aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.3.1/gcc/ada/exp_ch6.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.3.1/gcc/ada/exp_ch6.adb')
-rw-r--r--gcc-4.3.1/gcc/ada/exp_ch6.adb5567
1 files changed, 5567 insertions, 0 deletions
diff --git a/gcc-4.3.1/gcc/ada/exp_ch6.adb b/gcc-4.3.1/gcc/ada/exp_ch6.adb
new file mode 100644
index 000000000..e8f5c114a
--- /dev/null
+++ b/gcc-4.3.1/gcc/ada/exp_ch6.adb
@@ -0,0 +1,5567 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ C H 6 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Elists; use Elists;
+with Exp_Atag; use Exp_Atag;
+with Exp_Ch2; use Exp_Ch2;
+with Exp_Ch3; use Exp_Ch3;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch9; use Exp_Ch9;
+with Exp_Dbug; use Exp_Dbug;
+with Exp_Disp; use Exp_Disp;
+with Exp_Dist; use Exp_Dist;
+with Exp_Intr; use Exp_Intr;
+with Exp_Pakd; use Exp_Pakd;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Inline; use Inline;
+with Lib; use Lib;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch12; use Sem_Ch12;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Mech; use Sem_Mech;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Validsw; use Validsw;
+
+package body Exp_Ch6 is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Add_Access_Actual_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Return_Object : Node_Id;
+ Is_Access : Boolean := False);
+ -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
+ -- object name given by Return_Object and add the attribute to the end of
+ -- the actual parameter list associated with the build-in-place function
+ -- call denoted by Function_Call. However, if Is_Access is True, then
+ -- Return_Object is already an access expression, in which case it's passed
+ -- along directly to the build-in-place function. Finally, if Return_Object
+ -- is empty, then pass a null literal as the actual.
+
+ procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Alloc_Form : BIP_Allocation_Form := Unspecified;
+ Alloc_Form_Exp : Node_Id := Empty);
+ -- Ada 2005 (AI-318-02): Add an actual indicating the form of allocation,
+ -- if any, to be done by a build-in-place function. If Alloc_Form_Exp is
+ -- present, then use it, otherwise pass a literal corresponding to the
+ -- Alloc_Form parameter (which must not be Unspecified in that case).
+
+ procedure Add_Extra_Actual_To_Call
+ (Subprogram_Call : Node_Id;
+ Extra_Formal : Entity_Id;
+ Extra_Actual : Node_Id);
+ -- Adds Extra_Actual as a named parameter association for the formal
+ -- Extra_Formal in Subprogram_Call.
+
+ procedure Add_Final_List_Actual_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Acc_Type : Entity_Id);
+ -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type has
+ -- controlled parts, add an actual parameter that is a pointer to
+ -- appropriate finalization list. The finalization list is that of the
+ -- current scope, except for "new Acc'(F(...))" in which case it's the
+ -- finalization list of the access type returned by the allocator. Acc_Type
+ -- is that type in the allocator case; Empty otherwise.
+
+ procedure Add_Task_Actuals_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Master_Actual : Node_Id);
+ -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
+ -- contains tasks, add two actual parameters: the master, and a pointer to
+ -- the caller's activation chain. Master_Actual is the actual parameter
+ -- expression to pass for the master. In most cases, this is the current
+ -- master (_master). The two exceptions are: If the function call is the
+ -- initialization expression for an allocator, we pass the master of the
+ -- access type. If the function call is the initialization expression for
+ -- a return object, we pass along the master passed in by the caller. The
+ -- activation chain to pass is always the local one.
+
+ procedure Check_Overriding_Operation (Subp : Entity_Id);
+ -- Subp is a dispatching operation. Check whether it may override an
+ -- inherited private operation, in which case its DT entry is that of
+ -- the hidden operation, not the one it may have received earlier.
+ -- This must be done before emitting the code to set the corresponding
+ -- DT to the address of the subprogram. The actual placement of Subp in
+ -- the proper place in the list of primitive operations is done in
+ -- Declare_Inherited_Private_Subprograms, which also has to deal with
+ -- implicit operations. This duplication is unavoidable for now???
+
+ procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
+ -- This procedure is called only if the subprogram body N, whose spec
+ -- has the given entity Spec, contains a parameterless recursive call.
+ -- It attempts to generate runtime code to detect if this a case of
+ -- infinite recursion.
+ --
+ -- The body is scanned to determine dependencies. If the only external
+ -- dependencies are on a small set of scalar variables, then the values
+ -- of these variables are captured on entry to the subprogram, and if
+ -- the values are not changed for the call, we know immediately that
+ -- we have an infinite recursion.
+
+ procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
+ -- For each actual of an in-out or out parameter which is a numeric
+ -- (view) conversion of the form T (A), where A denotes a variable,
+ -- we insert the declaration:
+ --
+ -- Temp : T[ := T (A)];
+ --
+ -- prior to the call. Then we replace the actual with a reference to Temp,
+ -- and append the assignment:
+ --
+ -- A := TypeA (Temp);
+ --
+ -- after the call. Here TypeA is the actual type of variable A.
+ -- For out parameters, the initial declaration has no expression.
+ -- If A is not an entity name, we generate instead:
+ --
+ -- Var : TypeA renames A;
+ -- Temp : T := Var; -- omitting expression for out parameter.
+ -- ...
+ -- Var := TypeA (Temp);
+ --
+ -- For other in-out parameters, we emit the required constraint checks
+ -- before and/or after the call.
+ --
+ -- For all parameter modes, actuals that denote components and slices
+ -- of packed arrays are expanded into suitable temporaries.
+ --
+ -- For non-scalar objects that are possibly unaligned, add call by copy
+ -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
+
+ procedure Expand_Inlined_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Orig_Subp : Entity_Id);
+ -- If called subprogram can be inlined by the front-end, retrieve the
+ -- analyzed body, replace formals with actuals and expand call in place.
+ -- Generate thunks for actuals that are expressions, and insert the
+ -- corresponding constant declarations before the call. If the original
+ -- call is to a derived operation, the return type is the one of the
+ -- derived operation, but the body is that of the original, so return
+ -- expressions in the body must be converted to the desired type (which
+ -- is simply not noted in the tree without inline expansion).
+
+ function Expand_Protected_Object_Reference
+ (N : Node_Id;
+ Scop : Entity_Id) return Node_Id;
+
+ procedure Expand_Protected_Subprogram_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Scop : Entity_Id);
+ -- A call to a protected subprogram within the protected object may appear
+ -- as a regular call. The list of actuals must be expanded to contain a
+ -- reference to the object itself, and the call becomes a call to the
+ -- corresponding protected subprogram.
+
+ ----------------------------------------------
+ -- Add_Access_Actual_To_Build_In_Place_Call --
+ ----------------------------------------------
+
+ procedure Add_Access_Actual_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Return_Object : Node_Id;
+ Is_Access : Boolean := False)
+ is
+ Loc : constant Source_Ptr := Sloc (Function_Call);
+ Obj_Address : Node_Id;
+ Obj_Acc_Formal : Entity_Id;
+
+ begin
+ -- Locate the implicit access parameter in the called function
+
+ Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
+
+ -- If no return object is provided, then pass null
+
+ if not Present (Return_Object) then
+ Obj_Address := Make_Null (Loc);
+ Set_Parent (Obj_Address, Function_Call);
+
+ -- If Return_Object is already an expression of an access type, then use
+ -- it directly, since it must be an access value denoting the return
+ -- object, and couldn't possibly be the return object itself.
+
+ elsif Is_Access then
+ Obj_Address := Return_Object;
+ Set_Parent (Obj_Address, Function_Call);
+
+ -- Apply Unrestricted_Access to caller's return object
+
+ else
+ Obj_Address :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Return_Object,
+ Attribute_Name => Name_Unrestricted_Access);
+
+ Set_Parent (Return_Object, Obj_Address);
+ Set_Parent (Obj_Address, Function_Call);
+ end if;
+
+ Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
+
+ -- Build the parameter association for the new actual and add it to the
+ -- end of the function's actuals.
+
+ Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
+ end Add_Access_Actual_To_Build_In_Place_Call;
+
+ --------------------------------------------------
+ -- Add_Alloc_Form_Actual_To_Build_In_Place_Call --
+ --------------------------------------------------
+
+ procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Alloc_Form : BIP_Allocation_Form := Unspecified;
+ Alloc_Form_Exp : Node_Id := Empty)
+ is
+ Loc : constant Source_Ptr := Sloc (Function_Call);
+ Alloc_Form_Actual : Node_Id;
+ Alloc_Form_Formal : Node_Id;
+
+ begin
+ -- The allocation form generally doesn't need to be passed in the case
+ -- of a constrained result subtype, since normally the caller performs
+ -- the allocation in that case. However this formal is still needed in
+ -- the case where the function has a tagged result, because generally
+ -- such functions can be called in a dispatching context and such calls
+ -- must be handled like calls to class-wide functions.
+
+ if Is_Constrained (Underlying_Type (Etype (Function_Id)))
+ and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
+ then
+ return;
+ end if;
+
+ -- Locate the implicit allocation form parameter in the called function.
+ -- Maybe it would be better for each implicit formal of a build-in-place
+ -- function to have a flag or a Uint attribute to identify it. ???
+
+ Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
+
+ if Present (Alloc_Form_Exp) then
+ pragma Assert (Alloc_Form = Unspecified);
+
+ Alloc_Form_Actual := Alloc_Form_Exp;
+
+ else
+ pragma Assert (Alloc_Form /= Unspecified);
+
+ Alloc_Form_Actual :=
+ Make_Integer_Literal (Loc,
+ Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
+ end if;
+
+ Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
+
+ -- Build the parameter association for the new actual and add it to the
+ -- end of the function's actuals.
+
+ Add_Extra_Actual_To_Call
+ (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
+ end Add_Alloc_Form_Actual_To_Build_In_Place_Call;
+
+ ------------------------------
+ -- Add_Extra_Actual_To_Call --
+ ------------------------------
+
+ procedure Add_Extra_Actual_To_Call
+ (Subprogram_Call : Node_Id;
+ Extra_Formal : Entity_Id;
+ Extra_Actual : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Subprogram_Call);
+ Param_Assoc : Node_Id;
+
+ begin
+ Param_Assoc :=
+ Make_Parameter_Association (Loc,
+ Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
+ Explicit_Actual_Parameter => Extra_Actual);
+
+ Set_Parent (Param_Assoc, Subprogram_Call);
+ Set_Parent (Extra_Actual, Param_Assoc);
+
+ if Present (Parameter_Associations (Subprogram_Call)) then
+ if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
+ N_Parameter_Association
+ then
+
+ -- Find last named actual, and append
+
+ declare
+ L : Node_Id;
+ begin
+ L := First_Actual (Subprogram_Call);
+ while Present (L) loop
+ if No (Next_Actual (L)) then
+ Set_Next_Named_Actual (Parent (L), Extra_Actual);
+ exit;
+ end if;
+ Next_Actual (L);
+ end loop;
+ end;
+
+ else
+ Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
+ end if;
+
+ Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
+
+ else
+ Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
+ Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
+ end if;
+ end Add_Extra_Actual_To_Call;
+
+ --------------------------------------------------
+ -- Add_Final_List_Actual_To_Build_In_Place_Call --
+ --------------------------------------------------
+
+ procedure Add_Final_List_Actual_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Acc_Type : Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Function_Call);
+ Final_List : Node_Id;
+ Final_List_Actual : Node_Id;
+ Final_List_Formal : Node_Id;
+
+ begin
+ -- No such extra parameter is needed if there are no controlled parts.
+ -- The test for Controlled_Type accounts for class-wide results (which
+ -- potentially have controlled parts, even if the root type doesn't),
+ -- and the test for a tagged result type is needed because calls to
+ -- such a function can in general occur in dispatching contexts, which
+ -- must be treated the same as a call to class-wide functions. Both of
+ -- these situations require that a finalization list be passed.
+
+ if not Controlled_Type (Underlying_Type (Etype (Function_Id)))
+ and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
+ then
+ return;
+ end if;
+
+ -- Locate implicit finalization list parameter in the called function
+
+ Final_List_Formal := Build_In_Place_Formal (Function_Id, BIP_Final_List);
+
+ -- Create the actual which is a pointer to the appropriate finalization
+ -- list. Acc_Type is present if and only if this call is the
+ -- initialization of an allocator. Use the Current_Scope or the Acc_Type
+ -- as appropriate.
+
+ if Present (Acc_Type)
+ and then (Ekind (Acc_Type) = E_Anonymous_Access_Type
+ or else
+ Present (Associated_Final_Chain (Base_Type (Acc_Type))))
+ then
+ Final_List := Find_Final_List (Acc_Type);
+ else
+ Final_List := Find_Final_List (Current_Scope);
+ end if;
+
+ Final_List_Actual :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Final_List,
+ Attribute_Name => Name_Unrestricted_Access);
+
+ Analyze_And_Resolve (Final_List_Actual, Etype (Final_List_Formal));
+
+ -- Build the parameter association for the new actual and add it to the
+ -- end of the function's actuals.
+
+ Add_Extra_Actual_To_Call
+ (Function_Call, Final_List_Formal, Final_List_Actual);
+ end Add_Final_List_Actual_To_Build_In_Place_Call;
+
+ ---------------------------------------------
+ -- Add_Task_Actuals_To_Build_In_Place_Call --
+ ---------------------------------------------
+
+ procedure Add_Task_Actuals_To_Build_In_Place_Call
+ (Function_Call : Node_Id;
+ Function_Id : Entity_Id;
+ Master_Actual : Node_Id)
+ -- Note: Master_Actual can be Empty, but only if there are no tasks
+ is
+ Loc : constant Source_Ptr := Sloc (Function_Call);
+
+ begin
+ -- No such extra parameters are needed if there are no tasks
+
+ if not Has_Task (Etype (Function_Id)) then
+ return;
+ end if;
+
+ -- The master
+
+ declare
+ Master_Formal : Node_Id;
+ begin
+ -- Locate implicit master parameter in the called function
+
+ Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Master);
+
+ Analyze_And_Resolve (Master_Actual, Etype (Master_Formal));
+
+ -- Build the parameter association for the new actual and add it to
+ -- the end of the function's actuals.
+
+ Add_Extra_Actual_To_Call
+ (Function_Call, Master_Formal, Master_Actual);
+ end;
+
+ -- The activation chain
+
+ declare
+ Activation_Chain_Actual : Node_Id;
+ Activation_Chain_Formal : Node_Id;
+ begin
+ -- Locate implicit activation chain parameter in the called function
+
+ Activation_Chain_Formal := Build_In_Place_Formal
+ (Function_Id, BIP_Activation_Chain);
+
+ -- Create the actual which is a pointer to the current activation
+ -- chain
+
+ Activation_Chain_Actual :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uChain),
+ Attribute_Name => Name_Unrestricted_Access);
+
+ Analyze_And_Resolve
+ (Activation_Chain_Actual, Etype (Activation_Chain_Formal));
+
+ -- Build the parameter association for the new actual and add it to
+ -- the end of the function's actuals.
+
+ Add_Extra_Actual_To_Call
+ (Function_Call, Activation_Chain_Formal, Activation_Chain_Actual);
+ end;
+ end Add_Task_Actuals_To_Build_In_Place_Call;
+
+ -----------------------
+ -- BIP_Formal_Suffix --
+ -----------------------
+
+ function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
+ begin
+ case Kind is
+ when BIP_Alloc_Form =>
+ return "BIPalloc";
+ when BIP_Final_List =>
+ return "BIPfinallist";
+ when BIP_Master =>
+ return "BIPmaster";
+ when BIP_Activation_Chain =>
+ return "BIPactivationchain";
+ when BIP_Object_Access =>
+ return "BIPaccess";
+ end case;
+ end BIP_Formal_Suffix;
+
+ ---------------------------
+ -- Build_In_Place_Formal --
+ ---------------------------
+
+ function Build_In_Place_Formal
+ (Func : Entity_Id;
+ Kind : BIP_Formal_Kind) return Entity_Id
+ is
+ Extra_Formal : Entity_Id := Extra_Formals (Func);
+
+ begin
+ -- Maybe it would be better for each implicit formal of a build-in-place
+ -- function to have a flag or a Uint attribute to identify it. ???
+
+ loop
+ pragma Assert (Present (Extra_Formal));
+ exit when
+ Chars (Extra_Formal) =
+ New_External_Name (Chars (Func), BIP_Formal_Suffix (Kind));
+ Next_Formal_With_Extras (Extra_Formal);
+ end loop;
+
+ return Extra_Formal;
+ end Build_In_Place_Formal;
+
+ --------------------------------
+ -- Check_Overriding_Operation --
+ --------------------------------
+
+ procedure Check_Overriding_Operation (Subp : Entity_Id) is
+ Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
+ Op_List : constant Elist_Id := Primitive_Operations (Typ);
+ Op_Elmt : Elmt_Id;
+ Prim_Op : Entity_Id;
+ Par_Op : Entity_Id;
+
+ begin
+ if Is_Derived_Type (Typ)
+ and then not Is_Private_Type (Typ)
+ and then In_Open_Scopes (Scope (Etype (Typ)))
+ and then Typ = Base_Type (Typ)
+ then
+ -- Subp overrides an inherited private operation if there is an
+ -- inherited operation with a different name than Subp (see
+ -- Derive_Subprogram) whose Alias is a hidden subprogram with the
+ -- same name as Subp.
+
+ Op_Elmt := First_Elmt (Op_List);
+ while Present (Op_Elmt) loop
+ Prim_Op := Node (Op_Elmt);
+ Par_Op := Alias (Prim_Op);
+
+ if Present (Par_Op)
+ and then not Comes_From_Source (Prim_Op)
+ and then Chars (Prim_Op) /= Chars (Par_Op)
+ and then Chars (Par_Op) = Chars (Subp)
+ and then Is_Hidden (Par_Op)
+ and then Type_Conformant (Prim_Op, Subp)
+ then
+ Set_DT_Position (Subp, DT_Position (Prim_Op));
+ end if;
+
+ Next_Elmt (Op_Elmt);
+ end loop;
+ end if;
+ end Check_Overriding_Operation;
+
+ -------------------------------
+ -- Detect_Infinite_Recursion --
+ -------------------------------
+
+ procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Var_List : constant Elist_Id := New_Elmt_List;
+ -- List of globals referenced by body of procedure
+
+ Call_List : constant Elist_Id := New_Elmt_List;
+ -- List of recursive calls in body of procedure
+
+ Shad_List : constant Elist_Id := New_Elmt_List;
+ -- List of entity id's for entities created to capture the value of
+ -- referenced globals on entry to the procedure.
+
+ Scop : constant Uint := Scope_Depth (Spec);
+ -- This is used to record the scope depth of the current procedure, so
+ -- that we can identify global references.
+
+ Max_Vars : constant := 4;
+ -- Do not test more than four global variables
+
+ Count_Vars : Natural := 0;
+ -- Count variables found so far
+
+ Var : Entity_Id;
+ Elm : Elmt_Id;
+ Ent : Entity_Id;
+ Call : Elmt_Id;
+ Decl : Node_Id;
+ Test : Node_Id;
+ Elm1 : Elmt_Id;
+ Elm2 : Elmt_Id;
+ Last : Node_Id;
+
+ function Process (Nod : Node_Id) return Traverse_Result;
+ -- Function to traverse the subprogram body (using Traverse_Func)
+
+ -------------
+ -- Process --
+ -------------
+
+ function Process (Nod : Node_Id) return Traverse_Result is
+ begin
+ -- Procedure call
+
+ if Nkind (Nod) = N_Procedure_Call_Statement then
+
+ -- Case of one of the detected recursive calls
+
+ if Is_Entity_Name (Name (Nod))
+ and then Has_Recursive_Call (Entity (Name (Nod)))
+ and then Entity (Name (Nod)) = Spec
+ then
+ Append_Elmt (Nod, Call_List);
+ return Skip;
+
+ -- Any other procedure call may have side effects
+
+ else
+ return Abandon;
+ end if;
+
+ -- A call to a pure function can always be ignored
+
+ elsif Nkind (Nod) = N_Function_Call
+ and then Is_Entity_Name (Name (Nod))
+ and then Is_Pure (Entity (Name (Nod)))
+ then
+ return Skip;
+
+ -- Case of an identifier reference
+
+ elsif Nkind (Nod) = N_Identifier then
+ Ent := Entity (Nod);
+
+ -- If no entity, then ignore the reference
+
+ -- Not clear why this can happen. To investigate, remove this
+ -- test and look at the crash that occurs here in 3401-004 ???
+
+ if No (Ent) then
+ return Skip;
+
+ -- Ignore entities with no Scope, again not clear how this
+ -- can happen, to investigate, look at 4108-008 ???
+
+ elsif No (Scope (Ent)) then
+ return Skip;
+
+ -- Ignore the reference if not to a more global object
+
+ elsif Scope_Depth (Scope (Ent)) >= Scop then
+ return Skip;
+
+ -- References to types, exceptions and constants are always OK
+
+ elsif Is_Type (Ent)
+ or else Ekind (Ent) = E_Exception
+ or else Ekind (Ent) = E_Constant
+ then
+ return Skip;
+
+ -- If other than a non-volatile scalar variable, we have some
+ -- kind of global reference (e.g. to a function) that we cannot
+ -- deal with so we forget the attempt.
+
+ elsif Ekind (Ent) /= E_Variable
+ or else not Is_Scalar_Type (Etype (Ent))
+ or else Treat_As_Volatile (Ent)
+ then
+ return Abandon;
+
+ -- Otherwise we have a reference to a global scalar
+
+ else
+ -- Loop through global entities already detected
+
+ Elm := First_Elmt (Var_List);
+ loop
+ -- If not detected before, record this new global reference
+
+ if No (Elm) then
+ Count_Vars := Count_Vars + 1;
+
+ if Count_Vars <= Max_Vars then
+ Append_Elmt (Entity (Nod), Var_List);
+ else
+ return Abandon;
+ end if;
+
+ exit;
+
+ -- If recorded before, ignore
+
+ elsif Node (Elm) = Entity (Nod) then
+ return Skip;
+
+ -- Otherwise keep looking
+
+ else
+ Next_Elmt (Elm);
+ end if;
+ end loop;
+
+ return Skip;
+ end if;
+
+ -- For all other node kinds, recursively visit syntactic children
+
+ else
+ return OK;
+ end if;
+ end Process;
+
+ function Traverse_Body is new Traverse_Func (Process);
+
+ -- Start of processing for Detect_Infinite_Recursion
+
+ begin
+ -- Do not attempt detection in No_Implicit_Conditional mode, since we
+ -- won't be able to generate the code to handle the recursion in any
+ -- case.
+
+ if Restriction_Active (No_Implicit_Conditionals) then
+ return;
+ end if;
+
+ -- Otherwise do traversal and quit if we get abandon signal
+
+ if Traverse_Body (N) = Abandon then
+ return;
+
+ -- We must have a call, since Has_Recursive_Call was set. If not just
+ -- ignore (this is only an error check, so if we have a funny situation,
+ -- due to bugs or errors, we do not want to bomb!)
+
+ elsif Is_Empty_Elmt_List (Call_List) then
+ return;
+ end if;
+
+ -- Here is the case where we detect recursion at compile time
+
+ -- Push our current scope for analyzing the declarations and code that
+ -- we will insert for the checking.
+
+ Push_Scope (Spec);
+
+ -- This loop builds temporary variables for each of the referenced
+ -- globals, so that at the end of the loop the list Shad_List contains
+ -- these temporaries in one-to-one correspondence with the elements in
+ -- Var_List.
+
+ Last := Empty;
+ Elm := First_Elmt (Var_List);
+ while Present (Elm) loop
+ Var := Node (Elm);
+ Ent :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('S'));
+ Append_Elmt (Ent, Shad_List);
+
+ -- Insert a declaration for this temporary at the start of the
+ -- declarations for the procedure. The temporaries are declared as
+ -- constant objects initialized to the current values of the
+ -- corresponding temporaries.
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Ent,
+ Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
+ Constant_Present => True,
+ Expression => New_Occurrence_Of (Var, Loc));
+
+ if No (Last) then
+ Prepend (Decl, Declarations (N));
+ else
+ Insert_After (Last, Decl);
+ end if;
+
+ Last := Decl;
+ Analyze (Decl);
+ Next_Elmt (Elm);
+ end loop;
+
+ -- Loop through calls
+
+ Call := First_Elmt (Call_List);
+ while Present (Call) loop
+
+ -- Build a predicate expression of the form
+
+ -- True
+ -- and then global1 = temp1
+ -- and then global2 = temp2
+ -- ...
+
+ -- This predicate determines if any of the global values
+ -- referenced by the procedure have changed since the
+ -- current call, if not an infinite recursion is assured.
+
+ Test := New_Occurrence_Of (Standard_True, Loc);
+
+ Elm1 := First_Elmt (Var_List);
+ Elm2 := First_Elmt (Shad_List);
+ while Present (Elm1) loop
+ Test :=
+ Make_And_Then (Loc,
+ Left_Opnd => Test,
+ Right_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
+ Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
+
+ Next_Elmt (Elm1);
+ Next_Elmt (Elm2);
+ end loop;
+
+ -- Now we replace the call with the sequence
+
+ -- if no-changes (see above) then
+ -- raise Storage_Error;
+ -- else
+ -- original-call
+ -- end if;
+
+ Rewrite (Node (Call),
+ Make_If_Statement (Loc,
+ Condition => Test,
+ Then_Statements => New_List (
+ Make_Raise_Storage_Error (Loc,
+ Reason => SE_Infinite_Recursion)),
+
+ Else_Statements => New_List (
+ Relocate_Node (Node (Call)))));
+
+ Analyze (Node (Call));
+
+ Next_Elmt (Call);
+ end loop;
+
+ -- Remove temporary scope stack entry used for analysis
+
+ Pop_Scope;
+ end Detect_Infinite_Recursion;
+
+ --------------------
+ -- Expand_Actuals --
+ --------------------
+
+ procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Actual : Node_Id;
+ Formal : Entity_Id;
+ N_Node : Node_Id;
+ Post_Call : List_Id;
+ E_Formal : Entity_Id;
+
+ procedure Add_Call_By_Copy_Code;
+ -- For cases where the parameter must be passed by copy, this routine
+ -- generates a temporary variable into which the actual is copied and
+ -- then passes this as the parameter. For an OUT or IN OUT parameter,
+ -- an assignment is also generated to copy the result back. The call
+ -- also takes care of any constraint checks required for the type
+ -- conversion case (on both the way in and the way out).
+
+ procedure Add_Simple_Call_By_Copy_Code;
+ -- This is similar to the above, but is used in cases where we know
+ -- that all that is needed is to simply create a temporary and copy
+ -- the value in and out of the temporary.
+
+ procedure Check_Fortran_Logical;
+ -- A value of type Logical that is passed through a formal parameter
+ -- must be normalized because .TRUE. usually does not have the same
+ -- representation as True. We assume that .FALSE. = False = 0.
+ -- What about functions that return a logical type ???
+
+ function Is_Legal_Copy return Boolean;
+ -- Check that an actual can be copied before generating the temporary
+ -- to be used in the call. If the actual is of a by_reference type then
+ -- the program is illegal (this can only happen in the presence of
+ -- rep. clauses that force an incorrect alignment). If the formal is
+ -- a by_reference parameter imposed by a DEC pragma, emit a warning to
+ -- the effect that this might lead to unaligned arguments.
+
+ function Make_Var (Actual : Node_Id) return Entity_Id;
+ -- Returns an entity that refers to the given actual parameter,
+ -- Actual (not including any type conversion). If Actual is an
+ -- entity name, then this entity is returned unchanged, otherwise
+ -- a renaming is created to provide an entity for the actual.
+
+ procedure Reset_Packed_Prefix;
+ -- The expansion of a packed array component reference is delayed in
+ -- the context of a call. Now we need to complete the expansion, so we
+ -- unmark the analyzed bits in all prefixes.
+
+ ---------------------------
+ -- Add_Call_By_Copy_Code --
+ ---------------------------
+
+ procedure Add_Call_By_Copy_Code is
+ Expr : Node_Id;
+ Init : Node_Id;
+ Temp : Entity_Id;
+ Indic : Node_Id;
+ Var : Entity_Id;
+ F_Typ : constant Entity_Id := Etype (Formal);
+ V_Typ : Entity_Id;
+ Crep : Boolean;
+
+ begin
+ if not Is_Legal_Copy then
+ return;
+ end if;
+
+ Temp :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ -- Use formal type for temp, unless formal type is an unconstrained
+ -- array, in which case we don't have to worry about bounds checks,
+ -- and we use the actual type, since that has appropriate bounds.
+
+ if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
+ Indic := New_Occurrence_Of (Etype (Actual), Loc);
+ else
+ Indic := New_Occurrence_Of (Etype (Formal), Loc);
+ end if;
+
+ if Nkind (Actual) = N_Type_Conversion then
+ V_Typ := Etype (Expression (Actual));
+
+ -- If the formal is an (in-)out parameter, capture the name
+ -- of the variable in order to build the post-call assignment.
+
+ Var := Make_Var (Expression (Actual));
+
+ Crep := not Same_Representation
+ (F_Typ, Etype (Expression (Actual)));
+
+ else
+ V_Typ := Etype (Actual);
+ Var := Make_Var (Actual);
+ Crep := False;
+ end if;
+
+ -- Setup initialization for case of in out parameter, or an out
+ -- parameter where the formal is an unconstrained array (in the
+ -- latter case, we have to pass in an object with bounds).
+
+ -- If this is an out parameter, the initial copy is wasteful, so as
+ -- an optimization for the one-dimensional case we extract the
+ -- bounds of the actual and build an uninitialized temporary of the
+ -- right size.
+
+ if Ekind (Formal) = E_In_Out_Parameter
+ or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
+ then
+ if Nkind (Actual) = N_Type_Conversion then
+ if Conversion_OK (Actual) then
+ Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ else
+ Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ end if;
+
+ elsif Ekind (Formal) = E_Out_Parameter
+ and then Is_Array_Type (F_Typ)
+ and then Number_Dimensions (F_Typ) = 1
+ and then not Has_Non_Null_Base_Init_Proc (F_Typ)
+ then
+ -- Actual is a one-dimensional array or slice, and the type
+ -- requires no initialization. Create a temporary of the
+ -- right size, but do not copy actual into it (optimization).
+
+ Init := Empty;
+ Indic :=
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (F_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Var, Loc),
+ Attribute_name => Name_First),
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Var, Loc),
+ Attribute_Name => Name_Last)))));
+
+ else
+ Init := New_Occurrence_Of (Var, Loc);
+ end if;
+
+ -- An initialization is created for packed conversions as
+ -- actuals for out parameters to enable Make_Object_Declaration
+ -- to determine the proper subtype for N_Node. Note that this
+ -- is wasteful because the extra copying on the call side is
+ -- not required for such out parameters. ???
+
+ elsif Ekind (Formal) = E_Out_Parameter
+ and then Nkind (Actual) = N_Type_Conversion
+ and then (Is_Bit_Packed_Array (F_Typ)
+ or else
+ Is_Bit_Packed_Array (Etype (Expression (Actual))))
+ then
+ if Conversion_OK (Actual) then
+ Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ else
+ Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ end if;
+
+ elsif Ekind (Formal) = E_In_Parameter then
+
+ -- Handle the case in which the actual is a type conversion
+
+ if Nkind (Actual) = N_Type_Conversion then
+ if Conversion_OK (Actual) then
+ Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ else
+ Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ end if;
+ else
+ Init := New_Occurrence_Of (Var, Loc);
+ end if;
+
+ else
+ Init := Empty;
+ end if;
+
+ N_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => Indic,
+ Expression => Init);
+ Set_Assignment_OK (N_Node);
+ Insert_Action (N, N_Node);
+
+ -- Now, normally the deal here is that we use the defining
+ -- identifier created by that object declaration. There is
+ -- one exception to this. In the change of representation case
+ -- the above declaration will end up looking like:
+
+ -- temp : type := identifier;
+
+ -- And in this case we might as well use the identifier directly
+ -- and eliminate the temporary. Note that the analysis of the
+ -- declaration was not a waste of time in that case, since it is
+ -- what generated the necessary change of representation code. If
+ -- the change of representation introduced additional code, as in
+ -- a fixed-integer conversion, the expression is not an identifier
+ -- and must be kept.
+
+ if Crep
+ and then Present (Expression (N_Node))
+ and then Is_Entity_Name (Expression (N_Node))
+ then
+ Temp := Entity (Expression (N_Node));
+ Rewrite (N_Node, Make_Null_Statement (Loc));
+ end if;
+
+ -- For IN parameter, all we do is to replace the actual
+
+ if Ekind (Formal) = E_In_Parameter then
+ Rewrite (Actual, New_Reference_To (Temp, Loc));
+ Analyze (Actual);
+
+ -- Processing for OUT or IN OUT parameter
+
+ else
+ -- Kill current value indications for the temporary variable we
+ -- created, since we just passed it as an OUT parameter.
+
+ Kill_Current_Values (Temp);
+
+ -- If type conversion, use reverse conversion on exit
+
+ if Nkind (Actual) = N_Type_Conversion then
+ if Conversion_OK (Actual) then
+ Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
+ else
+ Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
+ end if;
+ else
+ Expr := New_Occurrence_Of (Temp, Loc);
+ end if;
+
+ Rewrite (Actual, New_Reference_To (Temp, Loc));
+ Analyze (Actual);
+
+ -- If the actual is a conversion of a packed reference, it may
+ -- already have been expanded by Remove_Side_Effects, and the
+ -- resulting variable is a temporary which does not designate
+ -- the proper out-parameter, which may not be addressable. In
+ -- that case, generate an assignment to the original expression
+ -- (before expansion of the packed reference) so that the proper
+ -- expansion of assignment to a packed component can take place.
+
+ declare
+ Obj : Node_Id;
+ Lhs : Node_Id;
+
+ begin
+ if Is_Renaming_Of_Object (Var)
+ and then Nkind (Renamed_Object (Var)) = N_Selected_Component
+ and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
+ and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
+ = N_Indexed_Component
+ and then
+ Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
+ then
+ Obj := Renamed_Object (Var);
+ Lhs :=
+ Make_Selected_Component (Loc,
+ Prefix =>
+ New_Copy_Tree (Original_Node (Prefix (Obj))),
+ Selector_Name => New_Copy (Selector_Name (Obj)));
+ Reset_Analyzed_Flags (Lhs);
+
+ else
+ Lhs := New_Occurrence_Of (Var, Loc);
+ end if;
+
+ Set_Assignment_OK (Lhs);
+
+ Append_To (Post_Call,
+ Make_Assignment_Statement (Loc,
+ Name => Lhs,
+ Expression => Expr));
+ end;
+ end if;
+
+ end Add_Call_By_Copy_Code;
+
+ ----------------------------------
+ -- Add_Simple_Call_By_Copy_Code --
+ ----------------------------------
+
+ procedure Add_Simple_Call_By_Copy_Code is
+ Temp : Entity_Id;
+ Decl : Node_Id;
+ Incod : Node_Id;
+ Outcod : Node_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Indic : Node_Id;
+ F_Typ : constant Entity_Id := Etype (Formal);
+
+ begin
+ if not Is_Legal_Copy then
+ return;
+ end if;
+
+ -- Use formal type for temp, unless formal type is an unconstrained
+ -- array, in which case we don't have to worry about bounds checks,
+ -- and we use the actual type, since that has appropriate bounds.
+
+ if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
+ Indic := New_Occurrence_Of (Etype (Actual), Loc);
+ else
+ Indic := New_Occurrence_Of (Etype (Formal), Loc);
+ end if;
+
+ -- Prepare to generate code
+
+ Reset_Packed_Prefix;
+
+ Temp :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+ Incod := Relocate_Node (Actual);
+ Outcod := New_Copy_Tree (Incod);
+
+ -- Generate declaration of temporary variable, initializing it
+ -- with the input parameter unless we have an OUT formal or
+ -- this is an initialization call.
+
+ -- If the formal is an out parameter with discriminants, the
+ -- discriminants must be captured even if the rest of the object
+ -- is in principle uninitialized, because the discriminants may
+ -- be read by the called subprogram.
+
+ if Ekind (Formal) = E_Out_Parameter then
+ Incod := Empty;
+
+ if Has_Discriminants (Etype (Formal)) then
+ Indic := New_Occurrence_Of (Etype (Actual), Loc);
+ end if;
+
+ elsif Inside_Init_Proc then
+
+ -- Could use a comment here to match comment below ???
+
+ if Nkind (Actual) /= N_Selected_Component
+ or else
+ not Has_Discriminant_Dependent_Constraint
+ (Entity (Selector_Name (Actual)))
+ then
+ Incod := Empty;
+
+ -- Otherwise, keep the component in order to generate the proper
+ -- actual subtype, that depends on enclosing discriminants.
+
+ else
+ null;
+ end if;
+ end if;
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => Indic,
+ Expression => Incod);
+
+ if Inside_Init_Proc
+ and then No (Incod)
+ then
+ -- If the call is to initialize a component of a composite type,
+ -- and the component does not depend on discriminants, use the
+ -- actual type of the component. This is required in case the
+ -- component is constrained, because in general the formal of the
+ -- initialization procedure will be unconstrained. Note that if
+ -- the component being initialized is constrained by an enclosing
+ -- discriminant, the presence of the initialization in the
+ -- declaration will generate an expression for the actual subtype.
+
+ Set_No_Initialization (Decl);
+ Set_Object_Definition (Decl,
+ New_Occurrence_Of (Etype (Actual), Loc));
+ end if;
+
+ Insert_Action (N, Decl);
+
+ -- The actual is simply a reference to the temporary
+
+ Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
+
+ -- Generate copy out if OUT or IN OUT parameter
+
+ if Ekind (Formal) /= E_In_Parameter then
+ Lhs := Outcod;
+ Rhs := New_Occurrence_Of (Temp, Loc);
+
+ -- Deal with conversion
+
+ if Nkind (Lhs) = N_Type_Conversion then
+ Lhs := Expression (Lhs);
+ Rhs := Convert_To (Etype (Actual), Rhs);
+ end if;
+
+ Append_To (Post_Call,
+ Make_Assignment_Statement (Loc,
+ Name => Lhs,
+ Expression => Rhs));
+ Set_Assignment_OK (Name (Last (Post_Call)));
+ end if;
+ end Add_Simple_Call_By_Copy_Code;
+
+ ---------------------------
+ -- Check_Fortran_Logical --
+ ---------------------------
+
+ procedure Check_Fortran_Logical is
+ Logical : constant Entity_Id := Etype (Formal);
+ Var : Entity_Id;
+
+ -- Note: this is very incomplete, e.g. it does not handle arrays
+ -- of logical values. This is really not the right approach at all???)
+
+ begin
+ if Convention (Subp) = Convention_Fortran
+ and then Root_Type (Etype (Formal)) = Standard_Boolean
+ and then Ekind (Formal) /= E_In_Parameter
+ then
+ Var := Make_Var (Actual);
+ Append_To (Post_Call,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Var, Loc),
+ Expression =>
+ Unchecked_Convert_To (
+ Logical,
+ Make_Op_Ne (Loc,
+ Left_Opnd => New_Occurrence_Of (Var, Loc),
+ Right_Opnd =>
+ Unchecked_Convert_To (
+ Logical,
+ New_Occurrence_Of (Standard_False, Loc))))));
+ end if;
+ end Check_Fortran_Logical;
+
+ -------------------
+ -- Is_Legal_Copy --
+ -------------------
+
+ function Is_Legal_Copy return Boolean is
+ begin
+ -- An attempt to copy a value of such a type can only occur if
+ -- representation clauses give the actual a misaligned address.
+
+ if Is_By_Reference_Type (Etype (Formal)) then
+ Error_Msg_N
+ ("misaligned actual cannot be passed by reference", Actual);
+ return False;
+
+ -- For users of Starlet, we assume that the specification of by-
+ -- reference mechanism is mandatory. This may lead to unaligned
+ -- objects but at least for DEC legacy code it is known to work.
+ -- The warning will alert users of this code that a problem may
+ -- be lurking.
+
+ elsif Mechanism (Formal) = By_Reference
+ and then Is_Valued_Procedure (Scope (Formal))
+ then
+ Error_Msg_N
+ ("by_reference actual may be misaligned?", Actual);
+ return False;
+
+ else
+ return True;
+ end if;
+ end Is_Legal_Copy;
+
+ --------------
+ -- Make_Var --
+ --------------
+
+ function Make_Var (Actual : Node_Id) return Entity_Id is
+ Var : Entity_Id;
+
+ begin
+ if Is_Entity_Name (Actual) then
+ return Entity (Actual);
+
+ else
+ Var :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ N_Node :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Var,
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Actual), Loc),
+ Name => Relocate_Node (Actual));
+
+ Insert_Action (N, N_Node);
+ return Var;
+ end if;
+ end Make_Var;
+
+ -------------------------
+ -- Reset_Packed_Prefix --
+ -------------------------
+
+ procedure Reset_Packed_Prefix is
+ Pfx : Node_Id := Actual;
+ begin
+ loop
+ Set_Analyzed (Pfx, False);
+ exit when
+ not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
+ Pfx := Prefix (Pfx);
+ end loop;
+ end Reset_Packed_Prefix;
+
+ -- Start of processing for Expand_Actuals
+
+ begin
+ Post_Call := New_List;
+
+ Formal := First_Formal (Subp);
+ Actual := First_Actual (N);
+ while Present (Formal) loop
+ E_Formal := Etype (Formal);
+
+ if Is_Scalar_Type (E_Formal)
+ or else Nkind (Actual) = N_Slice
+ then
+ Check_Fortran_Logical;
+
+ -- RM 6.4.1 (11)
+
+ elsif Ekind (Formal) /= E_Out_Parameter then
+
+ -- The unusual case of the current instance of a protected type
+ -- requires special handling. This can only occur in the context
+ -- of a call within the body of a protected operation.
+
+ if Is_Entity_Name (Actual)
+ and then Ekind (Entity (Actual)) = E_Protected_Type
+ and then In_Open_Scopes (Entity (Actual))
+ then
+ if Scope (Subp) /= Entity (Actual) then
+ Error_Msg_N ("operation outside protected type may not "
+ & "call back its protected operations?", Actual);
+ end if;
+
+ Rewrite (Actual,
+ Expand_Protected_Object_Reference (N, Entity (Actual)));
+ end if;
+
+ -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
+ -- build-in-place function, then a temporary return object needs
+ -- to be created and access to it must be passed to the function.
+ -- Currently we limit such functions to those with inherently
+ -- limited result subtypes, but eventually we plan to expand the
+ -- functions that are treated as build-in-place to include other
+ -- composite result types.
+
+ if Ada_Version >= Ada_05
+ and then Is_Build_In_Place_Function_Call (Actual)
+ then
+ Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
+ end if;
+
+ Apply_Constraint_Check (Actual, E_Formal);
+
+ -- Out parameter case. No constraint checks on access type
+ -- RM 6.4.1 (13)
+
+ elsif Is_Access_Type (E_Formal) then
+ null;
+
+ -- RM 6.4.1 (14)
+
+ elsif Has_Discriminants (Base_Type (E_Formal))
+ or else Has_Non_Null_Base_Init_Proc (E_Formal)
+ then
+ Apply_Constraint_Check (Actual, E_Formal);
+
+ -- RM 6.4.1 (15)
+
+ else
+ Apply_Constraint_Check (Actual, Base_Type (E_Formal));
+ end if;
+
+ -- Processing for IN-OUT and OUT parameters
+
+ if Ekind (Formal) /= E_In_Parameter then
+
+ -- For type conversions of arrays, apply length/range checks
+
+ if Is_Array_Type (E_Formal)
+ and then Nkind (Actual) = N_Type_Conversion
+ then
+ if Is_Constrained (E_Formal) then
+ Apply_Length_Check (Expression (Actual), E_Formal);
+ else
+ Apply_Range_Check (Expression (Actual), E_Formal);
+ end if;
+ end if;
+
+ -- If argument is a type conversion for a type that is passed
+ -- by copy, then we must pass the parameter by copy.
+
+ if Nkind (Actual) = N_Type_Conversion
+ and then
+ (Is_Numeric_Type (E_Formal)
+ or else Is_Access_Type (E_Formal)
+ or else Is_Enumeration_Type (E_Formal)
+ or else Is_Bit_Packed_Array (Etype (Formal))
+ or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
+
+ -- Also pass by copy if change of representation
+
+ or else not Same_Representation
+ (Etype (Formal),
+ Etype (Expression (Actual))))
+ then
+ Add_Call_By_Copy_Code;
+
+ -- References to components of bit packed arrays are expanded
+ -- at this point, rather than at the point of analysis of the
+ -- actuals, to handle the expansion of the assignment to
+ -- [in] out parameters.
+
+ elsif Is_Ref_To_Bit_Packed_Array (Actual) then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- If a non-scalar actual is possibly bit-aligned, we need a copy
+ -- because the back-end cannot cope with such objects. In other
+ -- cases where alignment forces a copy, the back-end generates
+ -- it properly. It should not be generated unconditionally in the
+ -- front-end because it does not know precisely the alignment
+ -- requirements of the target, and makes too conservative an
+ -- estimate, leading to superfluous copies or spurious errors
+ -- on by-reference parameters.
+
+ elsif Nkind (Actual) = N_Selected_Component
+ and then
+ Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
+ and then not Represented_As_Scalar (Etype (Formal))
+ then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- References to slices of bit packed arrays are expanded
+
+ elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+
+ -- References to possibly unaligned slices of arrays are expanded
+
+ elsif Is_Possibly_Unaligned_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+
+ -- Deal with access types where the actual subtype and the
+ -- formal subtype are not the same, requiring a check.
+
+ -- It is necessary to exclude tagged types because of "downward
+ -- conversion" errors and a strange assertion error in namet
+ -- from gnatf in bug 1215-001 ???
+
+ elsif Is_Access_Type (E_Formal)
+ and then not Same_Type (E_Formal, Etype (Actual))
+ and then not Is_Tagged_Type (Designated_Type (E_Formal))
+ then
+ Add_Call_By_Copy_Code;
+
+ -- If the actual is not a scalar and is marked for volatile
+ -- treatment, whereas the formal is not volatile, then pass
+ -- by copy unless it is a by-reference type.
+
+ elsif Is_Entity_Name (Actual)
+ and then Treat_As_Volatile (Entity (Actual))
+ and then not Is_By_Reference_Type (Etype (Actual))
+ and then not Is_Scalar_Type (Etype (Entity (Actual)))
+ and then not Treat_As_Volatile (E_Formal)
+ then
+ Add_Call_By_Copy_Code;
+
+ elsif Nkind (Actual) = N_Indexed_Component
+ and then Is_Entity_Name (Prefix (Actual))
+ and then Has_Volatile_Components (Entity (Prefix (Actual)))
+ then
+ Add_Call_By_Copy_Code;
+ end if;
+
+ -- Processing for IN parameters
+
+ else
+ -- For IN parameters is in the packed array case, we expand an
+ -- indexed component (the circuit in Exp_Ch4 deliberately left
+ -- indexed components appearing as actuals untouched, so that
+ -- the special processing above for the OUT and IN OUT cases
+ -- could be performed. We could make the test in Exp_Ch4 more
+ -- complex and have it detect the parameter mode, but it is
+ -- easier simply to handle all cases here.)
+
+ if Nkind (Actual) = N_Indexed_Component
+ and then Is_Packed (Etype (Prefix (Actual)))
+ then
+ Reset_Packed_Prefix;
+ Expand_Packed_Element_Reference (Actual);
+
+ -- If we have a reference to a bit packed array, we copy it,
+ -- since the actual must be byte aligned.
+
+ -- Is this really necessary in all cases???
+
+ elsif Is_Ref_To_Bit_Packed_Array (Actual) then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- If a non-scalar actual is possibly unaligned, we need a copy
+
+ elsif Is_Possibly_Unaligned_Object (Actual)
+ and then not Represented_As_Scalar (Etype (Formal))
+ then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- Similarly, we have to expand slices of packed arrays here
+ -- because the result must be byte aligned.
+
+ elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+
+ -- Only processing remaining is to pass by copy if this is a
+ -- reference to a possibly unaligned slice, since the caller
+ -- expects an appropriately aligned argument.
+
+ elsif Is_Possibly_Unaligned_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+
+ -- Find right place to put post call stuff if it is present
+
+ if not Is_Empty_List (Post_Call) then
+
+ -- If call is not a list member, it must be the triggering statement
+ -- of a triggering alternative or an entry call alternative, and we
+ -- can add the post call stuff to the corresponding statement list.
+
+ if not Is_List_Member (N) then
+ declare
+ P : constant Node_Id := Parent (N);
+
+ begin
+ pragma Assert (Nkind_In (P, N_Triggering_Alternative,
+ N_Entry_Call_Alternative));
+
+ if Is_Non_Empty_List (Statements (P)) then
+ Insert_List_Before_And_Analyze
+ (First (Statements (P)), Post_Call);
+ else
+ Set_Statements (P, Post_Call);
+ end if;
+ end;
+
+ -- Otherwise, normal case where N is in a statement sequence,
+ -- just put the post-call stuff after the call statement.
+
+ else
+ Insert_Actions_After (N, Post_Call);
+ end if;
+ end if;
+
+ -- The call node itself is re-analyzed in Expand_Call
+
+ end Expand_Actuals;
+
+ -----------------
+ -- Expand_Call --
+ -----------------
+
+ -- This procedure handles expansion of function calls and procedure call
+ -- statements (i.e. it serves as the body for Expand_N_Function_Call and
+ -- Expand_N_Procedure_Call_Statement. Processing for calls includes:
+
+ -- Replace call to Raise_Exception by Raise_Exception always if possible
+ -- Provide values of actuals for all formals in Extra_Formals list
+ -- Replace "call" to enumeration literal function by literal itself
+ -- Rewrite call to predefined operator as operator
+ -- Replace actuals to in-out parameters that are numeric conversions,
+ -- with explicit assignment to temporaries before and after the call.
+ -- Remove optional actuals if First_Optional_Parameter specified.
+
+ -- Note that the list of actuals has been filled with default expressions
+ -- during semantic analysis of the call. Only the extra actuals required
+ -- for the 'Constrained attribute and for accessibility checks are added
+ -- at this point.
+
+ procedure Expand_Call (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Extra_Actuals : List_Id := No_List;
+ Prev : Node_Id := Empty;
+
+ procedure Add_Actual_Parameter (Insert_Param : Node_Id);
+ -- Adds one entry to the end of the actual parameter list. Used for
+ -- default parameters and for extra actuals (for Extra_Formals). The
+ -- argument is an N_Parameter_Association node.
+
+ procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
+ -- Adds an extra actual to the list of extra actuals. Expr is the
+ -- expression for the value of the actual, EF is the entity for the
+ -- extra formal.
+
+ function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
+ -- Within an instance, a type derived from a non-tagged formal derived
+ -- type inherits from the original parent, not from the actual. This is
+ -- tested in 4723-003. The current derivation mechanism has the derived
+ -- type inherit from the actual, which is only correct outside of the
+ -- instance. If the subprogram is inherited, we test for this particular
+ -- case through a convoluted tree traversal before setting the proper
+ -- subprogram to be called.
+
+ --------------------------
+ -- Add_Actual_Parameter --
+ --------------------------
+
+ procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
+ Actual_Expr : constant Node_Id :=
+ Explicit_Actual_Parameter (Insert_Param);
+
+ begin
+ -- Case of insertion is first named actual
+
+ if No (Prev) or else
+ Nkind (Parent (Prev)) /= N_Parameter_Association
+ then
+ Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
+ Set_First_Named_Actual (N, Actual_Expr);
+
+ if No (Prev) then
+ if No (Parameter_Associations (N)) then
+ Set_Parameter_Associations (N, New_List);
+ Append (Insert_Param, Parameter_Associations (N));
+ end if;
+ else
+ Insert_After (Prev, Insert_Param);
+ end if;
+
+ -- Case of insertion is not first named actual
+
+ else
+ Set_Next_Named_Actual
+ (Insert_Param, Next_Named_Actual (Parent (Prev)));
+ Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
+ Append (Insert_Param, Parameter_Associations (N));
+ end if;
+
+ Prev := Actual_Expr;
+ end Add_Actual_Parameter;
+
+ ----------------------
+ -- Add_Extra_Actual --
+ ----------------------
+
+ procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (Expr);
+
+ begin
+ if Extra_Actuals = No_List then
+ Extra_Actuals := New_List;
+ Set_Parent (Extra_Actuals, N);
+ end if;
+
+ Append_To (Extra_Actuals,
+ Make_Parameter_Association (Loc,
+ Explicit_Actual_Parameter => Expr,
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (EF))));
+
+ Analyze_And_Resolve (Expr, Etype (EF));
+ end Add_Extra_Actual;
+
+ ---------------------------
+ -- Inherited_From_Formal --
+ ---------------------------
+
+ function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
+ Par : Entity_Id;
+ Gen_Par : Entity_Id;
+ Gen_Prim : Elist_Id;
+ Elmt : Elmt_Id;
+ Indic : Node_Id;
+
+ begin
+ -- If the operation is inherited, it is attached to the corresponding
+ -- type derivation. If the parent in the derivation is a generic
+ -- actual, it is a subtype of the actual, and we have to recover the
+ -- original derived type declaration to find the proper parent.
+
+ if Nkind (Parent (S)) /= N_Full_Type_Declaration
+ or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
+ or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
+ N_Derived_Type_Definition
+ or else not In_Instance
+ then
+ return Empty;
+
+ else
+ Indic :=
+ (Subtype_Indication
+ (Type_Definition (Original_Node (Parent (S)))));
+
+ if Nkind (Indic) = N_Subtype_Indication then
+ Par := Entity (Subtype_Mark (Indic));
+ else
+ Par := Entity (Indic);
+ end if;
+ end if;
+
+ if not Is_Generic_Actual_Type (Par)
+ or else Is_Tagged_Type (Par)
+ or else Nkind (Parent (Par)) /= N_Subtype_Declaration
+ or else not In_Open_Scopes (Scope (Par))
+ then
+ return Empty;
+
+ else
+ Gen_Par := Generic_Parent_Type (Parent (Par));
+ end if;
+
+ -- If the actual has no generic parent type, the formal is not
+ -- a formal derived type, so nothing to inherit.
+
+ if No (Gen_Par) then
+ return Empty;
+ end if;
+
+ -- If the generic parent type is still the generic type, this is a
+ -- private formal, not a derived formal, and there are no operations
+ -- inherited from the formal.
+
+ if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
+ return Empty;
+ end if;
+
+ Gen_Prim := Collect_Primitive_Operations (Gen_Par);
+
+ Elmt := First_Elmt (Gen_Prim);
+ while Present (Elmt) loop
+ if Chars (Node (Elmt)) = Chars (S) then
+ declare
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+
+ begin
+ F1 := First_Formal (S);
+ F2 := First_Formal (Node (Elmt));
+ while Present (F1)
+ and then Present (F2)
+ loop
+ if Etype (F1) = Etype (F2)
+ or else Etype (F2) = Gen_Par
+ then
+ Next_Formal (F1);
+ Next_Formal (F2);
+ else
+ Next_Elmt (Elmt);
+ exit; -- not the right subprogram
+ end if;
+
+ return Node (Elmt);
+ end loop;
+ end;
+
+ else
+ Next_Elmt (Elmt);
+ end if;
+ end loop;
+
+ raise Program_Error;
+ end Inherited_From_Formal;
+
+ -- Local variables
+
+ Remote : constant Boolean := Is_Remote_Call (N);
+ Actual : Node_Id;
+ Formal : Entity_Id;
+ Orig_Subp : Entity_Id := Empty;
+ Param_Count : Natural := 0;
+ Parent_Formal : Entity_Id;
+ Parent_Subp : Entity_Id;
+ Scop : Entity_Id;
+ Subp : Entity_Id;
+
+ Prev_Orig : Node_Id;
+ -- Original node for an actual, which may have been rewritten. If the
+ -- actual is a function call that has been transformed from a selected
+ -- component, the original node is unanalyzed. Otherwise, it carries
+ -- semantic information used to generate additional actuals.
+
+ CW_Interface_Formals_Present : Boolean := False;
+
+ -- Start of processing for Expand_Call
+
+ begin
+ -- Ignore if previous error
+
+ if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
+ return;
+ end if;
+
+ -- Call using access to subprogram with explicit dereference
+
+ if Nkind (Name (N)) = N_Explicit_Dereference then
+ Subp := Etype (Name (N));
+ Parent_Subp := Empty;
+
+ -- Case of call to simple entry, where the Name is a selected component
+ -- whose prefix is the task, and whose selector name is the entry name
+
+ elsif Nkind (Name (N)) = N_Selected_Component then
+ Subp := Entity (Selector_Name (Name (N)));
+ Parent_Subp := Empty;
+
+ -- Case of call to member of entry family, where Name is an indexed
+ -- component, with the prefix being a selected component giving the
+ -- task and entry family name, and the index being the entry index.
+
+ elsif Nkind (Name (N)) = N_Indexed_Component then
+ Subp := Entity (Selector_Name (Prefix (Name (N))));
+ Parent_Subp := Empty;
+
+ -- Normal case
+
+ else
+ Subp := Entity (Name (N));
+ Parent_Subp := Alias (Subp);
+
+ -- Replace call to Raise_Exception by call to Raise_Exception_Always
+ -- if we can tell that the first parameter cannot possibly be null.
+ -- This helps optimization and also generation of warnings.
+
+ -- We do not do this if Raise_Exception_Always does not exist, which
+ -- can happen in configurable run time profiles which provide only a
+ -- Raise_Exception, which is in fact an unconditional raise anyway.
+
+ if Is_RTE (Subp, RE_Raise_Exception)
+ and then RTE_Available (RE_Raise_Exception_Always)
+ then
+ declare
+ FA : constant Node_Id := Original_Node (First_Actual (N));
+
+ begin
+ -- The case we catch is where the first argument is obtained
+ -- using the Identity attribute (which must always be
+ -- non-null).
+
+ if Nkind (FA) = N_Attribute_Reference
+ and then Attribute_Name (FA) = Name_Identity
+ then
+ Subp := RTE (RE_Raise_Exception_Always);
+ Set_Name (N, New_Occurrence_Of (Subp, Loc));
+ end if;
+ end;
+ end if;
+
+ if Ekind (Subp) = E_Entry then
+ Parent_Subp := Empty;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-345): We have a procedure call as a triggering
+ -- alternative in an asynchronous select or as an entry call in
+ -- a conditional or timed select. Check whether the procedure call
+ -- is a renaming of an entry and rewrite it as an entry call.
+
+ if Ada_Version >= Ada_05
+ and then Nkind (N) = N_Procedure_Call_Statement
+ and then
+ ((Nkind (Parent (N)) = N_Triggering_Alternative
+ and then Triggering_Statement (Parent (N)) = N)
+ or else
+ (Nkind (Parent (N)) = N_Entry_Call_Alternative
+ and then Entry_Call_Statement (Parent (N)) = N))
+ then
+ declare
+ Ren_Decl : Node_Id;
+ Ren_Root : Entity_Id := Subp;
+
+ begin
+ -- This may be a chain of renamings, find the root
+
+ if Present (Alias (Ren_Root)) then
+ Ren_Root := Alias (Ren_Root);
+ end if;
+
+ if Present (Original_Node (Parent (Parent (Ren_Root)))) then
+ Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
+
+ if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
+ Rewrite (N,
+ Make_Entry_Call_Statement (Loc,
+ Name =>
+ New_Copy_Tree (Name (Ren_Decl)),
+ Parameter_Associations =>
+ New_Copy_List_Tree (Parameter_Associations (N))));
+
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- First step, compute extra actuals, corresponding to any
+ -- Extra_Formals present. Note that we do not access Extra_Formals
+ -- directly, instead we simply note the presence of the extra
+ -- formals as we process the regular formals and collect the
+ -- corresponding actuals in Extra_Actuals.
+
+ -- We also generate any required range checks for actuals as we go
+ -- through the loop, since this is a convenient place to do this.
+
+ Formal := First_Formal (Subp);
+ Actual := First_Actual (N);
+ Param_Count := 1;
+ while Present (Formal) loop
+
+ -- Generate range check if required (not activated yet ???)
+
+-- if Do_Range_Check (Actual) then
+-- Set_Do_Range_Check (Actual, False);
+-- Generate_Range_Check
+-- (Actual, Etype (Formal), CE_Range_Check_Failed);
+-- end if;
+
+ -- Prepare to examine current entry
+
+ Prev := Actual;
+ Prev_Orig := Original_Node (Prev);
+
+ -- The original actual may have been a call written in prefix
+ -- form, and rewritten before analysis.
+
+ if not Analyzed (Prev_Orig)
+ and then Nkind_In (Actual, N_Function_Call, N_Identifier)
+ then
+ Prev_Orig := Prev;
+ end if;
+
+ -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
+ -- to expand it in a further round.
+
+ CW_Interface_Formals_Present :=
+ CW_Interface_Formals_Present
+ or else
+ (Ekind (Etype (Formal)) = E_Class_Wide_Type
+ and then Is_Interface (Etype (Etype (Formal))))
+ or else
+ (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
+ and then Is_Interface (Directly_Designated_Type
+ (Etype (Etype (Formal)))));
+
+ -- Create possible extra actual for constrained case. Usually, the
+ -- extra actual is of the form actual'constrained, but since this
+ -- attribute is only available for unconstrained records, TRUE is
+ -- expanded if the type of the formal happens to be constrained (for
+ -- instance when this procedure is inherited from an unconstrained
+ -- record to a constrained one) or if the actual has no discriminant
+ -- (its type is constrained). An exception to this is the case of a
+ -- private type without discriminants. In this case we pass FALSE
+ -- because the object has underlying discriminants with defaults.
+
+ if Present (Extra_Constrained (Formal)) then
+ if Ekind (Etype (Prev)) in Private_Kind
+ and then not Has_Discriminants (Base_Type (Etype (Prev)))
+ then
+ Add_Extra_Actual (
+ New_Occurrence_Of (Standard_False, Loc),
+ Extra_Constrained (Formal));
+
+ elsif Is_Constrained (Etype (Formal))
+ or else not Has_Discriminants (Etype (Prev))
+ then
+ Add_Extra_Actual (
+ New_Occurrence_Of (Standard_True, Loc),
+ Extra_Constrained (Formal));
+
+ -- Do not produce extra actuals for Unchecked_Union parameters.
+ -- Jump directly to the end of the loop.
+
+ elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
+ goto Skip_Extra_Actual_Generation;
+
+ else
+ -- If the actual is a type conversion, then the constrained
+ -- test applies to the actual, not the target type.
+
+ declare
+ Act_Prev : Node_Id;
+
+ begin
+ -- Test for unchecked conversions as well, which can occur
+ -- as out parameter actuals on calls to stream procedures.
+
+ Act_Prev := Prev;
+ while Nkind_In (Act_Prev, N_Type_Conversion,
+ N_Unchecked_Type_Conversion)
+ loop
+ Act_Prev := Expression (Act_Prev);
+ end loop;
+
+ -- If the expression is a conversion of a dereference,
+ -- this is internally generated code that manipulates
+ -- addresses, e.g. when building interface tables. No
+ -- check should occur in this case, and the discriminated
+ -- object is not directly a hand.
+
+ if not Comes_From_Source (Actual)
+ and then Nkind (Actual) = N_Unchecked_Type_Conversion
+ and then Nkind (Act_Prev) = N_Explicit_Dereference
+ then
+ Add_Extra_Actual
+ (New_Occurrence_Of (Standard_False, Loc),
+ Extra_Constrained (Formal));
+
+ else
+ Add_Extra_Actual
+ (Make_Attribute_Reference (Sloc (Prev),
+ Prefix =>
+ Duplicate_Subexpr_No_Checks
+ (Act_Prev, Name_Req => True),
+ Attribute_Name => Name_Constrained),
+ Extra_Constrained (Formal));
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Create possible extra actual for accessibility level
+
+ if Present (Extra_Accessibility (Formal)) then
+
+ -- Ada 2005 (AI-252): If the actual was rewritten as an Access
+ -- attribute, then the original actual may be an aliased object
+ -- occurring as the prefix in a call using "Object.Operation"
+ -- notation. In that case we must pass the level of the object,
+ -- so Prev_Orig is reset to Prev and the attribute will be
+ -- processed by the code for Access attributes further below.
+
+ if Prev_Orig /= Prev
+ and then Nkind (Prev) = N_Attribute_Reference
+ and then
+ Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
+ and then Is_Aliased_View (Prev_Orig)
+ then
+ Prev_Orig := Prev;
+ end if;
+
+ -- Ada 2005 (AI-251): Thunks must propagate the extra actuals
+ -- of accessibility levels.
+
+ if Ekind (Current_Scope) in Subprogram_Kind
+ and then Is_Thunk (Current_Scope)
+ then
+ declare
+ Parm_Ent : Entity_Id;
+
+ begin
+ if Is_Controlling_Actual (Actual) then
+
+ -- Find the corresponding actual of the thunk
+
+ Parm_Ent := First_Entity (Current_Scope);
+ for J in 2 .. Param_Count loop
+ Next_Entity (Parm_Ent);
+ end loop;
+
+ else pragma Assert (Is_Entity_Name (Actual));
+ Parm_Ent := Entity (Actual);
+ end if;
+
+ Add_Extra_Actual
+ (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
+ Extra_Accessibility (Formal));
+ end;
+
+ elsif Is_Entity_Name (Prev_Orig) then
+
+ -- When passing an access parameter, or a renaming of an access
+ -- parameter, as the actual to another access parameter we need
+ -- to pass along the actual's own access level parameter. This
+ -- is done if we are within the scope of the formal access
+ -- parameter (if this is an inlined body the extra formal is
+ -- irrelevant).
+
+ if (Is_Formal (Entity (Prev_Orig))
+ or else
+ (Present (Renamed_Object (Entity (Prev_Orig)))
+ and then
+ Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
+ and then
+ Is_Formal
+ (Entity (Renamed_Object (Entity (Prev_Orig))))))
+ and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
+ and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
+ then
+ declare
+ Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
+
+ begin
+ pragma Assert (Present (Parm_Ent));
+
+ if Present (Extra_Accessibility (Parm_Ent)) then
+ Add_Extra_Actual
+ (New_Occurrence_Of
+ (Extra_Accessibility (Parm_Ent), Loc),
+ Extra_Accessibility (Formal));
+
+ -- If the actual access parameter does not have an
+ -- associated extra formal providing its scope level,
+ -- then treat the actual as having library-level
+ -- accessibility.
+
+ else
+ Add_Extra_Actual
+ (Make_Integer_Literal (Loc,
+ Intval => Scope_Depth (Standard_Standard)),
+ Extra_Accessibility (Formal));
+ end if;
+ end;
+
+ -- The actual is a normal access value, so just pass the level
+ -- of the actual's access type.
+
+ else
+ Add_Extra_Actual
+ (Make_Integer_Literal (Loc,
+ Intval => Type_Access_Level (Etype (Prev_Orig))),
+ Extra_Accessibility (Formal));
+ end if;
+
+ -- All cases other than thunks
+
+ else
+ case Nkind (Prev_Orig) is
+
+ when N_Attribute_Reference =>
+ case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
+
+ -- For X'Access, pass on the level of the prefix X
+
+ when Attribute_Access =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Intval =>
+ Object_Access_Level (Prefix (Prev_Orig))),
+ Extra_Accessibility (Formal));
+
+ -- Treat the unchecked attributes as library-level
+
+ when Attribute_Unchecked_Access |
+ Attribute_Unrestricted_Access =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Intval => Scope_Depth (Standard_Standard)),
+ Extra_Accessibility (Formal));
+
+ -- No other cases of attributes returning access
+ -- values that can be passed to access parameters
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ -- For allocators we pass the level of the execution of
+ -- the called subprogram, which is one greater than the
+ -- current scope level.
+
+ when N_Allocator =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Scope_Depth (Current_Scope) + 1),
+ Extra_Accessibility (Formal));
+
+ -- For other cases we simply pass the level of the
+ -- actual's access type.
+
+ when others =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Intval => Type_Access_Level (Etype (Prev_Orig))),
+ Extra_Accessibility (Formal));
+
+ end case;
+ end if;
+ end if;
+
+ -- Perform the check of 4.6(49) that prevents a null value from being
+ -- passed as an actual to an access parameter. Note that the check is
+ -- elided in the common cases of passing an access attribute or
+ -- access parameter as an actual. Also, we currently don't enforce
+ -- this check for expander-generated actuals and when -gnatdj is set.
+
+ if Ada_Version >= Ada_05 then
+
+ -- Ada 2005 (AI-231): Check null-excluding access types
+
+ if Is_Access_Type (Etype (Formal))
+ and then Can_Never_Be_Null (Etype (Formal))
+ and then Nkind (Prev) /= N_Raise_Constraint_Error
+ and then (Known_Null (Prev)
+ or else not Can_Never_Be_Null (Etype (Prev)))
+ then
+ Install_Null_Excluding_Check (Prev);
+ end if;
+
+ -- Ada_Version < Ada_05
+
+ else
+ if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
+ or else Access_Checks_Suppressed (Subp)
+ then
+ null;
+
+ elsif Debug_Flag_J then
+ null;
+
+ elsif not Comes_From_Source (Prev) then
+ null;
+
+ elsif Is_Entity_Name (Prev)
+ and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
+ then
+ null;
+
+ elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
+ null;
+
+ -- Suppress null checks when passing to access parameters of Java
+ -- and CIL subprograms. (Should this be done for other foreign
+ -- conventions as well ???)
+
+ elsif Convention (Subp) = Convention_Java
+ or else Convention (Subp) = Convention_CIL
+ then
+ null;
+
+ else
+ Install_Null_Excluding_Check (Prev);
+ end if;
+ end if;
+
+ -- Perform appropriate validity checks on parameters that
+ -- are entities.
+
+ if Validity_Checks_On then
+ if (Ekind (Formal) = E_In_Parameter
+ and then Validity_Check_In_Params)
+ or else
+ (Ekind (Formal) = E_In_Out_Parameter
+ and then Validity_Check_In_Out_Params)
+ then
+ -- If the actual is an indexed component of a packed type (or
+ -- is an indexed or selected component whose prefix recursively
+ -- meets this condition), it has not been expanded yet. It will
+ -- be copied in the validity code that follows, and has to be
+ -- expanded appropriately, so reanalyze it.
+
+ -- What we do is just to unset analyzed bits on prefixes till
+ -- we reach something that does not have a prefix.
+
+ declare
+ Nod : Node_Id;
+
+ begin
+ Nod := Actual;
+ while Nkind_In (Nod, N_Indexed_Component,
+ N_Selected_Component)
+ loop
+ Set_Analyzed (Nod, False);
+ Nod := Prefix (Nod);
+ end loop;
+ end;
+
+ Ensure_Valid (Actual);
+ end if;
+ end if;
+
+ -- For IN OUT and OUT parameters, ensure that subscripts are valid
+ -- since this is a left side reference. We only do this for calls
+ -- from the source program since we assume that compiler generated
+ -- calls explicitly generate any required checks. We also need it
+ -- only if we are doing standard validity checks, since clearly it
+ -- is not needed if validity checks are off, and in subscript
+ -- validity checking mode, all indexed components are checked with
+ -- a call directly from Expand_N_Indexed_Component.
+
+ if Comes_From_Source (N)
+ and then Ekind (Formal) /= E_In_Parameter
+ and then Validity_Checks_On
+ and then Validity_Check_Default
+ and then not Validity_Check_Subscripts
+ then
+ Check_Valid_Lvalue_Subscripts (Actual);
+ end if;
+
+ -- Mark any scalar OUT parameter that is a simple variable as no
+ -- longer known to be valid (unless the type is always valid). This
+ -- reflects the fact that if an OUT parameter is never set in a
+ -- procedure, then it can become invalid on the procedure return.
+
+ if Ekind (Formal) = E_Out_Parameter
+ and then Is_Entity_Name (Actual)
+ and then Ekind (Entity (Actual)) = E_Variable
+ and then not Is_Known_Valid (Etype (Actual))
+ then
+ Set_Is_Known_Valid (Entity (Actual), False);
+ end if;
+
+ -- For an OUT or IN OUT parameter, if the actual is an entity, then
+ -- clear current values, since they can be clobbered. We are probably
+ -- doing this in more places than we need to, but better safe than
+ -- sorry when it comes to retaining bad current values!
+
+ if Ekind (Formal) /= E_In_Parameter
+ and then Is_Entity_Name (Actual)
+ and then Present (Entity (Actual))
+ then
+ declare
+ Ent : constant Entity_Id := Entity (Actual);
+ Sav : Node_Id;
+
+ begin
+ -- For an OUT or IN OUT parameter that is an assignable entity,
+ -- we do not want to clobber the Last_Assignment field, since
+ -- if it is set, it was precisely because it is indeed an OUT
+ -- or IN OUT parameter!
+
+ if (Ekind (Formal) = E_Out_Parameter
+ or else
+ Ekind (Formal) = E_In_Out_Parameter)
+ and then Is_Assignable (Ent)
+ then
+ Sav := Last_Assignment (Ent);
+ Kill_Current_Values (Ent);
+ Set_Last_Assignment (Ent, Sav);
+
+ -- For all other cases, just kill the current values
+
+ else
+ Kill_Current_Values (Ent);
+ end if;
+ end;
+ end if;
+
+ -- If the formal is class wide and the actual is an aggregate, force
+ -- evaluation so that the back end who does not know about class-wide
+ -- type, does not generate a temporary of the wrong size.
+
+ if not Is_Class_Wide_Type (Etype (Formal)) then
+ null;
+
+ elsif Nkind (Actual) = N_Aggregate
+ or else (Nkind (Actual) = N_Qualified_Expression
+ and then Nkind (Expression (Actual)) = N_Aggregate)
+ then
+ Force_Evaluation (Actual);
+ end if;
+
+ -- In a remote call, if the formal is of a class-wide type, check
+ -- that the actual meets the requirements described in E.4(18).
+
+ if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
+ Insert_Action (Actual,
+ Make_Transportable_Check (Loc,
+ Duplicate_Subexpr_Move_Checks (Actual)));
+ end if;
+
+ -- This label is required when skipping extra actual generation for
+ -- Unchecked_Union parameters.
+
+ <<Skip_Extra_Actual_Generation>>
+
+ Param_Count := Param_Count + 1;
+ Next_Actual (Actual);
+ Next_Formal (Formal);
+ end loop;
+
+ -- If we are expanding a rhs of an assignment we need to check if tag
+ -- propagation is needed. You might expect this processing to be in
+ -- Analyze_Assignment but has to be done earlier (bottom-up) because the
+ -- assignment might be transformed to a declaration for an unconstrained
+ -- value if the expression is classwide.
+
+ if Nkind (N) = N_Function_Call
+ and then Is_Tag_Indeterminate (N)
+ and then Is_Entity_Name (Name (N))
+ then
+ declare
+ Ass : Node_Id := Empty;
+
+ begin
+ if Nkind (Parent (N)) = N_Assignment_Statement then
+ Ass := Parent (N);
+
+ elsif Nkind (Parent (N)) = N_Qualified_Expression
+ and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ then
+ Ass := Parent (Parent (N));
+
+ elsif Nkind (Parent (N)) = N_Explicit_Dereference
+ and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ then
+ Ass := Parent (Parent (N));
+ end if;
+
+ if Present (Ass)
+ and then Is_Class_Wide_Type (Etype (Name (Ass)))
+ then
+ if Is_Access_Type (Etype (N)) then
+ if Designated_Type (Etype (N)) /=
+ Root_Type (Etype (Name (Ass)))
+ then
+ Error_Msg_NE
+ ("tag-indeterminate expression "
+ & " must have designated type& (RM 5.2 (6))",
+ N, Root_Type (Etype (Name (Ass))));
+ else
+ Propagate_Tag (Name (Ass), N);
+ end if;
+
+ elsif Etype (N) /= Root_Type (Etype (Name (Ass))) then
+ Error_Msg_NE
+ ("tag-indeterminate expression must have type&"
+ & "(RM 5.2 (6))", N, Root_Type (Etype (Name (Ass))));
+
+ else
+ Propagate_Tag (Name (Ass), N);
+ end if;
+
+ -- The call will be rewritten as a dispatching call, and
+ -- expanded as such.
+
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
+ -- it to point to the correct secondary virtual table
+
+ if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement)
+ and then CW_Interface_Formals_Present
+ then
+ Expand_Interface_Actuals (N);
+ end if;
+
+ -- Deals with Dispatch_Call if we still have a call, before expanding
+ -- extra actuals since this will be done on the re-analysis of the
+ -- dispatching call. Note that we do not try to shorten the actual
+ -- list for a dispatching call, it would not make sense to do so.
+ -- Expansion of dispatching calls is suppressed when VM_Target, because
+ -- the VM back-ends directly handle the generation of dispatching
+ -- calls and would have to undo any expansion to an indirect call.
+
+ if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement)
+ and then Present (Controlling_Argument (N))
+ and then VM_Target = No_VM
+ then
+ Expand_Dispatching_Call (N);
+
+ -- The following return is worrisome. Is it really OK to
+ -- skip all remaining processing in this procedure ???
+
+ return;
+
+ -- Similarly, expand calls to RCI subprograms on which pragma
+ -- All_Calls_Remote applies. The rewriting will be reanalyzed
+ -- later. Do this only when the call comes from source since we do
+ -- not want such a rewritting to occur in expanded code.
+
+ elsif Is_All_Remote_Call (N) then
+ Expand_All_Calls_Remote_Subprogram_Call (N);
+
+ -- Similarly, do not add extra actuals for an entry call whose entity
+ -- is a protected procedure, or for an internal protected subprogram
+ -- call, because it will be rewritten as a protected subprogram call
+ -- and reanalyzed (see Expand_Protected_Subprogram_Call).
+
+ elsif Is_Protected_Type (Scope (Subp))
+ and then (Ekind (Subp) = E_Procedure
+ or else Ekind (Subp) = E_Function)
+ then
+ null;
+
+ -- During that loop we gathered the extra actuals (the ones that
+ -- correspond to Extra_Formals), so now they can be appended.
+
+ else
+ while Is_Non_Empty_List (Extra_Actuals) loop
+ Add_Actual_Parameter (Remove_Head (Extra_Actuals));
+ end loop;
+ end if;
+
+ -- At this point we have all the actuals, so this is the point at
+ -- which the various expansion activities for actuals is carried out.
+
+ Expand_Actuals (N, Subp);
+
+ -- If the subprogram is a renaming, or if it is inherited, replace it
+ -- in the call with the name of the actual subprogram being called.
+ -- If this is a dispatching call, the run-time decides what to call.
+ -- The Alias attribute does not apply to entries.
+
+ if Nkind (N) /= N_Entry_Call_Statement
+ and then No (Controlling_Argument (N))
+ and then Present (Parent_Subp)
+ then
+ if Present (Inherited_From_Formal (Subp)) then
+ Parent_Subp := Inherited_From_Formal (Subp);
+ else
+ while Present (Alias (Parent_Subp)) loop
+ Parent_Subp := Alias (Parent_Subp);
+ end loop;
+ end if;
+
+ -- The below setting of Entity is suspect, see F109-018 discussion???
+
+ Set_Entity (Name (N), Parent_Subp);
+
+ if Is_Abstract_Subprogram (Parent_Subp)
+ and then not In_Instance
+ then
+ Error_Msg_NE
+ ("cannot call abstract subprogram &!", Name (N), Parent_Subp);
+ end if;
+
+ -- Add an explicit conversion for parameter of the derived type.
+ -- This is only done for scalar and access in-parameters. Others
+ -- have been expanded in expand_actuals.
+
+ Formal := First_Formal (Subp);
+ Parent_Formal := First_Formal (Parent_Subp);
+ Actual := First_Actual (N);
+
+ -- It is not clear that conversion is needed for intrinsic
+ -- subprograms, but it certainly is for those that are user-
+ -- defined, and that can be inherited on derivation, namely
+ -- unchecked conversion and deallocation.
+ -- General case needs study ???
+
+ if not Is_Intrinsic_Subprogram (Parent_Subp)
+ or else Is_Generic_Instance (Parent_Subp)
+ then
+ while Present (Formal) loop
+ if Etype (Formal) /= Etype (Parent_Formal)
+ and then Is_Scalar_Type (Etype (Formal))
+ and then Ekind (Formal) = E_In_Parameter
+ and then
+ not Subtypes_Statically_Match
+ (Etype (Parent_Formal), Etype (Actual))
+ and then not Raises_Constraint_Error (Actual)
+ then
+ Rewrite (Actual,
+ OK_Convert_To (Etype (Parent_Formal),
+ Relocate_Node (Actual)));
+
+ Analyze (Actual);
+ Resolve (Actual, Etype (Parent_Formal));
+ Enable_Range_Check (Actual);
+
+ elsif Is_Access_Type (Etype (Formal))
+ and then Base_Type (Etype (Parent_Formal)) /=
+ Base_Type (Etype (Actual))
+ then
+ if Ekind (Formal) /= E_In_Parameter then
+ Rewrite (Actual,
+ Convert_To (Etype (Parent_Formal),
+ Relocate_Node (Actual)));
+
+ Analyze (Actual);
+ Resolve (Actual, Etype (Parent_Formal));
+
+ elsif
+ Ekind (Etype (Parent_Formal)) = E_Anonymous_Access_Type
+ and then Designated_Type (Etype (Parent_Formal))
+ /=
+ Designated_Type (Etype (Actual))
+ and then not Is_Controlling_Formal (Formal)
+ then
+ -- This unchecked conversion is not necessary unless
+ -- inlining is enabled, because in that case the type
+ -- mismatch may become visible in the body about to be
+ -- inlined.
+
+ Rewrite (Actual,
+ Unchecked_Convert_To (Etype (Parent_Formal),
+ Relocate_Node (Actual)));
+
+ Analyze (Actual);
+ Resolve (Actual, Etype (Parent_Formal));
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Formal (Parent_Formal);
+ Next_Actual (Actual);
+ end loop;
+ end if;
+
+ Orig_Subp := Subp;
+ Subp := Parent_Subp;
+ end if;
+
+ -- Check for violation of No_Abort_Statements
+
+ if Is_RTE (Subp, RE_Abort_Task) then
+ Check_Restriction (No_Abort_Statements, N);
+
+ -- Check for violation of No_Dynamic_Attachment
+
+ elsif RTU_Loaded (Ada_Interrupts)
+ and then (Is_RTE (Subp, RE_Is_Reserved) or else
+ Is_RTE (Subp, RE_Is_Attached) or else
+ Is_RTE (Subp, RE_Current_Handler) or else
+ Is_RTE (Subp, RE_Attach_Handler) or else
+ Is_RTE (Subp, RE_Exchange_Handler) or else
+ Is_RTE (Subp, RE_Detach_Handler) or else
+ Is_RTE (Subp, RE_Reference))
+ then
+ Check_Restriction (No_Dynamic_Attachment, N);
+ end if;
+
+ -- Deal with case where call is an explicit dereference
+
+ if Nkind (Name (N)) = N_Explicit_Dereference then
+
+ -- Handle case of access to protected subprogram type
+
+ if Is_Access_Protected_Subprogram_Type
+ (Base_Type (Etype (Prefix (Name (N)))))
+ then
+ -- If this is a call through an access to protected operation,
+ -- the prefix has the form (object'address, operation'access).
+ -- Rewrite as a for other protected calls: the object is the
+ -- first parameter of the list of actuals.
+
+ declare
+ Call : Node_Id;
+ Parm : List_Id;
+ Nam : Node_Id;
+ Obj : Node_Id;
+ Ptr : constant Node_Id := Prefix (Name (N));
+
+ T : constant Entity_Id :=
+ Equivalent_Type (Base_Type (Etype (Ptr)));
+
+ D_T : constant Entity_Id :=
+ Designated_Type (Base_Type (Etype (Ptr)));
+
+ begin
+ Obj :=
+ Make_Selected_Component (Loc,
+ Prefix => Unchecked_Convert_To (T, Ptr),
+ Selector_Name =>
+ New_Occurrence_Of (First_Entity (T), Loc));
+
+ Nam :=
+ Make_Selected_Component (Loc,
+ Prefix => Unchecked_Convert_To (T, Ptr),
+ Selector_Name =>
+ New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
+
+ Nam :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => Nam);
+
+ if Present (Parameter_Associations (N)) then
+ Parm := Parameter_Associations (N);
+ else
+ Parm := New_List;
+ end if;
+
+ Prepend (Obj, Parm);
+
+ if Etype (D_T) = Standard_Void_Type then
+ Call :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => Nam,
+ Parameter_Associations => Parm);
+ else
+ Call :=
+ Make_Function_Call (Loc,
+ Name => Nam,
+ Parameter_Associations => Parm);
+ end if;
+
+ Set_First_Named_Actual (Call, First_Named_Actual (N));
+ Set_Etype (Call, Etype (D_T));
+
+ -- We do not re-analyze the call to avoid infinite recursion.
+ -- We analyze separately the prefix and the object, and set
+ -- the checks on the prefix that would otherwise be emitted
+ -- when resolving a call.
+
+ Rewrite (N, Call);
+ Analyze (Nam);
+ Apply_Access_Check (Nam);
+ Analyze (Obj);
+ return;
+ end;
+ end if;
+ end if;
+
+ -- If this is a call to an intrinsic subprogram, then perform the
+ -- appropriate expansion to the corresponding tree node and we
+ -- are all done (since after that the call is gone!)
+
+ -- In the case where the intrinsic is to be processed by the back end,
+ -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
+ -- since the idea in this case is to pass the call unchanged.
+ -- If the intrinsic is an inherited unchecked conversion, and the
+ -- derived type is the target type of the conversion, we must retain
+ -- it as the return type of the expression. Otherwise the expansion
+ -- below, which uses the parent operation, will yield the wrong type.
+
+ if Is_Intrinsic_Subprogram (Subp) then
+ Expand_Intrinsic_Call (N, Subp);
+
+ if Nkind (N) = N_Unchecked_Type_Conversion
+ and then Parent_Subp /= Orig_Subp
+ and then Etype (Parent_Subp) /= Etype (Orig_Subp)
+ then
+ Set_Etype (N, Etype (Orig_Subp));
+ end if;
+
+ return;
+ end if;
+
+ if Ekind (Subp) = E_Function
+ or else Ekind (Subp) = E_Procedure
+ then
+ if Is_Inlined (Subp) then
+
+ Inlined_Subprogram : declare
+ Bod : Node_Id;
+ Must_Inline : Boolean := False;
+ Spec : constant Node_Id := Unit_Declaration_Node (Subp);
+ Scop : constant Entity_Id := Scope (Subp);
+
+ function In_Unfrozen_Instance return Boolean;
+ -- If the subprogram comes from an instance in the same
+ -- unit, and the instance is not yet frozen, inlining might
+ -- trigger order-of-elaboration problems in gigi.
+
+ --------------------------
+ -- In_Unfrozen_Instance --
+ --------------------------
+
+ function In_Unfrozen_Instance return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Scop;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Generic_Instance (S)
+ and then Present (Freeze_Node (S))
+ and then not Analyzed (Freeze_Node (S))
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Unfrozen_Instance;
+
+ -- Start of processing for Inlined_Subprogram
+
+ begin
+ -- Verify that the body to inline has already been seen, and
+ -- that if the body is in the current unit the inlining does
+ -- not occur earlier. This avoids order-of-elaboration problems
+ -- in the back end.
+
+ -- This should be documented in sinfo/einfo ???
+
+ if No (Spec)
+ or else Nkind (Spec) /= N_Subprogram_Declaration
+ or else No (Body_To_Inline (Spec))
+ then
+ Must_Inline := False;
+
+ -- If this an inherited function that returns a private
+ -- type, do not inline if the full view is an unconstrained
+ -- array, because such calls cannot be inlined.
+
+ elsif Present (Orig_Subp)
+ and then Is_Array_Type (Etype (Orig_Subp))
+ and then not Is_Constrained (Etype (Orig_Subp))
+ then
+ Must_Inline := False;
+
+ elsif In_Unfrozen_Instance then
+ Must_Inline := False;
+
+ else
+ Bod := Body_To_Inline (Spec);
+
+ if (In_Extended_Main_Code_Unit (N)
+ or else In_Extended_Main_Code_Unit (Parent (N))
+ or else Has_Pragma_Inline_Always (Subp))
+ and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
+ or else
+ Earlier_In_Extended_Unit (Sloc (Bod), Loc))
+ then
+ Must_Inline := True;
+
+ -- If we are compiling a package body that is not the main
+ -- unit, it must be for inlining/instantiation purposes,
+ -- in which case we inline the call to insure that the same
+ -- temporaries are generated when compiling the body by
+ -- itself. Otherwise link errors can occur.
+
+ -- If the function being called is itself in the main unit,
+ -- we cannot inline, because there is a risk of double
+ -- elaboration and/or circularity: the inlining can make
+ -- visible a private entity in the body of the main unit,
+ -- that gigi will see before its sees its proper definition.
+
+ elsif not (In_Extended_Main_Code_Unit (N))
+ and then In_Package_Body
+ then
+ Must_Inline := not In_Extended_Main_Source_Unit (Subp);
+ end if;
+ end if;
+
+ if Must_Inline then
+ Expand_Inlined_Call (N, Subp, Orig_Subp);
+
+ else
+ -- Let the back end handle it
+
+ Add_Inlined_Body (Subp);
+
+ if Front_End_Inlining
+ and then Nkind (Spec) = N_Subprogram_Declaration
+ and then (In_Extended_Main_Code_Unit (N))
+ and then No (Body_To_Inline (Spec))
+ and then not Has_Completion (Subp)
+ and then In_Same_Extended_Unit (Sloc (Spec), Loc)
+ then
+ Cannot_Inline
+ ("cannot inline& (body not seen yet)?",
+ N, Subp);
+ end if;
+ end if;
+ end Inlined_Subprogram;
+ end if;
+ end if;
+
+ -- Check for a protected subprogram. This is either an intra-object
+ -- call, or a protected function call. Protected procedure calls are
+ -- rewritten as entry calls and handled accordingly.
+
+ -- In Ada 2005, this may be an indirect call to an access parameter
+ -- that is an access_to_subprogram. In that case the anonymous type
+ -- has a scope that is a protected operation, but the call is a
+ -- regular one.
+
+ Scop := Scope (Subp);
+
+ if Nkind (N) /= N_Entry_Call_Statement
+ and then Is_Protected_Type (Scop)
+ and then Ekind (Subp) /= E_Subprogram_Type
+ then
+ -- If the call is an internal one, it is rewritten as a call to
+ -- to the corresponding unprotected subprogram.
+
+ Expand_Protected_Subprogram_Call (N, Subp, Scop);
+ end if;
+
+ -- Functions returning controlled objects need special attention
+ -- If the return type is limited the context is an initialization
+ -- and different processing applies.
+
+ if Controlled_Type (Etype (Subp))
+ and then not Is_Inherently_Limited_Type (Etype (Subp))
+ and then not Is_Limited_Interface (Etype (Subp))
+ then
+ Expand_Ctrl_Function_Call (N);
+ end if;
+
+ -- Test for First_Optional_Parameter, and if so, truncate parameter
+ -- list if there are optional parameters at the trailing end.
+ -- Note we never delete procedures for call via a pointer.
+
+ if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
+ and then Present (First_Optional_Parameter (Subp))
+ then
+ declare
+ Last_Keep_Arg : Node_Id;
+
+ begin
+ -- Last_Keep_Arg will hold the last actual that should be
+ -- retained. If it remains empty at the end, it means that
+ -- all parameters are optional.
+
+ Last_Keep_Arg := Empty;
+
+ -- Find first optional parameter, must be present since we
+ -- checked the validity of the parameter before setting it.
+
+ Formal := First_Formal (Subp);
+ Actual := First_Actual (N);
+ while Formal /= First_Optional_Parameter (Subp) loop
+ Last_Keep_Arg := Actual;
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+
+ -- We have Formal and Actual pointing to the first potentially
+ -- droppable argument. We can drop all the trailing arguments
+ -- whose actual matches the default. Note that we know that all
+ -- remaining formals have defaults, because we checked that this
+ -- requirement was met before setting First_Optional_Parameter.
+
+ -- We use Fully_Conformant_Expressions to check for identity
+ -- between formals and actuals, which may miss some cases, but
+ -- on the other hand, this is only an optimization (if we fail
+ -- to truncate a parameter it does not affect functionality).
+ -- So if the default is 3 and the actual is 1+2, we consider
+ -- them unequal, which hardly seems worrisome.
+
+ while Present (Formal) loop
+ if not Fully_Conformant_Expressions
+ (Actual, Default_Value (Formal))
+ then
+ Last_Keep_Arg := Actual;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+
+ -- If no arguments, delete entire list, this is the easy case
+
+ if No (Last_Keep_Arg) then
+ Set_Parameter_Associations (N, No_List);
+ Set_First_Named_Actual (N, Empty);
+
+ -- Case where at the last retained argument is positional. This
+ -- is also an easy case, since the retained arguments are already
+ -- in the right form, and we don't need to worry about the order
+ -- of arguments that get eliminated.
+
+ elsif Is_List_Member (Last_Keep_Arg) then
+ while Present (Next (Last_Keep_Arg)) loop
+ Discard_Node (Remove_Next (Last_Keep_Arg));
+ end loop;
+
+ Set_First_Named_Actual (N, Empty);
+
+ -- This is the annoying case where the last retained argument
+ -- is a named parameter. Since the original arguments are not
+ -- in declaration order, we may have to delete some fairly
+ -- random collection of arguments.
+
+ else
+ declare
+ Temp : Node_Id;
+ Passoc : Node_Id;
+
+ begin
+ -- First step, remove all the named parameters from the
+ -- list (they are still chained using First_Named_Actual
+ -- and Next_Named_Actual, so we have not lost them!)
+
+ Temp := First (Parameter_Associations (N));
+
+ -- Case of all parameters named, remove them all
+
+ if Nkind (Temp) = N_Parameter_Association then
+ while Is_Non_Empty_List (Parameter_Associations (N)) loop
+ Temp := Remove_Head (Parameter_Associations (N));
+ end loop;
+
+ -- Case of mixed positional/named, remove named parameters
+
+ else
+ while Nkind (Next (Temp)) /= N_Parameter_Association loop
+ Next (Temp);
+ end loop;
+
+ while Present (Next (Temp)) loop
+ Remove (Next (Temp));
+ end loop;
+ end if;
+
+ -- Now we loop through the named parameters, till we get
+ -- to the last one to be retained, adding them to the list.
+ -- Note that the Next_Named_Actual list does not need to be
+ -- touched since we are only reordering them on the actual
+ -- parameter association list.
+
+ Passoc := Parent (First_Named_Actual (N));
+ loop
+ Temp := Relocate_Node (Passoc);
+ Append_To
+ (Parameter_Associations (N), Temp);
+ exit when
+ Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
+ Passoc := Parent (Next_Named_Actual (Passoc));
+ end loop;
+
+ Set_Next_Named_Actual (Temp, Empty);
+
+ loop
+ Temp := Next_Named_Actual (Passoc);
+ exit when No (Temp);
+ Set_Next_Named_Actual
+ (Passoc, Next_Named_Actual (Parent (Temp)));
+ end loop;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Special processing for Ada 2005 AI-329, which requires a call to
+ -- Raise_Exception to raise Constraint_Error if the Exception_Id is
+ -- null. Note that we never need to do this in GNAT mode, or if the
+ -- parameter to Raise_Exception is a use of Identity, since in these
+ -- cases we know that the parameter is never null.
+
+ -- Note: We must check that the node has not been inlined. This is
+ -- required because under zfp the Raise_Exception subprogram has the
+ -- pragma inline_always (and hence the call has been expanded above
+ -- into a block containing the code of the subprogram).
+
+ if Ada_Version >= Ada_05
+ and then not GNAT_Mode
+ and then Is_RTE (Subp, RE_Raise_Exception)
+ and then Nkind (N) = N_Procedure_Call_Statement
+ and then (Nkind (First_Actual (N)) /= N_Attribute_Reference
+ or else Attribute_Name (First_Actual (N)) /= Name_Identity)
+ then
+ declare
+ RCE : constant Node_Id :=
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Null_Exception_Id);
+ begin
+ Insert_After (N, RCE);
+ Analyze (RCE);
+ end;
+ end if;
+ end Expand_Call;
+
+ --------------------------
+ -- Expand_Inlined_Call --
+ --------------------------
+
+ procedure Expand_Inlined_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Orig_Subp : Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Is_Predef : constant Boolean :=
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Subp)));
+ Orig_Bod : constant Node_Id :=
+ Body_To_Inline (Unit_Declaration_Node (Subp));
+
+ Blk : Node_Id;
+ Bod : Node_Id;
+ Decl : Node_Id;
+ Decls : constant List_Id := New_List;
+ Exit_Lab : Entity_Id := Empty;
+ F : Entity_Id;
+ A : Node_Id;
+ Lab_Decl : Node_Id;
+ Lab_Id : Node_Id;
+ New_A : Node_Id;
+ Num_Ret : Int := 0;
+ Ret_Type : Entity_Id;
+ Targ : Node_Id;
+ Targ1 : Node_Id;
+ Temp : Entity_Id;
+ Temp_Typ : Entity_Id;
+
+ Is_Unc : constant Boolean :=
+ Is_Array_Type (Etype (Subp))
+ and then not Is_Constrained (Etype (Subp));
+ -- If the type returned by the function is unconstrained and the
+ -- call can be inlined, special processing is required.
+
+ function Is_Null_Procedure return Boolean;
+ -- Predicate to recognize stubbed procedures and null procedures, for
+ -- which there is no need for the full inlining mechanism.
+
+ procedure Make_Exit_Label;
+ -- Build declaration for exit label to be used in Return statements
+
+ function Process_Formals (N : Node_Id) return Traverse_Result;
+ -- Replace occurrence of a formal with the corresponding actual, or
+ -- the thunk generated for it.
+
+ function Process_Sloc (Nod : Node_Id) return Traverse_Result;
+ -- If the call being expanded is that of an internal subprogram,
+ -- set the sloc of the generated block to that of the call itself,
+ -- so that the expansion is skipped by the -next- command in gdb.
+ -- Same processing for a subprogram in a predefined file, e.g.
+ -- Ada.Tags. If Debug_Generated_Code is true, suppress this change
+ -- to simplify our own development.
+
+ procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
+ -- If the function body is a single expression, replace call with
+ -- expression, else insert block appropriately.
+
+ procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
+ -- If procedure body has no local variables, inline body without
+ -- creating block, otherwise rewrite call with block.
+
+ function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
+ -- Determine whether a formal parameter is used only once in Orig_Bod
+
+ -----------------------
+ -- Is_Null_Procedure --
+ -----------------------
+
+ function Is_Null_Procedure return Boolean is
+ Decl : constant Node_Id := Unit_Declaration_Node (Subp);
+
+ begin
+ if Ekind (Subp) /= E_Procedure then
+ return False;
+
+ elsif Nkind (Orig_Bod) /= N_Subprogram_Body then
+ return False;
+
+ -- Check if this is an Ada 2005 null procedure
+
+ elsif Nkind (Decl) = N_Subprogram_Declaration
+ and then Null_Present (Specification (Decl))
+ then
+ return True;
+
+ -- Check if the body contains only a null statement, followed by the
+ -- return statement added during expansion.
+
+ else
+ declare
+ Stat : constant Node_Id :=
+ First
+ (Statements (Handled_Statement_Sequence (Orig_Bod)));
+
+ Stat2 : constant Node_Id := Next (Stat);
+
+ begin
+ return
+ Nkind (Stat) = N_Null_Statement
+ and then
+ (No (Stat2)
+ or else
+ (Nkind (Stat2) = N_Simple_Return_Statement
+ and then No (Next (Stat2))));
+ end;
+ end if;
+ end Is_Null_Procedure;
+
+ ---------------------
+ -- Make_Exit_Label --
+ ---------------------
+
+ procedure Make_Exit_Label is
+ begin
+ -- Create exit label for subprogram if one does not exist yet
+
+ if No (Exit_Lab) then
+ Lab_Id :=
+ Make_Identifier (Loc,
+ Chars => New_Internal_Name ('L'));
+ Set_Entity (Lab_Id,
+ Make_Defining_Identifier (Loc, Chars (Lab_Id)));
+ Exit_Lab := Make_Label (Loc, Lab_Id);
+
+ Lab_Decl :=
+ Make_Implicit_Label_Declaration (Loc,
+ Defining_Identifier => Entity (Lab_Id),
+ Label_Construct => Exit_Lab);
+ end if;
+ end Make_Exit_Label;
+
+ ---------------------
+ -- Process_Formals --
+ ---------------------
+
+ function Process_Formals (N : Node_Id) return Traverse_Result is
+ A : Entity_Id;
+ E : Entity_Id;
+ Ret : Node_Id;
+
+ begin
+ if Is_Entity_Name (N)
+ and then Present (Entity (N))
+ then
+ E := Entity (N);
+
+ if Is_Formal (E)
+ and then Scope (E) = Subp
+ then
+ A := Renamed_Object (E);
+
+ -- Rewrite the occurrence of the formal into an occurrence of
+ -- the actual. Also establish visibility on the proper view of
+ -- the actual's subtype for the body's context (if the actual's
+ -- subtype is private at the call point but its full view is
+ -- visible to the body, then the inlined tree here must be
+ -- analyzed with the full view).
+
+ if Is_Entity_Name (A) then
+ Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
+ Check_Private_View (N);
+
+ elsif Nkind (A) = N_Defining_Identifier then
+ Rewrite (N, New_Occurrence_Of (A, Loc));
+ Check_Private_View (N);
+
+ -- Numeric literal
+
+ else
+ Rewrite (N, New_Copy (A));
+ end if;
+ end if;
+
+ return Skip;
+
+ elsif Nkind (N) = N_Simple_Return_Statement then
+ if No (Expression (N)) then
+ Make_Exit_Label;
+ Rewrite (N,
+ Make_Goto_Statement (Loc,
+ Name => New_Copy (Lab_Id)));
+
+ else
+ if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
+ then
+ -- Function body is a single expression. No need for
+ -- exit label.
+
+ null;
+
+ else
+ Num_Ret := Num_Ret + 1;
+ Make_Exit_Label;
+ end if;
+
+ -- Because of the presence of private types, the views of the
+ -- expression and the context may be different, so place an
+ -- unchecked conversion to the context type to avoid spurious
+ -- errors, eg. when the expression is a numeric literal and
+ -- the context is private. If the expression is an aggregate,
+ -- use a qualified expression, because an aggregate is not a
+ -- legal argument of a conversion.
+
+ if Nkind_In (Expression (N), N_Aggregate, N_Null) then
+ Ret :=
+ Make_Qualified_Expression (Sloc (N),
+ Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
+ Expression => Relocate_Node (Expression (N)));
+ else
+ Ret :=
+ Unchecked_Convert_To
+ (Ret_Type, Relocate_Node (Expression (N)));
+ end if;
+
+ if Nkind (Targ) = N_Defining_Identifier then
+ Rewrite (N,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Targ, Loc),
+ Expression => Ret));
+ else
+ Rewrite (N,
+ Make_Assignment_Statement (Loc,
+ Name => New_Copy (Targ),
+ Expression => Ret));
+ end if;
+
+ Set_Assignment_OK (Name (N));
+
+ if Present (Exit_Lab) then
+ Insert_After (N,
+ Make_Goto_Statement (Loc,
+ Name => New_Copy (Lab_Id)));
+ end if;
+ end if;
+
+ return OK;
+
+ -- Remove pragma Unreferenced since it may refer to formals that
+ -- are not visible in the inlined body, and in any case we will
+ -- not be posting warnings on the inlined body so it is unneeded.
+
+ elsif Nkind (N) = N_Pragma
+ and then Chars (N) = Name_Unreferenced
+ then
+ Rewrite (N, Make_Null_Statement (Sloc (N)));
+ return OK;
+
+ else
+ return OK;
+ end if;
+ end Process_Formals;
+
+ procedure Replace_Formals is new Traverse_Proc (Process_Formals);
+
+ ------------------
+ -- Process_Sloc --
+ ------------------
+
+ function Process_Sloc (Nod : Node_Id) return Traverse_Result is
+ begin
+ if not Debug_Generated_Code then
+ Set_Sloc (Nod, Sloc (N));
+ Set_Comes_From_Source (Nod, False);
+ end if;
+
+ return OK;
+ end Process_Sloc;
+
+ procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
+
+ ---------------------------
+ -- Rewrite_Function_Call --
+ ---------------------------
+
+ procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
+ HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
+ Fst : constant Node_Id := First (Statements (HSS));
+
+ begin
+ -- Optimize simple case: function body is a single return statement,
+ -- which has been expanded into an assignment.
+
+ if Is_Empty_List (Declarations (Blk))
+ and then Nkind (Fst) = N_Assignment_Statement
+ and then No (Next (Fst))
+ then
+
+ -- The function call may have been rewritten as the temporary
+ -- that holds the result of the call, in which case remove the
+ -- now useless declaration.
+
+ if Nkind (N) = N_Identifier
+ and then Nkind (Parent (Entity (N))) = N_Object_Declaration
+ then
+ Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
+ end if;
+
+ Rewrite (N, Expression (Fst));
+
+ elsif Nkind (N) = N_Identifier
+ and then Nkind (Parent (Entity (N))) = N_Object_Declaration
+ then
+ -- The block assigns the result of the call to the temporary
+
+ Insert_After (Parent (Entity (N)), Blk);
+
+ elsif Nkind (Parent (N)) = N_Assignment_Statement
+ and then
+ (Is_Entity_Name (Name (Parent (N)))
+ or else
+ (Nkind (Name (Parent (N))) = N_Explicit_Dereference
+ and then Is_Entity_Name (Prefix (Name (Parent (N))))))
+ then
+ -- Replace assignment with the block
+
+ declare
+ Original_Assignment : constant Node_Id := Parent (N);
+
+ begin
+ -- Preserve the original assignment node to keep the complete
+ -- assignment subtree consistent enough for Analyze_Assignment
+ -- to proceed (specifically, the original Lhs node must still
+ -- have an assignment statement as its parent).
+
+ -- We cannot rely on Original_Node to go back from the block
+ -- node to the assignment node, because the assignment might
+ -- already be a rewrite substitution.
+
+ Discard_Node (Relocate_Node (Original_Assignment));
+ Rewrite (Original_Assignment, Blk);
+ end;
+
+ elsif Nkind (Parent (N)) = N_Object_Declaration then
+ Set_Expression (Parent (N), Empty);
+ Insert_After (Parent (N), Blk);
+
+ elsif Is_Unc then
+ Insert_Before (Parent (N), Blk);
+ end if;
+ end Rewrite_Function_Call;
+
+ ----------------------------
+ -- Rewrite_Procedure_Call --
+ ----------------------------
+
+ procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
+ HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
+ begin
+ -- If there is a transient scope for N, this will be the scope of the
+ -- actions for N, and the statements in Blk need to be within this
+ -- scope. For example, they need to have visibility on the constant
+ -- declarations created for the formals.
+
+ -- If N needs no transient scope, and if there are no declarations in
+ -- the inlined body, we can do a little optimization and insert the
+ -- statements for the body directly after N, and rewrite N to a
+ -- null statement, instead of rewriting N into a full-blown block
+ -- statement.
+
+ if not Scope_Is_Transient
+ and then Is_Empty_List (Declarations (Blk))
+ then
+ Insert_List_After (N, Statements (HSS));
+ Rewrite (N, Make_Null_Statement (Loc));
+ else
+ Rewrite (N, Blk);
+ end if;
+ end Rewrite_Procedure_Call;
+
+ -------------------------
+ -- Formal_Is_Used_Once --
+ -------------------------
+
+ function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
+ Use_Counter : Int := 0;
+
+ function Count_Uses (N : Node_Id) return Traverse_Result;
+ -- Traverse the tree and count the uses of the formal parameter.
+ -- In this case, for optimization purposes, we do not need to
+ -- continue the traversal once more than one use is encountered.
+
+ ----------------
+ -- Count_Uses --
+ ----------------
+
+ function Count_Uses (N : Node_Id) return Traverse_Result is
+ begin
+ -- The original node is an identifier
+
+ if Nkind (N) = N_Identifier
+ and then Present (Entity (N))
+
+ -- Original node's entity points to the one in the copied body
+
+ and then Nkind (Entity (N)) = N_Identifier
+ and then Present (Entity (Entity (N)))
+
+ -- The entity of the copied node is the formal parameter
+
+ and then Entity (Entity (N)) = Formal
+ then
+ Use_Counter := Use_Counter + 1;
+
+ if Use_Counter > 1 then
+
+ -- Denote more than one use and abandon the traversal
+
+ Use_Counter := 2;
+ return Abandon;
+
+ end if;
+ end if;
+
+ return OK;
+ end Count_Uses;
+
+ procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
+
+ -- Start of processing for Formal_Is_Used_Once
+
+ begin
+ Count_Formal_Uses (Orig_Bod);
+ return Use_Counter = 1;
+ end Formal_Is_Used_Once;
+
+ -- Start of processing for Expand_Inlined_Call
+
+ begin
+ -- Check for special case of To_Address call, and if so, just do an
+ -- unchecked conversion instead of expanding the call. Not only is this
+ -- more efficient, but it also avoids problem with order of elaboration
+ -- when address clauses are inlined (address expression elaborated at
+ -- wrong point).
+
+ if Subp = RTE (RE_To_Address) then
+ Rewrite (N,
+ Unchecked_Convert_To
+ (RTE (RE_Address),
+ Relocate_Node (First_Actual (N))));
+ return;
+
+ elsif Is_Null_Procedure then
+ Rewrite (N, Make_Null_Statement (Loc));
+ return;
+ end if;
+
+ -- Check for an illegal attempt to inline a recursive procedure. If the
+ -- subprogram has parameters this is detected when trying to supply a
+ -- binding for parameters that already have one. For parameterless
+ -- subprograms this must be done explicitly.
+
+ if In_Open_Scopes (Subp) then
+ Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
+ Set_Is_Inlined (Subp, False);
+ return;
+ end if;
+
+ if Nkind (Orig_Bod) = N_Defining_Identifier
+ or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
+ then
+ -- Subprogram is a renaming_as_body. Calls appearing after the
+ -- renaming can be replaced with calls to the renamed entity
+ -- directly, because the subprograms are subtype conformant. If
+ -- the renamed subprogram is an inherited operation, we must redo
+ -- the expansion because implicit conversions may be needed.
+
+ Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
+
+ if Present (Alias (Orig_Bod)) then
+ Expand_Call (N);
+ end if;
+
+ return;
+ end if;
+
+ -- Use generic machinery to copy body of inlined subprogram, as if it
+ -- were an instantiation, resetting source locations appropriately, so
+ -- that nested inlined calls appear in the main unit.
+
+ Save_Env (Subp, Empty);
+ Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
+
+ Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
+ Blk :=
+ Make_Block_Statement (Loc,
+ Declarations => Declarations (Bod),
+ Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
+
+ if No (Declarations (Bod)) then
+ Set_Declarations (Blk, New_List);
+ end if;
+
+ -- For the unconstrained case, capture the name of the local
+ -- variable that holds the result. This must be the first declaration
+ -- in the block, because its bounds cannot depend on local variables.
+ -- Otherwise there is no way to declare the result outside of the
+ -- block. Needless to say, in general the bounds will depend on the
+ -- actuals in the call.
+
+ if Is_Unc then
+ Targ1 := Defining_Identifier (First (Declarations (Blk)));
+ end if;
+
+ -- If this is a derived function, establish the proper return type
+
+ if Present (Orig_Subp)
+ and then Orig_Subp /= Subp
+ then
+ Ret_Type := Etype (Orig_Subp);
+ else
+ Ret_Type := Etype (Subp);
+ end if;
+
+ -- Create temporaries for the actuals that are expressions, or that
+ -- are scalars and require copying to preserve semantics.
+
+ F := First_Formal (Subp);
+ A := First_Actual (N);
+ while Present (F) loop
+ if Present (Renamed_Object (F)) then
+ Error_Msg_N ("cannot inline call to recursive subprogram", N);
+ return;
+ end if;
+
+ -- If the argument may be a controlling argument in a call within
+ -- the inlined body, we must preserve its classwide nature to insure
+ -- that dynamic dispatching take place subsequently. If the formal
+ -- has a constraint it must be preserved to retain the semantics of
+ -- the body.
+
+ if Is_Class_Wide_Type (Etype (F))
+ or else (Is_Access_Type (Etype (F))
+ and then
+ Is_Class_Wide_Type (Designated_Type (Etype (F))))
+ then
+ Temp_Typ := Etype (F);
+
+ elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
+ and then Etype (F) /= Base_Type (Etype (F))
+ then
+ Temp_Typ := Etype (F);
+
+ else
+ Temp_Typ := Etype (A);
+ end if;
+
+ -- If the actual is a simple name or a literal, no need to
+ -- create a temporary, object can be used directly.
+
+ -- If the actual is a literal and the formal has its address taken,
+ -- we cannot pass the literal itself as an argument, so its value
+ -- must be captured in a temporary.
+
+ if (Is_Entity_Name (A)
+ and then
+ (not Is_Scalar_Type (Etype (A))
+ or else Ekind (Entity (A)) = E_Enumeration_Literal))
+
+ -- When the actual is an identifier and the corresponding formal
+ -- is used only once in the original body, the formal can be
+ -- substituted directly with the actual parameter.
+
+ or else (Nkind (A) = N_Identifier
+ and then Formal_Is_Used_Once (F))
+
+ or else
+ (Nkind_In (A, N_Real_Literal,
+ N_Integer_Literal,
+ N_Character_Literal)
+ and then not Address_Taken (F))
+ then
+ if Etype (F) /= Etype (A) then
+ Set_Renamed_Object
+ (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
+ else
+ Set_Renamed_Object (F, A);
+ end if;
+
+ else
+ Temp :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('C'));
+
+ -- If the actual for an in/in-out parameter is a view conversion,
+ -- make it into an unchecked conversion, given that an untagged
+ -- type conversion is not a proper object for a renaming.
+
+ -- In-out conversions that involve real conversions have already
+ -- been transformed in Expand_Actuals.
+
+ if Nkind (A) = N_Type_Conversion
+ and then Ekind (F) /= E_In_Parameter
+ then
+ New_A :=
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
+ Expression => Relocate_Node (Expression (A)));
+
+ elsif Etype (F) /= Etype (A) then
+ New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
+ Temp_Typ := Etype (F);
+
+ else
+ New_A := Relocate_Node (A);
+ end if;
+
+ Set_Sloc (New_A, Sloc (N));
+
+ -- If the actual has a by-reference type, it cannot be copied, so
+ -- its value is captured in a renaming declaration. Otherwise
+ -- declare a local constant initialized with the actual.
+
+ if Ekind (F) = E_In_Parameter
+ and then not Is_Limited_Type (Etype (A))
+ and then not Is_Tagged_Type (Etype (A))
+ then
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
+ Expression => New_A);
+ else
+ Decl :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
+ Name => New_A);
+ end if;
+
+ Append (Decl, Decls);
+ Set_Renamed_Object (F, Temp);
+ end if;
+
+ Next_Formal (F);
+ Next_Actual (A);
+ end loop;
+
+ -- Establish target of function call. If context is not assignment or
+ -- declaration, create a temporary as a target. The declaration for
+ -- the temporary may be subsequently optimized away if the body is a
+ -- single expression, or if the left-hand side of the assignment is
+ -- simple enough, i.e. an entity or an explicit dereference of one.
+
+ if Ekind (Subp) = E_Function then
+ if Nkind (Parent (N)) = N_Assignment_Statement
+ and then Is_Entity_Name (Name (Parent (N)))
+ then
+ Targ := Name (Parent (N));
+
+ elsif Nkind (Parent (N)) = N_Assignment_Statement
+ and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
+ and then Is_Entity_Name (Prefix (Name (Parent (N))))
+ then
+ Targ := Name (Parent (N));
+
+ else
+ -- Replace call with temporary and create its declaration
+
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+ Set_Is_Internal (Temp);
+
+ -- For the unconstrained case. the generated temporary has the
+ -- same constrained declaration as the result variable.
+ -- It may eventually be possible to remove that temporary and
+ -- use the result variable directly.
+
+ if Is_Unc then
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition =>
+ New_Copy_Tree (Object_Definition (Parent (Targ1))));
+
+ Replace_Formals (Decl);
+
+ else
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition =>
+ New_Occurrence_Of (Ret_Type, Loc));
+
+ Set_Etype (Temp, Ret_Type);
+ end if;
+
+ Set_No_Initialization (Decl);
+ Append (Decl, Decls);
+ Rewrite (N, New_Occurrence_Of (Temp, Loc));
+ Targ := Temp;
+ end if;
+ end if;
+
+ Insert_Actions (N, Decls);
+
+ -- Traverse the tree and replace formals with actuals or their thunks.
+ -- Attach block to tree before analysis and rewriting.
+
+ Replace_Formals (Blk);
+ Set_Parent (Blk, N);
+
+ if not Comes_From_Source (Subp)
+ or else Is_Predef
+ then
+ Reset_Slocs (Blk);
+ end if;
+
+ if Present (Exit_Lab) then
+
+ -- If the body was a single expression, the single return statement
+ -- and the corresponding label are useless.
+
+ if Num_Ret = 1
+ and then
+ Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
+ N_Goto_Statement
+ then
+ Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
+ else
+ Append (Lab_Decl, (Declarations (Blk)));
+ Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
+ end if;
+ end if;
+
+ -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
+ -- conflicting private views that Gigi would ignore. If this is
+ -- predefined unit, analyze with checks off, as is done in the non-
+ -- inlined run-time units.
+
+ declare
+ I_Flag : constant Boolean := In_Inlined_Body;
+
+ begin
+ In_Inlined_Body := True;
+
+ if Is_Predef then
+ declare
+ Style : constant Boolean := Style_Check;
+ begin
+ Style_Check := False;
+ Analyze (Blk, Suppress => All_Checks);
+ Style_Check := Style;
+ end;
+
+ else
+ Analyze (Blk);
+ end if;
+
+ In_Inlined_Body := I_Flag;
+ end;
+
+ if Ekind (Subp) = E_Procedure then
+ Rewrite_Procedure_Call (N, Blk);
+ else
+ Rewrite_Function_Call (N, Blk);
+
+ -- For the unconstrained case, the replacement of the call has been
+ -- made prior to the complete analysis of the generated declarations.
+ -- Propagate the proper type now.
+
+ if Is_Unc then
+ if Nkind (N) = N_Identifier then
+ Set_Etype (N, Etype (Entity (N)));
+ else
+ Set_Etype (N, Etype (Targ1));
+ end if;
+ end if;
+ end if;
+
+ Restore_Env;
+
+ -- Cleanup mapping between formals and actuals for other expansions
+
+ F := First_Formal (Subp);
+ while Present (F) loop
+ Set_Renamed_Object (F, Empty);
+ Next_Formal (F);
+ end loop;
+ end Expand_Inlined_Call;
+
+ ----------------------------
+ -- Expand_N_Function_Call --
+ ----------------------------
+
+ procedure Expand_N_Function_Call (N : Node_Id) is
+ begin
+ Expand_Call (N);
+ end Expand_N_Function_Call;
+
+ ---------------------------------------
+ -- Expand_N_Procedure_Call_Statement --
+ ---------------------------------------
+
+ procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
+ begin
+ Expand_Call (N);
+ end Expand_N_Procedure_Call_Statement;
+
+ ------------------------------
+ -- Expand_N_Subprogram_Body --
+ ------------------------------
+
+ -- Add poll call if ATC polling is enabled, unless the body will be
+ -- inlined by the back-end.
+
+ -- Add dummy push/pop label nodes at start and end to clear any local
+ -- exception indications if local-exception-to-goto optimization active.
+
+ -- Add return statement if last statement in body is not a return statement
+ -- (this makes things easier on Gigi which does not want to have to handle
+ -- a missing return).
+
+ -- Add call to Activate_Tasks if body is a task activator
+
+ -- Deal with possible detection of infinite recursion
+
+ -- Eliminate body completely if convention stubbed
+
+ -- Encode entity names within body, since we will not need to reference
+ -- these entities any longer in the front end.
+
+ -- Initialize scalar out parameters if Initialize/Normalize_Scalars
+
+ -- Reset Pure indication if any parameter has root type System.Address
+
+ -- Wrap thread body
+
+ procedure Expand_N_Subprogram_Body (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ H : constant Node_Id := Handled_Statement_Sequence (N);
+ Body_Id : Entity_Id;
+ Spec_Id : Entity_Id;
+ Except_H : Node_Id;
+ Scop : Entity_Id;
+ Dec : Node_Id;
+ Next_Op : Node_Id;
+ L : List_Id;
+
+ procedure Add_Return (S : List_Id);
+ -- Append a return statement to the statement sequence S if the last
+ -- statement is not already a return or a goto statement. Note that
+ -- the latter test is not critical, it does not matter if we add a
+ -- few extra returns, since they get eliminated anyway later on.
+
+ ----------------
+ -- Add_Return --
+ ----------------
+
+ procedure Add_Return (S : List_Id) is
+ Last_Stm : Node_Id;
+ Loc : Source_Ptr;
+
+ begin
+ -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
+ -- not relevant in this context since they are not executable.
+
+ Last_Stm := Last (S);
+ while Nkind (Last_Stm) in N_Pop_xxx_Label loop
+ Prev (Last_Stm);
+ end loop;
+
+ -- Now insert return unless last statement is a transfer
+
+ if not Is_Transfer (Last_Stm) then
+
+ -- The source location for the return is the end label of the
+ -- procedure if present. Otherwise use the sloc of the last
+ -- statement in the list. If the list comes from a generated
+ -- exception handler and we are not debugging generated code,
+ -- all the statements within the handler are made invisible
+ -- to the debugger.
+
+ if Nkind (Parent (S)) = N_Exception_Handler
+ and then not Comes_From_Source (Parent (S))
+ then
+ Loc := Sloc (Last_Stm);
+
+ elsif Present (End_Label (H)) then
+ Loc := Sloc (End_Label (H));
+
+ else
+ Loc := Sloc (Last_Stm);
+ end if;
+
+ Append_To (S, Make_Simple_Return_Statement (Loc));
+ end if;
+ end Add_Return;
+
+ -- Start of processing for Expand_N_Subprogram_Body
+
+ begin
+ -- Set L to either the list of declarations if present, or
+ -- to the list of statements if no declarations are present.
+ -- This is used to insert new stuff at the start.
+
+ if Is_Non_Empty_List (Declarations (N)) then
+ L := Declarations (N);
+ else
+ L := Statements (H);
+ end if;
+
+ -- If local-exception-to-goto optimization active, insert dummy push
+ -- statements at start, and dummy pop statements at end.
+
+ if (Debug_Flag_Dot_G
+ or else Restriction_Active (No_Exception_Propagation))
+ and then Is_Non_Empty_List (L)
+ then
+ declare
+ FS : constant Node_Id := First (L);
+ FL : constant Source_Ptr := Sloc (FS);
+ LS : Node_Id;
+ LL : Source_Ptr;
+
+ begin
+ -- LS points to either last statement, if statements are present
+ -- or to the last declaration if there are no statements present.
+ -- It is the node after which the pop's are generated.
+
+ if Is_Non_Empty_List (Statements (H)) then
+ LS := Last (Statements (H));
+ else
+ LS := Last (L);
+ end if;
+
+ LL := Sloc (LS);
+
+ Insert_List_Before_And_Analyze (FS, New_List (
+ Make_Push_Constraint_Error_Label (FL),
+ Make_Push_Program_Error_Label (FL),
+ Make_Push_Storage_Error_Label (FL)));
+
+ Insert_List_After_And_Analyze (LS, New_List (
+ Make_Pop_Constraint_Error_Label (LL),
+ Make_Pop_Program_Error_Label (LL),
+ Make_Pop_Storage_Error_Label (LL)));
+ end;
+ end if;
+
+ -- Find entity for subprogram
+
+ Body_Id := Defining_Entity (N);
+
+ if Present (Corresponding_Spec (N)) then
+ Spec_Id := Corresponding_Spec (N);
+ else
+ Spec_Id := Body_Id;
+ end if;
+
+ -- Need poll on entry to subprogram if polling enabled. We only do this
+ -- for non-empty subprograms, since it does not seem necessary to poll
+ -- for a dummy null subprogram. Do not add polling point if calls to
+ -- this subprogram will be inlined by the back-end, to avoid repeated
+ -- polling points in nested inlinings.
+
+ if Is_Non_Empty_List (L) then
+ if Is_Inlined (Spec_Id)
+ and then Front_End_Inlining
+ and then Optimization_Level > 1
+ then
+ null;
+ else
+ Generate_Poll_Call (First (L));
+ end if;
+ end if;
+
+ -- If this is a Pure function which has any parameters whose root
+ -- type is System.Address, reset the Pure indication, since it will
+ -- likely cause incorrect code to be generated as the parameter is
+ -- probably a pointer, and the fact that the same pointer is passed
+ -- does not mean that the same value is being referenced.
+
+ -- Note that if the programmer gave an explicit Pure_Function pragma,
+ -- then we believe the programmer, and leave the subprogram Pure.
+
+ -- This code should probably be at the freeze point, so that it
+ -- happens even on a -gnatc (or more importantly -gnatt) compile
+ -- so that the semantic tree has Is_Pure set properly ???
+
+ if Is_Pure (Spec_Id)
+ and then Is_Subprogram (Spec_Id)
+ and then not Has_Pragma_Pure_Function (Spec_Id)
+ then
+ declare
+ F : Entity_Id;
+
+ begin
+ F := First_Formal (Spec_Id);
+ while Present (F) loop
+ if Is_Descendent_Of_Address (Etype (F)) then
+ Set_Is_Pure (Spec_Id, False);
+
+ if Spec_Id /= Body_Id then
+ Set_Is_Pure (Body_Id, False);
+ end if;
+
+ exit;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end;
+ end if;
+
+ -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
+
+ if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
+ declare
+ F : Entity_Id;
+
+ begin
+ -- Loop through formals
+
+ F := First_Formal (Spec_Id);
+ while Present (F) loop
+ if Is_Scalar_Type (Etype (F))
+ and then Ekind (F) = E_Out_Parameter
+ then
+ -- Insert the initialization. We turn off validity checks
+ -- for this assignment, since we do not want any check on
+ -- the initial value itself (which may well be invalid).
+
+ Insert_Before_And_Analyze (First (L),
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (F, Loc),
+ Expression => Get_Simple_Init_Val (Etype (F), Loc)),
+ Suppress => Validity_Check);
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end;
+ end if;
+
+ Scop := Scope (Spec_Id);
+
+ -- Add discriminal renamings to protected subprograms. Install new
+ -- discriminals for expansion of the next subprogram of this protected
+ -- type, if any.
+
+ if Is_List_Member (N)
+ and then Present (Parent (List_Containing (N)))
+ and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
+ then
+ Add_Discriminal_Declarations
+ (Declarations (N), Scop, Name_uObject, Loc);
+ Add_Private_Declarations
+ (Declarations (N), Scop, Name_uObject, Loc);
+
+ -- Associate privals and discriminals with the next protected
+ -- operation body to be expanded. These are used to expand references
+ -- to private data objects and discriminants, respectively.
+
+ Next_Op := Next_Protected_Operation (N);
+
+ if Present (Next_Op) then
+ Dec := Parent (Base_Type (Scop));
+ Set_Privals (Dec, Next_Op, Loc);
+ Set_Discriminals (Dec);
+ end if;
+ end if;
+
+ -- Clear out statement list for stubbed procedure
+
+ if Present (Corresponding_Spec (N)) then
+ Set_Elaboration_Flag (N, Spec_Id);
+
+ if Convention (Spec_Id) = Convention_Stubbed
+ or else Is_Eliminated (Spec_Id)
+ then
+ Set_Declarations (N, Empty_List);
+ Set_Handled_Statement_Sequence (N,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Null_Statement (Loc))));
+ return;
+ end if;
+ end if;
+
+ -- Returns_By_Ref flag is normally set when the subprogram is frozen
+ -- but subprograms with no specs are not frozen.
+
+ declare
+ Typ : constant Entity_Id := Etype (Spec_Id);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if not Acts_As_Spec (N)
+ and then Nkind (Parent (Parent (Spec_Id))) /=
+ N_Subprogram_Body_Stub
+ then
+ null;
+
+ elsif Is_Inherently_Limited_Type (Typ) then
+ Set_Returns_By_Ref (Spec_Id);
+
+ elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
+ Set_Returns_By_Ref (Spec_Id);
+ end if;
+ end;
+
+ -- For a procedure, we add a return for all possible syntactic ends
+ -- of the subprogram. Note that reanalysis is not necessary in this
+ -- case since it would require a lot of work and accomplish nothing.
+
+ if Ekind (Spec_Id) = E_Procedure
+ or else Ekind (Spec_Id) = E_Generic_Procedure
+ then
+ Add_Return (Statements (H));
+
+ if Present (Exception_Handlers (H)) then
+ Except_H := First_Non_Pragma (Exception_Handlers (H));
+ while Present (Except_H) loop
+ Add_Return (Statements (Except_H));
+ Next_Non_Pragma (Except_H);
+ end loop;
+ end if;
+
+ -- For a function, we must deal with the case where there is at least
+ -- one missing return. What we do is to wrap the entire body of the
+ -- function in a block:
+
+ -- begin
+ -- ...
+ -- end;
+
+ -- becomes
+
+ -- begin
+ -- begin
+ -- ...
+ -- end;
+
+ -- raise Program_Error;
+ -- end;
+
+ -- This approach is necessary because the raise must be signalled
+ -- to the caller, not handled by any local handler (RM 6.4(11)).
+
+ -- Note: we do not need to analyze the constructed sequence here,
+ -- since it has no handler, and an attempt to analyze the handled
+ -- statement sequence twice is risky in various ways (e.g. the
+ -- issue of expanding cleanup actions twice).
+
+ elsif Has_Missing_Return (Spec_Id) then
+ declare
+ Hloc : constant Source_Ptr := Sloc (H);
+ Blok : constant Node_Id :=
+ Make_Block_Statement (Hloc,
+ Handled_Statement_Sequence => H);
+ Rais : constant Node_Id :=
+ Make_Raise_Program_Error (Hloc,
+ Reason => PE_Missing_Return);
+
+ begin
+ Set_Handled_Statement_Sequence (N,
+ Make_Handled_Sequence_Of_Statements (Hloc,
+ Statements => New_List (Blok, Rais)));
+
+ Push_Scope (Spec_Id);
+ Analyze (Blok);
+ Analyze (Rais);
+ Pop_Scope;
+ end;
+ end if;
+
+ -- If subprogram contains a parameterless recursive call, then we may
+ -- have an infinite recursion, so see if we can generate code to check
+ -- for this possibility if storage checks are not suppressed.
+
+ if Ekind (Spec_Id) = E_Procedure
+ and then Has_Recursive_Call (Spec_Id)
+ and then not Storage_Checks_Suppressed (Spec_Id)
+ then
+ Detect_Infinite_Recursion (N, Spec_Id);
+ end if;
+
+ -- Finally, if we are in Normalize_Scalars mode, then any scalar out
+ -- parameters must be initialized to the appropriate default value.
+
+ if Ekind (Spec_Id) = E_Procedure and then Normalize_Scalars then
+ declare
+ Floc : Source_Ptr;
+ Formal : Entity_Id;
+ Stm : Node_Id;
+
+ begin
+ Formal := First_Formal (Spec_Id);
+ while Present (Formal) loop
+ Floc := Sloc (Formal);
+
+ if Ekind (Formal) = E_Out_Parameter
+ and then Is_Scalar_Type (Etype (Formal))
+ then
+ Stm :=
+ Make_Assignment_Statement (Floc,
+ Name => New_Occurrence_Of (Formal, Floc),
+ Expression =>
+ Get_Simple_Init_Val (Etype (Formal), Floc));
+ Prepend (Stm, Declarations (N));
+ Analyze (Stm);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end;
+ end if;
+
+ -- Set to encode entity names in package body before gigi is called
+
+ Qualify_Entity_Names (N);
+ end Expand_N_Subprogram_Body;
+
+ -----------------------------------
+ -- Expand_N_Subprogram_Body_Stub --
+ -----------------------------------
+
+ procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
+ begin
+ if Present (Corresponding_Body (N)) then
+ Expand_N_Subprogram_Body (
+ Unit_Declaration_Node (Corresponding_Body (N)));
+ end if;
+ end Expand_N_Subprogram_Body_Stub;
+
+ -------------------------------------
+ -- Expand_N_Subprogram_Declaration --
+ -------------------------------------
+
+ -- If the declaration appears within a protected body, it is a private
+ -- operation of the protected type. We must create the corresponding
+ -- protected subprogram an associated formals. For a normal protected
+ -- operation, this is done when expanding the protected type declaration.
+
+ -- If the declaration is for a null procedure, emit null body
+
+ procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Subp : constant Entity_Id := Defining_Entity (N);
+ Scop : constant Entity_Id := Scope (Subp);
+ Prot_Decl : Node_Id;
+ Prot_Bod : Node_Id;
+ Prot_Id : Entity_Id;
+
+ begin
+ -- Deal with case of protected subprogram. Do not generate protected
+ -- operation if operation is flagged as eliminated.
+
+ if Is_List_Member (N)
+ and then Present (Parent (List_Containing (N)))
+ and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
+ and then Is_Protected_Type (Scop)
+ then
+ if No (Protected_Body_Subprogram (Subp))
+ and then not Is_Eliminated (Subp)
+ then
+ Prot_Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Build_Protected_Sub_Specification
+ (N, Scop, Unprotected_Mode));
+
+ -- The protected subprogram is declared outside of the protected
+ -- body. Given that the body has frozen all entities so far, we
+ -- analyze the subprogram and perform freezing actions explicitly.
+ -- including the generation of an explicit freeze node, to ensure
+ -- that gigi has the proper order of elaboration.
+ -- If the body is a subunit, the insertion point is before the
+ -- stub in the parent.
+
+ Prot_Bod := Parent (List_Containing (N));
+
+ if Nkind (Parent (Prot_Bod)) = N_Subunit then
+ Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
+ end if;
+
+ Insert_Before (Prot_Bod, Prot_Decl);
+ Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
+ Set_Has_Delayed_Freeze (Prot_Id);
+
+ Push_Scope (Scope (Scop));
+ Analyze (Prot_Decl);
+ Insert_Actions (N, Freeze_Entity (Prot_Id, Loc));
+ Set_Protected_Body_Subprogram (Subp, Prot_Id);
+ Pop_Scope;
+ end if;
+
+ -- Ada 2005 (AI-348): Generation of the null body
+
+ elsif Nkind (Specification (N)) = N_Procedure_Specification
+ and then Null_Present (Specification (N))
+ then
+ declare
+ Bod : constant Node_Id :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ New_Copy_Tree (Specification (N)),
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Make_Null_Statement (Loc))));
+ begin
+ Set_Body_To_Inline (N, Bod);
+ Insert_After (N, Bod);
+ Analyze (Bod);
+
+ -- Corresponding_Spec isn't being set by Analyze_Subprogram_Body,
+ -- evidently because Set_Has_Completion is called earlier for null
+ -- procedures in Analyze_Subprogram_Declaration, so we force its
+ -- setting here. If the setting of Has_Completion is not set
+ -- earlier, then it can result in missing body errors if other
+ -- errors were already reported (since expansion is turned off).
+
+ -- Should creation of the empty body be moved to the analyzer???
+
+ Set_Corresponding_Spec (Bod, Defining_Entity (Specification (N)));
+ end;
+ end if;
+ end Expand_N_Subprogram_Declaration;
+
+ ---------------------------------------
+ -- Expand_Protected_Object_Reference --
+ ---------------------------------------
+
+ function Expand_Protected_Object_Reference
+ (N : Node_Id;
+ Scop : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Corr : Entity_Id;
+ Rec : Node_Id;
+ Param : Entity_Id;
+ Proc : Entity_Id;
+
+ begin
+ Rec :=
+ Make_Identifier (Loc,
+ Chars => Name_uObject);
+ Set_Etype (Rec, Corresponding_Record_Type (Scop));
+
+ -- Find enclosing protected operation, and retrieve its first parameter,
+ -- which denotes the enclosing protected object. If the enclosing
+ -- operation is an entry, we are immediately within the protected body,
+ -- and we can retrieve the object from the service entries procedure. A
+ -- barrier function has has the same signature as an entry. A barrier
+ -- function is compiled within the protected object, but unlike
+ -- protected operations its never needs locks, so that its protected
+ -- body subprogram points to itself.
+
+ Proc := Current_Scope;
+ while Present (Proc)
+ and then Scope (Proc) /= Scop
+ loop
+ Proc := Scope (Proc);
+ end loop;
+
+ Corr := Protected_Body_Subprogram (Proc);
+
+ if No (Corr) then
+
+ -- Previous error left expansion incomplete.
+ -- Nothing to do on this call.
+
+ return Empty;
+ end if;
+
+ Param :=
+ Defining_Identifier
+ (First (Parameter_Specifications (Parent (Corr))));
+
+ if Is_Subprogram (Proc)
+ and then Proc /= Corr
+ then
+ -- Protected function or procedure
+
+ Set_Entity (Rec, Param);
+
+ -- Rec is a reference to an entity which will not be in scope when
+ -- the call is reanalyzed, and needs no further analysis.
+
+ Set_Analyzed (Rec);
+
+ else
+ -- Entry or barrier function for entry body. The first parameter of
+ -- the entry body procedure is pointer to the object. We create a
+ -- local variable of the proper type, duplicating what is done to
+ -- define _object later on.
+
+ declare
+ Decls : List_Id;
+ Obj_Ptr : constant Entity_Id := Make_Defining_Identifier (Loc,
+ Chars =>
+ New_Internal_Name ('T'));
+
+ begin
+ Decls := New_List (
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Obj_Ptr,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ Subtype_Indication =>
+ New_Reference_To
+ (Corresponding_Record_Type (Scop), Loc))));
+
+ Insert_Actions (N, Decls);
+ Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
+
+ Rec :=
+ Make_Explicit_Dereference (Loc,
+ Unchecked_Convert_To (Obj_Ptr,
+ New_Occurrence_Of (Param, Loc)));
+
+ -- Analyze new actual. Other actuals in calls are already analyzed
+ -- and the list of actuals is not reanalyzed after rewriting.
+
+ Set_Parent (Rec, N);
+ Analyze (Rec);
+ end;
+ end if;
+
+ return Rec;
+ end Expand_Protected_Object_Reference;
+
+ --------------------------------------
+ -- Expand_Protected_Subprogram_Call --
+ --------------------------------------
+
+ procedure Expand_Protected_Subprogram_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Scop : Entity_Id)
+ is
+ Rec : Node_Id;
+
+ begin
+ -- If the protected object is not an enclosing scope, this is
+ -- an inter-object function call. Inter-object procedure
+ -- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
+ -- The call is intra-object only if the subprogram being
+ -- called is in the protected body being compiled, and if the
+ -- protected object in the call is statically the enclosing type.
+ -- The object may be an component of some other data structure,
+ -- in which case this must be handled as an inter-object call.
+
+ if not In_Open_Scopes (Scop)
+ or else not Is_Entity_Name (Name (N))
+ then
+ if Nkind (Name (N)) = N_Selected_Component then
+ Rec := Prefix (Name (N));
+
+ else
+ pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
+ Rec := Prefix (Prefix (Name (N)));
+ end if;
+
+ Build_Protected_Subprogram_Call (N,
+ Name => New_Occurrence_Of (Subp, Sloc (N)),
+ Rec => Convert_Concurrent (Rec, Etype (Rec)),
+ External => True);
+
+ else
+ Rec := Expand_Protected_Object_Reference (N, Scop);
+
+ if No (Rec) then
+ return;
+ end if;
+
+ Build_Protected_Subprogram_Call (N,
+ Name => Name (N),
+ Rec => Rec,
+ External => False);
+
+ end if;
+
+ Analyze (N);
+
+ -- If it is a function call it can appear in elaboration code and
+ -- the called entity must be frozen here.
+
+ if Ekind (Subp) = E_Function then
+ Freeze_Expression (Name (N));
+ end if;
+ end Expand_Protected_Subprogram_Call;
+
+ --------------------------------
+ -- Is_Build_In_Place_Function --
+ --------------------------------
+
+ function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
+ begin
+ -- For now we test whether E denotes a function or access-to-function
+ -- type whose result subtype is inherently limited. Later this test may
+ -- be revised to allow composite nonlimited types. Functions with a
+ -- foreign convention or whose result type has a foreign convention
+ -- never qualify.
+
+ if Ekind (E) = E_Function
+ or else Ekind (E) = E_Generic_Function
+ or else (Ekind (E) = E_Subprogram_Type
+ and then Etype (E) /= Standard_Void_Type)
+ then
+ -- Note: If you have Convention (C) on an inherently limited type,
+ -- you're on your own. That is, the C code will have to be carefully
+ -- written to know about the Ada conventions.
+
+ if Has_Foreign_Convention (E)
+ or else Has_Foreign_Convention (Etype (E))
+ then
+ return False;
+
+ -- If the return type is a limited interface it has to be treated
+ -- as a return in place, even if the actual object is some non-
+ -- limited descendant.
+
+ elsif Is_Limited_Interface (Etype (E)) then
+ return True;
+
+ else
+ return Is_Inherently_Limited_Type (Etype (E))
+ and then Ada_Version >= Ada_05
+ and then not Debug_Flag_Dot_L;
+ end if;
+
+ else
+ return False;
+ end if;
+ end Is_Build_In_Place_Function;
+
+ -------------------------------------
+ -- Is_Build_In_Place_Function_Call --
+ -------------------------------------
+
+ function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
+ Exp_Node : Node_Id := N;
+ Function_Id : Entity_Id;
+
+ begin
+ -- Step past qualification or unchecked conversion (the latter can occur
+ -- in cases of calls to 'Input).
+
+ if Nkind_In
+ (Exp_Node, N_Qualified_Expression, N_Unchecked_Type_Conversion)
+ then
+ Exp_Node := Expression (N);
+ end if;
+
+ if Nkind (Exp_Node) /= N_Function_Call then
+ return False;
+
+ else
+ if Is_Entity_Name (Name (Exp_Node)) then
+ Function_Id := Entity (Name (Exp_Node));
+
+ elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
+ Function_Id := Etype (Name (Exp_Node));
+ end if;
+
+ return Is_Build_In_Place_Function (Function_Id);
+ end if;
+ end Is_Build_In_Place_Function_Call;
+
+ ---------------------------------------
+ -- Is_Build_In_Place_Function_Return --
+ ---------------------------------------
+
+ function Is_Build_In_Place_Function_Return (N : Node_Id) return Boolean is
+ begin
+ if Nkind_In (N, N_Simple_Return_Statement,
+ N_Extended_Return_Statement)
+ then
+ return Is_Build_In_Place_Function
+ (Return_Applies_To (Return_Statement_Entity (N)));
+ else
+ return False;
+ end if;
+ end Is_Build_In_Place_Function_Return;
+
+ -----------------------
+ -- Freeze_Subprogram --
+ -----------------------
+
+ procedure Freeze_Subprogram (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
+ -- (Ada 2005): Register a predefined primitive in all the secondary
+ -- dispatch tables of its primitive type.
+
+ ----------------------------------
+ -- Register_Predefined_DT_Entry --
+ ----------------------------------
+
+ procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
+ Iface_DT_Ptr : Elmt_Id;
+ Tagged_Typ : Entity_Id;
+ Thunk_Id : Entity_Id;
+ Thunk_Code : Node_Id;
+
+ begin
+ Tagged_Typ := Find_Dispatching_Type (Prim);
+
+ if No (Access_Disp_Table (Tagged_Typ))
+ or else not Has_Abstract_Interfaces (Tagged_Typ)
+ or else not RTE_Available (RE_Interface_Tag)
+ or else Restriction_Active (No_Dispatching_Calls)
+ then
+ return;
+ end if;
+
+ -- Skip the first access-to-dispatch-table pointer since it leads
+ -- to the primary dispatch table. We are only concerned with the
+ -- secondary dispatch table pointers. Note that the access-to-
+ -- dispatch-table pointer corresponds to the first implemented
+ -- interface retrieved below.
+
+ Iface_DT_Ptr :=
+ Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ)));
+
+ while Present (Iface_DT_Ptr)
+ and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
+ loop
+ pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
+ Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
+
+ if Present (Thunk_Code) then
+ Insert_Actions_After (N, New_List (
+ Thunk_Code,
+
+ Build_Set_Predefined_Prim_Op_Address (Loc,
+ Tag_Node => New_Reference_To (Node (Iface_DT_Ptr), Loc),
+ Position => DT_Position (Prim),
+ Address_Node =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Thunk_Id, Loc),
+ Attribute_Name => Name_Address)),
+
+ Build_Set_Predefined_Prim_Op_Address (Loc,
+ Tag_Node => New_Reference_To
+ (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
+ Position => DT_Position (Prim),
+ Address_Node =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Prim, Loc),
+ Attribute_Name => Name_Address))));
+ end if;
+
+ Next_Elmt (Iface_DT_Ptr);
+ pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
+
+ Next_Elmt (Iface_DT_Ptr);
+ end loop;
+ end Register_Predefined_DT_Entry;
+
+ -- Local variables
+
+ Subp : constant Entity_Id := Entity (N);
+
+ -- Start of processing for Freeze_Subprogram
+
+ begin
+ -- We suppress the initialization of the dispatch table entry when
+ -- VM_Target because the dispatching mechanism is handled internally
+ -- by the VM.
+
+ if Is_Dispatching_Operation (Subp)
+ and then not Is_Abstract_Subprogram (Subp)
+ and then Present (DTC_Entity (Subp))
+ and then Present (Scope (DTC_Entity (Subp)))
+ and then VM_Target = No_VM
+ and then not Restriction_Active (No_Dispatching_Calls)
+ and then RTE_Available (RE_Tag)
+ then
+ declare
+ Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
+
+ begin
+ -- Handle private overriden primitives
+
+ if not Is_CPP_Class (Typ) then
+ Check_Overriding_Operation (Subp);
+ end if;
+
+ -- We assume that imported CPP primitives correspond with objects
+ -- whose constructor is in the CPP side; therefore we don't need
+ -- to generate code to register them in the dispatch table.
+
+ if Is_CPP_Class (Typ) then
+ null;
+
+ -- Handle CPP primitives found in derivations of CPP_Class types.
+ -- These primitives must have been inherited from some parent, and
+ -- there is no need to register them in the dispatch table because
+ -- Build_Inherit_Prims takes care of the initialization of these
+ -- slots.
+
+ elsif Is_Imported (Subp)
+ and then (Convention (Subp) = Convention_CPP
+ or else Convention (Subp) = Convention_C)
+ then
+ null;
+
+ -- Generate code to register the primitive in non statically
+ -- allocated dispatch tables
+
+ elsif not Static_Dispatch_Tables
+ or else not
+ Is_Library_Level_Tagged_Type (Scope (DTC_Entity (Subp)))
+ then
+ -- When a primitive is frozen, enter its name in its dispatch
+ -- table slot.
+
+ if not Is_Interface (Typ)
+ or else Present (Abstract_Interface_Alias (Subp))
+ then
+ if Is_Predefined_Dispatching_Operation (Subp) then
+ Register_Predefined_DT_Entry (Subp);
+ end if;
+
+ Register_Primitive (Loc,
+ Prim => Subp,
+ Ins_Nod => N);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Mark functions that return by reference. Note that it cannot be part
+ -- of the normal semantic analysis of the spec since the underlying
+ -- returned type may not be known yet (for private types).
+
+ declare
+ Typ : constant Entity_Id := Etype (Subp);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+ begin
+ if Is_Inherently_Limited_Type (Typ) then
+ Set_Returns_By_Ref (Subp);
+ elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
+ Set_Returns_By_Ref (Subp);
+ end if;
+ end;
+ end Freeze_Subprogram;
+
+ -------------------------------------------
+ -- Make_Build_In_Place_Call_In_Allocator --
+ -------------------------------------------
+
+ procedure Make_Build_In_Place_Call_In_Allocator
+ (Allocator : Node_Id;
+ Function_Call : Node_Id)
+ is
+ Loc : Source_Ptr;
+ Func_Call : Node_Id := Function_Call;
+ Function_Id : Entity_Id;
+ Result_Subt : Entity_Id;
+ Acc_Type : constant Entity_Id := Etype (Allocator);
+ New_Allocator : Node_Id;
+ Return_Obj_Access : Entity_Id;
+
+ begin
+ -- Step past qualification or unchecked conversion (the latter can occur
+ -- in cases of calls to 'Input).
+
+ if Nkind_In (Func_Call,
+ N_Qualified_Expression,
+ N_Unchecked_Type_Conversion)
+ then
+ Func_Call := Expression (Func_Call);
+ end if;
+
+ -- If the call has already been processed to add build-in-place actuals
+ -- then return. This should not normally occur in an allocator context,
+ -- but we add the protection as a defensive measure.
+
+ if Is_Expanded_Build_In_Place_Call (Func_Call) then
+ return;
+ end if;
+
+ -- Mark the call as processed as a build-in-place call
+
+ Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+ Loc := Sloc (Function_Call);
+
+ if Is_Entity_Name (Name (Func_Call)) then
+ Function_Id := Entity (Name (Func_Call));
+
+ elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+ Function_Id := Etype (Name (Func_Call));
+
+ else
+ raise Program_Error;
+ end if;
+
+ Result_Subt := Etype (Function_Id);
+
+ -- When the result subtype is constrained, the return object must be
+ -- allocated on the caller side, and access to it is passed to the
+ -- function.
+
+ -- Here and in related routines, we must examine the full view of the
+ -- type, because the view at the point of call may differ from that
+ -- that in the function body, and the expansion mechanism depends on
+ -- the characteristics of the full view.
+
+ if Is_Constrained (Underlying_Type (Result_Subt)) then
+
+ -- Replace the initialized allocator of form "new T'(Func (...))"
+ -- with an uninitialized allocator of form "new T", where T is the
+ -- result subtype of the called function. The call to the function
+ -- is handled separately further below.
+
+ New_Allocator :=
+ Make_Allocator (Loc, New_Reference_To (Result_Subt, Loc));
+
+ Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
+ Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
+ Set_No_Initialization (New_Allocator);
+
+ Rewrite (Allocator, New_Allocator);
+
+ -- Create a new access object and initialize it to the result of the
+ -- new uninitialized allocator.
+
+ Return_Obj_Access :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ Set_Etype (Return_Obj_Access, Acc_Type);
+
+ Insert_Action (Allocator,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Return_Obj_Access,
+ Object_Definition => New_Reference_To (Acc_Type, Loc),
+ Expression => Relocate_Node (Allocator)));
+
+ -- When the function has a controlling result, an allocation-form
+ -- parameter must be passed indicating that the caller is allocating
+ -- the result object. This is needed because such a function can be
+ -- called as a dispatching operation and must be treated similarly
+ -- to functions with unconstrained result subtypes.
+
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+ Add_Final_List_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Acc_Type);
+
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
+
+ -- Add an implicit actual to the function call that provides access
+ -- to the allocated object. An unchecked conversion to the (specific)
+ -- result subtype of the function is inserted to handle cases where
+ -- the access type of the allocator has a class-wide designated type.
+
+ Add_Access_Actual_To_Build_In_Place_Call
+ (Func_Call,
+ Function_Id,
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Reference_To (Result_Subt, Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Return_Obj_Access, Loc))));
+
+ -- When the result subtype is unconstrained, the function itself must
+ -- perform the allocation of the return object, so we pass parameters
+ -- indicating that. We don't yet handle the case where the allocation
+ -- must be done in a user-defined storage pool, which will require
+ -- passing another actual or two to provide allocation/deallocation
+ -- operations. ???
+
+ else
+
+ -- Pass an allocation parameter indicating that the function should
+ -- allocate its result on the heap.
+
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Global_Heap);
+
+ Add_Final_List_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Acc_Type);
+
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
+
+ -- The caller does not provide the return object in this case, so we
+ -- have to pass null for the object access actual.
+
+ Add_Access_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Return_Object => Empty);
+ end if;
+
+ -- Finally, replace the allocator node with a reference to the result
+ -- of the function call itself (which will effectively be an access
+ -- to the object created by the allocator).
+
+ Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
+ Analyze_And_Resolve (Allocator, Acc_Type);
+ end Make_Build_In_Place_Call_In_Allocator;
+
+ ---------------------------------------------------
+ -- Make_Build_In_Place_Call_In_Anonymous_Context --
+ ---------------------------------------------------
+
+ procedure Make_Build_In_Place_Call_In_Anonymous_Context
+ (Function_Call : Node_Id)
+ is
+ Loc : Source_Ptr;
+ Func_Call : Node_Id := Function_Call;
+ Function_Id : Entity_Id;
+ Result_Subt : Entity_Id;
+ Return_Obj_Id : Entity_Id;
+ Return_Obj_Decl : Entity_Id;
+
+ begin
+ -- Step past qualification or unchecked conversion (the latter can occur
+ -- in cases of calls to 'Input).
+
+ if Nkind_In (Func_Call, N_Qualified_Expression,
+ N_Unchecked_Type_Conversion)
+ then
+ Func_Call := Expression (Func_Call);
+ end if;
+
+ -- If the call has already been processed to add build-in-place actuals
+ -- then return. One place this can occur is for calls to build-in-place
+ -- functions that occur within a call to a protected operation, where
+ -- due to rewriting and expansion of the protected call there can be
+ -- more than one call to Expand_Actuals for the same set of actuals.
+
+ if Is_Expanded_Build_In_Place_Call (Func_Call) then
+ return;
+ end if;
+
+ -- Mark the call as processed as a build-in-place call
+
+ Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+ Loc := Sloc (Function_Call);
+
+ if Is_Entity_Name (Name (Func_Call)) then
+ Function_Id := Entity (Name (Func_Call));
+
+ elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+ Function_Id := Etype (Name (Func_Call));
+
+ else
+ raise Program_Error;
+ end if;
+
+ Result_Subt := Etype (Function_Id);
+
+ -- When the result subtype is constrained, an object of the subtype is
+ -- declared and an access value designating it is passed as an actual.
+
+ if Is_Constrained (Underlying_Type (Result_Subt)) then
+
+ -- Create a temporary object to hold the function result
+
+ Return_Obj_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('R'));
+ Set_Etype (Return_Obj_Id, Result_Subt);
+
+ Return_Obj_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Return_Obj_Id,
+ Aliased_Present => True,
+ Object_Definition => New_Reference_To (Result_Subt, Loc));
+
+ Set_No_Initialization (Return_Obj_Decl);
+
+ Insert_Action (Func_Call, Return_Obj_Decl);
+
+ -- When the function has a controlling result, an allocation-form
+ -- parameter must be passed indicating that the caller is allocating
+ -- the result object. This is needed because such a function can be
+ -- called as a dispatching operation and must be treated similarly
+ -- to functions with unconstrained result subtypes.
+
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+ Add_Final_List_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Acc_Type => Empty);
+
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+
+ -- Add an implicit actual to the function call that provides access
+ -- to the caller's return object.
+
+ Add_Access_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
+
+ -- When the result subtype is unconstrained, the function must allocate
+ -- the return object in the secondary stack, so appropriate implicit
+ -- parameters are added to the call to indicate that. A transient
+ -- scope is established to ensure eventual cleanup of the result.
+
+ else
+
+ -- Pass an allocation parameter indicating that the function should
+ -- allocate its result on the secondary stack.
+
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
+
+ Add_Final_List_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Acc_Type => Empty);
+
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+
+ -- Pass a null value to the function since no return object is
+ -- available on the caller side.
+
+ Add_Access_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Empty);
+
+ Establish_Transient_Scope (Func_Call, Sec_Stack => True);
+ end if;
+ end Make_Build_In_Place_Call_In_Anonymous_Context;
+
+ ---------------------------------------------------
+ -- Make_Build_In_Place_Call_In_Assignment --
+ ---------------------------------------------------
+
+ procedure Make_Build_In_Place_Call_In_Assignment
+ (Assign : Node_Id;
+ Function_Call : Node_Id)
+ is
+ Lhs : constant Node_Id := Name (Assign);
+ Loc : Source_Ptr;
+ Func_Call : Node_Id := Function_Call;
+ Function_Id : Entity_Id;
+ Result_Subt : Entity_Id;
+ Ref_Type : Entity_Id;
+ Ptr_Typ_Decl : Node_Id;
+ Def_Id : Entity_Id;
+ New_Expr : Node_Id;
+
+ begin
+ -- Step past qualification or unchecked conversion (the latter can occur
+ -- in cases of calls to 'Input).
+
+ if Nkind_In (Func_Call, N_Qualified_Expression,
+ N_Unchecked_Type_Conversion)
+ then
+ Func_Call := Expression (Func_Call);
+ end if;
+
+ -- If the call has already been processed to add build-in-place actuals
+ -- then return. This should not normally occur in an assignment context,
+ -- but we add the protection as a defensive measure.
+
+ if Is_Expanded_Build_In_Place_Call (Func_Call) then
+ return;
+ end if;
+
+ -- Mark the call as processed as a build-in-place call
+
+ Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+ Loc := Sloc (Function_Call);
+
+ if Is_Entity_Name (Name (Func_Call)) then
+ Function_Id := Entity (Name (Func_Call));
+
+ elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+ Function_Id := Etype (Name (Func_Call));
+
+ else
+ raise Program_Error;
+ end if;
+
+ Result_Subt := Etype (Function_Id);
+
+ -- When the result subtype is unconstrained, an additional actual must
+ -- be passed to indicate that the caller is providing the return object.
+ -- This parameter must also be passed when the called function has a
+ -- controlling result, because dispatching calls to the function needs
+ -- to be treated effectively the same as calls to class-wide functions.
+
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+ Add_Final_List_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Acc_Type => Empty);
+
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+
+ -- Add an implicit actual to the function call that provides access to
+ -- the caller's return object.
+
+ Add_Access_Actual_To_Build_In_Place_Call
+ (Func_Call,
+ Function_Id,
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Reference_To (Result_Subt, Loc),
+ Expression => Relocate_Node (Lhs)));
+
+ -- Create an access type designating the function's result subtype
+
+ Ref_Type :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+
+ Ptr_Typ_Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Ref_Type,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ All_Present => True,
+ Subtype_Indication =>
+ New_Reference_To (Result_Subt, Loc)));
+
+ Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
+
+ -- Finally, create an access object initialized to a reference to the
+ -- function call.
+
+ Def_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Ref_Type);
+
+ New_Expr :=
+ Make_Reference (Loc,
+ Prefix => Relocate_Node (Func_Call));
+
+ Insert_After_And_Analyze (Ptr_Typ_Decl,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Ref_Type, Loc),
+ Expression => New_Expr));
+
+ Rewrite (Assign, Make_Null_Statement (Loc));
+ end Make_Build_In_Place_Call_In_Assignment;
+
+ ----------------------------------------------------
+ -- Make_Build_In_Place_Call_In_Object_Declaration --
+ ----------------------------------------------------
+
+ procedure Make_Build_In_Place_Call_In_Object_Declaration
+ (Object_Decl : Node_Id;
+ Function_Call : Node_Id)
+ is
+ Loc : Source_Ptr;
+ Obj_Def_Id : constant Entity_Id :=
+ Defining_Identifier (Object_Decl);
+
+ Func_Call : Node_Id := Function_Call;
+ Function_Id : Entity_Id;
+ Result_Subt : Entity_Id;
+ Caller_Object : Node_Id;
+ Call_Deref : Node_Id;
+ Ref_Type : Entity_Id;
+ Ptr_Typ_Decl : Node_Id;
+ Def_Id : Entity_Id;
+ New_Expr : Node_Id;
+ Enclosing_Func : Entity_Id;
+ Pass_Caller_Acc : Boolean := False;
+
+ begin
+ -- Step past qualification or unchecked conversion (the latter can occur
+ -- in cases of calls to 'Input).
+
+ if Nkind_In (Func_Call, N_Qualified_Expression,
+ N_Unchecked_Type_Conversion)
+ then
+ Func_Call := Expression (Func_Call);
+ end if;
+
+ -- If the call has already been processed to add build-in-place actuals
+ -- then return. This should not normally occur in an object declaration,
+ -- but we add the protection as a defensive measure.
+
+ if Is_Expanded_Build_In_Place_Call (Func_Call) then
+ return;
+ end if;
+
+ -- Mark the call as processed as a build-in-place call
+
+ Set_Is_Expanded_Build_In_Place_Call (Func_Call);
+
+ Loc := Sloc (Function_Call);
+
+ if Is_Entity_Name (Name (Func_Call)) then
+ Function_Id := Entity (Name (Func_Call));
+
+ elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
+ Function_Id := Etype (Name (Func_Call));
+
+ else
+ raise Program_Error;
+ end if;
+
+ Result_Subt := Etype (Function_Id);
+
+ -- In the constrained case, add an implicit actual to the function call
+ -- that provides access to the declared object. An unchecked conversion
+ -- to the (specific) result type of the function is inserted to handle
+ -- the case where the object is declared with a class-wide type.
+
+ if Is_Constrained (Underlying_Type (Result_Subt)) then
+ Caller_Object :=
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Reference_To (Result_Subt, Loc),
+ Expression => New_Reference_To (Obj_Def_Id, Loc));
+
+ -- When the function has a controlling result, an allocation-form
+ -- parameter must be passed indicating that the caller is allocating
+ -- the result object. This is needed because such a function can be
+ -- called as a dispatching operation and must be treated similarly
+ -- to functions with unconstrained result subtypes.
+
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+ -- If the function's result subtype is unconstrained and the object is
+ -- a return object of an enclosing build-in-place function, then the
+ -- implicit build-in-place parameters of the enclosing function must be
+ -- passed along to the called function.
+
+ elsif Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement then
+ Pass_Caller_Acc := True;
+
+ Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
+
+ -- If the enclosing function has a constrained result type, then
+ -- caller allocation will be used.
+
+ if Is_Constrained (Etype (Enclosing_Func)) then
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
+
+ -- Otherwise, when the enclosing function has an unconstrained result
+ -- type, the BIP_Alloc_Form formal of the enclosing function must be
+ -- passed along to the callee.
+
+ else
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call,
+ Function_Id,
+ Alloc_Form_Exp =>
+ New_Reference_To
+ (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
+ Loc));
+ end if;
+
+ -- Retrieve the BIPacc formal from the enclosing function and convert
+ -- it to the access type of the callee's BIP_Object_Access formal.
+
+ Caller_Object :=
+ Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark =>
+ New_Reference_To
+ (Etype
+ (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
+ Loc),
+ Expression =>
+ New_Reference_To
+ (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
+ Loc));
+
+ -- In other unconstrained cases, pass an indication to do the allocation
+ -- on the secondary stack and set Caller_Object to Empty so that a null
+ -- value will be passed for the caller's object address. A transient
+ -- scope is established to ensure eventual cleanup of the result.
+
+ else
+ Add_Alloc_Form_Actual_To_Build_In_Place_Call
+ (Func_Call,
+ Function_Id,
+ Alloc_Form => Secondary_Stack);
+ Caller_Object := Empty;
+
+ Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
+ end if;
+
+ Add_Final_List_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Acc_Type => Empty);
+
+ if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
+ and then Has_Task (Result_Subt)
+ then
+ Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
+
+ -- Here we're passing along the master that was passed in to this
+ -- function.
+
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id,
+ Master_Actual =>
+ New_Reference_To
+ (Build_In_Place_Formal (Enclosing_Func, BIP_Master), Loc));
+
+ else
+ Add_Task_Actuals_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
+ end if;
+
+ Add_Access_Actual_To_Build_In_Place_Call
+ (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
+
+ -- Create an access type designating the function's result subtype
+
+ Ref_Type :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+
+ Ptr_Typ_Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Ref_Type,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ All_Present => True,
+ Subtype_Indication =>
+ New_Reference_To (Result_Subt, Loc)));
+
+ -- The access type and its accompanying object must be inserted after
+ -- the object declaration in the constrained case, so that the function
+ -- call can be passed access to the object. In the unconstrained case,
+ -- the access type and object must be inserted before the object, since
+ -- the object declaration is rewritten to be a renaming of a dereference
+ -- of the access object.
+
+ if Is_Constrained (Underlying_Type (Result_Subt)) then
+ Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
+ else
+ Insert_Before_And_Analyze (Object_Decl, Ptr_Typ_Decl);
+ end if;
+
+ -- Finally, create an access object initialized to a reference to the
+ -- function call.
+
+ Def_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('R'));
+ Set_Etype (Def_Id, Ref_Type);
+
+ New_Expr :=
+ Make_Reference (Loc,
+ Prefix => Relocate_Node (Func_Call));
+
+ Insert_After_And_Analyze (Ptr_Typ_Decl,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Object_Definition => New_Reference_To (Ref_Type, Loc),
+ Expression => New_Expr));
+
+ if Is_Constrained (Underlying_Type (Result_Subt)) then
+ Set_Expression (Object_Decl, Empty);
+ Set_No_Initialization (Object_Decl);
+
+ -- In case of an unconstrained result subtype, rewrite the object
+ -- declaration as an object renaming where the renamed object is a
+ -- dereference of <function_Call>'reference:
+ --
+ -- Obj : Subt renames <function_call>'Ref.all;
+
+ else
+ Call_Deref :=
+ Make_Explicit_Dereference (Loc,
+ Prefix => New_Reference_To (Def_Id, Loc));
+
+ Rewrite (Object_Decl,
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc,
+ New_Internal_Name ('D')),
+ Access_Definition => Empty,
+ Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
+ Name => Call_Deref));
+
+ Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
+
+ Analyze (Object_Decl);
+
+ -- Replace the internal identifier of the renaming declaration's
+ -- entity with identifier of the original object entity. We also have
+ -- to exchange the entities containing their defining identifiers to
+ -- ensure the correct replacement of the object declaration by the
+ -- object renaming declaration to avoid homograph conflicts (since
+ -- the object declaration's defining identifier was already entered
+ -- in current scope). The Next_Entity links of the two entities also
+ -- have to be swapped since the entities are part of the return
+ -- scope's entity list and the list structure would otherwise be
+ -- corrupted.
+
+ declare
+ Renaming_Def_Id : constant Entity_Id :=
+ Defining_Identifier (Object_Decl);
+ Next_Entity_Temp : constant Entity_Id :=
+ Next_Entity (Renaming_Def_Id);
+ begin
+ Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
+
+ -- Swap next entity links in preparation for exchanging entities
+
+ Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
+ Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
+
+ Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
+ end;
+ end if;
+
+ -- If the object entity has a class-wide Etype, then we need to change
+ -- it to the result subtype of the function call, because otherwise the
+ -- object will be class-wide without an explicit intialization and won't
+ -- be allocated properly by the back end. It seems unclean to make such
+ -- a revision to the type at this point, and we should try to improve
+ -- this treatment when build-in-place functions with class-wide results
+ -- are implemented. ???
+
+ if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
+ Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
+ end if;
+ end Make_Build_In_Place_Call_In_Object_Declaration;
+
+end Exp_Ch6;