aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.3.1/gcc/ada/exp_vfpt.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.3.1/gcc/ada/exp_vfpt.adb')
-rw-r--r--gcc-4.3.1/gcc/ada/exp_vfpt.adb568
1 files changed, 568 insertions, 0 deletions
diff --git a/gcc-4.3.1/gcc/ada/exp_vfpt.adb b/gcc-4.3.1/gcc/ada/exp_vfpt.adb
new file mode 100644
index 000000000..ba3b383be
--- /dev/null
+++ b/gcc-4.3.1/gcc/ada/exp_vfpt.adb
@@ -0,0 +1,568 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ V F P T --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1997-2007, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Einfo; use Einfo;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Rtsfind; use Rtsfind;
+with Sem_Res; use Sem_Res;
+with Sinfo; use Sinfo;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Ttypef; use Ttypef;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Exp_VFpt is
+
+ ----------------------
+ -- Expand_Vax_Arith --
+ ----------------------
+
+ procedure Expand_Vax_Arith (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Base_Type (Etype (N));
+ Typc : Character;
+ Atyp : Entity_Id;
+ Func : RE_Id;
+ Args : List_Id;
+
+ begin
+ -- Get arithmetic type, note that we do D stuff in G
+
+ if Digits_Value (Typ) = VAXFF_Digits then
+ Typc := 'F';
+ Atyp := RTE (RE_F);
+ else
+ Typc := 'G';
+ Atyp := RTE (RE_G);
+ end if;
+
+ case Nkind (N) is
+
+ when N_Op_Abs =>
+ if Typc = 'F' then
+ Func := RE_Abs_F;
+ else
+ Func := RE_Abs_G;
+ end if;
+
+ when N_Op_Add =>
+ if Typc = 'F' then
+ Func := RE_Add_F;
+ else
+ Func := RE_Add_G;
+ end if;
+
+ when N_Op_Divide =>
+ if Typc = 'F' then
+ Func := RE_Div_F;
+ else
+ Func := RE_Div_G;
+ end if;
+
+ when N_Op_Multiply =>
+ if Typc = 'F' then
+ Func := RE_Mul_F;
+ else
+ Func := RE_Mul_G;
+ end if;
+
+ when N_Op_Minus =>
+ if Typc = 'F' then
+ Func := RE_Neg_F;
+ else
+ Func := RE_Neg_G;
+ end if;
+
+ when N_Op_Subtract =>
+ if Typc = 'F' then
+ Func := RE_Sub_F;
+ else
+ Func := RE_Sub_G;
+ end if;
+
+ when others =>
+ Func := RE_Null;
+ raise Program_Error;
+
+ end case;
+
+ Args := New_List;
+
+ if Nkind (N) in N_Binary_Op then
+ Append_To (Args,
+ Convert_To (Atyp, Left_Opnd (N)));
+ end if;
+
+ Append_To (Args,
+ Convert_To (Atyp, Right_Opnd (N)));
+
+ Rewrite (N,
+ Convert_To (Typ,
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (Func), Loc),
+ Parameter_Associations => Args)));
+
+ Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
+ end Expand_Vax_Arith;
+
+ ---------------------------
+ -- Expand_Vax_Comparison --
+ ---------------------------
+
+ procedure Expand_Vax_Comparison (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Base_Type (Etype (Left_Opnd (N)));
+ Typc : Character;
+ Func : RE_Id;
+ Atyp : Entity_Id;
+ Revrs : Boolean := False;
+ Args : List_Id;
+
+ begin
+ -- Get arithmetic type, note that we do D stuff in G
+
+ if Digits_Value (Typ) = VAXFF_Digits then
+ Typc := 'F';
+ Atyp := RTE (RE_F);
+ else
+ Typc := 'G';
+ Atyp := RTE (RE_G);
+ end if;
+
+ case Nkind (N) is
+
+ when N_Op_Eq =>
+ if Typc = 'F' then
+ Func := RE_Eq_F;
+ else
+ Func := RE_Eq_G;
+ end if;
+
+ when N_Op_Ge =>
+ if Typc = 'F' then
+ Func := RE_Le_F;
+ else
+ Func := RE_Le_G;
+ end if;
+
+ Revrs := True;
+
+ when N_Op_Gt =>
+ if Typc = 'F' then
+ Func := RE_Lt_F;
+ else
+ Func := RE_Lt_G;
+ end if;
+
+ Revrs := True;
+
+ when N_Op_Le =>
+ if Typc = 'F' then
+ Func := RE_Le_F;
+ else
+ Func := RE_Le_G;
+ end if;
+
+ when N_Op_Lt =>
+ if Typc = 'F' then
+ Func := RE_Lt_F;
+ else
+ Func := RE_Lt_G;
+ end if;
+
+ when N_Op_Ne =>
+ if Typc = 'F' then
+ Func := RE_Ne_F;
+ else
+ Func := RE_Ne_G;
+ end if;
+
+ when others =>
+ Func := RE_Null;
+ raise Program_Error;
+
+ end case;
+
+ if not Revrs then
+ Args := New_List (
+ Convert_To (Atyp, Left_Opnd (N)),
+ Convert_To (Atyp, Right_Opnd (N)));
+
+ else
+ Args := New_List (
+ Convert_To (Atyp, Right_Opnd (N)),
+ Convert_To (Atyp, Left_Opnd (N)));
+ end if;
+
+ Rewrite (N,
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (Func), Loc),
+ Parameter_Associations => Args));
+
+ Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
+ end Expand_Vax_Comparison;
+
+ ---------------------------
+ -- Expand_Vax_Conversion --
+ ---------------------------
+
+ procedure Expand_Vax_Conversion (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Expr : constant Node_Id := Expression (N);
+ S_Typ : constant Entity_Id := Base_Type (Etype (Expr));
+ T_Typ : constant Entity_Id := Base_Type (Etype (N));
+
+ CallS : RE_Id;
+ CallT : RE_Id;
+ Func : RE_Id;
+
+ function Call_Type (T : Entity_Id; Otyp : Entity_Id) return RE_Id;
+ -- Given one of the two types T, determines the coresponding call
+ -- type, i.e. the type to be used for the call (or the result of
+ -- the call). The actual operand is converted to (or from) this type.
+ -- Otyp is the other type, which is useful in figuring out the result.
+ -- The result returned is the RE_Id value for the type entity.
+
+ function Equivalent_Integer_Type (T : Entity_Id) return Entity_Id;
+ -- Find the predefined integer type that has the same size as the
+ -- fixed-point type T, for use in fixed/float conversions.
+
+ ---------------
+ -- Call_Type --
+ ---------------
+
+ function Call_Type (T : Entity_Id; Otyp : Entity_Id) return RE_Id is
+ begin
+ -- Vax float formats
+
+ if Vax_Float (T) then
+ if Digits_Value (T) = VAXFF_Digits then
+ return RE_F;
+
+ elsif Digits_Value (T) = VAXGF_Digits then
+ return RE_G;
+
+ -- For D_Float, leave it as D float if the other operand is
+ -- G_Float, since this is the one conversion that is properly
+ -- supported for D_Float, but otherwise, use G_Float.
+
+ else pragma Assert (Digits_Value (T) = VAXDF_Digits);
+
+ if Vax_Float (Otyp)
+ and then Digits_Value (Otyp) = VAXGF_Digits
+ then
+ return RE_D;
+ else
+ return RE_G;
+ end if;
+ end if;
+
+ -- For all discrete types, use 64-bit integer
+
+ elsif Is_Discrete_Type (T) then
+ return RE_Q;
+
+ -- For all real types (other than Vax float format), we use the
+ -- IEEE float-type which corresponds in length to the other type
+ -- (which is Vax Float).
+
+ else pragma Assert (Is_Real_Type (T));
+
+ if Digits_Value (Otyp) = VAXFF_Digits then
+ return RE_S;
+ else
+ return RE_T;
+ end if;
+ end if;
+ end Call_Type;
+
+ -------------------------------------------------
+ -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
+ -------------------------------------------------
+
+ function Equivalent_Integer_Type (T : Entity_Id) return Entity_Id is
+ begin
+ if Esize (T) = Esize (Standard_Long_Long_Integer) then
+ return Standard_Long_Long_Integer;
+ elsif Esize (T) = Esize (Standard_Long_Integer) then
+ return Standard_Long_Integer;
+ else
+ return Standard_Integer;
+ end if;
+ end Equivalent_Integer_Type;
+
+ -- Start of processing for Expand_Vax_Conversion;
+
+ begin
+ -- If input and output are the same Vax type, we change the
+ -- conversion to be an unchecked conversion and that's it.
+
+ if Vax_Float (S_Typ) and then Vax_Float (T_Typ)
+ and then Digits_Value (S_Typ) = Digits_Value (T_Typ)
+ then
+ Rewrite (N,
+ Unchecked_Convert_To (T_Typ, Expr));
+
+ -- Case of conversion of fixed-point type to Vax_Float type
+
+ elsif Is_Fixed_Point_Type (S_Typ) then
+
+ -- If Conversion_OK set, then we introduce an intermediate IEEE
+ -- target type since we are expecting the code generator to handle
+ -- the case of integer to IEEE float.
+
+ if Conversion_OK (N) then
+ Rewrite (N,
+ Convert_To (T_Typ, OK_Convert_To (Universal_Real, Expr)));
+
+ -- Otherwise, convert the scaled integer value to the target type,
+ -- and multiply by 'Small of type.
+
+ else
+ Rewrite (N,
+ Make_Op_Multiply (Loc,
+ Left_Opnd =>
+ Make_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (T_Typ, Loc),
+ Expression =>
+ Unchecked_Convert_To (
+ Equivalent_Integer_Type (S_Typ), Expr)),
+ Right_Opnd =>
+ Make_Real_Literal (Loc, Realval => Small_Value (S_Typ))));
+ end if;
+
+ -- Case of conversion of Vax_Float type to fixed-point type
+
+ elsif Is_Fixed_Point_Type (T_Typ) then
+
+ -- If Conversion_OK set, then we introduce an intermediate IEEE
+ -- target type, since we are expecting the code generator to handle
+ -- the case of IEEE float to integer.
+
+ if Conversion_OK (N) then
+ Rewrite (N,
+ OK_Convert_To (T_Typ, Convert_To (Universal_Real, Expr)));
+
+ -- Otherwise, multiply value by 'small of type, and convert to the
+ -- corresponding integer type.
+
+ else
+ Rewrite (N,
+ Unchecked_Convert_To (T_Typ,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Equivalent_Integer_Type (T_Typ), Loc),
+ Expression =>
+ Make_Op_Multiply (Loc,
+ Left_Opnd => Expr,
+ Right_Opnd =>
+ Make_Real_Literal (Loc,
+ Realval => Ureal_1 / Small_Value (T_Typ))))));
+ end if;
+
+ -- All other cases
+
+ else
+ -- Compute types for call
+
+ CallS := Call_Type (S_Typ, T_Typ);
+ CallT := Call_Type (T_Typ, S_Typ);
+
+ -- Get function and its types
+
+ if CallS = RE_D and then CallT = RE_G then
+ Func := RE_D_To_G;
+
+ elsif CallS = RE_G and then CallT = RE_D then
+ Func := RE_G_To_D;
+
+ elsif CallS = RE_G and then CallT = RE_F then
+ Func := RE_G_To_F;
+
+ elsif CallS = RE_F and then CallT = RE_G then
+ Func := RE_F_To_G;
+
+ elsif CallS = RE_F and then CallT = RE_S then
+ Func := RE_F_To_S;
+
+ elsif CallS = RE_S and then CallT = RE_F then
+ Func := RE_S_To_F;
+
+ elsif CallS = RE_G and then CallT = RE_T then
+ Func := RE_G_To_T;
+
+ elsif CallS = RE_T and then CallT = RE_G then
+ Func := RE_T_To_G;
+
+ elsif CallS = RE_F and then CallT = RE_Q then
+ Func := RE_F_To_Q;
+
+ elsif CallS = RE_Q and then CallT = RE_F then
+ Func := RE_Q_To_F;
+
+ elsif CallS = RE_G and then CallT = RE_Q then
+ Func := RE_G_To_Q;
+
+ else pragma Assert (CallS = RE_Q and then CallT = RE_G);
+ Func := RE_Q_To_G;
+ end if;
+
+ Rewrite (N,
+ Convert_To (T_Typ,
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (Func), Loc),
+ Parameter_Associations => New_List (
+ Convert_To (RTE (CallS), Expr)))));
+ end if;
+
+ Analyze_And_Resolve (N, T_Typ, Suppress => All_Checks);
+ end Expand_Vax_Conversion;
+
+ -----------------------------
+ -- Expand_Vax_Real_Literal --
+ -----------------------------
+
+ procedure Expand_Vax_Real_Literal (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Stat : constant Boolean := Is_Static_Expression (N);
+ Nod : Node_Id;
+
+ RE_Source : RE_Id;
+ RE_Target : RE_Id;
+ RE_Fncall : RE_Id;
+ -- Entities for source, target and function call in conversion
+
+ begin
+ -- We do not know how to convert Vax format real literals, so what
+ -- we do is to convert these to be IEEE literals, and introduce the
+ -- necessary conversion operation.
+
+ if Vax_Float (Btyp) then
+ -- What we want to construct here is
+
+ -- x!(y_to_z (1.0E0))
+
+ -- where
+
+ -- x is the base type of the literal (Btyp)
+
+ -- y_to_z is
+
+ -- s_to_f for F_Float
+ -- t_to_g for G_Float
+ -- t_to_d for D_Float
+
+ -- The literal is typed as S (for F_Float) or T otherwise
+
+ -- We do all our own construction, analysis, and expansion here,
+ -- since things are at too low a level to use Analyze or Expand
+ -- to get this built (we get circularities and other strange
+ -- problems if we try!)
+
+ if Digits_Value (Btyp) = VAXFF_Digits then
+ RE_Source := RE_S;
+ RE_Target := RE_F;
+ RE_Fncall := RE_S_To_F;
+
+ elsif Digits_Value (Btyp) = VAXDF_Digits then
+ RE_Source := RE_T;
+ RE_Target := RE_D;
+ RE_Fncall := RE_T_To_D;
+
+ else pragma Assert (Digits_Value (Btyp) = VAXGF_Digits);
+ RE_Source := RE_T;
+ RE_Target := RE_G;
+ RE_Fncall := RE_T_To_G;
+ end if;
+
+ Nod := Relocate_Node (N);
+
+ Set_Etype (Nod, RTE (RE_Source));
+ Set_Analyzed (Nod, True);
+
+ Nod :=
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (RE_Fncall), Loc),
+ Parameter_Associations => New_List (Nod));
+
+ Set_Etype (Nod, RTE (RE_Target));
+ Set_Analyzed (Nod, True);
+
+ Nod :=
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Expression => Nod);
+
+ Set_Etype (Nod, Typ);
+ Set_Analyzed (Nod, True);
+ Rewrite (N, Nod);
+
+ -- This odd expression is still a static expression. Note that
+ -- the routine Sem_Eval.Expr_Value_R understands this.
+
+ Set_Is_Static_Expression (N, Stat);
+ end if;
+ end Expand_Vax_Real_Literal;
+
+ ----------------------
+ -- Expand_Vax_Valid --
+ ----------------------
+
+ procedure Expand_Vax_Valid (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Pref : constant Node_Id := Prefix (N);
+ Ptyp : constant Entity_Id := Root_Type (Etype (Pref));
+ Rtyp : constant Entity_Id := Etype (N);
+ Vtyp : RE_Id;
+ Func : RE_Id;
+
+ begin
+ if Digits_Value (Ptyp) = VAXFF_Digits then
+ Func := RE_Valid_F;
+ Vtyp := RE_F;
+ elsif Digits_Value (Ptyp) = VAXDF_Digits then
+ Func := RE_Valid_D;
+ Vtyp := RE_D;
+ else pragma Assert (Digits_Value (Ptyp) = VAXGF_Digits);
+ Func := RE_Valid_G;
+ Vtyp := RE_G;
+ end if;
+
+ Rewrite (N,
+ Convert_To (Rtyp,
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (Func), Loc),
+ Parameter_Associations => New_List (
+ Convert_To (RTE (Vtyp), Pref)))));
+
+ Analyze_And_Resolve (N);
+ end Expand_Vax_Valid;
+
+end Exp_VFpt;