aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/libffi/src/mips/ffi.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/libffi/src/mips/ffi.c')
-rw-r--r--gcc-4.2.1/libffi/src/mips/ffi.c648
1 files changed, 648 insertions, 0 deletions
diff --git a/gcc-4.2.1/libffi/src/mips/ffi.c b/gcc-4.2.1/libffi/src/mips/ffi.c
new file mode 100644
index 000000000..73bc95218
--- /dev/null
+++ b/gcc-4.2.1/libffi/src/mips/ffi.c
@@ -0,0 +1,648 @@
+/* -----------------------------------------------------------------------
+ ffi.c - Copyright (c) 1996 Red Hat, Inc.
+
+ MIPS Foreign Function Interface
+
+ Permission is hereby granted, free of charge, to any person obtaining
+ a copy of this software and associated documentation files (the
+ ``Software''), to deal in the Software without restriction, including
+ without limitation the rights to use, copy, modify, merge, publish,
+ distribute, sublicense, and/or sell copies of the Software, and to
+ permit persons to whom the Software is furnished to do so, subject to
+ the following conditions:
+
+ The above copyright notice and this permission notice shall be included
+ in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ OTHER DEALINGS IN THE SOFTWARE.
+ ----------------------------------------------------------------------- */
+
+#include <ffi.h>
+#include <ffi_common.h>
+
+#include <stdlib.h>
+#include <sys/cachectl.h>
+
+#if _MIPS_SIM == _ABIN32
+#define FIX_ARGP \
+FFI_ASSERT(argp <= &stack[bytes]); \
+if (argp == &stack[bytes]) \
+{ \
+ argp = stack; \
+ ffi_stop_here(); \
+}
+#else
+#define FIX_ARGP
+#endif
+
+
+/* ffi_prep_args is called by the assembly routine once stack space
+ has been allocated for the function's arguments */
+
+static void ffi_prep_args(char *stack,
+ extended_cif *ecif,
+ int bytes,
+ int flags)
+{
+ int i;
+ void **p_argv;
+ char *argp;
+ ffi_type **p_arg;
+
+#if _MIPS_SIM == _ABIN32
+ /* If more than 8 double words are used, the remainder go
+ on the stack. We reorder stuff on the stack here to
+ support this easily. */
+ if (bytes > 8 * sizeof(ffi_arg))
+ argp = &stack[bytes - (8 * sizeof(ffi_arg))];
+ else
+ argp = stack;
+#else
+ argp = stack;
+#endif
+
+ memset(stack, 0, bytes);
+
+#if _MIPS_SIM == _ABIN32
+ if ( ecif->cif->rstruct_flag != 0 )
+#else
+ if ( ecif->cif->rtype->type == FFI_TYPE_STRUCT )
+#endif
+ {
+ *(ffi_arg *) argp = (ffi_arg) ecif->rvalue;
+ argp += sizeof(ffi_arg);
+ FIX_ARGP;
+ }
+
+ p_argv = ecif->avalue;
+
+ for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types; i; i--, p_arg++)
+ {
+ size_t z;
+ unsigned int a;
+
+ /* Align if necessary. */
+ a = (*p_arg)->alignment;
+ if (a < sizeof(ffi_arg))
+ a = sizeof(ffi_arg);
+
+ if ((a - 1) & (unsigned int) argp)
+ {
+ argp = (char *) ALIGN(argp, a);
+ FIX_ARGP;
+ }
+
+ z = (*p_arg)->size;
+ if (z <= sizeof(ffi_arg))
+ {
+ z = sizeof(ffi_arg);
+
+ switch ((*p_arg)->type)
+ {
+ case FFI_TYPE_SINT8:
+ *(ffi_arg *)argp = *(SINT8 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT8:
+ *(ffi_arg *)argp = *(UINT8 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT16:
+ *(ffi_arg *)argp = *(SINT16 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT16:
+ *(ffi_arg *)argp = *(UINT16 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT32:
+ *(ffi_arg *)argp = *(SINT32 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT32:
+ case FFI_TYPE_POINTER:
+ *(ffi_arg *)argp = *(UINT32 *)(* p_argv);
+ break;
+
+ /* This can only happen with 64bit slots. */
+ case FFI_TYPE_FLOAT:
+ *(float *) argp = *(float *)(* p_argv);
+ break;
+
+ /* Handle small structures. */
+ case FFI_TYPE_STRUCT:
+ default:
+ memcpy(argp, *p_argv, (*p_arg)->size);
+ break;
+ }
+ }
+ else
+ {
+#if _MIPS_SIM == _ABIO32
+ memcpy(argp, *p_argv, z);
+#else
+ {
+ unsigned end = (unsigned) argp+z;
+ unsigned cap = (unsigned) stack+bytes;
+
+ /* Check if the data will fit within the register space.
+ Handle it if it doesn't. */
+
+ if (end <= cap)
+ memcpy(argp, *p_argv, z);
+ else
+ {
+ unsigned portion = end - cap;
+
+ memcpy(argp, *p_argv, portion);
+ argp = stack;
+ memcpy(argp,
+ (void*)((unsigned)(*p_argv)+portion), z - portion);
+ }
+ }
+#endif
+ }
+ p_argv++;
+ argp += z;
+ FIX_ARGP;
+ }
+}
+
+#if _MIPS_SIM == _ABIN32
+
+/* The n32 spec says that if "a chunk consists solely of a double
+ float field (but not a double, which is part of a union), it
+ is passed in a floating point register. Any other chunk is
+ passed in an integer register". This code traverses structure
+ definitions and generates the appropriate flags. */
+
+unsigned calc_n32_struct_flags(ffi_type *arg, unsigned *shift)
+{
+ unsigned flags = 0;
+ unsigned index = 0;
+
+ ffi_type *e;
+
+ while (e = arg->elements[index])
+ {
+ if (e->type == FFI_TYPE_DOUBLE)
+ {
+ flags += (FFI_TYPE_DOUBLE << *shift);
+ *shift += FFI_FLAG_BITS;
+ }
+ else if (e->type == FFI_TYPE_STRUCT)
+ flags += calc_n32_struct_flags(e, shift);
+ else
+ *shift += FFI_FLAG_BITS;
+
+ index++;
+ }
+
+ return flags;
+}
+
+unsigned calc_n32_return_struct_flags(ffi_type *arg)
+{
+ unsigned flags = 0;
+ unsigned index = 0;
+ unsigned small = FFI_TYPE_SMALLSTRUCT;
+ ffi_type *e;
+
+ /* Returning structures under n32 is a tricky thing.
+ A struct with only one or two floating point fields
+ is returned in $f0 (and $f2 if necessary). Any other
+ struct results at most 128 bits are returned in $2
+ (the first 64 bits) and $3 (remainder, if necessary).
+ Larger structs are handled normally. */
+
+ if (arg->size > 16)
+ return 0;
+
+ if (arg->size > 8)
+ small = FFI_TYPE_SMALLSTRUCT2;
+
+ e = arg->elements[0];
+ if (e->type == FFI_TYPE_DOUBLE)
+ flags = FFI_TYPE_DOUBLE << FFI_FLAG_BITS;
+ else if (e->type == FFI_TYPE_FLOAT)
+ flags = FFI_TYPE_FLOAT << FFI_FLAG_BITS;
+
+ if (flags && (e = arg->elements[1]))
+ {
+ if (e->type == FFI_TYPE_DOUBLE)
+ flags += FFI_TYPE_DOUBLE;
+ else if (e->type == FFI_TYPE_FLOAT)
+ flags += FFI_TYPE_FLOAT;
+ else
+ return small;
+
+ if (flags && (arg->elements[2]))
+ {
+ /* There are three arguments and the first two are
+ floats! This must be passed the old way. */
+ return small;
+ }
+ }
+ else
+ if (!flags)
+ return small;
+
+ return flags;
+}
+
+#endif
+
+/* Perform machine dependent cif processing */
+ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
+{
+ cif->flags = 0;
+
+#if _MIPS_SIM == _ABIO32
+ /* Set the flags necessary for O32 processing. FFI_O32_SOFT_FLOAT
+ * does not have special handling for floating point args.
+ */
+
+ if (cif->rtype->type != FFI_TYPE_STRUCT && cif->abi == FFI_O32)
+ {
+ if (cif->nargs > 0)
+ {
+ switch ((cif->arg_types)[0]->type)
+ {
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += (cif->arg_types)[0]->type;
+ break;
+
+ default:
+ break;
+ }
+
+ if (cif->nargs > 1)
+ {
+ /* Only handle the second argument if the first
+ is a float or double. */
+ if (cif->flags)
+ {
+ switch ((cif->arg_types)[1]->type)
+ {
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += (cif->arg_types)[1]->type << FFI_FLAG_BITS;
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /* Set the return type flag */
+
+ if (cif->abi == FFI_O32_SOFT_FLOAT)
+ {
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_VOID:
+ case FFI_TYPE_STRUCT:
+ cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
+ break;
+
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += FFI_TYPE_UINT64 << (FFI_FLAG_BITS * 2);
+ break;
+
+ case FFI_TYPE_FLOAT:
+ default:
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
+ break;
+ }
+ }
+ else
+ {
+ /* FFI_O32 */
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_VOID:
+ case FFI_TYPE_STRUCT:
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
+ break;
+
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ cif->flags += FFI_TYPE_UINT64 << (FFI_FLAG_BITS * 2);
+ break;
+
+ default:
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
+ break;
+ }
+ }
+#endif
+
+#if _MIPS_SIM == _ABIN32
+ /* Set the flags necessary for N32 processing */
+ {
+ unsigned shift = 0;
+ unsigned count = (cif->nargs < 8) ? cif->nargs : 8;
+ unsigned index = 0;
+
+ unsigned struct_flags = 0;
+
+ if (cif->rtype->type == FFI_TYPE_STRUCT)
+ {
+ struct_flags = calc_n32_return_struct_flags(cif->rtype);
+
+ if (struct_flags == 0)
+ {
+ /* This means that the structure is being passed as
+ a hidden argument */
+
+ shift = FFI_FLAG_BITS;
+ count = (cif->nargs < 7) ? cif->nargs : 7;
+
+ cif->rstruct_flag = !0;
+ }
+ else
+ cif->rstruct_flag = 0;
+ }
+ else
+ cif->rstruct_flag = 0;
+
+ while (count-- > 0)
+ {
+ switch ((cif->arg_types)[index]->type)
+ {
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += ((cif->arg_types)[index]->type << shift);
+ shift += FFI_FLAG_BITS;
+ break;
+
+ case FFI_TYPE_STRUCT:
+ cif->flags += calc_n32_struct_flags((cif->arg_types)[index],
+ &shift);
+ break;
+
+ default:
+ shift += FFI_FLAG_BITS;
+ }
+
+ index++;
+ }
+
+ /* Set the return type flag */
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_STRUCT:
+ {
+ if (struct_flags == 0)
+ {
+ /* The structure is returned through a hidden
+ first argument. Do nothing, 'cause FFI_TYPE_VOID
+ is 0 */
+ }
+ else
+ {
+ /* The structure is returned via some tricky
+ mechanism */
+ cif->flags += FFI_TYPE_STRUCT << (FFI_FLAG_BITS * 8);
+ cif->flags += struct_flags << (4 + (FFI_FLAG_BITS * 8));
+ }
+ break;
+ }
+
+ case FFI_TYPE_VOID:
+ /* Do nothing, 'cause FFI_TYPE_VOID is 0 */
+ break;
+
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 8);
+ break;
+
+ default:
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 8);
+ break;
+ }
+ }
+#endif
+
+ return FFI_OK;
+}
+
+/* Low level routine for calling O32 functions */
+extern int ffi_call_O32(void (*)(char *, extended_cif *, int, int),
+ extended_cif *, unsigned,
+ unsigned, unsigned *, void (*)());
+
+/* Low level routine for calling N32 functions */
+extern int ffi_call_N32(void (*)(char *, extended_cif *, int, int),
+ extended_cif *, unsigned,
+ unsigned, unsigned *, void (*)());
+
+void ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
+{
+ extended_cif ecif;
+
+ ecif.cif = cif;
+ ecif.avalue = avalue;
+
+ /* If the return value is a struct and we don't have a return */
+ /* value address then we need to make one */
+
+ if ((rvalue == NULL) &&
+ (cif->rtype->type == FFI_TYPE_STRUCT))
+ ecif.rvalue = alloca(cif->rtype->size);
+ else
+ ecif.rvalue = rvalue;
+
+ switch (cif->abi)
+ {
+#if _MIPS_SIM == _ABIO32
+ case FFI_O32:
+ case FFI_O32_SOFT_FLOAT:
+ ffi_call_O32(ffi_prep_args, &ecif, cif->bytes,
+ cif->flags, ecif.rvalue, fn);
+ break;
+#endif
+
+#if _MIPS_SIM == _ABIN32
+ case FFI_N32:
+ ffi_call_N32(ffi_prep_args, &ecif, cif->bytes,
+ cif->flags, ecif.rvalue, fn);
+ break;
+#endif
+
+ default:
+ FFI_ASSERT(0);
+ break;
+ }
+}
+
+#if FFI_CLOSURES /* N32 not implemented yet, FFI_CLOSURES not defined */
+#if defined(FFI_MIPS_O32)
+extern void ffi_closure_O32(void);
+#endif /* FFI_MIPS_O32 */
+
+ffi_status
+ffi_prep_closure (ffi_closure *closure,
+ ffi_cif *cif,
+ void (*fun)(ffi_cif*,void*,void**,void*),
+ void *user_data)
+{
+ unsigned int *tramp = (unsigned int *) &closure->tramp[0];
+ unsigned int fn;
+ unsigned int ctx = (unsigned int) closure;
+
+#if defined(FFI_MIPS_O32)
+ FFI_ASSERT(cif->abi == FFI_O32 || cif->abi == FFI_O32_SOFT_FLOAT);
+ fn = (unsigned int) ffi_closure_O32;
+#else /* FFI_MIPS_N32 */
+ FFI_ASSERT(cif->abi == FFI_N32);
+ FFI_ASSERT(!"not implemented");
+#endif /* FFI_MIPS_O32 */
+
+ tramp[0] = 0x3c190000 | (fn >> 16); /* lui $25,high(fn) */
+ tramp[1] = 0x37390000 | (fn & 0xffff); /* ori $25,low(fn) */
+ tramp[2] = 0x3c080000 | (ctx >> 16); /* lui $8,high(ctx) */
+ tramp[3] = 0x03200008; /* jr $25 */
+ tramp[4] = 0x35080000 | (ctx & 0xffff); /* ori $8,low(ctx) */
+
+ closure->cif = cif;
+ closure->fun = fun;
+ closure->user_data = user_data;
+
+ /* XXX this is available on Linux, but anything else? */
+ cacheflush (tramp, FFI_TRAMPOLINE_SIZE, ICACHE);
+
+ return FFI_OK;
+}
+
+/*
+ * Decodes the arguments to a function, which will be stored on the
+ * stack. AR is the pointer to the beginning of the integer arguments
+ * (and, depending upon the arguments, some floating-point arguments
+ * as well). FPR is a pointer to the area where floating point
+ * registers have been saved, if any.
+ *
+ * RVALUE is the location where the function return value will be
+ * stored. CLOSURE is the prepared closure to invoke.
+ *
+ * This function should only be called from assembly, which is in
+ * turn called from a trampoline.
+ *
+ * Returns the function return type.
+ *
+ * Based on the similar routine for sparc.
+ */
+int
+ffi_closure_mips_inner_O32 (ffi_closure *closure,
+ void *rvalue, ffi_arg *ar,
+ double *fpr)
+{
+ ffi_cif *cif;
+ void **avaluep;
+ ffi_arg *avalue;
+ ffi_type **arg_types;
+ int i, avn, argn, seen_int;
+
+ cif = closure->cif;
+ avalue = alloca (cif->nargs * sizeof (ffi_arg));
+ avaluep = alloca (cif->nargs * sizeof (ffi_arg));
+
+ seen_int = (cif->abi == FFI_O32_SOFT_FLOAT);
+ argn = 0;
+
+ if ((cif->flags >> (FFI_FLAG_BITS * 2)) == FFI_TYPE_STRUCT)
+ {
+ rvalue = (void *) ar[0];
+ argn = 1;
+ }
+
+ i = 0;
+ avn = cif->nargs;
+ arg_types = cif->arg_types;
+
+ while (i < avn)
+ {
+ if (i < 2 && !seen_int &&
+ (arg_types[i]->type == FFI_TYPE_FLOAT ||
+ arg_types[i]->type == FFI_TYPE_DOUBLE))
+ {
+#ifdef __MIPSEB__
+ if (arg_types[i]->type == FFI_TYPE_FLOAT)
+ avaluep[i] = ((char *) &fpr[i]) + sizeof (float);
+ else
+#endif
+ avaluep[i] = (char *) &fpr[i];
+ }
+ else
+ {
+ if (arg_types[i]->alignment == 8 && (argn & 0x1))
+ argn++;
+ switch (arg_types[i]->type)
+ {
+ case FFI_TYPE_SINT8:
+ avaluep[i] = &avalue[i];
+ *(SINT8 *) &avalue[i] = (SINT8) ar[argn];
+ break;
+
+ case FFI_TYPE_UINT8:
+ avaluep[i] = &avalue[i];
+ *(UINT8 *) &avalue[i] = (UINT8) ar[argn];
+ break;
+
+ case FFI_TYPE_SINT16:
+ avaluep[i] = &avalue[i];
+ *(SINT16 *) &avalue[i] = (SINT16) ar[argn];
+ break;
+
+ case FFI_TYPE_UINT16:
+ avaluep[i] = &avalue[i];
+ *(UINT16 *) &avalue[i] = (UINT16) ar[argn];
+ break;
+
+ default:
+ avaluep[i] = (char *) &ar[argn];
+ break;
+ }
+ seen_int = 1;
+ }
+ argn += ALIGN(arg_types[i]->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
+ i++;
+ }
+
+ /* Invoke the closure. */
+ (closure->fun) (cif, rvalue, avaluep, closure->user_data);
+
+ if (cif->abi == FFI_O32_SOFT_FLOAT)
+ {
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_FLOAT:
+ return FFI_TYPE_INT;
+ case FFI_TYPE_DOUBLE:
+ return FFI_TYPE_UINT64;
+ default:
+ return cif->rtype->type;
+ }
+ }
+ else
+ {
+ return cif->rtype->type;
+ }
+}
+
+#endif /* FFI_CLOSURES */