aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/config/arm/arm1020e.md
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/config/arm/arm1020e.md')
-rw-r--r--gcc-4.2.1/gcc/config/arm/arm1020e.md388
1 files changed, 388 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/config/arm/arm1020e.md b/gcc-4.2.1/gcc/config/arm/arm1020e.md
new file mode 100644
index 000000000..32a5d95e9
--- /dev/null
+++ b/gcc-4.2.1/gcc/config/arm/arm1020e.md
@@ -0,0 +1,388 @@
+;; ARM 1020E & ARM 1022E Pipeline Description
+;; Copyright (C) 2005 Free Software Foundation, Inc.
+;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
+;;
+;; This file is part of GCC.
+;;
+;; GCC is free software; you can redistribute it and/or modify it
+;; under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+;;
+;; GCC is distributed in the hope that it will be useful, but
+;; WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+;; General Public License for more details.
+;;
+;; You should have received a copy of the GNU General Public License
+;; along with GCC; see the file COPYING. If not, write to the Free
+;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+;; 02110-1301, USA. */
+
+;; These descriptions are based on the information contained in the
+;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
+;; Limited.
+;;
+
+;; This automaton provides a pipeline description for the ARM
+;; 1020E core.
+;;
+;; The model given here assumes that the condition for all conditional
+;; instructions is "true", i.e., that all of the instructions are
+;; actually executed.
+
+(define_automaton "arm1020e")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Pipelines
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; There are two pipelines:
+;;
+;; - An Arithmetic Logic Unit (ALU) pipeline.
+;;
+;; The ALU pipeline has fetch, issue, decode, execute, memory, and
+;; write stages. We only need to model the execute, memory and write
+;; stages.
+;;
+;; - A Load-Store Unit (LSU) pipeline.
+;;
+;; The LSU pipeline has decode, execute, memory, and write stages.
+;; We only model the execute, memory and write stages.
+
+(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
+(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; ALU Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; ALU instructions require three cycles to execute, and use the ALU
+;; pipeline in each of the three stages. The results are available
+;; after the execute stage stage has finished.
+;;
+;; If the destination register is the PC, the pipelines are stalled
+;; for several cycles. That case is not modeled here.
+
+;; ALU operations with no shifted operand
+(define_insn_reservation "1020alu_op" 1
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "alu"))
+ "1020a_e,1020a_m,1020a_w")
+
+;; ALU operations with a shift-by-constant operand
+(define_insn_reservation "1020alu_shift_op" 1
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "alu_shift"))
+ "1020a_e,1020a_m,1020a_w")
+
+;; ALU operations with a shift-by-register operand
+;; These really stall in the decoder, in order to read
+;; the shift value in a second cycle. Pretend we take two cycles in
+;; the execute stage.
+(define_insn_reservation "1020alu_shift_reg_op" 2
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "alu_shift_reg"))
+ "1020a_e*2,1020a_m,1020a_w")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Multiplication Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Multiplication instructions loop in the execute stage until the
+;; instruction has been passed through the multiplier array enough
+;; times.
+
+;; The result of the "smul" and "smulw" instructions is not available
+;; until after the memory stage.
+(define_insn_reservation "1020mult1" 2
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "insn" "smulxy,smulwy"))
+ "1020a_e,1020a_m,1020a_w")
+
+;; The "smlaxy" and "smlawx" instructions require two iterations through
+;; the execute stage; the result is available immediately following
+;; the execute stage.
+(define_insn_reservation "1020mult2" 2
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
+ "1020a_e*2,1020a_m,1020a_w")
+
+;; The "smlalxy", "mul", and "mla" instructions require two iterations
+;; through the execute stage; the result is not available until after
+;; the memory stage.
+(define_insn_reservation "1020mult3" 3
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "insn" "smlalxy,mul,mla"))
+ "1020a_e*2,1020a_m,1020a_w")
+
+;; The "muls" and "mlas" instructions loop in the execute stage for
+;; four iterations in order to set the flags. The value result is
+;; available after three iterations.
+(define_insn_reservation "1020mult4" 3
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "insn" "muls,mlas"))
+ "1020a_e*4,1020a_m,1020a_w")
+
+;; Long multiply instructions that produce two registers of
+;; output (such as umull) make their results available in two cycles;
+;; the least significant word is available before the most significant
+;; word. That fact is not modeled; instead, the instructions are
+;; described.as if the entire result was available at the end of the
+;; cycle in which both words are available.
+
+;; The "umull", "umlal", "smull", and "smlal" instructions all take
+;; three iterations through the execute cycle, and make their results
+;; available after the memory cycle.
+(define_insn_reservation "1020mult5" 4
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "insn" "umull,umlal,smull,smlal"))
+ "1020a_e*3,1020a_m,1020a_w")
+
+;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
+;; the execute stage for five iterations in order to set the flags.
+;; The value result is available after four iterations.
+(define_insn_reservation "1020mult6" 4
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "insn" "umulls,umlals,smulls,smlals"))
+ "1020a_e*5,1020a_m,1020a_w")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Load/Store Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; The models for load/store instructions do not accurately describe
+;; the difference between operations with a base register writeback
+;; (such as "ldm!"). These models assume that all memory references
+;; hit in dcache.
+
+;; LSU instructions require six cycles to execute. They use the ALU
+;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
+;; three through six.
+;; Loads and stores which use a scaled register offset or scaled
+;; register pre-indexed addressing mode take three cycles EXCEPT for
+;; those that are base + offset with LSL of 0 or 2, or base - offset
+;; with LSL of zero. The remainder take 1 cycle to execute.
+;; For 4byte loads there is a bypass from the load stage
+
+(define_insn_reservation "1020load1_op" 2
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "load_byte,load1"))
+ "1020a_e+1020l_e,1020l_m,1020l_w")
+
+(define_insn_reservation "1020store1_op" 0
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "store1"))
+ "1020a_e+1020l_e,1020l_m,1020l_w")
+
+;; A load's result can be stored by an immediately following store
+(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
+
+;; On a LDM/STM operation, the LSU pipeline iterates until all of the
+;; registers have been processed.
+;;
+;; The time it takes to load the data depends on whether or not the
+;; base address is 64-bit aligned; if it is not, an additional cycle
+;; is required. This model assumes that the address is always 64-bit
+;; aligned. Because the processor can load two registers per cycle,
+;; that assumption means that we use the same instruction reservations
+;; for loading 2k and 2k - 1 registers.
+;;
+;; The ALU pipeline is decoupled after the first cycle unless there is
+;; a register dependency; the dependency is cleared as soon as the LDM/STM
+;; has dealt with the corresponding register. So for example,
+;; stmia sp, {r0-r3}
+;; add r0, r0, #4
+;; will have one fewer stalls than
+;; stmia sp, {r0-r3}
+;; add r3, r3, #4
+;;
+;; As with ALU operations, if one of the destination registers is the
+;; PC, there are additional stalls; that is not modeled.
+
+(define_insn_reservation "1020load2_op" 2
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "load2"))
+ "1020a_e+1020l_e,1020l_m,1020l_w")
+
+(define_insn_reservation "1020store2_op" 0
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "store2"))
+ "1020a_e+1020l_e,1020l_m,1020l_w")
+
+(define_insn_reservation "1020load34_op" 3
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "load3,load4"))
+ "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
+
+(define_insn_reservation "1020store34_op" 0
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "store3,store4"))
+ "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; Branch and Call Instructions
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;; Branch instructions are difficult to model accurately. The ARM
+;; core can predict most branches. If the branch is predicted
+;; correctly, and predicted early enough, the branch can be completely
+;; eliminated from the instruction stream. Some branches can
+;; therefore appear to require zero cycles to execute. We assume that
+;; all branches are predicted correctly, and that the latency is
+;; therefore the minimum value.
+
+(define_insn_reservation "1020branch_op" 0
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "branch"))
+ "1020a_e")
+
+;; The latency for a call is not predictable. Therefore, we use 32 as
+;; roughly equivalent to positive infinity.
+
+(define_insn_reservation "1020call_op" 32
+ (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "type" "call"))
+ "1020a_e*32")
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;; VFP
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+(define_cpu_unit "v10_fmac" "arm1020e")
+
+(define_cpu_unit "v10_ds" "arm1020e")
+
+(define_cpu_unit "v10_fmstat" "arm1020e")
+
+(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
+
+;; fmstat is a serializing instruction. It will stall the core until
+;; the mac and ds units have completed.
+(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
+
+(define_attr "vfp10" "yes,no"
+ (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
+ (eq_attr "fpu" "vfp"))
+ (const_string "yes") (const_string "no"))))
+
+;; The VFP "type" attributes differ from those used in the FPA model.
+;; ffarith Fast floating point insns, e.g. abs, neg, cpy, cmp.
+;; farith Most arithmetic insns.
+;; fmul Double precision multiply.
+;; fdivs Single precision sqrt or division.
+;; fdivd Double precision sqrt or division.
+;; f_flag fmstat operation
+;; f_load Floating point load from memory.
+;; f_store Floating point store to memory.
+;; f_2_r Transfer vfp to arm reg.
+;; r_2_f Transfer arm to vfp reg.
+
+;; Note, no instruction can issue to the VFP if the core is stalled in the
+;; first execute state. We model this by using 1020a_e in the first cycle.
+(define_insn_reservation "v10_ffarith" 5
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "ffarith"))
+ "1020a_e+v10_fmac")
+
+(define_insn_reservation "v10_farith" 5
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "farith"))
+ "1020a_e+v10_fmac")
+
+(define_insn_reservation "v10_cvt" 5
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_cvt"))
+ "1020a_e+v10_fmac")
+
+(define_insn_reservation "v10_fmul" 6
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "fmul"))
+ "1020a_e+v10_fmac*2")
+
+(define_insn_reservation "v10_fdivs" 18
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "fdivs"))
+ "1020a_e+v10_ds*14")
+
+(define_insn_reservation "v10_fdivd" 32
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "fdivd"))
+ "1020a_e+v10_fmac+v10_ds*28")
+
+(define_insn_reservation "v10_floads" 4
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_loads"))
+ "1020a_e+1020l_e+v10_ls1,v10_ls2")
+
+;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
+;; This gives the correct mix between single-and double loads where a flds
+;; followed by and fldd will stall for one cycle, but two back-to-back fldd
+;; insns stall for two cycles.
+(define_insn_reservation "v10_floadd" 5
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_loadd"))
+ "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
+
+;; Moves to/from arm regs also use the load/store pipeline.
+
+(define_insn_reservation "v10_c2v" 4
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "r_2_f"))
+ "1020a_e+1020l_e+v10_ls1,v10_ls2")
+
+(define_insn_reservation "v10_fstores" 1
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_stores"))
+ "1020a_e+1020l_e+v10_ls1,v10_ls2")
+
+(define_insn_reservation "v10_fstored" 1
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_stored"))
+ "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
+
+(define_insn_reservation "v10_v2c" 1
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_2_r"))
+ "1020a_e+1020l_e,1020l_m,1020l_w")
+
+(define_insn_reservation "v10_to_cpsr" 2
+ (and (eq_attr "vfp10" "yes")
+ (eq_attr "type" "f_flag"))
+ "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
+
+;; VFP bypasses
+
+;; There are bypasses for most operations other than store
+
+(define_bypass 3
+ "v10_c2v,v10_floads"
+ "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
+
+(define_bypass 4
+ "v10_floadd"
+ "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
+
+;; Arithmetic to other arithmetic saves a cycle due to forwarding
+(define_bypass 4
+ "v10_ffarith,v10_farith"
+ "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
+
+(define_bypass 5
+ "v10_fmul"
+ "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
+
+(define_bypass 17
+ "v10_fdivs"
+ "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
+
+(define_bypass 31
+ "v10_fdivd"
+ "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
+
+;; VFP anti-dependencies.
+
+;; There is one anti-dependence in the following case (not yet modelled):
+;; - After a store: one extra cycle for both fsts and fstd
+;; Note, back-to-back fstd instructions will overload the load/store datapath
+;; causing a two-cycle stall.