aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/config/arm/arm.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/config/arm/arm.c')
-rw-r--r--gcc-4.2.1/gcc/config/arm/arm.c15651
1 files changed, 0 insertions, 15651 deletions
diff --git a/gcc-4.2.1/gcc/config/arm/arm.c b/gcc-4.2.1/gcc/config/arm/arm.c
deleted file mode 100644
index ec34cb208..000000000
--- a/gcc-4.2.1/gcc/config/arm/arm.c
+++ /dev/null
@@ -1,15651 +0,0 @@
-/* Output routines for GCC for ARM.
- Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
- 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
- Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
- and Martin Simmons (@harleqn.co.uk).
- More major hacks by Richard Earnshaw (rearnsha@arm.com).
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published
- by the Free Software Foundation; either version 2, or (at your
- option) any later version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING. If not, write to
- the Free Software Foundation, 51 Franklin Street, Fifth Floor,
- Boston, MA 02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "obstack.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "real.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "output.h"
-#include "insn-attr.h"
-#include "flags.h"
-#include "reload.h"
-#include "function.h"
-#include "expr.h"
-#include "optabs.h"
-#include "toplev.h"
-#include "recog.h"
-#include "ggc.h"
-#include "except.h"
-#include "c-pragma.h"
-#include "integrate.h"
-#include "tm_p.h"
-#include "target.h"
-#include "target-def.h"
-#include "debug.h"
-#include "langhooks.h"
-
-/* Forward definitions of types. */
-typedef struct minipool_node Mnode;
-typedef struct minipool_fixup Mfix;
-
-const struct attribute_spec arm_attribute_table[];
-
-/* Forward function declarations. */
-static arm_stack_offsets *arm_get_frame_offsets (void);
-static void arm_add_gc_roots (void);
-static int arm_gen_constant (enum rtx_code, enum machine_mode, rtx,
- HOST_WIDE_INT, rtx, rtx, int, int);
-static unsigned bit_count (unsigned long);
-static int arm_address_register_rtx_p (rtx, int);
-static int arm_legitimate_index_p (enum machine_mode, rtx, RTX_CODE, int);
-static int thumb_base_register_rtx_p (rtx, enum machine_mode, int);
-inline static int thumb_index_register_rtx_p (rtx, int);
-static int thumb_far_jump_used_p (void);
-static bool thumb_force_lr_save (void);
-static int const_ok_for_op (HOST_WIDE_INT, enum rtx_code);
-static rtx emit_sfm (int, int);
-static int arm_size_return_regs (void);
-#ifndef AOF_ASSEMBLER
-static bool arm_assemble_integer (rtx, unsigned int, int);
-#endif
-static const char *fp_const_from_val (REAL_VALUE_TYPE *);
-static arm_cc get_arm_condition_code (rtx);
-static HOST_WIDE_INT int_log2 (HOST_WIDE_INT);
-static rtx is_jump_table (rtx);
-static const char *output_multi_immediate (rtx *, const char *, const char *,
- int, HOST_WIDE_INT);
-static const char *shift_op (rtx, HOST_WIDE_INT *);
-static struct machine_function *arm_init_machine_status (void);
-static void thumb_exit (FILE *, int);
-static rtx is_jump_table (rtx);
-static HOST_WIDE_INT get_jump_table_size (rtx);
-static Mnode *move_minipool_fix_forward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
-static Mnode *add_minipool_forward_ref (Mfix *);
-static Mnode *move_minipool_fix_backward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
-static Mnode *add_minipool_backward_ref (Mfix *);
-static void assign_minipool_offsets (Mfix *);
-static void arm_print_value (FILE *, rtx);
-static void dump_minipool (rtx);
-static int arm_barrier_cost (rtx);
-static Mfix *create_fix_barrier (Mfix *, HOST_WIDE_INT);
-static void push_minipool_barrier (rtx, HOST_WIDE_INT);
-static void push_minipool_fix (rtx, HOST_WIDE_INT, rtx *, enum machine_mode,
- rtx);
-static void arm_reorg (void);
-static bool note_invalid_constants (rtx, HOST_WIDE_INT, int);
-static int current_file_function_operand (rtx);
-static unsigned long arm_compute_save_reg0_reg12_mask (void);
-static unsigned long arm_compute_save_reg_mask (void);
-static unsigned long arm_isr_value (tree);
-static unsigned long arm_compute_func_type (void);
-static tree arm_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
-static tree arm_handle_isr_attribute (tree *, tree, tree, int, bool *);
-#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
-static tree arm_handle_notshared_attribute (tree *, tree, tree, int, bool *);
-#endif
-static void arm_output_function_epilogue (FILE *, HOST_WIDE_INT);
-static void arm_output_function_prologue (FILE *, HOST_WIDE_INT);
-static void thumb_output_function_prologue (FILE *, HOST_WIDE_INT);
-static int arm_comp_type_attributes (tree, tree);
-static void arm_set_default_type_attributes (tree);
-static int arm_adjust_cost (rtx, rtx, rtx, int);
-static int count_insns_for_constant (HOST_WIDE_INT, int);
-static int arm_get_strip_length (int);
-static bool arm_function_ok_for_sibcall (tree, tree);
-static void arm_internal_label (FILE *, const char *, unsigned long);
-static void arm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
- tree);
-static int arm_rtx_costs_1 (rtx, enum rtx_code, enum rtx_code);
-static bool arm_size_rtx_costs (rtx, int, int, int *);
-static bool arm_slowmul_rtx_costs (rtx, int, int, int *);
-static bool arm_fastmul_rtx_costs (rtx, int, int, int *);
-static bool arm_xscale_rtx_costs (rtx, int, int, int *);
-static bool arm_9e_rtx_costs (rtx, int, int, int *);
-static int arm_address_cost (rtx);
-static bool arm_memory_load_p (rtx);
-static bool arm_cirrus_insn_p (rtx);
-static void cirrus_reorg (rtx);
-static void arm_init_builtins (void);
-static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
-static void arm_init_iwmmxt_builtins (void);
-static rtx safe_vector_operand (rtx, enum machine_mode);
-static rtx arm_expand_binop_builtin (enum insn_code, tree, rtx);
-static rtx arm_expand_unop_builtin (enum insn_code, tree, rtx, int);
-static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
-static void emit_constant_insn (rtx cond, rtx pattern);
-static rtx emit_set_insn (rtx, rtx);
-static int arm_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
- tree, bool);
-
-#ifdef OBJECT_FORMAT_ELF
-static void arm_elf_asm_constructor (rtx, int);
-#endif
-#ifndef ARM_PE
-static void arm_encode_section_info (tree, rtx, int);
-#endif
-
-static void arm_file_end (void);
-
-#ifdef AOF_ASSEMBLER
-static void aof_globalize_label (FILE *, const char *);
-static void aof_dump_imports (FILE *);
-static void aof_dump_pic_table (FILE *);
-static void aof_file_start (void);
-static void aof_file_end (void);
-static void aof_asm_init_sections (void);
-#endif
-static void arm_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
- tree, int *, int);
-static bool arm_pass_by_reference (CUMULATIVE_ARGS *,
- enum machine_mode, tree, bool);
-static bool arm_promote_prototypes (tree);
-static bool arm_default_short_enums (void);
-static bool arm_align_anon_bitfield (void);
-static bool arm_return_in_msb (tree);
-static bool arm_must_pass_in_stack (enum machine_mode, tree);
-#ifdef TARGET_UNWIND_INFO
-static void arm_unwind_emit (FILE *, rtx);
-static bool arm_output_ttype (rtx);
-#endif
-
-static tree arm_cxx_guard_type (void);
-static bool arm_cxx_guard_mask_bit (void);
-static tree arm_get_cookie_size (tree);
-static bool arm_cookie_has_size (void);
-static bool arm_cxx_cdtor_returns_this (void);
-static bool arm_cxx_key_method_may_be_inline (void);
-static void arm_cxx_determine_class_data_visibility (tree);
-static bool arm_cxx_class_data_always_comdat (void);
-static bool arm_cxx_use_aeabi_atexit (void);
-static void arm_init_libfuncs (void);
-static bool arm_handle_option (size_t, const char *, int);
-static unsigned HOST_WIDE_INT arm_shift_truncation_mask (enum machine_mode);
-static bool arm_cannot_copy_insn_p (rtx);
-static bool arm_tls_symbol_p (rtx x);
-
-
-/* Initialize the GCC target structure. */
-#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
-#undef TARGET_MERGE_DECL_ATTRIBUTES
-#define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
-#endif
-
-#undef TARGET_ATTRIBUTE_TABLE
-#define TARGET_ATTRIBUTE_TABLE arm_attribute_table
-
-#undef TARGET_ASM_FILE_END
-#define TARGET_ASM_FILE_END arm_file_end
-
-#ifdef AOF_ASSEMBLER
-#undef TARGET_ASM_BYTE_OP
-#define TARGET_ASM_BYTE_OP "\tDCB\t"
-#undef TARGET_ASM_ALIGNED_HI_OP
-#define TARGET_ASM_ALIGNED_HI_OP "\tDCW\t"
-#undef TARGET_ASM_ALIGNED_SI_OP
-#define TARGET_ASM_ALIGNED_SI_OP "\tDCD\t"
-#undef TARGET_ASM_GLOBALIZE_LABEL
-#define TARGET_ASM_GLOBALIZE_LABEL aof_globalize_label
-#undef TARGET_ASM_FILE_START
-#define TARGET_ASM_FILE_START aof_file_start
-#undef TARGET_ASM_FILE_END
-#define TARGET_ASM_FILE_END aof_file_end
-#else
-#undef TARGET_ASM_ALIGNED_SI_OP
-#define TARGET_ASM_ALIGNED_SI_OP NULL
-#undef TARGET_ASM_INTEGER
-#define TARGET_ASM_INTEGER arm_assemble_integer
-#endif
-
-#undef TARGET_ASM_FUNCTION_PROLOGUE
-#define TARGET_ASM_FUNCTION_PROLOGUE arm_output_function_prologue
-
-#undef TARGET_ASM_FUNCTION_EPILOGUE
-#define TARGET_ASM_FUNCTION_EPILOGUE arm_output_function_epilogue
-
-#undef TARGET_DEFAULT_TARGET_FLAGS
-#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | MASK_SCHED_PROLOG)
-#undef TARGET_HANDLE_OPTION
-#define TARGET_HANDLE_OPTION arm_handle_option
-
-#undef TARGET_COMP_TYPE_ATTRIBUTES
-#define TARGET_COMP_TYPE_ATTRIBUTES arm_comp_type_attributes
-
-#undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
-#define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES arm_set_default_type_attributes
-
-#undef TARGET_SCHED_ADJUST_COST
-#define TARGET_SCHED_ADJUST_COST arm_adjust_cost
-
-#undef TARGET_ENCODE_SECTION_INFO
-#ifdef ARM_PE
-#define TARGET_ENCODE_SECTION_INFO arm_pe_encode_section_info
-#else
-#define TARGET_ENCODE_SECTION_INFO arm_encode_section_info
-#endif
-
-#undef TARGET_STRIP_NAME_ENCODING
-#define TARGET_STRIP_NAME_ENCODING arm_strip_name_encoding
-
-#undef TARGET_ASM_INTERNAL_LABEL
-#define TARGET_ASM_INTERNAL_LABEL arm_internal_label
-
-#undef TARGET_FUNCTION_OK_FOR_SIBCALL
-#define TARGET_FUNCTION_OK_FOR_SIBCALL arm_function_ok_for_sibcall
-
-#undef TARGET_ASM_OUTPUT_MI_THUNK
-#define TARGET_ASM_OUTPUT_MI_THUNK arm_output_mi_thunk
-#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
-#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
-
-/* This will be overridden in arm_override_options. */
-#undef TARGET_RTX_COSTS
-#define TARGET_RTX_COSTS arm_slowmul_rtx_costs
-#undef TARGET_ADDRESS_COST
-#define TARGET_ADDRESS_COST arm_address_cost
-
-#undef TARGET_SHIFT_TRUNCATION_MASK
-#define TARGET_SHIFT_TRUNCATION_MASK arm_shift_truncation_mask
-#undef TARGET_VECTOR_MODE_SUPPORTED_P
-#define TARGET_VECTOR_MODE_SUPPORTED_P arm_vector_mode_supported_p
-
-#undef TARGET_MACHINE_DEPENDENT_REORG
-#define TARGET_MACHINE_DEPENDENT_REORG arm_reorg
-
-#undef TARGET_INIT_BUILTINS
-#define TARGET_INIT_BUILTINS arm_init_builtins
-#undef TARGET_EXPAND_BUILTIN
-#define TARGET_EXPAND_BUILTIN arm_expand_builtin
-
-#undef TARGET_INIT_LIBFUNCS
-#define TARGET_INIT_LIBFUNCS arm_init_libfuncs
-
-#undef TARGET_PROMOTE_FUNCTION_ARGS
-#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
-#undef TARGET_PROMOTE_FUNCTION_RETURN
-#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
-#undef TARGET_PROMOTE_PROTOTYPES
-#define TARGET_PROMOTE_PROTOTYPES arm_promote_prototypes
-#undef TARGET_PASS_BY_REFERENCE
-#define TARGET_PASS_BY_REFERENCE arm_pass_by_reference
-#undef TARGET_ARG_PARTIAL_BYTES
-#define TARGET_ARG_PARTIAL_BYTES arm_arg_partial_bytes
-
-#undef TARGET_SETUP_INCOMING_VARARGS
-#define TARGET_SETUP_INCOMING_VARARGS arm_setup_incoming_varargs
-
-#undef TARGET_DEFAULT_SHORT_ENUMS
-#define TARGET_DEFAULT_SHORT_ENUMS arm_default_short_enums
-
-#undef TARGET_ALIGN_ANON_BITFIELD
-#define TARGET_ALIGN_ANON_BITFIELD arm_align_anon_bitfield
-
-#undef TARGET_NARROW_VOLATILE_BITFIELD
-#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false
-
-#undef TARGET_CXX_GUARD_TYPE
-#define TARGET_CXX_GUARD_TYPE arm_cxx_guard_type
-
-#undef TARGET_CXX_GUARD_MASK_BIT
-#define TARGET_CXX_GUARD_MASK_BIT arm_cxx_guard_mask_bit
-
-#undef TARGET_CXX_GET_COOKIE_SIZE
-#define TARGET_CXX_GET_COOKIE_SIZE arm_get_cookie_size
-
-#undef TARGET_CXX_COOKIE_HAS_SIZE
-#define TARGET_CXX_COOKIE_HAS_SIZE arm_cookie_has_size
-
-#undef TARGET_CXX_CDTOR_RETURNS_THIS
-#define TARGET_CXX_CDTOR_RETURNS_THIS arm_cxx_cdtor_returns_this
-
-#undef TARGET_CXX_KEY_METHOD_MAY_BE_INLINE
-#define TARGET_CXX_KEY_METHOD_MAY_BE_INLINE arm_cxx_key_method_may_be_inline
-
-#undef TARGET_CXX_USE_AEABI_ATEXIT
-#define TARGET_CXX_USE_AEABI_ATEXIT arm_cxx_use_aeabi_atexit
-
-#undef TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY
-#define TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY \
- arm_cxx_determine_class_data_visibility
-
-#undef TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT
-#define TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT arm_cxx_class_data_always_comdat
-
-#undef TARGET_RETURN_IN_MSB
-#define TARGET_RETURN_IN_MSB arm_return_in_msb
-
-#undef TARGET_MUST_PASS_IN_STACK
-#define TARGET_MUST_PASS_IN_STACK arm_must_pass_in_stack
-
-#ifdef TARGET_UNWIND_INFO
-#undef TARGET_UNWIND_EMIT
-#define TARGET_UNWIND_EMIT arm_unwind_emit
-
-/* EABI unwinding tables use a different format for the typeinfo tables. */
-#undef TARGET_ASM_TTYPE
-#define TARGET_ASM_TTYPE arm_output_ttype
-
-#undef TARGET_ARM_EABI_UNWINDER
-#define TARGET_ARM_EABI_UNWINDER true
-#endif /* TARGET_UNWIND_INFO */
-
-#undef TARGET_CANNOT_COPY_INSN_P
-#define TARGET_CANNOT_COPY_INSN_P arm_cannot_copy_insn_p
-
-#ifdef HAVE_AS_TLS
-#undef TARGET_HAVE_TLS
-#define TARGET_HAVE_TLS true
-#endif
-
-#undef TARGET_CANNOT_FORCE_CONST_MEM
-#define TARGET_CANNOT_FORCE_CONST_MEM arm_tls_referenced_p
-
-struct gcc_target targetm = TARGET_INITIALIZER;
-
-/* Obstack for minipool constant handling. */
-static struct obstack minipool_obstack;
-static char * minipool_startobj;
-
-/* The maximum number of insns skipped which
- will be conditionalised if possible. */
-static int max_insns_skipped = 5;
-
-extern FILE * asm_out_file;
-
-/* True if we are currently building a constant table. */
-int making_const_table;
-
-/* Define the information needed to generate branch insns. This is
- stored from the compare operation. */
-rtx arm_compare_op0, arm_compare_op1;
-
-/* The processor for which instructions should be scheduled. */
-enum processor_type arm_tune = arm_none;
-
-/* Which floating point model to use. */
-enum arm_fp_model arm_fp_model;
-
-/* Which floating point hardware is available. */
-enum fputype arm_fpu_arch;
-
-/* Which floating point hardware to schedule for. */
-enum fputype arm_fpu_tune;
-
-/* Whether to use floating point hardware. */
-enum float_abi_type arm_float_abi;
-
-/* Which ABI to use. */
-enum arm_abi_type arm_abi;
-
-/* Which thread pointer model to use. */
-enum arm_tp_type target_thread_pointer = TP_AUTO;
-
-/* Used to parse -mstructure_size_boundary command line option. */
-int arm_structure_size_boundary = DEFAULT_STRUCTURE_SIZE_BOUNDARY;
-
-/* Used for Thumb call_via trampolines. */
-rtx thumb_call_via_label[14];
-static int thumb_call_reg_needed;
-
-/* Bit values used to identify processor capabilities. */
-#define FL_CO_PROC (1 << 0) /* Has external co-processor bus */
-#define FL_ARCH3M (1 << 1) /* Extended multiply */
-#define FL_MODE26 (1 << 2) /* 26-bit mode support */
-#define FL_MODE32 (1 << 3) /* 32-bit mode support */
-#define FL_ARCH4 (1 << 4) /* Architecture rel 4 */
-#define FL_ARCH5 (1 << 5) /* Architecture rel 5 */
-#define FL_THUMB (1 << 6) /* Thumb aware */
-#define FL_LDSCHED (1 << 7) /* Load scheduling necessary */
-#define FL_STRONG (1 << 8) /* StrongARM */
-#define FL_ARCH5E (1 << 9) /* DSP extensions to v5 */
-#define FL_XSCALE (1 << 10) /* XScale */
-#define FL_CIRRUS (1 << 11) /* Cirrus/DSP. */
-#define FL_ARCH6 (1 << 12) /* Architecture rel 6. Adds
- media instructions. */
-#define FL_VFPV2 (1 << 13) /* Vector Floating Point V2. */
-#define FL_WBUF (1 << 14) /* Schedule for write buffer ops.
- Note: ARM6 & 7 derivatives only. */
-#define FL_ARCH6K (1 << 15) /* Architecture rel 6 K extensions. */
-
-#define FL_IWMMXT (1 << 29) /* XScale v2 or "Intel Wireless MMX technology". */
-
-#define FL_FOR_ARCH2 0
-#define FL_FOR_ARCH3 FL_MODE32
-#define FL_FOR_ARCH3M (FL_FOR_ARCH3 | FL_ARCH3M)
-#define FL_FOR_ARCH4 (FL_FOR_ARCH3M | FL_ARCH4)
-#define FL_FOR_ARCH4T (FL_FOR_ARCH4 | FL_THUMB)
-#define FL_FOR_ARCH5 (FL_FOR_ARCH4 | FL_ARCH5)
-#define FL_FOR_ARCH5T (FL_FOR_ARCH5 | FL_THUMB)
-#define FL_FOR_ARCH5E (FL_FOR_ARCH5 | FL_ARCH5E)
-#define FL_FOR_ARCH5TE (FL_FOR_ARCH5E | FL_THUMB)
-#define FL_FOR_ARCH5TEJ FL_FOR_ARCH5TE
-#define FL_FOR_ARCH6 (FL_FOR_ARCH5TE | FL_ARCH6)
-#define FL_FOR_ARCH6J FL_FOR_ARCH6
-#define FL_FOR_ARCH6K (FL_FOR_ARCH6 | FL_ARCH6K)
-#define FL_FOR_ARCH6Z FL_FOR_ARCH6
-#define FL_FOR_ARCH6ZK FL_FOR_ARCH6K
-
-/* The bits in this mask specify which
- instructions we are allowed to generate. */
-static unsigned long insn_flags = 0;
-
-/* The bits in this mask specify which instruction scheduling options should
- be used. */
-static unsigned long tune_flags = 0;
-
-/* The following are used in the arm.md file as equivalents to bits
- in the above two flag variables. */
-
-/* Nonzero if this chip supports the ARM Architecture 3M extensions. */
-int arm_arch3m = 0;
-
-/* Nonzero if this chip supports the ARM Architecture 4 extensions. */
-int arm_arch4 = 0;
-
-/* Nonzero if this chip supports the ARM Architecture 4t extensions. */
-int arm_arch4t = 0;
-
-/* Nonzero if this chip supports the ARM Architecture 5 extensions. */
-int arm_arch5 = 0;
-
-/* Nonzero if this chip supports the ARM Architecture 5E extensions. */
-int arm_arch5e = 0;
-
-/* Nonzero if this chip supports the ARM Architecture 6 extensions. */
-int arm_arch6 = 0;
-
-/* Nonzero if this chip supports the ARM 6K extensions. */
-int arm_arch6k = 0;
-
-/* Nonzero if this chip can benefit from load scheduling. */
-int arm_ld_sched = 0;
-
-/* Nonzero if this chip is a StrongARM. */
-int arm_tune_strongarm = 0;
-
-/* Nonzero if this chip is a Cirrus variant. */
-int arm_arch_cirrus = 0;
-
-/* Nonzero if this chip supports Intel Wireless MMX technology. */
-int arm_arch_iwmmxt = 0;
-
-/* Nonzero if this chip is an XScale. */
-int arm_arch_xscale = 0;
-
-/* Nonzero if tuning for XScale */
-int arm_tune_xscale = 0;
-
-/* Nonzero if we want to tune for stores that access the write-buffer.
- This typically means an ARM6 or ARM7 with MMU or MPU. */
-int arm_tune_wbuf = 0;
-
-/* Nonzero if generating Thumb instructions. */
-int thumb_code = 0;
-
-/* Nonzero if we should define __THUMB_INTERWORK__ in the
- preprocessor.
- XXX This is a bit of a hack, it's intended to help work around
- problems in GLD which doesn't understand that armv5t code is
- interworking clean. */
-int arm_cpp_interwork = 0;
-
-/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
- must report the mode of the memory reference from PRINT_OPERAND to
- PRINT_OPERAND_ADDRESS. */
-enum machine_mode output_memory_reference_mode;
-
-/* The register number to be used for the PIC offset register. */
-unsigned arm_pic_register = INVALID_REGNUM;
-
-/* Set to 1 when a return insn is output, this means that the epilogue
- is not needed. */
-int return_used_this_function;
-
-/* Set to 1 after arm_reorg has started. Reset to start at the start of
- the next function. */
-static int after_arm_reorg = 0;
-
-/* The maximum number of insns to be used when loading a constant. */
-static int arm_constant_limit = 3;
-
-/* For an explanation of these variables, see final_prescan_insn below. */
-int arm_ccfsm_state;
-enum arm_cond_code arm_current_cc;
-rtx arm_target_insn;
-int arm_target_label;
-
-/* The condition codes of the ARM, and the inverse function. */
-static const char * const arm_condition_codes[] =
-{
- "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
- "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
-};
-
-#define streq(string1, string2) (strcmp (string1, string2) == 0)
-
-/* Initialization code. */
-
-struct processors
-{
- const char *const name;
- enum processor_type core;
- const char *arch;
- const unsigned long flags;
- bool (* rtx_costs) (rtx, int, int, int *);
-};
-
-/* Not all of these give usefully different compilation alternatives,
- but there is no simple way of generalizing them. */
-static const struct processors all_cores[] =
-{
- /* ARM Cores */
-#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
- {NAME, arm_none, #ARCH, FLAGS | FL_FOR_ARCH##ARCH, arm_##COSTS##_rtx_costs},
-#include "arm-cores.def"
-#undef ARM_CORE
- {NULL, arm_none, NULL, 0, NULL}
-};
-
-static const struct processors all_architectures[] =
-{
- /* ARM Architectures */
- /* We don't specify rtx_costs here as it will be figured out
- from the core. */
-
- {"armv2", arm2, "2", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH2, NULL},
- {"armv2a", arm2, "2", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH2, NULL},
- {"armv3", arm6, "3", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH3, NULL},
- {"armv3m", arm7m, "3M", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH3M, NULL},
- {"armv4", arm7tdmi, "4", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH4, NULL},
- /* Strictly, FL_MODE26 is a permitted option for v4t, but there are no
- implementations that support it, so we will leave it out for now. */
- {"armv4t", arm7tdmi, "4T", FL_CO_PROC | FL_FOR_ARCH4T, NULL},
- {"armv5", arm10tdmi, "5", FL_CO_PROC | FL_FOR_ARCH5, NULL},
- {"armv5t", arm10tdmi, "5T", FL_CO_PROC | FL_FOR_ARCH5T, NULL},
- {"armv5e", arm1026ejs, "5E", FL_CO_PROC | FL_FOR_ARCH5E, NULL},
- {"armv5te", arm1026ejs, "5TE", FL_CO_PROC | FL_FOR_ARCH5TE, NULL},
- {"armv6", arm1136js, "6", FL_CO_PROC | FL_FOR_ARCH6, NULL},
- {"armv6j", arm1136js, "6J", FL_CO_PROC | FL_FOR_ARCH6J, NULL},
- {"armv6k", mpcore, "6K", FL_CO_PROC | FL_FOR_ARCH6K, NULL},
- {"armv6z", arm1176jzs, "6Z", FL_CO_PROC | FL_FOR_ARCH6Z, NULL},
- {"armv6zk", arm1176jzs, "6ZK", FL_CO_PROC | FL_FOR_ARCH6ZK, NULL},
- {"ep9312", ep9312, "4T", FL_LDSCHED | FL_CIRRUS | FL_FOR_ARCH4, NULL},
- {"iwmmxt", iwmmxt, "5TE", FL_LDSCHED | FL_STRONG | FL_FOR_ARCH5TE | FL_XSCALE | FL_IWMMXT , NULL},
- {NULL, arm_none, NULL, 0 , NULL}
-};
-
-struct arm_cpu_select
-{
- const char * string;
- const char * name;
- const struct processors * processors;
-};
-
-/* This is a magic structure. The 'string' field is magically filled in
- with a pointer to the value specified by the user on the command line
- assuming that the user has specified such a value. */
-
-static struct arm_cpu_select arm_select[] =
-{
- /* string name processors */
- { NULL, "-mcpu=", all_cores },
- { NULL, "-march=", all_architectures },
- { NULL, "-mtune=", all_cores }
-};
-
-/* Defines representing the indexes into the above table. */
-#define ARM_OPT_SET_CPU 0
-#define ARM_OPT_SET_ARCH 1
-#define ARM_OPT_SET_TUNE 2
-
-/* The name of the preprocessor macro to define for this architecture. */
-
-char arm_arch_name[] = "__ARM_ARCH_0UNK__";
-
-struct fpu_desc
-{
- const char * name;
- enum fputype fpu;
-};
-
-
-/* Available values for -mfpu=. */
-
-static const struct fpu_desc all_fpus[] =
-{
- {"fpa", FPUTYPE_FPA},
- {"fpe2", FPUTYPE_FPA_EMU2},
- {"fpe3", FPUTYPE_FPA_EMU2},
- {"maverick", FPUTYPE_MAVERICK},
- {"vfp", FPUTYPE_VFP}
-};
-
-
-/* Floating point models used by the different hardware.
- See fputype in arm.h. */
-
-static const enum fputype fp_model_for_fpu[] =
-{
- /* No FP hardware. */
- ARM_FP_MODEL_UNKNOWN, /* FPUTYPE_NONE */
- ARM_FP_MODEL_FPA, /* FPUTYPE_FPA */
- ARM_FP_MODEL_FPA, /* FPUTYPE_FPA_EMU2 */
- ARM_FP_MODEL_FPA, /* FPUTYPE_FPA_EMU3 */
- ARM_FP_MODEL_MAVERICK, /* FPUTYPE_MAVERICK */
- ARM_FP_MODEL_VFP /* FPUTYPE_VFP */
-};
-
-
-struct float_abi
-{
- const char * name;
- enum float_abi_type abi_type;
-};
-
-
-/* Available values for -mfloat-abi=. */
-
-static const struct float_abi all_float_abis[] =
-{
- {"soft", ARM_FLOAT_ABI_SOFT},
- {"softfp", ARM_FLOAT_ABI_SOFTFP},
- {"hard", ARM_FLOAT_ABI_HARD}
-};
-
-
-struct abi_name
-{
- const char *name;
- enum arm_abi_type abi_type;
-};
-
-
-/* Available values for -mabi=. */
-
-static const struct abi_name arm_all_abis[] =
-{
- {"apcs-gnu", ARM_ABI_APCS},
- {"atpcs", ARM_ABI_ATPCS},
- {"aapcs", ARM_ABI_AAPCS},
- {"iwmmxt", ARM_ABI_IWMMXT},
- {"aapcs-linux", ARM_ABI_AAPCS_LINUX}
-};
-
-/* Supported TLS relocations. */
-
-enum tls_reloc {
- TLS_GD32,
- TLS_LDM32,
- TLS_LDO32,
- TLS_IE32,
- TLS_LE32
-};
-
-/* Emit an insn that's a simple single-set. Both the operands must be known
- to be valid. */
-inline static rtx
-emit_set_insn (rtx x, rtx y)
-{
- return emit_insn (gen_rtx_SET (VOIDmode, x, y));
-}
-
-/* Return the number of bits set in VALUE. */
-static unsigned
-bit_count (unsigned long value)
-{
- unsigned long count = 0;
-
- while (value)
- {
- count++;
- value &= value - 1; /* Clear the least-significant set bit. */
- }
-
- return count;
-}
-
-/* Set up library functions unique to ARM. */
-
-static void
-arm_init_libfuncs (void)
-{
- /* There are no special library functions unless we are using the
- ARM BPABI. */
- if (!TARGET_BPABI)
- return;
-
- /* The functions below are described in Section 4 of the "Run-Time
- ABI for the ARM architecture", Version 1.0. */
-
- /* Double-precision floating-point arithmetic. Table 2. */
- set_optab_libfunc (add_optab, DFmode, "__aeabi_dadd");
- set_optab_libfunc (sdiv_optab, DFmode, "__aeabi_ddiv");
- set_optab_libfunc (smul_optab, DFmode, "__aeabi_dmul");
- set_optab_libfunc (neg_optab, DFmode, "__aeabi_dneg");
- set_optab_libfunc (sub_optab, DFmode, "__aeabi_dsub");
-
- /* Double-precision comparisons. Table 3. */
- set_optab_libfunc (eq_optab, DFmode, "__aeabi_dcmpeq");
- set_optab_libfunc (ne_optab, DFmode, NULL);
- set_optab_libfunc (lt_optab, DFmode, "__aeabi_dcmplt");
- set_optab_libfunc (le_optab, DFmode, "__aeabi_dcmple");
- set_optab_libfunc (ge_optab, DFmode, "__aeabi_dcmpge");
- set_optab_libfunc (gt_optab, DFmode, "__aeabi_dcmpgt");
- set_optab_libfunc (unord_optab, DFmode, "__aeabi_dcmpun");
-
- /* Single-precision floating-point arithmetic. Table 4. */
- set_optab_libfunc (add_optab, SFmode, "__aeabi_fadd");
- set_optab_libfunc (sdiv_optab, SFmode, "__aeabi_fdiv");
- set_optab_libfunc (smul_optab, SFmode, "__aeabi_fmul");
- set_optab_libfunc (neg_optab, SFmode, "__aeabi_fneg");
- set_optab_libfunc (sub_optab, SFmode, "__aeabi_fsub");
-
- /* Single-precision comparisons. Table 5. */
- set_optab_libfunc (eq_optab, SFmode, "__aeabi_fcmpeq");
- set_optab_libfunc (ne_optab, SFmode, NULL);
- set_optab_libfunc (lt_optab, SFmode, "__aeabi_fcmplt");
- set_optab_libfunc (le_optab, SFmode, "__aeabi_fcmple");
- set_optab_libfunc (ge_optab, SFmode, "__aeabi_fcmpge");
- set_optab_libfunc (gt_optab, SFmode, "__aeabi_fcmpgt");
- set_optab_libfunc (unord_optab, SFmode, "__aeabi_fcmpun");
-
- /* Floating-point to integer conversions. Table 6. */
- set_conv_libfunc (sfix_optab, SImode, DFmode, "__aeabi_d2iz");
- set_conv_libfunc (ufix_optab, SImode, DFmode, "__aeabi_d2uiz");
- set_conv_libfunc (sfix_optab, DImode, DFmode, "__aeabi_d2lz");
- set_conv_libfunc (ufix_optab, DImode, DFmode, "__aeabi_d2ulz");
- set_conv_libfunc (sfix_optab, SImode, SFmode, "__aeabi_f2iz");
- set_conv_libfunc (ufix_optab, SImode, SFmode, "__aeabi_f2uiz");
- set_conv_libfunc (sfix_optab, DImode, SFmode, "__aeabi_f2lz");
- set_conv_libfunc (ufix_optab, DImode, SFmode, "__aeabi_f2ulz");
-
- /* Conversions between floating types. Table 7. */
- set_conv_libfunc (trunc_optab, SFmode, DFmode, "__aeabi_d2f");
- set_conv_libfunc (sext_optab, DFmode, SFmode, "__aeabi_f2d");
-
- /* Integer to floating-point conversions. Table 8. */
- set_conv_libfunc (sfloat_optab, DFmode, SImode, "__aeabi_i2d");
- set_conv_libfunc (ufloat_optab, DFmode, SImode, "__aeabi_ui2d");
- set_conv_libfunc (sfloat_optab, DFmode, DImode, "__aeabi_l2d");
- set_conv_libfunc (ufloat_optab, DFmode, DImode, "__aeabi_ul2d");
- set_conv_libfunc (sfloat_optab, SFmode, SImode, "__aeabi_i2f");
- set_conv_libfunc (ufloat_optab, SFmode, SImode, "__aeabi_ui2f");
- set_conv_libfunc (sfloat_optab, SFmode, DImode, "__aeabi_l2f");
- set_conv_libfunc (ufloat_optab, SFmode, DImode, "__aeabi_ul2f");
-
- /* Long long. Table 9. */
- set_optab_libfunc (smul_optab, DImode, "__aeabi_lmul");
- set_optab_libfunc (sdivmod_optab, DImode, "__aeabi_ldivmod");
- set_optab_libfunc (udivmod_optab, DImode, "__aeabi_uldivmod");
- set_optab_libfunc (ashl_optab, DImode, "__aeabi_llsl");
- set_optab_libfunc (lshr_optab, DImode, "__aeabi_llsr");
- set_optab_libfunc (ashr_optab, DImode, "__aeabi_lasr");
- set_optab_libfunc (cmp_optab, DImode, "__aeabi_lcmp");
- set_optab_libfunc (ucmp_optab, DImode, "__aeabi_ulcmp");
-
- /* Integer (32/32->32) division. \S 4.3.1. */
- set_optab_libfunc (sdivmod_optab, SImode, "__aeabi_idivmod");
- set_optab_libfunc (udivmod_optab, SImode, "__aeabi_uidivmod");
-
- /* The divmod functions are designed so that they can be used for
- plain division, even though they return both the quotient and the
- remainder. The quotient is returned in the usual location (i.e.,
- r0 for SImode, {r0, r1} for DImode), just as would be expected
- for an ordinary division routine. Because the AAPCS calling
- conventions specify that all of { r0, r1, r2, r3 } are
- callee-saved registers, there is no need to tell the compiler
- explicitly that those registers are clobbered by these
- routines. */
- set_optab_libfunc (sdiv_optab, DImode, "__aeabi_ldivmod");
- set_optab_libfunc (udiv_optab, DImode, "__aeabi_uldivmod");
-
- /* For SImode division the ABI provides div-without-mod routines,
- which are faster. */
- set_optab_libfunc (sdiv_optab, SImode, "__aeabi_idiv");
- set_optab_libfunc (udiv_optab, SImode, "__aeabi_uidiv");
-
- /* We don't have mod libcalls. Fortunately gcc knows how to use the
- divmod libcalls instead. */
- set_optab_libfunc (smod_optab, DImode, NULL);
- set_optab_libfunc (umod_optab, DImode, NULL);
- set_optab_libfunc (smod_optab, SImode, NULL);
- set_optab_libfunc (umod_optab, SImode, NULL);
-}
-
-/* Implement TARGET_HANDLE_OPTION. */
-
-static bool
-arm_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
-{
- switch (code)
- {
- case OPT_march_:
- arm_select[1].string = arg;
- return true;
-
- case OPT_mcpu_:
- arm_select[0].string = arg;
- return true;
-
- case OPT_mhard_float:
- target_float_abi_name = "hard";
- return true;
-
- case OPT_msoft_float:
- target_float_abi_name = "soft";
- return true;
-
- case OPT_mtune_:
- arm_select[2].string = arg;
- return true;
-
- default:
- return true;
- }
-}
-
-/* Fix up any incompatible options that the user has specified.
- This has now turned into a maze. */
-void
-arm_override_options (void)
-{
- unsigned i;
- enum processor_type target_arch_cpu = arm_none;
-
- /* Set up the flags based on the cpu/architecture selected by the user. */
- for (i = ARRAY_SIZE (arm_select); i--;)
- {
- struct arm_cpu_select * ptr = arm_select + i;
-
- if (ptr->string != NULL && ptr->string[0] != '\0')
- {
- const struct processors * sel;
-
- for (sel = ptr->processors; sel->name != NULL; sel++)
- if (streq (ptr->string, sel->name))
- {
- /* Set the architecture define. */
- if (i != ARM_OPT_SET_TUNE)
- sprintf (arm_arch_name, "__ARM_ARCH_%s__", sel->arch);
-
- /* Determine the processor core for which we should
- tune code-generation. */
- if (/* -mcpu= is a sensible default. */
- i == ARM_OPT_SET_CPU
- /* -mtune= overrides -mcpu= and -march=. */
- || i == ARM_OPT_SET_TUNE)
- arm_tune = (enum processor_type) (sel - ptr->processors);
-
- /* Remember the CPU associated with this architecture.
- If no other option is used to set the CPU type,
- we'll use this to guess the most suitable tuning
- options. */
- if (i == ARM_OPT_SET_ARCH)
- target_arch_cpu = sel->core;
-
- if (i != ARM_OPT_SET_TUNE)
- {
- /* If we have been given an architecture and a processor
- make sure that they are compatible. We only generate
- a warning though, and we prefer the CPU over the
- architecture. */
- if (insn_flags != 0 && (insn_flags ^ sel->flags))
- warning (0, "switch -mcpu=%s conflicts with -march= switch",
- ptr->string);
-
- insn_flags = sel->flags;
- }
-
- break;
- }
-
- if (sel->name == NULL)
- error ("bad value (%s) for %s switch", ptr->string, ptr->name);
- }
- }
-
- /* Guess the tuning options from the architecture if necessary. */
- if (arm_tune == arm_none)
- arm_tune = target_arch_cpu;
-
- /* If the user did not specify a processor, choose one for them. */
- if (insn_flags == 0)
- {
- const struct processors * sel;
- unsigned int sought;
- enum processor_type cpu;
-
- cpu = TARGET_CPU_DEFAULT;
- if (cpu == arm_none)
- {
-#ifdef SUBTARGET_CPU_DEFAULT
- /* Use the subtarget default CPU if none was specified by
- configure. */
- cpu = SUBTARGET_CPU_DEFAULT;
-#endif
- /* Default to ARM6. */
- if (cpu == arm_none)
- cpu = arm6;
- }
- sel = &all_cores[cpu];
-
- insn_flags = sel->flags;
-
- /* Now check to see if the user has specified some command line
- switch that require certain abilities from the cpu. */
- sought = 0;
-
- if (TARGET_INTERWORK || TARGET_THUMB)
- {
- sought |= (FL_THUMB | FL_MODE32);
-
- /* There are no ARM processors that support both APCS-26 and
- interworking. Therefore we force FL_MODE26 to be removed
- from insn_flags here (if it was set), so that the search
- below will always be able to find a compatible processor. */
- insn_flags &= ~FL_MODE26;
- }
-
- if (sought != 0 && ((sought & insn_flags) != sought))
- {
- /* Try to locate a CPU type that supports all of the abilities
- of the default CPU, plus the extra abilities requested by
- the user. */
- for (sel = all_cores; sel->name != NULL; sel++)
- if ((sel->flags & sought) == (sought | insn_flags))
- break;
-
- if (sel->name == NULL)
- {
- unsigned current_bit_count = 0;
- const struct processors * best_fit = NULL;
-
- /* Ideally we would like to issue an error message here
- saying that it was not possible to find a CPU compatible
- with the default CPU, but which also supports the command
- line options specified by the programmer, and so they
- ought to use the -mcpu=<name> command line option to
- override the default CPU type.
-
- If we cannot find a cpu that has both the
- characteristics of the default cpu and the given
- command line options we scan the array again looking
- for a best match. */
- for (sel = all_cores; sel->name != NULL; sel++)
- if ((sel->flags & sought) == sought)
- {
- unsigned count;
-
- count = bit_count (sel->flags & insn_flags);
-
- if (count >= current_bit_count)
- {
- best_fit = sel;
- current_bit_count = count;
- }
- }
-
- gcc_assert (best_fit);
- sel = best_fit;
- }
-
- insn_flags = sel->flags;
- }
- sprintf (arm_arch_name, "__ARM_ARCH_%s__", sel->arch);
- if (arm_tune == arm_none)
- arm_tune = (enum processor_type) (sel - all_cores);
- }
-
- /* The processor for which we should tune should now have been
- chosen. */
- gcc_assert (arm_tune != arm_none);
-
- tune_flags = all_cores[(int)arm_tune].flags;
- if (optimize_size)
- targetm.rtx_costs = arm_size_rtx_costs;
- else
- targetm.rtx_costs = all_cores[(int)arm_tune].rtx_costs;
-
- /* Make sure that the processor choice does not conflict with any of the
- other command line choices. */
- if (TARGET_INTERWORK && !(insn_flags & FL_THUMB))
- {
- warning (0, "target CPU does not support interworking" );
- target_flags &= ~MASK_INTERWORK;
- }
-
- if (TARGET_THUMB && !(insn_flags & FL_THUMB))
- {
- warning (0, "target CPU does not support THUMB instructions");
- target_flags &= ~MASK_THUMB;
- }
-
- if (TARGET_APCS_FRAME && TARGET_THUMB)
- {
- /* warning (0, "ignoring -mapcs-frame because -mthumb was used"); */
- target_flags &= ~MASK_APCS_FRAME;
- }
-
- /* Callee super interworking implies thumb interworking. Adding
- this to the flags here simplifies the logic elsewhere. */
- if (TARGET_THUMB && TARGET_CALLEE_INTERWORKING)
- target_flags |= MASK_INTERWORK;
-
- /* TARGET_BACKTRACE calls leaf_function_p, which causes a crash if done
- from here where no function is being compiled currently. */
- if ((TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) && TARGET_ARM)
- warning (0, "enabling backtrace support is only meaningful when compiling for the Thumb");
-
- if (TARGET_ARM && TARGET_CALLEE_INTERWORKING)
- warning (0, "enabling callee interworking support is only meaningful when compiling for the Thumb");
-
- if (TARGET_ARM && TARGET_CALLER_INTERWORKING)
- warning (0, "enabling caller interworking support is only meaningful when compiling for the Thumb");
-
- if (TARGET_APCS_STACK && !TARGET_APCS_FRAME)
- {
- warning (0, "-mapcs-stack-check incompatible with -mno-apcs-frame");
- target_flags |= MASK_APCS_FRAME;
- }
-
- if (TARGET_POKE_FUNCTION_NAME)
- target_flags |= MASK_APCS_FRAME;
-
- if (TARGET_APCS_REENT && flag_pic)
- error ("-fpic and -mapcs-reent are incompatible");
-
- if (TARGET_APCS_REENT)
- warning (0, "APCS reentrant code not supported. Ignored");
-
- /* If this target is normally configured to use APCS frames, warn if they
- are turned off and debugging is turned on. */
- if (TARGET_ARM
- && write_symbols != NO_DEBUG
- && !TARGET_APCS_FRAME
- && (TARGET_DEFAULT & MASK_APCS_FRAME))
- warning (0, "-g with -mno-apcs-frame may not give sensible debugging");
-
- /* If stack checking is disabled, we can use r10 as the PIC register,
- which keeps r9 available. */
- if (flag_pic && TARGET_SINGLE_PIC_BASE)
- arm_pic_register = TARGET_APCS_STACK ? 9 : 10;
-
- if (TARGET_APCS_FLOAT)
- warning (0, "passing floating point arguments in fp regs not yet supported");
-
- /* Initialize boolean versions of the flags, for use in the arm.md file. */
- arm_arch3m = (insn_flags & FL_ARCH3M) != 0;
- arm_arch4 = (insn_flags & FL_ARCH4) != 0;
- arm_arch4t = arm_arch4 & ((insn_flags & FL_THUMB) != 0);
- arm_arch5 = (insn_flags & FL_ARCH5) != 0;
- arm_arch5e = (insn_flags & FL_ARCH5E) != 0;
- arm_arch6 = (insn_flags & FL_ARCH6) != 0;
- arm_arch6k = (insn_flags & FL_ARCH6K) != 0;
- arm_arch_xscale = (insn_flags & FL_XSCALE) != 0;
- arm_arch_cirrus = (insn_flags & FL_CIRRUS) != 0;
-
- arm_ld_sched = (tune_flags & FL_LDSCHED) != 0;
- arm_tune_strongarm = (tune_flags & FL_STRONG) != 0;
- thumb_code = (TARGET_ARM == 0);
- arm_tune_wbuf = (tune_flags & FL_WBUF) != 0;
- arm_tune_xscale = (tune_flags & FL_XSCALE) != 0;
- arm_arch_iwmmxt = (insn_flags & FL_IWMMXT) != 0;
-
- /* V5 code we generate is completely interworking capable, so we turn off
- TARGET_INTERWORK here to avoid many tests later on. */
-
- /* XXX However, we must pass the right pre-processor defines to CPP
- or GLD can get confused. This is a hack. */
- if (TARGET_INTERWORK)
- arm_cpp_interwork = 1;
-
- if (arm_arch5)
- target_flags &= ~MASK_INTERWORK;
-
- if (target_abi_name)
- {
- for (i = 0; i < ARRAY_SIZE (arm_all_abis); i++)
- {
- if (streq (arm_all_abis[i].name, target_abi_name))
- {
- arm_abi = arm_all_abis[i].abi_type;
- break;
- }
- }
- if (i == ARRAY_SIZE (arm_all_abis))
- error ("invalid ABI option: -mabi=%s", target_abi_name);
- }
- else
- arm_abi = ARM_DEFAULT_ABI;
-
- if (TARGET_IWMMXT && !ARM_DOUBLEWORD_ALIGN)
- error ("iwmmxt requires an AAPCS compatible ABI for proper operation");
-
- if (TARGET_IWMMXT_ABI && !TARGET_IWMMXT)
- error ("iwmmxt abi requires an iwmmxt capable cpu");
-
- arm_fp_model = ARM_FP_MODEL_UNKNOWN;
- if (target_fpu_name == NULL && target_fpe_name != NULL)
- {
- if (streq (target_fpe_name, "2"))
- target_fpu_name = "fpe2";
- else if (streq (target_fpe_name, "3"))
- target_fpu_name = "fpe3";
- else
- error ("invalid floating point emulation option: -mfpe=%s",
- target_fpe_name);
- }
- if (target_fpu_name != NULL)
- {
- /* The user specified a FPU. */
- for (i = 0; i < ARRAY_SIZE (all_fpus); i++)
- {
- if (streq (all_fpus[i].name, target_fpu_name))
- {
- arm_fpu_arch = all_fpus[i].fpu;
- arm_fpu_tune = arm_fpu_arch;
- arm_fp_model = fp_model_for_fpu[arm_fpu_arch];
- break;
- }
- }
- if (arm_fp_model == ARM_FP_MODEL_UNKNOWN)
- error ("invalid floating point option: -mfpu=%s", target_fpu_name);
- }
- else
- {
-#ifdef FPUTYPE_DEFAULT
- /* Use the default if it is specified for this platform. */
- arm_fpu_arch = FPUTYPE_DEFAULT;
- arm_fpu_tune = FPUTYPE_DEFAULT;
-#else
- /* Pick one based on CPU type. */
- /* ??? Some targets assume FPA is the default.
- if ((insn_flags & FL_VFP) != 0)
- arm_fpu_arch = FPUTYPE_VFP;
- else
- */
- if (arm_arch_cirrus)
- arm_fpu_arch = FPUTYPE_MAVERICK;
- else
- arm_fpu_arch = FPUTYPE_FPA_EMU2;
-#endif
- if (tune_flags & FL_CO_PROC && arm_fpu_arch == FPUTYPE_FPA_EMU2)
- arm_fpu_tune = FPUTYPE_FPA;
- else
- arm_fpu_tune = arm_fpu_arch;
- arm_fp_model = fp_model_for_fpu[arm_fpu_arch];
- gcc_assert (arm_fp_model != ARM_FP_MODEL_UNKNOWN);
- }
-
- if (target_float_abi_name != NULL)
- {
- /* The user specified a FP ABI. */
- for (i = 0; i < ARRAY_SIZE (all_float_abis); i++)
- {
- if (streq (all_float_abis[i].name, target_float_abi_name))
- {
- arm_float_abi = all_float_abis[i].abi_type;
- break;
- }
- }
- if (i == ARRAY_SIZE (all_float_abis))
- error ("invalid floating point abi: -mfloat-abi=%s",
- target_float_abi_name);
- }
- else
- arm_float_abi = TARGET_DEFAULT_FLOAT_ABI;
-
- if (arm_float_abi == ARM_FLOAT_ABI_HARD && TARGET_VFP)
- sorry ("-mfloat-abi=hard and VFP");
-
- /* FPA and iWMMXt are incompatible because the insn encodings overlap.
- VFP and iWMMXt can theoretically coexist, but it's unlikely such silicon
- will ever exist. GCC makes no attempt to support this combination. */
- if (TARGET_IWMMXT && !TARGET_SOFT_FLOAT)
- sorry ("iWMMXt and hardware floating point");
-
- /* If soft-float is specified then don't use FPU. */
- if (TARGET_SOFT_FLOAT)
- arm_fpu_arch = FPUTYPE_NONE;
-
- /* For arm2/3 there is no need to do any scheduling if there is only
- a floating point emulator, or we are doing software floating-point. */
- if ((TARGET_SOFT_FLOAT
- || arm_fpu_tune == FPUTYPE_FPA_EMU2
- || arm_fpu_tune == FPUTYPE_FPA_EMU3)
- && (tune_flags & FL_MODE32) == 0)
- flag_schedule_insns = flag_schedule_insns_after_reload = 0;
-
- if (target_thread_switch)
- {
- if (strcmp (target_thread_switch, "soft") == 0)
- target_thread_pointer = TP_SOFT;
- else if (strcmp (target_thread_switch, "auto") == 0)
- target_thread_pointer = TP_AUTO;
- else if (strcmp (target_thread_switch, "cp15") == 0)
- target_thread_pointer = TP_CP15;
- else
- error ("invalid thread pointer option: -mtp=%s", target_thread_switch);
- }
-
- /* Use the cp15 method if it is available. */
- if (target_thread_pointer == TP_AUTO)
- {
- if (arm_arch6k && !TARGET_THUMB)
- target_thread_pointer = TP_CP15;
- else
- target_thread_pointer = TP_SOFT;
- }
-
- if (TARGET_HARD_TP && TARGET_THUMB)
- error ("can not use -mtp=cp15 with -mthumb");
-
- /* Override the default structure alignment for AAPCS ABI. */
- if (TARGET_AAPCS_BASED)
- arm_structure_size_boundary = 8;
-
- if (structure_size_string != NULL)
- {
- int size = strtol (structure_size_string, NULL, 0);
-
- if (size == 8 || size == 32
- || (ARM_DOUBLEWORD_ALIGN && size == 64))
- arm_structure_size_boundary = size;
- else
- warning (0, "structure size boundary can only be set to %s",
- ARM_DOUBLEWORD_ALIGN ? "8, 32 or 64": "8 or 32");
- }
-
- if (arm_pic_register_string != NULL)
- {
- int pic_register = decode_reg_name (arm_pic_register_string);
-
- if (!flag_pic)
- warning (0, "-mpic-register= is useless without -fpic");
-
- /* Prevent the user from choosing an obviously stupid PIC register. */
- else if (pic_register < 0 || call_used_regs[pic_register]
- || pic_register == HARD_FRAME_POINTER_REGNUM
- || pic_register == STACK_POINTER_REGNUM
- || pic_register >= PC_REGNUM)
- error ("unable to use '%s' for PIC register", arm_pic_register_string);
- else
- arm_pic_register = pic_register;
- }
-
- if (TARGET_THUMB && flag_schedule_insns)
- {
- /* Don't warn since it's on by default in -O2. */
- flag_schedule_insns = 0;
- }
-
- if (optimize_size)
- {
- arm_constant_limit = 1;
-
- /* If optimizing for size, bump the number of instructions that we
- are prepared to conditionally execute (even on a StrongARM). */
- max_insns_skipped = 6;
- }
- else
- {
- /* For processors with load scheduling, it never costs more than
- 2 cycles to load a constant, and the load scheduler may well
- reduce that to 1. */
- if (arm_ld_sched)
- arm_constant_limit = 1;
-
- /* On XScale the longer latency of a load makes it more difficult
- to achieve a good schedule, so it's faster to synthesize
- constants that can be done in two insns. */
- if (arm_tune_xscale)
- arm_constant_limit = 2;
-
- /* StrongARM has early execution of branches, so a sequence
- that is worth skipping is shorter. */
- if (arm_tune_strongarm)
- max_insns_skipped = 3;
- }
-
- /* Register global variables with the garbage collector. */
- arm_add_gc_roots ();
-}
-
-static void
-arm_add_gc_roots (void)
-{
- gcc_obstack_init(&minipool_obstack);
- minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
-}
-
-/* A table of known ARM exception types.
- For use with the interrupt function attribute. */
-
-typedef struct
-{
- const char *const arg;
- const unsigned long return_value;
-}
-isr_attribute_arg;
-
-static const isr_attribute_arg isr_attribute_args [] =
-{
- { "IRQ", ARM_FT_ISR },
- { "irq", ARM_FT_ISR },
- { "FIQ", ARM_FT_FIQ },
- { "fiq", ARM_FT_FIQ },
- { "ABORT", ARM_FT_ISR },
- { "abort", ARM_FT_ISR },
- { "ABORT", ARM_FT_ISR },
- { "abort", ARM_FT_ISR },
- { "UNDEF", ARM_FT_EXCEPTION },
- { "undef", ARM_FT_EXCEPTION },
- { "SWI", ARM_FT_EXCEPTION },
- { "swi", ARM_FT_EXCEPTION },
- { NULL, ARM_FT_NORMAL }
-};
-
-/* Returns the (interrupt) function type of the current
- function, or ARM_FT_UNKNOWN if the type cannot be determined. */
-
-static unsigned long
-arm_isr_value (tree argument)
-{
- const isr_attribute_arg * ptr;
- const char * arg;
-
- /* No argument - default to IRQ. */
- if (argument == NULL_TREE)
- return ARM_FT_ISR;
-
- /* Get the value of the argument. */
- if (TREE_VALUE (argument) == NULL_TREE
- || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
- return ARM_FT_UNKNOWN;
-
- arg = TREE_STRING_POINTER (TREE_VALUE (argument));
-
- /* Check it against the list of known arguments. */
- for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
- if (streq (arg, ptr->arg))
- return ptr->return_value;
-
- /* An unrecognized interrupt type. */
- return ARM_FT_UNKNOWN;
-}
-
-/* Computes the type of the current function. */
-
-static unsigned long
-arm_compute_func_type (void)
-{
- unsigned long type = ARM_FT_UNKNOWN;
- tree a;
- tree attr;
-
- gcc_assert (TREE_CODE (current_function_decl) == FUNCTION_DECL);
-
- /* Decide if the current function is volatile. Such functions
- never return, and many memory cycles can be saved by not storing
- register values that will never be needed again. This optimization
- was added to speed up context switching in a kernel application. */
- if (optimize > 0
- && (TREE_NOTHROW (current_function_decl)
- || !(flag_unwind_tables
- || (flag_exceptions && !USING_SJLJ_EXCEPTIONS)))
- && TREE_THIS_VOLATILE (current_function_decl))
- type |= ARM_FT_VOLATILE;
-
- if (cfun->static_chain_decl != NULL)
- type |= ARM_FT_NESTED;
-
- attr = DECL_ATTRIBUTES (current_function_decl);
-
- a = lookup_attribute ("naked", attr);
- if (a != NULL_TREE)
- type |= ARM_FT_NAKED;
-
- a = lookup_attribute ("isr", attr);
- if (a == NULL_TREE)
- a = lookup_attribute ("interrupt", attr);
-
- if (a == NULL_TREE)
- type |= TARGET_INTERWORK ? ARM_FT_INTERWORKED : ARM_FT_NORMAL;
- else
- type |= arm_isr_value (TREE_VALUE (a));
-
- return type;
-}
-
-/* Returns the type of the current function. */
-
-unsigned long
-arm_current_func_type (void)
-{
- if (ARM_FUNC_TYPE (cfun->machine->func_type) == ARM_FT_UNKNOWN)
- cfun->machine->func_type = arm_compute_func_type ();
-
- return cfun->machine->func_type;
-}
-
-/* Return 1 if it is possible to return using a single instruction.
- If SIBLING is non-null, this is a test for a return before a sibling
- call. SIBLING is the call insn, so we can examine its register usage. */
-
-int
-use_return_insn (int iscond, rtx sibling)
-{
- int regno;
- unsigned int func_type;
- unsigned long saved_int_regs;
- unsigned HOST_WIDE_INT stack_adjust;
- arm_stack_offsets *offsets;
-
- /* Never use a return instruction before reload has run. */
- if (!reload_completed)
- return 0;
-
- func_type = arm_current_func_type ();
-
- /* Naked functions and volatile functions need special
- consideration. */
- if (func_type & (ARM_FT_VOLATILE | ARM_FT_NAKED))
- return 0;
-
- /* So do interrupt functions that use the frame pointer. */
- if (IS_INTERRUPT (func_type) && frame_pointer_needed)
- return 0;
-
- offsets = arm_get_frame_offsets ();
- stack_adjust = offsets->outgoing_args - offsets->saved_regs;
-
- /* As do variadic functions. */
- if (current_function_pretend_args_size
- || cfun->machine->uses_anonymous_args
- /* Or if the function calls __builtin_eh_return () */
- || current_function_calls_eh_return
- /* Or if the function calls alloca */
- || current_function_calls_alloca
- /* Or if there is a stack adjustment. However, if the stack pointer
- is saved on the stack, we can use a pre-incrementing stack load. */
- || !(stack_adjust == 0 || (frame_pointer_needed && stack_adjust == 4)))
- return 0;
-
- saved_int_regs = arm_compute_save_reg_mask ();
-
- /* Unfortunately, the insn
-
- ldmib sp, {..., sp, ...}
-
- triggers a bug on most SA-110 based devices, such that the stack
- pointer won't be correctly restored if the instruction takes a
- page fault. We work around this problem by popping r3 along with
- the other registers, since that is never slower than executing
- another instruction.
-
- We test for !arm_arch5 here, because code for any architecture
- less than this could potentially be run on one of the buggy
- chips. */
- if (stack_adjust == 4 && !arm_arch5)
- {
- /* Validate that r3 is a call-clobbered register (always true in
- the default abi) ... */
- if (!call_used_regs[3])
- return 0;
-
- /* ... that it isn't being used for a return value ... */
- if (arm_size_return_regs () >= (4 * UNITS_PER_WORD))
- return 0;
-
- /* ... or for a tail-call argument ... */
- if (sibling)
- {
- gcc_assert (GET_CODE (sibling) == CALL_INSN);
-
- if (find_regno_fusage (sibling, USE, 3))
- return 0;
- }
-
- /* ... and that there are no call-saved registers in r0-r2
- (always true in the default ABI). */
- if (saved_int_regs & 0x7)
- return 0;
- }
-
- /* Can't be done if interworking with Thumb, and any registers have been
- stacked. */
- if (TARGET_INTERWORK && saved_int_regs != 0)
- return 0;
-
- /* On StrongARM, conditional returns are expensive if they aren't
- taken and multiple registers have been stacked. */
- if (iscond && arm_tune_strongarm)
- {
- /* Conditional return when just the LR is stored is a simple
- conditional-load instruction, that's not expensive. */
- if (saved_int_regs != 0 && saved_int_regs != (1 << LR_REGNUM))
- return 0;
-
- if (flag_pic
- && arm_pic_register != INVALID_REGNUM
- && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
- return 0;
- }
-
- /* If there are saved registers but the LR isn't saved, then we need
- two instructions for the return. */
- if (saved_int_regs && !(saved_int_regs & (1 << LR_REGNUM)))
- return 0;
-
- /* Can't be done if any of the FPA regs are pushed,
- since this also requires an insn. */
- if (TARGET_HARD_FLOAT && TARGET_FPA)
- for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
- if (regs_ever_live[regno] && !call_used_regs[regno])
- return 0;
-
- /* Likewise VFP regs. */
- if (TARGET_HARD_FLOAT && TARGET_VFP)
- for (regno = FIRST_VFP_REGNUM; regno <= LAST_VFP_REGNUM; regno++)
- if (regs_ever_live[regno] && !call_used_regs[regno])
- return 0;
-
- if (TARGET_REALLY_IWMMXT)
- for (regno = FIRST_IWMMXT_REGNUM; regno <= LAST_IWMMXT_REGNUM; regno++)
- if (regs_ever_live[regno] && ! call_used_regs [regno])
- return 0;
-
- return 1;
-}
-
-/* Return TRUE if int I is a valid immediate ARM constant. */
-
-int
-const_ok_for_arm (HOST_WIDE_INT i)
-{
- int lowbit;
-
- /* For machines with >32 bit HOST_WIDE_INT, the bits above bit 31 must
- be all zero, or all one. */
- if ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0
- && ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff)
- != ((~(unsigned HOST_WIDE_INT) 0)
- & ~(unsigned HOST_WIDE_INT) 0xffffffff)))
- return FALSE;
-
- i &= (unsigned HOST_WIDE_INT) 0xffffffff;
-
- /* Fast return for 0 and small values. We must do this for zero, since
- the code below can't handle that one case. */
- if ((i & ~(unsigned HOST_WIDE_INT) 0xff) == 0)
- return TRUE;
-
- /* Get the number of trailing zeros, rounded down to the nearest even
- number. */
- lowbit = (ffs ((int) i) - 1) & ~1;
-
- if ((i & ~(((unsigned HOST_WIDE_INT) 0xff) << lowbit)) == 0)
- return TRUE;
- else if (lowbit <= 4
- && ((i & ~0xc000003f) == 0
- || (i & ~0xf000000f) == 0
- || (i & ~0xfc000003) == 0))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if I is a valid constant for the operation CODE. */
-static int
-const_ok_for_op (HOST_WIDE_INT i, enum rtx_code code)
-{
- if (const_ok_for_arm (i))
- return 1;
-
- switch (code)
- {
- case PLUS:
- return const_ok_for_arm (ARM_SIGN_EXTEND (-i));
-
- case MINUS: /* Should only occur with (MINUS I reg) => rsb */
- case XOR:
- case IOR:
- return 0;
-
- case AND:
- return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Emit a sequence of insns to handle a large constant.
- CODE is the code of the operation required, it can be any of SET, PLUS,
- IOR, AND, XOR, MINUS;
- MODE is the mode in which the operation is being performed;
- VAL is the integer to operate on;
- SOURCE is the other operand (a register, or a null-pointer for SET);
- SUBTARGETS means it is safe to create scratch registers if that will
- either produce a simpler sequence, or we will want to cse the values.
- Return value is the number of insns emitted. */
-
-int
-arm_split_constant (enum rtx_code code, enum machine_mode mode, rtx insn,
- HOST_WIDE_INT val, rtx target, rtx source, int subtargets)
-{
- rtx cond;
-
- if (insn && GET_CODE (PATTERN (insn)) == COND_EXEC)
- cond = COND_EXEC_TEST (PATTERN (insn));
- else
- cond = NULL_RTX;
-
- if (subtargets || code == SET
- || (GET_CODE (target) == REG && GET_CODE (source) == REG
- && REGNO (target) != REGNO (source)))
- {
- /* After arm_reorg has been called, we can't fix up expensive
- constants by pushing them into memory so we must synthesize
- them in-line, regardless of the cost. This is only likely to
- be more costly on chips that have load delay slots and we are
- compiling without running the scheduler (so no splitting
- occurred before the final instruction emission).
-
- Ref: gcc -O1 -mcpu=strongarm gcc.c-torture/compile/980506-2.c
- */
- if (!after_arm_reorg
- && !cond
- && (arm_gen_constant (code, mode, NULL_RTX, val, target, source,
- 1, 0)
- > arm_constant_limit + (code != SET)))
- {
- if (code == SET)
- {
- /* Currently SET is the only monadic value for CODE, all
- the rest are diadic. */
- emit_set_insn (target, GEN_INT (val));
- return 1;
- }
- else
- {
- rtx temp = subtargets ? gen_reg_rtx (mode) : target;
-
- emit_set_insn (temp, GEN_INT (val));
- /* For MINUS, the value is subtracted from, since we never
- have subtraction of a constant. */
- if (code == MINUS)
- emit_set_insn (target, gen_rtx_MINUS (mode, temp, source));
- else
- emit_set_insn (target,
- gen_rtx_fmt_ee (code, mode, source, temp));
- return 2;
- }
- }
- }
-
- return arm_gen_constant (code, mode, cond, val, target, source, subtargets,
- 1);
-}
-
-static int
-count_insns_for_constant (HOST_WIDE_INT remainder, int i)
-{
- HOST_WIDE_INT temp1;
- int num_insns = 0;
- do
- {
- int end;
-
- if (i <= 0)
- i += 32;
- if (remainder & (3 << (i - 2)))
- {
- end = i - 8;
- if (end < 0)
- end += 32;
- temp1 = remainder & ((0x0ff << end)
- | ((i < end) ? (0xff >> (32 - end)) : 0));
- remainder &= ~temp1;
- num_insns++;
- i -= 6;
- }
- i -= 2;
- } while (remainder);
- return num_insns;
-}
-
-/* Emit an instruction with the indicated PATTERN. If COND is
- non-NULL, conditionalize the execution of the instruction on COND
- being true. */
-
-static void
-emit_constant_insn (rtx cond, rtx pattern)
-{
- if (cond)
- pattern = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond), pattern);
- emit_insn (pattern);
-}
-
-/* As above, but extra parameter GENERATE which, if clear, suppresses
- RTL generation. */
-
-static int
-arm_gen_constant (enum rtx_code code, enum machine_mode mode, rtx cond,
- HOST_WIDE_INT val, rtx target, rtx source, int subtargets,
- int generate)
-{
- int can_invert = 0;
- int can_negate = 0;
- int can_negate_initial = 0;
- int can_shift = 0;
- int i;
- int num_bits_set = 0;
- int set_sign_bit_copies = 0;
- int clear_sign_bit_copies = 0;
- int clear_zero_bit_copies = 0;
- int set_zero_bit_copies = 0;
- int insns = 0;
- unsigned HOST_WIDE_INT temp1, temp2;
- unsigned HOST_WIDE_INT remainder = val & 0xffffffff;
-
- /* Find out which operations are safe for a given CODE. Also do a quick
- check for degenerate cases; these can occur when DImode operations
- are split. */
- switch (code)
- {
- case SET:
- can_invert = 1;
- can_shift = 1;
- can_negate = 1;
- break;
-
- case PLUS:
- can_negate = 1;
- can_negate_initial = 1;
- break;
-
- case IOR:
- if (remainder == 0xffffffff)
- {
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- GEN_INT (ARM_SIGN_EXTEND (val))));
- return 1;
- }
- if (remainder == 0)
- {
- if (reload_completed && rtx_equal_p (target, source))
- return 0;
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target, source));
- return 1;
- }
- break;
-
- case AND:
- if (remainder == 0)
- {
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target, const0_rtx));
- return 1;
- }
- if (remainder == 0xffffffff)
- {
- if (reload_completed && rtx_equal_p (target, source))
- return 0;
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target, source));
- return 1;
- }
- can_invert = 1;
- break;
-
- case XOR:
- if (remainder == 0)
- {
- if (reload_completed && rtx_equal_p (target, source))
- return 0;
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target, source));
- return 1;
- }
-
- /* We don't know how to handle other cases yet. */
- gcc_assert (remainder == 0xffffffff);
-
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_NOT (mode, source)));
- return 1;
-
- case MINUS:
- /* We treat MINUS as (val - source), since (source - val) is always
- passed as (source + (-val)). */
- if (remainder == 0)
- {
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_NEG (mode, source)));
- return 1;
- }
- if (const_ok_for_arm (val))
- {
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_MINUS (mode, GEN_INT (val),
- source)));
- return 1;
- }
- can_negate = 1;
-
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* If we can do it in one insn get out quickly. */
- if (const_ok_for_arm (val)
- || (can_negate_initial && const_ok_for_arm (-val))
- || (can_invert && const_ok_for_arm (~val)))
- {
- if (generate)
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- (source
- ? gen_rtx_fmt_ee (code, mode, source,
- GEN_INT (val))
- : GEN_INT (val))));
- return 1;
- }
-
- /* Calculate a few attributes that may be useful for specific
- optimizations. */
- for (i = 31; i >= 0; i--)
- {
- if ((remainder & (1 << i)) == 0)
- clear_sign_bit_copies++;
- else
- break;
- }
-
- for (i = 31; i >= 0; i--)
- {
- if ((remainder & (1 << i)) != 0)
- set_sign_bit_copies++;
- else
- break;
- }
-
- for (i = 0; i <= 31; i++)
- {
- if ((remainder & (1 << i)) == 0)
- clear_zero_bit_copies++;
- else
- break;
- }
-
- for (i = 0; i <= 31; i++)
- {
- if ((remainder & (1 << i)) != 0)
- set_zero_bit_copies++;
- else
- break;
- }
-
- switch (code)
- {
- case SET:
- /* See if we can do this by sign_extending a constant that is known
- to be negative. This is a good, way of doing it, since the shift
- may well merge into a subsequent insn. */
- if (set_sign_bit_copies > 1)
- {
- if (const_ok_for_arm
- (temp1 = ARM_SIGN_EXTEND (remainder
- << (set_sign_bit_copies - 1))))
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, new_src,
- GEN_INT (temp1)));
- emit_constant_insn (cond,
- gen_ashrsi3 (target, new_src,
- GEN_INT (set_sign_bit_copies - 1)));
- }
- return 2;
- }
- /* For an inverted constant, we will need to set the low bits,
- these will be shifted out of harm's way. */
- temp1 |= (1 << (set_sign_bit_copies - 1)) - 1;
- if (const_ok_for_arm (~temp1))
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, new_src,
- GEN_INT (temp1)));
- emit_constant_insn (cond,
- gen_ashrsi3 (target, new_src,
- GEN_INT (set_sign_bit_copies - 1)));
- }
- return 2;
- }
- }
-
- /* See if we can calculate the value as the difference between two
- valid immediates. */
- if (clear_sign_bit_copies + clear_zero_bit_copies <= 16)
- {
- int topshift = clear_sign_bit_copies & ~1;
-
- temp1 = ARM_SIGN_EXTEND ((remainder + (0x00800000 >> topshift))
- & (0xff000000 >> topshift));
-
- /* If temp1 is zero, then that means the 9 most significant
- bits of remainder were 1 and we've caused it to overflow.
- When topshift is 0 we don't need to do anything since we
- can borrow from 'bit 32'. */
- if (temp1 == 0 && topshift != 0)
- temp1 = 0x80000000 >> (topshift - 1);
-
- temp2 = ARM_SIGN_EXTEND (temp1 - remainder);
-
- if (const_ok_for_arm (temp2))
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, new_src,
- GEN_INT (temp1)));
- emit_constant_insn (cond,
- gen_addsi3 (target, new_src,
- GEN_INT (-temp2)));
- }
-
- return 2;
- }
- }
-
- /* See if we can generate this by setting the bottom (or the top)
- 16 bits, and then shifting these into the other half of the
- word. We only look for the simplest cases, to do more would cost
- too much. Be careful, however, not to generate this when the
- alternative would take fewer insns. */
- if (val & 0xffff0000)
- {
- temp1 = remainder & 0xffff0000;
- temp2 = remainder & 0x0000ffff;
-
- /* Overlaps outside this range are best done using other methods. */
- for (i = 9; i < 24; i++)
- {
- if ((((temp2 | (temp2 << i)) & 0xffffffff) == remainder)
- && !const_ok_for_arm (temp2))
- {
- rtx new_src = (subtargets
- ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
- : target);
- insns = arm_gen_constant (code, mode, cond, temp2, new_src,
- source, subtargets, generate);
- source = new_src;
- if (generate)
- emit_constant_insn
- (cond,
- gen_rtx_SET
- (VOIDmode, target,
- gen_rtx_IOR (mode,
- gen_rtx_ASHIFT (mode, source,
- GEN_INT (i)),
- source)));
- return insns + 1;
- }
- }
-
- /* Don't duplicate cases already considered. */
- for (i = 17; i < 24; i++)
- {
- if (((temp1 | (temp1 >> i)) == remainder)
- && !const_ok_for_arm (temp1))
- {
- rtx new_src = (subtargets
- ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
- : target);
- insns = arm_gen_constant (code, mode, cond, temp1, new_src,
- source, subtargets, generate);
- source = new_src;
- if (generate)
- emit_constant_insn
- (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_IOR
- (mode,
- gen_rtx_LSHIFTRT (mode, source,
- GEN_INT (i)),
- source)));
- return insns + 1;
- }
- }
- }
- break;
-
- case IOR:
- case XOR:
- /* If we have IOR or XOR, and the constant can be loaded in a
- single instruction, and we can find a temporary to put it in,
- then this can be done in two instructions instead of 3-4. */
- if (subtargets
- /* TARGET can't be NULL if SUBTARGETS is 0 */
- || (reload_completed && !reg_mentioned_p (target, source)))
- {
- if (const_ok_for_arm (ARM_SIGN_EXTEND (~val)))
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
-
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, sub,
- GEN_INT (val)));
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_fmt_ee (code, mode,
- source, sub)));
- }
- return 2;
- }
- }
-
- if (code == XOR)
- break;
-
- if (set_sign_bit_copies > 8
- && (val & (-1 << (32 - set_sign_bit_copies))) == val)
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (set_sign_bit_copies);
-
- emit_constant_insn
- (cond,
- gen_rtx_SET (VOIDmode, sub,
- gen_rtx_NOT (mode,
- gen_rtx_ASHIFT (mode,
- source,
- shift))));
- emit_constant_insn
- (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_NOT (mode,
- gen_rtx_LSHIFTRT (mode, sub,
- shift))));
- }
- return 2;
- }
-
- if (set_zero_bit_copies > 8
- && (remainder & ((1 << set_zero_bit_copies) - 1)) == remainder)
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (set_zero_bit_copies);
-
- emit_constant_insn
- (cond,
- gen_rtx_SET (VOIDmode, sub,
- gen_rtx_NOT (mode,
- gen_rtx_LSHIFTRT (mode,
- source,
- shift))));
- emit_constant_insn
- (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_NOT (mode,
- gen_rtx_ASHIFT (mode, sub,
- shift))));
- }
- return 2;
- }
-
- if (const_ok_for_arm (temp1 = ARM_SIGN_EXTEND (~val)))
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, sub,
- gen_rtx_NOT (mode, source)));
- source = sub;
- if (subtargets)
- sub = gen_reg_rtx (mode);
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, sub,
- gen_rtx_AND (mode, source,
- GEN_INT (temp1))));
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, target,
- gen_rtx_NOT (mode, sub)));
- }
- return 3;
- }
- break;
-
- case AND:
- /* See if two shifts will do 2 or more insn's worth of work. */
- if (clear_sign_bit_copies >= 16 && clear_sign_bit_copies < 24)
- {
- HOST_WIDE_INT shift_mask = ((0xffffffff
- << (32 - clear_sign_bit_copies))
- & 0xffffffff);
-
- if ((remainder | shift_mask) != 0xffffffff)
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- insns = arm_gen_constant (AND, mode, cond,
- remainder | shift_mask,
- new_src, source, subtargets, 1);
- source = new_src;
- }
- else
- {
- rtx targ = subtargets ? NULL_RTX : target;
- insns = arm_gen_constant (AND, mode, cond,
- remainder | shift_mask,
- targ, source, subtargets, 0);
- }
- }
-
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (clear_sign_bit_copies);
-
- emit_insn (gen_ashlsi3 (new_src, source, shift));
- emit_insn (gen_lshrsi3 (target, new_src, shift));
- }
-
- return insns + 2;
- }
-
- if (clear_zero_bit_copies >= 16 && clear_zero_bit_copies < 24)
- {
- HOST_WIDE_INT shift_mask = (1 << clear_zero_bit_copies) - 1;
-
- if ((remainder | shift_mask) != 0xffffffff)
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
-
- insns = arm_gen_constant (AND, mode, cond,
- remainder | shift_mask,
- new_src, source, subtargets, 1);
- source = new_src;
- }
- else
- {
- rtx targ = subtargets ? NULL_RTX : target;
-
- insns = arm_gen_constant (AND, mode, cond,
- remainder | shift_mask,
- targ, source, subtargets, 0);
- }
- }
-
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (clear_zero_bit_copies);
-
- emit_insn (gen_lshrsi3 (new_src, source, shift));
- emit_insn (gen_ashlsi3 (target, new_src, shift));
- }
-
- return insns + 2;
- }
-
- break;
-
- default:
- break;
- }
-
- for (i = 0; i < 32; i++)
- if (remainder & (1 << i))
- num_bits_set++;
-
- if (code == AND || (can_invert && num_bits_set > 16))
- remainder = (~remainder) & 0xffffffff;
- else if (code == PLUS && num_bits_set > 16)
- remainder = (-remainder) & 0xffffffff;
- else
- {
- can_invert = 0;
- can_negate = 0;
- }
-
- /* Now try and find a way of doing the job in either two or three
- instructions.
- We start by looking for the largest block of zeros that are aligned on
- a 2-bit boundary, we then fill up the temps, wrapping around to the
- top of the word when we drop off the bottom.
- In the worst case this code should produce no more than four insns. */
- {
- int best_start = 0;
- int best_consecutive_zeros = 0;
-
- for (i = 0; i < 32; i += 2)
- {
- int consecutive_zeros = 0;
-
- if (!(remainder & (3 << i)))
- {
- while ((i < 32) && !(remainder & (3 << i)))
- {
- consecutive_zeros += 2;
- i += 2;
- }
- if (consecutive_zeros > best_consecutive_zeros)
- {
- best_consecutive_zeros = consecutive_zeros;
- best_start = i - consecutive_zeros;
- }
- i -= 2;
- }
- }
-
- /* So long as it won't require any more insns to do so, it's
- desirable to emit a small constant (in bits 0...9) in the last
- insn. This way there is more chance that it can be combined with
- a later addressing insn to form a pre-indexed load or store
- operation. Consider:
-
- *((volatile int *)0xe0000100) = 1;
- *((volatile int *)0xe0000110) = 2;
-
- We want this to wind up as:
-
- mov rA, #0xe0000000
- mov rB, #1
- str rB, [rA, #0x100]
- mov rB, #2
- str rB, [rA, #0x110]
-
- rather than having to synthesize both large constants from scratch.
-
- Therefore, we calculate how many insns would be required to emit
- the constant starting from `best_start', and also starting from
- zero (i.e. with bit 31 first to be output). If `best_start' doesn't
- yield a shorter sequence, we may as well use zero. */
- if (best_start != 0
- && ((((unsigned HOST_WIDE_INT) 1) << best_start) < remainder)
- && (count_insns_for_constant (remainder, 0) <=
- count_insns_for_constant (remainder, best_start)))
- best_start = 0;
-
- /* Now start emitting the insns. */
- i = best_start;
- do
- {
- int end;
-
- if (i <= 0)
- i += 32;
- if (remainder & (3 << (i - 2)))
- {
- end = i - 8;
- if (end < 0)
- end += 32;
- temp1 = remainder & ((0x0ff << end)
- | ((i < end) ? (0xff >> (32 - end)) : 0));
- remainder &= ~temp1;
-
- if (generate)
- {
- rtx new_src, temp1_rtx;
-
- if (code == SET || code == MINUS)
- {
- new_src = (subtargets ? gen_reg_rtx (mode) : target);
- if (can_invert && code != MINUS)
- temp1 = ~temp1;
- }
- else
- {
- if (remainder && subtargets)
- new_src = gen_reg_rtx (mode);
- else
- new_src = target;
- if (can_invert)
- temp1 = ~temp1;
- else if (can_negate)
- temp1 = -temp1;
- }
-
- temp1 = trunc_int_for_mode (temp1, mode);
- temp1_rtx = GEN_INT (temp1);
-
- if (code == SET)
- ;
- else if (code == MINUS)
- temp1_rtx = gen_rtx_MINUS (mode, temp1_rtx, source);
- else
- temp1_rtx = gen_rtx_fmt_ee (code, mode, source, temp1_rtx);
-
- emit_constant_insn (cond,
- gen_rtx_SET (VOIDmode, new_src,
- temp1_rtx));
- source = new_src;
- }
-
- if (code == SET)
- {
- can_invert = 0;
- code = PLUS;
- }
- else if (code == MINUS)
- code = PLUS;
-
- insns++;
- i -= 6;
- }
- i -= 2;
- }
- while (remainder);
- }
-
- return insns;
-}
-
-/* Canonicalize a comparison so that we are more likely to recognize it.
- This can be done for a few constant compares, where we can make the
- immediate value easier to load. */
-
-enum rtx_code
-arm_canonicalize_comparison (enum rtx_code code, enum machine_mode mode,
- rtx * op1)
-{
- unsigned HOST_WIDE_INT i = INTVAL (*op1);
- unsigned HOST_WIDE_INT maxval;
- maxval = (((unsigned HOST_WIDE_INT) 1) << (GET_MODE_BITSIZE(mode) - 1)) - 1;
-
- switch (code)
- {
- case EQ:
- case NE:
- return code;
-
- case GT:
- case LE:
- if (i != maxval
- && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
- {
- *op1 = GEN_INT (i + 1);
- return code == GT ? GE : LT;
- }
- break;
-
- case GE:
- case LT:
- if (i != ~maxval
- && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
- {
- *op1 = GEN_INT (i - 1);
- return code == GE ? GT : LE;
- }
- break;
-
- case GTU:
- case LEU:
- if (i != ~((unsigned HOST_WIDE_INT) 0)
- && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
- {
- *op1 = GEN_INT (i + 1);
- return code == GTU ? GEU : LTU;
- }
- break;
-
- case GEU:
- case LTU:
- if (i != 0
- && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
- {
- *op1 = GEN_INT (i - 1);
- return code == GEU ? GTU : LEU;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return code;
-}
-
-
-/* Define how to find the value returned by a function. */
-
-rtx
-arm_function_value(tree type, tree func ATTRIBUTE_UNUSED)
-{
- enum machine_mode mode;
- int unsignedp ATTRIBUTE_UNUSED;
- rtx r ATTRIBUTE_UNUSED;
-
- mode = TYPE_MODE (type);
- /* Promote integer types. */
- if (INTEGRAL_TYPE_P (type))
- PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
-
- /* Promotes small structs returned in a register to full-word size
- for big-endian AAPCS. */
- if (arm_return_in_msb (type))
- {
- HOST_WIDE_INT size = int_size_in_bytes (type);
- if (size % UNITS_PER_WORD != 0)
- {
- size += UNITS_PER_WORD - size % UNITS_PER_WORD;
- mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
- }
- }
-
- return LIBCALL_VALUE(mode);
-}
-
-/* Determine the amount of memory needed to store the possible return
- registers of an untyped call. */
-int
-arm_apply_result_size (void)
-{
- int size = 16;
-
- if (TARGET_ARM)
- {
- if (TARGET_HARD_FLOAT_ABI)
- {
- if (TARGET_FPA)
- size += 12;
- if (TARGET_MAVERICK)
- size += 8;
- }
- if (TARGET_IWMMXT_ABI)
- size += 8;
- }
-
- return size;
-}
-
-/* Decide whether a type should be returned in memory (true)
- or in a register (false). This is called by the macro
- RETURN_IN_MEMORY. */
-int
-arm_return_in_memory (tree type)
-{
- HOST_WIDE_INT size;
-
- if (!AGGREGATE_TYPE_P (type) &&
- (TREE_CODE (type) != VECTOR_TYPE) &&
- !(TARGET_AAPCS_BASED && TREE_CODE (type) == COMPLEX_TYPE))
- /* All simple types are returned in registers.
- For AAPCS, complex types are treated the same as aggregates. */
- return 0;
-
- size = int_size_in_bytes (type);
-
- if (arm_abi != ARM_ABI_APCS)
- {
- /* ATPCS and later return aggregate types in memory only if they are
- larger than a word (or are variable size). */
- return (size < 0 || size > UNITS_PER_WORD);
- }
-
- /* To maximize backwards compatibility with previous versions of gcc,
- return vectors up to 4 words in registers. */
- if (TREE_CODE (type) == VECTOR_TYPE)
- return (size < 0 || size > (4 * UNITS_PER_WORD));
-
- /* For the arm-wince targets we choose to be compatible with Microsoft's
- ARM and Thumb compilers, which always return aggregates in memory. */
-#ifndef ARM_WINCE
- /* All structures/unions bigger than one word are returned in memory.
- Also catch the case where int_size_in_bytes returns -1. In this case
- the aggregate is either huge or of variable size, and in either case
- we will want to return it via memory and not in a register. */
- if (size < 0 || size > UNITS_PER_WORD)
- return 1;
-
- if (TREE_CODE (type) == RECORD_TYPE)
- {
- tree field;
-
- /* For a struct the APCS says that we only return in a register
- if the type is 'integer like' and every addressable element
- has an offset of zero. For practical purposes this means
- that the structure can have at most one non bit-field element
- and that this element must be the first one in the structure. */
-
- /* Find the first field, ignoring non FIELD_DECL things which will
- have been created by C++. */
- for (field = TYPE_FIELDS (type);
- field && TREE_CODE (field) != FIELD_DECL;
- field = TREE_CHAIN (field))
- continue;
-
- if (field == NULL)
- return 0; /* An empty structure. Allowed by an extension to ANSI C. */
-
- /* Check that the first field is valid for returning in a register. */
-
- /* ... Floats are not allowed */
- if (FLOAT_TYPE_P (TREE_TYPE (field)))
- return 1;
-
- /* ... Aggregates that are not themselves valid for returning in
- a register are not allowed. */
- if (RETURN_IN_MEMORY (TREE_TYPE (field)))
- return 1;
-
- /* Now check the remaining fields, if any. Only bitfields are allowed,
- since they are not addressable. */
- for (field = TREE_CHAIN (field);
- field;
- field = TREE_CHAIN (field))
- {
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- if (!DECL_BIT_FIELD_TYPE (field))
- return 1;
- }
-
- return 0;
- }
-
- if (TREE_CODE (type) == UNION_TYPE)
- {
- tree field;
-
- /* Unions can be returned in registers if every element is
- integral, or can be returned in an integer register. */
- for (field = TYPE_FIELDS (type);
- field;
- field = TREE_CHAIN (field))
- {
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- if (FLOAT_TYPE_P (TREE_TYPE (field)))
- return 1;
-
- if (RETURN_IN_MEMORY (TREE_TYPE (field)))
- return 1;
- }
-
- return 0;
- }
-#endif /* not ARM_WINCE */
-
- /* Return all other types in memory. */
- return 1;
-}
-
-/* Indicate whether or not words of a double are in big-endian order. */
-
-int
-arm_float_words_big_endian (void)
-{
- if (TARGET_MAVERICK)
- return 0;
-
- /* For FPA, float words are always big-endian. For VFP, floats words
- follow the memory system mode. */
-
- if (TARGET_FPA)
- {
- return 1;
- }
-
- if (TARGET_VFP)
- return (TARGET_BIG_END ? 1 : 0);
-
- return 1;
-}
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is NULL. */
-void
-arm_init_cumulative_args (CUMULATIVE_ARGS *pcum, tree fntype,
- rtx libname ATTRIBUTE_UNUSED,
- tree fndecl ATTRIBUTE_UNUSED)
-{
- /* On the ARM, the offset starts at 0. */
- pcum->nregs = 0;
- pcum->iwmmxt_nregs = 0;
- pcum->can_split = true;
-
- pcum->call_cookie = CALL_NORMAL;
-
- if (TARGET_LONG_CALLS)
- pcum->call_cookie = CALL_LONG;
-
- /* Check for long call/short call attributes. The attributes
- override any command line option. */
- if (fntype)
- {
- if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (fntype)))
- pcum->call_cookie = CALL_SHORT;
- else if (lookup_attribute ("long_call", TYPE_ATTRIBUTES (fntype)))
- pcum->call_cookie = CALL_LONG;
- }
-
- /* Varargs vectors are treated the same as long long.
- named_count avoids having to change the way arm handles 'named' */
- pcum->named_count = 0;
- pcum->nargs = 0;
-
- if (TARGET_REALLY_IWMMXT && fntype)
- {
- tree fn_arg;
-
- for (fn_arg = TYPE_ARG_TYPES (fntype);
- fn_arg;
- fn_arg = TREE_CHAIN (fn_arg))
- pcum->named_count += 1;
-
- if (! pcum->named_count)
- pcum->named_count = INT_MAX;
- }
-}
-
-
-/* Return true if mode/type need doubleword alignment. */
-bool
-arm_needs_doubleword_align (enum machine_mode mode, tree type)
-{
- return (GET_MODE_ALIGNMENT (mode) > PARM_BOUNDARY
- || (type && TYPE_ALIGN (type) > PARM_BOUNDARY));
-}
-
-
-/* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-rtx
-arm_function_arg (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
- tree type, int named)
-{
- int nregs;
-
- /* Varargs vectors are treated the same as long long.
- named_count avoids having to change the way arm handles 'named' */
- if (TARGET_IWMMXT_ABI
- && arm_vector_mode_supported_p (mode)
- && pcum->named_count > pcum->nargs + 1)
- {
- if (pcum->iwmmxt_nregs <= 9)
- return gen_rtx_REG (mode, pcum->iwmmxt_nregs + FIRST_IWMMXT_REGNUM);
- else
- {
- pcum->can_split = false;
- return NULL_RTX;
- }
- }
-
- /* Put doubleword aligned quantities in even register pairs. */
- if (pcum->nregs & 1
- && ARM_DOUBLEWORD_ALIGN
- && arm_needs_doubleword_align (mode, type))
- pcum->nregs++;
-
- if (mode == VOIDmode)
- /* Compute operand 2 of the call insn. */
- return GEN_INT (pcum->call_cookie);
-
- /* Only allow splitting an arg between regs and memory if all preceding
- args were allocated to regs. For args passed by reference we only count
- the reference pointer. */
- if (pcum->can_split)
- nregs = 1;
- else
- nregs = ARM_NUM_REGS2 (mode, type);
-
- if (!named || pcum->nregs + nregs > NUM_ARG_REGS)
- return NULL_RTX;
-
- return gen_rtx_REG (mode, pcum->nregs);
-}
-
-static int
-arm_arg_partial_bytes (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
- tree type, bool named ATTRIBUTE_UNUSED)
-{
- int nregs = pcum->nregs;
-
- if (arm_vector_mode_supported_p (mode))
- return 0;
-
- if (NUM_ARG_REGS > nregs
- && (NUM_ARG_REGS < nregs + ARM_NUM_REGS2 (mode, type))
- && pcum->can_split)
- return (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;
-
- return 0;
-}
-
-/* Variable sized types are passed by reference. This is a GCC
- extension to the ARM ABI. */
-
-static bool
-arm_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
- enum machine_mode mode ATTRIBUTE_UNUSED,
- tree type, bool named ATTRIBUTE_UNUSED)
-{
- return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
-}
-
-/* Encode the current state of the #pragma [no_]long_calls. */
-typedef enum
-{
- OFF, /* No #pragma [no_]long_calls is in effect. */
- LONG, /* #pragma long_calls is in effect. */
- SHORT /* #pragma no_long_calls is in effect. */
-} arm_pragma_enum;
-
-static arm_pragma_enum arm_pragma_long_calls = OFF;
-
-void
-arm_pr_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
-{
- arm_pragma_long_calls = LONG;
-}
-
-void
-arm_pr_no_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
-{
- arm_pragma_long_calls = SHORT;
-}
-
-void
-arm_pr_long_calls_off (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
-{
- arm_pragma_long_calls = OFF;
-}
-
-/* Table of machine attributes. */
-const struct attribute_spec arm_attribute_table[] =
-{
- /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
- /* Function calls made to this symbol must be done indirectly, because
- it may lie outside of the 26 bit addressing range of a normal function
- call. */
- { "long_call", 0, 0, false, true, true, NULL },
- /* Whereas these functions are always known to reside within the 26 bit
- addressing range. */
- { "short_call", 0, 0, false, true, true, NULL },
- /* Interrupt Service Routines have special prologue and epilogue requirements. */
- { "isr", 0, 1, false, false, false, arm_handle_isr_attribute },
- { "interrupt", 0, 1, false, false, false, arm_handle_isr_attribute },
- { "naked", 0, 0, true, false, false, arm_handle_fndecl_attribute },
-#ifdef ARM_PE
- /* ARM/PE has three new attributes:
- interfacearm - ?
- dllexport - for exporting a function/variable that will live in a dll
- dllimport - for importing a function/variable from a dll
-
- Microsoft allows multiple declspecs in one __declspec, separating
- them with spaces. We do NOT support this. Instead, use __declspec
- multiple times.
- */
- { "dllimport", 0, 0, true, false, false, NULL },
- { "dllexport", 0, 0, true, false, false, NULL },
- { "interfacearm", 0, 0, true, false, false, arm_handle_fndecl_attribute },
-#elif TARGET_DLLIMPORT_DECL_ATTRIBUTES
- { "dllimport", 0, 0, false, false, false, handle_dll_attribute },
- { "dllexport", 0, 0, false, false, false, handle_dll_attribute },
- { "notshared", 0, 0, false, true, false, arm_handle_notshared_attribute },
-#endif
- { NULL, 0, 0, false, false, false, NULL }
-};
-
-/* Handle an attribute requiring a FUNCTION_DECL;
- arguments as in struct attribute_spec.handler. */
-static tree
-arm_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
- int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
-{
- if (TREE_CODE (*node) != FUNCTION_DECL)
- {
- warning (OPT_Wattributes, "%qs attribute only applies to functions",
- IDENTIFIER_POINTER (name));
- *no_add_attrs = true;
- }
-
- return NULL_TREE;
-}
-
-/* Handle an "interrupt" or "isr" attribute;
- arguments as in struct attribute_spec.handler. */
-static tree
-arm_handle_isr_attribute (tree *node, tree name, tree args, int flags,
- bool *no_add_attrs)
-{
- if (DECL_P (*node))
- {
- if (TREE_CODE (*node) != FUNCTION_DECL)
- {
- warning (OPT_Wattributes, "%qs attribute only applies to functions",
- IDENTIFIER_POINTER (name));
- *no_add_attrs = true;
- }
- /* FIXME: the argument if any is checked for type attributes;
- should it be checked for decl ones? */
- }
- else
- {
- if (TREE_CODE (*node) == FUNCTION_TYPE
- || TREE_CODE (*node) == METHOD_TYPE)
- {
- if (arm_isr_value (args) == ARM_FT_UNKNOWN)
- {
- warning (OPT_Wattributes, "%qs attribute ignored",
- IDENTIFIER_POINTER (name));
- *no_add_attrs = true;
- }
- }
- else if (TREE_CODE (*node) == POINTER_TYPE
- && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
- || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
- && arm_isr_value (args) != ARM_FT_UNKNOWN)
- {
- *node = build_variant_type_copy (*node);
- TREE_TYPE (*node) = build_type_attribute_variant
- (TREE_TYPE (*node),
- tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
- *no_add_attrs = true;
- }
- else
- {
- /* Possibly pass this attribute on from the type to a decl. */
- if (flags & ((int) ATTR_FLAG_DECL_NEXT
- | (int) ATTR_FLAG_FUNCTION_NEXT
- | (int) ATTR_FLAG_ARRAY_NEXT))
- {
- *no_add_attrs = true;
- return tree_cons (name, args, NULL_TREE);
- }
- else
- {
- warning (OPT_Wattributes, "%qs attribute ignored",
- IDENTIFIER_POINTER (name));
- }
- }
- }
-
- return NULL_TREE;
-}
-
-#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
-/* Handle the "notshared" attribute. This attribute is another way of
- requesting hidden visibility. ARM's compiler supports
- "__declspec(notshared)"; we support the same thing via an
- attribute. */
-
-static tree
-arm_handle_notshared_attribute (tree *node,
- tree name ATTRIBUTE_UNUSED,
- tree args ATTRIBUTE_UNUSED,
- int flags ATTRIBUTE_UNUSED,
- bool *no_add_attrs)
-{
- tree decl = TYPE_NAME (*node);
-
- if (decl)
- {
- DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
- DECL_VISIBILITY_SPECIFIED (decl) = 1;
- *no_add_attrs = false;
- }
- return NULL_TREE;
-}
-#endif
-
-/* Return 0 if the attributes for two types are incompatible, 1 if they
- are compatible, and 2 if they are nearly compatible (which causes a
- warning to be generated). */
-static int
-arm_comp_type_attributes (tree type1, tree type2)
-{
- int l1, l2, s1, s2;
-
- /* Check for mismatch of non-default calling convention. */
- if (TREE_CODE (type1) != FUNCTION_TYPE)
- return 1;
-
- /* Check for mismatched call attributes. */
- l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
- l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
- s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
- s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;
-
- /* Only bother to check if an attribute is defined. */
- if (l1 | l2 | s1 | s2)
- {
- /* If one type has an attribute, the other must have the same attribute. */
- if ((l1 != l2) || (s1 != s2))
- return 0;
-
- /* Disallow mixed attributes. */
- if ((l1 & s2) || (l2 & s1))
- return 0;
- }
-
- /* Check for mismatched ISR attribute. */
- l1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
- if (! l1)
- l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
- l2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
- if (! l2)
- l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
- if (l1 != l2)
- return 0;
-
- return 1;
-}
-
-/* Encode long_call or short_call attribute by prefixing
- symbol name in DECL with a special character FLAG. */
-void
-arm_encode_call_attribute (tree decl, int flag)
-{
- const char * str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
- int len = strlen (str);
- char * newstr;
-
- /* Do not allow weak functions to be treated as short call. */
- if (DECL_WEAK (decl) && flag == SHORT_CALL_FLAG_CHAR)
- return;
-
- newstr = alloca (len + 2);
- newstr[0] = flag;
- strcpy (newstr + 1, str);
-
- newstr = (char *) ggc_alloc_string (newstr, len + 1);
- XSTR (XEXP (DECL_RTL (decl), 0), 0) = newstr;
-}
-
-/* Assigns default attributes to newly defined type. This is used to
- set short_call/long_call attributes for function types of
- functions defined inside corresponding #pragma scopes. */
-static void
-arm_set_default_type_attributes (tree type)
-{
- /* Add __attribute__ ((long_call)) to all functions, when
- inside #pragma long_calls or __attribute__ ((short_call)),
- when inside #pragma no_long_calls. */
- if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
- {
- tree type_attr_list, attr_name;
- type_attr_list = TYPE_ATTRIBUTES (type);
-
- if (arm_pragma_long_calls == LONG)
- attr_name = get_identifier ("long_call");
- else if (arm_pragma_long_calls == SHORT)
- attr_name = get_identifier ("short_call");
- else
- return;
-
- type_attr_list = tree_cons (attr_name, NULL_TREE, type_attr_list);
- TYPE_ATTRIBUTES (type) = type_attr_list;
- }
-}
-
-/* Return 1 if the operand is a SYMBOL_REF for a function known to be
- defined within the current compilation unit. If this cannot be
- determined, then 0 is returned. */
-static int
-current_file_function_operand (rtx sym_ref)
-{
- /* This is a bit of a fib. A function will have a short call flag
- applied to its name if it has the short call attribute, or it has
- already been defined within the current compilation unit. */
- if (ENCODED_SHORT_CALL_ATTR_P (XSTR (sym_ref, 0)))
- return 1;
-
- /* The current function is always defined within the current compilation
- unit. If it s a weak definition however, then this may not be the real
- definition of the function, and so we have to say no. */
- if (sym_ref == XEXP (DECL_RTL (current_function_decl), 0)
- && !DECL_WEAK (current_function_decl))
- return 1;
-
- /* We cannot make the determination - default to returning 0. */
- return 0;
-}
-
-/* Return nonzero if a 32 bit "long_call" should be generated for
- this call. We generate a long_call if the function:
-
- a. has an __attribute__((long call))
- or b. is within the scope of a #pragma long_calls
- or c. the -mlong-calls command line switch has been specified
- . and either:
- 1. -ffunction-sections is in effect
- or 2. the current function has __attribute__ ((section))
- or 3. the target function has __attribute__ ((section))
-
- However we do not generate a long call if the function:
-
- d. has an __attribute__ ((short_call))
- or e. is inside the scope of a #pragma no_long_calls
- or f. is defined within the current compilation unit.
-
- This function will be called by C fragments contained in the machine
- description file. SYM_REF and CALL_COOKIE correspond to the matched
- rtl operands. CALL_SYMBOL is used to distinguish between
- two different callers of the function. It is set to 1 in the
- "call_symbol" and "call_symbol_value" patterns and to 0 in the "call"
- and "call_value" patterns. This is because of the difference in the
- SYM_REFs passed by these patterns. */
-int
-arm_is_longcall_p (rtx sym_ref, int call_cookie, int call_symbol)
-{
- if (!call_symbol)
- {
- if (GET_CODE (sym_ref) != MEM)
- return 0;
-
- sym_ref = XEXP (sym_ref, 0);
- }
-
- if (GET_CODE (sym_ref) != SYMBOL_REF)
- return 0;
-
- if (call_cookie & CALL_SHORT)
- return 0;
-
- if (TARGET_LONG_CALLS)
- {
- if (flag_function_sections
- || DECL_SECTION_NAME (current_function_decl))
- /* c.3 is handled by the definition of the
- ARM_DECLARE_FUNCTION_SIZE macro. */
- return 1;
- }
-
- if (current_file_function_operand (sym_ref))
- return 0;
-
- return (call_cookie & CALL_LONG)
- || ENCODED_LONG_CALL_ATTR_P (XSTR (sym_ref, 0))
- || TARGET_LONG_CALLS;
-}
-
-/* Return nonzero if it is ok to make a tail-call to DECL. */
-static bool
-arm_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
-{
- int call_type = TARGET_LONG_CALLS ? CALL_LONG : CALL_NORMAL;
-
- if (cfun->machine->sibcall_blocked)
- return false;
-
- /* Never tailcall something for which we have no decl, or if we
- are in Thumb mode. */
- if (decl == NULL || TARGET_THUMB)
- return false;
-
- /* Get the calling method. */
- if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
- call_type = CALL_SHORT;
- else if (lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
- call_type = CALL_LONG;
-
- /* Cannot tail-call to long calls, since these are out of range of
- a branch instruction. However, if not compiling PIC, we know
- we can reach the symbol if it is in this compilation unit. */
- if (call_type == CALL_LONG && (flag_pic || !TREE_ASM_WRITTEN (decl)))
- return false;
-
- /* If we are interworking and the function is not declared static
- then we can't tail-call it unless we know that it exists in this
- compilation unit (since it might be a Thumb routine). */
- if (TARGET_INTERWORK && TREE_PUBLIC (decl) && !TREE_ASM_WRITTEN (decl))
- return false;
-
- /* Never tailcall from an ISR routine - it needs a special exit sequence. */
- if (IS_INTERRUPT (arm_current_func_type ()))
- return false;
-
- /* Everything else is ok. */
- return true;
-}
-
-
-/* Addressing mode support functions. */
-
-/* Return nonzero if X is a legitimate immediate operand when compiling
- for PIC. We know that X satisfies CONSTANT_P and flag_pic is true. */
-int
-legitimate_pic_operand_p (rtx x)
-{
- if (GET_CODE (x) == SYMBOL_REF
- || (GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF))
- return 0;
-
- return 1;
-}
-
-rtx
-legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
-{
- if (GET_CODE (orig) == SYMBOL_REF
- || GET_CODE (orig) == LABEL_REF)
- {
-#ifndef AOF_ASSEMBLER
- rtx pic_ref, address;
-#endif
- rtx insn;
- int subregs = 0;
-
- /* If this function doesn't have a pic register, create one now.
- A lot of the logic here is made obscure by the fact that this
- routine gets called as part of the rtx cost estimation
- process. We don't want those calls to affect any assumptions
- about the real function; and further, we can't call
- entry_of_function() until we start the real expansion
- process. */
- if (!current_function_uses_pic_offset_table)
- {
- gcc_assert (!no_new_pseudos);
- if (arm_pic_register != INVALID_REGNUM)
- {
- cfun->machine->pic_reg = gen_rtx_REG (Pmode, arm_pic_register);
-
- /* Play games to avoid marking the function as needing pic
- if we are being called as part of the cost-estimation
- process. */
- if (!ir_type() || currently_expanding_to_rtl)
- current_function_uses_pic_offset_table = 1;
- }
- else
- {
- rtx seq, entry;
-
- cfun->machine->pic_reg = gen_reg_rtx (Pmode);
-
- /* Play games to avoid marking the function as needing pic
- if we are being called as part of the cost-estimation
- process. */
- if (!ir_type() || currently_expanding_to_rtl)
- {
- current_function_uses_pic_offset_table = 1;
- start_sequence ();
-
- arm_load_pic_register (0UL);
-
- seq = get_insns ();
- end_sequence ();
-
- entry = entry_of_function_safe ();
- if (!entry)
- {
- gcc_assert (currently_expanding_to_rtl);
- entry = get_insns();
- }
-
- emit_insn_after (seq, entry);
- }
- }
- }
-
- if (reg == 0)
- {
- gcc_assert (!no_new_pseudos);
- reg = gen_reg_rtx (Pmode);
-
- subregs = 1;
- }
-
-#ifdef AOF_ASSEMBLER
- /* The AOF assembler can generate relocations for these directly, and
- understands that the PIC register has to be added into the offset. */
- insn = emit_insn (gen_pic_load_addr_based (reg, orig));
-#else
- if (subregs)
- address = gen_reg_rtx (Pmode);
- else
- address = reg;
-
- if (TARGET_ARM)
- emit_insn (gen_pic_load_addr_arm (address, orig));
- else
- emit_insn (gen_pic_load_addr_thumb (address, orig));
-
- if ((GET_CODE (orig) == LABEL_REF
- || (GET_CODE (orig) == SYMBOL_REF &&
- SYMBOL_REF_LOCAL_P (orig)))
- && NEED_GOT_RELOC)
- pic_ref = gen_rtx_PLUS (Pmode, cfun->machine->pic_reg, address);
- else
- {
- pic_ref = gen_const_mem (Pmode,
- gen_rtx_PLUS (Pmode, cfun->machine->pic_reg,
- address));
- }
-
- insn = emit_move_insn (reg, pic_ref);
-#endif
- /* Put a REG_EQUAL note on this insn, so that it can be optimized
- by loop. */
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig,
- REG_NOTES (insn));
- return reg;
- }
- else if (GET_CODE (orig) == CONST)
- {
- rtx base, offset;
-
- if (GET_CODE (XEXP (orig, 0)) == PLUS
- && XEXP (XEXP (orig, 0), 0) == cfun->machine->pic_reg)
- return orig;
-
- if (GET_CODE (XEXP (orig, 0)) == UNSPEC
- && XINT (XEXP (orig, 0), 1) == UNSPEC_TLS)
- return orig;
-
- if (reg == 0)
- {
- gcc_assert (!no_new_pseudos);
- reg = gen_reg_rtx (Pmode);
- }
-
- gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
-
- base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
- offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
- base == reg ? 0 : reg);
-
- if (GET_CODE (offset) == CONST_INT)
- {
- /* The base register doesn't really matter, we only want to
- test the index for the appropriate mode. */
- if (!arm_legitimate_index_p (mode, offset, SET, 0))
- {
- gcc_assert (!no_new_pseudos);
- offset = force_reg (Pmode, offset);
- }
-
- if (GET_CODE (offset) == CONST_INT)
- return plus_constant (base, INTVAL (offset));
- }
-
- if (GET_MODE_SIZE (mode) > 4
- && (GET_MODE_CLASS (mode) == MODE_INT
- || TARGET_SOFT_FLOAT))
- {
- emit_insn (gen_addsi3 (reg, base, offset));
- return reg;
- }
-
- return gen_rtx_PLUS (Pmode, base, offset);
- }
-
- return orig;
-}
-
-
-/* Find a spare low register to use during the prolog of a function. */
-
-static int
-thumb_find_work_register (unsigned long pushed_regs_mask)
-{
- int reg;
-
- /* Check the argument registers first as these are call-used. The
- register allocation order means that sometimes r3 might be used
- but earlier argument registers might not, so check them all. */
- for (reg = LAST_ARG_REGNUM; reg >= 0; reg --)
- if (!regs_ever_live[reg])
- return reg;
-
- /* Before going on to check the call-saved registers we can try a couple
- more ways of deducing that r3 is available. The first is when we are
- pushing anonymous arguments onto the stack and we have less than 4
- registers worth of fixed arguments(*). In this case r3 will be part of
- the variable argument list and so we can be sure that it will be
- pushed right at the start of the function. Hence it will be available
- for the rest of the prologue.
- (*): ie current_function_pretend_args_size is greater than 0. */
- if (cfun->machine->uses_anonymous_args
- && current_function_pretend_args_size > 0)
- return LAST_ARG_REGNUM;
-
- /* The other case is when we have fixed arguments but less than 4 registers
- worth. In this case r3 might be used in the body of the function, but
- it is not being used to convey an argument into the function. In theory
- we could just check current_function_args_size to see how many bytes are
- being passed in argument registers, but it seems that it is unreliable.
- Sometimes it will have the value 0 when in fact arguments are being
- passed. (See testcase execute/20021111-1.c for an example). So we also
- check the args_info.nregs field as well. The problem with this field is
- that it makes no allowances for arguments that are passed to the
- function but which are not used. Hence we could miss an opportunity
- when a function has an unused argument in r3. But it is better to be
- safe than to be sorry. */
- if (! cfun->machine->uses_anonymous_args
- && current_function_args_size >= 0
- && current_function_args_size <= (LAST_ARG_REGNUM * UNITS_PER_WORD)
- && cfun->args_info.nregs < 4)
- return LAST_ARG_REGNUM;
-
- /* Otherwise look for a call-saved register that is going to be pushed. */
- for (reg = LAST_LO_REGNUM; reg > LAST_ARG_REGNUM; reg --)
- if (pushed_regs_mask & (1 << reg))
- return reg;
-
- /* Something went wrong - thumb_compute_save_reg_mask()
- should have arranged for a suitable register to be pushed. */
- gcc_unreachable ();
-}
-
-static GTY(()) int pic_labelno;
-
-/* Generate code to load the PIC register. In thumb mode SCRATCH is a
- low register. */
-
-void
-arm_load_pic_register (unsigned long saved_regs ATTRIBUTE_UNUSED)
-{
-#ifndef AOF_ASSEMBLER
- rtx l1, labelno, pic_tmp, pic_tmp2, pic_rtx;
- rtx global_offset_table;
-
- if (current_function_uses_pic_offset_table == 0 || TARGET_SINGLE_PIC_BASE)
- return;
-
- gcc_assert (flag_pic);
-
- /* We use an UNSPEC rather than a LABEL_REF because this label never appears
- in the code stream. */
-
- labelno = GEN_INT (pic_labelno++);
- l1 = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
- l1 = gen_rtx_CONST (VOIDmode, l1);
-
- global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
- /* On the ARM the PC register contains 'dot + 8' at the time of the
- addition, on the Thumb it is 'dot + 4'. */
- pic_tmp = plus_constant (l1, TARGET_ARM ? 8 : 4);
- if (GOT_PCREL)
- pic_tmp2 = gen_rtx_CONST (VOIDmode,
- gen_rtx_PLUS (Pmode, global_offset_table, pc_rtx));
- else
- pic_tmp2 = gen_rtx_CONST (VOIDmode, global_offset_table);
-
- pic_rtx = gen_rtx_CONST (Pmode, gen_rtx_MINUS (Pmode, pic_tmp2, pic_tmp));
-
- if (TARGET_ARM)
- {
- emit_insn (gen_pic_load_addr_arm (cfun->machine->pic_reg, pic_rtx));
- emit_insn (gen_pic_add_dot_plus_eight (cfun->machine->pic_reg,
- cfun->machine->pic_reg, labelno));
- }
- else
- {
- if (arm_pic_register != INVALID_REGNUM
- && REGNO (cfun->machine->pic_reg) > LAST_LO_REGNUM)
- {
- /* We will have pushed the pic register, so we should always be
- able to find a work register. */
- pic_tmp = gen_rtx_REG (SImode,
- thumb_find_work_register (saved_regs));
- emit_insn (gen_pic_load_addr_thumb (pic_tmp, pic_rtx));
- emit_insn (gen_movsi (pic_offset_table_rtx, pic_tmp));
- }
- else
- emit_insn (gen_pic_load_addr_thumb (cfun->machine->pic_reg, pic_rtx));
- emit_insn (gen_pic_add_dot_plus_four (cfun->machine->pic_reg,
- cfun->machine->pic_reg, labelno));
- }
-
- /* Need to emit this whether or not we obey regdecls,
- since setjmp/longjmp can cause life info to screw up. */
- emit_insn (gen_rtx_USE (VOIDmode, cfun->machine->pic_reg));
-#endif /* AOF_ASSEMBLER */
-}
-
-
-/* Return nonzero if X is valid as an ARM state addressing register. */
-static int
-arm_address_register_rtx_p (rtx x, int strict_p)
-{
- int regno;
-
- if (GET_CODE (x) != REG)
- return 0;
-
- regno = REGNO (x);
-
- if (strict_p)
- return ARM_REGNO_OK_FOR_BASE_P (regno);
-
- return (regno <= LAST_ARM_REGNUM
- || regno >= FIRST_PSEUDO_REGISTER
- || regno == FRAME_POINTER_REGNUM
- || regno == ARG_POINTER_REGNUM);
-}
-
-/* Return TRUE if this rtx is the difference of a symbol and a label,
- and will reduce to a PC-relative relocation in the object file.
- Expressions like this can be left alone when generating PIC, rather
- than forced through the GOT. */
-static int
-pcrel_constant_p (rtx x)
-{
- if (GET_CODE (x) == MINUS)
- return symbol_mentioned_p (XEXP (x, 0)) && label_mentioned_p (XEXP (x, 1));
-
- return FALSE;
-}
-
-/* Return nonzero if X is a valid ARM state address operand. */
-int
-arm_legitimate_address_p (enum machine_mode mode, rtx x, RTX_CODE outer,
- int strict_p)
-{
- bool use_ldrd;
- enum rtx_code code = GET_CODE (x);
-
- if (arm_address_register_rtx_p (x, strict_p))
- return 1;
-
- use_ldrd = (TARGET_LDRD
- && (mode == DImode
- || (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));
-
- if (code == POST_INC || code == PRE_DEC
- || ((code == PRE_INC || code == POST_DEC)
- && (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
- return arm_address_register_rtx_p (XEXP (x, 0), strict_p);
-
- else if ((code == POST_MODIFY || code == PRE_MODIFY)
- && arm_address_register_rtx_p (XEXP (x, 0), strict_p)
- && GET_CODE (XEXP (x, 1)) == PLUS
- && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
- {
- rtx addend = XEXP (XEXP (x, 1), 1);
-
- /* Don't allow ldrd post increment by register because it's hard
- to fixup invalid register choices. */
- if (use_ldrd
- && GET_CODE (x) == POST_MODIFY
- && GET_CODE (addend) == REG)
- return 0;
-
- return ((use_ldrd || GET_MODE_SIZE (mode) <= 4)
- && arm_legitimate_index_p (mode, addend, outer, strict_p));
- }
-
- /* After reload constants split into minipools will have addresses
- from a LABEL_REF. */
- else if (reload_completed
- && (code == LABEL_REF
- || (code == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
- return 1;
-
- else if (mode == TImode)
- return 0;
-
- else if (code == PLUS)
- {
- rtx xop0 = XEXP (x, 0);
- rtx xop1 = XEXP (x, 1);
-
- return ((arm_address_register_rtx_p (xop0, strict_p)
- && arm_legitimate_index_p (mode, xop1, outer, strict_p))
- || (arm_address_register_rtx_p (xop1, strict_p)
- && arm_legitimate_index_p (mode, xop0, outer, strict_p)));
- }
-
-#if 0
- /* Reload currently can't handle MINUS, so disable this for now */
- else if (GET_CODE (x) == MINUS)
- {
- rtx xop0 = XEXP (x, 0);
- rtx xop1 = XEXP (x, 1);
-
- return (arm_address_register_rtx_p (xop0, strict_p)
- && arm_legitimate_index_p (mode, xop1, outer, strict_p));
- }
-#endif
-
- else if (GET_MODE_CLASS (mode) != MODE_FLOAT
- && code == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (x)
- && ! (flag_pic
- && symbol_mentioned_p (get_pool_constant (x))
- && ! pcrel_constant_p (get_pool_constant (x))))
- return 1;
-
- return 0;
-}
-
-/* Return nonzero if INDEX is valid for an address index operand in
- ARM state. */
-static int
-arm_legitimate_index_p (enum machine_mode mode, rtx index, RTX_CODE outer,
- int strict_p)
-{
- HOST_WIDE_INT range;
- enum rtx_code code = GET_CODE (index);
-
- /* Standard coprocessor addressing modes. */
- if (TARGET_HARD_FLOAT
- && (TARGET_FPA || TARGET_MAVERICK)
- && (GET_MODE_CLASS (mode) == MODE_FLOAT
- || (TARGET_MAVERICK && mode == DImode)))
- return (code == CONST_INT && INTVAL (index) < 1024
- && INTVAL (index) > -1024
- && (INTVAL (index) & 3) == 0);
-
- if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
- {
- /* For DImode assume values will usually live in core regs
- and only allow LDRD addressing modes. */
- if (!TARGET_LDRD || mode != DImode)
- return (code == CONST_INT
- && INTVAL (index) < 1024
- && INTVAL (index) > -1024
- && (INTVAL (index) & 3) == 0);
- }
-
- if (arm_address_register_rtx_p (index, strict_p)
- && (GET_MODE_SIZE (mode) <= 4))
- return 1;
-
- if (mode == DImode || mode == DFmode)
- {
- if (code == CONST_INT)
- {
- HOST_WIDE_INT val = INTVAL (index);
-
- if (TARGET_LDRD)
- return val > -256 && val < 256;
- else
- return val > -4096 && val < 4092;
- }
-
- return TARGET_LDRD && arm_address_register_rtx_p (index, strict_p);
- }
-
- if (GET_MODE_SIZE (mode) <= 4
- && ! (arm_arch4
- && (mode == HImode
- || (mode == QImode && outer == SIGN_EXTEND))))
- {
- if (code == MULT)
- {
- rtx xiop0 = XEXP (index, 0);
- rtx xiop1 = XEXP (index, 1);
-
- return ((arm_address_register_rtx_p (xiop0, strict_p)
- && power_of_two_operand (xiop1, SImode))
- || (arm_address_register_rtx_p (xiop1, strict_p)
- && power_of_two_operand (xiop0, SImode)));
- }
- else if (code == LSHIFTRT || code == ASHIFTRT
- || code == ASHIFT || code == ROTATERT)
- {
- rtx op = XEXP (index, 1);
-
- return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
- && GET_CODE (op) == CONST_INT
- && INTVAL (op) > 0
- && INTVAL (op) <= 31);
- }
- }
-
- /* For ARM v4 we may be doing a sign-extend operation during the
- load. */
- if (arm_arch4)
- {
- if (mode == HImode || (outer == SIGN_EXTEND && mode == QImode))
- range = 256;
- else
- range = 4096;
- }
- else
- range = (mode == HImode) ? 4095 : 4096;
-
- return (code == CONST_INT
- && INTVAL (index) < range
- && INTVAL (index) > -range);
-}
-
-/* Return nonzero if X is valid as a Thumb state base register. */
-static int
-thumb_base_register_rtx_p (rtx x, enum machine_mode mode, int strict_p)
-{
- int regno;
-
- if (GET_CODE (x) != REG)
- return 0;
-
- regno = REGNO (x);
-
- if (strict_p)
- return THUMB_REGNO_MODE_OK_FOR_BASE_P (regno, mode);
-
- return (regno <= LAST_LO_REGNUM
- || regno > LAST_VIRTUAL_REGISTER
- || regno == FRAME_POINTER_REGNUM
- || (GET_MODE_SIZE (mode) >= 4
- && (regno == STACK_POINTER_REGNUM
- || regno >= FIRST_PSEUDO_REGISTER
- || x == hard_frame_pointer_rtx
- || x == arg_pointer_rtx)));
-}
-
-/* Return nonzero if x is a legitimate index register. This is the case
- for any base register that can access a QImode object. */
-inline static int
-thumb_index_register_rtx_p (rtx x, int strict_p)
-{
- return thumb_base_register_rtx_p (x, QImode, strict_p);
-}
-
-/* Return nonzero if x is a legitimate Thumb-state address.
-
- The AP may be eliminated to either the SP or the FP, so we use the
- least common denominator, e.g. SImode, and offsets from 0 to 64.
-
- ??? Verify whether the above is the right approach.
-
- ??? Also, the FP may be eliminated to the SP, so perhaps that
- needs special handling also.
-
- ??? Look at how the mips16 port solves this problem. It probably uses
- better ways to solve some of these problems.
-
- Although it is not incorrect, we don't accept QImode and HImode
- addresses based on the frame pointer or arg pointer until the
- reload pass starts. This is so that eliminating such addresses
- into stack based ones won't produce impossible code. */
-int
-thumb_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
-{
- /* ??? Not clear if this is right. Experiment. */
- if (GET_MODE_SIZE (mode) < 4
- && !(reload_in_progress || reload_completed)
- && (reg_mentioned_p (frame_pointer_rtx, x)
- || reg_mentioned_p (arg_pointer_rtx, x)
- || reg_mentioned_p (virtual_incoming_args_rtx, x)
- || reg_mentioned_p (virtual_outgoing_args_rtx, x)
- || reg_mentioned_p (virtual_stack_dynamic_rtx, x)
- || reg_mentioned_p (virtual_stack_vars_rtx, x)))
- return 0;
-
- /* Accept any base register. SP only in SImode or larger. */
- else if (thumb_base_register_rtx_p (x, mode, strict_p))
- return 1;
-
- /* This is PC relative data before arm_reorg runs. */
- else if (GET_MODE_SIZE (mode) >= 4 && CONSTANT_P (x)
- && GET_CODE (x) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (x) && !flag_pic)
- return 1;
-
- /* This is PC relative data after arm_reorg runs. */
- else if (GET_MODE_SIZE (mode) >= 4 && reload_completed
- && (GET_CODE (x) == LABEL_REF
- || (GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
- return 1;
-
- /* Post-inc indexing only supported for SImode and larger. */
- else if (GET_CODE (x) == POST_INC && GET_MODE_SIZE (mode) >= 4
- && thumb_index_register_rtx_p (XEXP (x, 0), strict_p))
- return 1;
-
- else if (GET_CODE (x) == PLUS)
- {
- /* REG+REG address can be any two index registers. */
- /* We disallow FRAME+REG addressing since we know that FRAME
- will be replaced with STACK, and SP relative addressing only
- permits SP+OFFSET. */
- if (GET_MODE_SIZE (mode) <= 4
- && XEXP (x, 0) != frame_pointer_rtx
- && XEXP (x, 1) != frame_pointer_rtx
- && thumb_index_register_rtx_p (XEXP (x, 0), strict_p)
- && thumb_index_register_rtx_p (XEXP (x, 1), strict_p))
- return 1;
-
- /* REG+const has 5-7 bit offset for non-SP registers. */
- else if ((thumb_index_register_rtx_p (XEXP (x, 0), strict_p)
- || XEXP (x, 0) == arg_pointer_rtx)
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
- return 1;
-
- /* REG+const has 10 bit offset for SP, but only SImode and
- larger is supported. */
- /* ??? Should probably check for DI/DFmode overflow here
- just like GO_IF_LEGITIMATE_OFFSET does. */
- else if (GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) == STACK_POINTER_REGNUM
- && GET_MODE_SIZE (mode) >= 4
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) + GET_MODE_SIZE (mode) <= 1024
- && (INTVAL (XEXP (x, 1)) & 3) == 0)
- return 1;
-
- else if (GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) == FRAME_POINTER_REGNUM
- && GET_MODE_SIZE (mode) >= 4
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && (INTVAL (XEXP (x, 1)) & 3) == 0)
- return 1;
- }
-
- else if (GET_MODE_CLASS (mode) != MODE_FLOAT
- && GET_MODE_SIZE (mode) == 4
- && GET_CODE (x) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (x)
- && ! (flag_pic
- && symbol_mentioned_p (get_pool_constant (x))
- && ! pcrel_constant_p (get_pool_constant (x))))
- return 1;
-
- return 0;
-}
-
-/* Return nonzero if VAL can be used as an offset in a Thumb-state address
- instruction of mode MODE. */
-int
-thumb_legitimate_offset_p (enum machine_mode mode, HOST_WIDE_INT val)
-{
- switch (GET_MODE_SIZE (mode))
- {
- case 1:
- return val >= 0 && val < 32;
-
- case 2:
- return val >= 0 && val < 64 && (val & 1) == 0;
-
- default:
- return (val >= 0
- && (val + GET_MODE_SIZE (mode)) <= 128
- && (val & 3) == 0);
- }
-}
-
-/* Build the SYMBOL_REF for __tls_get_addr. */
-
-static GTY(()) rtx tls_get_addr_libfunc;
-
-static rtx
-get_tls_get_addr (void)
-{
- if (!tls_get_addr_libfunc)
- tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
- return tls_get_addr_libfunc;
-}
-
-static rtx
-arm_load_tp (rtx target)
-{
- if (!target)
- target = gen_reg_rtx (SImode);
-
- if (TARGET_HARD_TP)
- {
- /* Can return in any reg. */
- emit_insn (gen_load_tp_hard (target));
- }
- else
- {
- /* Always returned in r0. Immediately copy the result into a pseudo,
- otherwise other uses of r0 (e.g. setting up function arguments) may
- clobber the value. */
-
- rtx tmp;
-
- emit_insn (gen_load_tp_soft ());
-
- tmp = gen_rtx_REG (SImode, 0);
- emit_move_insn (target, tmp);
- }
- return target;
-}
-
-static rtx
-load_tls_operand (rtx x, rtx reg)
-{
- rtx tmp;
-
- if (reg == NULL_RTX)
- reg = gen_reg_rtx (SImode);
-
- tmp = gen_rtx_CONST (SImode, x);
-
- emit_move_insn (reg, tmp);
-
- return reg;
-}
-
-static rtx
-arm_call_tls_get_addr (rtx x, rtx reg, rtx *valuep, int reloc)
-{
- rtx insns, label, labelno, sum;
-
- start_sequence ();
-
- labelno = GEN_INT (pic_labelno++);
- label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
- label = gen_rtx_CONST (VOIDmode, label);
-
- sum = gen_rtx_UNSPEC (Pmode,
- gen_rtvec (4, x, GEN_INT (reloc), label,
- GEN_INT (TARGET_ARM ? 8 : 4)),
- UNSPEC_TLS);
- reg = load_tls_operand (sum, reg);
-
- if (TARGET_ARM)
- emit_insn (gen_pic_add_dot_plus_eight (reg, reg, labelno));
- else
- emit_insn (gen_pic_add_dot_plus_four (reg, reg, labelno));
-
- *valuep = emit_library_call_value (get_tls_get_addr (), NULL_RTX, LCT_PURE, /* LCT_CONST? */
- Pmode, 1, reg, Pmode);
-
- insns = get_insns ();
- end_sequence ();
-
- return insns;
-}
-
-rtx
-legitimize_tls_address (rtx x, rtx reg)
-{
- rtx dest, tp, label, labelno, sum, insns, ret, eqv, addend;
- unsigned int model = SYMBOL_REF_TLS_MODEL (x);
-
- switch (model)
- {
- case TLS_MODEL_GLOBAL_DYNAMIC:
- insns = arm_call_tls_get_addr (x, reg, &ret, TLS_GD32);
- dest = gen_reg_rtx (Pmode);
- emit_libcall_block (insns, dest, ret, x);
- return dest;
-
- case TLS_MODEL_LOCAL_DYNAMIC:
- insns = arm_call_tls_get_addr (x, reg, &ret, TLS_LDM32);
-
- /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
- share the LDM result with other LD model accesses. */
- eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx),
- UNSPEC_TLS);
- dest = gen_reg_rtx (Pmode);
- emit_libcall_block (insns, dest, ret, eqv);
-
- /* Load the addend. */
- addend = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (TLS_LDO32)),
- UNSPEC_TLS);
- addend = force_reg (SImode, gen_rtx_CONST (SImode, addend));
- return gen_rtx_PLUS (Pmode, dest, addend);
-
- case TLS_MODEL_INITIAL_EXEC:
- labelno = GEN_INT (pic_labelno++);
- label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
- label = gen_rtx_CONST (VOIDmode, label);
- sum = gen_rtx_UNSPEC (Pmode,
- gen_rtvec (4, x, GEN_INT (TLS_IE32), label,
- GEN_INT (TARGET_ARM ? 8 : 4)),
- UNSPEC_TLS);
- reg = load_tls_operand (sum, reg);
-
- if (TARGET_ARM)
- emit_insn (gen_tls_load_dot_plus_eight (reg, reg, labelno));
- else
- {
- emit_insn (gen_pic_add_dot_plus_four (reg, reg, labelno));
- emit_move_insn (reg, gen_const_mem (SImode, reg));
- }
-
- tp = arm_load_tp (NULL_RTX);
-
- return gen_rtx_PLUS (Pmode, tp, reg);
-
- case TLS_MODEL_LOCAL_EXEC:
- tp = arm_load_tp (NULL_RTX);
-
- reg = gen_rtx_UNSPEC (Pmode,
- gen_rtvec (2, x, GEN_INT (TLS_LE32)),
- UNSPEC_TLS);
- reg = force_reg (SImode, gen_rtx_CONST (SImode, reg));
-
- return gen_rtx_PLUS (Pmode, tp, reg);
-
- default:
- abort ();
- }
-}
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address. */
-rtx
-arm_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
-{
- if (arm_tls_symbol_p (x))
- return legitimize_tls_address (x, NULL_RTX);
-
- if (GET_CODE (x) == PLUS)
- {
- rtx xop0 = XEXP (x, 0);
- rtx xop1 = XEXP (x, 1);
-
- if (CONSTANT_P (xop0) && !symbol_mentioned_p (xop0))
- xop0 = force_reg (SImode, xop0);
-
- if (CONSTANT_P (xop1) && !symbol_mentioned_p (xop1))
- xop1 = force_reg (SImode, xop1);
-
- if (ARM_BASE_REGISTER_RTX_P (xop0)
- && GET_CODE (xop1) == CONST_INT)
- {
- HOST_WIDE_INT n, low_n;
- rtx base_reg, val;
- n = INTVAL (xop1);
-
- /* VFP addressing modes actually allow greater offsets, but for
- now we just stick with the lowest common denominator. */
- if (mode == DImode
- || ((TARGET_SOFT_FLOAT || TARGET_VFP) && mode == DFmode))
- {
- low_n = n & 0x0f;
- n &= ~0x0f;
- if (low_n > 4)
- {
- n += 16;
- low_n -= 16;
- }
- }
- else
- {
- low_n = ((mode) == TImode ? 0
- : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff));
- n -= low_n;
- }
-
- base_reg = gen_reg_rtx (SImode);
- val = force_operand (plus_constant (xop0, n), NULL_RTX);
- emit_move_insn (base_reg, val);
- x = plus_constant (base_reg, low_n);
- }
- else if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
- x = gen_rtx_PLUS (SImode, xop0, xop1);
- }
-
- /* XXX We don't allow MINUS any more -- see comment in
- arm_legitimate_address_p (). */
- else if (GET_CODE (x) == MINUS)
- {
- rtx xop0 = XEXP (x, 0);
- rtx xop1 = XEXP (x, 1);
-
- if (CONSTANT_P (xop0))
- xop0 = force_reg (SImode, xop0);
-
- if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1))
- xop1 = force_reg (SImode, xop1);
-
- if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
- x = gen_rtx_MINUS (SImode, xop0, xop1);
- }
-
- /* Make sure to take full advantage of the pre-indexed addressing mode
- with absolute addresses which often allows for the base register to
- be factorized for multiple adjacent memory references, and it might
- even allows for the mini pool to be avoided entirely. */
- else if (GET_CODE (x) == CONST_INT && optimize > 0)
- {
- unsigned int bits;
- HOST_WIDE_INT mask, base, index;
- rtx base_reg;
-
- /* ldr and ldrb can use a 12 bit index, ldrsb and the rest can only
- use a 8 bit index. So let's use a 12 bit index for SImode only and
- hope that arm_gen_constant will enable ldrb to use more bits. */
- bits = (mode == SImode) ? 12 : 8;
- mask = (1 << bits) - 1;
- base = INTVAL (x) & ~mask;
- index = INTVAL (x) & mask;
- if (bit_count (base & 0xffffffff) > (32 - bits)/2)
- {
- /* It'll most probably be more efficient to generate the base
- with more bits set and use a negative index instead. */
- base |= mask;
- index -= mask;
- }
- base_reg = force_reg (SImode, GEN_INT (base));
- x = plus_constant (base_reg, index);
- }
-
- if (flag_pic)
- {
- /* We need to find and carefully transform any SYMBOL and LABEL
- references; so go back to the original address expression. */
- rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
-
- if (new_x != orig_x)
- x = new_x;
- }
-
- return x;
-}
-
-
-/* Try machine-dependent ways of modifying an illegitimate Thumb address
- to be legitimate. If we find one, return the new, valid address. */
-rtx
-thumb_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
-{
- if (arm_tls_symbol_p (x))
- return legitimize_tls_address (x, NULL_RTX);
-
- if (GET_CODE (x) == PLUS
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && (INTVAL (XEXP (x, 1)) >= 32 * GET_MODE_SIZE (mode)
- || INTVAL (XEXP (x, 1)) < 0))
- {
- rtx xop0 = XEXP (x, 0);
- rtx xop1 = XEXP (x, 1);
- HOST_WIDE_INT offset = INTVAL (xop1);
-
- /* Try and fold the offset into a biasing of the base register and
- then offsetting that. Don't do this when optimizing for space
- since it can cause too many CSEs. */
- if (optimize_size && offset >= 0
- && offset < 256 + 31 * GET_MODE_SIZE (mode))
- {
- HOST_WIDE_INT delta;
-
- if (offset >= 256)
- delta = offset - (256 - GET_MODE_SIZE (mode));
- else if (offset < 32 * GET_MODE_SIZE (mode) + 8)
- delta = 31 * GET_MODE_SIZE (mode);
- else
- delta = offset & (~31 * GET_MODE_SIZE (mode));
-
- xop0 = force_operand (plus_constant (xop0, offset - delta),
- NULL_RTX);
- x = plus_constant (xop0, delta);
- }
- else if (offset < 0 && offset > -256)
- /* Small negative offsets are best done with a subtract before the
- dereference, forcing these into a register normally takes two
- instructions. */
- x = force_operand (x, NULL_RTX);
- else
- {
- /* For the remaining cases, force the constant into a register. */
- xop1 = force_reg (SImode, xop1);
- x = gen_rtx_PLUS (SImode, xop0, xop1);
- }
- }
- else if (GET_CODE (x) == PLUS
- && s_register_operand (XEXP (x, 1), SImode)
- && !s_register_operand (XEXP (x, 0), SImode))
- {
- rtx xop0 = force_operand (XEXP (x, 0), NULL_RTX);
-
- x = gen_rtx_PLUS (SImode, xop0, XEXP (x, 1));
- }
-
- if (flag_pic)
- {
- /* We need to find and carefully transform any SYMBOL and LABEL
- references; so go back to the original address expression. */
- rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
-
- if (new_x != orig_x)
- x = new_x;
- }
-
- return x;
-}
-
-rtx
-thumb_legitimize_reload_address (rtx *x_p,
- enum machine_mode mode,
- int opnum, int type,
- int ind_levels ATTRIBUTE_UNUSED)
-{
- rtx x = *x_p;
-
- if (GET_CODE (x) == PLUS
- && GET_MODE_SIZE (mode) < 4
- && REG_P (XEXP (x, 0))
- && XEXP (x, 0) == stack_pointer_rtx
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && !thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
- {
- rtx orig_x = x;
-
- x = copy_rtx (x);
- push_reload (orig_x, NULL_RTX, x_p, NULL, MODE_BASE_REG_CLASS (mode),
- Pmode, VOIDmode, 0, 0, opnum, type);
- return x;
- }
-
- /* If both registers are hi-regs, then it's better to reload the
- entire expression rather than each register individually. That
- only requires one reload register rather than two. */
- if (GET_CODE (x) == PLUS
- && REG_P (XEXP (x, 0))
- && REG_P (XEXP (x, 1))
- && !REG_MODE_OK_FOR_REG_BASE_P (XEXP (x, 0), mode)
- && !REG_MODE_OK_FOR_REG_BASE_P (XEXP (x, 1), mode))
- {
- rtx orig_x = x;
-
- x = copy_rtx (x);
- push_reload (orig_x, NULL_RTX, x_p, NULL, MODE_BASE_REG_CLASS (mode),
- Pmode, VOIDmode, 0, 0, opnum, type);
- return x;
- }
-
- return NULL;
-}
-
-/* Test for various thread-local symbols. */
-
-/* Return TRUE if X is a thread-local symbol. */
-
-static bool
-arm_tls_symbol_p (rtx x)
-{
- if (! TARGET_HAVE_TLS)
- return false;
-
- if (GET_CODE (x) != SYMBOL_REF)
- return false;
-
- return SYMBOL_REF_TLS_MODEL (x) != 0;
-}
-
-/* Helper for arm_tls_referenced_p. */
-
-static int
-arm_tls_operand_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
-{
- if (GET_CODE (*x) == SYMBOL_REF)
- return SYMBOL_REF_TLS_MODEL (*x) != 0;
-
- /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are
- TLS offsets, not real symbol references. */
- if (GET_CODE (*x) == UNSPEC
- && XINT (*x, 1) == UNSPEC_TLS)
- return -1;
-
- return 0;
-}
-
-/* Return TRUE if X contains any TLS symbol references. */
-
-bool
-arm_tls_referenced_p (rtx x)
-{
- if (! TARGET_HAVE_TLS)
- return false;
-
- return for_each_rtx (&x, arm_tls_operand_p_1, NULL);
-}
-
-#define REG_OR_SUBREG_REG(X) \
- (GET_CODE (X) == REG \
- || (GET_CODE (X) == SUBREG && GET_CODE (SUBREG_REG (X)) == REG))
-
-#define REG_OR_SUBREG_RTX(X) \
- (GET_CODE (X) == REG ? (X) : SUBREG_REG (X))
-
-#ifndef COSTS_N_INSNS
-#define COSTS_N_INSNS(N) ((N) * 4 - 2)
-#endif
-static inline int
-thumb_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
-{
- enum machine_mode mode = GET_MODE (x);
-
- switch (code)
- {
- case ASHIFT:
- case ASHIFTRT:
- case LSHIFTRT:
- case ROTATERT:
- case PLUS:
- case MINUS:
- case COMPARE:
- case NEG:
- case NOT:
- return COSTS_N_INSNS (1);
-
- case MULT:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- int cycles = 0;
- unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));
-
- while (i)
- {
- i >>= 2;
- cycles++;
- }
- return COSTS_N_INSNS (2) + cycles;
- }
- return COSTS_N_INSNS (1) + 16;
-
- case SET:
- return (COSTS_N_INSNS (1)
- + 4 * ((GET_CODE (SET_SRC (x)) == MEM)
- + GET_CODE (SET_DEST (x)) == MEM));
-
- case CONST_INT:
- if (outer == SET)
- {
- if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
- return 0;
- if (thumb_shiftable_const (INTVAL (x)))
- return COSTS_N_INSNS (2);
- return COSTS_N_INSNS (3);
- }
- else if ((outer == PLUS || outer == COMPARE)
- && INTVAL (x) < 256 && INTVAL (x) > -256)
- return 0;
- else if (outer == AND
- && INTVAL (x) < 256 && INTVAL (x) >= -256)
- return COSTS_N_INSNS (1);
- else if (outer == ASHIFT || outer == ASHIFTRT
- || outer == LSHIFTRT)
- return 0;
- return COSTS_N_INSNS (2);
-
- case CONST:
- case CONST_DOUBLE:
- case LABEL_REF:
- case SYMBOL_REF:
- return COSTS_N_INSNS (3);
-
- case UDIV:
- case UMOD:
- case DIV:
- case MOD:
- return 100;
-
- case TRUNCATE:
- return 99;
-
- case AND:
- case XOR:
- case IOR:
- /* XXX guess. */
- return 8;
-
- case MEM:
- /* XXX another guess. */
- /* Memory costs quite a lot for the first word, but subsequent words
- load at the equivalent of a single insn each. */
- return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
- + ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
- ? 4 : 0));
-
- case IF_THEN_ELSE:
- /* XXX a guess. */
- if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
- return 14;
- return 2;
-
- case ZERO_EXTEND:
- /* XXX still guessing. */
- switch (GET_MODE (XEXP (x, 0)))
- {
- case QImode:
- return (1 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case HImode:
- return (4 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case SImode:
- return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- default:
- return 99;
- }
-
- default:
- return 99;
- }
-}
-
-
-/* Worker routine for arm_rtx_costs. */
-static inline int
-arm_rtx_costs_1 (rtx x, enum rtx_code code, enum rtx_code outer)
-{
- enum machine_mode mode = GET_MODE (x);
- enum rtx_code subcode;
- int extra_cost;
-
- switch (code)
- {
- case MEM:
- /* Memory costs quite a lot for the first word, but subsequent words
- load at the equivalent of a single insn each. */
- return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
- + (GET_CODE (x) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (x) ? 4 : 0));
-
- case DIV:
- case MOD:
- case UDIV:
- case UMOD:
- return optimize_size ? COSTS_N_INSNS (2) : 100;
-
- case ROTATE:
- if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
- return 4;
- /* Fall through */
- case ROTATERT:
- if (mode != SImode)
- return 8;
- /* Fall through */
- case ASHIFT: case LSHIFTRT: case ASHIFTRT:
- if (mode == DImode)
- return (8 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : 8)
- + ((GET_CODE (XEXP (x, 0)) == REG
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
- ? 0 : 8));
- return (1 + ((GET_CODE (XEXP (x, 0)) == REG
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
- ? 0 : 4)
- + ((GET_CODE (XEXP (x, 1)) == REG
- || (GET_CODE (XEXP (x, 1)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 1))) == REG)
- || (GET_CODE (XEXP (x, 1)) == CONST_INT))
- ? 0 : 4));
-
- case MINUS:
- if (mode == DImode)
- return (4 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 0))
- || (GET_CODE (XEXP (x, 0)) == CONST_INT
- && const_ok_for_arm (INTVAL (XEXP (x, 0)))))
- ? 0 : 8));
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return (2 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
- && arm_const_double_rtx (XEXP (x, 1))))
- ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 0))
- || (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE
- && arm_const_double_rtx (XEXP (x, 0))))
- ? 0 : 8));
-
- if (((GET_CODE (XEXP (x, 0)) == CONST_INT
- && const_ok_for_arm (INTVAL (XEXP (x, 0)))
- && REG_OR_SUBREG_REG (XEXP (x, 1))))
- || (((subcode = GET_CODE (XEXP (x, 1))) == ASHIFT
- || subcode == ASHIFTRT || subcode == LSHIFTRT
- || subcode == ROTATE || subcode == ROTATERT
- || (subcode == MULT
- && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
- && ((INTVAL (XEXP (XEXP (x, 1), 1)) &
- (INTVAL (XEXP (XEXP (x, 1), 1)) - 1)) == 0)))
- && REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 0))
- && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 1))
- || GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
- && REG_OR_SUBREG_REG (XEXP (x, 0))))
- return 1;
- /* Fall through */
-
- case PLUS:
- if (GET_CODE (XEXP (x, 0)) == MULT)
- {
- extra_cost = rtx_cost (XEXP (x, 0), code);
- if (!REG_OR_SUBREG_REG (XEXP (x, 1)))
- extra_cost += 4 * ARM_NUM_REGS (mode);
- return extra_cost;
- }
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return (2 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
- && arm_const_double_rtx (XEXP (x, 1))))
- ? 0 : 8));
-
- /* Fall through */
- case AND: case XOR: case IOR:
- extra_cost = 0;
-
- /* Normally the frame registers will be spilt into reg+const during
- reload, so it is a bad idea to combine them with other instructions,
- since then they might not be moved outside of loops. As a compromise
- we allow integration with ops that have a constant as their second
- operand. */
- if ((REG_OR_SUBREG_REG (XEXP (x, 0))
- && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))
- && GET_CODE (XEXP (x, 1)) != CONST_INT)
- || (REG_OR_SUBREG_REG (XEXP (x, 0))
- && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))))
- extra_cost = 4;
-
- if (mode == DImode)
- return (4 + extra_cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_INT
- && const_ok_for_op (INTVAL (XEXP (x, 1)), code)))
- ? 0 : 8));
-
- if (REG_OR_SUBREG_REG (XEXP (x, 0)))
- return (1 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : extra_cost)
- + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_INT
- && const_ok_for_op (INTVAL (XEXP (x, 1)), code)))
- ? 0 : 4));
-
- else if (REG_OR_SUBREG_REG (XEXP (x, 1)))
- return (1 + extra_cost
- + ((((subcode = GET_CODE (XEXP (x, 0))) == ASHIFT
- || subcode == LSHIFTRT || subcode == ASHIFTRT
- || subcode == ROTATE || subcode == ROTATERT
- || (subcode == MULT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && ((INTVAL (XEXP (XEXP (x, 0), 1)) &
- (INTVAL (XEXP (XEXP (x, 0), 1)) - 1)) == 0)))
- && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 0)))
- && ((REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 1)))
- || GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
- ? 0 : 4));
-
- return 8;
-
- case MULT:
- /* This should have been handled by the CPU specific routines. */
- gcc_unreachable ();
-
- case TRUNCATE:
- if (arm_arch3m && mode == SImode
- && GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
- && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0))
- == GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)))
- && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND))
- return 8;
- return 99;
-
- case NEG:
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 6);
- /* Fall through */
- case NOT:
- if (mode == DImode)
- return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
-
- return 1 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
-
- case IF_THEN_ELSE:
- if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
- return 14;
- return 2;
-
- case COMPARE:
- return 1;
-
- case ABS:
- return 4 + (mode == DImode ? 4 : 0);
-
- case SIGN_EXTEND:
- if (GET_MODE (XEXP (x, 0)) == QImode)
- return (4 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
- /* Fall through */
- case ZERO_EXTEND:
- switch (GET_MODE (XEXP (x, 0)))
- {
- case QImode:
- return (1 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case HImode:
- return (4 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case SImode:
- return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case V8QImode:
- case V4HImode:
- case V2SImode:
- case V4QImode:
- case V2HImode:
- return 1;
-
- default:
- gcc_unreachable ();
- }
- gcc_unreachable ();
-
- case CONST_INT:
- if (const_ok_for_arm (INTVAL (x)))
- return outer == SET ? 2 : -1;
- else if (outer == AND
- && const_ok_for_arm (~INTVAL (x)))
- return -1;
- else if ((outer == COMPARE
- || outer == PLUS || outer == MINUS)
- && const_ok_for_arm (-INTVAL (x)))
- return -1;
- else
- return 5;
-
- case CONST:
- case LABEL_REF:
- case SYMBOL_REF:
- return 6;
-
- case CONST_DOUBLE:
- if (arm_const_double_rtx (x))
- return outer == SET ? 2 : -1;
- else if ((outer == COMPARE || outer == PLUS)
- && neg_const_double_rtx_ok_for_fpa (x))
- return -1;
- return 7;
-
- default:
- return 99;
- }
-}
-
-/* RTX costs when optimizing for size. */
-static bool
-arm_size_rtx_costs (rtx x, int code, int outer_code, int *total)
-{
- enum machine_mode mode = GET_MODE (x);
-
- if (TARGET_THUMB)
- {
- /* XXX TBD. For now, use the standard costs. */
- *total = thumb_rtx_costs (x, code, outer_code);
- return true;
- }
-
- switch (code)
- {
- case MEM:
- /* A memory access costs 1 insn if the mode is small, or the address is
- a single register, otherwise it costs one insn per word. */
- if (REG_P (XEXP (x, 0)))
- *total = COSTS_N_INSNS (1);
- else
- *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
- return true;
-
- case DIV:
- case MOD:
- case UDIV:
- case UMOD:
- /* Needs a libcall, so it costs about this. */
- *total = COSTS_N_INSNS (2);
- return false;
-
- case ROTATE:
- if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
- {
- *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code);
- return true;
- }
- /* Fall through */
- case ROTATERT:
- case ASHIFT:
- case LSHIFTRT:
- case ASHIFTRT:
- if (mode == DImode && GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- *total = COSTS_N_INSNS (3) + rtx_cost (XEXP (x, 0), code);
- return true;
- }
- else if (mode == SImode)
- {
- *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code);
- /* Slightly disparage register shifts, but not by much. */
- if (GET_CODE (XEXP (x, 1)) != CONST_INT)
- *total += 1 + rtx_cost (XEXP (x, 1), code);
- return true;
- }
-
- /* Needs a libcall. */
- *total = COSTS_N_INSNS (2);
- return false;
-
- case MINUS:
- if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
- {
- *total = COSTS_N_INSNS (1);
- return false;
- }
-
- if (mode == SImode)
- {
- enum rtx_code subcode0 = GET_CODE (XEXP (x, 0));
- enum rtx_code subcode1 = GET_CODE (XEXP (x, 1));
-
- if (subcode0 == ROTATE || subcode0 == ROTATERT || subcode0 == ASHIFT
- || subcode0 == LSHIFTRT || subcode0 == ASHIFTRT
- || subcode1 == ROTATE || subcode1 == ROTATERT
- || subcode1 == ASHIFT || subcode1 == LSHIFTRT
- || subcode1 == ASHIFTRT)
- {
- /* It's just the cost of the two operands. */
- *total = 0;
- return false;
- }
-
- *total = COSTS_N_INSNS (1);
- return false;
- }
-
- *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
- return false;
-
- case PLUS:
- if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
- {
- *total = COSTS_N_INSNS (1);
- return false;
- }
-
- /* Fall through */
- case AND: case XOR: case IOR:
- if (mode == SImode)
- {
- enum rtx_code subcode = GET_CODE (XEXP (x, 0));
-
- if (subcode == ROTATE || subcode == ROTATERT || subcode == ASHIFT
- || subcode == LSHIFTRT || subcode == ASHIFTRT
- || (code == AND && subcode == NOT))
- {
- /* It's just the cost of the two operands. */
- *total = 0;
- return false;
- }
- }
-
- *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
- return false;
-
- case MULT:
- *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
- return false;
-
- case NEG:
- if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
- *total = COSTS_N_INSNS (1);
- /* Fall through */
- case NOT:
- *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
-
- return false;
-
- case IF_THEN_ELSE:
- *total = 0;
- return false;
-
- case COMPARE:
- if (cc_register (XEXP (x, 0), VOIDmode))
- * total = 0;
- else
- *total = COSTS_N_INSNS (1);
- return false;
-
- case ABS:
- if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
- *total = COSTS_N_INSNS (1);
- else
- *total = COSTS_N_INSNS (1 + ARM_NUM_REGS (mode));
- return false;
-
- case SIGN_EXTEND:
- *total = 0;
- if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) < 4)
- {
- if (!(arm_arch4 && MEM_P (XEXP (x, 0))))
- *total += COSTS_N_INSNS (arm_arch6 ? 1 : 2);
- }
- if (mode == DImode)
- *total += COSTS_N_INSNS (1);
- return false;
-
- case ZERO_EXTEND:
- *total = 0;
- if (!(arm_arch4 && MEM_P (XEXP (x, 0))))
- {
- switch (GET_MODE (XEXP (x, 0)))
- {
- case QImode:
- *total += COSTS_N_INSNS (1);
- break;
-
- case HImode:
- *total += COSTS_N_INSNS (arm_arch6 ? 1 : 2);
-
- case SImode:
- break;
-
- default:
- *total += COSTS_N_INSNS (2);
- }
- }
-
- if (mode == DImode)
- *total += COSTS_N_INSNS (1);
-
- return false;
-
- case CONST_INT:
- if (const_ok_for_arm (INTVAL (x)))
- *total = COSTS_N_INSNS (outer_code == SET ? 1 : 0);
- else if (const_ok_for_arm (~INTVAL (x)))
- *total = COSTS_N_INSNS (outer_code == AND ? 0 : 1);
- else if (const_ok_for_arm (-INTVAL (x)))
- {
- if (outer_code == COMPARE || outer_code == PLUS
- || outer_code == MINUS)
- *total = 0;
- else
- *total = COSTS_N_INSNS (1);
- }
- else
- *total = COSTS_N_INSNS (2);
- return true;
-
- case CONST:
- case LABEL_REF:
- case SYMBOL_REF:
- *total = COSTS_N_INSNS (2);
- return true;
-
- case CONST_DOUBLE:
- *total = COSTS_N_INSNS (4);
- return true;
-
- default:
- if (mode != VOIDmode)
- *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
- else
- *total = COSTS_N_INSNS (4); /* How knows? */
- return false;
- }
-}
-
-/* RTX costs for cores with a slow MUL implementation. */
-
-static bool
-arm_slowmul_rtx_costs (rtx x, int code, int outer_code, int *total)
-{
- enum machine_mode mode = GET_MODE (x);
-
- if (TARGET_THUMB)
- {
- *total = thumb_rtx_costs (x, code, outer_code);
- return true;
- }
-
- switch (code)
- {
- case MULT:
- if (GET_MODE_CLASS (mode) == MODE_FLOAT
- || mode == DImode)
- {
- *total = 30;
- return true;
- }
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
- & (unsigned HOST_WIDE_INT) 0xffffffff);
- int cost, const_ok = const_ok_for_arm (i);
- int j, booth_unit_size;
-
- /* Tune as appropriate. */
- cost = const_ok ? 4 : 8;
- booth_unit_size = 2;
- for (j = 0; i && j < 32; j += booth_unit_size)
- {
- i >>= booth_unit_size;
- cost += 2;
- }
-
- *total = cost;
- return true;
- }
-
- *total = 30 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
- + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
- return true;
-
- default:
- *total = arm_rtx_costs_1 (x, code, outer_code);
- return true;
- }
-}
-
-
-/* RTX cost for cores with a fast multiply unit (M variants). */
-
-static bool
-arm_fastmul_rtx_costs (rtx x, int code, int outer_code, int *total)
-{
- enum machine_mode mode = GET_MODE (x);
-
- if (TARGET_THUMB)
- {
- *total = thumb_rtx_costs (x, code, outer_code);
- return true;
- }
-
- switch (code)
- {
- case MULT:
- /* There is no point basing this on the tuning, since it is always the
- fast variant if it exists at all. */
- if (mode == DImode
- && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
- && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
- {
- *total = 8;
- return true;
- }
-
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT
- || mode == DImode)
- {
- *total = 30;
- return true;
- }
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
- & (unsigned HOST_WIDE_INT) 0xffffffff);
- int cost, const_ok = const_ok_for_arm (i);
- int j, booth_unit_size;
-
- /* Tune as appropriate. */
- cost = const_ok ? 4 : 8;
- booth_unit_size = 8;
- for (j = 0; i && j < 32; j += booth_unit_size)
- {
- i >>= booth_unit_size;
- cost += 2;
- }
-
- *total = cost;
- return true;
- }
-
- *total = 8 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
- + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
- return true;
-
- default:
- *total = arm_rtx_costs_1 (x, code, outer_code);
- return true;
- }
-}
-
-
-/* RTX cost for XScale CPUs. */
-
-static bool
-arm_xscale_rtx_costs (rtx x, int code, int outer_code, int *total)
-{
- enum machine_mode mode = GET_MODE (x);
-
- if (TARGET_THUMB)
- {
- *total = thumb_rtx_costs (x, code, outer_code);
- return true;
- }
-
- switch (code)
- {
- case MULT:
- /* There is no point basing this on the tuning, since it is always the
- fast variant if it exists at all. */
- if (mode == DImode
- && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
- && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
- {
- *total = 8;
- return true;
- }
-
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT
- || mode == DImode)
- {
- *total = 30;
- return true;
- }
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
- & (unsigned HOST_WIDE_INT) 0xffffffff);
- int cost, const_ok = const_ok_for_arm (i);
- unsigned HOST_WIDE_INT masked_const;
-
- /* The cost will be related to two insns.
- First a load of the constant (MOV or LDR), then a multiply. */
- cost = 2;
- if (! const_ok)
- cost += 1; /* LDR is probably more expensive because
- of longer result latency. */
- masked_const = i & 0xffff8000;
- if (masked_const != 0 && masked_const != 0xffff8000)
- {
- masked_const = i & 0xf8000000;
- if (masked_const == 0 || masked_const == 0xf8000000)
- cost += 1;
- else
- cost += 2;
- }
- *total = cost;
- return true;
- }
-
- *total = 8 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
- + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
- return true;
-
- case COMPARE:
- /* A COMPARE of a MULT is slow on XScale; the muls instruction
- will stall until the multiplication is complete. */
- if (GET_CODE (XEXP (x, 0)) == MULT)
- *total = 4 + rtx_cost (XEXP (x, 0), code);
- else
- *total = arm_rtx_costs_1 (x, code, outer_code);
- return true;
-
- default:
- *total = arm_rtx_costs_1 (x, code, outer_code);
- return true;
- }
-}
-
-
-/* RTX costs for 9e (and later) cores. */
-
-static bool
-arm_9e_rtx_costs (rtx x, int code, int outer_code, int *total)
-{
- enum machine_mode mode = GET_MODE (x);
- int nonreg_cost;
- int cost;
-
- if (TARGET_THUMB)
- {
- switch (code)
- {
- case MULT:
- *total = COSTS_N_INSNS (3);
- return true;
-
- default:
- *total = thumb_rtx_costs (x, code, outer_code);
- return true;
- }
- }
-
- switch (code)
- {
- case MULT:
- /* There is no point basing this on the tuning, since it is always the
- fast variant if it exists at all. */
- if (mode == DImode
- && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
- && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
- {
- *total = 3;
- return true;
- }
-
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- {
- *total = 30;
- return true;
- }
- if (mode == DImode)
- {
- cost = 7;
- nonreg_cost = 8;
- }
- else
- {
- cost = 2;
- nonreg_cost = 4;
- }
-
-
- *total = cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : nonreg_cost)
- + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : nonreg_cost);
- return true;
-
- default:
- *total = arm_rtx_costs_1 (x, code, outer_code);
- return true;
- }
-}
-/* All address computations that can be done are free, but rtx cost returns
- the same for practically all of them. So we weight the different types
- of address here in the order (most pref first):
- PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
-static inline int
-arm_arm_address_cost (rtx x)
-{
- enum rtx_code c = GET_CODE (x);
-
- if (c == PRE_INC || c == PRE_DEC || c == POST_INC || c == POST_DEC)
- return 0;
- if (c == MEM || c == LABEL_REF || c == SYMBOL_REF)
- return 10;
-
- if (c == PLUS || c == MINUS)
- {
- if (GET_CODE (XEXP (x, 0)) == CONST_INT)
- return 2;
-
- if (ARITHMETIC_P (XEXP (x, 0)) || ARITHMETIC_P (XEXP (x, 1)))
- return 3;
-
- return 4;
- }
-
- return 6;
-}
-
-static inline int
-arm_thumb_address_cost (rtx x)
-{
- enum rtx_code c = GET_CODE (x);
-
- if (c == REG)
- return 1;
- if (c == PLUS
- && GET_CODE (XEXP (x, 0)) == REG
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- return 1;
-
- return 2;
-}
-
-static int
-arm_address_cost (rtx x)
-{
- return TARGET_ARM ? arm_arm_address_cost (x) : arm_thumb_address_cost (x);
-}
-
-static int
-arm_adjust_cost (rtx insn, rtx link, rtx dep, int cost)
-{
- rtx i_pat, d_pat;
-
- /* Some true dependencies can have a higher cost depending
- on precisely how certain input operands are used. */
- if (arm_tune_xscale
- && REG_NOTE_KIND (link) == 0
- && recog_memoized (insn) >= 0
- && recog_memoized (dep) >= 0)
- {
- int shift_opnum = get_attr_shift (insn);
- enum attr_type attr_type = get_attr_type (dep);
-
- /* If nonzero, SHIFT_OPNUM contains the operand number of a shifted
- operand for INSN. If we have a shifted input operand and the
- instruction we depend on is another ALU instruction, then we may
- have to account for an additional stall. */
- if (shift_opnum != 0
- && (attr_type == TYPE_ALU_SHIFT || attr_type == TYPE_ALU_SHIFT_REG))
- {
- rtx shifted_operand;
- int opno;
-
- /* Get the shifted operand. */
- extract_insn (insn);
- shifted_operand = recog_data.operand[shift_opnum];
-
- /* Iterate over all the operands in DEP. If we write an operand
- that overlaps with SHIFTED_OPERAND, then we have increase the
- cost of this dependency. */
- extract_insn (dep);
- preprocess_constraints ();
- for (opno = 0; opno < recog_data.n_operands; opno++)
- {
- /* We can ignore strict inputs. */
- if (recog_data.operand_type[opno] == OP_IN)
- continue;
-
- if (reg_overlap_mentioned_p (recog_data.operand[opno],
- shifted_operand))
- return 2;
- }
- }
- }
-
- /* XXX This is not strictly true for the FPA. */
- if (REG_NOTE_KIND (link) == REG_DEP_ANTI
- || REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
- return 0;
-
- /* Call insns don't incur a stall, even if they follow a load. */
- if (REG_NOTE_KIND (link) == 0
- && GET_CODE (insn) == CALL_INSN)
- return 1;
-
- if ((i_pat = single_set (insn)) != NULL
- && GET_CODE (SET_SRC (i_pat)) == MEM
- && (d_pat = single_set (dep)) != NULL
- && GET_CODE (SET_DEST (d_pat)) == MEM)
- {
- rtx src_mem = XEXP (SET_SRC (i_pat), 0);
- /* This is a load after a store, there is no conflict if the load reads
- from a cached area. Assume that loads from the stack, and from the
- constant pool are cached, and that others will miss. This is a
- hack. */
-
- if ((GET_CODE (src_mem) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (src_mem))
- || reg_mentioned_p (stack_pointer_rtx, src_mem)
- || reg_mentioned_p (frame_pointer_rtx, src_mem)
- || reg_mentioned_p (hard_frame_pointer_rtx, src_mem))
- return 1;
- }
-
- return cost;
-}
-
-static int fp_consts_inited = 0;
-
-/* Only zero is valid for VFP. Other values are also valid for FPA. */
-static const char * const strings_fp[8] =
-{
- "0", "1", "2", "3",
- "4", "5", "0.5", "10"
-};
-
-static REAL_VALUE_TYPE values_fp[8];
-
-static void
-init_fp_table (void)
-{
- int i;
- REAL_VALUE_TYPE r;
-
- if (TARGET_VFP)
- fp_consts_inited = 1;
- else
- fp_consts_inited = 8;
-
- for (i = 0; i < fp_consts_inited; i++)
- {
- r = REAL_VALUE_ATOF (strings_fp[i], DFmode);
- values_fp[i] = r;
- }
-}
-
-/* Return TRUE if rtx X is a valid immediate FP constant. */
-int
-arm_const_double_rtx (rtx x)
-{
- REAL_VALUE_TYPE r;
- int i;
-
- if (!fp_consts_inited)
- init_fp_table ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- if (REAL_VALUE_MINUS_ZERO (r))
- return 0;
-
- for (i = 0; i < fp_consts_inited; i++)
- if (REAL_VALUES_EQUAL (r, values_fp[i]))
- return 1;
-
- return 0;
-}
-
-/* Return TRUE if rtx X is a valid immediate FPA constant. */
-int
-neg_const_double_rtx_ok_for_fpa (rtx x)
-{
- REAL_VALUE_TYPE r;
- int i;
-
- if (!fp_consts_inited)
- init_fp_table ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- r = REAL_VALUE_NEGATE (r);
- if (REAL_VALUE_MINUS_ZERO (r))
- return 0;
-
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (r, values_fp[i]))
- return 1;
-
- return 0;
-}
-
-/* Predicates for `match_operand' and `match_operator'. */
-
-/* Return nonzero if OP is a valid Cirrus memory address pattern. */
-int
-cirrus_memory_offset (rtx op)
-{
- /* Reject eliminable registers. */
- if (! (reload_in_progress || reload_completed)
- && ( reg_mentioned_p (frame_pointer_rtx, op)
- || reg_mentioned_p (arg_pointer_rtx, op)
- || reg_mentioned_p (virtual_incoming_args_rtx, op)
- || reg_mentioned_p (virtual_outgoing_args_rtx, op)
- || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
- || reg_mentioned_p (virtual_stack_vars_rtx, op)))
- return 0;
-
- if (GET_CODE (op) == MEM)
- {
- rtx ind;
-
- ind = XEXP (op, 0);
-
- /* Match: (mem (reg)). */
- if (GET_CODE (ind) == REG)
- return 1;
-
- /* Match:
- (mem (plus (reg)
- (const))). */
- if (GET_CODE (ind) == PLUS
- && GET_CODE (XEXP (ind, 0)) == REG
- && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
- && GET_CODE (XEXP (ind, 1)) == CONST_INT)
- return 1;
- }
-
- return 0;
-}
-
-/* Return TRUE if OP is a valid coprocessor memory address pattern.
- WB if true if writeback address modes are allowed. */
-
-int
-arm_coproc_mem_operand (rtx op, bool wb)
-{
- rtx ind;
-
- /* Reject eliminable registers. */
- if (! (reload_in_progress || reload_completed)
- && ( reg_mentioned_p (frame_pointer_rtx, op)
- || reg_mentioned_p (arg_pointer_rtx, op)
- || reg_mentioned_p (virtual_incoming_args_rtx, op)
- || reg_mentioned_p (virtual_outgoing_args_rtx, op)
- || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
- || reg_mentioned_p (virtual_stack_vars_rtx, op)))
- return FALSE;
-
- /* Constants are converted into offsets from labels. */
- if (GET_CODE (op) != MEM)
- return FALSE;
-
- ind = XEXP (op, 0);
-
- if (reload_completed
- && (GET_CODE (ind) == LABEL_REF
- || (GET_CODE (ind) == CONST
- && GET_CODE (XEXP (ind, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
- && GET_CODE (XEXP (XEXP (ind, 0), 1)) == CONST_INT)))
- return TRUE;
-
- /* Match: (mem (reg)). */
- if (GET_CODE (ind) == REG)
- return arm_address_register_rtx_p (ind, 0);
-
- /* Autoincremment addressing modes. */
- if (wb
- && (GET_CODE (ind) == PRE_INC
- || GET_CODE (ind) == POST_INC
- || GET_CODE (ind) == PRE_DEC
- || GET_CODE (ind) == POST_DEC))
- return arm_address_register_rtx_p (XEXP (ind, 0), 0);
-
- if (wb
- && (GET_CODE (ind) == POST_MODIFY || GET_CODE (ind) == PRE_MODIFY)
- && arm_address_register_rtx_p (XEXP (ind, 0), 0)
- && GET_CODE (XEXP (ind, 1)) == PLUS
- && rtx_equal_p (XEXP (XEXP (ind, 1), 0), XEXP (ind, 0)))
- ind = XEXP (ind, 1);
-
- /* Match:
- (plus (reg)
- (const)). */
- if (GET_CODE (ind) == PLUS
- && GET_CODE (XEXP (ind, 0)) == REG
- && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
- && GET_CODE (XEXP (ind, 1)) == CONST_INT
- && INTVAL (XEXP (ind, 1)) > -1024
- && INTVAL (XEXP (ind, 1)) < 1024
- && (INTVAL (XEXP (ind, 1)) & 3) == 0)
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if X is a register that will be eliminated later on. */
-int
-arm_eliminable_register (rtx x)
-{
- return REG_P (x) && (REGNO (x) == FRAME_POINTER_REGNUM
- || REGNO (x) == ARG_POINTER_REGNUM
- || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
- && REGNO (x) <= LAST_VIRTUAL_REGISTER));
-}
-
-/* Return GENERAL_REGS if a scratch register required to reload x to/from
- coprocessor registers. Otherwise return NO_REGS. */
-
-enum reg_class
-coproc_secondary_reload_class (enum machine_mode mode, rtx x, bool wb)
-{
- if (arm_coproc_mem_operand (x, wb) || s_register_operand (x, mode))
- return NO_REGS;
-
- return GENERAL_REGS;
-}
-
-/* Values which must be returned in the most-significant end of the return
- register. */
-
-static bool
-arm_return_in_msb (tree valtype)
-{
- return (TARGET_AAPCS_BASED
- && BYTES_BIG_ENDIAN
- && (AGGREGATE_TYPE_P (valtype)
- || TREE_CODE (valtype) == COMPLEX_TYPE));
-}
-
-/* Returns TRUE if INSN is an "LDR REG, ADDR" instruction.
- Use by the Cirrus Maverick code which has to workaround
- a hardware bug triggered by such instructions. */
-static bool
-arm_memory_load_p (rtx insn)
-{
- rtx body, lhs, rhs;;
-
- if (insn == NULL_RTX || GET_CODE (insn) != INSN)
- return false;
-
- body = PATTERN (insn);
-
- if (GET_CODE (body) != SET)
- return false;
-
- lhs = XEXP (body, 0);
- rhs = XEXP (body, 1);
-
- lhs = REG_OR_SUBREG_RTX (lhs);
-
- /* If the destination is not a general purpose
- register we do not have to worry. */
- if (GET_CODE (lhs) != REG
- || REGNO_REG_CLASS (REGNO (lhs)) != GENERAL_REGS)
- return false;
-
- /* As well as loads from memory we also have to react
- to loads of invalid constants which will be turned
- into loads from the minipool. */
- return (GET_CODE (rhs) == MEM
- || GET_CODE (rhs) == SYMBOL_REF
- || note_invalid_constants (insn, -1, false));
-}
-
-/* Return TRUE if INSN is a Cirrus instruction. */
-static bool
-arm_cirrus_insn_p (rtx insn)
-{
- enum attr_cirrus attr;
-
- /* get_attr cannot accept USE or CLOBBER. */
- if (!insn
- || GET_CODE (insn) != INSN
- || GET_CODE (PATTERN (insn)) == USE
- || GET_CODE (PATTERN (insn)) == CLOBBER)
- return 0;
-
- attr = get_attr_cirrus (insn);
-
- return attr != CIRRUS_NOT;
-}
-
-/* Cirrus reorg for invalid instruction combinations. */
-static void
-cirrus_reorg (rtx first)
-{
- enum attr_cirrus attr;
- rtx body = PATTERN (first);
- rtx t;
- int nops;
-
- /* Any branch must be followed by 2 non Cirrus instructions. */
- if (GET_CODE (first) == JUMP_INSN && GET_CODE (body) != RETURN)
- {
- nops = 0;
- t = next_nonnote_insn (first);
-
- if (arm_cirrus_insn_p (t))
- ++ nops;
-
- if (arm_cirrus_insn_p (next_nonnote_insn (t)))
- ++ nops;
-
- while (nops --)
- emit_insn_after (gen_nop (), first);
-
- return;
- }
-
- /* (float (blah)) is in parallel with a clobber. */
- if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
- body = XVECEXP (body, 0, 0);
-
- if (GET_CODE (body) == SET)
- {
- rtx lhs = XEXP (body, 0), rhs = XEXP (body, 1);
-
- /* cfldrd, cfldr64, cfstrd, cfstr64 must
- be followed by a non Cirrus insn. */
- if (get_attr_cirrus (first) == CIRRUS_DOUBLE)
- {
- if (arm_cirrus_insn_p (next_nonnote_insn (first)))
- emit_insn_after (gen_nop (), first);
-
- return;
- }
- else if (arm_memory_load_p (first))
- {
- unsigned int arm_regno;
-
- /* Any ldr/cfmvdlr, ldr/cfmvdhr, ldr/cfmvsr, ldr/cfmv64lr,
- ldr/cfmv64hr combination where the Rd field is the same
- in both instructions must be split with a non Cirrus
- insn. Example:
-
- ldr r0, blah
- nop
- cfmvsr mvf0, r0. */
-
- /* Get Arm register number for ldr insn. */
- if (GET_CODE (lhs) == REG)
- arm_regno = REGNO (lhs);
- else
- {
- gcc_assert (GET_CODE (rhs) == REG);
- arm_regno = REGNO (rhs);
- }
-
- /* Next insn. */
- first = next_nonnote_insn (first);
-
- if (! arm_cirrus_insn_p (first))
- return;
-
- body = PATTERN (first);
-
- /* (float (blah)) is in parallel with a clobber. */
- if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0))
- body = XVECEXP (body, 0, 0);
-
- if (GET_CODE (body) == FLOAT)
- body = XEXP (body, 0);
-
- if (get_attr_cirrus (first) == CIRRUS_MOVE
- && GET_CODE (XEXP (body, 1)) == REG
- && arm_regno == REGNO (XEXP (body, 1)))
- emit_insn_after (gen_nop (), first);
-
- return;
- }
- }
-
- /* get_attr cannot accept USE or CLOBBER. */
- if (!first
- || GET_CODE (first) != INSN
- || GET_CODE (PATTERN (first)) == USE
- || GET_CODE (PATTERN (first)) == CLOBBER)
- return;
-
- attr = get_attr_cirrus (first);
-
- /* Any coprocessor compare instruction (cfcmps, cfcmpd, ...)
- must be followed by a non-coprocessor instruction. */
- if (attr == CIRRUS_COMPARE)
- {
- nops = 0;
-
- t = next_nonnote_insn (first);
-
- if (arm_cirrus_insn_p (t))
- ++ nops;
-
- if (arm_cirrus_insn_p (next_nonnote_insn (t)))
- ++ nops;
-
- while (nops --)
- emit_insn_after (gen_nop (), first);
-
- return;
- }
-}
-
-/* Return TRUE if X references a SYMBOL_REF. */
-int
-symbol_mentioned_p (rtx x)
-{
- const char * fmt;
- int i;
-
- if (GET_CODE (x) == SYMBOL_REF)
- return 1;
-
- /* UNSPEC_TLS entries for a symbol include the SYMBOL_REF, but they
- are constant offsets, not symbols. */
- if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
- return 0;
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
-
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- int j;
-
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (symbol_mentioned_p (XVECEXP (x, i, j)))
- return 1;
- }
- else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
- return 1;
- }
-
- return 0;
-}
-
-/* Return TRUE if X references a LABEL_REF. */
-int
-label_mentioned_p (rtx x)
-{
- const char * fmt;
- int i;
-
- if (GET_CODE (x) == LABEL_REF)
- return 1;
-
- /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the referencing
- instruction, but they are constant offsets, not symbols. */
- if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
- return 0;
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- int j;
-
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (label_mentioned_p (XVECEXP (x, i, j)))
- return 1;
- }
- else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
- return 1;
- }
-
- return 0;
-}
-
-int
-tls_mentioned_p (rtx x)
-{
- switch (GET_CODE (x))
- {
- case CONST:
- return tls_mentioned_p (XEXP (x, 0));
-
- case UNSPEC:
- if (XINT (x, 1) == UNSPEC_TLS)
- return 1;
-
- default:
- return 0;
- }
-}
-
-/* Must not copy a SET whose source operand is PC-relative. */
-
-static bool
-arm_cannot_copy_insn_p (rtx insn)
-{
- rtx pat = PATTERN (insn);
-
- if (GET_CODE (pat) == PARALLEL
- && GET_CODE (XVECEXP (pat, 0, 0)) == SET)
- {
- rtx rhs = SET_SRC (XVECEXP (pat, 0, 0));
-
- if (GET_CODE (rhs) == UNSPEC
- && XINT (rhs, 1) == UNSPEC_PIC_BASE)
- return TRUE;
-
- if (GET_CODE (rhs) == MEM
- && GET_CODE (XEXP (rhs, 0)) == UNSPEC
- && XINT (XEXP (rhs, 0), 1) == UNSPEC_PIC_BASE)
- return TRUE;
- }
-
- return FALSE;
-}
-
-enum rtx_code
-minmax_code (rtx x)
-{
- enum rtx_code code = GET_CODE (x);
-
- switch (code)
- {
- case SMAX:
- return GE;
- case SMIN:
- return LE;
- case UMIN:
- return LEU;
- case UMAX:
- return GEU;
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return 1 if memory locations are adjacent. */
-int
-adjacent_mem_locations (rtx a, rtx b)
-{
- /* We don't guarantee to preserve the order of these memory refs. */
- if (volatile_refs_p (a) || volatile_refs_p (b))
- return 0;
-
- if ((GET_CODE (XEXP (a, 0)) == REG
- || (GET_CODE (XEXP (a, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
- && (GET_CODE (XEXP (b, 0)) == REG
- || (GET_CODE (XEXP (b, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
- {
- HOST_WIDE_INT val0 = 0, val1 = 0;
- rtx reg0, reg1;
- int val_diff;
-
- if (GET_CODE (XEXP (a, 0)) == PLUS)
- {
- reg0 = XEXP (XEXP (a, 0), 0);
- val0 = INTVAL (XEXP (XEXP (a, 0), 1));
- }
- else
- reg0 = XEXP (a, 0);
-
- if (GET_CODE (XEXP (b, 0)) == PLUS)
- {
- reg1 = XEXP (XEXP (b, 0), 0);
- val1 = INTVAL (XEXP (XEXP (b, 0), 1));
- }
- else
- reg1 = XEXP (b, 0);
-
- /* Don't accept any offset that will require multiple
- instructions to handle, since this would cause the
- arith_adjacentmem pattern to output an overlong sequence. */
- if (!const_ok_for_op (PLUS, val0) || !const_ok_for_op (PLUS, val1))
- return 0;
-
- /* Don't allow an eliminable register: register elimination can make
- the offset too large. */
- if (arm_eliminable_register (reg0))
- return 0;
-
- val_diff = val1 - val0;
-
- if (arm_ld_sched)
- {
- /* If the target has load delay slots, then there's no benefit
- to using an ldm instruction unless the offset is zero and
- we are optimizing for size. */
- return (optimize_size && (REGNO (reg0) == REGNO (reg1))
- && (val0 == 0 || val1 == 0 || val0 == 4 || val1 == 4)
- && (val_diff == 4 || val_diff == -4));
- }
-
- return ((REGNO (reg0) == REGNO (reg1))
- && (val_diff == 4 || val_diff == -4));
- }
-
- return 0;
-}
-
-int
-load_multiple_sequence (rtx *operands, int nops, int *regs, int *base,
- HOST_WIDE_INT *load_offset)
-{
- int unsorted_regs[4];
- HOST_WIDE_INT unsorted_offsets[4];
- int order[4];
- int base_reg = -1;
- int i;
-
- /* Can only handle 2, 3, or 4 insns at present,
- though could be easily extended if required. */
- gcc_assert (nops >= 2 && nops <= 4);
-
- /* Loop over the operands and check that the memory references are
- suitable (i.e. immediate offsets from the same base register). At
- the same time, extract the target register, and the memory
- offsets. */
- for (i = 0; i < nops; i++)
- {
- rtx reg;
- rtx offset;
-
- /* Convert a subreg of a mem into the mem itself. */
- if (GET_CODE (operands[nops + i]) == SUBREG)
- operands[nops + i] = alter_subreg (operands + (nops + i));
-
- gcc_assert (GET_CODE (operands[nops + i]) == MEM);
-
- /* Don't reorder volatile memory references; it doesn't seem worth
- looking for the case where the order is ok anyway. */
- if (MEM_VOLATILE_P (operands[nops + i]))
- return 0;
-
- offset = const0_rtx;
-
- if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
- && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
- == REG)
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
- == CONST_INT)))
- {
- if (i == 0)
- {
- base_reg = REGNO (reg);
- unsorted_regs[0] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- order[0] = 0;
- }
- else
- {
- if (base_reg != (int) REGNO (reg))
- /* Not addressed from the same base register. */
- return 0;
-
- unsorted_regs[i] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- if (unsorted_regs[i] < unsorted_regs[order[0]])
- order[0] = i;
- }
-
- /* If it isn't an integer register, or if it overwrites the
- base register but isn't the last insn in the list, then
- we can't do this. */
- if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14
- || (i != nops - 1 && unsorted_regs[i] == base_reg))
- return 0;
-
- unsorted_offsets[i] = INTVAL (offset);
- }
- else
- /* Not a suitable memory address. */
- return 0;
- }
-
- /* All the useful information has now been extracted from the
- operands into unsorted_regs and unsorted_offsets; additionally,
- order[0] has been set to the lowest numbered register in the
- list. Sort the registers into order, and check that the memory
- offsets are ascending and adjacent. */
-
- for (i = 1; i < nops; i++)
- {
- int j;
-
- order[i] = order[i - 1];
- for (j = 0; j < nops; j++)
- if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
- && (order[i] == order[i - 1]
- || unsorted_regs[j] < unsorted_regs[order[i]]))
- order[i] = j;
-
- /* Have we found a suitable register? if not, one must be used more
- than once. */
- if (order[i] == order[i - 1])
- return 0;
-
- /* Is the memory address adjacent and ascending? */
- if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
- return 0;
- }
-
- if (base)
- {
- *base = base_reg;
-
- for (i = 0; i < nops; i++)
- regs[i] = unsorted_regs[order[i]];
-
- *load_offset = unsorted_offsets[order[0]];
- }
-
- if (unsorted_offsets[order[0]] == 0)
- return 1; /* ldmia */
-
- if (unsorted_offsets[order[0]] == 4)
- return 2; /* ldmib */
-
- if (unsorted_offsets[order[nops - 1]] == 0)
- return 3; /* ldmda */
-
- if (unsorted_offsets[order[nops - 1]] == -4)
- return 4; /* ldmdb */
-
- /* For ARM8,9 & StrongARM, 2 ldr instructions are faster than an ldm
- if the offset isn't small enough. The reason 2 ldrs are faster
- is because these ARMs are able to do more than one cache access
- in a single cycle. The ARM9 and StrongARM have Harvard caches,
- whilst the ARM8 has a double bandwidth cache. This means that
- these cores can do both an instruction fetch and a data fetch in
- a single cycle, so the trick of calculating the address into a
- scratch register (one of the result regs) and then doing a load
- multiple actually becomes slower (and no smaller in code size).
- That is the transformation
-
- ldr rd1, [rbase + offset]
- ldr rd2, [rbase + offset + 4]
-
- to
-
- add rd1, rbase, offset
- ldmia rd1, {rd1, rd2}
-
- produces worse code -- '3 cycles + any stalls on rd2' instead of
- '2 cycles + any stalls on rd2'. On ARMs with only one cache
- access per cycle, the first sequence could never complete in less
- than 6 cycles, whereas the ldm sequence would only take 5 and
- would make better use of sequential accesses if not hitting the
- cache.
-
- We cheat here and test 'arm_ld_sched' which we currently know to
- only be true for the ARM8, ARM9 and StrongARM. If this ever
- changes, then the test below needs to be reworked. */
- if (nops == 2 && arm_ld_sched)
- return 0;
-
- /* Can't do it without setting up the offset, only do this if it takes
- no more than one insn. */
- return (const_ok_for_arm (unsorted_offsets[order[0]])
- || const_ok_for_arm (-unsorted_offsets[order[0]])) ? 5 : 0;
-}
-
-const char *
-emit_ldm_seq (rtx *operands, int nops)
-{
- int regs[4];
- int base_reg;
- HOST_WIDE_INT offset;
- char buf[100];
- int i;
-
- switch (load_multiple_sequence (operands, nops, regs, &base_reg, &offset))
- {
- case 1:
- strcpy (buf, "ldm%?ia\t");
- break;
-
- case 2:
- strcpy (buf, "ldm%?ib\t");
- break;
-
- case 3:
- strcpy (buf, "ldm%?da\t");
- break;
-
- case 4:
- strcpy (buf, "ldm%?db\t");
- break;
-
- case 5:
- if (offset >= 0)
- sprintf (buf, "add%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
- reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
- (long) offset);
- else
- sprintf (buf, "sub%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
- reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
- (long) -offset);
- output_asm_insn (buf, operands);
- base_reg = regs[0];
- strcpy (buf, "ldm%?ia\t");
- break;
-
- default:
- gcc_unreachable ();
- }
-
- sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
- reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
-
- for (i = 1; i < nops; i++)
- sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
- reg_names[regs[i]]);
-
- strcat (buf, "}\t%@ phole ldm");
-
- output_asm_insn (buf, operands);
- return "";
-}
-
-int
-store_multiple_sequence (rtx *operands, int nops, int *regs, int *base,
- HOST_WIDE_INT * load_offset)
-{
- int unsorted_regs[4];
- HOST_WIDE_INT unsorted_offsets[4];
- int order[4];
- int base_reg = -1;
- int i;
-
- /* Can only handle 2, 3, or 4 insns at present, though could be easily
- extended if required. */
- gcc_assert (nops >= 2 && nops <= 4);
-
- /* Loop over the operands and check that the memory references are
- suitable (i.e. immediate offsets from the same base register). At
- the same time, extract the target register, and the memory
- offsets. */
- for (i = 0; i < nops; i++)
- {
- rtx reg;
- rtx offset;
-
- /* Convert a subreg of a mem into the mem itself. */
- if (GET_CODE (operands[nops + i]) == SUBREG)
- operands[nops + i] = alter_subreg (operands + (nops + i));
-
- gcc_assert (GET_CODE (operands[nops + i]) == MEM);
-
- /* Don't reorder volatile memory references; it doesn't seem worth
- looking for the case where the order is ok anyway. */
- if (MEM_VOLATILE_P (operands[nops + i]))
- return 0;
-
- offset = const0_rtx;
-
- if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
- && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
- == REG)
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
- == CONST_INT)))
- {
- if (i == 0)
- {
- base_reg = REGNO (reg);
- unsorted_regs[0] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- order[0] = 0;
- }
- else
- {
- if (base_reg != (int) REGNO (reg))
- /* Not addressed from the same base register. */
- return 0;
-
- unsorted_regs[i] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- if (unsorted_regs[i] < unsorted_regs[order[0]])
- order[0] = i;
- }
-
- /* If it isn't an integer register, then we can't do this. */
- if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14)
- return 0;
-
- unsorted_offsets[i] = INTVAL (offset);
- }
- else
- /* Not a suitable memory address. */
- return 0;
- }
-
- /* All the useful information has now been extracted from the
- operands into unsorted_regs and unsorted_offsets; additionally,
- order[0] has been set to the lowest numbered register in the
- list. Sort the registers into order, and check that the memory
- offsets are ascending and adjacent. */
-
- for (i = 1; i < nops; i++)
- {
- int j;
-
- order[i] = order[i - 1];
- for (j = 0; j < nops; j++)
- if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
- && (order[i] == order[i - 1]
- || unsorted_regs[j] < unsorted_regs[order[i]]))
- order[i] = j;
-
- /* Have we found a suitable register? if not, one must be used more
- than once. */
- if (order[i] == order[i - 1])
- return 0;
-
- /* Is the memory address adjacent and ascending? */
- if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
- return 0;
- }
-
- if (base)
- {
- *base = base_reg;
-
- for (i = 0; i < nops; i++)
- regs[i] = unsorted_regs[order[i]];
-
- *load_offset = unsorted_offsets[order[0]];
- }
-
- if (unsorted_offsets[order[0]] == 0)
- return 1; /* stmia */
-
- if (unsorted_offsets[order[0]] == 4)
- return 2; /* stmib */
-
- if (unsorted_offsets[order[nops - 1]] == 0)
- return 3; /* stmda */
-
- if (unsorted_offsets[order[nops - 1]] == -4)
- return 4; /* stmdb */
-
- return 0;
-}
-
-const char *
-emit_stm_seq (rtx *operands, int nops)
-{
- int regs[4];
- int base_reg;
- HOST_WIDE_INT offset;
- char buf[100];
- int i;
-
- switch (store_multiple_sequence (operands, nops, regs, &base_reg, &offset))
- {
- case 1:
- strcpy (buf, "stm%?ia\t");
- break;
-
- case 2:
- strcpy (buf, "stm%?ib\t");
- break;
-
- case 3:
- strcpy (buf, "stm%?da\t");
- break;
-
- case 4:
- strcpy (buf, "stm%?db\t");
- break;
-
- default:
- gcc_unreachable ();
- }
-
- sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
- reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
-
- for (i = 1; i < nops; i++)
- sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
- reg_names[regs[i]]);
-
- strcat (buf, "}\t%@ phole stm");
-
- output_asm_insn (buf, operands);
- return "";
-}
-
-/* Routines for use in generating RTL. */
-
-rtx
-arm_gen_load_multiple (int base_regno, int count, rtx from, int up,
- int write_back, rtx basemem, HOST_WIDE_INT *offsetp)
-{
- HOST_WIDE_INT offset = *offsetp;
- int i = 0, j;
- rtx result;
- int sign = up ? 1 : -1;
- rtx mem, addr;
-
- /* XScale has load-store double instructions, but they have stricter
- alignment requirements than load-store multiple, so we cannot
- use them.
-
- For XScale ldm requires 2 + NREGS cycles to complete and blocks
- the pipeline until completion.
-
- NREGS CYCLES
- 1 3
- 2 4
- 3 5
- 4 6
-
- An ldr instruction takes 1-3 cycles, but does not block the
- pipeline.
-
- NREGS CYCLES
- 1 1-3
- 2 2-6
- 3 3-9
- 4 4-12
-
- Best case ldr will always win. However, the more ldr instructions
- we issue, the less likely we are to be able to schedule them well.
- Using ldr instructions also increases code size.
-
- As a compromise, we use ldr for counts of 1 or 2 regs, and ldm
- for counts of 3 or 4 regs. */
- if (arm_tune_xscale && count <= 2 && ! optimize_size)
- {
- rtx seq;
-
- start_sequence ();
-
- for (i = 0; i < count; i++)
- {
- addr = plus_constant (from, i * 4 * sign);
- mem = adjust_automodify_address (basemem, SImode, addr, offset);
- emit_move_insn (gen_rtx_REG (SImode, base_regno + i), mem);
- offset += 4 * sign;
- }
-
- if (write_back)
- {
- emit_move_insn (from, plus_constant (from, count * 4 * sign));
- *offsetp = offset;
- }
-
- seq = get_insns ();
- end_sequence ();
-
- return seq;
- }
-
- result = gen_rtx_PARALLEL (VOIDmode,
- rtvec_alloc (count + (write_back ? 1 : 0)));
- if (write_back)
- {
- XVECEXP (result, 0, 0)
- = gen_rtx_SET (VOIDmode, from, plus_constant (from, count * 4 * sign));
- i = 1;
- count++;
- }
-
- for (j = 0; i < count; i++, j++)
- {
- addr = plus_constant (from, j * 4 * sign);
- mem = adjust_automodify_address_nv (basemem, SImode, addr, offset);
- XVECEXP (result, 0, i)
- = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, base_regno + j), mem);
- offset += 4 * sign;
- }
-
- if (write_back)
- *offsetp = offset;
-
- return result;
-}
-
-rtx
-arm_gen_store_multiple (int base_regno, int count, rtx to, int up,
- int write_back, rtx basemem, HOST_WIDE_INT *offsetp)
-{
- HOST_WIDE_INT offset = *offsetp;
- int i = 0, j;
- rtx result;
- int sign = up ? 1 : -1;
- rtx mem, addr;
-
- /* See arm_gen_load_multiple for discussion of
- the pros/cons of ldm/stm usage for XScale. */
- if (arm_tune_xscale && count <= 2 && ! optimize_size)
- {
- rtx seq;
-
- start_sequence ();
-
- for (i = 0; i < count; i++)
- {
- addr = plus_constant (to, i * 4 * sign);
- mem = adjust_automodify_address (basemem, SImode, addr, offset);
- emit_move_insn (mem, gen_rtx_REG (SImode, base_regno + i));
- offset += 4 * sign;
- }
-
- if (write_back)
- {
- emit_move_insn (to, plus_constant (to, count * 4 * sign));
- *offsetp = offset;
- }
-
- seq = get_insns ();
- end_sequence ();
-
- return seq;
- }
-
- result = gen_rtx_PARALLEL (VOIDmode,
- rtvec_alloc (count + (write_back ? 1 : 0)));
- if (write_back)
- {
- XVECEXP (result, 0, 0)
- = gen_rtx_SET (VOIDmode, to,
- plus_constant (to, count * 4 * sign));
- i = 1;
- count++;
- }
-
- for (j = 0; i < count; i++, j++)
- {
- addr = plus_constant (to, j * 4 * sign);
- mem = adjust_automodify_address_nv (basemem, SImode, addr, offset);
- XVECEXP (result, 0, i)
- = gen_rtx_SET (VOIDmode, mem, gen_rtx_REG (SImode, base_regno + j));
- offset += 4 * sign;
- }
-
- if (write_back)
- *offsetp = offset;
-
- return result;
-}
-
-int
-arm_gen_movmemqi (rtx *operands)
-{
- HOST_WIDE_INT in_words_to_go, out_words_to_go, last_bytes;
- HOST_WIDE_INT srcoffset, dstoffset;
- int i;
- rtx src, dst, srcbase, dstbase;
- rtx part_bytes_reg = NULL;
- rtx mem;
-
- if (GET_CODE (operands[2]) != CONST_INT
- || GET_CODE (operands[3]) != CONST_INT
- || INTVAL (operands[2]) > 64
- || INTVAL (operands[3]) & 3)
- return 0;
-
- dstbase = operands[0];
- srcbase = operands[1];
-
- dst = copy_to_mode_reg (SImode, XEXP (dstbase, 0));
- src = copy_to_mode_reg (SImode, XEXP (srcbase, 0));
-
- in_words_to_go = ARM_NUM_INTS (INTVAL (operands[2]));
- out_words_to_go = INTVAL (operands[2]) / 4;
- last_bytes = INTVAL (operands[2]) & 3;
- dstoffset = srcoffset = 0;
-
- if (out_words_to_go != in_words_to_go && ((in_words_to_go - 1) & 3) != 0)
- part_bytes_reg = gen_rtx_REG (SImode, (in_words_to_go - 1) & 3);
-
- for (i = 0; in_words_to_go >= 2; i+=4)
- {
- if (in_words_to_go > 4)
- emit_insn (arm_gen_load_multiple (0, 4, src, TRUE, TRUE,
- srcbase, &srcoffset));
- else
- emit_insn (arm_gen_load_multiple (0, in_words_to_go, src, TRUE,
- FALSE, srcbase, &srcoffset));
-
- if (out_words_to_go)
- {
- if (out_words_to_go > 4)
- emit_insn (arm_gen_store_multiple (0, 4, dst, TRUE, TRUE,
- dstbase, &dstoffset));
- else if (out_words_to_go != 1)
- emit_insn (arm_gen_store_multiple (0, out_words_to_go,
- dst, TRUE,
- (last_bytes == 0
- ? FALSE : TRUE),
- dstbase, &dstoffset));
- else
- {
- mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
- emit_move_insn (mem, gen_rtx_REG (SImode, 0));
- if (last_bytes != 0)
- {
- emit_insn (gen_addsi3 (dst, dst, GEN_INT (4)));
- dstoffset += 4;
- }
- }
- }
-
- in_words_to_go -= in_words_to_go < 4 ? in_words_to_go : 4;
- out_words_to_go -= out_words_to_go < 4 ? out_words_to_go : 4;
- }
-
- /* OUT_WORDS_TO_GO will be zero here if there are byte stores to do. */
- if (out_words_to_go)
- {
- rtx sreg;
-
- mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
- sreg = copy_to_reg (mem);
-
- mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
- emit_move_insn (mem, sreg);
- in_words_to_go--;
-
- gcc_assert (!in_words_to_go); /* Sanity check */
- }
-
- if (in_words_to_go)
- {
- gcc_assert (in_words_to_go > 0);
-
- mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
- part_bytes_reg = copy_to_mode_reg (SImode, mem);
- }
-
- gcc_assert (!last_bytes || part_bytes_reg);
-
- if (BYTES_BIG_ENDIAN && last_bytes)
- {
- rtx tmp = gen_reg_rtx (SImode);
-
- /* The bytes we want are in the top end of the word. */
- emit_insn (gen_lshrsi3 (tmp, part_bytes_reg,
- GEN_INT (8 * (4 - last_bytes))));
- part_bytes_reg = tmp;
-
- while (last_bytes)
- {
- mem = adjust_automodify_address (dstbase, QImode,
- plus_constant (dst, last_bytes - 1),
- dstoffset + last_bytes - 1);
- emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
-
- if (--last_bytes)
- {
- tmp = gen_reg_rtx (SImode);
- emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
- part_bytes_reg = tmp;
- }
- }
-
- }
- else
- {
- if (last_bytes > 1)
- {
- mem = adjust_automodify_address (dstbase, HImode, dst, dstoffset);
- emit_move_insn (mem, gen_lowpart (HImode, part_bytes_reg));
- last_bytes -= 2;
- if (last_bytes)
- {
- rtx tmp = gen_reg_rtx (SImode);
- emit_insn (gen_addsi3 (dst, dst, const2_rtx));
- emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (16)));
- part_bytes_reg = tmp;
- dstoffset += 2;
- }
- }
-
- if (last_bytes)
- {
- mem = adjust_automodify_address (dstbase, QImode, dst, dstoffset);
- emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
- }
- }
-
- return 1;
-}
-
-/* Select a dominance comparison mode if possible for a test of the general
- form (OP (COND_OR (X) (Y)) (const_int 0)). We support three forms.
- COND_OR == DOM_CC_X_AND_Y => (X && Y)
- COND_OR == DOM_CC_NX_OR_Y => ((! X) || Y)
- COND_OR == DOM_CC_X_OR_Y => (X || Y)
- In all cases OP will be either EQ or NE, but we don't need to know which
- here. If we are unable to support a dominance comparison we return
- CC mode. This will then fail to match for the RTL expressions that
- generate this call. */
-enum machine_mode
-arm_select_dominance_cc_mode (rtx x, rtx y, HOST_WIDE_INT cond_or)
-{
- enum rtx_code cond1, cond2;
- int swapped = 0;
-
- /* Currently we will probably get the wrong result if the individual
- comparisons are not simple. This also ensures that it is safe to
- reverse a comparison if necessary. */
- if ((arm_select_cc_mode (cond1 = GET_CODE (x), XEXP (x, 0), XEXP (x, 1))
- != CCmode)
- || (arm_select_cc_mode (cond2 = GET_CODE (y), XEXP (y, 0), XEXP (y, 1))
- != CCmode))
- return CCmode;
-
- /* The if_then_else variant of this tests the second condition if the
- first passes, but is true if the first fails. Reverse the first
- condition to get a true "inclusive-or" expression. */
- if (cond_or == DOM_CC_NX_OR_Y)
- cond1 = reverse_condition (cond1);
-
- /* If the comparisons are not equal, and one doesn't dominate the other,
- then we can't do this. */
- if (cond1 != cond2
- && !comparison_dominates_p (cond1, cond2)
- && (swapped = 1, !comparison_dominates_p (cond2, cond1)))
- return CCmode;
-
- if (swapped)
- {
- enum rtx_code temp = cond1;
- cond1 = cond2;
- cond2 = temp;
- }
-
- switch (cond1)
- {
- case EQ:
- if (cond_or == DOM_CC_X_AND_Y)
- return CC_DEQmode;
-
- switch (cond2)
- {
- case EQ: return CC_DEQmode;
- case LE: return CC_DLEmode;
- case LEU: return CC_DLEUmode;
- case GE: return CC_DGEmode;
- case GEU: return CC_DGEUmode;
- default: gcc_unreachable ();
- }
-
- case LT:
- if (cond_or == DOM_CC_X_AND_Y)
- return CC_DLTmode;
-
- switch (cond2)
- {
- case LT:
- return CC_DLTmode;
- case LE:
- return CC_DLEmode;
- case NE:
- return CC_DNEmode;
- default:
- gcc_unreachable ();
- }
-
- case GT:
- if (cond_or == DOM_CC_X_AND_Y)
- return CC_DGTmode;
-
- switch (cond2)
- {
- case GT:
- return CC_DGTmode;
- case GE:
- return CC_DGEmode;
- case NE:
- return CC_DNEmode;
- default:
- gcc_unreachable ();
- }
-
- case LTU:
- if (cond_or == DOM_CC_X_AND_Y)
- return CC_DLTUmode;
-
- switch (cond2)
- {
- case LTU:
- return CC_DLTUmode;
- case LEU:
- return CC_DLEUmode;
- case NE:
- return CC_DNEmode;
- default:
- gcc_unreachable ();
- }
-
- case GTU:
- if (cond_or == DOM_CC_X_AND_Y)
- return CC_DGTUmode;
-
- switch (cond2)
- {
- case GTU:
- return CC_DGTUmode;
- case GEU:
- return CC_DGEUmode;
- case NE:
- return CC_DNEmode;
- default:
- gcc_unreachable ();
- }
-
- /* The remaining cases only occur when both comparisons are the
- same. */
- case NE:
- gcc_assert (cond1 == cond2);
- return CC_DNEmode;
-
- case LE:
- gcc_assert (cond1 == cond2);
- return CC_DLEmode;
-
- case GE:
- gcc_assert (cond1 == cond2);
- return CC_DGEmode;
-
- case LEU:
- gcc_assert (cond1 == cond2);
- return CC_DLEUmode;
-
- case GEU:
- gcc_assert (cond1 == cond2);
- return CC_DGEUmode;
-
- default:
- gcc_unreachable ();
- }
-}
-
-enum machine_mode
-arm_select_cc_mode (enum rtx_code op, rtx x, rtx y)
-{
- /* All floating point compares return CCFP if it is an equality
- comparison, and CCFPE otherwise. */
- if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
- {
- switch (op)
- {
- case EQ:
- case NE:
- case UNORDERED:
- case ORDERED:
- case UNLT:
- case UNLE:
- case UNGT:
- case UNGE:
- case UNEQ:
- case LTGT:
- return CCFPmode;
-
- case LT:
- case LE:
- case GT:
- case GE:
- if (TARGET_HARD_FLOAT && TARGET_MAVERICK)
- return CCFPmode;
- return CCFPEmode;
-
- default:
- gcc_unreachable ();
- }
- }
-
- /* A compare with a shifted operand. Because of canonicalization, the
- comparison will have to be swapped when we emit the assembler. */
- if (GET_MODE (y) == SImode && GET_CODE (y) == REG
- && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
- || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ROTATE
- || GET_CODE (x) == ROTATERT))
- return CC_SWPmode;
-
- /* This operation is performed swapped, but since we only rely on the Z
- flag we don't need an additional mode. */
- if (GET_MODE (y) == SImode && REG_P (y)
- && GET_CODE (x) == NEG
- && (op == EQ || op == NE))
- return CC_Zmode;
-
- /* This is a special case that is used by combine to allow a
- comparison of a shifted byte load to be split into a zero-extend
- followed by a comparison of the shifted integer (only valid for
- equalities and unsigned inequalities). */
- if (GET_MODE (x) == SImode
- && GET_CODE (x) == ASHIFT
- && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 24
- && GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == MEM
- && GET_MODE (SUBREG_REG (XEXP (x, 0))) == QImode
- && (op == EQ || op == NE
- || op == GEU || op == GTU || op == LTU || op == LEU)
- && GET_CODE (y) == CONST_INT)
- return CC_Zmode;
-
- /* A construct for a conditional compare, if the false arm contains
- 0, then both conditions must be true, otherwise either condition
- must be true. Not all conditions are possible, so CCmode is
- returned if it can't be done. */
- if (GET_CODE (x) == IF_THEN_ELSE
- && (XEXP (x, 2) == const0_rtx
- || XEXP (x, 2) == const1_rtx)
- && COMPARISON_P (XEXP (x, 0))
- && COMPARISON_P (XEXP (x, 1)))
- return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
- INTVAL (XEXP (x, 2)));
-
- /* Alternate canonicalizations of the above. These are somewhat cleaner. */
- if (GET_CODE (x) == AND
- && COMPARISON_P (XEXP (x, 0))
- && COMPARISON_P (XEXP (x, 1)))
- return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
- DOM_CC_X_AND_Y);
-
- if (GET_CODE (x) == IOR
- && COMPARISON_P (XEXP (x, 0))
- && COMPARISON_P (XEXP (x, 1)))
- return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
- DOM_CC_X_OR_Y);
-
- /* An operation (on Thumb) where we want to test for a single bit.
- This is done by shifting that bit up into the top bit of a
- scratch register; we can then branch on the sign bit. */
- if (TARGET_THUMB
- && GET_MODE (x) == SImode
- && (op == EQ || op == NE)
- && GET_CODE (x) == ZERO_EXTRACT
- && XEXP (x, 1) == const1_rtx)
- return CC_Nmode;
-
- /* An operation that sets the condition codes as a side-effect, the
- V flag is not set correctly, so we can only use comparisons where
- this doesn't matter. (For LT and GE we can use "mi" and "pl"
- instead.) */
- if (GET_MODE (x) == SImode
- && y == const0_rtx
- && (op == EQ || op == NE || op == LT || op == GE)
- && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
- || GET_CODE (x) == AND || GET_CODE (x) == IOR
- || GET_CODE (x) == XOR || GET_CODE (x) == MULT
- || GET_CODE (x) == NOT || GET_CODE (x) == NEG
- || GET_CODE (x) == LSHIFTRT
- || GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
- || GET_CODE (x) == ROTATERT
- || (TARGET_ARM && GET_CODE (x) == ZERO_EXTRACT)))
- return CC_NOOVmode;
-
- if (GET_MODE (x) == QImode && (op == EQ || op == NE))
- return CC_Zmode;
-
- if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
- && GET_CODE (x) == PLUS
- && (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
- return CC_Cmode;
-
- return CCmode;
-}
-
-/* X and Y are two things to compare using CODE. Emit the compare insn and
- return the rtx for register 0 in the proper mode. FP means this is a
- floating point compare: I don't think that it is needed on the arm. */
-rtx
-arm_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
-{
- enum machine_mode mode = SELECT_CC_MODE (code, x, y);
- rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM);
-
- emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y));
-
- return cc_reg;
-}
-
-/* Generate a sequence of insns that will generate the correct return
- address mask depending on the physical architecture that the program
- is running on. */
-rtx
-arm_gen_return_addr_mask (void)
-{
- rtx reg = gen_reg_rtx (Pmode);
-
- emit_insn (gen_return_addr_mask (reg));
- return reg;
-}
-
-void
-arm_reload_in_hi (rtx *operands)
-{
- rtx ref = operands[1];
- rtx base, scratch;
- HOST_WIDE_INT offset = 0;
-
- if (GET_CODE (ref) == SUBREG)
- {
- offset = SUBREG_BYTE (ref);
- ref = SUBREG_REG (ref);
- }
-
- if (GET_CODE (ref) == REG)
- {
- /* We have a pseudo which has been spilt onto the stack; there
- are two cases here: the first where there is a simple
- stack-slot replacement and a second where the stack-slot is
- out of range, or is used as a subreg. */
- if (reg_equiv_mem[REGNO (ref)])
- {
- ref = reg_equiv_mem[REGNO (ref)];
- base = find_replacement (&XEXP (ref, 0));
- }
- else
- /* The slot is out of range, or was dressed up in a SUBREG. */
- base = reg_equiv_address[REGNO (ref)];
- }
- else
- base = find_replacement (&XEXP (ref, 0));
-
- /* Handle the case where the address is too complex to be offset by 1. */
- if (GET_CODE (base) == MINUS
- || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
- {
- rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
-
- emit_set_insn (base_plus, base);
- base = base_plus;
- }
- else if (GET_CODE (base) == PLUS)
- {
- /* The addend must be CONST_INT, or we would have dealt with it above. */
- HOST_WIDE_INT hi, lo;
-
- offset += INTVAL (XEXP (base, 1));
- base = XEXP (base, 0);
-
- /* Rework the address into a legal sequence of insns. */
- /* Valid range for lo is -4095 -> 4095 */
- lo = (offset >= 0
- ? (offset & 0xfff)
- : -((-offset) & 0xfff));
-
- /* Corner case, if lo is the max offset then we would be out of range
- once we have added the additional 1 below, so bump the msb into the
- pre-loading insn(s). */
- if (lo == 4095)
- lo &= 0x7ff;
-
- hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
- ^ (HOST_WIDE_INT) 0x80000000)
- - (HOST_WIDE_INT) 0x80000000);
-
- gcc_assert (hi + lo == offset);
-
- if (hi != 0)
- {
- rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
-
- /* Get the base address; addsi3 knows how to handle constants
- that require more than one insn. */
- emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
- base = base_plus;
- offset = lo;
- }
- }
-
- /* Operands[2] may overlap operands[0] (though it won't overlap
- operands[1]), that's why we asked for a DImode reg -- so we can
- use the bit that does not overlap. */
- if (REGNO (operands[2]) == REGNO (operands[0]))
- scratch = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
- else
- scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
-
- emit_insn (gen_zero_extendqisi2 (scratch,
- gen_rtx_MEM (QImode,
- plus_constant (base,
- offset))));
- emit_insn (gen_zero_extendqisi2 (gen_rtx_SUBREG (SImode, operands[0], 0),
- gen_rtx_MEM (QImode,
- plus_constant (base,
- offset + 1))));
- if (!BYTES_BIG_ENDIAN)
- emit_set_insn (gen_rtx_SUBREG (SImode, operands[0], 0),
- gen_rtx_IOR (SImode,
- gen_rtx_ASHIFT
- (SImode,
- gen_rtx_SUBREG (SImode, operands[0], 0),
- GEN_INT (8)),
- scratch));
- else
- emit_set_insn (gen_rtx_SUBREG (SImode, operands[0], 0),
- gen_rtx_IOR (SImode,
- gen_rtx_ASHIFT (SImode, scratch,
- GEN_INT (8)),
- gen_rtx_SUBREG (SImode, operands[0], 0)));
-}
-
-/* Handle storing a half-word to memory during reload by synthesizing as two
- byte stores. Take care not to clobber the input values until after we
- have moved them somewhere safe. This code assumes that if the DImode
- scratch in operands[2] overlaps either the input value or output address
- in some way, then that value must die in this insn (we absolutely need
- two scratch registers for some corner cases). */
-void
-arm_reload_out_hi (rtx *operands)
-{
- rtx ref = operands[0];
- rtx outval = operands[1];
- rtx base, scratch;
- HOST_WIDE_INT offset = 0;
-
- if (GET_CODE (ref) == SUBREG)
- {
- offset = SUBREG_BYTE (ref);
- ref = SUBREG_REG (ref);
- }
-
- if (GET_CODE (ref) == REG)
- {
- /* We have a pseudo which has been spilt onto the stack; there
- are two cases here: the first where there is a simple
- stack-slot replacement and a second where the stack-slot is
- out of range, or is used as a subreg. */
- if (reg_equiv_mem[REGNO (ref)])
- {
- ref = reg_equiv_mem[REGNO (ref)];
- base = find_replacement (&XEXP (ref, 0));
- }
- else
- /* The slot is out of range, or was dressed up in a SUBREG. */
- base = reg_equiv_address[REGNO (ref)];
- }
- else
- base = find_replacement (&XEXP (ref, 0));
-
- scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
-
- /* Handle the case where the address is too complex to be offset by 1. */
- if (GET_CODE (base) == MINUS
- || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
- {
- rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
-
- /* Be careful not to destroy OUTVAL. */
- if (reg_overlap_mentioned_p (base_plus, outval))
- {
- /* Updating base_plus might destroy outval, see if we can
- swap the scratch and base_plus. */
- if (!reg_overlap_mentioned_p (scratch, outval))
- {
- rtx tmp = scratch;
- scratch = base_plus;
- base_plus = tmp;
- }
- else
- {
- rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
-
- /* Be conservative and copy OUTVAL into the scratch now,
- this should only be necessary if outval is a subreg
- of something larger than a word. */
- /* XXX Might this clobber base? I can't see how it can,
- since scratch is known to overlap with OUTVAL, and
- must be wider than a word. */
- emit_insn (gen_movhi (scratch_hi, outval));
- outval = scratch_hi;
- }
- }
-
- emit_set_insn (base_plus, base);
- base = base_plus;
- }
- else if (GET_CODE (base) == PLUS)
- {
- /* The addend must be CONST_INT, or we would have dealt with it above. */
- HOST_WIDE_INT hi, lo;
-
- offset += INTVAL (XEXP (base, 1));
- base = XEXP (base, 0);
-
- /* Rework the address into a legal sequence of insns. */
- /* Valid range for lo is -4095 -> 4095 */
- lo = (offset >= 0
- ? (offset & 0xfff)
- : -((-offset) & 0xfff));
-
- /* Corner case, if lo is the max offset then we would be out of range
- once we have added the additional 1 below, so bump the msb into the
- pre-loading insn(s). */
- if (lo == 4095)
- lo &= 0x7ff;
-
- hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
- ^ (HOST_WIDE_INT) 0x80000000)
- - (HOST_WIDE_INT) 0x80000000);
-
- gcc_assert (hi + lo == offset);
-
- if (hi != 0)
- {
- rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
-
- /* Be careful not to destroy OUTVAL. */
- if (reg_overlap_mentioned_p (base_plus, outval))
- {
- /* Updating base_plus might destroy outval, see if we
- can swap the scratch and base_plus. */
- if (!reg_overlap_mentioned_p (scratch, outval))
- {
- rtx tmp = scratch;
- scratch = base_plus;
- base_plus = tmp;
- }
- else
- {
- rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
-
- /* Be conservative and copy outval into scratch now,
- this should only be necessary if outval is a
- subreg of something larger than a word. */
- /* XXX Might this clobber base? I can't see how it
- can, since scratch is known to overlap with
- outval. */
- emit_insn (gen_movhi (scratch_hi, outval));
- outval = scratch_hi;
- }
- }
-
- /* Get the base address; addsi3 knows how to handle constants
- that require more than one insn. */
- emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
- base = base_plus;
- offset = lo;
- }
- }
-
- if (BYTES_BIG_ENDIAN)
- {
- emit_insn (gen_movqi (gen_rtx_MEM (QImode,
- plus_constant (base, offset + 1)),
- gen_lowpart (QImode, outval)));
- emit_insn (gen_lshrsi3 (scratch,
- gen_rtx_SUBREG (SImode, outval, 0),
- GEN_INT (8)));
- emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
- gen_lowpart (QImode, scratch)));
- }
- else
- {
- emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
- gen_lowpart (QImode, outval)));
- emit_insn (gen_lshrsi3 (scratch,
- gen_rtx_SUBREG (SImode, outval, 0),
- GEN_INT (8)));
- emit_insn (gen_movqi (gen_rtx_MEM (QImode,
- plus_constant (base, offset + 1)),
- gen_lowpart (QImode, scratch)));
- }
-}
-
-/* Return true if a type must be passed in memory. For AAPCS, small aggregates
- (padded to the size of a word) should be passed in a register. */
-
-static bool
-arm_must_pass_in_stack (enum machine_mode mode, tree type)
-{
- if (TARGET_AAPCS_BASED)
- return must_pass_in_stack_var_size (mode, type);
- else
- return must_pass_in_stack_var_size_or_pad (mode, type);
-}
-
-
-/* For use by FUNCTION_ARG_PADDING (MODE, TYPE).
- Return true if an argument passed on the stack should be padded upwards,
- i.e. if the least-significant byte has useful data.
- For legacy APCS ABIs we use the default. For AAPCS based ABIs small
- aggregate types are placed in the lowest memory address. */
-
-bool
-arm_pad_arg_upward (enum machine_mode mode, tree type)
-{
- if (!TARGET_AAPCS_BASED)
- return DEFAULT_FUNCTION_ARG_PADDING(mode, type) == upward;
-
- if (type && BYTES_BIG_ENDIAN && INTEGRAL_TYPE_P (type))
- return false;
-
- return true;
-}
-
-
-/* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).
- For non-AAPCS, return !BYTES_BIG_ENDIAN if the least significant
- byte of the register has useful data, and return the opposite if the
- most significant byte does.
- For AAPCS, small aggregates and small complex types are always padded
- upwards. */
-
-bool
-arm_pad_reg_upward (enum machine_mode mode ATTRIBUTE_UNUSED,
- tree type, int first ATTRIBUTE_UNUSED)
-{
- if (TARGET_AAPCS_BASED
- && BYTES_BIG_ENDIAN
- && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
- && int_size_in_bytes (type) <= 4)
- return true;
-
- /* Otherwise, use default padding. */
- return !BYTES_BIG_ENDIAN;
-}
-
-
-/* Print a symbolic form of X to the debug file, F. */
-static void
-arm_print_value (FILE *f, rtx x)
-{
- switch (GET_CODE (x))
- {
- case CONST_INT:
- fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
- return;
-
- case CONST_DOUBLE:
- fprintf (f, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
- return;
-
- case CONST_VECTOR:
- {
- int i;
-
- fprintf (f, "<");
- for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
- {
- fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (CONST_VECTOR_ELT (x, i)));
- if (i < (CONST_VECTOR_NUNITS (x) - 1))
- fputc (',', f);
- }
- fprintf (f, ">");
- }
- return;
-
- case CONST_STRING:
- fprintf (f, "\"%s\"", XSTR (x, 0));
- return;
-
- case SYMBOL_REF:
- fprintf (f, "`%s'", XSTR (x, 0));
- return;
-
- case LABEL_REF:
- fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
- return;
-
- case CONST:
- arm_print_value (f, XEXP (x, 0));
- return;
-
- case PLUS:
- arm_print_value (f, XEXP (x, 0));
- fprintf (f, "+");
- arm_print_value (f, XEXP (x, 1));
- return;
-
- case PC:
- fprintf (f, "pc");
- return;
-
- default:
- fprintf (f, "????");
- return;
- }
-}
-
-/* Routines for manipulation of the constant pool. */
-
-/* Arm instructions cannot load a large constant directly into a
- register; they have to come from a pc relative load. The constant
- must therefore be placed in the addressable range of the pc
- relative load. Depending on the precise pc relative load
- instruction the range is somewhere between 256 bytes and 4k. This
- means that we often have to dump a constant inside a function, and
- generate code to branch around it.
-
- It is important to minimize this, since the branches will slow
- things down and make the code larger.
-
- Normally we can hide the table after an existing unconditional
- branch so that there is no interruption of the flow, but in the
- worst case the code looks like this:
-
- ldr rn, L1
- ...
- b L2
- align
- L1: .long value
- L2:
- ...
-
- ldr rn, L3
- ...
- b L4
- align
- L3: .long value
- L4:
- ...
-
- We fix this by performing a scan after scheduling, which notices
- which instructions need to have their operands fetched from the
- constant table and builds the table.
-
- The algorithm starts by building a table of all the constants that
- need fixing up and all the natural barriers in the function (places
- where a constant table can be dropped without breaking the flow).
- For each fixup we note how far the pc-relative replacement will be
- able to reach and the offset of the instruction into the function.
-
- Having built the table we then group the fixes together to form
- tables that are as large as possible (subject to addressing
- constraints) and emit each table of constants after the last
- barrier that is within range of all the instructions in the group.
- If a group does not contain a barrier, then we forcibly create one
- by inserting a jump instruction into the flow. Once the table has
- been inserted, the insns are then modified to reference the
- relevant entry in the pool.
-
- Possible enhancements to the algorithm (not implemented) are:
-
- 1) For some processors and object formats, there may be benefit in
- aligning the pools to the start of cache lines; this alignment
- would need to be taken into account when calculating addressability
- of a pool. */
-
-/* These typedefs are located at the start of this file, so that
- they can be used in the prototypes there. This comment is to
- remind readers of that fact so that the following structures
- can be understood more easily.
-
- typedef struct minipool_node Mnode;
- typedef struct minipool_fixup Mfix; */
-
-struct minipool_node
-{
- /* Doubly linked chain of entries. */
- Mnode * next;
- Mnode * prev;
- /* The maximum offset into the code that this entry can be placed. While
- pushing fixes for forward references, all entries are sorted in order
- of increasing max_address. */
- HOST_WIDE_INT max_address;
- /* Similarly for an entry inserted for a backwards ref. */
- HOST_WIDE_INT min_address;
- /* The number of fixes referencing this entry. This can become zero
- if we "unpush" an entry. In this case we ignore the entry when we
- come to emit the code. */
- int refcount;
- /* The offset from the start of the minipool. */
- HOST_WIDE_INT offset;
- /* The value in table. */
- rtx value;
- /* The mode of value. */
- enum machine_mode mode;
- /* The size of the value. With iWMMXt enabled
- sizes > 4 also imply an alignment of 8-bytes. */
- int fix_size;
-};
-
-struct minipool_fixup
-{
- Mfix * next;
- rtx insn;
- HOST_WIDE_INT address;
- rtx * loc;
- enum machine_mode mode;
- int fix_size;
- rtx value;
- Mnode * minipool;
- HOST_WIDE_INT forwards;
- HOST_WIDE_INT backwards;
-};
-
-/* Fixes less than a word need padding out to a word boundary. */
-#define MINIPOOL_FIX_SIZE(mode) \
- (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)
-
-static Mnode * minipool_vector_head;
-static Mnode * minipool_vector_tail;
-static rtx minipool_vector_label;
-static int minipool_pad;
-
-/* The linked list of all minipool fixes required for this function. */
-Mfix * minipool_fix_head;
-Mfix * minipool_fix_tail;
-/* The fix entry for the current minipool, once it has been placed. */
-Mfix * minipool_barrier;
-
-/* Determines if INSN is the start of a jump table. Returns the end
- of the TABLE or NULL_RTX. */
-static rtx
-is_jump_table (rtx insn)
-{
- rtx table;
-
- if (GET_CODE (insn) == JUMP_INSN
- && JUMP_LABEL (insn) != NULL
- && ((table = next_real_insn (JUMP_LABEL (insn)))
- == next_real_insn (insn))
- && table != NULL
- && GET_CODE (table) == JUMP_INSN
- && (GET_CODE (PATTERN (table)) == ADDR_VEC
- || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
- return table;
-
- return NULL_RTX;
-}
-
-#ifndef JUMP_TABLES_IN_TEXT_SECTION
-#define JUMP_TABLES_IN_TEXT_SECTION 0
-#endif
-
-static HOST_WIDE_INT
-get_jump_table_size (rtx insn)
-{
- /* ADDR_VECs only take room if read-only data does into the text
- section. */
- if (JUMP_TABLES_IN_TEXT_SECTION || readonly_data_section == text_section)
- {
- rtx body = PATTERN (insn);
- int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
-
- return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
- }
-
- return 0;
-}
-
-/* Move a minipool fix MP from its current location to before MAX_MP.
- If MAX_MP is NULL, then MP doesn't need moving, but the addressing
- constraints may need updating. */
-static Mnode *
-move_minipool_fix_forward_ref (Mnode *mp, Mnode *max_mp,
- HOST_WIDE_INT max_address)
-{
- /* The code below assumes these are different. */
- gcc_assert (mp != max_mp);
-
- if (max_mp == NULL)
- {
- if (max_address < mp->max_address)
- mp->max_address = max_address;
- }
- else
- {
- if (max_address > max_mp->max_address - mp->fix_size)
- mp->max_address = max_mp->max_address - mp->fix_size;
- else
- mp->max_address = max_address;
-
- /* Unlink MP from its current position. Since max_mp is non-null,
- mp->prev must be non-null. */
- mp->prev->next = mp->next;
- if (mp->next != NULL)
- mp->next->prev = mp->prev;
- else
- minipool_vector_tail = mp->prev;
-
- /* Re-insert it before MAX_MP. */
- mp->next = max_mp;
- mp->prev = max_mp->prev;
- max_mp->prev = mp;
-
- if (mp->prev != NULL)
- mp->prev->next = mp;
- else
- minipool_vector_head = mp;
- }
-
- /* Save the new entry. */
- max_mp = mp;
-
- /* Scan over the preceding entries and adjust their addresses as
- required. */
- while (mp->prev != NULL
- && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
- {
- mp->prev->max_address = mp->max_address - mp->prev->fix_size;
- mp = mp->prev;
- }
-
- return max_mp;
-}
-
-/* Add a constant to the minipool for a forward reference. Returns the
- node added or NULL if the constant will not fit in this pool. */
-static Mnode *
-add_minipool_forward_ref (Mfix *fix)
-{
- /* If set, max_mp is the first pool_entry that has a lower
- constraint than the one we are trying to add. */
- Mnode * max_mp = NULL;
- HOST_WIDE_INT max_address = fix->address + fix->forwards - minipool_pad;
- Mnode * mp;
-
- /* If the minipool starts before the end of FIX->INSN then this FIX
- can not be placed into the current pool. Furthermore, adding the
- new constant pool entry may cause the pool to start FIX_SIZE bytes
- earlier. */
- if (minipool_vector_head &&
- (fix->address + get_attr_length (fix->insn)
- >= minipool_vector_head->max_address - fix->fix_size))
- return NULL;
-
- /* Scan the pool to see if a constant with the same value has
- already been added. While we are doing this, also note the
- location where we must insert the constant if it doesn't already
- exist. */
- for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
- {
- if (GET_CODE (fix->value) == GET_CODE (mp->value)
- && fix->mode == mp->mode
- && (GET_CODE (fix->value) != CODE_LABEL
- || (CODE_LABEL_NUMBER (fix->value)
- == CODE_LABEL_NUMBER (mp->value)))
- && rtx_equal_p (fix->value, mp->value))
- {
- /* More than one fix references this entry. */
- mp->refcount++;
- return move_minipool_fix_forward_ref (mp, max_mp, max_address);
- }
-
- /* Note the insertion point if necessary. */
- if (max_mp == NULL
- && mp->max_address > max_address)
- max_mp = mp;
-
- /* If we are inserting an 8-bytes aligned quantity and
- we have not already found an insertion point, then
- make sure that all such 8-byte aligned quantities are
- placed at the start of the pool. */
- if (ARM_DOUBLEWORD_ALIGN
- && max_mp == NULL
- && fix->fix_size == 8
- && mp->fix_size != 8)
- {
- max_mp = mp;
- max_address = mp->max_address;
- }
- }
-
- /* The value is not currently in the minipool, so we need to create
- a new entry for it. If MAX_MP is NULL, the entry will be put on
- the end of the list since the placement is less constrained than
- any existing entry. Otherwise, we insert the new fix before
- MAX_MP and, if necessary, adjust the constraints on the other
- entries. */
- mp = XNEW (Mnode);
- mp->fix_size = fix->fix_size;
- mp->mode = fix->mode;
- mp->value = fix->value;
- mp->refcount = 1;
- /* Not yet required for a backwards ref. */
- mp->min_address = -65536;
-
- if (max_mp == NULL)
- {
- mp->max_address = max_address;
- mp->next = NULL;
- mp->prev = minipool_vector_tail;
-
- if (mp->prev == NULL)
- {
- minipool_vector_head = mp;
- minipool_vector_label = gen_label_rtx ();
- }
- else
- mp->prev->next = mp;
-
- minipool_vector_tail = mp;
- }
- else
- {
- if (max_address > max_mp->max_address - mp->fix_size)
- mp->max_address = max_mp->max_address - mp->fix_size;
- else
- mp->max_address = max_address;
-
- mp->next = max_mp;
- mp->prev = max_mp->prev;
- max_mp->prev = mp;
- if (mp->prev != NULL)
- mp->prev->next = mp;
- else
- minipool_vector_head = mp;
- }
-
- /* Save the new entry. */
- max_mp = mp;
-
- /* Scan over the preceding entries and adjust their addresses as
- required. */
- while (mp->prev != NULL
- && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
- {
- mp->prev->max_address = mp->max_address - mp->prev->fix_size;
- mp = mp->prev;
- }
-
- return max_mp;
-}
-
-static Mnode *
-move_minipool_fix_backward_ref (Mnode *mp, Mnode *min_mp,
- HOST_WIDE_INT min_address)
-{
- HOST_WIDE_INT offset;
-
- /* The code below assumes these are different. */
- gcc_assert (mp != min_mp);
-
- if (min_mp == NULL)
- {
- if (min_address > mp->min_address)
- mp->min_address = min_address;
- }
- else
- {
- /* We will adjust this below if it is too loose. */
- mp->min_address = min_address;
-
- /* Unlink MP from its current position. Since min_mp is non-null,
- mp->next must be non-null. */
- mp->next->prev = mp->prev;
- if (mp->prev != NULL)
- mp->prev->next = mp->next;
- else
- minipool_vector_head = mp->next;
-
- /* Reinsert it after MIN_MP. */
- mp->prev = min_mp;
- mp->next = min_mp->next;
- min_mp->next = mp;
- if (mp->next != NULL)
- mp->next->prev = mp;
- else
- minipool_vector_tail = mp;
- }
-
- min_mp = mp;
-
- offset = 0;
- for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
- {
- mp->offset = offset;
- if (mp->refcount > 0)
- offset += mp->fix_size;
-
- if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
- mp->next->min_address = mp->min_address + mp->fix_size;
- }
-
- return min_mp;
-}
-
-/* Add a constant to the minipool for a backward reference. Returns the
- node added or NULL if the constant will not fit in this pool.
-
- Note that the code for insertion for a backwards reference can be
- somewhat confusing because the calculated offsets for each fix do
- not take into account the size of the pool (which is still under
- construction. */
-static Mnode *
-add_minipool_backward_ref (Mfix *fix)
-{
- /* If set, min_mp is the last pool_entry that has a lower constraint
- than the one we are trying to add. */
- Mnode *min_mp = NULL;
- /* This can be negative, since it is only a constraint. */
- HOST_WIDE_INT min_address = fix->address - fix->backwards;
- Mnode *mp;
-
- /* If we can't reach the current pool from this insn, or if we can't
- insert this entry at the end of the pool without pushing other
- fixes out of range, then we don't try. This ensures that we
- can't fail later on. */
- if (min_address >= minipool_barrier->address
- || (minipool_vector_tail->min_address + fix->fix_size
- >= minipool_barrier->address))
- return NULL;
-
- /* Scan the pool to see if a constant with the same value has
- already been added. While we are doing this, also note the
- location where we must insert the constant if it doesn't already
- exist. */
- for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
- {
- if (GET_CODE (fix->value) == GET_CODE (mp->value)
- && fix->mode == mp->mode
- && (GET_CODE (fix->value) != CODE_LABEL
- || (CODE_LABEL_NUMBER (fix->value)
- == CODE_LABEL_NUMBER (mp->value)))
- && rtx_equal_p (fix->value, mp->value)
- /* Check that there is enough slack to move this entry to the
- end of the table (this is conservative). */
- && (mp->max_address
- > (minipool_barrier->address
- + minipool_vector_tail->offset
- + minipool_vector_tail->fix_size)))
- {
- mp->refcount++;
- return move_minipool_fix_backward_ref (mp, min_mp, min_address);
- }
-
- if (min_mp != NULL)
- mp->min_address += fix->fix_size;
- else
- {
- /* Note the insertion point if necessary. */
- if (mp->min_address < min_address)
- {
- /* For now, we do not allow the insertion of 8-byte alignment
- requiring nodes anywhere but at the start of the pool. */
- if (ARM_DOUBLEWORD_ALIGN
- && fix->fix_size == 8 && mp->fix_size != 8)
- return NULL;
- else
- min_mp = mp;
- }
- else if (mp->max_address
- < minipool_barrier->address + mp->offset + fix->fix_size)
- {
- /* Inserting before this entry would push the fix beyond
- its maximum address (which can happen if we have
- re-located a forwards fix); force the new fix to come
- after it. */
- min_mp = mp;
- min_address = mp->min_address + fix->fix_size;
- }
- /* If we are inserting an 8-bytes aligned quantity and
- we have not already found an insertion point, then
- make sure that all such 8-byte aligned quantities are
- placed at the start of the pool. */
- else if (ARM_DOUBLEWORD_ALIGN
- && min_mp == NULL
- && fix->fix_size == 8
- && mp->fix_size < 8)
- {
- min_mp = mp;
- min_address = mp->min_address + fix->fix_size;
- }
- }
- }
-
- /* We need to create a new entry. */
- mp = XNEW (Mnode);
- mp->fix_size = fix->fix_size;
- mp->mode = fix->mode;
- mp->value = fix->value;
- mp->refcount = 1;
- mp->max_address = minipool_barrier->address + 65536;
-
- mp->min_address = min_address;
-
- if (min_mp == NULL)
- {
- mp->prev = NULL;
- mp->next = minipool_vector_head;
-
- if (mp->next == NULL)
- {
- minipool_vector_tail = mp;
- minipool_vector_label = gen_label_rtx ();
- }
- else
- mp->next->prev = mp;
-
- minipool_vector_head = mp;
- }
- else
- {
- mp->next = min_mp->next;
- mp->prev = min_mp;
- min_mp->next = mp;
-
- if (mp->next != NULL)
- mp->next->prev = mp;
- else
- minipool_vector_tail = mp;
- }
-
- /* Save the new entry. */
- min_mp = mp;
-
- if (mp->prev)
- mp = mp->prev;
- else
- mp->offset = 0;
-
- /* Scan over the following entries and adjust their offsets. */
- while (mp->next != NULL)
- {
- if (mp->next->min_address < mp->min_address + mp->fix_size)
- mp->next->min_address = mp->min_address + mp->fix_size;
-
- if (mp->refcount)
- mp->next->offset = mp->offset + mp->fix_size;
- else
- mp->next->offset = mp->offset;
-
- mp = mp->next;
- }
-
- return min_mp;
-}
-
-static void
-assign_minipool_offsets (Mfix *barrier)
-{
- HOST_WIDE_INT offset = 0;
- Mnode *mp;
-
- minipool_barrier = barrier;
-
- for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
- {
- mp->offset = offset;
-
- if (mp->refcount > 0)
- offset += mp->fix_size;
- }
-}
-
-/* Output the literal table */
-static void
-dump_minipool (rtx scan)
-{
- Mnode * mp;
- Mnode * nmp;
- int align64 = 0;
-
- if (ARM_DOUBLEWORD_ALIGN)
- for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
- if (mp->refcount > 0 && mp->fix_size == 8)
- {
- align64 = 1;
- break;
- }
-
- if (dump_file)
- fprintf (dump_file,
- ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
- INSN_UID (scan), (unsigned long) minipool_barrier->address, align64 ? 8 : 4);
-
- scan = emit_label_after (gen_label_rtx (), scan);
- scan = emit_insn_after (align64 ? gen_align_8 () : gen_align_4 (), scan);
- scan = emit_label_after (minipool_vector_label, scan);
-
- for (mp = minipool_vector_head; mp != NULL; mp = nmp)
- {
- if (mp->refcount > 0)
- {
- if (dump_file)
- {
- fprintf (dump_file,
- ";; Offset %u, min %ld, max %ld ",
- (unsigned) mp->offset, (unsigned long) mp->min_address,
- (unsigned long) mp->max_address);
- arm_print_value (dump_file, mp->value);
- fputc ('\n', dump_file);
- }
-
- switch (mp->fix_size)
- {
-#ifdef HAVE_consttable_1
- case 1:
- scan = emit_insn_after (gen_consttable_1 (mp->value), scan);
- break;
-
-#endif
-#ifdef HAVE_consttable_2
- case 2:
- scan = emit_insn_after (gen_consttable_2 (mp->value), scan);
- break;
-
-#endif
-#ifdef HAVE_consttable_4
- case 4:
- scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
- break;
-
-#endif
-#ifdef HAVE_consttable_8
- case 8:
- scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
- break;
-
-#endif
- default:
- gcc_unreachable ();
- }
- }
-
- nmp = mp->next;
- free (mp);
- }
-
- minipool_vector_head = minipool_vector_tail = NULL;
- scan = emit_insn_after (gen_consttable_end (), scan);
- scan = emit_barrier_after (scan);
-}
-
-/* Return the cost of forcibly inserting a barrier after INSN. */
-static int
-arm_barrier_cost (rtx insn)
-{
- /* Basing the location of the pool on the loop depth is preferable,
- but at the moment, the basic block information seems to be
- corrupt by this stage of the compilation. */
- int base_cost = 50;
- rtx next = next_nonnote_insn (insn);
-
- if (next != NULL && GET_CODE (next) == CODE_LABEL)
- base_cost -= 20;
-
- switch (GET_CODE (insn))
- {
- case CODE_LABEL:
- /* It will always be better to place the table before the label, rather
- than after it. */
- return 50;
-
- case INSN:
- case CALL_INSN:
- return base_cost;
-
- case JUMP_INSN:
- return base_cost - 10;
-
- default:
- return base_cost + 10;
- }
-}
-
-/* Find the best place in the insn stream in the range
- (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
- Create the barrier by inserting a jump and add a new fix entry for
- it. */
-static Mfix *
-create_fix_barrier (Mfix *fix, HOST_WIDE_INT max_address)
-{
- HOST_WIDE_INT count = 0;
- rtx barrier;
- rtx from = fix->insn;
- /* The instruction after which we will insert the jump. */
- rtx selected = NULL;
- int selected_cost;
- /* The address at which the jump instruction will be placed. */
- HOST_WIDE_INT selected_address;
- Mfix * new_fix;
- HOST_WIDE_INT max_count = max_address - fix->address;
- rtx label = gen_label_rtx ();
-
- selected_cost = arm_barrier_cost (from);
- selected_address = fix->address;
-
- while (from && count < max_count)
- {
- rtx tmp;
- int new_cost;
-
- /* This code shouldn't have been called if there was a natural barrier
- within range. */
- gcc_assert (GET_CODE (from) != BARRIER);
-
- /* Count the length of this insn. */
- count += get_attr_length (from);
-
- /* If there is a jump table, add its length. */
- tmp = is_jump_table (from);
- if (tmp != NULL)
- {
- count += get_jump_table_size (tmp);
-
- /* Jump tables aren't in a basic block, so base the cost on
- the dispatch insn. If we select this location, we will
- still put the pool after the table. */
- new_cost = arm_barrier_cost (from);
-
- if (count < max_count
- && (!selected || new_cost <= selected_cost))
- {
- selected = tmp;
- selected_cost = new_cost;
- selected_address = fix->address + count;
- }
-
- /* Continue after the dispatch table. */
- from = NEXT_INSN (tmp);
- continue;
- }
-
- new_cost = arm_barrier_cost (from);
-
- if (count < max_count
- && (!selected || new_cost <= selected_cost))
- {
- selected = from;
- selected_cost = new_cost;
- selected_address = fix->address + count;
- }
-
- from = NEXT_INSN (from);
- }
-
- /* Make sure that we found a place to insert the jump. */
- gcc_assert (selected);
-
- /* Create a new JUMP_INSN that branches around a barrier. */
- from = emit_jump_insn_after (gen_jump (label), selected);
- JUMP_LABEL (from) = label;
- barrier = emit_barrier_after (from);
- emit_label_after (label, barrier);
-
- /* Create a minipool barrier entry for the new barrier. */
- new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* new_fix));
- new_fix->insn = barrier;
- new_fix->address = selected_address;
- new_fix->next = fix->next;
- fix->next = new_fix;
-
- return new_fix;
-}
-
-/* Record that there is a natural barrier in the insn stream at
- ADDRESS. */
-static void
-push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
-{
- Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
-
- fix->insn = insn;
- fix->address = address;
-
- fix->next = NULL;
- if (minipool_fix_head != NULL)
- minipool_fix_tail->next = fix;
- else
- minipool_fix_head = fix;
-
- minipool_fix_tail = fix;
-}
-
-/* Record INSN, which will need fixing up to load a value from the
- minipool. ADDRESS is the offset of the insn since the start of the
- function; LOC is a pointer to the part of the insn which requires
- fixing; VALUE is the constant that must be loaded, which is of type
- MODE. */
-static void
-push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx *loc,
- enum machine_mode mode, rtx value)
-{
- Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
-
-#ifdef AOF_ASSEMBLER
- /* PIC symbol references need to be converted into offsets into the
- based area. */
- /* XXX This shouldn't be done here. */
- if (flag_pic && GET_CODE (value) == SYMBOL_REF)
- value = aof_pic_entry (value);
-#endif /* AOF_ASSEMBLER */
-
- fix->insn = insn;
- fix->address = address;
- fix->loc = loc;
- fix->mode = mode;
- fix->fix_size = MINIPOOL_FIX_SIZE (mode);
- fix->value = value;
- fix->forwards = get_attr_pool_range (insn);
- fix->backwards = get_attr_neg_pool_range (insn);
- fix->minipool = NULL;
-
- /* If an insn doesn't have a range defined for it, then it isn't
- expecting to be reworked by this code. Better to stop now than
- to generate duff assembly code. */
- gcc_assert (fix->forwards || fix->backwards);
-
- /* If an entry requires 8-byte alignment then assume all constant pools
- require 4 bytes of padding. Trying to do this later on a per-pool
- basis is awkward because existing pool entries have to be modified. */
- if (ARM_DOUBLEWORD_ALIGN && fix->fix_size == 8)
- minipool_pad = 4;
-
- if (dump_file)
- {
- fprintf (dump_file,
- ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
- GET_MODE_NAME (mode),
- INSN_UID (insn), (unsigned long) address,
- -1 * (long)fix->backwards, (long)fix->forwards);
- arm_print_value (dump_file, fix->value);
- fprintf (dump_file, "\n");
- }
-
- /* Add it to the chain of fixes. */
- fix->next = NULL;
-
- if (minipool_fix_head != NULL)
- minipool_fix_tail->next = fix;
- else
- minipool_fix_head = fix;
-
- minipool_fix_tail = fix;
-}
-
-/* Return the cost of synthesizing a 64-bit constant VAL inline.
- Returns the number of insns needed, or 99 if we don't know how to
- do it. */
-int
-arm_const_double_inline_cost (rtx val)
-{
- rtx lowpart, highpart;
- enum machine_mode mode;
-
- mode = GET_MODE (val);
-
- if (mode == VOIDmode)
- mode = DImode;
-
- gcc_assert (GET_MODE_SIZE (mode) == 8);
-
- lowpart = gen_lowpart (SImode, val);
- highpart = gen_highpart_mode (SImode, mode, val);
-
- gcc_assert (GET_CODE (lowpart) == CONST_INT);
- gcc_assert (GET_CODE (highpart) == CONST_INT);
-
- return (arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (lowpart),
- NULL_RTX, NULL_RTX, 0, 0)
- + arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (highpart),
- NULL_RTX, NULL_RTX, 0, 0));
-}
-
-/* Return true if it is worthwhile to split a 64-bit constant into two
- 32-bit operations. This is the case if optimizing for size, or
- if we have load delay slots, or if one 32-bit part can be done with
- a single data operation. */
-bool
-arm_const_double_by_parts (rtx val)
-{
- enum machine_mode mode = GET_MODE (val);
- rtx part;
-
- if (optimize_size || arm_ld_sched)
- return true;
-
- if (mode == VOIDmode)
- mode = DImode;
-
- part = gen_highpart_mode (SImode, mode, val);
-
- gcc_assert (GET_CODE (part) == CONST_INT);
-
- if (const_ok_for_arm (INTVAL (part))
- || const_ok_for_arm (~INTVAL (part)))
- return true;
-
- part = gen_lowpart (SImode, val);
-
- gcc_assert (GET_CODE (part) == CONST_INT);
-
- if (const_ok_for_arm (INTVAL (part))
- || const_ok_for_arm (~INTVAL (part)))
- return true;
-
- return false;
-}
-
-/* Scan INSN and note any of its operands that need fixing.
- If DO_PUSHES is false we do not actually push any of the fixups
- needed. The function returns TRUE if any fixups were needed/pushed.
- This is used by arm_memory_load_p() which needs to know about loads
- of constants that will be converted into minipool loads. */
-static bool
-note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
-{
- bool result = false;
- int opno;
-
- extract_insn (insn);
-
- if (!constrain_operands (1))
- fatal_insn_not_found (insn);
-
- if (recog_data.n_alternatives == 0)
- return false;
-
- /* Fill in recog_op_alt with information about the constraints of
- this insn. */
- preprocess_constraints ();
-
- for (opno = 0; opno < recog_data.n_operands; opno++)
- {
- /* Things we need to fix can only occur in inputs. */
- if (recog_data.operand_type[opno] != OP_IN)
- continue;
-
- /* If this alternative is a memory reference, then any mention
- of constants in this alternative is really to fool reload
- into allowing us to accept one there. We need to fix them up
- now so that we output the right code. */
- if (recog_op_alt[opno][which_alternative].memory_ok)
- {
- rtx op = recog_data.operand[opno];
-
- if (CONSTANT_P (op))
- {
- if (do_pushes)
- push_minipool_fix (insn, address, recog_data.operand_loc[opno],
- recog_data.operand_mode[opno], op);
- result = true;
- }
- else if (GET_CODE (op) == MEM
- && GET_CODE (XEXP (op, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
- {
- if (do_pushes)
- {
- rtx cop = avoid_constant_pool_reference (op);
-
- /* Casting the address of something to a mode narrower
- than a word can cause avoid_constant_pool_reference()
- to return the pool reference itself. That's no good to
- us here. Lets just hope that we can use the
- constant pool value directly. */
- if (op == cop)
- cop = get_pool_constant (XEXP (op, 0));
-
- push_minipool_fix (insn, address,
- recog_data.operand_loc[opno],
- recog_data.operand_mode[opno], cop);
- }
-
- result = true;
- }
- }
- }
-
- return result;
-}
-
-/* Gcc puts the pool in the wrong place for ARM, since we can only
- load addresses a limited distance around the pc. We do some
- special munging to move the constant pool values to the correct
- point in the code. */
-static void
-arm_reorg (void)
-{
- rtx insn;
- HOST_WIDE_INT address = 0;
- Mfix * fix;
-
- minipool_fix_head = minipool_fix_tail = NULL;
-
- /* The first insn must always be a note, or the code below won't
- scan it properly. */
- insn = get_insns ();
- gcc_assert (GET_CODE (insn) == NOTE);
- minipool_pad = 0;
-
- /* Scan all the insns and record the operands that will need fixing. */
- for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
- {
- if (TARGET_CIRRUS_FIX_INVALID_INSNS
- && (arm_cirrus_insn_p (insn)
- || GET_CODE (insn) == JUMP_INSN
- || arm_memory_load_p (insn)))
- cirrus_reorg (insn);
-
- if (GET_CODE (insn) == BARRIER)
- push_minipool_barrier (insn, address);
- else if (INSN_P (insn))
- {
- rtx table;
-
- note_invalid_constants (insn, address, true);
- address += get_attr_length (insn);
-
- /* If the insn is a vector jump, add the size of the table
- and skip the table. */
- if ((table = is_jump_table (insn)) != NULL)
- {
- address += get_jump_table_size (table);
- insn = table;
- }
- }
- }
-
- fix = minipool_fix_head;
-
- /* Now scan the fixups and perform the required changes. */
- while (fix)
- {
- Mfix * ftmp;
- Mfix * fdel;
- Mfix * last_added_fix;
- Mfix * last_barrier = NULL;
- Mfix * this_fix;
-
- /* Skip any further barriers before the next fix. */
- while (fix && GET_CODE (fix->insn) == BARRIER)
- fix = fix->next;
-
- /* No more fixes. */
- if (fix == NULL)
- break;
-
- last_added_fix = NULL;
-
- for (ftmp = fix; ftmp; ftmp = ftmp->next)
- {
- if (GET_CODE (ftmp->insn) == BARRIER)
- {
- if (ftmp->address >= minipool_vector_head->max_address)
- break;
-
- last_barrier = ftmp;
- }
- else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
- break;
-
- last_added_fix = ftmp; /* Keep track of the last fix added. */
- }
-
- /* If we found a barrier, drop back to that; any fixes that we
- could have reached but come after the barrier will now go in
- the next mini-pool. */
- if (last_barrier != NULL)
- {
- /* Reduce the refcount for those fixes that won't go into this
- pool after all. */
- for (fdel = last_barrier->next;
- fdel && fdel != ftmp;
- fdel = fdel->next)
- {
- fdel->minipool->refcount--;
- fdel->minipool = NULL;
- }
-
- ftmp = last_barrier;
- }
- else
- {
- /* ftmp is first fix that we can't fit into this pool and
- there no natural barriers that we could use. Insert a
- new barrier in the code somewhere between the previous
- fix and this one, and arrange to jump around it. */
- HOST_WIDE_INT max_address;
-
- /* The last item on the list of fixes must be a barrier, so
- we can never run off the end of the list of fixes without
- last_barrier being set. */
- gcc_assert (ftmp);
-
- max_address = minipool_vector_head->max_address;
- /* Check that there isn't another fix that is in range that
- we couldn't fit into this pool because the pool was
- already too large: we need to put the pool before such an
- instruction. The pool itself may come just after the
- fix because create_fix_barrier also allows space for a
- jump instruction. */
- if (ftmp->address < max_address)
- max_address = ftmp->address + 1;
-
- last_barrier = create_fix_barrier (last_added_fix, max_address);
- }
-
- assign_minipool_offsets (last_barrier);
-
- while (ftmp)
- {
- if (GET_CODE (ftmp->insn) != BARRIER
- && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
- == NULL))
- break;
-
- ftmp = ftmp->next;
- }
-
- /* Scan over the fixes we have identified for this pool, fixing them
- up and adding the constants to the pool itself. */
- for (this_fix = fix; this_fix && ftmp != this_fix;
- this_fix = this_fix->next)
- if (GET_CODE (this_fix->insn) != BARRIER)
- {
- rtx addr
- = plus_constant (gen_rtx_LABEL_REF (VOIDmode,
- minipool_vector_label),
- this_fix->minipool->offset);
- *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
- }
-
- dump_minipool (last_barrier->insn);
- fix = ftmp;
- }
-
- /* From now on we must synthesize any constants that we can't handle
- directly. This can happen if the RTL gets split during final
- instruction generation. */
- after_arm_reorg = 1;
-
- /* Free the minipool memory. */
- obstack_free (&minipool_obstack, minipool_startobj);
-}
-
-/* Routines to output assembly language. */
-
-/* If the rtx is the correct value then return the string of the number.
- In this way we can ensure that valid double constants are generated even
- when cross compiling. */
-const char *
-fp_immediate_constant (rtx x)
-{
- REAL_VALUE_TYPE r;
- int i;
-
- if (!fp_consts_inited)
- init_fp_table ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (r, values_fp[i]))
- return strings_fp[i];
-
- gcc_unreachable ();
-}
-
-/* As for fp_immediate_constant, but value is passed directly, not in rtx. */
-static const char *
-fp_const_from_val (REAL_VALUE_TYPE *r)
-{
- int i;
-
- if (!fp_consts_inited)
- init_fp_table ();
-
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (*r, values_fp[i]))
- return strings_fp[i];
-
- gcc_unreachable ();
-}
-
-/* Output the operands of a LDM/STM instruction to STREAM.
- MASK is the ARM register set mask of which only bits 0-15 are important.
- REG is the base register, either the frame pointer or the stack pointer,
- INSTR is the possibly suffixed load or store instruction. */
-
-static void
-print_multi_reg (FILE *stream, const char *instr, unsigned reg,
- unsigned long mask)
-{
- unsigned i;
- bool not_first = FALSE;
-
- fputc ('\t', stream);
- asm_fprintf (stream, instr, reg);
- fputs (", {", stream);
-
- for (i = 0; i <= LAST_ARM_REGNUM; i++)
- if (mask & (1 << i))
- {
- if (not_first)
- fprintf (stream, ", ");
-
- asm_fprintf (stream, "%r", i);
- not_first = TRUE;
- }
-
- fprintf (stream, "}\n");
-}
-
-
-/* Output a FLDMX instruction to STREAM.
- BASE if the register containing the address.
- REG and COUNT specify the register range.
- Extra registers may be added to avoid hardware bugs. */
-
-static void
-arm_output_fldmx (FILE * stream, unsigned int base, int reg, int count)
-{
- int i;
-
- /* Workaround ARM10 VFPr1 bug. */
- if (count == 2 && !arm_arch6)
- {
- if (reg == 15)
- reg--;
- count++;
- }
-
- fputc ('\t', stream);
- asm_fprintf (stream, "fldmfdx\t%r!, {", base);
-
- for (i = reg; i < reg + count; i++)
- {
- if (i > reg)
- fputs (", ", stream);
- asm_fprintf (stream, "d%d", i);
- }
- fputs ("}\n", stream);
-
-}
-
-
-/* Output the assembly for a store multiple. */
-
-const char *
-vfp_output_fstmx (rtx * operands)
-{
- char pattern[100];
- int p;
- int base;
- int i;
-
- strcpy (pattern, "fstmfdx\t%m0!, {%P1");
- p = strlen (pattern);
-
- gcc_assert (GET_CODE (operands[1]) == REG);
-
- base = (REGNO (operands[1]) - FIRST_VFP_REGNUM) / 2;
- for (i = 1; i < XVECLEN (operands[2], 0); i++)
- {
- p += sprintf (&pattern[p], ", d%d", base + i);
- }
- strcpy (&pattern[p], "}");
-
- output_asm_insn (pattern, operands);
- return "";
-}
-
-
-/* Emit RTL to save block of VFP register pairs to the stack. Returns the
- number of bytes pushed. */
-
-static int
-vfp_emit_fstmx (int base_reg, int count)
-{
- rtx par;
- rtx dwarf;
- rtx tmp, reg;
- int i;
-
- /* Workaround ARM10 VFPr1 bug. Data corruption can occur when exactly two
- register pairs are stored by a store multiple insn. We avoid this
- by pushing an extra pair. */
- if (count == 2 && !arm_arch6)
- {
- if (base_reg == LAST_VFP_REGNUM - 3)
- base_reg -= 2;
- count++;
- }
-
- /* ??? The frame layout is implementation defined. We describe
- standard format 1 (equivalent to a FSTMD insn and unused pad word).
- We really need some way of representing the whole block so that the
- unwinder can figure it out at runtime. */
- par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
- dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
-
- reg = gen_rtx_REG (DFmode, base_reg);
- base_reg += 2;
-
- XVECEXP (par, 0, 0)
- = gen_rtx_SET (VOIDmode,
- gen_frame_mem (BLKmode,
- gen_rtx_PRE_DEC (BLKmode,
- stack_pointer_rtx)),
- gen_rtx_UNSPEC (BLKmode,
- gen_rtvec (1, reg),
- UNSPEC_PUSH_MULT));
-
- tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
- plus_constant (stack_pointer_rtx, -(count * 8 + 4)));
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, 0) = tmp;
-
- tmp = gen_rtx_SET (VOIDmode,
- gen_frame_mem (DFmode, stack_pointer_rtx),
- reg);
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, 1) = tmp;
-
- for (i = 1; i < count; i++)
- {
- reg = gen_rtx_REG (DFmode, base_reg);
- base_reg += 2;
- XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
-
- tmp = gen_rtx_SET (VOIDmode,
- gen_frame_mem (DFmode,
- plus_constant (stack_pointer_rtx,
- i * 8)),
- reg);
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, i + 1) = tmp;
- }
-
- par = emit_insn (par);
- REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
- REG_NOTES (par));
- RTX_FRAME_RELATED_P (par) = 1;
-
- return count * 8 + 4;
-}
-
-
-/* Output a 'call' insn. */
-const char *
-output_call (rtx *operands)
-{
- gcc_assert (!arm_arch5); /* Patterns should call blx <reg> directly. */
-
- /* Handle calls to lr using ip (which may be clobbered in subr anyway). */
- if (REGNO (operands[0]) == LR_REGNUM)
- {
- operands[0] = gen_rtx_REG (SImode, IP_REGNUM);
- output_asm_insn ("mov%?\t%0, %|lr", operands);
- }
-
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
-
- if (TARGET_INTERWORK || arm_arch4t)
- output_asm_insn ("bx%?\t%0", operands);
- else
- output_asm_insn ("mov%?\t%|pc, %0", operands);
-
- return "";
-}
-
-/* Output a 'call' insn that is a reference in memory. */
-const char *
-output_call_mem (rtx *operands)
-{
- if (TARGET_INTERWORK && !arm_arch5)
- {
- output_asm_insn ("ldr%?\t%|ip, %0", operands);
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
- output_asm_insn ("bx%?\t%|ip", operands);
- }
- else if (regno_use_in (LR_REGNUM, operands[0]))
- {
- /* LR is used in the memory address. We load the address in the
- first instruction. It's safe to use IP as the target of the
- load since the call will kill it anyway. */
- output_asm_insn ("ldr%?\t%|ip, %0", operands);
- if (arm_arch5)
- output_asm_insn ("blx%?\t%|ip", operands);
- else
- {
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
- if (arm_arch4t)
- output_asm_insn ("bx%?\t%|ip", operands);
- else
- output_asm_insn ("mov%?\t%|pc, %|ip", operands);
- }
- }
- else
- {
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
- output_asm_insn ("ldr%?\t%|pc, %0", operands);
- }
-
- return "";
-}
-
-
-/* Output a move from arm registers to an fpa registers.
- OPERANDS[0] is an fpa register.
- OPERANDS[1] is the first registers of an arm register pair. */
-const char *
-output_mov_long_double_fpa_from_arm (rtx *operands)
-{
- int arm_reg0 = REGNO (operands[1]);
- rtx ops[3];
-
- gcc_assert (arm_reg0 != IP_REGNUM);
-
- ops[0] = gen_rtx_REG (SImode, arm_reg0);
- ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
- ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
-
- output_asm_insn ("stm%?fd\t%|sp!, {%0, %1, %2}", ops);
- output_asm_insn ("ldf%?e\t%0, [%|sp], #12", operands);
-
- return "";
-}
-
-/* Output a move from an fpa register to arm registers.
- OPERANDS[0] is the first registers of an arm register pair.
- OPERANDS[1] is an fpa register. */
-const char *
-output_mov_long_double_arm_from_fpa (rtx *operands)
-{
- int arm_reg0 = REGNO (operands[0]);
- rtx ops[3];
-
- gcc_assert (arm_reg0 != IP_REGNUM);
-
- ops[0] = gen_rtx_REG (SImode, arm_reg0);
- ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
- ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
-
- output_asm_insn ("stf%?e\t%1, [%|sp, #-12]!", operands);
- output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1, %2}", ops);
- return "";
-}
-
-/* Output a move from arm registers to arm registers of a long double
- OPERANDS[0] is the destination.
- OPERANDS[1] is the source. */
-const char *
-output_mov_long_double_arm_from_arm (rtx *operands)
-{
- /* We have to be careful here because the two might overlap. */
- int dest_start = REGNO (operands[0]);
- int src_start = REGNO (operands[1]);
- rtx ops[2];
- int i;
-
- if (dest_start < src_start)
- {
- for (i = 0; i < 3; i++)
- {
- ops[0] = gen_rtx_REG (SImode, dest_start + i);
- ops[1] = gen_rtx_REG (SImode, src_start + i);
- output_asm_insn ("mov%?\t%0, %1", ops);
- }
- }
- else
- {
- for (i = 2; i >= 0; i--)
- {
- ops[0] = gen_rtx_REG (SImode, dest_start + i);
- ops[1] = gen_rtx_REG (SImode, src_start + i);
- output_asm_insn ("mov%?\t%0, %1", ops);
- }
- }
-
- return "";
-}
-
-
-/* Output a move from arm registers to an fpa registers.
- OPERANDS[0] is an fpa register.
- OPERANDS[1] is the first registers of an arm register pair. */
-const char *
-output_mov_double_fpa_from_arm (rtx *operands)
-{
- int arm_reg0 = REGNO (operands[1]);
- rtx ops[2];
-
- gcc_assert (arm_reg0 != IP_REGNUM);
-
- ops[0] = gen_rtx_REG (SImode, arm_reg0);
- ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
- output_asm_insn ("stm%?fd\t%|sp!, {%0, %1}", ops);
- output_asm_insn ("ldf%?d\t%0, [%|sp], #8", operands);
- return "";
-}
-
-/* Output a move from an fpa register to arm registers.
- OPERANDS[0] is the first registers of an arm register pair.
- OPERANDS[1] is an fpa register. */
-const char *
-output_mov_double_arm_from_fpa (rtx *operands)
-{
- int arm_reg0 = REGNO (operands[0]);
- rtx ops[2];
-
- gcc_assert (arm_reg0 != IP_REGNUM);
-
- ops[0] = gen_rtx_REG (SImode, arm_reg0);
- ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
- output_asm_insn ("stf%?d\t%1, [%|sp, #-8]!", operands);
- output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1}", ops);
- return "";
-}
-
-/* Output a move between double words.
- It must be REG<-REG, REG<-CONST_DOUBLE, REG<-CONST_INT, REG<-MEM
- or MEM<-REG and all MEMs must be offsettable addresses. */
-const char *
-output_move_double (rtx *operands)
-{
- enum rtx_code code0 = GET_CODE (operands[0]);
- enum rtx_code code1 = GET_CODE (operands[1]);
- rtx otherops[3];
-
- if (code0 == REG)
- {
- int reg0 = REGNO (operands[0]);
-
- otherops[0] = gen_rtx_REG (SImode, 1 + reg0);
-
- gcc_assert (code1 == MEM); /* Constraints should ensure this. */
-
- switch (GET_CODE (XEXP (operands[1], 0)))
- {
- case REG:
- output_asm_insn ("ldm%?ia\t%m1, %M0", operands);
- break;
-
- case PRE_INC:
- gcc_assert (TARGET_LDRD);
- output_asm_insn ("ldr%?d\t%0, [%m1, #8]!", operands);
- break;
-
- case PRE_DEC:
- output_asm_insn ("ldm%?db\t%m1!, %M0", operands);
- break;
-
- case POST_INC:
- output_asm_insn ("ldm%?ia\t%m1!, %M0", operands);
- break;
-
- case POST_DEC:
- gcc_assert (TARGET_LDRD);
- output_asm_insn ("ldr%?d\t%0, [%m1], #-8", operands);
- break;
-
- case PRE_MODIFY:
- case POST_MODIFY:
- otherops[0] = operands[0];
- otherops[1] = XEXP (XEXP (XEXP (operands[1], 0), 1), 0);
- otherops[2] = XEXP (XEXP (XEXP (operands[1], 0), 1), 1);
-
- if (GET_CODE (XEXP (operands[1], 0)) == PRE_MODIFY)
- {
- if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
- {
- /* Registers overlap so split out the increment. */
- output_asm_insn ("add%?\t%1, %1, %2", otherops);
- output_asm_insn ("ldr%?d\t%0, [%1] @split", otherops);
- }
- else
- {
- /* IWMMXT allows offsets larger than ldrd can handle,
- fix these up with a pair of ldr. */
- if (GET_CODE (otherops[2]) == CONST_INT
- && (INTVAL(otherops[2]) <= -256
- || INTVAL(otherops[2]) >= 256))
- {
- output_asm_insn ("ldr%?\t%0, [%1, %2]!", otherops);
- otherops[0] = gen_rtx_REG (SImode, 1 + reg0);
- output_asm_insn ("ldr%?\t%0, [%1, #4]", otherops);
- }
- else
- output_asm_insn ("ldr%?d\t%0, [%1, %2]!", otherops);
- }
- }
- else
- {
- /* IWMMXT allows offsets larger than ldrd can handle,
- fix these up with a pair of ldr. */
- if (GET_CODE (otherops[2]) == CONST_INT
- && (INTVAL(otherops[2]) <= -256
- || INTVAL(otherops[2]) >= 256))
- {
- otherops[0] = gen_rtx_REG (SImode, 1 + reg0);
- output_asm_insn ("ldr%?\t%0, [%1, #4]", otherops);
- otherops[0] = operands[0];
- output_asm_insn ("ldr%?\t%0, [%1], %2", otherops);
- }
- else
- /* We only allow constant increments, so this is safe. */
- output_asm_insn ("ldr%?d\t%0, [%1], %2", otherops);
- }
- break;
-
- case LABEL_REF:
- case CONST:
- output_asm_insn ("adr%?\t%0, %1", operands);
- output_asm_insn ("ldm%?ia\t%0, %M0", operands);
- break;
-
- default:
- if (arm_add_operand (XEXP (XEXP (operands[1], 0), 1),
- GET_MODE (XEXP (XEXP (operands[1], 0), 1))))
- {
- otherops[0] = operands[0];
- otherops[1] = XEXP (XEXP (operands[1], 0), 0);
- otherops[2] = XEXP (XEXP (operands[1], 0), 1);
-
- if (GET_CODE (XEXP (operands[1], 0)) == PLUS)
- {
- if (GET_CODE (otherops[2]) == CONST_INT)
- {
- switch ((int) INTVAL (otherops[2]))
- {
- case -8:
- output_asm_insn ("ldm%?db\t%1, %M0", otherops);
- return "";
- case -4:
- output_asm_insn ("ldm%?da\t%1, %M0", otherops);
- return "";
- case 4:
- output_asm_insn ("ldm%?ib\t%1, %M0", otherops);
- return "";
- }
- }
- if (TARGET_LDRD
- && (GET_CODE (otherops[2]) == REG
- || (GET_CODE (otherops[2]) == CONST_INT
- && INTVAL (otherops[2]) > -256
- && INTVAL (otherops[2]) < 256)))
- {
- if (reg_overlap_mentioned_p (otherops[0],
- otherops[2]))
- {
- /* Swap base and index registers over to
- avoid a conflict. */
- otherops[1] = XEXP (XEXP (operands[1], 0), 1);
- otherops[2] = XEXP (XEXP (operands[1], 0), 0);
- }
- /* If both registers conflict, it will usually
- have been fixed by a splitter. */
- if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
- {
- output_asm_insn ("add%?\t%1, %1, %2", otherops);
- output_asm_insn ("ldr%?d\t%0, [%1]",
- otherops);
- }
- else
- output_asm_insn ("ldr%?d\t%0, [%1, %2]", otherops);
- return "";
- }
-
- if (GET_CODE (otherops[2]) == CONST_INT)
- {
- if (!(const_ok_for_arm (INTVAL (otherops[2]))))
- output_asm_insn ("sub%?\t%0, %1, #%n2", otherops);
- else
- output_asm_insn ("add%?\t%0, %1, %2", otherops);
- }
- else
- output_asm_insn ("add%?\t%0, %1, %2", otherops);
- }
- else
- output_asm_insn ("sub%?\t%0, %1, %2", otherops);
-
- return "ldm%?ia\t%0, %M0";
- }
- else
- {
- otherops[1] = adjust_address (operands[1], SImode, 4);
- /* Take care of overlapping base/data reg. */
- if (reg_mentioned_p (operands[0], operands[1]))
- {
- output_asm_insn ("ldr%?\t%0, %1", otherops);
- output_asm_insn ("ldr%?\t%0, %1", operands);
- }
- else
- {
- output_asm_insn ("ldr%?\t%0, %1", operands);
- output_asm_insn ("ldr%?\t%0, %1", otherops);
- }
- }
- }
- }
- else
- {
- /* Constraints should ensure this. */
- gcc_assert (code0 == MEM && code1 == REG);
- gcc_assert (REGNO (operands[1]) != IP_REGNUM);
-
- switch (GET_CODE (XEXP (operands[0], 0)))
- {
- case REG:
- output_asm_insn ("stm%?ia\t%m0, %M1", operands);
- break;
-
- case PRE_INC:
- gcc_assert (TARGET_LDRD);
- output_asm_insn ("str%?d\t%1, [%m0, #8]!", operands);
- break;
-
- case PRE_DEC:
- output_asm_insn ("stm%?db\t%m0!, %M1", operands);
- break;
-
- case POST_INC:
- output_asm_insn ("stm%?ia\t%m0!, %M1", operands);
- break;
-
- case POST_DEC:
- gcc_assert (TARGET_LDRD);
- output_asm_insn ("str%?d\t%1, [%m0], #-8", operands);
- break;
-
- case PRE_MODIFY:
- case POST_MODIFY:
- otherops[0] = operands[1];
- otherops[1] = XEXP (XEXP (XEXP (operands[0], 0), 1), 0);
- otherops[2] = XEXP (XEXP (XEXP (operands[0], 0), 1), 1);
-
- /* IWMMXT allows offsets larger than ldrd can handle,
- fix these up with a pair of ldr. */
- if (GET_CODE (otherops[2]) == CONST_INT
- && (INTVAL(otherops[2]) <= -256
- || INTVAL(otherops[2]) >= 256))
- {
- rtx reg1;
- reg1 = gen_rtx_REG (SImode, 1 + REGNO (operands[1]));
- if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
- {
- output_asm_insn ("ldr%?\t%0, [%1, %2]!", otherops);
- otherops[0] = reg1;
- output_asm_insn ("ldr%?\t%0, [%1, #4]", otherops);
- }
- else
- {
- otherops[0] = reg1;
- output_asm_insn ("ldr%?\t%0, [%1, #4]", otherops);
- otherops[0] = operands[1];
- output_asm_insn ("ldr%?\t%0, [%1], %2", otherops);
- }
- }
- else if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
- output_asm_insn ("str%?d\t%0, [%1, %2]!", otherops);
- else
- output_asm_insn ("str%?d\t%0, [%1], %2", otherops);
- break;
-
- case PLUS:
- otherops[2] = XEXP (XEXP (operands[0], 0), 1);
- if (GET_CODE (otherops[2]) == CONST_INT)
- {
- switch ((int) INTVAL (XEXP (XEXP (operands[0], 0), 1)))
- {
- case -8:
- output_asm_insn ("stm%?db\t%m0, %M1", operands);
- return "";
-
- case -4:
- output_asm_insn ("stm%?da\t%m0, %M1", operands);
- return "";
-
- case 4:
- output_asm_insn ("stm%?ib\t%m0, %M1", operands);
- return "";
- }
- }
- if (TARGET_LDRD
- && (GET_CODE (otherops[2]) == REG
- || (GET_CODE (otherops[2]) == CONST_INT
- && INTVAL (otherops[2]) > -256
- && INTVAL (otherops[2]) < 256)))
- {
- otherops[0] = operands[1];
- otherops[1] = XEXP (XEXP (operands[0], 0), 0);
- output_asm_insn ("str%?d\t%0, [%1, %2]", otherops);
- return "";
- }
- /* Fall through */
-
- default:
- otherops[0] = adjust_address (operands[0], SImode, 4);
- otherops[1] = gen_rtx_REG (SImode, 1 + REGNO (operands[1]));
- output_asm_insn ("str%?\t%1, %0", operands);
- output_asm_insn ("str%?\t%1, %0", otherops);
- }
- }
-
- return "";
-}
-
-/* Output an ADD r, s, #n where n may be too big for one instruction.
- If adding zero to one register, output nothing. */
-const char *
-output_add_immediate (rtx *operands)
-{
- HOST_WIDE_INT n = INTVAL (operands[2]);
-
- if (n != 0 || REGNO (operands[0]) != REGNO (operands[1]))
- {
- if (n < 0)
- output_multi_immediate (operands,
- "sub%?\t%0, %1, %2", "sub%?\t%0, %0, %2", 2,
- -n);
- else
- output_multi_immediate (operands,
- "add%?\t%0, %1, %2", "add%?\t%0, %0, %2", 2,
- n);
- }
-
- return "";
-}
-
-/* Output a multiple immediate operation.
- OPERANDS is the vector of operands referred to in the output patterns.
- INSTR1 is the output pattern to use for the first constant.
- INSTR2 is the output pattern to use for subsequent constants.
- IMMED_OP is the index of the constant slot in OPERANDS.
- N is the constant value. */
-static const char *
-output_multi_immediate (rtx *operands, const char *instr1, const char *instr2,
- int immed_op, HOST_WIDE_INT n)
-{
-#if HOST_BITS_PER_WIDE_INT > 32
- n &= 0xffffffff;
-#endif
-
- if (n == 0)
- {
- /* Quick and easy output. */
- operands[immed_op] = const0_rtx;
- output_asm_insn (instr1, operands);
- }
- else
- {
- int i;
- const char * instr = instr1;
-
- /* Note that n is never zero here (which would give no output). */
- for (i = 0; i < 32; i += 2)
- {
- if (n & (3 << i))
- {
- operands[immed_op] = GEN_INT (n & (255 << i));
- output_asm_insn (instr, operands);
- instr = instr2;
- i += 6;
- }
- }
- }
-
- return "";
-}
-
-/* Return the appropriate ARM instruction for the operation code.
- The returned result should not be overwritten. OP is the rtx of the
- operation. SHIFT_FIRST_ARG is TRUE if the first argument of the operator
- was shifted. */
-const char *
-arithmetic_instr (rtx op, int shift_first_arg)
-{
- switch (GET_CODE (op))
- {
- case PLUS:
- return "add";
-
- case MINUS:
- return shift_first_arg ? "rsb" : "sub";
-
- case IOR:
- return "orr";
-
- case XOR:
- return "eor";
-
- case AND:
- return "and";
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Ensure valid constant shifts and return the appropriate shift mnemonic
- for the operation code. The returned result should not be overwritten.
- OP is the rtx code of the shift.
- On exit, *AMOUNTP will be -1 if the shift is by a register, or a constant
- shift. */
-static const char *
-shift_op (rtx op, HOST_WIDE_INT *amountp)
-{
- const char * mnem;
- enum rtx_code code = GET_CODE (op);
-
- switch (GET_CODE (XEXP (op, 1)))
- {
- case REG:
- case SUBREG:
- *amountp = -1;
- break;
-
- case CONST_INT:
- *amountp = INTVAL (XEXP (op, 1));
- break;
-
- default:
- gcc_unreachable ();
- }
-
- switch (code)
- {
- case ASHIFT:
- mnem = "asl";
- break;
-
- case ASHIFTRT:
- mnem = "asr";
- break;
-
- case LSHIFTRT:
- mnem = "lsr";
- break;
-
- case ROTATE:
- gcc_assert (*amountp != -1);
- *amountp = 32 - *amountp;
-
- /* Fall through. */
-
- case ROTATERT:
- mnem = "ror";
- break;
-
- case MULT:
- /* We never have to worry about the amount being other than a
- power of 2, since this case can never be reloaded from a reg. */
- gcc_assert (*amountp != -1);
- *amountp = int_log2 (*amountp);
- return "asl";
-
- default:
- gcc_unreachable ();
- }
-
- if (*amountp != -1)
- {
- /* This is not 100% correct, but follows from the desire to merge
- multiplication by a power of 2 with the recognizer for a
- shift. >=32 is not a valid shift for "asl", so we must try and
- output a shift that produces the correct arithmetical result.
- Using lsr #32 is identical except for the fact that the carry bit
- is not set correctly if we set the flags; but we never use the
- carry bit from such an operation, so we can ignore that. */
- if (code == ROTATERT)
- /* Rotate is just modulo 32. */
- *amountp &= 31;
- else if (*amountp != (*amountp & 31))
- {
- if (code == ASHIFT)
- mnem = "lsr";
- *amountp = 32;
- }
-
- /* Shifts of 0 are no-ops. */
- if (*amountp == 0)
- return NULL;
- }
-
- return mnem;
-}
-
-/* Obtain the shift from the POWER of two. */
-
-static HOST_WIDE_INT
-int_log2 (HOST_WIDE_INT power)
-{
- HOST_WIDE_INT shift = 0;
-
- while ((((HOST_WIDE_INT) 1 << shift) & power) == 0)
- {
- gcc_assert (shift <= 31);
- shift++;
- }
-
- return shift;
-}
-
-/* Output a .ascii pseudo-op, keeping track of lengths. This is
- because /bin/as is horribly restrictive. The judgement about
- whether or not each character is 'printable' (and can be output as
- is) or not (and must be printed with an octal escape) must be made
- with reference to the *host* character set -- the situation is
- similar to that discussed in the comments above pp_c_char in
- c-pretty-print.c. */
-
-#define MAX_ASCII_LEN 51
-
-void
-output_ascii_pseudo_op (FILE *stream, const unsigned char *p, int len)
-{
- int i;
- int len_so_far = 0;
-
- fputs ("\t.ascii\t\"", stream);
-
- for (i = 0; i < len; i++)
- {
- int c = p[i];
-
- if (len_so_far >= MAX_ASCII_LEN)
- {
- fputs ("\"\n\t.ascii\t\"", stream);
- len_so_far = 0;
- }
-
- if (ISPRINT (c))
- {
- if (c == '\\' || c == '\"')
- {
- putc ('\\', stream);
- len_so_far++;
- }
- putc (c, stream);
- len_so_far++;
- }
- else
- {
- fprintf (stream, "\\%03o", c);
- len_so_far += 4;
- }
- }
-
- fputs ("\"\n", stream);
-}
-
-/* Compute the register save mask for registers 0 through 12
- inclusive. This code is used by arm_compute_save_reg_mask. */
-
-static unsigned long
-arm_compute_save_reg0_reg12_mask (void)
-{
- unsigned long func_type = arm_current_func_type ();
- unsigned long save_reg_mask = 0;
- unsigned int reg;
-
- if (IS_INTERRUPT (func_type))
- {
- unsigned int max_reg;
- /* Interrupt functions must not corrupt any registers,
- even call clobbered ones. If this is a leaf function
- we can just examine the registers used by the RTL, but
- otherwise we have to assume that whatever function is
- called might clobber anything, and so we have to save
- all the call-clobbered registers as well. */
- if (ARM_FUNC_TYPE (func_type) == ARM_FT_FIQ)
- /* FIQ handlers have registers r8 - r12 banked, so
- we only need to check r0 - r7, Normal ISRs only
- bank r14 and r15, so we must check up to r12.
- r13 is the stack pointer which is always preserved,
- so we do not need to consider it here. */
- max_reg = 7;
- else
- max_reg = 12;
-
- for (reg = 0; reg <= max_reg; reg++)
- if (regs_ever_live[reg]
- || (! current_function_is_leaf && call_used_regs [reg]))
- save_reg_mask |= (1 << reg);
-
- /* Also save the pic base register if necessary. */
- if (flag_pic
- && !TARGET_SINGLE_PIC_BASE
- && arm_pic_register != INVALID_REGNUM
- && current_function_uses_pic_offset_table)
- save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
- }
- else
- {
- /* In the normal case we only need to save those registers
- which are call saved and which are used by this function. */
- for (reg = 0; reg <= 10; reg++)
- if (regs_ever_live[reg] && ! call_used_regs [reg])
- save_reg_mask |= (1 << reg);
-
- /* Handle the frame pointer as a special case. */
- if (! TARGET_APCS_FRAME
- && ! frame_pointer_needed
- && regs_ever_live[HARD_FRAME_POINTER_REGNUM]
- && ! call_used_regs[HARD_FRAME_POINTER_REGNUM])
- save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;
-
- /* If we aren't loading the PIC register,
- don't stack it even though it may be live. */
- if (flag_pic
- && !TARGET_SINGLE_PIC_BASE
- && arm_pic_register != INVALID_REGNUM
- && (regs_ever_live[PIC_OFFSET_TABLE_REGNUM]
- || current_function_uses_pic_offset_table))
- save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
- }
-
- /* Save registers so the exception handler can modify them. */
- if (current_function_calls_eh_return)
- {
- unsigned int i;
-
- for (i = 0; ; i++)
- {
- reg = EH_RETURN_DATA_REGNO (i);
- if (reg == INVALID_REGNUM)
- break;
- save_reg_mask |= 1 << reg;
- }
- }
-
- return save_reg_mask;
-}
-
-/* Compute a bit mask of which registers need to be
- saved on the stack for the current function. */
-
-static unsigned long
-arm_compute_save_reg_mask (void)
-{
- unsigned int save_reg_mask = 0;
- unsigned long func_type = arm_current_func_type ();
-
- if (IS_NAKED (func_type))
- /* This should never really happen. */
- return 0;
-
- /* If we are creating a stack frame, then we must save the frame pointer,
- IP (which will hold the old stack pointer), LR and the PC. */
- if (frame_pointer_needed)
- save_reg_mask |=
- (1 << ARM_HARD_FRAME_POINTER_REGNUM)
- | (1 << IP_REGNUM)
- | (1 << LR_REGNUM)
- | (1 << PC_REGNUM);
-
- /* Volatile functions do not return, so there
- is no need to save any other registers. */
- if (IS_VOLATILE (func_type))
- return save_reg_mask;
-
- save_reg_mask |= arm_compute_save_reg0_reg12_mask ();
-
- /* Decide if we need to save the link register.
- Interrupt routines have their own banked link register,
- so they never need to save it.
- Otherwise if we do not use the link register we do not need to save
- it. If we are pushing other registers onto the stack however, we
- can save an instruction in the epilogue by pushing the link register
- now and then popping it back into the PC. This incurs extra memory
- accesses though, so we only do it when optimizing for size, and only
- if we know that we will not need a fancy return sequence. */
- if (regs_ever_live [LR_REGNUM]
- || (save_reg_mask
- && optimize_size
- && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
- && !current_function_calls_eh_return))
- save_reg_mask |= 1 << LR_REGNUM;
-
- if (cfun->machine->lr_save_eliminated)
- save_reg_mask &= ~ (1 << LR_REGNUM);
-
- if (TARGET_REALLY_IWMMXT
- && ((bit_count (save_reg_mask)
- + ARM_NUM_INTS (current_function_pretend_args_size)) % 2) != 0)
- {
- unsigned int reg;
-
- /* The total number of registers that are going to be pushed
- onto the stack is odd. We need to ensure that the stack
- is 64-bit aligned before we start to save iWMMXt registers,
- and also before we start to create locals. (A local variable
- might be a double or long long which we will load/store using
- an iWMMXt instruction). Therefore we need to push another
- ARM register, so that the stack will be 64-bit aligned. We
- try to avoid using the arg registers (r0 -r3) as they might be
- used to pass values in a tail call. */
- for (reg = 4; reg <= 12; reg++)
- if ((save_reg_mask & (1 << reg)) == 0)
- break;
-
- if (reg <= 12)
- save_reg_mask |= (1 << reg);
- else
- {
- cfun->machine->sibcall_blocked = 1;
- save_reg_mask |= (1 << 3);
- }
- }
-
- return save_reg_mask;
-}
-
-
-/* Compute a bit mask of which registers need to be
- saved on the stack for the current function. */
-static unsigned long
-thumb_compute_save_reg_mask (void)
-{
- unsigned long mask;
- unsigned reg;
-
- mask = 0;
- for (reg = 0; reg < 12; reg ++)
- if (regs_ever_live[reg] && !call_used_regs[reg])
- mask |= 1 << reg;
-
- if (flag_pic
- && !TARGET_SINGLE_PIC_BASE
- && arm_pic_register != INVALID_REGNUM
- && current_function_uses_pic_offset_table)
- mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
-
- /* See if we might need r11 for calls to _interwork_r11_call_via_rN(). */
- if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
- mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;
-
- /* LR will also be pushed if any lo regs are pushed. */
- if (mask & 0xff || thumb_force_lr_save ())
- mask |= (1 << LR_REGNUM);
-
- /* Make sure we have a low work register if we need one.
- We will need one if we are going to push a high register,
- but we are not currently intending to push a low register. */
- if ((mask & 0xff) == 0
- && ((mask & 0x0f00) || TARGET_BACKTRACE))
- {
- /* Use thumb_find_work_register to choose which register
- we will use. If the register is live then we will
- have to push it. Use LAST_LO_REGNUM as our fallback
- choice for the register to select. */
- reg = thumb_find_work_register (1 << LAST_LO_REGNUM);
-
- if (! call_used_regs[reg])
- mask |= 1 << reg;
- }
-
- return mask;
-}
-
-
-/* Return the number of bytes required to save VFP registers. */
-static int
-arm_get_vfp_saved_size (void)
-{
- unsigned int regno;
- int count;
- int saved;
-
- saved = 0;
- /* Space for saved VFP registers. */
- if (TARGET_HARD_FLOAT && TARGET_VFP)
- {
- count = 0;
- for (regno = FIRST_VFP_REGNUM;
- regno < LAST_VFP_REGNUM;
- regno += 2)
- {
- if ((!regs_ever_live[regno] || call_used_regs[regno])
- && (!regs_ever_live[regno + 1] || call_used_regs[regno + 1]))
- {
- if (count > 0)
- {
- /* Workaround ARM10 VFPr1 bug. */
- if (count == 2 && !arm_arch6)
- count++;
- saved += count * 8 + 4;
- }
- count = 0;
- }
- else
- count++;
- }
- if (count > 0)
- {
- if (count == 2 && !arm_arch6)
- count++;
- saved += count * 8 + 4;
- }
- }
- return saved;
-}
-
-
-/* Generate a function exit sequence. If REALLY_RETURN is false, then do
- everything bar the final return instruction. */
-const char *
-output_return_instruction (rtx operand, int really_return, int reverse)
-{
- char conditional[10];
- char instr[100];
- unsigned reg;
- unsigned long live_regs_mask;
- unsigned long func_type;
- arm_stack_offsets *offsets;
-
- func_type = arm_current_func_type ();
-
- if (IS_NAKED (func_type))
- return "";
-
- if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
- {
- /* If this function was declared non-returning, and we have
- found a tail call, then we have to trust that the called
- function won't return. */
- if (really_return)
- {
- rtx ops[2];
-
- /* Otherwise, trap an attempted return by aborting. */
- ops[0] = operand;
- ops[1] = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)"
- : "abort");
- assemble_external_libcall (ops[1]);
- output_asm_insn (reverse ? "bl%D0\t%a1" : "bl%d0\t%a1", ops);
- }
-
- return "";
- }
-
- gcc_assert (!current_function_calls_alloca || really_return);
-
- sprintf (conditional, "%%?%%%c0", reverse ? 'D' : 'd');
-
- return_used_this_function = 1;
-
- live_regs_mask = arm_compute_save_reg_mask ();
-
- if (live_regs_mask)
- {
- const char * return_reg;
-
- /* If we do not have any special requirements for function exit
- (e.g. interworking, or ISR) then we can load the return address
- directly into the PC. Otherwise we must load it into LR. */
- if (really_return
- && ! TARGET_INTERWORK)
- return_reg = reg_names[PC_REGNUM];
- else
- return_reg = reg_names[LR_REGNUM];
-
- if ((live_regs_mask & (1 << IP_REGNUM)) == (1 << IP_REGNUM))
- {
- /* There are three possible reasons for the IP register
- being saved. 1) a stack frame was created, in which case
- IP contains the old stack pointer, or 2) an ISR routine
- corrupted it, or 3) it was saved to align the stack on
- iWMMXt. In case 1, restore IP into SP, otherwise just
- restore IP. */
- if (frame_pointer_needed)
- {
- live_regs_mask &= ~ (1 << IP_REGNUM);
- live_regs_mask |= (1 << SP_REGNUM);
- }
- else
- gcc_assert (IS_INTERRUPT (func_type) || TARGET_REALLY_IWMMXT);
- }
-
- /* On some ARM architectures it is faster to use LDR rather than
- LDM to load a single register. On other architectures, the
- cost is the same. In 26 bit mode, or for exception handlers,
- we have to use LDM to load the PC so that the CPSR is also
- restored. */
- for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
- if (live_regs_mask == (1U << reg))
- break;
-
- if (reg <= LAST_ARM_REGNUM
- && (reg != LR_REGNUM
- || ! really_return
- || ! IS_INTERRUPT (func_type)))
- {
- sprintf (instr, "ldr%s\t%%|%s, [%%|sp], #4", conditional,
- (reg == LR_REGNUM) ? return_reg : reg_names[reg]);
- }
- else
- {
- char *p;
- int first = 1;
-
- /* Generate the load multiple instruction to restore the
- registers. Note we can get here, even if
- frame_pointer_needed is true, but only if sp already
- points to the base of the saved core registers. */
- if (live_regs_mask & (1 << SP_REGNUM))
- {
- unsigned HOST_WIDE_INT stack_adjust;
-
- offsets = arm_get_frame_offsets ();
- stack_adjust = offsets->outgoing_args - offsets->saved_regs;
- gcc_assert (stack_adjust == 0 || stack_adjust == 4);
-
- if (stack_adjust && arm_arch5)
- sprintf (instr, "ldm%sib\t%%|sp, {", conditional);
- else
- {
- /* If we can't use ldmib (SA110 bug),
- then try to pop r3 instead. */
- if (stack_adjust)
- live_regs_mask |= 1 << 3;
- sprintf (instr, "ldm%sfd\t%%|sp, {", conditional);
- }
- }
- else
- sprintf (instr, "ldm%sfd\t%%|sp!, {", conditional);
-
- p = instr + strlen (instr);
-
- for (reg = 0; reg <= SP_REGNUM; reg++)
- if (live_regs_mask & (1 << reg))
- {
- int l = strlen (reg_names[reg]);
-
- if (first)
- first = 0;
- else
- {
- memcpy (p, ", ", 2);
- p += 2;
- }
-
- memcpy (p, "%|", 2);
- memcpy (p + 2, reg_names[reg], l);
- p += l + 2;
- }
-
- if (live_regs_mask & (1 << LR_REGNUM))
- {
- sprintf (p, "%s%%|%s}", first ? "" : ", ", return_reg);
- /* If returning from an interrupt, restore the CPSR. */
- if (IS_INTERRUPT (func_type))
- strcat (p, "^");
- }
- else
- strcpy (p, "}");
- }
-
- output_asm_insn (instr, & operand);
-
- /* See if we need to generate an extra instruction to
- perform the actual function return. */
- if (really_return
- && func_type != ARM_FT_INTERWORKED
- && (live_regs_mask & (1 << LR_REGNUM)) != 0)
- {
- /* The return has already been handled
- by loading the LR into the PC. */
- really_return = 0;
- }
- }
-
- if (really_return)
- {
- switch ((int) ARM_FUNC_TYPE (func_type))
- {
- case ARM_FT_ISR:
- case ARM_FT_FIQ:
- sprintf (instr, "sub%ss\t%%|pc, %%|lr, #4", conditional);
- break;
-
- case ARM_FT_INTERWORKED:
- sprintf (instr, "bx%s\t%%|lr", conditional);
- break;
-
- case ARM_FT_EXCEPTION:
- sprintf (instr, "mov%ss\t%%|pc, %%|lr", conditional);
- break;
-
- default:
- /* Use bx if it's available. */
- if (arm_arch5 || arm_arch4t)
- sprintf (instr, "bx%s\t%%|lr", conditional);
- else
- sprintf (instr, "mov%s\t%%|pc, %%|lr", conditional);
- break;
- }
-
- output_asm_insn (instr, & operand);
- }
-
- return "";
-}
-
-/* Write the function name into the code section, directly preceding
- the function prologue.
-
- Code will be output similar to this:
- t0
- .ascii "arm_poke_function_name", 0
- .align
- t1
- .word 0xff000000 + (t1 - t0)
- arm_poke_function_name
- mov ip, sp
- stmfd sp!, {fp, ip, lr, pc}
- sub fp, ip, #4
-
- When performing a stack backtrace, code can inspect the value
- of 'pc' stored at 'fp' + 0. If the trace function then looks
- at location pc - 12 and the top 8 bits are set, then we know
- that there is a function name embedded immediately preceding this
- location and has length ((pc[-3]) & 0xff000000).
-
- We assume that pc is declared as a pointer to an unsigned long.
-
- It is of no benefit to output the function name if we are assembling
- a leaf function. These function types will not contain a stack
- backtrace structure, therefore it is not possible to determine the
- function name. */
-void
-arm_poke_function_name (FILE *stream, const char *name)
-{
- unsigned long alignlength;
- unsigned long length;
- rtx x;
-
- length = strlen (name) + 1;
- alignlength = ROUND_UP_WORD (length);
-
- ASM_OUTPUT_ASCII (stream, name, length);
- ASM_OUTPUT_ALIGN (stream, 2);
- x = GEN_INT ((unsigned HOST_WIDE_INT) 0xff000000 + alignlength);
- assemble_aligned_integer (UNITS_PER_WORD, x);
-}
-
-/* Place some comments into the assembler stream
- describing the current function. */
-static void
-arm_output_function_prologue (FILE *f, HOST_WIDE_INT frame_size)
-{
- unsigned long func_type;
-
- if (!TARGET_ARM)
- {
- thumb_output_function_prologue (f, frame_size);
- return;
- }
-
- /* Sanity check. */
- gcc_assert (!arm_ccfsm_state && !arm_target_insn);
-
- func_type = arm_current_func_type ();
-
- switch ((int) ARM_FUNC_TYPE (func_type))
- {
- default:
- case ARM_FT_NORMAL:
- break;
- case ARM_FT_INTERWORKED:
- asm_fprintf (f, "\t%@ Function supports interworking.\n");
- break;
- case ARM_FT_ISR:
- asm_fprintf (f, "\t%@ Interrupt Service Routine.\n");
- break;
- case ARM_FT_FIQ:
- asm_fprintf (f, "\t%@ Fast Interrupt Service Routine.\n");
- break;
- case ARM_FT_EXCEPTION:
- asm_fprintf (f, "\t%@ ARM Exception Handler.\n");
- break;
- }
-
- if (IS_NAKED (func_type))
- asm_fprintf (f, "\t%@ Naked Function: prologue and epilogue provided by programmer.\n");
-
- if (IS_VOLATILE (func_type))
- asm_fprintf (f, "\t%@ Volatile: function does not return.\n");
-
- if (IS_NESTED (func_type))
- asm_fprintf (f, "\t%@ Nested: function declared inside another function.\n");
-
- asm_fprintf (f, "\t%@ args = %d, pretend = %d, frame = %wd\n",
- current_function_args_size,
- current_function_pretend_args_size, frame_size);
-
- asm_fprintf (f, "\t%@ frame_needed = %d, uses_anonymous_args = %d\n",
- frame_pointer_needed,
- cfun->machine->uses_anonymous_args);
-
- if (cfun->machine->lr_save_eliminated)
- asm_fprintf (f, "\t%@ link register save eliminated.\n");
-
- if (current_function_calls_eh_return)
- asm_fprintf (f, "\t@ Calls __builtin_eh_return.\n");
-
-#ifdef AOF_ASSEMBLER
- if (flag_pic)
- asm_fprintf (f, "\tmov\t%r, %r\n", IP_REGNUM, PIC_OFFSET_TABLE_REGNUM);
-#endif
-
- return_used_this_function = 0;
-}
-
-const char *
-arm_output_epilogue (rtx sibling)
-{
- int reg;
- unsigned long saved_regs_mask;
- unsigned long func_type;
- /* Floats_offset is the offset from the "virtual" frame. In an APCS
- frame that is $fp + 4 for a non-variadic function. */
- int floats_offset = 0;
- rtx operands[3];
- FILE * f = asm_out_file;
- unsigned int lrm_count = 0;
- int really_return = (sibling == NULL);
- int start_reg;
- arm_stack_offsets *offsets;
-
- /* If we have already generated the return instruction
- then it is futile to generate anything else. */
- if (use_return_insn (FALSE, sibling) && return_used_this_function)
- return "";
-
- func_type = arm_current_func_type ();
-
- if (IS_NAKED (func_type))
- /* Naked functions don't have epilogues. */
- return "";
-
- if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
- {
- rtx op;
-
- /* A volatile function should never return. Call abort. */
- op = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)" : "abort");
- assemble_external_libcall (op);
- output_asm_insn ("bl\t%a0", &op);
-
- return "";
- }
-
- /* If we are throwing an exception, then we really must be doing a
- return, so we can't tail-call. */
- gcc_assert (!current_function_calls_eh_return || really_return);
-
- offsets = arm_get_frame_offsets ();
- saved_regs_mask = arm_compute_save_reg_mask ();
-
- if (TARGET_IWMMXT)
- lrm_count = bit_count (saved_regs_mask);
-
- floats_offset = offsets->saved_args;
- /* Compute how far away the floats will be. */
- for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
- if (saved_regs_mask & (1 << reg))
- floats_offset += 4;
-
- if (frame_pointer_needed)
- {
- /* This variable is for the Virtual Frame Pointer, not VFP regs. */
- int vfp_offset = offsets->frame;
-
- if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
- {
- for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
- if (regs_ever_live[reg] && !call_used_regs[reg])
- {
- floats_offset += 12;
- asm_fprintf (f, "\tldfe\t%r, [%r, #-%d]\n",
- reg, FP_REGNUM, floats_offset - vfp_offset);
- }
- }
- else
- {
- start_reg = LAST_FPA_REGNUM;
-
- for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
- {
- if (regs_ever_live[reg] && !call_used_regs[reg])
- {
- floats_offset += 12;
-
- /* We can't unstack more than four registers at once. */
- if (start_reg - reg == 3)
- {
- asm_fprintf (f, "\tlfm\t%r, 4, [%r, #-%d]\n",
- reg, FP_REGNUM, floats_offset - vfp_offset);
- start_reg = reg - 1;
- }
- }
- else
- {
- if (reg != start_reg)
- asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
- reg + 1, start_reg - reg,
- FP_REGNUM, floats_offset - vfp_offset);
- start_reg = reg - 1;
- }
- }
-
- /* Just in case the last register checked also needs unstacking. */
- if (reg != start_reg)
- asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
- reg + 1, start_reg - reg,
- FP_REGNUM, floats_offset - vfp_offset);
- }
-
- if (TARGET_HARD_FLOAT && TARGET_VFP)
- {
- int saved_size;
-
- /* The fldmx insn does not have base+offset addressing modes,
- so we use IP to hold the address. */
- saved_size = arm_get_vfp_saved_size ();
-
- if (saved_size > 0)
- {
- floats_offset += saved_size;
- asm_fprintf (f, "\tsub\t%r, %r, #%d\n", IP_REGNUM,
- FP_REGNUM, floats_offset - vfp_offset);
- }
- start_reg = FIRST_VFP_REGNUM;
- for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
- {
- if ((!regs_ever_live[reg] || call_used_regs[reg])
- && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
- {
- if (start_reg != reg)
- arm_output_fldmx (f, IP_REGNUM,
- (start_reg - FIRST_VFP_REGNUM) / 2,
- (reg - start_reg) / 2);
- start_reg = reg + 2;
- }
- }
- if (start_reg != reg)
- arm_output_fldmx (f, IP_REGNUM,
- (start_reg - FIRST_VFP_REGNUM) / 2,
- (reg - start_reg) / 2);
- }
-
- if (TARGET_IWMMXT)
- {
- /* The frame pointer is guaranteed to be non-double-word aligned.
- This is because it is set to (old_stack_pointer - 4) and the
- old_stack_pointer was double word aligned. Thus the offset to
- the iWMMXt registers to be loaded must also be non-double-word
- sized, so that the resultant address *is* double-word aligned.
- We can ignore floats_offset since that was already included in
- the live_regs_mask. */
- lrm_count += (lrm_count % 2 ? 2 : 1);
-
- for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
- if (regs_ever_live[reg] && !call_used_regs[reg])
- {
- asm_fprintf (f, "\twldrd\t%r, [%r, #-%d]\n",
- reg, FP_REGNUM, lrm_count * 4);
- lrm_count += 2;
- }
- }
-
- /* saved_regs_mask should contain the IP, which at the time of stack
- frame generation actually contains the old stack pointer. So a
- quick way to unwind the stack is just pop the IP register directly
- into the stack pointer. */
- gcc_assert (saved_regs_mask & (1 << IP_REGNUM));
- saved_regs_mask &= ~ (1 << IP_REGNUM);
- saved_regs_mask |= (1 << SP_REGNUM);
-
- /* There are two registers left in saved_regs_mask - LR and PC. We
- only need to restore the LR register (the return address), but to
- save time we can load it directly into the PC, unless we need a
- special function exit sequence, or we are not really returning. */
- if (really_return
- && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
- && !current_function_calls_eh_return)
- /* Delete the LR from the register mask, so that the LR on
- the stack is loaded into the PC in the register mask. */
- saved_regs_mask &= ~ (1 << LR_REGNUM);
- else
- saved_regs_mask &= ~ (1 << PC_REGNUM);
-
- /* We must use SP as the base register, because SP is one of the
- registers being restored. If an interrupt or page fault
- happens in the ldm instruction, the SP might or might not
- have been restored. That would be bad, as then SP will no
- longer indicate the safe area of stack, and we can get stack
- corruption. Using SP as the base register means that it will
- be reset correctly to the original value, should an interrupt
- occur. If the stack pointer already points at the right
- place, then omit the subtraction. */
- if (offsets->outgoing_args != (1 + (int) bit_count (saved_regs_mask))
- || current_function_calls_alloca)
- asm_fprintf (f, "\tsub\t%r, %r, #%d\n", SP_REGNUM, FP_REGNUM,
- 4 * bit_count (saved_regs_mask));
- print_multi_reg (f, "ldmfd\t%r", SP_REGNUM, saved_regs_mask);
-
- if (IS_INTERRUPT (func_type))
- /* Interrupt handlers will have pushed the
- IP onto the stack, so restore it now. */
- print_multi_reg (f, "ldmfd\t%r!", SP_REGNUM, 1 << IP_REGNUM);
- }
- else
- {
- /* Restore stack pointer if necessary. */
- if (offsets->outgoing_args != offsets->saved_regs)
- {
- operands[0] = operands[1] = stack_pointer_rtx;
- operands[2] = GEN_INT (offsets->outgoing_args - offsets->saved_regs);
- output_add_immediate (operands);
- }
-
- if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
- {
- for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
- if (regs_ever_live[reg] && !call_used_regs[reg])
- asm_fprintf (f, "\tldfe\t%r, [%r], #12\n",
- reg, SP_REGNUM);
- }
- else
- {
- start_reg = FIRST_FPA_REGNUM;
-
- for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
- {
- if (regs_ever_live[reg] && !call_used_regs[reg])
- {
- if (reg - start_reg == 3)
- {
- asm_fprintf (f, "\tlfmfd\t%r, 4, [%r]!\n",
- start_reg, SP_REGNUM);
- start_reg = reg + 1;
- }
- }
- else
- {
- if (reg != start_reg)
- asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
- start_reg, reg - start_reg,
- SP_REGNUM);
-
- start_reg = reg + 1;
- }
- }
-
- /* Just in case the last register checked also needs unstacking. */
- if (reg != start_reg)
- asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
- start_reg, reg - start_reg, SP_REGNUM);
- }
-
- if (TARGET_HARD_FLOAT && TARGET_VFP)
- {
- start_reg = FIRST_VFP_REGNUM;
- for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
- {
- if ((!regs_ever_live[reg] || call_used_regs[reg])
- && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
- {
- if (start_reg != reg)
- arm_output_fldmx (f, SP_REGNUM,
- (start_reg - FIRST_VFP_REGNUM) / 2,
- (reg - start_reg) / 2);
- start_reg = reg + 2;
- }
- }
- if (start_reg != reg)
- arm_output_fldmx (f, SP_REGNUM,
- (start_reg - FIRST_VFP_REGNUM) / 2,
- (reg - start_reg) / 2);
- }
- if (TARGET_IWMMXT)
- for (reg = FIRST_IWMMXT_REGNUM; reg <= LAST_IWMMXT_REGNUM; reg++)
- if (regs_ever_live[reg] && !call_used_regs[reg])
- asm_fprintf (f, "\twldrd\t%r, [%r], #8\n", reg, SP_REGNUM);
-
- /* If we can, restore the LR into the PC. */
- if (ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
- && really_return
- && current_function_pretend_args_size == 0
- && saved_regs_mask & (1 << LR_REGNUM)
- && !current_function_calls_eh_return)
- {
- saved_regs_mask &= ~ (1 << LR_REGNUM);
- saved_regs_mask |= (1 << PC_REGNUM);
- }
-
- /* Load the registers off the stack. If we only have one register
- to load use the LDR instruction - it is faster. */
- if (saved_regs_mask == (1 << LR_REGNUM))
- {
- asm_fprintf (f, "\tldr\t%r, [%r], #4\n", LR_REGNUM, SP_REGNUM);
- }
- else if (saved_regs_mask)
- {
- if (saved_regs_mask & (1 << SP_REGNUM))
- /* Note - write back to the stack register is not enabled
- (i.e. "ldmfd sp!..."). We know that the stack pointer is
- in the list of registers and if we add writeback the
- instruction becomes UNPREDICTABLE. */
- print_multi_reg (f, "ldmfd\t%r", SP_REGNUM, saved_regs_mask);
- else
- print_multi_reg (f, "ldmfd\t%r!", SP_REGNUM, saved_regs_mask);
- }
-
- if (current_function_pretend_args_size)
- {
- /* Unwind the pre-pushed regs. */
- operands[0] = operands[1] = stack_pointer_rtx;
- operands[2] = GEN_INT (current_function_pretend_args_size);
- output_add_immediate (operands);
- }
- }
-
- /* We may have already restored PC directly from the stack. */
- if (!really_return || saved_regs_mask & (1 << PC_REGNUM))
- return "";
-
- /* Stack adjustment for exception handler. */
- if (current_function_calls_eh_return)
- asm_fprintf (f, "\tadd\t%r, %r, %r\n", SP_REGNUM, SP_REGNUM,
- ARM_EH_STACKADJ_REGNUM);
-
- /* Generate the return instruction. */
- switch ((int) ARM_FUNC_TYPE (func_type))
- {
- case ARM_FT_ISR:
- case ARM_FT_FIQ:
- asm_fprintf (f, "\tsubs\t%r, %r, #4\n", PC_REGNUM, LR_REGNUM);
- break;
-
- case ARM_FT_EXCEPTION:
- asm_fprintf (f, "\tmovs\t%r, %r\n", PC_REGNUM, LR_REGNUM);
- break;
-
- case ARM_FT_INTERWORKED:
- asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
- break;
-
- default:
- if (arm_arch5 || arm_arch4t)
- asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
- else
- asm_fprintf (f, "\tmov\t%r, %r\n", PC_REGNUM, LR_REGNUM);
- break;
- }
-
- return "";
-}
-
-static void
-arm_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
- HOST_WIDE_INT frame_size ATTRIBUTE_UNUSED)
-{
- arm_stack_offsets *offsets;
-
- if (TARGET_THUMB)
- {
- int regno;
-
- /* Emit any call-via-reg trampolines that are needed for v4t support
- of call_reg and call_value_reg type insns. */
- for (regno = 0; regno < LR_REGNUM; regno++)
- {
- rtx label = cfun->machine->call_via[regno];
-
- if (label != NULL)
- {
- switch_to_section (function_section (current_function_decl));
- targetm.asm_out.internal_label (asm_out_file, "L",
- CODE_LABEL_NUMBER (label));
- asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
- }
- }
-
- /* ??? Probably not safe to set this here, since it assumes that a
- function will be emitted as assembly immediately after we generate
- RTL for it. This does not happen for inline functions. */
- return_used_this_function = 0;
- }
- else
- {
- /* We need to take into account any stack-frame rounding. */
- offsets = arm_get_frame_offsets ();
-
- gcc_assert (!use_return_insn (FALSE, NULL)
- || !return_used_this_function
- || offsets->saved_regs == offsets->outgoing_args
- || frame_pointer_needed);
-
- /* Reset the ARM-specific per-function variables. */
- after_arm_reorg = 0;
- }
-}
-
-/* Generate and emit an insn that we will recognize as a push_multi.
- Unfortunately, since this insn does not reflect very well the actual
- semantics of the operation, we need to annotate the insn for the benefit
- of DWARF2 frame unwind information. */
-static rtx
-emit_multi_reg_push (unsigned long mask)
-{
- int num_regs = 0;
- int num_dwarf_regs;
- int i, j;
- rtx par;
- rtx dwarf;
- int dwarf_par_index;
- rtx tmp, reg;
-
- for (i = 0; i <= LAST_ARM_REGNUM; i++)
- if (mask & (1 << i))
- num_regs++;
-
- gcc_assert (num_regs && num_regs <= 16);
-
- /* We don't record the PC in the dwarf frame information. */
- num_dwarf_regs = num_regs;
- if (mask & (1 << PC_REGNUM))
- num_dwarf_regs--;
-
- /* For the body of the insn we are going to generate an UNSPEC in
- parallel with several USEs. This allows the insn to be recognized
- by the push_multi pattern in the arm.md file. The insn looks
- something like this:
-
- (parallel [
- (set (mem:BLK (pre_dec:BLK (reg:SI sp)))
- (unspec:BLK [(reg:SI r4)] UNSPEC_PUSH_MULT))
- (use (reg:SI 11 fp))
- (use (reg:SI 12 ip))
- (use (reg:SI 14 lr))
- (use (reg:SI 15 pc))
- ])
-
- For the frame note however, we try to be more explicit and actually
- show each register being stored into the stack frame, plus a (single)
- decrement of the stack pointer. We do it this way in order to be
- friendly to the stack unwinding code, which only wants to see a single
- stack decrement per instruction. The RTL we generate for the note looks
- something like this:
-
- (sequence [
- (set (reg:SI sp) (plus:SI (reg:SI sp) (const_int -20)))
- (set (mem:SI (reg:SI sp)) (reg:SI r4))
- (set (mem:SI (plus:SI (reg:SI sp) (const_int 4))) (reg:SI fp))
- (set (mem:SI (plus:SI (reg:SI sp) (const_int 8))) (reg:SI ip))
- (set (mem:SI (plus:SI (reg:SI sp) (const_int 12))) (reg:SI lr))
- ])
-
- This sequence is used both by the code to support stack unwinding for
- exceptions handlers and the code to generate dwarf2 frame debugging. */
-
- par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs));
- dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_dwarf_regs + 1));
- dwarf_par_index = 1;
-
- for (i = 0; i <= LAST_ARM_REGNUM; i++)
- {
- if (mask & (1 << i))
- {
- reg = gen_rtx_REG (SImode, i);
-
- XVECEXP (par, 0, 0)
- = gen_rtx_SET (VOIDmode,
- gen_frame_mem (BLKmode,
- gen_rtx_PRE_DEC (BLKmode,
- stack_pointer_rtx)),
- gen_rtx_UNSPEC (BLKmode,
- gen_rtvec (1, reg),
- UNSPEC_PUSH_MULT));
-
- if (i != PC_REGNUM)
- {
- tmp = gen_rtx_SET (VOIDmode,
- gen_frame_mem (SImode, stack_pointer_rtx),
- reg);
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, dwarf_par_index) = tmp;
- dwarf_par_index++;
- }
-
- break;
- }
- }
-
- for (j = 1, i++; j < num_regs; i++)
- {
- if (mask & (1 << i))
- {
- reg = gen_rtx_REG (SImode, i);
-
- XVECEXP (par, 0, j) = gen_rtx_USE (VOIDmode, reg);
-
- if (i != PC_REGNUM)
- {
- tmp
- = gen_rtx_SET (VOIDmode,
- gen_frame_mem (SImode,
- plus_constant (stack_pointer_rtx,
- 4 * j)),
- reg);
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, dwarf_par_index++) = tmp;
- }
-
- j++;
- }
- }
-
- par = emit_insn (par);
-
- tmp = gen_rtx_SET (VOIDmode,
- stack_pointer_rtx,
- plus_constant (stack_pointer_rtx, -4 * num_regs));
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, 0) = tmp;
-
- REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
- REG_NOTES (par));
- return par;
-}
-
-/* Calculate the size of the return value that is passed in registers. */
-static int
-arm_size_return_regs (void)
-{
- enum machine_mode mode;
-
- if (current_function_return_rtx != 0)
- mode = GET_MODE (current_function_return_rtx);
- else
- mode = DECL_MODE (DECL_RESULT (current_function_decl));
-
- return GET_MODE_SIZE (mode);
-}
-
-static rtx
-emit_sfm (int base_reg, int count)
-{
- rtx par;
- rtx dwarf;
- rtx tmp, reg;
- int i;
-
- par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
- dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
-
- reg = gen_rtx_REG (XFmode, base_reg++);
-
- XVECEXP (par, 0, 0)
- = gen_rtx_SET (VOIDmode,
- gen_frame_mem (BLKmode,
- gen_rtx_PRE_DEC (BLKmode,
- stack_pointer_rtx)),
- gen_rtx_UNSPEC (BLKmode,
- gen_rtvec (1, reg),
- UNSPEC_PUSH_MULT));
- tmp = gen_rtx_SET (VOIDmode,
- gen_frame_mem (XFmode, stack_pointer_rtx), reg);
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, 1) = tmp;
-
- for (i = 1; i < count; i++)
- {
- reg = gen_rtx_REG (XFmode, base_reg++);
- XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
-
- tmp = gen_rtx_SET (VOIDmode,
- gen_frame_mem (XFmode,
- plus_constant (stack_pointer_rtx,
- i * 12)),
- reg);
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, i + 1) = tmp;
- }
-
- tmp = gen_rtx_SET (VOIDmode,
- stack_pointer_rtx,
- plus_constant (stack_pointer_rtx, -12 * count));
-
- RTX_FRAME_RELATED_P (tmp) = 1;
- XVECEXP (dwarf, 0, 0) = tmp;
-
- par = emit_insn (par);
- REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
- REG_NOTES (par));
- return par;
-}
-
-
-/* Return true if the current function needs to save/restore LR. */
-
-static bool
-thumb_force_lr_save (void)
-{
- return !cfun->machine->lr_save_eliminated
- && (!leaf_function_p ()
- || thumb_far_jump_used_p ()
- || regs_ever_live [LR_REGNUM]);
-}
-
-
-/* Compute the distance from register FROM to register TO.
- These can be the arg pointer (26), the soft frame pointer (25),
- the stack pointer (13) or the hard frame pointer (11).
- In thumb mode r7 is used as the soft frame pointer, if needed.
- Typical stack layout looks like this:
-
- old stack pointer -> | |
- ----
- | | \
- | | saved arguments for
- | | vararg functions
- | | /
- --
- hard FP & arg pointer -> | | \
- | | stack
- | | frame
- | | /
- --
- | | \
- | | call saved
- | | registers
- soft frame pointer -> | | /
- --
- | | \
- | | local
- | | variables
- locals base pointer -> | | /
- --
- | | \
- | | outgoing
- | | arguments
- current stack pointer -> | | /
- --
-
- For a given function some or all of these stack components
- may not be needed, giving rise to the possibility of
- eliminating some of the registers.
-
- The values returned by this function must reflect the behavior
- of arm_expand_prologue() and arm_compute_save_reg_mask().
-
- The sign of the number returned reflects the direction of stack
- growth, so the values are positive for all eliminations except
- from the soft frame pointer to the hard frame pointer.
-
- SFP may point just inside the local variables block to ensure correct
- alignment. */
-
-
-/* Calculate stack offsets. These are used to calculate register elimination
- offsets and in prologue/epilogue code. */
-
-static arm_stack_offsets *
-arm_get_frame_offsets (void)
-{
- struct arm_stack_offsets *offsets;
- unsigned long func_type;
- int leaf;
- int saved;
- HOST_WIDE_INT frame_size;
-
- offsets = &cfun->machine->stack_offsets;
-
- /* We need to know if we are a leaf function. Unfortunately, it
- is possible to be called after start_sequence has been called,
- which causes get_insns to return the insns for the sequence,
- not the function, which will cause leaf_function_p to return
- the incorrect result.
-
- to know about leaf functions once reload has completed, and the
- frame size cannot be changed after that time, so we can safely
- use the cached value. */
-
- if (reload_completed)
- return offsets;
-
- /* Initially this is the size of the local variables. It will translated
- into an offset once we have determined the size of preceding data. */
- frame_size = ROUND_UP_WORD (get_frame_size ());
-
- leaf = leaf_function_p ();
-
- /* Space for variadic functions. */
- offsets->saved_args = current_function_pretend_args_size;
-
- offsets->frame = offsets->saved_args + (frame_pointer_needed ? 4 : 0);
-
- if (TARGET_ARM)
- {
- unsigned int regno;
-
- saved = bit_count (arm_compute_save_reg_mask ()) * 4;
-
- /* We know that SP will be doubleword aligned on entry, and we must
- preserve that condition at any subroutine call. We also require the
- soft frame pointer to be doubleword aligned. */
-
- if (TARGET_REALLY_IWMMXT)
- {
- /* Check for the call-saved iWMMXt registers. */
- for (regno = FIRST_IWMMXT_REGNUM;
- regno <= LAST_IWMMXT_REGNUM;
- regno++)
- if (regs_ever_live [regno] && ! call_used_regs [regno])
- saved += 8;
- }
-
- func_type = arm_current_func_type ();
- if (! IS_VOLATILE (func_type))
- {
- /* Space for saved FPA registers. */
- for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
- if (regs_ever_live[regno] && ! call_used_regs[regno])
- saved += 12;
-
- /* Space for saved VFP registers. */
- if (TARGET_HARD_FLOAT && TARGET_VFP)
- saved += arm_get_vfp_saved_size ();
- }
- }
- else /* TARGET_THUMB */
- {
- saved = bit_count (thumb_compute_save_reg_mask ()) * 4;
- if (TARGET_BACKTRACE)
- saved += 16;
- }
-
- /* Saved registers include the stack frame. */
- offsets->saved_regs = offsets->saved_args + saved;
- offsets->soft_frame = offsets->saved_regs + CALLER_INTERWORKING_SLOT_SIZE;
- /* A leaf function does not need any stack alignment if it has nothing
- on the stack. */
- if (leaf && frame_size == 0)
- {
- offsets->outgoing_args = offsets->soft_frame;
- offsets->locals_base = offsets->soft_frame;
- return offsets;
- }
-
- /* Ensure SFP has the correct alignment. */
- if (ARM_DOUBLEWORD_ALIGN
- && (offsets->soft_frame & 7))
- offsets->soft_frame += 4;
-
- offsets->locals_base = offsets->soft_frame + frame_size;
- offsets->outgoing_args = (offsets->locals_base
- + current_function_outgoing_args_size);
-
- if (ARM_DOUBLEWORD_ALIGN)
- {
- /* Ensure SP remains doubleword aligned. */
- if (offsets->outgoing_args & 7)
- offsets->outgoing_args += 4;
- gcc_assert (!(offsets->outgoing_args & 7));
- }
-
- return offsets;
-}
-
-
-/* Calculate the relative offsets for the different stack pointers. Positive
- offsets are in the direction of stack growth. */
-
-HOST_WIDE_INT
-arm_compute_initial_elimination_offset (unsigned int from, unsigned int to)
-{
- arm_stack_offsets *offsets;
-
- offsets = arm_get_frame_offsets ();
-
- /* OK, now we have enough information to compute the distances.
- There must be an entry in these switch tables for each pair
- of registers in ELIMINABLE_REGS, even if some of the entries
- seem to be redundant or useless. */
- switch (from)
- {
- case ARG_POINTER_REGNUM:
- switch (to)
- {
- case THUMB_HARD_FRAME_POINTER_REGNUM:
- return 0;
-
- case FRAME_POINTER_REGNUM:
- /* This is the reverse of the soft frame pointer
- to hard frame pointer elimination below. */
- return offsets->soft_frame - offsets->saved_args;
-
- case ARM_HARD_FRAME_POINTER_REGNUM:
- /* If there is no stack frame then the hard
- frame pointer and the arg pointer coincide. */
- if (offsets->frame == offsets->saved_regs)
- return 0;
- /* FIXME: Not sure about this. Maybe we should always return 0 ? */
- return (frame_pointer_needed
- && cfun->static_chain_decl != NULL
- && ! cfun->machine->uses_anonymous_args) ? 4 : 0;
-
- case STACK_POINTER_REGNUM:
- /* If nothing has been pushed on the stack at all
- then this will return -4. This *is* correct! */
- return offsets->outgoing_args - (offsets->saved_args + 4);
-
- default:
- gcc_unreachable ();
- }
- gcc_unreachable ();
-
- case FRAME_POINTER_REGNUM:
- switch (to)
- {
- case THUMB_HARD_FRAME_POINTER_REGNUM:
- return 0;
-
- case ARM_HARD_FRAME_POINTER_REGNUM:
- /* The hard frame pointer points to the top entry in the
- stack frame. The soft frame pointer to the bottom entry
- in the stack frame. If there is no stack frame at all,
- then they are identical. */
-
- return offsets->frame - offsets->soft_frame;
-
- case STACK_POINTER_REGNUM:
- return offsets->outgoing_args - offsets->soft_frame;
-
- default:
- gcc_unreachable ();
- }
- gcc_unreachable ();
-
- default:
- /* You cannot eliminate from the stack pointer.
- In theory you could eliminate from the hard frame
- pointer to the stack pointer, but this will never
- happen, since if a stack frame is not needed the
- hard frame pointer will never be used. */
- gcc_unreachable ();
- }
-}
-
-
-/* Generate the prologue instructions for entry into an ARM function. */
-void
-arm_expand_prologue (void)
-{
- int reg;
- rtx amount;
- rtx insn;
- rtx ip_rtx;
- unsigned long live_regs_mask;
- unsigned long func_type;
- int fp_offset = 0;
- int saved_pretend_args = 0;
- int saved_regs = 0;
- unsigned HOST_WIDE_INT args_to_push;
- arm_stack_offsets *offsets;
-
- func_type = arm_current_func_type ();
-
- /* Naked functions don't have prologues. */
- if (IS_NAKED (func_type))
- return;
-
- /* Make a copy of c_f_p_a_s as we may need to modify it locally. */
- args_to_push = current_function_pretend_args_size;
-
- /* Compute which register we will have to save onto the stack. */
- live_regs_mask = arm_compute_save_reg_mask ();
-
- ip_rtx = gen_rtx_REG (SImode, IP_REGNUM);
-
- if (frame_pointer_needed)
- {
- if (IS_INTERRUPT (func_type))
- {
- /* Interrupt functions must not corrupt any registers.
- Creating a frame pointer however, corrupts the IP
- register, so we must push it first. */
- insn = emit_multi_reg_push (1 << IP_REGNUM);
-
- /* Do not set RTX_FRAME_RELATED_P on this insn.
- The dwarf stack unwinding code only wants to see one
- stack decrement per function, and this is not it. If
- this instruction is labeled as being part of the frame
- creation sequence then dwarf2out_frame_debug_expr will
- die when it encounters the assignment of IP to FP
- later on, since the use of SP here establishes SP as
- the CFA register and not IP.
-
- Anyway this instruction is not really part of the stack
- frame creation although it is part of the prologue. */
- }
- else if (IS_NESTED (func_type))
- {
- /* The Static chain register is the same as the IP register
- used as a scratch register during stack frame creation.
- To get around this need to find somewhere to store IP
- whilst the frame is being created. We try the following
- places in order:
-
- 1. The last argument register.
- 2. A slot on the stack above the frame. (This only
- works if the function is not a varargs function).
- 3. Register r3, after pushing the argument registers
- onto the stack.
-
- Note - we only need to tell the dwarf2 backend about the SP
- adjustment in the second variant; the static chain register
- doesn't need to be unwound, as it doesn't contain a value
- inherited from the caller. */
-
- if (regs_ever_live[3] == 0)
- insn = emit_set_insn (gen_rtx_REG (SImode, 3), ip_rtx);
- else if (args_to_push == 0)
- {
- rtx dwarf;
-
- insn = gen_rtx_PRE_DEC (SImode, stack_pointer_rtx);
- insn = emit_set_insn (gen_frame_mem (SImode, insn), ip_rtx);
- fp_offset = 4;
-
- /* Just tell the dwarf backend that we adjusted SP. */
- dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
- plus_constant (stack_pointer_rtx,
- -fp_offset));
- RTX_FRAME_RELATED_P (insn) = 1;
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
- dwarf, REG_NOTES (insn));
- }
- else
- {
- /* Store the args on the stack. */
- if (cfun->machine->uses_anonymous_args)
- insn = emit_multi_reg_push
- ((0xf0 >> (args_to_push / 4)) & 0xf);
- else
- insn = emit_insn
- (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
- GEN_INT (- args_to_push)));
-
- RTX_FRAME_RELATED_P (insn) = 1;
-
- saved_pretend_args = 1;
- fp_offset = args_to_push;
- args_to_push = 0;
-
- /* Now reuse r3 to preserve IP. */
- emit_set_insn (gen_rtx_REG (SImode, 3), ip_rtx);
- }
- }
-
- insn = emit_set_insn (ip_rtx,
- plus_constant (stack_pointer_rtx, fp_offset));
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- if (args_to_push)
- {
- /* Push the argument registers, or reserve space for them. */
- if (cfun->machine->uses_anonymous_args)
- insn = emit_multi_reg_push
- ((0xf0 >> (args_to_push / 4)) & 0xf);
- else
- insn = emit_insn
- (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
- GEN_INT (- args_to_push)));
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- /* If this is an interrupt service routine, and the link register
- is going to be pushed, and we are not creating a stack frame,
- (which would involve an extra push of IP and a pop in the epilogue)
- subtracting four from LR now will mean that the function return
- can be done with a single instruction. */
- if ((func_type == ARM_FT_ISR || func_type == ARM_FT_FIQ)
- && (live_regs_mask & (1 << LR_REGNUM)) != 0
- && ! frame_pointer_needed)
- {
- rtx lr = gen_rtx_REG (SImode, LR_REGNUM);
-
- emit_set_insn (lr, plus_constant (lr, -4));
- }
-
- if (live_regs_mask)
- {
- insn = emit_multi_reg_push (live_regs_mask);
- saved_regs += bit_count (live_regs_mask) * 4;
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- if (TARGET_IWMMXT)
- for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
- if (regs_ever_live[reg] && ! call_used_regs [reg])
- {
- insn = gen_rtx_PRE_DEC (V2SImode, stack_pointer_rtx);
- insn = gen_frame_mem (V2SImode, insn);
- insn = emit_set_insn (insn, gen_rtx_REG (V2SImode, reg));
- RTX_FRAME_RELATED_P (insn) = 1;
- saved_regs += 8;
- }
-
- if (! IS_VOLATILE (func_type))
- {
- int start_reg;
-
- /* Save any floating point call-saved registers used by this
- function. */
- if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
- {
- for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
- if (regs_ever_live[reg] && !call_used_regs[reg])
- {
- insn = gen_rtx_PRE_DEC (XFmode, stack_pointer_rtx);
- insn = gen_frame_mem (XFmode, insn);
- insn = emit_set_insn (insn, gen_rtx_REG (XFmode, reg));
- RTX_FRAME_RELATED_P (insn) = 1;
- saved_regs += 12;
- }
- }
- else
- {
- start_reg = LAST_FPA_REGNUM;
-
- for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
- {
- if (regs_ever_live[reg] && !call_used_regs[reg])
- {
- if (start_reg - reg == 3)
- {
- insn = emit_sfm (reg, 4);
- RTX_FRAME_RELATED_P (insn) = 1;
- saved_regs += 48;
- start_reg = reg - 1;
- }
- }
- else
- {
- if (start_reg != reg)
- {
- insn = emit_sfm (reg + 1, start_reg - reg);
- RTX_FRAME_RELATED_P (insn) = 1;
- saved_regs += (start_reg - reg) * 12;
- }
- start_reg = reg - 1;
- }
- }
-
- if (start_reg != reg)
- {
- insn = emit_sfm (reg + 1, start_reg - reg);
- saved_regs += (start_reg - reg) * 12;
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- }
- if (TARGET_HARD_FLOAT && TARGET_VFP)
- {
- start_reg = FIRST_VFP_REGNUM;
-
- for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
- {
- if ((!regs_ever_live[reg] || call_used_regs[reg])
- && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
- {
- if (start_reg != reg)
- saved_regs += vfp_emit_fstmx (start_reg,
- (reg - start_reg) / 2);
- start_reg = reg + 2;
- }
- }
- if (start_reg != reg)
- saved_regs += vfp_emit_fstmx (start_reg,
- (reg - start_reg) / 2);
- }
- }
-
- if (frame_pointer_needed)
- {
- /* Create the new frame pointer. */
- insn = GEN_INT (-(4 + args_to_push + fp_offset));
- insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, ip_rtx, insn));
- RTX_FRAME_RELATED_P (insn) = 1;
-
- if (IS_NESTED (func_type))
- {
- /* Recover the static chain register. */
- if (regs_ever_live [3] == 0
- || saved_pretend_args)
- insn = gen_rtx_REG (SImode, 3);
- else /* if (current_function_pretend_args_size == 0) */
- {
- insn = plus_constant (hard_frame_pointer_rtx, 4);
- insn = gen_frame_mem (SImode, insn);
- }
-
- emit_set_insn (ip_rtx, insn);
- /* Add a USE to stop propagate_one_insn() from barfing. */
- emit_insn (gen_prologue_use (ip_rtx));
- }
- }
-
- offsets = arm_get_frame_offsets ();
- if (offsets->outgoing_args != offsets->saved_args + saved_regs)
- {
- /* This add can produce multiple insns for a large constant, so we
- need to get tricky. */
- rtx last = get_last_insn ();
-
- amount = GEN_INT (offsets->saved_args + saved_regs
- - offsets->outgoing_args);
-
- insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
- amount));
- do
- {
- last = last ? NEXT_INSN (last) : get_insns ();
- RTX_FRAME_RELATED_P (last) = 1;
- }
- while (last != insn);
-
- /* If the frame pointer is needed, emit a special barrier that
- will prevent the scheduler from moving stores to the frame
- before the stack adjustment. */
- if (frame_pointer_needed)
- insn = emit_insn (gen_stack_tie (stack_pointer_rtx,
- hard_frame_pointer_rtx));
- }
-
-
- if (flag_pic && arm_pic_register != INVALID_REGNUM)
- arm_load_pic_register (0UL);
-
- /* If we are profiling, make sure no instructions are scheduled before
- the call to mcount. Similarly if the user has requested no
- scheduling in the prolog. Similarly if we want non-call exceptions
- using the EABI unwinder, to prevent faulting instructions from being
- swapped with a stack adjustment. */
- if (current_function_profile || !TARGET_SCHED_PROLOG
- || (ARM_EABI_UNWIND_TABLES && flag_non_call_exceptions))
- emit_insn (gen_blockage ());
-
- /* If the link register is being kept alive, with the return address in it,
- then make sure that it does not get reused by the ce2 pass. */
- if ((live_regs_mask & (1 << LR_REGNUM)) == 0)
- {
- emit_insn (gen_prologue_use (gen_rtx_REG (SImode, LR_REGNUM)));
- cfun->machine->lr_save_eliminated = 1;
- }
-}
-
-/* If CODE is 'd', then the X is a condition operand and the instruction
- should only be executed if the condition is true.
- if CODE is 'D', then the X is a condition operand and the instruction
- should only be executed if the condition is false: however, if the mode
- of the comparison is CCFPEmode, then always execute the instruction -- we
- do this because in these circumstances !GE does not necessarily imply LT;
- in these cases the instruction pattern will take care to make sure that
- an instruction containing %d will follow, thereby undoing the effects of
- doing this instruction unconditionally.
- If CODE is 'N' then X is a floating point operand that must be negated
- before output.
- If CODE is 'B' then output a bitwise inverted value of X (a const int).
- If X is a REG and CODE is `M', output a ldm/stm style multi-reg. */
-void
-arm_print_operand (FILE *stream, rtx x, int code)
-{
- switch (code)
- {
- case '@':
- fputs (ASM_COMMENT_START, stream);
- return;
-
- case '_':
- fputs (user_label_prefix, stream);
- return;
-
- case '|':
- fputs (REGISTER_PREFIX, stream);
- return;
-
- case '?':
- if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4)
- {
- if (TARGET_THUMB)
- {
- output_operand_lossage ("predicated Thumb instruction");
- break;
- }
- if (current_insn_predicate != NULL)
- {
- output_operand_lossage
- ("predicated instruction in conditional sequence");
- break;
- }
-
- fputs (arm_condition_codes[arm_current_cc], stream);
- }
- else if (current_insn_predicate)
- {
- enum arm_cond_code code;
-
- if (TARGET_THUMB)
- {
- output_operand_lossage ("predicated Thumb instruction");
- break;
- }
-
- code = get_arm_condition_code (current_insn_predicate);
- fputs (arm_condition_codes[code], stream);
- }
- return;
-
- case 'N':
- {
- REAL_VALUE_TYPE r;
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- r = REAL_VALUE_NEGATE (r);
- fprintf (stream, "%s", fp_const_from_val (&r));
- }
- return;
-
- case 'B':
- if (GET_CODE (x) == CONST_INT)
- {
- HOST_WIDE_INT val;
- val = ARM_SIGN_EXTEND (~INTVAL (x));
- fprintf (stream, HOST_WIDE_INT_PRINT_DEC, val);
- }
- else
- {
- putc ('~', stream);
- output_addr_const (stream, x);
- }
- return;
-
- case 'i':
- fprintf (stream, "%s", arithmetic_instr (x, 1));
- return;
-
- /* Truncate Cirrus shift counts. */
- case 's':
- if (GET_CODE (x) == CONST_INT)
- {
- fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0x3f);
- return;
- }
- arm_print_operand (stream, x, 0);
- return;
-
- case 'I':
- fprintf (stream, "%s", arithmetic_instr (x, 0));
- return;
-
- case 'S':
- {
- HOST_WIDE_INT val;
- const char *shift;
-
- if (!shift_operator (x, SImode))
- {
- output_operand_lossage ("invalid shift operand");
- break;
- }
-
- shift = shift_op (x, &val);
-
- if (shift)
- {
- fprintf (stream, ", %s ", shift);
- if (val == -1)
- arm_print_operand (stream, XEXP (x, 1), 0);
- else
- fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, val);
- }
- }
- return;
-
- /* An explanation of the 'Q', 'R' and 'H' register operands:
-
- In a pair of registers containing a DI or DF value the 'Q'
- operand returns the register number of the register containing
- the least significant part of the value. The 'R' operand returns
- the register number of the register containing the most
- significant part of the value.
-
- The 'H' operand returns the higher of the two register numbers.
- On a run where WORDS_BIG_ENDIAN is true the 'H' operand is the
- same as the 'Q' operand, since the most significant part of the
- value is held in the lower number register. The reverse is true
- on systems where WORDS_BIG_ENDIAN is false.
-
- The purpose of these operands is to distinguish between cases
- where the endian-ness of the values is important (for example
- when they are added together), and cases where the endian-ness
- is irrelevant, but the order of register operations is important.
- For example when loading a value from memory into a register
- pair, the endian-ness does not matter. Provided that the value
- from the lower memory address is put into the lower numbered
- register, and the value from the higher address is put into the
- higher numbered register, the load will work regardless of whether
- the value being loaded is big-wordian or little-wordian. The
- order of the two register loads can matter however, if the address
- of the memory location is actually held in one of the registers
- being overwritten by the load. */
- case 'Q':
- if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 1 : 0));
- return;
-
- case 'R':
- if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 0 : 1));
- return;
-
- case 'H':
- if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- asm_fprintf (stream, "%r", REGNO (x) + 1);
- return;
-
- case 'm':
- asm_fprintf (stream, "%r",
- GET_CODE (XEXP (x, 0)) == REG
- ? REGNO (XEXP (x, 0)) : REGNO (XEXP (XEXP (x, 0), 0)));
- return;
-
- case 'M':
- asm_fprintf (stream, "{%r-%r}",
- REGNO (x),
- REGNO (x) + ARM_NUM_REGS (GET_MODE (x)) - 1);
- return;
-
- case 'd':
- /* CONST_TRUE_RTX means always -- that's the default. */
- if (x == const_true_rtx)
- return;
-
- if (!COMPARISON_P (x))
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- fputs (arm_condition_codes[get_arm_condition_code (x)],
- stream);
- return;
-
- case 'D':
- /* CONST_TRUE_RTX means not always -- i.e. never. We shouldn't ever
- want to do that. */
- if (x == const_true_rtx)
- {
- output_operand_lossage ("instruction never exectued");
- return;
- }
- if (!COMPARISON_P (x))
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- fputs (arm_condition_codes[ARM_INVERSE_CONDITION_CODE
- (get_arm_condition_code (x))],
- stream);
- return;
-
- /* Cirrus registers can be accessed in a variety of ways:
- single floating point (f)
- double floating point (d)
- 32bit integer (fx)
- 64bit integer (dx). */
- case 'W': /* Cirrus register in F mode. */
- case 'X': /* Cirrus register in D mode. */
- case 'Y': /* Cirrus register in FX mode. */
- case 'Z': /* Cirrus register in DX mode. */
- gcc_assert (GET_CODE (x) == REG
- && REGNO_REG_CLASS (REGNO (x)) == CIRRUS_REGS);
-
- fprintf (stream, "mv%s%s",
- code == 'W' ? "f"
- : code == 'X' ? "d"
- : code == 'Y' ? "fx" : "dx", reg_names[REGNO (x)] + 2);
-
- return;
-
- /* Print cirrus register in the mode specified by the register's mode. */
- case 'V':
- {
- int mode = GET_MODE (x);
-
- if (GET_CODE (x) != REG || REGNO_REG_CLASS (REGNO (x)) != CIRRUS_REGS)
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- fprintf (stream, "mv%s%s",
- mode == DFmode ? "d"
- : mode == SImode ? "fx"
- : mode == DImode ? "dx"
- : "f", reg_names[REGNO (x)] + 2);
-
- return;
- }
-
- case 'U':
- if (GET_CODE (x) != REG
- || REGNO (x) < FIRST_IWMMXT_GR_REGNUM
- || REGNO (x) > LAST_IWMMXT_GR_REGNUM)
- /* Bad value for wCG register number. */
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- else
- fprintf (stream, "%d", REGNO (x) - FIRST_IWMMXT_GR_REGNUM);
- return;
-
- /* Print an iWMMXt control register name. */
- case 'w':
- if (GET_CODE (x) != CONST_INT
- || INTVAL (x) < 0
- || INTVAL (x) >= 16)
- /* Bad value for wC register number. */
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- else
- {
- static const char * wc_reg_names [16] =
- {
- "wCID", "wCon", "wCSSF", "wCASF",
- "wC4", "wC5", "wC6", "wC7",
- "wCGR0", "wCGR1", "wCGR2", "wCGR3",
- "wC12", "wC13", "wC14", "wC15"
- };
-
- fprintf (stream, wc_reg_names [INTVAL (x)]);
- }
- return;
-
- /* Print a VFP double precision register name. */
- case 'P':
- {
- int mode = GET_MODE (x);
- int num;
-
- if (mode != DImode && mode != DFmode)
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- if (GET_CODE (x) != REG
- || !IS_VFP_REGNUM (REGNO (x)))
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- num = REGNO(x) - FIRST_VFP_REGNUM;
- if (num & 1)
- {
- output_operand_lossage ("invalid operand for code '%c'", code);
- return;
- }
-
- fprintf (stream, "d%d", num >> 1);
- }
- return;
-
- default:
- if (x == 0)
- {
- output_operand_lossage ("missing operand");
- return;
- }
-
- switch (GET_CODE (x))
- {
- case REG:
- asm_fprintf (stream, "%r", REGNO (x));
- break;
-
- case MEM:
- output_memory_reference_mode = GET_MODE (x);
- output_address (XEXP (x, 0));
- break;
-
- case CONST_DOUBLE:
- fprintf (stream, "#%s", fp_immediate_constant (x));
- break;
-
- default:
- gcc_assert (GET_CODE (x) != NEG);
- fputc ('#', stream);
- output_addr_const (stream, x);
- break;
- }
- }
-}
-
-#ifndef AOF_ASSEMBLER
-/* Target hook for assembling integer objects. The ARM version needs to
- handle word-sized values specially. */
-static bool
-arm_assemble_integer (rtx x, unsigned int size, int aligned_p)
-{
- if (size == UNITS_PER_WORD && aligned_p)
- {
- fputs ("\t.word\t", asm_out_file);
- output_addr_const (asm_out_file, x);
-
- /* Mark symbols as position independent. We only do this in the
- .text segment, not in the .data segment. */
- if (NEED_GOT_RELOC && flag_pic && making_const_table &&
- (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF))
- {
- if (GET_CODE (x) == SYMBOL_REF
- && (CONSTANT_POOL_ADDRESS_P (x)
- || SYMBOL_REF_LOCAL_P (x)))
- fputs ("(GOTOFF)", asm_out_file);
- else if (GET_CODE (x) == LABEL_REF)
- fputs ("(GOTOFF)", asm_out_file);
- else
- fputs ("(GOT)", asm_out_file);
- }
- fputc ('\n', asm_out_file);
- return true;
- }
-
- if (arm_vector_mode_supported_p (GET_MODE (x)))
- {
- int i, units;
-
- gcc_assert (GET_CODE (x) == CONST_VECTOR);
-
- units = CONST_VECTOR_NUNITS (x);
-
- switch (GET_MODE (x))
- {
- case V2SImode: size = 4; break;
- case V4HImode: size = 2; break;
- case V8QImode: size = 1; break;
- default:
- gcc_unreachable ();
- }
-
- for (i = 0; i < units; i++)
- {
- rtx elt;
-
- elt = CONST_VECTOR_ELT (x, i);
- assemble_integer
- (elt, size, i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT, 1);
- }
-
- return true;
- }
-
- return default_assemble_integer (x, size, aligned_p);
-}
-
-
-/* Add a function to the list of static constructors. */
-
-static void
-arm_elf_asm_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
-{
- if (!TARGET_AAPCS_BASED)
- {
- default_named_section_asm_out_constructor (symbol, priority);
- return;
- }
-
- /* Put these in the .init_array section, using a special relocation. */
- switch_to_section (ctors_section);
- assemble_align (POINTER_SIZE);
- fputs ("\t.word\t", asm_out_file);
- output_addr_const (asm_out_file, symbol);
- fputs ("(target1)\n", asm_out_file);
-}
-#endif
-
-/* A finite state machine takes care of noticing whether or not instructions
- can be conditionally executed, and thus decrease execution time and code
- size by deleting branch instructions. The fsm is controlled by
- final_prescan_insn, and controls the actions of ASM_OUTPUT_OPCODE. */
-
-/* The state of the fsm controlling condition codes are:
- 0: normal, do nothing special
- 1: make ASM_OUTPUT_OPCODE not output this instruction
- 2: make ASM_OUTPUT_OPCODE not output this instruction
- 3: make instructions conditional
- 4: make instructions conditional
-
- State transitions (state->state by whom under condition):
- 0 -> 1 final_prescan_insn if the `target' is a label
- 0 -> 2 final_prescan_insn if the `target' is an unconditional branch
- 1 -> 3 ASM_OUTPUT_OPCODE after not having output the conditional branch
- 2 -> 4 ASM_OUTPUT_OPCODE after not having output the conditional branch
- 3 -> 0 (*targetm.asm_out.internal_label) if the `target' label is reached
- (the target label has CODE_LABEL_NUMBER equal to arm_target_label).
- 4 -> 0 final_prescan_insn if the `target' unconditional branch is reached
- (the target insn is arm_target_insn).
-
- If the jump clobbers the conditions then we use states 2 and 4.
-
- A similar thing can be done with conditional return insns.
-
- XXX In case the `target' is an unconditional branch, this conditionalising
- of the instructions always reduces code size, but not always execution
- time. But then, I want to reduce the code size to somewhere near what
- /bin/cc produces. */
-
-/* Returns the index of the ARM condition code string in
- `arm_condition_codes'. COMPARISON should be an rtx like
- `(eq (...) (...))'. */
-static enum arm_cond_code
-get_arm_condition_code (rtx comparison)
-{
- enum machine_mode mode = GET_MODE (XEXP (comparison, 0));
- int code;
- enum rtx_code comp_code = GET_CODE (comparison);
-
- if (GET_MODE_CLASS (mode) != MODE_CC)
- mode = SELECT_CC_MODE (comp_code, XEXP (comparison, 0),
- XEXP (comparison, 1));
-
- switch (mode)
- {
- case CC_DNEmode: code = ARM_NE; goto dominance;
- case CC_DEQmode: code = ARM_EQ; goto dominance;
- case CC_DGEmode: code = ARM_GE; goto dominance;
- case CC_DGTmode: code = ARM_GT; goto dominance;
- case CC_DLEmode: code = ARM_LE; goto dominance;
- case CC_DLTmode: code = ARM_LT; goto dominance;
- case CC_DGEUmode: code = ARM_CS; goto dominance;
- case CC_DGTUmode: code = ARM_HI; goto dominance;
- case CC_DLEUmode: code = ARM_LS; goto dominance;
- case CC_DLTUmode: code = ARM_CC;
-
- dominance:
- gcc_assert (comp_code == EQ || comp_code == NE);
-
- if (comp_code == EQ)
- return ARM_INVERSE_CONDITION_CODE (code);
- return code;
-
- case CC_NOOVmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case GE: return ARM_PL;
- case LT: return ARM_MI;
- default: gcc_unreachable ();
- }
-
- case CC_Zmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- default: gcc_unreachable ();
- }
-
- case CC_Nmode:
- switch (comp_code)
- {
- case NE: return ARM_MI;
- case EQ: return ARM_PL;
- default: gcc_unreachable ();
- }
-
- case CCFPEmode:
- case CCFPmode:
- /* These encodings assume that AC=1 in the FPA system control
- byte. This allows us to handle all cases except UNEQ and
- LTGT. */
- switch (comp_code)
- {
- case GE: return ARM_GE;
- case GT: return ARM_GT;
- case LE: return ARM_LS;
- case LT: return ARM_MI;
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case ORDERED: return ARM_VC;
- case UNORDERED: return ARM_VS;
- case UNLT: return ARM_LT;
- case UNLE: return ARM_LE;
- case UNGT: return ARM_HI;
- case UNGE: return ARM_PL;
- /* UNEQ and LTGT do not have a representation. */
- case UNEQ: /* Fall through. */
- case LTGT: /* Fall through. */
- default: gcc_unreachable ();
- }
-
- case CC_SWPmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case GE: return ARM_LE;
- case GT: return ARM_LT;
- case LE: return ARM_GE;
- case LT: return ARM_GT;
- case GEU: return ARM_LS;
- case GTU: return ARM_CC;
- case LEU: return ARM_CS;
- case LTU: return ARM_HI;
- default: gcc_unreachable ();
- }
-
- case CC_Cmode:
- switch (comp_code)
- {
- case LTU: return ARM_CS;
- case GEU: return ARM_CC;
- default: gcc_unreachable ();
- }
-
- case CCmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case GE: return ARM_GE;
- case GT: return ARM_GT;
- case LE: return ARM_LE;
- case LT: return ARM_LT;
- case GEU: return ARM_CS;
- case GTU: return ARM_HI;
- case LEU: return ARM_LS;
- case LTU: return ARM_CC;
- default: gcc_unreachable ();
- }
-
- default: gcc_unreachable ();
- }
-}
-
-void
-arm_final_prescan_insn (rtx insn)
-{
- /* BODY will hold the body of INSN. */
- rtx body = PATTERN (insn);
-
- /* This will be 1 if trying to repeat the trick, and things need to be
- reversed if it appears to fail. */
- int reverse = 0;
-
- /* JUMP_CLOBBERS will be one implies that the conditions if a branch is
- taken are clobbered, even if the rtl suggests otherwise. It also
- means that we have to grub around within the jump expression to find
- out what the conditions are when the jump isn't taken. */
- int jump_clobbers = 0;
-
- /* If we start with a return insn, we only succeed if we find another one. */
- int seeking_return = 0;
-
- /* START_INSN will hold the insn from where we start looking. This is the
- first insn after the following code_label if REVERSE is true. */
- rtx start_insn = insn;
-
- /* If in state 4, check if the target branch is reached, in order to
- change back to state 0. */
- if (arm_ccfsm_state == 4)
- {
- if (insn == arm_target_insn)
- {
- arm_target_insn = NULL;
- arm_ccfsm_state = 0;
- }
- return;
- }
-
- /* If in state 3, it is possible to repeat the trick, if this insn is an
- unconditional branch to a label, and immediately following this branch
- is the previous target label which is only used once, and the label this
- branch jumps to is not too far off. */
- if (arm_ccfsm_state == 3)
- {
- if (simplejump_p (insn))
- {
- start_insn = next_nonnote_insn (start_insn);
- if (GET_CODE (start_insn) == BARRIER)
- {
- /* XXX Isn't this always a barrier? */
- start_insn = next_nonnote_insn (start_insn);
- }
- if (GET_CODE (start_insn) == CODE_LABEL
- && CODE_LABEL_NUMBER (start_insn) == arm_target_label
- && LABEL_NUSES (start_insn) == 1)
- reverse = TRUE;
- else
- return;
- }
- else if (GET_CODE (body) == RETURN)
- {
- start_insn = next_nonnote_insn (start_insn);
- if (GET_CODE (start_insn) == BARRIER)
- start_insn = next_nonnote_insn (start_insn);
- if (GET_CODE (start_insn) == CODE_LABEL
- && CODE_LABEL_NUMBER (start_insn) == arm_target_label
- && LABEL_NUSES (start_insn) == 1)
- {
- reverse = TRUE;
- seeking_return = 1;
- }
- else
- return;
- }
- else
- return;
- }
-
- gcc_assert (!arm_ccfsm_state || reverse);
- if (GET_CODE (insn) != JUMP_INSN)
- return;
-
- /* This jump might be paralleled with a clobber of the condition codes
- the jump should always come first */
- if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
- body = XVECEXP (body, 0, 0);
-
- if (reverse
- || (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
- && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
- {
- int insns_skipped;
- int fail = FALSE, succeed = FALSE;
- /* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
- int then_not_else = TRUE;
- rtx this_insn = start_insn, label = 0;
-
- /* If the jump cannot be done with one instruction, we cannot
- conditionally execute the instruction in the inverse case. */
- if (get_attr_conds (insn) == CONDS_JUMP_CLOB)
- {
- jump_clobbers = 1;
- return;
- }
-
- /* Register the insn jumped to. */
- if (reverse)
- {
- if (!seeking_return)
- label = XEXP (SET_SRC (body), 0);
- }
- else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
- label = XEXP (XEXP (SET_SRC (body), 1), 0);
- else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
- {
- label = XEXP (XEXP (SET_SRC (body), 2), 0);
- then_not_else = FALSE;
- }
- else if (GET_CODE (XEXP (SET_SRC (body), 1)) == RETURN)
- seeking_return = 1;
- else if (GET_CODE (XEXP (SET_SRC (body), 2)) == RETURN)
- {
- seeking_return = 1;
- then_not_else = FALSE;
- }
- else
- gcc_unreachable ();
-
- /* See how many insns this branch skips, and what kind of insns. If all
- insns are okay, and the label or unconditional branch to the same
- label is not too far away, succeed. */
- for (insns_skipped = 0;
- !fail && !succeed && insns_skipped++ < max_insns_skipped;)
- {
- rtx scanbody;
-
- this_insn = next_nonnote_insn (this_insn);
- if (!this_insn)
- break;
-
- switch (GET_CODE (this_insn))
- {
- case CODE_LABEL:
- /* Succeed if it is the target label, otherwise fail since
- control falls in from somewhere else. */
- if (this_insn == label)
- {
- if (jump_clobbers)
- {
- arm_ccfsm_state = 2;
- this_insn = next_nonnote_insn (this_insn);
- }
- else
- arm_ccfsm_state = 1;
- succeed = TRUE;
- }
- else
- fail = TRUE;
- break;
-
- case BARRIER:
- /* Succeed if the following insn is the target label.
- Otherwise fail.
- If return insns are used then the last insn in a function
- will be a barrier. */
- this_insn = next_nonnote_insn (this_insn);
- if (this_insn && this_insn == label)
- {
- if (jump_clobbers)
- {
- arm_ccfsm_state = 2;
- this_insn = next_nonnote_insn (this_insn);
- }
- else
- arm_ccfsm_state = 1;
- succeed = TRUE;
- }
- else
- fail = TRUE;
- break;
-
- case CALL_INSN:
- /* The AAPCS says that conditional calls should not be
- used since they make interworking inefficient (the
- linker can't transform BL<cond> into BLX). That's
- only a problem if the machine has BLX. */
- if (arm_arch5)
- {
- fail = TRUE;
- break;
- }
-
- /* Succeed if the following insn is the target label, or
- if the following two insns are a barrier and the
- target label. */
- this_insn = next_nonnote_insn (this_insn);
- if (this_insn && GET_CODE (this_insn) == BARRIER)
- this_insn = next_nonnote_insn (this_insn);
-
- if (this_insn && this_insn == label
- && insns_skipped < max_insns_skipped)
- {
- if (jump_clobbers)
- {
- arm_ccfsm_state = 2;
- this_insn = next_nonnote_insn (this_insn);
- }
- else
- arm_ccfsm_state = 1;
- succeed = TRUE;
- }
- else
- fail = TRUE;
- break;
-
- case JUMP_INSN:
- /* If this is an unconditional branch to the same label, succeed.
- If it is to another label, do nothing. If it is conditional,
- fail. */
- /* XXX Probably, the tests for SET and the PC are
- unnecessary. */
-
- scanbody = PATTERN (this_insn);
- if (GET_CODE (scanbody) == SET
- && GET_CODE (SET_DEST (scanbody)) == PC)
- {
- if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
- && XEXP (SET_SRC (scanbody), 0) == label && !reverse)
- {
- arm_ccfsm_state = 2;
- succeed = TRUE;
- }
- else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
- fail = TRUE;
- }
- /* Fail if a conditional return is undesirable (e.g. on a
- StrongARM), but still allow this if optimizing for size. */
- else if (GET_CODE (scanbody) == RETURN
- && !use_return_insn (TRUE, NULL)
- && !optimize_size)
- fail = TRUE;
- else if (GET_CODE (scanbody) == RETURN
- && seeking_return)
- {
- arm_ccfsm_state = 2;
- succeed = TRUE;
- }
- else if (GET_CODE (scanbody) == PARALLEL)
- {
- switch (get_attr_conds (this_insn))
- {
- case CONDS_NOCOND:
- break;
- default:
- fail = TRUE;
- break;
- }
- }
- else
- fail = TRUE; /* Unrecognized jump (e.g. epilogue). */
-
- break;
-
- case INSN:
- /* Instructions using or affecting the condition codes make it
- fail. */
- scanbody = PATTERN (this_insn);
- if (!(GET_CODE (scanbody) == SET
- || GET_CODE (scanbody) == PARALLEL)
- || get_attr_conds (this_insn) != CONDS_NOCOND)
- fail = TRUE;
-
- /* A conditional cirrus instruction must be followed by
- a non Cirrus instruction. However, since we
- conditionalize instructions in this function and by
- the time we get here we can't add instructions
- (nops), because shorten_branches() has already been
- called, we will disable conditionalizing Cirrus
- instructions to be safe. */
- if (GET_CODE (scanbody) != USE
- && GET_CODE (scanbody) != CLOBBER
- && get_attr_cirrus (this_insn) != CIRRUS_NOT)
- fail = TRUE;
- break;
-
- default:
- break;
- }
- }
- if (succeed)
- {
- if ((!seeking_return) && (arm_ccfsm_state == 1 || reverse))
- arm_target_label = CODE_LABEL_NUMBER (label);
- else
- {
- gcc_assert (seeking_return || arm_ccfsm_state == 2);
-
- while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
- {
- this_insn = next_nonnote_insn (this_insn);
- gcc_assert (!this_insn
- || (GET_CODE (this_insn) != BARRIER
- && GET_CODE (this_insn) != CODE_LABEL));
- }
- if (!this_insn)
- {
- /* Oh, dear! we ran off the end.. give up. */
- recog (PATTERN (insn), insn, NULL);
- arm_ccfsm_state = 0;
- arm_target_insn = NULL;
- return;
- }
- arm_target_insn = this_insn;
- }
- if (jump_clobbers)
- {
- gcc_assert (!reverse);
- arm_current_cc =
- get_arm_condition_code (XEXP (XEXP (XEXP (SET_SRC (body),
- 0), 0), 1));
- if (GET_CODE (XEXP (XEXP (SET_SRC (body), 0), 0)) == AND)
- arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
- if (GET_CODE (XEXP (SET_SRC (body), 0)) == NE)
- arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
- }
- else
- {
- /* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
- what it was. */
- if (!reverse)
- arm_current_cc = get_arm_condition_code (XEXP (SET_SRC (body),
- 0));
- }
-
- if (reverse || then_not_else)
- arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
- }
-
- /* Restore recog_data (getting the attributes of other insns can
- destroy this array, but final.c assumes that it remains intact
- across this call; since the insn has been recognized already we
- call recog direct). */
- recog (PATTERN (insn), insn, NULL);
- }
-}
-
-/* Returns true if REGNO is a valid register
- for holding a quantity of type MODE. */
-int
-arm_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
-{
- if (GET_MODE_CLASS (mode) == MODE_CC)
- return (regno == CC_REGNUM
- || (TARGET_HARD_FLOAT && TARGET_VFP
- && regno == VFPCC_REGNUM));
-
- if (TARGET_THUMB)
- /* For the Thumb we only allow values bigger than SImode in
- registers 0 - 6, so that there is always a second low
- register available to hold the upper part of the value.
- We probably we ought to ensure that the register is the
- start of an even numbered register pair. */
- return (ARM_NUM_REGS (mode) < 2) || (regno < LAST_LO_REGNUM);
-
- if (TARGET_HARD_FLOAT && TARGET_MAVERICK
- && IS_CIRRUS_REGNUM (regno))
- /* We have outlawed SI values in Cirrus registers because they
- reside in the lower 32 bits, but SF values reside in the
- upper 32 bits. This causes gcc all sorts of grief. We can't
- even split the registers into pairs because Cirrus SI values
- get sign extended to 64bits-- aldyh. */
- return (GET_MODE_CLASS (mode) == MODE_FLOAT) || (mode == DImode);
-
- if (TARGET_HARD_FLOAT && TARGET_VFP
- && IS_VFP_REGNUM (regno))
- {
- if (mode == SFmode || mode == SImode)
- return TRUE;
-
- /* DFmode values are only valid in even register pairs. */
- if (mode == DFmode)
- return ((regno - FIRST_VFP_REGNUM) & 1) == 0;
- return FALSE;
- }
-
- if (TARGET_REALLY_IWMMXT)
- {
- if (IS_IWMMXT_GR_REGNUM (regno))
- return mode == SImode;
-
- if (IS_IWMMXT_REGNUM (regno))
- return VALID_IWMMXT_REG_MODE (mode);
- }
-
- /* We allow any value to be stored in the general registers.
- Restrict doubleword quantities to even register pairs so that we can
- use ldrd. */
- if (regno <= LAST_ARM_REGNUM)
- return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0);
-
- if (regno == FRAME_POINTER_REGNUM
- || regno == ARG_POINTER_REGNUM)
- /* We only allow integers in the fake hard registers. */
- return GET_MODE_CLASS (mode) == MODE_INT;
-
- /* The only registers left are the FPA registers
- which we only allow to hold FP values. */
- return (TARGET_HARD_FLOAT && TARGET_FPA
- && GET_MODE_CLASS (mode) == MODE_FLOAT
- && regno >= FIRST_FPA_REGNUM
- && regno <= LAST_FPA_REGNUM);
-}
-
-int
-arm_regno_class (int regno)
-{
- if (TARGET_THUMB)
- {
- if (regno == STACK_POINTER_REGNUM)
- return STACK_REG;
- if (regno == CC_REGNUM)
- return CC_REG;
- if (regno < 8)
- return LO_REGS;
- return HI_REGS;
- }
-
- if ( regno <= LAST_ARM_REGNUM
- || regno == FRAME_POINTER_REGNUM
- || regno == ARG_POINTER_REGNUM)
- return GENERAL_REGS;
-
- if (regno == CC_REGNUM || regno == VFPCC_REGNUM)
- return NO_REGS;
-
- if (IS_CIRRUS_REGNUM (regno))
- return CIRRUS_REGS;
-
- if (IS_VFP_REGNUM (regno))
- return VFP_REGS;
-
- if (IS_IWMMXT_REGNUM (regno))
- return IWMMXT_REGS;
-
- if (IS_IWMMXT_GR_REGNUM (regno))
- return IWMMXT_GR_REGS;
-
- return FPA_REGS;
-}
-
-/* Handle a special case when computing the offset
- of an argument from the frame pointer. */
-int
-arm_debugger_arg_offset (int value, rtx addr)
-{
- rtx insn;
-
- /* We are only interested if dbxout_parms() failed to compute the offset. */
- if (value != 0)
- return 0;
-
- /* We can only cope with the case where the address is held in a register. */
- if (GET_CODE (addr) != REG)
- return 0;
-
- /* If we are using the frame pointer to point at the argument, then
- an offset of 0 is correct. */
- if (REGNO (addr) == (unsigned) HARD_FRAME_POINTER_REGNUM)
- return 0;
-
- /* If we are using the stack pointer to point at the
- argument, then an offset of 0 is correct. */
- if ((TARGET_THUMB || !frame_pointer_needed)
- && REGNO (addr) == SP_REGNUM)
- return 0;
-
- /* Oh dear. The argument is pointed to by a register rather
- than being held in a register, or being stored at a known
- offset from the frame pointer. Since GDB only understands
- those two kinds of argument we must translate the address
- held in the register into an offset from the frame pointer.
- We do this by searching through the insns for the function
- looking to see where this register gets its value. If the
- register is initialized from the frame pointer plus an offset
- then we are in luck and we can continue, otherwise we give up.
-
- This code is exercised by producing debugging information
- for a function with arguments like this:
-
- double func (double a, double b, int c, double d) {return d;}
-
- Without this code the stab for parameter 'd' will be set to
- an offset of 0 from the frame pointer, rather than 8. */
-
- /* The if() statement says:
-
- If the insn is a normal instruction
- and if the insn is setting the value in a register
- and if the register being set is the register holding the address of the argument
- and if the address is computing by an addition
- that involves adding to a register
- which is the frame pointer
- a constant integer
-
- then... */
-
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- {
- if ( GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SET
- && REGNO (XEXP (PATTERN (insn), 0)) == REGNO (addr)
- && GET_CODE (XEXP (PATTERN (insn), 1)) == PLUS
- && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 0)) == REG
- && REGNO (XEXP (XEXP (PATTERN (insn), 1), 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
- && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 1)) == CONST_INT
- )
- {
- value = INTVAL (XEXP (XEXP (PATTERN (insn), 1), 1));
-
- break;
- }
- }
-
- if (value == 0)
- {
- debug_rtx (addr);
- warning (0, "unable to compute real location of stacked parameter");
- value = 8; /* XXX magic hack */
- }
-
- return value;
-}
-
-#define def_mbuiltin(MASK, NAME, TYPE, CODE) \
- do \
- { \
- if ((MASK) & insn_flags) \
- lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
- BUILT_IN_MD, NULL, NULL_TREE); \
- } \
- while (0)
-
-struct builtin_description
-{
- const unsigned int mask;
- const enum insn_code icode;
- const char * const name;
- const enum arm_builtins code;
- const enum rtx_code comparison;
- const unsigned int flag;
-};
-
-static const struct builtin_description bdesc_2arg[] =
-{
-#define IWMMXT_BUILTIN(code, string, builtin) \
- { FL_IWMMXT, CODE_FOR_##code, "__builtin_arm_" string, \
- ARM_BUILTIN_##builtin, 0, 0 },
-
- IWMMXT_BUILTIN (addv8qi3, "waddb", WADDB)
- IWMMXT_BUILTIN (addv4hi3, "waddh", WADDH)
- IWMMXT_BUILTIN (addv2si3, "waddw", WADDW)
- IWMMXT_BUILTIN (subv8qi3, "wsubb", WSUBB)
- IWMMXT_BUILTIN (subv4hi3, "wsubh", WSUBH)
- IWMMXT_BUILTIN (subv2si3, "wsubw", WSUBW)
- IWMMXT_BUILTIN (ssaddv8qi3, "waddbss", WADDSSB)
- IWMMXT_BUILTIN (ssaddv4hi3, "waddhss", WADDSSH)
- IWMMXT_BUILTIN (ssaddv2si3, "waddwss", WADDSSW)
- IWMMXT_BUILTIN (sssubv8qi3, "wsubbss", WSUBSSB)
- IWMMXT_BUILTIN (sssubv4hi3, "wsubhss", WSUBSSH)
- IWMMXT_BUILTIN (sssubv2si3, "wsubwss", WSUBSSW)
- IWMMXT_BUILTIN (usaddv8qi3, "waddbus", WADDUSB)
- IWMMXT_BUILTIN (usaddv4hi3, "waddhus", WADDUSH)
- IWMMXT_BUILTIN (usaddv2si3, "waddwus", WADDUSW)
- IWMMXT_BUILTIN (ussubv8qi3, "wsubbus", WSUBUSB)
- IWMMXT_BUILTIN (ussubv4hi3, "wsubhus", WSUBUSH)
- IWMMXT_BUILTIN (ussubv2si3, "wsubwus", WSUBUSW)
- IWMMXT_BUILTIN (mulv4hi3, "wmulul", WMULUL)
- IWMMXT_BUILTIN (smulv4hi3_highpart, "wmulsm", WMULSM)
- IWMMXT_BUILTIN (umulv4hi3_highpart, "wmulum", WMULUM)
- IWMMXT_BUILTIN (eqv8qi3, "wcmpeqb", WCMPEQB)
- IWMMXT_BUILTIN (eqv4hi3, "wcmpeqh", WCMPEQH)
- IWMMXT_BUILTIN (eqv2si3, "wcmpeqw", WCMPEQW)
- IWMMXT_BUILTIN (gtuv8qi3, "wcmpgtub", WCMPGTUB)
- IWMMXT_BUILTIN (gtuv4hi3, "wcmpgtuh", WCMPGTUH)
- IWMMXT_BUILTIN (gtuv2si3, "wcmpgtuw", WCMPGTUW)
- IWMMXT_BUILTIN (gtv8qi3, "wcmpgtsb", WCMPGTSB)
- IWMMXT_BUILTIN (gtv4hi3, "wcmpgtsh", WCMPGTSH)
- IWMMXT_BUILTIN (gtv2si3, "wcmpgtsw", WCMPGTSW)
- IWMMXT_BUILTIN (umaxv8qi3, "wmaxub", WMAXUB)
- IWMMXT_BUILTIN (smaxv8qi3, "wmaxsb", WMAXSB)
- IWMMXT_BUILTIN (umaxv4hi3, "wmaxuh", WMAXUH)
- IWMMXT_BUILTIN (smaxv4hi3, "wmaxsh", WMAXSH)
- IWMMXT_BUILTIN (umaxv2si3, "wmaxuw", WMAXUW)
- IWMMXT_BUILTIN (smaxv2si3, "wmaxsw", WMAXSW)
- IWMMXT_BUILTIN (uminv8qi3, "wminub", WMINUB)
- IWMMXT_BUILTIN (sminv8qi3, "wminsb", WMINSB)
- IWMMXT_BUILTIN (uminv4hi3, "wminuh", WMINUH)
- IWMMXT_BUILTIN (sminv4hi3, "wminsh", WMINSH)
- IWMMXT_BUILTIN (uminv2si3, "wminuw", WMINUW)
- IWMMXT_BUILTIN (sminv2si3, "wminsw", WMINSW)
- IWMMXT_BUILTIN (iwmmxt_anddi3, "wand", WAND)
- IWMMXT_BUILTIN (iwmmxt_nanddi3, "wandn", WANDN)
- IWMMXT_BUILTIN (iwmmxt_iordi3, "wor", WOR)
- IWMMXT_BUILTIN (iwmmxt_xordi3, "wxor", WXOR)
- IWMMXT_BUILTIN (iwmmxt_uavgv8qi3, "wavg2b", WAVG2B)
- IWMMXT_BUILTIN (iwmmxt_uavgv4hi3, "wavg2h", WAVG2H)
- IWMMXT_BUILTIN (iwmmxt_uavgrndv8qi3, "wavg2br", WAVG2BR)
- IWMMXT_BUILTIN (iwmmxt_uavgrndv4hi3, "wavg2hr", WAVG2HR)
- IWMMXT_BUILTIN (iwmmxt_wunpckilb, "wunpckilb", WUNPCKILB)
- IWMMXT_BUILTIN (iwmmxt_wunpckilh, "wunpckilh", WUNPCKILH)
- IWMMXT_BUILTIN (iwmmxt_wunpckilw, "wunpckilw", WUNPCKILW)
- IWMMXT_BUILTIN (iwmmxt_wunpckihb, "wunpckihb", WUNPCKIHB)
- IWMMXT_BUILTIN (iwmmxt_wunpckihh, "wunpckihh", WUNPCKIHH)
- IWMMXT_BUILTIN (iwmmxt_wunpckihw, "wunpckihw", WUNPCKIHW)
- IWMMXT_BUILTIN (iwmmxt_wmadds, "wmadds", WMADDS)
- IWMMXT_BUILTIN (iwmmxt_wmaddu, "wmaddu", WMADDU)
-
-#define IWMMXT_BUILTIN2(code, builtin) \
- { FL_IWMMXT, CODE_FOR_##code, NULL, ARM_BUILTIN_##builtin, 0, 0 },
-
- IWMMXT_BUILTIN2 (iwmmxt_wpackhss, WPACKHSS)
- IWMMXT_BUILTIN2 (iwmmxt_wpackwss, WPACKWSS)
- IWMMXT_BUILTIN2 (iwmmxt_wpackdss, WPACKDSS)
- IWMMXT_BUILTIN2 (iwmmxt_wpackhus, WPACKHUS)
- IWMMXT_BUILTIN2 (iwmmxt_wpackwus, WPACKWUS)
- IWMMXT_BUILTIN2 (iwmmxt_wpackdus, WPACKDUS)
- IWMMXT_BUILTIN2 (ashlv4hi3_di, WSLLH)
- IWMMXT_BUILTIN2 (ashlv4hi3, WSLLHI)
- IWMMXT_BUILTIN2 (ashlv2si3_di, WSLLW)
- IWMMXT_BUILTIN2 (ashlv2si3, WSLLWI)
- IWMMXT_BUILTIN2 (ashldi3_di, WSLLD)
- IWMMXT_BUILTIN2 (ashldi3_iwmmxt, WSLLDI)
- IWMMXT_BUILTIN2 (lshrv4hi3_di, WSRLH)
- IWMMXT_BUILTIN2 (lshrv4hi3, WSRLHI)
- IWMMXT_BUILTIN2 (lshrv2si3_di, WSRLW)
- IWMMXT_BUILTIN2 (lshrv2si3, WSRLWI)
- IWMMXT_BUILTIN2 (lshrdi3_di, WSRLD)
- IWMMXT_BUILTIN2 (lshrdi3_iwmmxt, WSRLDI)
- IWMMXT_BUILTIN2 (ashrv4hi3_di, WSRAH)
- IWMMXT_BUILTIN2 (ashrv4hi3, WSRAHI)
- IWMMXT_BUILTIN2 (ashrv2si3_di, WSRAW)
- IWMMXT_BUILTIN2 (ashrv2si3, WSRAWI)
- IWMMXT_BUILTIN2 (ashrdi3_di, WSRAD)
- IWMMXT_BUILTIN2 (ashrdi3_iwmmxt, WSRADI)
- IWMMXT_BUILTIN2 (rorv4hi3_di, WRORH)
- IWMMXT_BUILTIN2 (rorv4hi3, WRORHI)
- IWMMXT_BUILTIN2 (rorv2si3_di, WRORW)
- IWMMXT_BUILTIN2 (rorv2si3, WRORWI)
- IWMMXT_BUILTIN2 (rordi3_di, WRORD)
- IWMMXT_BUILTIN2 (rordi3, WRORDI)
- IWMMXT_BUILTIN2 (iwmmxt_wmacuz, WMACUZ)
- IWMMXT_BUILTIN2 (iwmmxt_wmacsz, WMACSZ)
-};
-
-static const struct builtin_description bdesc_1arg[] =
-{
- IWMMXT_BUILTIN (iwmmxt_tmovmskb, "tmovmskb", TMOVMSKB)
- IWMMXT_BUILTIN (iwmmxt_tmovmskh, "tmovmskh", TMOVMSKH)
- IWMMXT_BUILTIN (iwmmxt_tmovmskw, "tmovmskw", TMOVMSKW)
- IWMMXT_BUILTIN (iwmmxt_waccb, "waccb", WACCB)
- IWMMXT_BUILTIN (iwmmxt_wacch, "wacch", WACCH)
- IWMMXT_BUILTIN (iwmmxt_waccw, "waccw", WACCW)
- IWMMXT_BUILTIN (iwmmxt_wunpckehub, "wunpckehub", WUNPCKEHUB)
- IWMMXT_BUILTIN (iwmmxt_wunpckehuh, "wunpckehuh", WUNPCKEHUH)
- IWMMXT_BUILTIN (iwmmxt_wunpckehuw, "wunpckehuw", WUNPCKEHUW)
- IWMMXT_BUILTIN (iwmmxt_wunpckehsb, "wunpckehsb", WUNPCKEHSB)
- IWMMXT_BUILTIN (iwmmxt_wunpckehsh, "wunpckehsh", WUNPCKEHSH)
- IWMMXT_BUILTIN (iwmmxt_wunpckehsw, "wunpckehsw", WUNPCKEHSW)
- IWMMXT_BUILTIN (iwmmxt_wunpckelub, "wunpckelub", WUNPCKELUB)
- IWMMXT_BUILTIN (iwmmxt_wunpckeluh, "wunpckeluh", WUNPCKELUH)
- IWMMXT_BUILTIN (iwmmxt_wunpckeluw, "wunpckeluw", WUNPCKELUW)
- IWMMXT_BUILTIN (iwmmxt_wunpckelsb, "wunpckelsb", WUNPCKELSB)
- IWMMXT_BUILTIN (iwmmxt_wunpckelsh, "wunpckelsh", WUNPCKELSH)
- IWMMXT_BUILTIN (iwmmxt_wunpckelsw, "wunpckelsw", WUNPCKELSW)
-};
-
-/* Set up all the iWMMXt builtins. This is
- not called if TARGET_IWMMXT is zero. */
-
-static void
-arm_init_iwmmxt_builtins (void)
-{
- const struct builtin_description * d;
- size_t i;
- tree endlink = void_list_node;
-
- tree V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode);
- tree V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode);
- tree V8QI_type_node = build_vector_type_for_mode (intQI_type_node, V8QImode);
-
- tree int_ftype_int
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, integer_type_node, endlink));
- tree v8qi_ftype_v8qi_v8qi_int
- = build_function_type (V8QI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))));
- tree v4hi_ftype_v4hi_int
- = build_function_type (V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree v2si_ftype_v2si_int
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree v2si_ftype_di_di
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, long_long_integer_type_node,
- tree_cons (NULL_TREE, long_long_integer_type_node,
- endlink)));
- tree di_ftype_di_int
- = build_function_type (long_long_integer_type_node,
- tree_cons (NULL_TREE, long_long_integer_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree di_ftype_di_int_int
- = build_function_type (long_long_integer_type_node,
- tree_cons (NULL_TREE, long_long_integer_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))));
- tree int_ftype_v8qi
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- endlink));
- tree int_ftype_v4hi
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink));
- tree int_ftype_v2si
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- endlink));
- tree int_ftype_v8qi_int
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree int_ftype_v4hi_int
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree int_ftype_v2si_int
- = build_function_type (integer_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree v8qi_ftype_v8qi_int_int
- = build_function_type (V8QI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))));
- tree v4hi_ftype_v4hi_int_int
- = build_function_type (V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))));
- tree v2si_ftype_v2si_int_int
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- tree_cons (NULL_TREE,
- integer_type_node,
- endlink))));
- /* Miscellaneous. */
- tree v8qi_ftype_v4hi_v4hi
- = build_function_type (V8QI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink)));
- tree v4hi_ftype_v2si_v2si
- = build_function_type (V4HI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- endlink)));
- tree v2si_ftype_v4hi_v4hi
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink)));
- tree v2si_ftype_v8qi_v8qi
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- endlink)));
- tree v4hi_ftype_v4hi_di
- = build_function_type (V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE,
- long_long_integer_type_node,
- endlink)));
- tree v2si_ftype_v2si_di
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- tree_cons (NULL_TREE,
- long_long_integer_type_node,
- endlink)));
- tree void_ftype_int_int
- = build_function_type (void_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- tree_cons (NULL_TREE, integer_type_node,
- endlink)));
- tree di_ftype_void
- = build_function_type (long_long_unsigned_type_node, endlink);
- tree di_ftype_v8qi
- = build_function_type (long_long_integer_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- endlink));
- tree di_ftype_v4hi
- = build_function_type (long_long_integer_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink));
- tree di_ftype_v2si
- = build_function_type (long_long_integer_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- endlink));
- tree v2si_ftype_v4hi
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink));
- tree v4hi_ftype_v8qi
- = build_function_type (V4HI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- endlink));
-
- tree di_ftype_di_v4hi_v4hi
- = build_function_type (long_long_unsigned_type_node,
- tree_cons (NULL_TREE,
- long_long_unsigned_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE,
- V4HI_type_node,
- endlink))));
-
- tree di_ftype_v4hi_v4hi
- = build_function_type (long_long_unsigned_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink)));
-
- /* Normal vector binops. */
- tree v8qi_ftype_v8qi_v8qi
- = build_function_type (V8QI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- tree_cons (NULL_TREE, V8QI_type_node,
- endlink)));
- tree v4hi_ftype_v4hi_v4hi
- = build_function_type (V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- tree_cons (NULL_TREE, V4HI_type_node,
- endlink)));
- tree v2si_ftype_v2si_v2si
- = build_function_type (V2SI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- tree_cons (NULL_TREE, V2SI_type_node,
- endlink)));
- tree di_ftype_di_di
- = build_function_type (long_long_unsigned_type_node,
- tree_cons (NULL_TREE, long_long_unsigned_type_node,
- tree_cons (NULL_TREE,
- long_long_unsigned_type_node,
- endlink)));
-
- /* Add all builtins that are more or less simple operations on two
- operands. */
- for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
- {
- /* Use one of the operands; the target can have a different mode for
- mask-generating compares. */
- enum machine_mode mode;
- tree type;
-
- if (d->name == 0)
- continue;
-
- mode = insn_data[d->icode].operand[1].mode;
-
- switch (mode)
- {
- case V8QImode:
- type = v8qi_ftype_v8qi_v8qi;
- break;
- case V4HImode:
- type = v4hi_ftype_v4hi_v4hi;
- break;
- case V2SImode:
- type = v2si_ftype_v2si_v2si;
- break;
- case DImode:
- type = di_ftype_di_di;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- def_mbuiltin (d->mask, d->name, type, d->code);
- }
-
- /* Add the remaining MMX insns with somewhat more complicated types. */
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wzero", di_ftype_void, ARM_BUILTIN_WZERO);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_setwcx", void_ftype_int_int, ARM_BUILTIN_SETWCX);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_getwcx", int_ftype_int, ARM_BUILTIN_GETWCX);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSLLH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllw", v2si_ftype_v2si_di, ARM_BUILTIN_WSLLW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wslld", di_ftype_di_di, ARM_BUILTIN_WSLLD);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSLLHI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllwi", v2si_ftype_v2si_int, ARM_BUILTIN_WSLLWI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wslldi", di_ftype_di_int, ARM_BUILTIN_WSLLDI);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSRLH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlw", v2si_ftype_v2si_di, ARM_BUILTIN_WSRLW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrld", di_ftype_di_di, ARM_BUILTIN_WSRLD);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSRLHI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlwi", v2si_ftype_v2si_int, ARM_BUILTIN_WSRLWI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrldi", di_ftype_di_int, ARM_BUILTIN_WSRLDI);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrah", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSRAH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsraw", v2si_ftype_v2si_di, ARM_BUILTIN_WSRAW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrad", di_ftype_di_di, ARM_BUILTIN_WSRAD);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrahi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSRAHI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrawi", v2si_ftype_v2si_int, ARM_BUILTIN_WSRAWI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsradi", di_ftype_di_int, ARM_BUILTIN_WSRADI);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WRORH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorw", v2si_ftype_v2si_di, ARM_BUILTIN_WRORW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrord", di_ftype_di_di, ARM_BUILTIN_WRORD);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WRORHI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorwi", v2si_ftype_v2si_int, ARM_BUILTIN_WRORWI);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrordi", di_ftype_di_int, ARM_BUILTIN_WRORDI);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wshufh", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSHUFH);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadb", v2si_ftype_v8qi_v8qi, ARM_BUILTIN_WSADB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadh", v2si_ftype_v4hi_v4hi, ARM_BUILTIN_WSADH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadbz", v2si_ftype_v8qi_v8qi, ARM_BUILTIN_WSADBZ);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadhz", v2si_ftype_v4hi_v4hi, ARM_BUILTIN_WSADHZ);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsb", int_ftype_v8qi_int, ARM_BUILTIN_TEXTRMSB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsh", int_ftype_v4hi_int, ARM_BUILTIN_TEXTRMSH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsw", int_ftype_v2si_int, ARM_BUILTIN_TEXTRMSW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmub", int_ftype_v8qi_int, ARM_BUILTIN_TEXTRMUB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmuh", int_ftype_v4hi_int, ARM_BUILTIN_TEXTRMUH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmuw", int_ftype_v2si_int, ARM_BUILTIN_TEXTRMUW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrb", v8qi_ftype_v8qi_int_int, ARM_BUILTIN_TINSRB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrh", v4hi_ftype_v4hi_int_int, ARM_BUILTIN_TINSRH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrw", v2si_ftype_v2si_int_int, ARM_BUILTIN_TINSRW);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_waccb", di_ftype_v8qi, ARM_BUILTIN_WACCB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wacch", di_ftype_v4hi, ARM_BUILTIN_WACCH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_waccw", di_ftype_v2si, ARM_BUILTIN_WACCW);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskb", int_ftype_v8qi, ARM_BUILTIN_TMOVMSKB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskh", int_ftype_v4hi, ARM_BUILTIN_TMOVMSKH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskw", int_ftype_v2si, ARM_BUILTIN_TMOVMSKW);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackhss", v8qi_ftype_v4hi_v4hi, ARM_BUILTIN_WPACKHSS);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackhus", v8qi_ftype_v4hi_v4hi, ARM_BUILTIN_WPACKHUS);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackwus", v4hi_ftype_v2si_v2si, ARM_BUILTIN_WPACKWUS);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackwss", v4hi_ftype_v2si_v2si, ARM_BUILTIN_WPACKWSS);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackdus", v2si_ftype_di_di, ARM_BUILTIN_WPACKDUS);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackdss", v2si_ftype_di_di, ARM_BUILTIN_WPACKDSS);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehub", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKEHUB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehuh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKEHUH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehuw", di_ftype_v2si, ARM_BUILTIN_WUNPCKEHUW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsb", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKEHSB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKEHSH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsw", di_ftype_v2si, ARM_BUILTIN_WUNPCKEHSW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelub", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKELUB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckeluh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKELUH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckeluw", di_ftype_v2si, ARM_BUILTIN_WUNPCKELUW);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsb", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKELSB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKELSH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsw", di_ftype_v2si, ARM_BUILTIN_WUNPCKELSW);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacs", di_ftype_di_v4hi_v4hi, ARM_BUILTIN_WMACS);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacsz", di_ftype_v4hi_v4hi, ARM_BUILTIN_WMACSZ);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacu", di_ftype_di_v4hi_v4hi, ARM_BUILTIN_WMACU);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacuz", di_ftype_v4hi_v4hi, ARM_BUILTIN_WMACUZ);
-
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_walign", v8qi_ftype_v8qi_v8qi_int, ARM_BUILTIN_WALIGN);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmia", di_ftype_di_int_int, ARM_BUILTIN_TMIA);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiaph", di_ftype_di_int_int, ARM_BUILTIN_TMIAPH);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiabb", di_ftype_di_int_int, ARM_BUILTIN_TMIABB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiabt", di_ftype_di_int_int, ARM_BUILTIN_TMIABT);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiatb", di_ftype_di_int_int, ARM_BUILTIN_TMIATB);
- def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiatt", di_ftype_di_int_int, ARM_BUILTIN_TMIATT);
-}
-
-static void
-arm_init_tls_builtins (void)
-{
- tree ftype;
- tree nothrow = tree_cons (get_identifier ("nothrow"), NULL, NULL);
- tree const_nothrow = tree_cons (get_identifier ("const"), NULL, nothrow);
-
- ftype = build_function_type (ptr_type_node, void_list_node);
- lang_hooks.builtin_function ("__builtin_thread_pointer", ftype,
- ARM_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
- NULL, const_nothrow);
-}
-
-static void
-arm_init_builtins (void)
-{
- arm_init_tls_builtins ();
-
- if (TARGET_REALLY_IWMMXT)
- arm_init_iwmmxt_builtins ();
-}
-
-/* Errors in the source file can cause expand_expr to return const0_rtx
- where we expect a vector. To avoid crashing, use one of the vector
- clear instructions. */
-
-static rtx
-safe_vector_operand (rtx x, enum machine_mode mode)
-{
- if (x != const0_rtx)
- return x;
- x = gen_reg_rtx (mode);
-
- emit_insn (gen_iwmmxt_clrdi (mode == DImode ? x
- : gen_rtx_SUBREG (DImode, x, 0)));
- return x;
-}
-
-/* Subroutine of arm_expand_builtin to take care of binop insns. */
-
-static rtx
-arm_expand_binop_builtin (enum insn_code icode,
- tree arglist, rtx target)
-{
- rtx pat;
- tree arg0 = TREE_VALUE (arglist);
- tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
- rtx op0 = expand_normal (arg0);
- rtx op1 = expand_normal (arg1);
- enum machine_mode tmode = insn_data[icode].operand[0].mode;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
- enum machine_mode mode1 = insn_data[icode].operand[2].mode;
-
- if (VECTOR_MODE_P (mode0))
- op0 = safe_vector_operand (op0, mode0);
- if (VECTOR_MODE_P (mode1))
- op1 = safe_vector_operand (op1, mode1);
-
- if (! target
- || GET_MODE (target) != tmode
- || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
-
- gcc_assert (GET_MODE (op0) == mode0 && GET_MODE (op1) == mode1);
-
- if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
- if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
- op1 = copy_to_mode_reg (mode1, op1);
-
- pat = GEN_FCN (icode) (target, op0, op1);
- if (! pat)
- return 0;
- emit_insn (pat);
- return target;
-}
-
-/* Subroutine of arm_expand_builtin to take care of unop insns. */
-
-static rtx
-arm_expand_unop_builtin (enum insn_code icode,
- tree arglist, rtx target, int do_load)
-{
- rtx pat;
- tree arg0 = TREE_VALUE (arglist);
- rtx op0 = expand_normal (arg0);
- enum machine_mode tmode = insn_data[icode].operand[0].mode;
- enum machine_mode mode0 = insn_data[icode].operand[1].mode;
-
- if (! target
- || GET_MODE (target) != tmode
- || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
- if (do_load)
- op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
- else
- {
- if (VECTOR_MODE_P (mode0))
- op0 = safe_vector_operand (op0, mode0);
-
- if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
- }
-
- pat = GEN_FCN (icode) (target, op0);
- if (! pat)
- return 0;
- emit_insn (pat);
- return target;
-}
-
-/* Expand an expression EXP that calls a built-in function,
- with result going to TARGET if that's convenient
- (and in mode MODE if that's convenient).
- SUBTARGET may be used as the target for computing one of EXP's operands.
- IGNORE is nonzero if the value is to be ignored. */
-
-static rtx
-arm_expand_builtin (tree exp,
- rtx target,
- rtx subtarget ATTRIBUTE_UNUSED,
- enum machine_mode mode ATTRIBUTE_UNUSED,
- int ignore ATTRIBUTE_UNUSED)
-{
- const struct builtin_description * d;
- enum insn_code icode;
- tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
- tree arglist = TREE_OPERAND (exp, 1);
- tree arg0;
- tree arg1;
- tree arg2;
- rtx op0;
- rtx op1;
- rtx op2;
- rtx pat;
- int fcode = DECL_FUNCTION_CODE (fndecl);
- size_t i;
- enum machine_mode tmode;
- enum machine_mode mode0;
- enum machine_mode mode1;
- enum machine_mode mode2;
-
- switch (fcode)
- {
- case ARM_BUILTIN_TEXTRMSB:
- case ARM_BUILTIN_TEXTRMUB:
- case ARM_BUILTIN_TEXTRMSH:
- case ARM_BUILTIN_TEXTRMUH:
- case ARM_BUILTIN_TEXTRMSW:
- case ARM_BUILTIN_TEXTRMUW:
- icode = (fcode == ARM_BUILTIN_TEXTRMSB ? CODE_FOR_iwmmxt_textrmsb
- : fcode == ARM_BUILTIN_TEXTRMUB ? CODE_FOR_iwmmxt_textrmub
- : fcode == ARM_BUILTIN_TEXTRMSH ? CODE_FOR_iwmmxt_textrmsh
- : fcode == ARM_BUILTIN_TEXTRMUH ? CODE_FOR_iwmmxt_textrmuh
- : CODE_FOR_iwmmxt_textrmw);
-
- arg0 = TREE_VALUE (arglist);
- arg1 = TREE_VALUE (TREE_CHAIN (arglist));
- op0 = expand_normal (arg0);
- op1 = expand_normal (arg1);
- tmode = insn_data[icode].operand[0].mode;
- mode0 = insn_data[icode].operand[1].mode;
- mode1 = insn_data[icode].operand[2].mode;
-
- if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
- if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
- {
- /* @@@ better error message */
- error ("selector must be an immediate");
- return gen_reg_rtx (tmode);
- }
- if (target == 0
- || GET_MODE (target) != tmode
- || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
- pat = GEN_FCN (icode) (target, op0, op1);
- if (! pat)
- return 0;
- emit_insn (pat);
- return target;
-
- case ARM_BUILTIN_TINSRB:
- case ARM_BUILTIN_TINSRH:
- case ARM_BUILTIN_TINSRW:
- icode = (fcode == ARM_BUILTIN_TINSRB ? CODE_FOR_iwmmxt_tinsrb
- : fcode == ARM_BUILTIN_TINSRH ? CODE_FOR_iwmmxt_tinsrh
- : CODE_FOR_iwmmxt_tinsrw);
- arg0 = TREE_VALUE (arglist);
- arg1 = TREE_VALUE (TREE_CHAIN (arglist));
- arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
- op0 = expand_normal (arg0);
- op1 = expand_normal (arg1);
- op2 = expand_normal (arg2);
- tmode = insn_data[icode].operand[0].mode;
- mode0 = insn_data[icode].operand[1].mode;
- mode1 = insn_data[icode].operand[2].mode;
- mode2 = insn_data[icode].operand[3].mode;
-
- if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
- if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
- op1 = copy_to_mode_reg (mode1, op1);
- if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
- {
- /* @@@ better error message */
- error ("selector must be an immediate");
- return const0_rtx;
- }
- if (target == 0
- || GET_MODE (target) != tmode
- || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
- pat = GEN_FCN (icode) (target, op0, op1, op2);
- if (! pat)
- return 0;
- emit_insn (pat);
- return target;
-
- case ARM_BUILTIN_SETWCX:
- arg0 = TREE_VALUE (arglist);
- arg1 = TREE_VALUE (TREE_CHAIN (arglist));
- op0 = force_reg (SImode, expand_normal (arg0));
- op1 = expand_normal (arg1);
- emit_insn (gen_iwmmxt_tmcr (op1, op0));
- return 0;
-
- case ARM_BUILTIN_GETWCX:
- arg0 = TREE_VALUE (arglist);
- op0 = expand_normal (arg0);
- target = gen_reg_rtx (SImode);
- emit_insn (gen_iwmmxt_tmrc (target, op0));
- return target;
-
- case ARM_BUILTIN_WSHUFH:
- icode = CODE_FOR_iwmmxt_wshufh;
- arg0 = TREE_VALUE (arglist);
- arg1 = TREE_VALUE (TREE_CHAIN (arglist));
- op0 = expand_normal (arg0);
- op1 = expand_normal (arg1);
- tmode = insn_data[icode].operand[0].mode;
- mode1 = insn_data[icode].operand[1].mode;
- mode2 = insn_data[icode].operand[2].mode;
-
- if (! (*insn_data[icode].operand[1].predicate) (op0, mode1))
- op0 = copy_to_mode_reg (mode1, op0);
- if (! (*insn_data[icode].operand[2].predicate) (op1, mode2))
- {
- /* @@@ better error message */
- error ("mask must be an immediate");
- return const0_rtx;
- }
- if (target == 0
- || GET_MODE (target) != tmode
- || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
- pat = GEN_FCN (icode) (target, op0, op1);
- if (! pat)
- return 0;
- emit_insn (pat);
- return target;
-
- case ARM_BUILTIN_WSADB:
- return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadb, arglist, target);
- case ARM_BUILTIN_WSADH:
- return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadh, arglist, target);
- case ARM_BUILTIN_WSADBZ:
- return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadbz, arglist, target);
- case ARM_BUILTIN_WSADHZ:
- return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadhz, arglist, target);
-
- /* Several three-argument builtins. */
- case ARM_BUILTIN_WMACS:
- case ARM_BUILTIN_WMACU:
- case ARM_BUILTIN_WALIGN:
- case ARM_BUILTIN_TMIA:
- case ARM_BUILTIN_TMIAPH:
- case ARM_BUILTIN_TMIATT:
- case ARM_BUILTIN_TMIATB:
- case ARM_BUILTIN_TMIABT:
- case ARM_BUILTIN_TMIABB:
- icode = (fcode == ARM_BUILTIN_WMACS ? CODE_FOR_iwmmxt_wmacs
- : fcode == ARM_BUILTIN_WMACU ? CODE_FOR_iwmmxt_wmacu
- : fcode == ARM_BUILTIN_TMIA ? CODE_FOR_iwmmxt_tmia
- : fcode == ARM_BUILTIN_TMIAPH ? CODE_FOR_iwmmxt_tmiaph
- : fcode == ARM_BUILTIN_TMIABB ? CODE_FOR_iwmmxt_tmiabb
- : fcode == ARM_BUILTIN_TMIABT ? CODE_FOR_iwmmxt_tmiabt
- : fcode == ARM_BUILTIN_TMIATB ? CODE_FOR_iwmmxt_tmiatb
- : fcode == ARM_BUILTIN_TMIATT ? CODE_FOR_iwmmxt_tmiatt
- : CODE_FOR_iwmmxt_walign);
- arg0 = TREE_VALUE (arglist);
- arg1 = TREE_VALUE (TREE_CHAIN (arglist));
- arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
- op0 = expand_normal (arg0);
- op1 = expand_normal (arg1);
- op2 = expand_normal (arg2);
- tmode = insn_data[icode].operand[0].mode;
- mode0 = insn_data[icode].operand[1].mode;
- mode1 = insn_data[icode].operand[2].mode;
- mode2 = insn_data[icode].operand[3].mode;
-
- if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
- if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
- op1 = copy_to_mode_reg (mode1, op1);
- if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
- op2 = copy_to_mode_reg (mode2, op2);
- if (target == 0
- || GET_MODE (target) != tmode
- || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
- pat = GEN_FCN (icode) (target, op0, op1, op2);
- if (! pat)
- return 0;
- emit_insn (pat);
- return target;
-
- case ARM_BUILTIN_WZERO:
- target = gen_reg_rtx (DImode);
- emit_insn (gen_iwmmxt_clrdi (target));
- return target;
-
- case ARM_BUILTIN_THREAD_POINTER:
- return arm_load_tp (target);
-
- default:
- break;
- }
-
- for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
- if (d->code == (const enum arm_builtins) fcode)
- return arm_expand_binop_builtin (d->icode, arglist, target);
-
- for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
- if (d->code == (const enum arm_builtins) fcode)
- return arm_expand_unop_builtin (d->icode, arglist, target, 0);
-
- /* @@@ Should really do something sensible here. */
- return NULL_RTX;
-}
-
-/* Return the number (counting from 0) of
- the least significant set bit in MASK. */
-
-inline static int
-number_of_first_bit_set (unsigned mask)
-{
- int bit;
-
- for (bit = 0;
- (mask & (1 << bit)) == 0;
- ++bit)
- continue;
-
- return bit;
-}
-
-/* Emit code to push or pop registers to or from the stack. F is the
- assembly file. MASK is the registers to push or pop. PUSH is
- nonzero if we should push, and zero if we should pop. For debugging
- output, if pushing, adjust CFA_OFFSET by the amount of space added
- to the stack. REAL_REGS should have the same number of bits set as
- MASK, and will be used instead (in the same order) to describe which
- registers were saved - this is used to mark the save slots when we
- push high registers after moving them to low registers. */
-static void
-thumb_pushpop (FILE *f, unsigned long mask, int push, int *cfa_offset,
- unsigned long real_regs)
-{
- int regno;
- int lo_mask = mask & 0xFF;
- int pushed_words = 0;
-
- gcc_assert (mask);
-
- if (lo_mask == 0 && !push && (mask & (1 << PC_REGNUM)))
- {
- /* Special case. Do not generate a POP PC statement here, do it in
- thumb_exit() */
- thumb_exit (f, -1);
- return;
- }
-
- if (ARM_EABI_UNWIND_TABLES && push)
- {
- fprintf (f, "\t.save\t{");
- for (regno = 0; regno < 15; regno++)
- {
- if (real_regs & (1 << regno))
- {
- if (real_regs & ((1 << regno) -1))
- fprintf (f, ", ");
- asm_fprintf (f, "%r", regno);
- }
- }
- fprintf (f, "}\n");
- }
-
- fprintf (f, "\t%s\t{", push ? "push" : "pop");
-
- /* Look at the low registers first. */
- for (regno = 0; regno <= LAST_LO_REGNUM; regno++, lo_mask >>= 1)
- {
- if (lo_mask & 1)
- {
- asm_fprintf (f, "%r", regno);
-
- if ((lo_mask & ~1) != 0)
- fprintf (f, ", ");
-
- pushed_words++;
- }
- }
-
- if (push && (mask & (1 << LR_REGNUM)))
- {
- /* Catch pushing the LR. */
- if (mask & 0xFF)
- fprintf (f, ", ");
-
- asm_fprintf (f, "%r", LR_REGNUM);
-
- pushed_words++;
- }
- else if (!push && (mask & (1 << PC_REGNUM)))
- {
- /* Catch popping the PC. */
- if (TARGET_INTERWORK || TARGET_BACKTRACE
- || current_function_calls_eh_return)
- {
- /* The PC is never poped directly, instead
- it is popped into r3 and then BX is used. */
- fprintf (f, "}\n");
-
- thumb_exit (f, -1);
-
- return;
- }
- else
- {
- if (mask & 0xFF)
- fprintf (f, ", ");
-
- asm_fprintf (f, "%r", PC_REGNUM);
- }
- }
-
- fprintf (f, "}\n");
-
- if (push && pushed_words && dwarf2out_do_frame ())
- {
- char *l = dwarf2out_cfi_label ();
- int pushed_mask = real_regs;
-
- *cfa_offset += pushed_words * 4;
- dwarf2out_def_cfa (l, SP_REGNUM, *cfa_offset);
-
- pushed_words = 0;
- pushed_mask = real_regs;
- for (regno = 0; regno <= 14; regno++, pushed_mask >>= 1)
- {
- if (pushed_mask & 1)
- dwarf2out_reg_save (l, regno, 4 * pushed_words++ - *cfa_offset);
- }
- }
-}
-
-/* Generate code to return from a thumb function.
- If 'reg_containing_return_addr' is -1, then the return address is
- actually on the stack, at the stack pointer. */
-static void
-thumb_exit (FILE *f, int reg_containing_return_addr)
-{
- unsigned regs_available_for_popping;
- unsigned regs_to_pop;
- int pops_needed;
- unsigned available;
- unsigned required;
- int mode;
- int size;
- int restore_a4 = FALSE;
-
- /* Compute the registers we need to pop. */
- regs_to_pop = 0;
- pops_needed = 0;
-
- if (reg_containing_return_addr == -1)
- {
- regs_to_pop |= 1 << LR_REGNUM;
- ++pops_needed;
- }
-
- if (TARGET_BACKTRACE)
- {
- /* Restore the (ARM) frame pointer and stack pointer. */
- regs_to_pop |= (1 << ARM_HARD_FRAME_POINTER_REGNUM) | (1 << SP_REGNUM);
- pops_needed += 2;
- }
-
- /* If there is nothing to pop then just emit the BX instruction and
- return. */
- if (pops_needed == 0)
- {
- if (current_function_calls_eh_return)
- asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
-
- asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
- return;
- }
- /* Otherwise if we are not supporting interworking and we have not created
- a backtrace structure and the function was not entered in ARM mode then
- just pop the return address straight into the PC. */
- else if (!TARGET_INTERWORK
- && !TARGET_BACKTRACE
- && !is_called_in_ARM_mode (current_function_decl)
- && !current_function_calls_eh_return)
- {
- asm_fprintf (f, "\tpop\t{%r}\n", PC_REGNUM);
- return;
- }
-
- /* Find out how many of the (return) argument registers we can corrupt. */
- regs_available_for_popping = 0;
-
- /* If returning via __builtin_eh_return, the bottom three registers
- all contain information needed for the return. */
- if (current_function_calls_eh_return)
- size = 12;
- else
- {
- /* If we can deduce the registers used from the function's
- return value. This is more reliable that examining
- regs_ever_live[] because that will be set if the register is
- ever used in the function, not just if the register is used
- to hold a return value. */
-
- if (current_function_return_rtx != 0)
- mode = GET_MODE (current_function_return_rtx);
- else
- mode = DECL_MODE (DECL_RESULT (current_function_decl));
-
- size = GET_MODE_SIZE (mode);
-
- if (size == 0)
- {
- /* In a void function we can use any argument register.
- In a function that returns a structure on the stack
- we can use the second and third argument registers. */
- if (mode == VOIDmode)
- regs_available_for_popping =
- (1 << ARG_REGISTER (1))
- | (1 << ARG_REGISTER (2))
- | (1 << ARG_REGISTER (3));
- else
- regs_available_for_popping =
- (1 << ARG_REGISTER (2))
- | (1 << ARG_REGISTER (3));
- }
- else if (size <= 4)
- regs_available_for_popping =
- (1 << ARG_REGISTER (2))
- | (1 << ARG_REGISTER (3));
- else if (size <= 8)
- regs_available_for_popping =
- (1 << ARG_REGISTER (3));
- }
-
- /* Match registers to be popped with registers into which we pop them. */
- for (available = regs_available_for_popping,
- required = regs_to_pop;
- required != 0 && available != 0;
- available &= ~(available & - available),
- required &= ~(required & - required))
- -- pops_needed;
-
- /* If we have any popping registers left over, remove them. */
- if (available > 0)
- regs_available_for_popping &= ~available;
-
- /* Otherwise if we need another popping register we can use
- the fourth argument register. */
- else if (pops_needed)
- {
- /* If we have not found any free argument registers and
- reg a4 contains the return address, we must move it. */
- if (regs_available_for_popping == 0
- && reg_containing_return_addr == LAST_ARG_REGNUM)
- {
- asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
- reg_containing_return_addr = LR_REGNUM;
- }
- else if (size > 12)
- {
- /* Register a4 is being used to hold part of the return value,
- but we have dire need of a free, low register. */
- restore_a4 = TRUE;
-
- asm_fprintf (f, "\tmov\t%r, %r\n",IP_REGNUM, LAST_ARG_REGNUM);
- }
-
- if (reg_containing_return_addr != LAST_ARG_REGNUM)
- {
- /* The fourth argument register is available. */
- regs_available_for_popping |= 1 << LAST_ARG_REGNUM;
-
- --pops_needed;
- }
- }
-
- /* Pop as many registers as we can. */
- thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
- regs_available_for_popping);
-
- /* Process the registers we popped. */
- if (reg_containing_return_addr == -1)
- {
- /* The return address was popped into the lowest numbered register. */
- regs_to_pop &= ~(1 << LR_REGNUM);
-
- reg_containing_return_addr =
- number_of_first_bit_set (regs_available_for_popping);
-
- /* Remove this register for the mask of available registers, so that
- the return address will not be corrupted by further pops. */
- regs_available_for_popping &= ~(1 << reg_containing_return_addr);
- }
-
- /* If we popped other registers then handle them here. */
- if (regs_available_for_popping)
- {
- int frame_pointer;
-
- /* Work out which register currently contains the frame pointer. */
- frame_pointer = number_of_first_bit_set (regs_available_for_popping);
-
- /* Move it into the correct place. */
- asm_fprintf (f, "\tmov\t%r, %r\n",
- ARM_HARD_FRAME_POINTER_REGNUM, frame_pointer);
-
- /* (Temporarily) remove it from the mask of popped registers. */
- regs_available_for_popping &= ~(1 << frame_pointer);
- regs_to_pop &= ~(1 << ARM_HARD_FRAME_POINTER_REGNUM);
-
- if (regs_available_for_popping)
- {
- int stack_pointer;
-
- /* We popped the stack pointer as well,
- find the register that contains it. */
- stack_pointer = number_of_first_bit_set (regs_available_for_popping);
-
- /* Move it into the stack register. */
- asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, stack_pointer);
-
- /* At this point we have popped all necessary registers, so
- do not worry about restoring regs_available_for_popping
- to its correct value:
-
- assert (pops_needed == 0)
- assert (regs_available_for_popping == (1 << frame_pointer))
- assert (regs_to_pop == (1 << STACK_POINTER)) */
- }
- else
- {
- /* Since we have just move the popped value into the frame
- pointer, the popping register is available for reuse, and
- we know that we still have the stack pointer left to pop. */
- regs_available_for_popping |= (1 << frame_pointer);
- }
- }
-
- /* If we still have registers left on the stack, but we no longer have
- any registers into which we can pop them, then we must move the return
- address into the link register and make available the register that
- contained it. */
- if (regs_available_for_popping == 0 && pops_needed > 0)
- {
- regs_available_for_popping |= 1 << reg_containing_return_addr;
-
- asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM,
- reg_containing_return_addr);
-
- reg_containing_return_addr = LR_REGNUM;
- }
-
- /* If we have registers left on the stack then pop some more.
- We know that at most we will want to pop FP and SP. */
- if (pops_needed > 0)
- {
- int popped_into;
- int move_to;
-
- thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
- regs_available_for_popping);
-
- /* We have popped either FP or SP.
- Move whichever one it is into the correct register. */
- popped_into = number_of_first_bit_set (regs_available_for_popping);
- move_to = number_of_first_bit_set (regs_to_pop);
-
- asm_fprintf (f, "\tmov\t%r, %r\n", move_to, popped_into);
-
- regs_to_pop &= ~(1 << move_to);
-
- --pops_needed;
- }
-
- /* If we still have not popped everything then we must have only
- had one register available to us and we are now popping the SP. */
- if (pops_needed > 0)
- {
- int popped_into;
-
- thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
- regs_available_for_popping);
-
- popped_into = number_of_first_bit_set (regs_available_for_popping);
-
- asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, popped_into);
- /*
- assert (regs_to_pop == (1 << STACK_POINTER))
- assert (pops_needed == 1)
- */
- }
-
- /* If necessary restore the a4 register. */
- if (restore_a4)
- {
- if (reg_containing_return_addr != LR_REGNUM)
- {
- asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
- reg_containing_return_addr = LR_REGNUM;
- }
-
- asm_fprintf (f, "\tmov\t%r, %r\n", LAST_ARG_REGNUM, IP_REGNUM);
- }
-
- if (current_function_calls_eh_return)
- asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
-
- /* Return to caller. */
- asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
-}
-
-
-void
-thumb_final_prescan_insn (rtx insn)
-{
- if (flag_print_asm_name)
- asm_fprintf (asm_out_file, "%@ 0x%04x\n",
- INSN_ADDRESSES (INSN_UID (insn)));
-}
-
-int
-thumb_shiftable_const (unsigned HOST_WIDE_INT val)
-{
- unsigned HOST_WIDE_INT mask = 0xff;
- int i;
-
- if (val == 0) /* XXX */
- return 0;
-
- for (i = 0; i < 25; i++)
- if ((val & (mask << i)) == val)
- return 1;
-
- return 0;
-}
-
-/* Returns nonzero if the current function contains,
- or might contain a far jump. */
-static int
-thumb_far_jump_used_p (void)
-{
- rtx insn;
-
- /* This test is only important for leaf functions. */
- /* assert (!leaf_function_p ()); */
-
- /* If we have already decided that far jumps may be used,
- do not bother checking again, and always return true even if
- it turns out that they are not being used. Once we have made
- the decision that far jumps are present (and that hence the link
- register will be pushed onto the stack) we cannot go back on it. */
- if (cfun->machine->far_jump_used)
- return 1;
-
- /* If this function is not being called from the prologue/epilogue
- generation code then it must be being called from the
- INITIAL_ELIMINATION_OFFSET macro. */
- if (!(ARM_DOUBLEWORD_ALIGN || reload_completed))
- {
- /* In this case we know that we are being asked about the elimination
- of the arg pointer register. If that register is not being used,
- then there are no arguments on the stack, and we do not have to
- worry that a far jump might force the prologue to push the link
- register, changing the stack offsets. In this case we can just
- return false, since the presence of far jumps in the function will
- not affect stack offsets.
-
- If the arg pointer is live (or if it was live, but has now been
- eliminated and so set to dead) then we do have to test to see if
- the function might contain a far jump. This test can lead to some
- false negatives, since before reload is completed, then length of
- branch instructions is not known, so gcc defaults to returning their
- longest length, which in turn sets the far jump attribute to true.
-
- A false negative will not result in bad code being generated, but it
- will result in a needless push and pop of the link register. We
- hope that this does not occur too often.
-
- If we need doubleword stack alignment this could affect the other
- elimination offsets so we can't risk getting it wrong. */
- if (regs_ever_live [ARG_POINTER_REGNUM])
- cfun->machine->arg_pointer_live = 1;
- else if (!cfun->machine->arg_pointer_live)
- return 0;
- }
-
- /* Check to see if the function contains a branch
- insn with the far jump attribute set. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- {
- if (GET_CODE (insn) == JUMP_INSN
- /* Ignore tablejump patterns. */
- && GET_CODE (PATTERN (insn)) != ADDR_VEC
- && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
- && get_attr_far_jump (insn) == FAR_JUMP_YES
- )
- {
- /* Record the fact that we have decided that
- the function does use far jumps. */
- cfun->machine->far_jump_used = 1;
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Return nonzero if FUNC must be entered in ARM mode. */
-int
-is_called_in_ARM_mode (tree func)
-{
- gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
-
- /* Ignore the problem about functions whose address is taken. */
- if (TARGET_CALLEE_INTERWORKING && TREE_PUBLIC (func))
- return TRUE;
-
-#ifdef ARM_PE
- return lookup_attribute ("interfacearm", DECL_ATTRIBUTES (func)) != NULL_TREE;
-#else
- return FALSE;
-#endif
-}
-
-/* The bits which aren't usefully expanded as rtl. */
-const char *
-thumb_unexpanded_epilogue (void)
-{
- int regno;
- unsigned long live_regs_mask = 0;
- int high_regs_pushed = 0;
- int had_to_push_lr;
- int size;
-
- if (return_used_this_function)
- return "";
-
- if (IS_NAKED (arm_current_func_type ()))
- return "";
-
- live_regs_mask = thumb_compute_save_reg_mask ();
- high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
-
- /* If we can deduce the registers used from the function's return value.
- This is more reliable that examining regs_ever_live[] because that
- will be set if the register is ever used in the function, not just if
- the register is used to hold a return value. */
- size = arm_size_return_regs ();
-
- /* The prolog may have pushed some high registers to use as
- work registers. e.g. the testsuite file:
- gcc/testsuite/gcc/gcc.c-torture/execute/complex-2.c
- compiles to produce:
- push {r4, r5, r6, r7, lr}
- mov r7, r9
- mov r6, r8
- push {r6, r7}
- as part of the prolog. We have to undo that pushing here. */
-
- if (high_regs_pushed)
- {
- unsigned long mask = live_regs_mask & 0xff;
- int next_hi_reg;
-
- /* The available low registers depend on the size of the value we are
- returning. */
- if (size <= 12)
- mask |= 1 << 3;
- if (size <= 8)
- mask |= 1 << 2;
-
- if (mask == 0)
- /* Oh dear! We have no low registers into which we can pop
- high registers! */
- internal_error
- ("no low registers available for popping high registers");
-
- for (next_hi_reg = 8; next_hi_reg < 13; next_hi_reg++)
- if (live_regs_mask & (1 << next_hi_reg))
- break;
-
- while (high_regs_pushed)
- {
- /* Find lo register(s) into which the high register(s) can
- be popped. */
- for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
- {
- if (mask & (1 << regno))
- high_regs_pushed--;
- if (high_regs_pushed == 0)
- break;
- }
-
- mask &= (2 << regno) - 1; /* A noop if regno == 8 */
-
- /* Pop the values into the low register(s). */
- thumb_pushpop (asm_out_file, mask, 0, NULL, mask);
-
- /* Move the value(s) into the high registers. */
- for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
- {
- if (mask & (1 << regno))
- {
- asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", next_hi_reg,
- regno);
-
- for (next_hi_reg++; next_hi_reg < 13; next_hi_reg++)
- if (live_regs_mask & (1 << next_hi_reg))
- break;
- }
- }
- }
- live_regs_mask &= ~0x0f00;
- }
-
- had_to_push_lr = (live_regs_mask & (1 << LR_REGNUM)) != 0;
- live_regs_mask &= 0xff;
-
- if (current_function_pretend_args_size == 0 || TARGET_BACKTRACE)
- {
- /* Pop the return address into the PC. */
- if (had_to_push_lr)
- live_regs_mask |= 1 << PC_REGNUM;
-
- /* Either no argument registers were pushed or a backtrace
- structure was created which includes an adjusted stack
- pointer, so just pop everything. */
- if (live_regs_mask)
- thumb_pushpop (asm_out_file, live_regs_mask, FALSE, NULL,
- live_regs_mask);
-
- /* We have either just popped the return address into the
- PC or it is was kept in LR for the entire function. */
- if (!had_to_push_lr)
- thumb_exit (asm_out_file, LR_REGNUM);
- }
- else
- {
- /* Pop everything but the return address. */
- if (live_regs_mask)
- thumb_pushpop (asm_out_file, live_regs_mask, FALSE, NULL,
- live_regs_mask);
-
- if (had_to_push_lr)
- {
- if (size > 12)
- {
- /* We have no free low regs, so save one. */
- asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", IP_REGNUM,
- LAST_ARG_REGNUM);
- }
-
- /* Get the return address into a temporary register. */
- thumb_pushpop (asm_out_file, 1 << LAST_ARG_REGNUM, 0, NULL,
- 1 << LAST_ARG_REGNUM);
-
- if (size > 12)
- {
- /* Move the return address to lr. */
- asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LR_REGNUM,
- LAST_ARG_REGNUM);
- /* Restore the low register. */
- asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LAST_ARG_REGNUM,
- IP_REGNUM);
- regno = LR_REGNUM;
- }
- else
- regno = LAST_ARG_REGNUM;
- }
- else
- regno = LR_REGNUM;
-
- /* Remove the argument registers that were pushed onto the stack. */
- asm_fprintf (asm_out_file, "\tadd\t%r, %r, #%d\n",
- SP_REGNUM, SP_REGNUM,
- current_function_pretend_args_size);
-
- thumb_exit (asm_out_file, regno);
- }
-
- return "";
-}
-
-/* Functions to save and restore machine-specific function data. */
-static struct machine_function *
-arm_init_machine_status (void)
-{
- struct machine_function *machine;
- machine = (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
-
-#if ARM_FT_UNKNOWN != 0
- machine->func_type = ARM_FT_UNKNOWN;
-#endif
- return machine;
-}
-
-/* Return an RTX indicating where the return address to the
- calling function can be found. */
-rtx
-arm_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
-{
- if (count != 0)
- return NULL_RTX;
-
- return get_hard_reg_initial_val (Pmode, LR_REGNUM);
-}
-
-/* Do anything needed before RTL is emitted for each function. */
-void
-arm_init_expanders (void)
-{
- /* Arrange to initialize and mark the machine per-function status. */
- init_machine_status = arm_init_machine_status;
-
- /* This is to stop the combine pass optimizing away the alignment
- adjustment of va_arg. */
- /* ??? It is claimed that this should not be necessary. */
- if (cfun)
- mark_reg_pointer (arg_pointer_rtx, PARM_BOUNDARY);
-}
-
-
-/* Like arm_compute_initial_elimination offset. Simpler because there
- isn't an ABI specified frame pointer for Thumb. Instead, we set it
- to point at the base of the local variables after static stack
- space for a function has been allocated. */
-
-HOST_WIDE_INT
-thumb_compute_initial_elimination_offset (unsigned int from, unsigned int to)
-{
- arm_stack_offsets *offsets;
-
- offsets = arm_get_frame_offsets ();
-
- switch (from)
- {
- case ARG_POINTER_REGNUM:
- switch (to)
- {
- case STACK_POINTER_REGNUM:
- return offsets->outgoing_args - offsets->saved_args;
-
- case FRAME_POINTER_REGNUM:
- return offsets->soft_frame - offsets->saved_args;
-
- case ARM_HARD_FRAME_POINTER_REGNUM:
- return offsets->saved_regs - offsets->saved_args;
-
- case THUMB_HARD_FRAME_POINTER_REGNUM:
- return offsets->locals_base - offsets->saved_args;
-
- default:
- gcc_unreachable ();
- }
- break;
-
- case FRAME_POINTER_REGNUM:
- switch (to)
- {
- case STACK_POINTER_REGNUM:
- return offsets->outgoing_args - offsets->soft_frame;
-
- case ARM_HARD_FRAME_POINTER_REGNUM:
- return offsets->saved_regs - offsets->soft_frame;
-
- case THUMB_HARD_FRAME_POINTER_REGNUM:
- return offsets->locals_base - offsets->soft_frame;
-
- default:
- gcc_unreachable ();
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Generate the rest of a function's prologue. */
-void
-thumb_expand_prologue (void)
-{
- rtx insn, dwarf;
-
- HOST_WIDE_INT amount;
- arm_stack_offsets *offsets;
- unsigned long func_type;
- int regno;
- unsigned long live_regs_mask;
-
- func_type = arm_current_func_type ();
-
- /* Naked functions don't have prologues. */
- if (IS_NAKED (func_type))
- return;
-
- if (IS_INTERRUPT (func_type))
- {
- error ("interrupt Service Routines cannot be coded in Thumb mode");
- return;
- }
-
- live_regs_mask = thumb_compute_save_reg_mask ();
- /* Load the pic register before setting the frame pointer,
- so we can use r7 as a temporary work register. */
- if (flag_pic && arm_pic_register != INVALID_REGNUM)
- arm_load_pic_register (live_regs_mask);
-
- if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
- emit_move_insn (gen_rtx_REG (Pmode, ARM_HARD_FRAME_POINTER_REGNUM),
- stack_pointer_rtx);
-
- offsets = arm_get_frame_offsets ();
- amount = offsets->outgoing_args - offsets->saved_regs;
- if (amount)
- {
- if (amount < 512)
- {
- insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
- GEN_INT (- amount)));
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- else
- {
- rtx reg;
-
- /* The stack decrement is too big for an immediate value in a single
- insn. In theory we could issue multiple subtracts, but after
- three of them it becomes more space efficient to place the full
- value in the constant pool and load into a register. (Also the
- ARM debugger really likes to see only one stack decrement per
- function). So instead we look for a scratch register into which
- we can load the decrement, and then we subtract this from the
- stack pointer. Unfortunately on the thumb the only available
- scratch registers are the argument registers, and we cannot use
- these as they may hold arguments to the function. Instead we
- attempt to locate a call preserved register which is used by this
- function. If we can find one, then we know that it will have
- been pushed at the start of the prologue and so we can corrupt
- it now. */
- for (regno = LAST_ARG_REGNUM + 1; regno <= LAST_LO_REGNUM; regno++)
- if (live_regs_mask & (1 << regno)
- && !(frame_pointer_needed
- && (regno == THUMB_HARD_FRAME_POINTER_REGNUM)))
- break;
-
- if (regno > LAST_LO_REGNUM) /* Very unlikely. */
- {
- rtx spare = gen_rtx_REG (SImode, IP_REGNUM);
-
- /* Choose an arbitrary, non-argument low register. */
- reg = gen_rtx_REG (SImode, LAST_LO_REGNUM);
-
- /* Save it by copying it into a high, scratch register. */
- emit_insn (gen_movsi (spare, reg));
- /* Add a USE to stop propagate_one_insn() from barfing. */
- emit_insn (gen_prologue_use (spare));
-
- /* Decrement the stack. */
- emit_insn (gen_movsi (reg, GEN_INT (- amount)));
- insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
- stack_pointer_rtx, reg));
- RTX_FRAME_RELATED_P (insn) = 1;
- dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
- plus_constant (stack_pointer_rtx,
- -amount));
- RTX_FRAME_RELATED_P (dwarf) = 1;
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
- REG_NOTES (insn));
-
- /* Restore the low register's original value. */
- emit_insn (gen_movsi (reg, spare));
-
- /* Emit a USE of the restored scratch register, so that flow
- analysis will not consider the restore redundant. The
- register won't be used again in this function and isn't
- restored by the epilogue. */
- emit_insn (gen_prologue_use (reg));
- }
- else
- {
- reg = gen_rtx_REG (SImode, regno);
-
- emit_insn (gen_movsi (reg, GEN_INT (- amount)));
-
- insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
- stack_pointer_rtx, reg));
- RTX_FRAME_RELATED_P (insn) = 1;
- dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
- plus_constant (stack_pointer_rtx,
- -amount));
- RTX_FRAME_RELATED_P (dwarf) = 1;
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
- REG_NOTES (insn));
- }
- }
- }
-
- if (frame_pointer_needed)
- {
- amount = offsets->outgoing_args - offsets->locals_base;
-
- if (amount < 1024)
- insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
- stack_pointer_rtx, GEN_INT (amount)));
- else
- {
- emit_insn (gen_movsi (hard_frame_pointer_rtx, GEN_INT (amount)));
- insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
- hard_frame_pointer_rtx,
- stack_pointer_rtx));
- dwarf = gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
- plus_constant (stack_pointer_rtx, amount));
- RTX_FRAME_RELATED_P (dwarf) = 1;
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
- REG_NOTES (insn));
- }
-
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- /* If we are profiling, make sure no instructions are scheduled before
- the call to mcount. Similarly if the user has requested no
- scheduling in the prolog. Similarly if we want non-call exceptions
- using the EABI unwinder, to prevent faulting instructions from being
- swapped with a stack adjustment. */
- if (current_function_profile || !TARGET_SCHED_PROLOG
- || (ARM_EABI_UNWIND_TABLES && flag_non_call_exceptions))
- emit_insn (gen_blockage ());
-
- cfun->machine->lr_save_eliminated = !thumb_force_lr_save ();
- if (live_regs_mask & 0xff)
- cfun->machine->lr_save_eliminated = 0;
-
- /* If the link register is being kept alive, with the return address in it,
- then make sure that it does not get reused by the ce2 pass. */
- if (cfun->machine->lr_save_eliminated)
- emit_insn (gen_prologue_use (gen_rtx_REG (SImode, LR_REGNUM)));
-}
-
-
-void
-thumb_expand_epilogue (void)
-{
- HOST_WIDE_INT amount;
- arm_stack_offsets *offsets;
- int regno;
-
- /* Naked functions don't have prologues. */
- if (IS_NAKED (arm_current_func_type ()))
- return;
-
- offsets = arm_get_frame_offsets ();
- amount = offsets->outgoing_args - offsets->saved_regs;
-
- if (frame_pointer_needed)
- {
- emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
- amount = offsets->locals_base - offsets->saved_regs;
- }
-
- gcc_assert (amount >= 0);
- if (amount)
- {
- if (amount < 512)
- emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
- GEN_INT (amount)));
- else
- {
- /* r3 is always free in the epilogue. */
- rtx reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
-
- emit_insn (gen_movsi (reg, GEN_INT (amount)));
- emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg));
- }
- }
-
- /* Emit a USE (stack_pointer_rtx), so that
- the stack adjustment will not be deleted. */
- emit_insn (gen_prologue_use (stack_pointer_rtx));
-
- if (current_function_profile || !TARGET_SCHED_PROLOG)
- emit_insn (gen_blockage ());
-
- /* Emit a clobber for each insn that will be restored in the epilogue,
- so that flow2 will get register lifetimes correct. */
- for (regno = 0; regno < 13; regno++)
- if (regs_ever_live[regno] && !call_used_regs[regno])
- emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, regno)));
-
- if (! regs_ever_live[LR_REGNUM])
- emit_insn (gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, LR_REGNUM)));
-}
-
-static void
-thumb_output_function_prologue (FILE *f, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
-{
- unsigned long live_regs_mask = 0;
- unsigned long l_mask;
- unsigned high_regs_pushed = 0;
- int cfa_offset = 0;
- int regno;
-
- if (IS_NAKED (arm_current_func_type ()))
- return;
-
- if (is_called_in_ARM_mode (current_function_decl))
- {
- const char * name;
-
- gcc_assert (GET_CODE (DECL_RTL (current_function_decl)) == MEM);
- gcc_assert (GET_CODE (XEXP (DECL_RTL (current_function_decl), 0))
- == SYMBOL_REF);
- name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
-
- /* Generate code sequence to switch us into Thumb mode. */
- /* The .code 32 directive has already been emitted by
- ASM_DECLARE_FUNCTION_NAME. */
- asm_fprintf (f, "\torr\t%r, %r, #1\n", IP_REGNUM, PC_REGNUM);
- asm_fprintf (f, "\tbx\t%r\n", IP_REGNUM);
-
- /* Generate a label, so that the debugger will notice the
- change in instruction sets. This label is also used by
- the assembler to bypass the ARM code when this function
- is called from a Thumb encoded function elsewhere in the
- same file. Hence the definition of STUB_NAME here must
- agree with the definition in gas/config/tc-arm.c. */
-
-#define STUB_NAME ".real_start_of"
-
- fprintf (f, "\t.code\t16\n");
-#ifdef ARM_PE
- if (arm_dllexport_name_p (name))
- name = arm_strip_name_encoding (name);
-#endif
- asm_fprintf (f, "\t.globl %s%U%s\n", STUB_NAME, name);
- fprintf (f, "\t.thumb_func\n");
- asm_fprintf (f, "%s%U%s:\n", STUB_NAME, name);
- }
-
- if (current_function_pretend_args_size)
- {
- /* Output unwind directive for the stack adjustment. */
- if (ARM_EABI_UNWIND_TABLES)
- fprintf (f, "\t.pad #%d\n",
- current_function_pretend_args_size);
-
- if (cfun->machine->uses_anonymous_args)
- {
- int num_pushes;
-
- fprintf (f, "\tpush\t{");
-
- num_pushes = ARM_NUM_INTS (current_function_pretend_args_size);
-
- for (regno = LAST_ARG_REGNUM + 1 - num_pushes;
- regno <= LAST_ARG_REGNUM;
- regno++)
- asm_fprintf (f, "%r%s", regno,
- regno == LAST_ARG_REGNUM ? "" : ", ");
-
- fprintf (f, "}\n");
- }
- else
- asm_fprintf (f, "\tsub\t%r, %r, #%d\n",
- SP_REGNUM, SP_REGNUM,
- current_function_pretend_args_size);
-
- /* We don't need to record the stores for unwinding (would it
- help the debugger any if we did?), but record the change in
- the stack pointer. */
- if (dwarf2out_do_frame ())
- {
- char *l = dwarf2out_cfi_label ();
-
- cfa_offset = cfa_offset + current_function_pretend_args_size;
- dwarf2out_def_cfa (l, SP_REGNUM, cfa_offset);
- }
- }
-
- /* Get the registers we are going to push. */
- live_regs_mask = thumb_compute_save_reg_mask ();
- /* Extract a mask of the ones we can give to the Thumb's push instruction. */
- l_mask = live_regs_mask & 0x40ff;
- /* Then count how many other high registers will need to be pushed. */
- high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
-
- if (TARGET_BACKTRACE)
- {
- unsigned offset;
- unsigned work_register;
-
- /* We have been asked to create a stack backtrace structure.
- The code looks like this:
-
- 0 .align 2
- 0 func:
- 0 sub SP, #16 Reserve space for 4 registers.
- 2 push {R7} Push low registers.
- 4 add R7, SP, #20 Get the stack pointer before the push.
- 6 str R7, [SP, #8] Store the stack pointer (before reserving the space).
- 8 mov R7, PC Get hold of the start of this code plus 12.
- 10 str R7, [SP, #16] Store it.
- 12 mov R7, FP Get hold of the current frame pointer.
- 14 str R7, [SP, #4] Store it.
- 16 mov R7, LR Get hold of the current return address.
- 18 str R7, [SP, #12] Store it.
- 20 add R7, SP, #16 Point at the start of the backtrace structure.
- 22 mov FP, R7 Put this value into the frame pointer. */
-
- work_register = thumb_find_work_register (live_regs_mask);
-
- if (ARM_EABI_UNWIND_TABLES)
- asm_fprintf (f, "\t.pad #16\n");
-
- asm_fprintf
- (f, "\tsub\t%r, %r, #16\t%@ Create stack backtrace structure\n",
- SP_REGNUM, SP_REGNUM);
-
- if (dwarf2out_do_frame ())
- {
- char *l = dwarf2out_cfi_label ();
-
- cfa_offset = cfa_offset + 16;
- dwarf2out_def_cfa (l, SP_REGNUM, cfa_offset);
- }
-
- if (l_mask)
- {
- thumb_pushpop (f, l_mask, 1, &cfa_offset, l_mask);
- offset = bit_count (l_mask) * UNITS_PER_WORD;
- }
- else
- offset = 0;
-
- asm_fprintf (f, "\tadd\t%r, %r, #%d\n", work_register, SP_REGNUM,
- offset + 16 + current_function_pretend_args_size);
-
- asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
- offset + 4);
-
- /* Make sure that the instruction fetching the PC is in the right place
- to calculate "start of backtrace creation code + 12". */
- if (l_mask)
- {
- asm_fprintf (f, "\tmov\t%r, %r\n", work_register, PC_REGNUM);
- asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
- offset + 12);
- asm_fprintf (f, "\tmov\t%r, %r\n", work_register,
- ARM_HARD_FRAME_POINTER_REGNUM);
- asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
- offset);
- }
- else
- {
- asm_fprintf (f, "\tmov\t%r, %r\n", work_register,
- ARM_HARD_FRAME_POINTER_REGNUM);
- asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
- offset);
- asm_fprintf (f, "\tmov\t%r, %r\n", work_register, PC_REGNUM);
- asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
- offset + 12);
- }
-
- asm_fprintf (f, "\tmov\t%r, %r\n", work_register, LR_REGNUM);
- asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
- offset + 8);
- asm_fprintf (f, "\tadd\t%r, %r, #%d\n", work_register, SP_REGNUM,
- offset + 12);
- asm_fprintf (f, "\tmov\t%r, %r\t\t%@ Backtrace structure created\n",
- ARM_HARD_FRAME_POINTER_REGNUM, work_register);
- }
- /* Optimization: If we are not pushing any low registers but we are going
- to push some high registers then delay our first push. This will just
- be a push of LR and we can combine it with the push of the first high
- register. */
- else if ((l_mask & 0xff) != 0
- || (high_regs_pushed == 0 && l_mask))
- thumb_pushpop (f, l_mask, 1, &cfa_offset, l_mask);
-
- if (high_regs_pushed)
- {
- unsigned pushable_regs;
- unsigned next_hi_reg;
-
- for (next_hi_reg = 12; next_hi_reg > LAST_LO_REGNUM; next_hi_reg--)
- if (live_regs_mask & (1 << next_hi_reg))
- break;
-
- pushable_regs = l_mask & 0xff;
-
- if (pushable_regs == 0)
- pushable_regs = 1 << thumb_find_work_register (live_regs_mask);
-
- while (high_regs_pushed > 0)
- {
- unsigned long real_regs_mask = 0;
-
- for (regno = LAST_LO_REGNUM; regno >= 0; regno --)
- {
- if (pushable_regs & (1 << regno))
- {
- asm_fprintf (f, "\tmov\t%r, %r\n", regno, next_hi_reg);
-
- high_regs_pushed --;
- real_regs_mask |= (1 << next_hi_reg);
-
- if (high_regs_pushed)
- {
- for (next_hi_reg --; next_hi_reg > LAST_LO_REGNUM;
- next_hi_reg --)
- if (live_regs_mask & (1 << next_hi_reg))
- break;
- }
- else
- {
- pushable_regs &= ~((1 << regno) - 1);
- break;
- }
- }
- }
-
- /* If we had to find a work register and we have not yet
- saved the LR then add it to the list of regs to push. */
- if (l_mask == (1 << LR_REGNUM))
- {
- thumb_pushpop (f, pushable_regs | (1 << LR_REGNUM),
- 1, &cfa_offset,
- real_regs_mask | (1 << LR_REGNUM));
- l_mask = 0;
- }
- else
- thumb_pushpop (f, pushable_regs, 1, &cfa_offset, real_regs_mask);
- }
- }
-}
-
-/* Handle the case of a double word load into a low register from
- a computed memory address. The computed address may involve a
- register which is overwritten by the load. */
-const char *
-thumb_load_double_from_address (rtx *operands)
-{
- rtx addr;
- rtx base;
- rtx offset;
- rtx arg1;
- rtx arg2;
-
- gcc_assert (GET_CODE (operands[0]) == REG);
- gcc_assert (GET_CODE (operands[1]) == MEM);
-
- /* Get the memory address. */
- addr = XEXP (operands[1], 0);
-
- /* Work out how the memory address is computed. */
- switch (GET_CODE (addr))
- {
- case REG:
- operands[2] = adjust_address (operands[1], SImode, 4);
-
- if (REGNO (operands[0]) == REGNO (addr))
- {
- output_asm_insn ("ldr\t%H0, %2", operands);
- output_asm_insn ("ldr\t%0, %1", operands);
- }
- else
- {
- output_asm_insn ("ldr\t%0, %1", operands);
- output_asm_insn ("ldr\t%H0, %2", operands);
- }
- break;
-
- case CONST:
- /* Compute <address> + 4 for the high order load. */
- operands[2] = adjust_address (operands[1], SImode, 4);
-
- output_asm_insn ("ldr\t%0, %1", operands);
- output_asm_insn ("ldr\t%H0, %2", operands);
- break;
-
- case PLUS:
- arg1 = XEXP (addr, 0);
- arg2 = XEXP (addr, 1);
-
- if (CONSTANT_P (arg1))
- base = arg2, offset = arg1;
- else
- base = arg1, offset = arg2;
-
- gcc_assert (GET_CODE (base) == REG);
-
- /* Catch the case of <address> = <reg> + <reg> */
- if (GET_CODE (offset) == REG)
- {
- int reg_offset = REGNO (offset);
- int reg_base = REGNO (base);
- int reg_dest = REGNO (operands[0]);
-
- /* Add the base and offset registers together into the
- higher destination register. */
- asm_fprintf (asm_out_file, "\tadd\t%r, %r, %r",
- reg_dest + 1, reg_base, reg_offset);
-
- /* Load the lower destination register from the address in
- the higher destination register. */
- asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #0]",
- reg_dest, reg_dest + 1);
-
- /* Load the higher destination register from its own address
- plus 4. */
- asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #4]",
- reg_dest + 1, reg_dest + 1);
- }
- else
- {
- /* Compute <address> + 4 for the high order load. */
- operands[2] = adjust_address (operands[1], SImode, 4);
-
- /* If the computed address is held in the low order register
- then load the high order register first, otherwise always
- load the low order register first. */
- if (REGNO (operands[0]) == REGNO (base))
- {
- output_asm_insn ("ldr\t%H0, %2", operands);
- output_asm_insn ("ldr\t%0, %1", operands);
- }
- else
- {
- output_asm_insn ("ldr\t%0, %1", operands);
- output_asm_insn ("ldr\t%H0, %2", operands);
- }
- }
- break;
-
- case LABEL_REF:
- /* With no registers to worry about we can just load the value
- directly. */
- operands[2] = adjust_address (operands[1], SImode, 4);
-
- output_asm_insn ("ldr\t%H0, %2", operands);
- output_asm_insn ("ldr\t%0, %1", operands);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return "";
-}
-
-const char *
-thumb_output_move_mem_multiple (int n, rtx *operands)
-{
- rtx tmp;
-
- switch (n)
- {
- case 2:
- if (REGNO (operands[4]) > REGNO (operands[5]))
- {
- tmp = operands[4];
- operands[4] = operands[5];
- operands[5] = tmp;
- }
- output_asm_insn ("ldmia\t%1!, {%4, %5}", operands);
- output_asm_insn ("stmia\t%0!, {%4, %5}", operands);
- break;
-
- case 3:
- if (REGNO (operands[4]) > REGNO (operands[5]))
- {
- tmp = operands[4];
- operands[4] = operands[5];
- operands[5] = tmp;
- }
- if (REGNO (operands[5]) > REGNO (operands[6]))
- {
- tmp = operands[5];
- operands[5] = operands[6];
- operands[6] = tmp;
- }
- if (REGNO (operands[4]) > REGNO (operands[5]))
- {
- tmp = operands[4];
- operands[4] = operands[5];
- operands[5] = tmp;
- }
-
- output_asm_insn ("ldmia\t%1!, {%4, %5, %6}", operands);
- output_asm_insn ("stmia\t%0!, {%4, %5, %6}", operands);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return "";
-}
-
-/* Output a call-via instruction for thumb state. */
-const char *
-thumb_call_via_reg (rtx reg)
-{
- int regno = REGNO (reg);
- rtx *labelp;
-
- gcc_assert (regno < LR_REGNUM);
-
- /* If we are in the normal text section we can use a single instance
- per compilation unit. If we are doing function sections, then we need
- an entry per section, since we can't rely on reachability. */
- if (in_section == text_section)
- {
- thumb_call_reg_needed = 1;
-
- if (thumb_call_via_label[regno] == NULL)
- thumb_call_via_label[regno] = gen_label_rtx ();
- labelp = thumb_call_via_label + regno;
- }
- else
- {
- if (cfun->machine->call_via[regno] == NULL)
- cfun->machine->call_via[regno] = gen_label_rtx ();
- labelp = cfun->machine->call_via + regno;
- }
-
- output_asm_insn ("bl\t%a0", labelp);
- return "";
-}
-
-/* Routines for generating rtl. */
-void
-thumb_expand_movmemqi (rtx *operands)
-{
- rtx out = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
- rtx in = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
- HOST_WIDE_INT len = INTVAL (operands[2]);
- HOST_WIDE_INT offset = 0;
-
- while (len >= 12)
- {
- emit_insn (gen_movmem12b (out, in, out, in));
- len -= 12;
- }
-
- if (len >= 8)
- {
- emit_insn (gen_movmem8b (out, in, out, in));
- len -= 8;
- }
-
- if (len >= 4)
- {
- rtx reg = gen_reg_rtx (SImode);
- emit_insn (gen_movsi (reg, gen_rtx_MEM (SImode, in)));
- emit_insn (gen_movsi (gen_rtx_MEM (SImode, out), reg));
- len -= 4;
- offset += 4;
- }
-
- if (len >= 2)
- {
- rtx reg = gen_reg_rtx (HImode);
- emit_insn (gen_movhi (reg, gen_rtx_MEM (HImode,
- plus_constant (in, offset))));
- emit_insn (gen_movhi (gen_rtx_MEM (HImode, plus_constant (out, offset)),
- reg));
- len -= 2;
- offset += 2;
- }
-
- if (len)
- {
- rtx reg = gen_reg_rtx (QImode);
- emit_insn (gen_movqi (reg, gen_rtx_MEM (QImode,
- plus_constant (in, offset))));
- emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (out, offset)),
- reg));
- }
-}
-
-void
-thumb_reload_out_hi (rtx *operands)
-{
- emit_insn (gen_thumb_movhi_clobber (operands[0], operands[1], operands[2]));
-}
-
-/* Handle reading a half-word from memory during reload. */
-void
-thumb_reload_in_hi (rtx *operands ATTRIBUTE_UNUSED)
-{
- gcc_unreachable ();
-}
-
-/* Return the length of a function name prefix
- that starts with the character 'c'. */
-static int
-arm_get_strip_length (int c)
-{
- switch (c)
- {
- ARM_NAME_ENCODING_LENGTHS
- default: return 0;
- }
-}
-
-/* Return a pointer to a function's name with any
- and all prefix encodings stripped from it. */
-const char *
-arm_strip_name_encoding (const char *name)
-{
- int skip;
-
- while ((skip = arm_get_strip_length (* name)))
- name += skip;
-
- return name;
-}
-
-/* If there is a '*' anywhere in the name's prefix, then
- emit the stripped name verbatim, otherwise prepend an
- underscore if leading underscores are being used. */
-void
-arm_asm_output_labelref (FILE *stream, const char *name)
-{
- int skip;
- int verbatim = 0;
-
- while ((skip = arm_get_strip_length (* name)))
- {
- verbatim |= (*name == '*');
- name += skip;
- }
-
- if (verbatim)
- fputs (name, stream);
- else
- asm_fprintf (stream, "%U%s", name);
-}
-
-static void
-arm_file_end (void)
-{
- int regno;
-
- if (NEED_INDICATE_EXEC_STACK)
- /* Add .note.GNU-stack. */
- file_end_indicate_exec_stack ();
-
- if (! thumb_call_reg_needed)
- return;
-
- switch_to_section (text_section);
- asm_fprintf (asm_out_file, "\t.code 16\n");
- ASM_OUTPUT_ALIGN (asm_out_file, 1);
-
- for (regno = 0; regno < LR_REGNUM; regno++)
- {
- rtx label = thumb_call_via_label[regno];
-
- if (label != 0)
- {
- targetm.asm_out.internal_label (asm_out_file, "L",
- CODE_LABEL_NUMBER (label));
- asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
- }
- }
-}
-
-rtx aof_pic_label;
-
-#ifdef AOF_ASSEMBLER
-/* Special functions only needed when producing AOF syntax assembler. */
-
-struct pic_chain
-{
- struct pic_chain * next;
- const char * symname;
-};
-
-static struct pic_chain * aof_pic_chain = NULL;
-
-rtx
-aof_pic_entry (rtx x)
-{
- struct pic_chain ** chainp;
- int offset;
-
- if (aof_pic_label == NULL_RTX)
- {
- aof_pic_label = gen_rtx_SYMBOL_REF (Pmode, "x$adcons");
- }
-
- for (offset = 0, chainp = &aof_pic_chain; *chainp;
- offset += 4, chainp = &(*chainp)->next)
- if ((*chainp)->symname == XSTR (x, 0))
- return plus_constant (aof_pic_label, offset);
-
- *chainp = (struct pic_chain *) xmalloc (sizeof (struct pic_chain));
- (*chainp)->next = NULL;
- (*chainp)->symname = XSTR (x, 0);
- return plus_constant (aof_pic_label, offset);
-}
-
-void
-aof_dump_pic_table (FILE *f)
-{
- struct pic_chain * chain;
-
- if (aof_pic_chain == NULL)
- return;
-
- asm_fprintf (f, "\tAREA |%r$$adcons|, BASED %r\n",
- PIC_OFFSET_TABLE_REGNUM,
- PIC_OFFSET_TABLE_REGNUM);
- fputs ("|x$adcons|\n", f);
-
- for (chain = aof_pic_chain; chain; chain = chain->next)
- {
- fputs ("\tDCD\t", f);
- assemble_name (f, chain->symname);
- fputs ("\n", f);
- }
-}
-
-int arm_text_section_count = 1;
-
-/* A get_unnamed_section callback for switching to the text section. */
-
-static void
-aof_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED)
-{
- fprintf (asm_out_file, "\tAREA |C$$code%d|, CODE, READONLY",
- arm_text_section_count++);
- if (flag_pic)
- fprintf (asm_out_file, ", PIC, REENTRANT");
- fprintf (asm_out_file, "\n");
-}
-
-static int arm_data_section_count = 1;
-
-/* A get_unnamed_section callback for switching to the data section. */
-
-static void
-aof_output_data_section_asm_op (const void *data ATTRIBUTE_UNUSED)
-{
- fprintf (asm_out_file, "\tAREA |C$$data%d|, DATA\n",
- arm_data_section_count++);
-}
-
-/* Implement TARGET_ASM_INIT_SECTIONS.
-
- AOF Assembler syntax is a nightmare when it comes to areas, since once
- we change from one area to another, we can't go back again. Instead,
- we must create a new area with the same attributes and add the new output
- to that. Unfortunately, there is nothing we can do here to guarantee that
- two areas with the same attributes will be linked adjacently in the
- resulting executable, so we have to be careful not to do pc-relative
- addressing across such boundaries. */
-
-static void
-aof_asm_init_sections (void)
-{
- text_section = get_unnamed_section (SECTION_CODE,
- aof_output_text_section_asm_op, NULL);
- data_section = get_unnamed_section (SECTION_WRITE,
- aof_output_data_section_asm_op, NULL);
- readonly_data_section = text_section;
-}
-
-void
-zero_init_section (void)
-{
- static int zero_init_count = 1;
-
- fprintf (asm_out_file, "\tAREA |C$$zidata%d|,NOINIT\n", zero_init_count++);
- in_section = NULL;
-}
-
-/* The AOF assembler is religiously strict about declarations of
- imported and exported symbols, so that it is impossible to declare
- a function as imported near the beginning of the file, and then to
- export it later on. It is, however, possible to delay the decision
- until all the functions in the file have been compiled. To get
- around this, we maintain a list of the imports and exports, and
- delete from it any that are subsequently defined. At the end of
- compilation we spit the remainder of the list out before the END
- directive. */
-
-struct import
-{
- struct import * next;
- const char * name;
-};
-
-static struct import * imports_list = NULL;
-
-void
-aof_add_import (const char *name)
-{
- struct import * new;
-
- for (new = imports_list; new; new = new->next)
- if (new->name == name)
- return;
-
- new = (struct import *) xmalloc (sizeof (struct import));
- new->next = imports_list;
- imports_list = new;
- new->name = name;
-}
-
-void
-aof_delete_import (const char *name)
-{
- struct import ** old;
-
- for (old = &imports_list; *old; old = & (*old)->next)
- {
- if ((*old)->name == name)
- {
- *old = (*old)->next;
- return;
- }
- }
-}
-
-int arm_main_function = 0;
-
-static void
-aof_dump_imports (FILE *f)
-{
- /* The AOF assembler needs this to cause the startup code to be extracted
- from the library. Brining in __main causes the whole thing to work
- automagically. */
- if (arm_main_function)
- {
- switch_to_section (text_section);
- fputs ("\tIMPORT __main\n", f);
- fputs ("\tDCD __main\n", f);
- }
-
- /* Now dump the remaining imports. */
- while (imports_list)
- {
- fprintf (f, "\tIMPORT\t");
- assemble_name (f, imports_list->name);
- fputc ('\n', f);
- imports_list = imports_list->next;
- }
-}
-
-static void
-aof_globalize_label (FILE *stream, const char *name)
-{
- default_globalize_label (stream, name);
- if (! strcmp (name, "main"))
- arm_main_function = 1;
-}
-
-static void
-aof_file_start (void)
-{
- fputs ("__r0\tRN\t0\n", asm_out_file);
- fputs ("__a1\tRN\t0\n", asm_out_file);
- fputs ("__a2\tRN\t1\n", asm_out_file);
- fputs ("__a3\tRN\t2\n", asm_out_file);
- fputs ("__a4\tRN\t3\n", asm_out_file);
- fputs ("__v1\tRN\t4\n", asm_out_file);
- fputs ("__v2\tRN\t5\n", asm_out_file);
- fputs ("__v3\tRN\t6\n", asm_out_file);
- fputs ("__v4\tRN\t7\n", asm_out_file);
- fputs ("__v5\tRN\t8\n", asm_out_file);
- fputs ("__v6\tRN\t9\n", asm_out_file);
- fputs ("__sl\tRN\t10\n", asm_out_file);
- fputs ("__fp\tRN\t11\n", asm_out_file);
- fputs ("__ip\tRN\t12\n", asm_out_file);
- fputs ("__sp\tRN\t13\n", asm_out_file);
- fputs ("__lr\tRN\t14\n", asm_out_file);
- fputs ("__pc\tRN\t15\n", asm_out_file);
- fputs ("__f0\tFN\t0\n", asm_out_file);
- fputs ("__f1\tFN\t1\n", asm_out_file);
- fputs ("__f2\tFN\t2\n", asm_out_file);
- fputs ("__f3\tFN\t3\n", asm_out_file);
- fputs ("__f4\tFN\t4\n", asm_out_file);
- fputs ("__f5\tFN\t5\n", asm_out_file);
- fputs ("__f6\tFN\t6\n", asm_out_file);
- fputs ("__f7\tFN\t7\n", asm_out_file);
- switch_to_section (text_section);
-}
-
-static void
-aof_file_end (void)
-{
- if (flag_pic)
- aof_dump_pic_table (asm_out_file);
- arm_file_end ();
- aof_dump_imports (asm_out_file);
- fputs ("\tEND\n", asm_out_file);
-}
-#endif /* AOF_ASSEMBLER */
-
-#ifndef ARM_PE
-/* Symbols in the text segment can be accessed without indirecting via the
- constant pool; it may take an extra binary operation, but this is still
- faster than indirecting via memory. Don't do this when not optimizing,
- since we won't be calculating al of the offsets necessary to do this
- simplification. */
-
-static void
-arm_encode_section_info (tree decl, rtx rtl, int first)
-{
- /* This doesn't work with AOF syntax, since the string table may be in
- a different AREA. */
-#ifndef AOF_ASSEMBLER
- if (optimize > 0 && TREE_CONSTANT (decl))
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
-#endif
-
- /* If we are referencing a function that is weak then encode a long call
- flag in the function name, otherwise if the function is static or
- or known to be defined in this file then encode a short call flag. */
- if (first && DECL_P (decl))
- {
- if (TREE_CODE (decl) == FUNCTION_DECL && DECL_WEAK (decl))
- arm_encode_call_attribute (decl, LONG_CALL_FLAG_CHAR);
- else if (! TREE_PUBLIC (decl))
- arm_encode_call_attribute (decl, SHORT_CALL_FLAG_CHAR);
- }
-
- default_encode_section_info (decl, rtl, first);
-}
-#endif /* !ARM_PE */
-
-static void
-arm_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
-{
- if (arm_ccfsm_state == 3 && (unsigned) arm_target_label == labelno
- && !strcmp (prefix, "L"))
- {
- arm_ccfsm_state = 0;
- arm_target_insn = NULL;
- }
- default_internal_label (stream, prefix, labelno);
-}
-
-/* Output code to add DELTA to the first argument, and then jump
- to FUNCTION. Used for C++ multiple inheritance. */
-static void
-arm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
- HOST_WIDE_INT delta,
- HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
- tree function)
-{
- static int thunk_label = 0;
- char label[256];
- char labelpc[256];
- int mi_delta = delta;
- const char *const mi_op = mi_delta < 0 ? "sub" : "add";
- int shift = 0;
- int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
- ? 1 : 0);
- if (mi_delta < 0)
- mi_delta = - mi_delta;
- if (TARGET_THUMB)
- {
- int labelno = thunk_label++;
- ASM_GENERATE_INTERNAL_LABEL (label, "LTHUMBFUNC", labelno);
- fputs ("\tldr\tr12, ", file);
- assemble_name (file, label);
- fputc ('\n', file);
- if (flag_pic)
- {
- /* If we are generating PIC, the ldr instruction below loads
- "(target - 7) - .LTHUNKPCn" into r12. The pc reads as
- the address of the add + 8, so we have:
-
- r12 = (target - 7) - .LTHUNKPCn + (.LTHUNKPCn + 8)
- = target + 1.
-
- Note that we have "+ 1" because some versions of GNU ld
- don't set the low bit of the result for R_ARM_REL32
- relocations against thumb function symbols. */
- ASM_GENERATE_INTERNAL_LABEL (labelpc, "LTHUNKPC", labelno);
- assemble_name (file, labelpc);
- fputs (":\n", file);
- fputs ("\tadd\tr12, pc, r12\n", file);
- }
- }
- while (mi_delta != 0)
- {
- if ((mi_delta & (3 << shift)) == 0)
- shift += 2;
- else
- {
- asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
- mi_op, this_regno, this_regno,
- mi_delta & (0xff << shift));
- mi_delta &= ~(0xff << shift);
- shift += 8;
- }
- }
- if (TARGET_THUMB)
- {
- fprintf (file, "\tbx\tr12\n");
- ASM_OUTPUT_ALIGN (file, 2);
- assemble_name (file, label);
- fputs (":\n", file);
- if (flag_pic)
- {
- /* Output ".word .LTHUNKn-7-.LTHUNKPCn". */
- rtx tem = XEXP (DECL_RTL (function), 0);
- tem = gen_rtx_PLUS (GET_MODE (tem), tem, GEN_INT (-7));
- tem = gen_rtx_MINUS (GET_MODE (tem),
- tem,
- gen_rtx_SYMBOL_REF (Pmode,
- ggc_strdup (labelpc)));
- assemble_integer (tem, 4, BITS_PER_WORD, 1);
- }
- else
- /* Output ".word .LTHUNKn". */
- assemble_integer (XEXP (DECL_RTL (function), 0), 4, BITS_PER_WORD, 1);
- }
- else
- {
- fputs ("\tb\t", file);
- assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
- if (NEED_PLT_RELOC)
- fputs ("(PLT)", file);
- fputc ('\n', file);
- }
-}
-
-int
-arm_emit_vector_const (FILE *file, rtx x)
-{
- int i;
- const char * pattern;
-
- gcc_assert (GET_CODE (x) == CONST_VECTOR);
-
- switch (GET_MODE (x))
- {
- case V2SImode: pattern = "%08x"; break;
- case V4HImode: pattern = "%04x"; break;
- case V8QImode: pattern = "%02x"; break;
- default: gcc_unreachable ();
- }
-
- fprintf (file, "0x");
- for (i = CONST_VECTOR_NUNITS (x); i--;)
- {
- rtx element;
-
- element = CONST_VECTOR_ELT (x, i);
- fprintf (file, pattern, INTVAL (element));
- }
-
- return 1;
-}
-
-const char *
-arm_output_load_gr (rtx *operands)
-{
- rtx reg;
- rtx offset;
- rtx wcgr;
- rtx sum;
-
- if (GET_CODE (operands [1]) != MEM
- || GET_CODE (sum = XEXP (operands [1], 0)) != PLUS
- || GET_CODE (reg = XEXP (sum, 0)) != REG
- || GET_CODE (offset = XEXP (sum, 1)) != CONST_INT
- || ((INTVAL (offset) < 1024) && (INTVAL (offset) > -1024)))
- return "wldrw%?\t%0, %1";
-
- /* Fix up an out-of-range load of a GR register. */
- output_asm_insn ("str%?\t%0, [sp, #-4]!\t@ Start of GR load expansion", & reg);
- wcgr = operands[0];
- operands[0] = reg;
- output_asm_insn ("ldr%?\t%0, %1", operands);
-
- operands[0] = wcgr;
- operands[1] = reg;
- output_asm_insn ("tmcr%?\t%0, %1", operands);
- output_asm_insn ("ldr%?\t%0, [sp], #4\t@ End of GR load expansion", & reg);
-
- return "";
-}
-
-/* Worker function for TARGET_SETUP_INCOMING_VARARGS.
-
- On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
- named arg and all anonymous args onto the stack.
- XXX I know the prologue shouldn't be pushing registers, but it is faster
- that way. */
-
-static void
-arm_setup_incoming_varargs (CUMULATIVE_ARGS *cum,
- enum machine_mode mode ATTRIBUTE_UNUSED,
- tree type ATTRIBUTE_UNUSED,
- int *pretend_size,
- int second_time ATTRIBUTE_UNUSED)
-{
- cfun->machine->uses_anonymous_args = 1;
- if (cum->nregs < NUM_ARG_REGS)
- *pretend_size = (NUM_ARG_REGS - cum->nregs) * UNITS_PER_WORD;
-}
-
-/* Return nonzero if the CONSUMER instruction (a store) does not need
- PRODUCER's value to calculate the address. */
-
-int
-arm_no_early_store_addr_dep (rtx producer, rtx consumer)
-{
- rtx value = PATTERN (producer);
- rtx addr = PATTERN (consumer);
-
- if (GET_CODE (value) == COND_EXEC)
- value = COND_EXEC_CODE (value);
- if (GET_CODE (value) == PARALLEL)
- value = XVECEXP (value, 0, 0);
- value = XEXP (value, 0);
- if (GET_CODE (addr) == COND_EXEC)
- addr = COND_EXEC_CODE (addr);
- if (GET_CODE (addr) == PARALLEL)
- addr = XVECEXP (addr, 0, 0);
- addr = XEXP (addr, 0);
-
- return !reg_overlap_mentioned_p (value, addr);
-}
-
-/* Return nonzero if the CONSUMER instruction (an ALU op) does not
- have an early register shift value or amount dependency on the
- result of PRODUCER. */
-
-int
-arm_no_early_alu_shift_dep (rtx producer, rtx consumer)
-{
- rtx value = PATTERN (producer);
- rtx op = PATTERN (consumer);
- rtx early_op;
-
- if (GET_CODE (value) == COND_EXEC)
- value = COND_EXEC_CODE (value);
- if (GET_CODE (value) == PARALLEL)
- value = XVECEXP (value, 0, 0);
- value = XEXP (value, 0);
- if (GET_CODE (op) == COND_EXEC)
- op = COND_EXEC_CODE (op);
- if (GET_CODE (op) == PARALLEL)
- op = XVECEXP (op, 0, 0);
- op = XEXP (op, 1);
-
- early_op = XEXP (op, 0);
- /* This is either an actual independent shift, or a shift applied to
- the first operand of another operation. We want the whole shift
- operation. */
- if (GET_CODE (early_op) == REG)
- early_op = op;
-
- return !reg_overlap_mentioned_p (value, early_op);
-}
-
-/* Return nonzero if the CONSUMER instruction (an ALU op) does not
- have an early register shift value dependency on the result of
- PRODUCER. */
-
-int
-arm_no_early_alu_shift_value_dep (rtx producer, rtx consumer)
-{
- rtx value = PATTERN (producer);
- rtx op = PATTERN (consumer);
- rtx early_op;
-
- if (GET_CODE (value) == COND_EXEC)
- value = COND_EXEC_CODE (value);
- if (GET_CODE (value) == PARALLEL)
- value = XVECEXP (value, 0, 0);
- value = XEXP (value, 0);
- if (GET_CODE (op) == COND_EXEC)
- op = COND_EXEC_CODE (op);
- if (GET_CODE (op) == PARALLEL)
- op = XVECEXP (op, 0, 0);
- op = XEXP (op, 1);
-
- early_op = XEXP (op, 0);
-
- /* This is either an actual independent shift, or a shift applied to
- the first operand of another operation. We want the value being
- shifted, in either case. */
- if (GET_CODE (early_op) != REG)
- early_op = XEXP (early_op, 0);
-
- return !reg_overlap_mentioned_p (value, early_op);
-}
-
-/* Return nonzero if the CONSUMER (a mul or mac op) does not
- have an early register mult dependency on the result of
- PRODUCER. */
-
-int
-arm_no_early_mul_dep (rtx producer, rtx consumer)
-{
- rtx value = PATTERN (producer);
- rtx op = PATTERN (consumer);
-
- if (GET_CODE (value) == COND_EXEC)
- value = COND_EXEC_CODE (value);
- if (GET_CODE (value) == PARALLEL)
- value = XVECEXP (value, 0, 0);
- value = XEXP (value, 0);
- if (GET_CODE (op) == COND_EXEC)
- op = COND_EXEC_CODE (op);
- if (GET_CODE (op) == PARALLEL)
- op = XVECEXP (op, 0, 0);
- op = XEXP (op, 1);
-
- return (GET_CODE (op) == PLUS
- && !reg_overlap_mentioned_p (value, XEXP (op, 0)));
-}
-
-
-/* We can't rely on the caller doing the proper promotion when
- using APCS or ATPCS. */
-
-static bool
-arm_promote_prototypes (tree t ATTRIBUTE_UNUSED)
-{
- return !TARGET_AAPCS_BASED;
-}
-
-
-/* AAPCS based ABIs use short enums by default. */
-
-static bool
-arm_default_short_enums (void)
-{
- return TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX;
-}
-
-
-/* AAPCS requires that anonymous bitfields affect structure alignment. */
-
-static bool
-arm_align_anon_bitfield (void)
-{
- return TARGET_AAPCS_BASED;
-}
-
-
-/* The generic C++ ABI says 64-bit (long long). The EABI says 32-bit. */
-
-static tree
-arm_cxx_guard_type (void)
-{
- return TARGET_AAPCS_BASED ? integer_type_node : long_long_integer_type_node;
-}
-
-
-/* The EABI says test the least significant bit of a guard variable. */
-
-static bool
-arm_cxx_guard_mask_bit (void)
-{
- return TARGET_AAPCS_BASED;
-}
-
-
-/* The EABI specifies that all array cookies are 8 bytes long. */
-
-static tree
-arm_get_cookie_size (tree type)
-{
- tree size;
-
- if (!TARGET_AAPCS_BASED)
- return default_cxx_get_cookie_size (type);
-
- size = build_int_cst (sizetype, 8);
- return size;
-}
-
-
-/* The EABI says that array cookies should also contain the element size. */
-
-static bool
-arm_cookie_has_size (void)
-{
- return TARGET_AAPCS_BASED;
-}
-
-
-/* The EABI says constructors and destructors should return a pointer to
- the object constructed/destroyed. */
-
-static bool
-arm_cxx_cdtor_returns_this (void)
-{
- return TARGET_AAPCS_BASED;
-}
-
-/* The EABI says that an inline function may never be the key
- method. */
-
-static bool
-arm_cxx_key_method_may_be_inline (void)
-{
- return !TARGET_AAPCS_BASED;
-}
-
-static void
-arm_cxx_determine_class_data_visibility (tree decl)
-{
- if (!TARGET_AAPCS_BASED)
- return;
-
- /* In general, \S 3.2.5.5 of the ARM EABI requires that class data
- is exported. However, on systems without dynamic vague linkage,
- \S 3.2.5.6 says that COMDAT class data has hidden linkage. */
- if (!TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P && DECL_COMDAT (decl))
- DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
- else
- DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
- DECL_VISIBILITY_SPECIFIED (decl) = 1;
-}
-
-static bool
-arm_cxx_class_data_always_comdat (void)
-{
- /* \S 3.2.5.4 of the ARM C++ ABI says that class data only have
- vague linkage if the class has no key function. */
- return !TARGET_AAPCS_BASED;
-}
-
-
-/* The EABI says __aeabi_atexit should be used to register static
- destructors. */
-
-static bool
-arm_cxx_use_aeabi_atexit (void)
-{
- return TARGET_AAPCS_BASED;
-}
-
-
-void
-arm_set_return_address (rtx source, rtx scratch)
-{
- arm_stack_offsets *offsets;
- HOST_WIDE_INT delta;
- rtx addr;
- unsigned long saved_regs;
-
- saved_regs = arm_compute_save_reg_mask ();
-
- if ((saved_regs & (1 << LR_REGNUM)) == 0)
- emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
- else
- {
- if (frame_pointer_needed)
- addr = plus_constant(hard_frame_pointer_rtx, -4);
- else
- {
- /* LR will be the first saved register. */
- offsets = arm_get_frame_offsets ();
- delta = offsets->outgoing_args - (offsets->frame + 4);
-
-
- if (delta >= 4096)
- {
- emit_insn (gen_addsi3 (scratch, stack_pointer_rtx,
- GEN_INT (delta & ~4095)));
- addr = scratch;
- delta &= 4095;
- }
- else
- addr = stack_pointer_rtx;
-
- addr = plus_constant (addr, delta);
- }
- emit_move_insn (gen_frame_mem (Pmode, addr), source);
- }
-}
-
-
-void
-thumb_set_return_address (rtx source, rtx scratch)
-{
- arm_stack_offsets *offsets;
- HOST_WIDE_INT delta;
- int reg;
- rtx addr;
- unsigned long mask;
-
- emit_insn (gen_rtx_USE (VOIDmode, source));
-
- mask = thumb_compute_save_reg_mask ();
- if (mask & (1 << LR_REGNUM))
- {
- offsets = arm_get_frame_offsets ();
-
- /* Find the saved regs. */
- if (frame_pointer_needed)
- {
- delta = offsets->soft_frame - offsets->saved_args;
- reg = THUMB_HARD_FRAME_POINTER_REGNUM;
- }
- else
- {
- delta = offsets->outgoing_args - offsets->saved_args;
- reg = SP_REGNUM;
- }
- /* Allow for the stack frame. */
- if (TARGET_BACKTRACE)
- delta -= 16;
- /* The link register is always the first saved register. */
- delta -= 4;
-
- /* Construct the address. */
- addr = gen_rtx_REG (SImode, reg);
- if ((reg != SP_REGNUM && delta >= 128)
- || delta >= 1024)
- {
- emit_insn (gen_movsi (scratch, GEN_INT (delta)));
- emit_insn (gen_addsi3 (scratch, scratch, stack_pointer_rtx));
- addr = scratch;
- }
- else
- addr = plus_constant (addr, delta);
-
- emit_move_insn (gen_frame_mem (Pmode, addr), source);
- }
- else
- emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
-}
-
-/* Implements target hook vector_mode_supported_p. */
-bool
-arm_vector_mode_supported_p (enum machine_mode mode)
-{
- if ((mode == V2SImode)
- || (mode == V4HImode)
- || (mode == V8QImode))
- return true;
-
- return false;
-}
-
-/* Implement TARGET_SHIFT_TRUNCATION_MASK. SImode shifts use normal
- ARM insns and therefore guarantee that the shift count is modulo 256.
- DImode shifts (those implemented by lib1funcs.asm or by optabs.c)
- guarantee no particular behavior for out-of-range counts. */
-
-static unsigned HOST_WIDE_INT
-arm_shift_truncation_mask (enum machine_mode mode)
-{
- return mode == SImode ? 255 : 0;
-}
-
-
-/* Map internal gcc register numbers to DWARF2 register numbers. */
-
-unsigned int
-arm_dbx_register_number (unsigned int regno)
-{
- if (regno < 16)
- return regno;
-
- /* TODO: Legacy targets output FPA regs as registers 16-23 for backwards
- compatibility. The EABI defines them as registers 96-103. */
- if (IS_FPA_REGNUM (regno))
- return (TARGET_AAPCS_BASED ? 96 : 16) + regno - FIRST_FPA_REGNUM;
-
- if (IS_VFP_REGNUM (regno))
- return 64 + regno - FIRST_VFP_REGNUM;
-
- if (IS_IWMMXT_GR_REGNUM (regno))
- return 104 + regno - FIRST_IWMMXT_GR_REGNUM;
-
- if (IS_IWMMXT_REGNUM (regno))
- return 112 + regno - FIRST_IWMMXT_REGNUM;
-
- gcc_unreachable ();
-}
-
-
-#ifdef TARGET_UNWIND_INFO
-/* Emit unwind directives for a store-multiple instruction. This should
- only ever be generated by the function prologue code, so we expect it
- to have a particular form. */
-
-static void
-arm_unwind_emit_stm (FILE * asm_out_file, rtx p)
-{
- int i;
- HOST_WIDE_INT offset;
- HOST_WIDE_INT nregs;
- int reg_size;
- unsigned reg;
- unsigned lastreg;
- rtx e;
-
- /* First insn will adjust the stack pointer. */
- e = XVECEXP (p, 0, 0);
- if (GET_CODE (e) != SET
- || GET_CODE (XEXP (e, 0)) != REG
- || REGNO (XEXP (e, 0)) != SP_REGNUM
- || GET_CODE (XEXP (e, 1)) != PLUS)
- abort ();
-
- offset = -INTVAL (XEXP (XEXP (e, 1), 1));
- nregs = XVECLEN (p, 0) - 1;
-
- reg = REGNO (XEXP (XVECEXP (p, 0, 1), 1));
- if (reg < 16)
- {
- /* The function prologue may also push pc, but not annotate it as it is
- never restored. We turn this into a stack pointer adjustment. */
- if (nregs * 4 == offset - 4)
- {
- fprintf (asm_out_file, "\t.pad #4\n");
- offset -= 4;
- }
- reg_size = 4;
- }
- else if (IS_VFP_REGNUM (reg))
- {
- /* FPA register saves use an additional word. */
- offset -= 4;
- reg_size = 8;
- }
- else if (reg >= FIRST_FPA_REGNUM && reg <= LAST_FPA_REGNUM)
- {
- /* FPA registers are done differently. */
- asm_fprintf (asm_out_file, "\t.save %r, %wd\n", reg, nregs);
- return;
- }
- else
- /* Unknown register type. */
- abort ();
-
- /* If the stack increment doesn't match the size of the saved registers,
- something has gone horribly wrong. */
- if (offset != nregs * reg_size)
- abort ();
-
- fprintf (asm_out_file, "\t.save {");
-
- offset = 0;
- lastreg = 0;
- /* The remaining insns will describe the stores. */
- for (i = 1; i <= nregs; i++)
- {
- /* Expect (set (mem <addr>) (reg)).
- Where <addr> is (reg:SP) or (plus (reg:SP) (const_int)). */
- e = XVECEXP (p, 0, i);
- if (GET_CODE (e) != SET
- || GET_CODE (XEXP (e, 0)) != MEM
- || GET_CODE (XEXP (e, 1)) != REG)
- abort ();
-
- reg = REGNO (XEXP (e, 1));
- if (reg < lastreg)
- abort ();
-
- if (i != 1)
- fprintf (asm_out_file, ", ");
- /* We can't use %r for vfp because we need to use the
- double precision register names. */
- if (IS_VFP_REGNUM (reg))
- asm_fprintf (asm_out_file, "d%d", (reg - FIRST_VFP_REGNUM) / 2);
- else
- asm_fprintf (asm_out_file, "%r", reg);
-
-#ifdef ENABLE_CHECKING
- /* Check that the addresses are consecutive. */
- e = XEXP (XEXP (e, 0), 0);
- if (GET_CODE (e) == PLUS)
- {
- offset += reg_size;
- if (GET_CODE (XEXP (e, 0)) != REG
- || REGNO (XEXP (e, 0)) != SP_REGNUM
- || GET_CODE (XEXP (e, 1)) != CONST_INT
- || offset != INTVAL (XEXP (e, 1)))
- abort ();
- }
- else if (i != 1
- || GET_CODE (e) != REG
- || REGNO (e) != SP_REGNUM)
- abort ();
-#endif
- }
- fprintf (asm_out_file, "}\n");
-}
-
-/* Emit unwind directives for a SET. */
-
-static void
-arm_unwind_emit_set (FILE * asm_out_file, rtx p)
-{
- rtx e0;
- rtx e1;
-
- e0 = XEXP (p, 0);
- e1 = XEXP (p, 1);
- switch (GET_CODE (e0))
- {
- case MEM:
- /* Pushing a single register. */
- if (GET_CODE (XEXP (e0, 0)) != PRE_DEC
- || GET_CODE (XEXP (XEXP (e0, 0), 0)) != REG
- || REGNO (XEXP (XEXP (e0, 0), 0)) != SP_REGNUM)
- abort ();
-
- asm_fprintf (asm_out_file, "\t.save ");
- if (IS_VFP_REGNUM (REGNO (e1)))
- asm_fprintf(asm_out_file, "{d%d}\n",
- (REGNO (e1) - FIRST_VFP_REGNUM) / 2);
- else
- asm_fprintf(asm_out_file, "{%r}\n", REGNO (e1));
- break;
-
- case REG:
- if (REGNO (e0) == SP_REGNUM)
- {
- /* A stack increment. */
- if (GET_CODE (e1) != PLUS
- || GET_CODE (XEXP (e1, 0)) != REG
- || REGNO (XEXP (e1, 0)) != SP_REGNUM
- || GET_CODE (XEXP (e1, 1)) != CONST_INT)
- abort ();
-
- asm_fprintf (asm_out_file, "\t.pad #%wd\n",
- -INTVAL (XEXP (e1, 1)));
- }
- else if (REGNO (e0) == HARD_FRAME_POINTER_REGNUM)
- {
- HOST_WIDE_INT offset;
- unsigned reg;
-
- if (GET_CODE (e1) == PLUS)
- {
- if (GET_CODE (XEXP (e1, 0)) != REG
- || GET_CODE (XEXP (e1, 1)) != CONST_INT)
- abort ();
- reg = REGNO (XEXP (e1, 0));
- offset = INTVAL (XEXP (e1, 1));
- asm_fprintf (asm_out_file, "\t.setfp %r, %r, #%wd\n",
- HARD_FRAME_POINTER_REGNUM, reg,
- INTVAL (XEXP (e1, 1)));
- }
- else if (GET_CODE (e1) == REG)
- {
- reg = REGNO (e1);
- asm_fprintf (asm_out_file, "\t.setfp %r, %r\n",
- HARD_FRAME_POINTER_REGNUM, reg);
- }
- else
- abort ();
- }
- else if (GET_CODE (e1) == REG && REGNO (e1) == SP_REGNUM)
- {
- /* Move from sp to reg. */
- asm_fprintf (asm_out_file, "\t.movsp %r\n", REGNO (e0));
- }
- else if (GET_CODE (e1) == PLUS
- && GET_CODE (XEXP (e1, 0)) == REG
- && REGNO (XEXP (e1, 0)) == SP_REGNUM
- && GET_CODE (XEXP (e1, 1)) == CONST_INT)
- {
- /* Set reg to offset from sp. */
- asm_fprintf (asm_out_file, "\t.movsp %r, #%d\n",
- REGNO (e0), (int)INTVAL(XEXP (e1, 1)));
- }
- else
- abort ();
- break;
-
- default:
- abort ();
- }
-}
-
-
-/* Emit unwind directives for the given insn. */
-
-static void
-arm_unwind_emit (FILE * asm_out_file, rtx insn)
-{
- rtx pat;
-
- if (!ARM_EABI_UNWIND_TABLES)
- return;
-
- if (GET_CODE (insn) == NOTE || !RTX_FRAME_RELATED_P (insn))
- return;
-
- pat = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
- if (pat)
- pat = XEXP (pat, 0);
- else
- pat = PATTERN (insn);
-
- switch (GET_CODE (pat))
- {
- case SET:
- arm_unwind_emit_set (asm_out_file, pat);
- break;
-
- case SEQUENCE:
- /* Store multiple. */
- arm_unwind_emit_stm (asm_out_file, pat);
- break;
-
- default:
- abort();
- }
-}
-
-
-/* Output a reference from a function exception table to the type_info
- object X. The EABI specifies that the symbol should be relocated by
- an R_ARM_TARGET2 relocation. */
-
-static bool
-arm_output_ttype (rtx x)
-{
- fputs ("\t.word\t", asm_out_file);
- output_addr_const (asm_out_file, x);
- /* Use special relocations for symbol references. */
- if (GET_CODE (x) != CONST_INT)
- fputs ("(TARGET2)", asm_out_file);
- fputc ('\n', asm_out_file);
-
- return TRUE;
-}
-#endif /* TARGET_UNWIND_INFO */
-
-
-/* Output unwind directives for the start/end of a function. */
-
-void
-arm_output_fn_unwind (FILE * f, bool prologue)
-{
- if (!ARM_EABI_UNWIND_TABLES)
- return;
-
- if (prologue)
- fputs ("\t.fnstart\n", f);
- else
- fputs ("\t.fnend\n", f);
-}
-
-static bool
-arm_emit_tls_decoration (FILE *fp, rtx x)
-{
- enum tls_reloc reloc;
- rtx val;
-
- val = XVECEXP (x, 0, 0);
- reloc = INTVAL (XVECEXP (x, 0, 1));
-
- output_addr_const (fp, val);
-
- switch (reloc)
- {
- case TLS_GD32:
- fputs ("(tlsgd)", fp);
- break;
- case TLS_LDM32:
- fputs ("(tlsldm)", fp);
- break;
- case TLS_LDO32:
- fputs ("(tlsldo)", fp);
- break;
- case TLS_IE32:
- fputs ("(gottpoff)", fp);
- break;
- case TLS_LE32:
- fputs ("(tpoff)", fp);
- break;
- default:
- gcc_unreachable ();
- }
-
- switch (reloc)
- {
- case TLS_GD32:
- case TLS_LDM32:
- case TLS_IE32:
- fputs (" + (. - ", fp);
- output_addr_const (fp, XVECEXP (x, 0, 2));
- fputs (" - ", fp);
- output_addr_const (fp, XVECEXP (x, 0, 3));
- fputc (')', fp);
- break;
- default:
- break;
- }
-
- return TRUE;
-}
-
-bool
-arm_output_addr_const_extra (FILE *fp, rtx x)
-{
- if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
- return arm_emit_tls_decoration (fp, x);
- else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_PIC_LABEL)
- {
- char label[256];
- int labelno = INTVAL (XVECEXP (x, 0, 0));
-
- ASM_GENERATE_INTERNAL_LABEL (label, "LPIC", labelno);
- assemble_name_raw (fp, label);
-
- return TRUE;
- }
- else if (GET_CODE (x) == CONST_VECTOR)
- return arm_emit_vector_const (fp, x);
-
- return FALSE;
-}
-
-#include "gt-arm.h"