aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/config/arm/arm1020e.md
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/config/arm/arm1020e.md')
-rw-r--r--gcc-4.2.1/gcc/config/arm/arm1020e.md388
1 files changed, 0 insertions, 388 deletions
diff --git a/gcc-4.2.1/gcc/config/arm/arm1020e.md b/gcc-4.2.1/gcc/config/arm/arm1020e.md
deleted file mode 100644
index 32a5d95e9..000000000
--- a/gcc-4.2.1/gcc/config/arm/arm1020e.md
+++ /dev/null
@@ -1,388 +0,0 @@
-;; ARM 1020E & ARM 1022E Pipeline Description
-;; Copyright (C) 2005 Free Software Foundation, Inc.
-;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
-;;
-;; This file is part of GCC.
-;;
-;; GCC is free software; you can redistribute it and/or modify it
-;; under the terms of the GNU General Public License as published by
-;; the Free Software Foundation; either version 2, or (at your option)
-;; any later version.
-;;
-;; GCC is distributed in the hope that it will be useful, but
-;; WITHOUT ANY WARRANTY; without even the implied warranty of
-;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-;; General Public License for more details.
-;;
-;; You should have received a copy of the GNU General Public License
-;; along with GCC; see the file COPYING. If not, write to the Free
-;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-;; 02110-1301, USA. */
-
-;; These descriptions are based on the information contained in the
-;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
-;; Limited.
-;;
-
-;; This automaton provides a pipeline description for the ARM
-;; 1020E core.
-;;
-;; The model given here assumes that the condition for all conditional
-;; instructions is "true", i.e., that all of the instructions are
-;; actually executed.
-
-(define_automaton "arm1020e")
-
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Pipelines
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-;; There are two pipelines:
-;;
-;; - An Arithmetic Logic Unit (ALU) pipeline.
-;;
-;; The ALU pipeline has fetch, issue, decode, execute, memory, and
-;; write stages. We only need to model the execute, memory and write
-;; stages.
-;;
-;; - A Load-Store Unit (LSU) pipeline.
-;;
-;; The LSU pipeline has decode, execute, memory, and write stages.
-;; We only model the execute, memory and write stages.
-
-(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
-(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
-
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; ALU Instructions
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-;; ALU instructions require three cycles to execute, and use the ALU
-;; pipeline in each of the three stages. The results are available
-;; after the execute stage stage has finished.
-;;
-;; If the destination register is the PC, the pipelines are stalled
-;; for several cycles. That case is not modeled here.
-
-;; ALU operations with no shifted operand
-(define_insn_reservation "1020alu_op" 1
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "alu"))
- "1020a_e,1020a_m,1020a_w")
-
-;; ALU operations with a shift-by-constant operand
-(define_insn_reservation "1020alu_shift_op" 1
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "alu_shift"))
- "1020a_e,1020a_m,1020a_w")
-
-;; ALU operations with a shift-by-register operand
-;; These really stall in the decoder, in order to read
-;; the shift value in a second cycle. Pretend we take two cycles in
-;; the execute stage.
-(define_insn_reservation "1020alu_shift_reg_op" 2
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "alu_shift_reg"))
- "1020a_e*2,1020a_m,1020a_w")
-
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Multiplication Instructions
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-;; Multiplication instructions loop in the execute stage until the
-;; instruction has been passed through the multiplier array enough
-;; times.
-
-;; The result of the "smul" and "smulw" instructions is not available
-;; until after the memory stage.
-(define_insn_reservation "1020mult1" 2
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "insn" "smulxy,smulwy"))
- "1020a_e,1020a_m,1020a_w")
-
-;; The "smlaxy" and "smlawx" instructions require two iterations through
-;; the execute stage; the result is available immediately following
-;; the execute stage.
-(define_insn_reservation "1020mult2" 2
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
- "1020a_e*2,1020a_m,1020a_w")
-
-;; The "smlalxy", "mul", and "mla" instructions require two iterations
-;; through the execute stage; the result is not available until after
-;; the memory stage.
-(define_insn_reservation "1020mult3" 3
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "insn" "smlalxy,mul,mla"))
- "1020a_e*2,1020a_m,1020a_w")
-
-;; The "muls" and "mlas" instructions loop in the execute stage for
-;; four iterations in order to set the flags. The value result is
-;; available after three iterations.
-(define_insn_reservation "1020mult4" 3
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "insn" "muls,mlas"))
- "1020a_e*4,1020a_m,1020a_w")
-
-;; Long multiply instructions that produce two registers of
-;; output (such as umull) make their results available in two cycles;
-;; the least significant word is available before the most significant
-;; word. That fact is not modeled; instead, the instructions are
-;; described.as if the entire result was available at the end of the
-;; cycle in which both words are available.
-
-;; The "umull", "umlal", "smull", and "smlal" instructions all take
-;; three iterations through the execute cycle, and make their results
-;; available after the memory cycle.
-(define_insn_reservation "1020mult5" 4
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "insn" "umull,umlal,smull,smlal"))
- "1020a_e*3,1020a_m,1020a_w")
-
-;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
-;; the execute stage for five iterations in order to set the flags.
-;; The value result is available after four iterations.
-(define_insn_reservation "1020mult6" 4
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "insn" "umulls,umlals,smulls,smlals"))
- "1020a_e*5,1020a_m,1020a_w")
-
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Load/Store Instructions
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-;; The models for load/store instructions do not accurately describe
-;; the difference between operations with a base register writeback
-;; (such as "ldm!"). These models assume that all memory references
-;; hit in dcache.
-
-;; LSU instructions require six cycles to execute. They use the ALU
-;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
-;; three through six.
-;; Loads and stores which use a scaled register offset or scaled
-;; register pre-indexed addressing mode take three cycles EXCEPT for
-;; those that are base + offset with LSL of 0 or 2, or base - offset
-;; with LSL of zero. The remainder take 1 cycle to execute.
-;; For 4byte loads there is a bypass from the load stage
-
-(define_insn_reservation "1020load1_op" 2
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "load_byte,load1"))
- "1020a_e+1020l_e,1020l_m,1020l_w")
-
-(define_insn_reservation "1020store1_op" 0
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "store1"))
- "1020a_e+1020l_e,1020l_m,1020l_w")
-
-;; A load's result can be stored by an immediately following store
-(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
-
-;; On a LDM/STM operation, the LSU pipeline iterates until all of the
-;; registers have been processed.
-;;
-;; The time it takes to load the data depends on whether or not the
-;; base address is 64-bit aligned; if it is not, an additional cycle
-;; is required. This model assumes that the address is always 64-bit
-;; aligned. Because the processor can load two registers per cycle,
-;; that assumption means that we use the same instruction reservations
-;; for loading 2k and 2k - 1 registers.
-;;
-;; The ALU pipeline is decoupled after the first cycle unless there is
-;; a register dependency; the dependency is cleared as soon as the LDM/STM
-;; has dealt with the corresponding register. So for example,
-;; stmia sp, {r0-r3}
-;; add r0, r0, #4
-;; will have one fewer stalls than
-;; stmia sp, {r0-r3}
-;; add r3, r3, #4
-;;
-;; As with ALU operations, if one of the destination registers is the
-;; PC, there are additional stalls; that is not modeled.
-
-(define_insn_reservation "1020load2_op" 2
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "load2"))
- "1020a_e+1020l_e,1020l_m,1020l_w")
-
-(define_insn_reservation "1020store2_op" 0
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "store2"))
- "1020a_e+1020l_e,1020l_m,1020l_w")
-
-(define_insn_reservation "1020load34_op" 3
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "load3,load4"))
- "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
-
-(define_insn_reservation "1020store34_op" 0
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "store3,store4"))
- "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
-
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; Branch and Call Instructions
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-;; Branch instructions are difficult to model accurately. The ARM
-;; core can predict most branches. If the branch is predicted
-;; correctly, and predicted early enough, the branch can be completely
-;; eliminated from the instruction stream. Some branches can
-;; therefore appear to require zero cycles to execute. We assume that
-;; all branches are predicted correctly, and that the latency is
-;; therefore the minimum value.
-
-(define_insn_reservation "1020branch_op" 0
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "branch"))
- "1020a_e")
-
-;; The latency for a call is not predictable. Therefore, we use 32 as
-;; roughly equivalent to positive infinity.
-
-(define_insn_reservation "1020call_op" 32
- (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "type" "call"))
- "1020a_e*32")
-
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;; VFP
-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-
-(define_cpu_unit "v10_fmac" "arm1020e")
-
-(define_cpu_unit "v10_ds" "arm1020e")
-
-(define_cpu_unit "v10_fmstat" "arm1020e")
-
-(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
-
-;; fmstat is a serializing instruction. It will stall the core until
-;; the mac and ds units have completed.
-(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
-
-(define_attr "vfp10" "yes,no"
- (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
- (eq_attr "fpu" "vfp"))
- (const_string "yes") (const_string "no"))))
-
-;; The VFP "type" attributes differ from those used in the FPA model.
-;; ffarith Fast floating point insns, e.g. abs, neg, cpy, cmp.
-;; farith Most arithmetic insns.
-;; fmul Double precision multiply.
-;; fdivs Single precision sqrt or division.
-;; fdivd Double precision sqrt or division.
-;; f_flag fmstat operation
-;; f_load Floating point load from memory.
-;; f_store Floating point store to memory.
-;; f_2_r Transfer vfp to arm reg.
-;; r_2_f Transfer arm to vfp reg.
-
-;; Note, no instruction can issue to the VFP if the core is stalled in the
-;; first execute state. We model this by using 1020a_e in the first cycle.
-(define_insn_reservation "v10_ffarith" 5
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "ffarith"))
- "1020a_e+v10_fmac")
-
-(define_insn_reservation "v10_farith" 5
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "farith"))
- "1020a_e+v10_fmac")
-
-(define_insn_reservation "v10_cvt" 5
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_cvt"))
- "1020a_e+v10_fmac")
-
-(define_insn_reservation "v10_fmul" 6
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "fmul"))
- "1020a_e+v10_fmac*2")
-
-(define_insn_reservation "v10_fdivs" 18
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "fdivs"))
- "1020a_e+v10_ds*14")
-
-(define_insn_reservation "v10_fdivd" 32
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "fdivd"))
- "1020a_e+v10_fmac+v10_ds*28")
-
-(define_insn_reservation "v10_floads" 4
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_loads"))
- "1020a_e+1020l_e+v10_ls1,v10_ls2")
-
-;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
-;; This gives the correct mix between single-and double loads where a flds
-;; followed by and fldd will stall for one cycle, but two back-to-back fldd
-;; insns stall for two cycles.
-(define_insn_reservation "v10_floadd" 5
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_loadd"))
- "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
-
-;; Moves to/from arm regs also use the load/store pipeline.
-
-(define_insn_reservation "v10_c2v" 4
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "r_2_f"))
- "1020a_e+1020l_e+v10_ls1,v10_ls2")
-
-(define_insn_reservation "v10_fstores" 1
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_stores"))
- "1020a_e+1020l_e+v10_ls1,v10_ls2")
-
-(define_insn_reservation "v10_fstored" 1
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_stored"))
- "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
-
-(define_insn_reservation "v10_v2c" 1
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_2_r"))
- "1020a_e+1020l_e,1020l_m,1020l_w")
-
-(define_insn_reservation "v10_to_cpsr" 2
- (and (eq_attr "vfp10" "yes")
- (eq_attr "type" "f_flag"))
- "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
-
-;; VFP bypasses
-
-;; There are bypasses for most operations other than store
-
-(define_bypass 3
- "v10_c2v,v10_floads"
- "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
-
-(define_bypass 4
- "v10_floadd"
- "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
-
-;; Arithmetic to other arithmetic saves a cycle due to forwarding
-(define_bypass 4
- "v10_ffarith,v10_farith"
- "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
-
-(define_bypass 5
- "v10_fmul"
- "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
-
-(define_bypass 17
- "v10_fdivs"
- "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
-
-(define_bypass 31
- "v10_fdivd"
- "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
-
-;; VFP anti-dependencies.
-
-;; There is one anti-dependence in the following case (not yet modelled):
-;; - After a store: one extra cycle for both fsts and fstd
-;; Note, back-to-back fstd instructions will overload the load/store datapath
-;; causing a two-cycle stall.