guarantees that access parameters are always non-null. We also set
+ -- Can_Never_Be_Null, since there is no way to change the value.
+
+ if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
+
+ -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
+ -- null; In Ada 2005, only if then null_exclusion is explicit.
+
+ if Ada_Version < Ada_05
+ or else Can_Never_Be_Null (Etype (Formal_Id))
+ then
+ Set_Is_Known_Non_Null (Formal_Id);
+ Set_Can_Never_Be_Null (Formal_Id);
+ end if;
+
+ -- Ada 2005 (AI-231): Null-exclusion access subtype
+
+ elsif Is_Access_Type (Etype (Formal_Id))
+ and then Can_Never_Be_Null (Etype (Formal_Id))
+ then
+ Set_Is_Known_Non_Null (Formal_Id);
+ end if;
+
+ Set_Mechanism (Formal_Id, Default_Mechanism);
+ Set_Formal_Validity (Formal_Id);
+ end Set_Formal_Mode;
+
+ -------------------------
+ -- Set_Formal_Validity --
+ -------------------------
+
+ procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
+ begin
+ -- If no validity checking, then we cannot assume anything about the
+ -- validity of parameters, since we do not know there is any checking
+ -- of the validity on the call side.
+
+ if not Validity_Checks_On then
+ return;
+
+ -- If validity checking for parameters is enabled, this means we are
+ -- not supposed to make any assumptions about argument values.
+
+ elsif Validity_Check_Parameters then
+ return;
+
+ -- If we are checking in parameters, we will assume that the caller is
+ -- also checking parameters, so we can assume the parameter is valid.
+
+ elsif Ekind (Formal_Id) = E_In_Parameter
+ and then Validity_Check_In_Params
+ then
+ Set_Is_Known_Valid (Formal_Id, True);
+
+ -- Similar treatment for IN OUT parameters
+
+ elsif Ekind (Formal_Id) = E_In_Out_Parameter
+ and then Validity_Check_In_Out_Params
+ then
+ Set_Is_Known_Valid (Formal_Id, True);
+ end if;
+ end Set_Formal_Validity;
+
+ ------------------------
+ -- Subtype_Conformant --
+ ------------------------
+
+ function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+ begin
+ Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
+ return Result;
+ end Subtype_Conformant;
+
+ ---------------------
+ -- Type_Conformant --
+ ---------------------
+
+ function Type_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Skip_Controlling_Formals : Boolean := False) return Boolean
+ is
+ Result : Boolean;
+ begin
+ May_Hide_Profile := False;
+
+ Check_Conformance
+ (New_Id, Old_Id, Type_Conformant, False, Result,
+ Skip_Controlling_Formals => Skip_Controlling_Formals);
+ return Result;
+ end Type_Conformant;
+
+ -------------------------------
+ -- Valid_Operator_Definition --
+ -------------------------------
+
+ procedure Valid_Operator_Definition (Designator : Entity_Id) is
+ N : Integer := 0;
+ F : Entity_Id;
+ Id : constant Name_Id := Chars (Designator);
+ N_OK : Boolean;
+
+ begin
+ F := First_Formal (Designator);
+ while Present (F) loop
+ N := N + 1;
+
+ if Present (Default_Value (F)) then
+ Error_Msg_N
+ ("default values not allowed for operator parameters",
+ Parent (F));
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ -- Verify that user-defined operators have proper number of arguments
+ -- First case of operators which can only be unary
+
+ if Id = Name_Op_Not
+ or else Id = Name_Op_Abs
+ then
+ N_OK := (N = 1);
+
+ -- Case of operators which can be unary or binary
+
+ elsif Id = Name_Op_Add
+ or Id = Name_Op_Subtract
+ then
+ N_OK := (N in 1 .. 2);
+
+ -- All other operators can only be binary
+
+ else
+ N_OK := (N = 2);
+ end if;
+
+ if not N_OK then
+ Error_Msg_N
+ ("incorrect number of arguments for operator", Designator);
+ end if;
+
+ if Id = Name_Op_Ne
+ and then Base_Type (Etype (Designator)) = Standard_Boolean
+ and then not Is_Intrinsic_Subprogram (Designator)
+ then
+ Error_Msg_N
+ ("explicit definition of inequality not allowed", Designator);
+ end if;
+ end Valid_Operator_Definition;
+
+end Sem_Ch6;