aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/config/alpha/alpha.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/config/alpha/alpha.h')
-rw-r--r--gcc-4.2.1/gcc/config/alpha/alpha.h1593
1 files changed, 1593 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/config/alpha/alpha.h b/gcc-4.2.1/gcc/config/alpha/alpha.h
new file mode 100644
index 000000000..ed02c9f3e
--- /dev/null
+++ b/gcc-4.2.1/gcc/config/alpha/alpha.h
@@ -0,0 +1,1593 @@
+/* Definitions of target machine for GNU compiler, for DEC Alpha.
+ Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
+ Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+/* Target CPU builtins. */
+#define TARGET_CPU_CPP_BUILTINS() \
+ do \
+ { \
+ builtin_define ("__alpha"); \
+ builtin_define ("__alpha__"); \
+ builtin_assert ("cpu=alpha"); \
+ builtin_assert ("machine=alpha"); \
+ if (TARGET_CIX) \
+ { \
+ builtin_define ("__alpha_cix__"); \
+ builtin_assert ("cpu=cix"); \
+ } \
+ if (TARGET_FIX) \
+ { \
+ builtin_define ("__alpha_fix__"); \
+ builtin_assert ("cpu=fix"); \
+ } \
+ if (TARGET_BWX) \
+ { \
+ builtin_define ("__alpha_bwx__"); \
+ builtin_assert ("cpu=bwx"); \
+ } \
+ if (TARGET_MAX) \
+ { \
+ builtin_define ("__alpha_max__"); \
+ builtin_assert ("cpu=max"); \
+ } \
+ if (alpha_cpu == PROCESSOR_EV6) \
+ { \
+ builtin_define ("__alpha_ev6__"); \
+ builtin_assert ("cpu=ev6"); \
+ } \
+ else if (alpha_cpu == PROCESSOR_EV5) \
+ { \
+ builtin_define ("__alpha_ev5__"); \
+ builtin_assert ("cpu=ev5"); \
+ } \
+ else /* Presumably ev4. */ \
+ { \
+ builtin_define ("__alpha_ev4__"); \
+ builtin_assert ("cpu=ev4"); \
+ } \
+ if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
+ builtin_define ("_IEEE_FP"); \
+ if (TARGET_IEEE_WITH_INEXACT) \
+ builtin_define ("_IEEE_FP_INEXACT"); \
+ if (TARGET_LONG_DOUBLE_128) \
+ builtin_define ("__LONG_DOUBLE_128__"); \
+ \
+ /* Macros dependent on the C dialect. */ \
+ SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
+} while (0)
+
+#ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
+#define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
+ do \
+ { \
+ if (preprocessing_asm_p ()) \
+ builtin_define_std ("LANGUAGE_ASSEMBLY"); \
+ else if (c_dialect_cxx ()) \
+ { \
+ builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
+ builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
+ } \
+ else \
+ builtin_define_std ("LANGUAGE_C"); \
+ if (c_dialect_objc ()) \
+ { \
+ builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
+ builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
+ } \
+ } \
+ while (0)
+#endif
+
+#define CPP_SPEC "%(cpp_subtarget)"
+
+#ifndef CPP_SUBTARGET_SPEC
+#define CPP_SUBTARGET_SPEC ""
+#endif
+
+#define WORD_SWITCH_TAKES_ARG(STR) \
+ (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
+
+/* Print subsidiary information on the compiler version in use. */
+#define TARGET_VERSION
+
+/* Run-time compilation parameters selecting different hardware subsets. */
+
+/* Which processor to schedule for. The cpu attribute defines a list that
+ mirrors this list, so changes to alpha.md must be made at the same time. */
+
+enum processor_type
+{
+ PROCESSOR_EV4, /* 2106[46]{a,} */
+ PROCESSOR_EV5, /* 21164{a,pc,} */
+ PROCESSOR_EV6, /* 21264 */
+ PROCESSOR_MAX
+};
+
+extern enum processor_type alpha_cpu;
+extern enum processor_type alpha_tune;
+
+enum alpha_trap_precision
+{
+ ALPHA_TP_PROG, /* No precision (default). */
+ ALPHA_TP_FUNC, /* Trap contained within originating function. */
+ ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
+};
+
+enum alpha_fp_rounding_mode
+{
+ ALPHA_FPRM_NORM, /* Normal rounding mode. */
+ ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
+ ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
+ ALPHA_FPRM_DYN /* Dynamic rounding mode. */
+};
+
+enum alpha_fp_trap_mode
+{
+ ALPHA_FPTM_N, /* Normal trap mode. */
+ ALPHA_FPTM_U, /* Underflow traps enabled. */
+ ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
+ ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
+};
+
+extern int target_flags;
+
+extern enum alpha_trap_precision alpha_tp;
+extern enum alpha_fp_rounding_mode alpha_fprm;
+extern enum alpha_fp_trap_mode alpha_fptm;
+
+/* Invert the easy way to make options work. */
+#define TARGET_FP (!TARGET_SOFT_FP)
+
+/* These are for target os support and cannot be changed at runtime. */
+#define TARGET_ABI_WINDOWS_NT 0
+#define TARGET_ABI_OPEN_VMS 0
+#define TARGET_ABI_UNICOSMK 0
+#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
+ && !TARGET_ABI_OPEN_VMS \
+ && !TARGET_ABI_UNICOSMK)
+
+#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
+#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
+#endif
+#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
+#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
+#endif
+#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
+#define TARGET_CAN_FAULT_IN_PROLOGUE 0
+#endif
+#ifndef TARGET_HAS_XFLOATING_LIBS
+#define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
+#endif
+#ifndef TARGET_PROFILING_NEEDS_GP
+#define TARGET_PROFILING_NEEDS_GP 0
+#endif
+#ifndef TARGET_LD_BUGGY_LDGP
+#define TARGET_LD_BUGGY_LDGP 0
+#endif
+#ifndef TARGET_FIXUP_EV5_PREFETCH
+#define TARGET_FIXUP_EV5_PREFETCH 0
+#endif
+#ifndef HAVE_AS_TLS
+#define HAVE_AS_TLS 0
+#endif
+
+#define TARGET_DEFAULT MASK_FPREGS
+
+#ifndef TARGET_CPU_DEFAULT
+#define TARGET_CPU_DEFAULT 0
+#endif
+
+#ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
+#ifdef HAVE_AS_EXPLICIT_RELOCS
+#define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
+#define TARGET_SUPPORT_ARCH 1
+#else
+#define TARGET_DEFAULT_EXPLICIT_RELOCS 0
+#endif
+#endif
+
+#ifndef TARGET_SUPPORT_ARCH
+#define TARGET_SUPPORT_ARCH 0
+#endif
+
+/* Support for a compile-time default CPU, et cetera. The rules are:
+ --with-cpu is ignored if -mcpu is specified.
+ --with-tune is ignored if -mtune is specified. */
+#define OPTION_DEFAULT_SPECS \
+ {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
+ {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
+
+/* This macro defines names of additional specifications to put in the
+ specs that can be used in various specifications like CC1_SPEC. Its
+ definition is an initializer with a subgrouping for each command option.
+
+ Each subgrouping contains a string constant, that defines the
+ specification name, and a string constant that used by the GCC driver
+ program.
+
+ Do not define this macro if it does not need to do anything. */
+
+#ifndef SUBTARGET_EXTRA_SPECS
+#define SUBTARGET_EXTRA_SPECS
+#endif
+
+#define EXTRA_SPECS \
+ { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
+ SUBTARGET_EXTRA_SPECS
+
+
+/* Sometimes certain combinations of command options do not make sense
+ on a particular target machine. You can define a macro
+ `OVERRIDE_OPTIONS' to take account of this. This macro, if
+ defined, is executed once just after all the command options have
+ been parsed.
+
+ On the Alpha, it is used to translate target-option strings into
+ numeric values. */
+
+#define OVERRIDE_OPTIONS override_options ()
+
+
+/* Define this macro to change register usage conditional on target flags.
+
+ On the Alpha, we use this to disable the floating-point registers when
+ they don't exist. */
+
+#define CONDITIONAL_REGISTER_USAGE \
+{ \
+ int i; \
+ if (! TARGET_FPREGS) \
+ for (i = 32; i < 63; i++) \
+ fixed_regs[i] = call_used_regs[i] = 1; \
+}
+
+
+/* Show we can debug even without a frame pointer. */
+#define CAN_DEBUG_WITHOUT_FP
+
+/* target machine storage layout */
+
+/* Define the size of `int'. The default is the same as the word size. */
+#define INT_TYPE_SIZE 32
+
+/* Define the size of `long long'. The default is the twice the word size. */
+#define LONG_LONG_TYPE_SIZE 64
+
+/* We're IEEE unless someone says to use VAX. */
+#define TARGET_FLOAT_FORMAT \
+ (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
+
+/* The two floating-point formats we support are S-floating, which is
+ 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
+ and `long double' are T. */
+
+#define FLOAT_TYPE_SIZE 32
+#define DOUBLE_TYPE_SIZE 64
+#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
+
+/* Define this to set long double type size to use in libgcc2.c, which can
+ not depend on target_flags. */
+#ifdef __LONG_DOUBLE_128__
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
+#else
+#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
+#endif
+
+/* Work around target_flags dependency in ada/targtyps.c. */
+#define WIDEST_HARDWARE_FP_SIZE 64
+
+#define WCHAR_TYPE "unsigned int"
+#define WCHAR_TYPE_SIZE 32
+
+/* Define this macro if it is advisable to hold scalars in registers
+ in a wider mode than that declared by the program. In such cases,
+ the value is constrained to be within the bounds of the declared
+ type, but kept valid in the wider mode. The signedness of the
+ extension may differ from that of the type.
+
+ For Alpha, we always store objects in a full register. 32-bit integers
+ are always sign-extended, but smaller objects retain their signedness.
+
+ Note that small vector types can get mapped onto integer modes at the
+ whim of not appearing in alpha-modes.def. We never promoted these
+ values before; don't do so now that we've trimmed the set of modes to
+ those actually implemented in the backend. */
+
+#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
+ if (GET_MODE_CLASS (MODE) == MODE_INT \
+ && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
+ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
+ { \
+ if ((MODE) == SImode) \
+ (UNSIGNEDP) = 0; \
+ (MODE) = DImode; \
+ }
+
+/* Define this if most significant bit is lowest numbered
+ in instructions that operate on numbered bit-fields.
+
+ There are no such instructions on the Alpha, but the documentation
+ is little endian. */
+#define BITS_BIG_ENDIAN 0
+
+/* Define this if most significant byte of a word is the lowest numbered.
+ This is false on the Alpha. */
+#define BYTES_BIG_ENDIAN 0
+
+/* Define this if most significant word of a multiword number is lowest
+ numbered.
+
+ For Alpha we can decide arbitrarily since there are no machine instructions
+ for them. Might as well be consistent with bytes. */
+#define WORDS_BIG_ENDIAN 0
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD 8
+
+/* Width in bits of a pointer.
+ See also the macro `Pmode' defined below. */
+#define POINTER_SIZE 64
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY 64
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY 128
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 32
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 64
+
+/* Every structure's size must be a multiple of this. */
+#define STRUCTURE_SIZE_BOUNDARY 8
+
+/* A bit-field declared as `int' forces `int' alignment for the struct. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* No data type wants to be aligned rounder than this. */
+#define BIGGEST_ALIGNMENT 128
+
+/* For atomic access to objects, must have at least 32-bit alignment
+ unless the machine has byte operations. */
+#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
+
+/* Align all constants and variables to at least a word boundary so
+ we can pick up pieces of them faster. */
+/* ??? Only if block-move stuff knows about different source/destination
+ alignment. */
+#if 0
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
+#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
+#endif
+
+/* Set this nonzero if move instructions will actually fail to work
+ when given unaligned data.
+
+ Since we get an error message when we do one, call them invalid. */
+
+#define STRICT_ALIGNMENT 1
+
+/* Set this nonzero if unaligned move instructions are extremely slow.
+
+ On the Alpha, they trap. */
+
+#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
+
+/* Standard register usage. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ We define all 32 integer registers, even though $31 is always zero,
+ and all 32 floating-point registers, even though $f31 is also
+ always zero. We do not bother defining the FP status register and
+ there are no other registers.
+
+ Since $31 is always zero, we will use register number 31 as the
+ argument pointer. It will never appear in the generated code
+ because we will always be eliminating it in favor of the stack
+ pointer or hardware frame pointer.
+
+ Likewise, we use $f31 for the frame pointer, which will always
+ be eliminated in favor of the hardware frame pointer or the
+ stack pointer. */
+
+#define FIRST_PSEUDO_REGISTER 64
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator. */
+
+#define FIXED_REGISTERS \
+ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like. */
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
+ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
+
+/* List the order in which to allocate registers. Each register must be
+ listed once, even those in FIXED_REGISTERS. */
+
+#define REG_ALLOC_ORDER { \
+ 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
+ 22, 23, 24, 25, 28, /* likewise */ \
+ 0, /* likewise, but return value */ \
+ 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
+ 27, /* likewise, but OSF procedure value */ \
+ \
+ 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
+ 54, 55, 56, 57, 58, 59, /* likewise */ \
+ 60, 61, 62, /* likewise */ \
+ 32, 33, /* likewise, but return values */ \
+ 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
+ \
+ 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
+ 26, /* return address */ \
+ 15, /* hard frame pointer */ \
+ \
+ 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
+ 40, 41, /* likewise */ \
+ \
+ 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
+}
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers. */
+
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
+ On Alpha, the integer registers can hold any mode. The floating-point
+ registers can hold 64-bit integers as well, but not smaller values. */
+
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ ((REGNO) >= 32 && (REGNO) <= 62 \
+ ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
+ || (MODE) == SCmode || (MODE) == DCmode \
+ : 1)
+
+/* A C expression that is nonzero if a value of mode
+ MODE1 is accessible in mode MODE2 without copying.
+
+ This asymmetric test is true when MODE1 could be put
+ in an FP register but MODE2 could not. */
+
+#define MODES_TIEABLE_P(MODE1, MODE2) \
+ (HARD_REGNO_MODE_OK (32, (MODE1)) \
+ ? HARD_REGNO_MODE_OK (32, (MODE2)) \
+ : 1)
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* Alpha pc isn't overloaded on a register that the compiler knows about. */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 30
+
+/* Base register for access to local variables of the function. */
+#define HARD_FRAME_POINTER_REGNUM 15
+
+/* Value should be nonzero if functions must have frame pointers.
+ Zero means the frame pointer need not be set up (and parms
+ may be accessed via the stack pointer) in functions that seem suitable.
+ This is computed in `reload', in reload1.c. */
+#define FRAME_POINTER_REQUIRED 0
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 31
+
+/* Base register for access to local variables of function. */
+#define FRAME_POINTER_REGNUM 63
+
+/* Register in which static-chain is passed to a function.
+
+ For the Alpha, this is based on an example; the calling sequence
+ doesn't seem to specify this. */
+#define STATIC_CHAIN_REGNUM 1
+
+/* The register number of the register used to address a table of
+ static data addresses in memory. */
+#define PIC_OFFSET_TABLE_REGNUM 29
+
+/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
+ is clobbered by calls. */
+/* ??? It is and it isn't. It's required to be valid for a given
+ function when the function returns. It isn't clobbered by
+ current_file functions. Moreover, we do not expose the ldgp
+ until after reload, so we're probably safe. */
+/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+enum reg_class {
+ NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
+ GENERAL_REGS, FLOAT_REGS, ALL_REGS,
+ LIM_REG_CLASSES
+};
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+ {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
+ "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. */
+
+#define REG_CLASS_CONTENTS \
+{ {0x00000000, 0x00000000}, /* NO_REGS */ \
+ {0x00000001, 0x00000000}, /* R0_REG */ \
+ {0x01000000, 0x00000000}, /* R24_REG */ \
+ {0x02000000, 0x00000000}, /* R25_REG */ \
+ {0x08000000, 0x00000000}, /* R27_REG */ \
+ {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
+ {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
+ {0xffffffff, 0xffffffff} }
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+#define REGNO_REG_CLASS(REGNO) \
+ ((REGNO) == 0 ? R0_REG \
+ : (REGNO) == 24 ? R24_REG \
+ : (REGNO) == 25 ? R25_REG \
+ : (REGNO) == 27 ? R27_REG \
+ : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
+ : GENERAL_REGS)
+
+/* The class value for index registers, and the one for base regs. */
+#define INDEX_REG_CLASS NO_REGS
+#define BASE_REG_CLASS GENERAL_REGS
+
+/* Get reg_class from a letter such as appears in the machine description. */
+
+#define REG_CLASS_FROM_LETTER(C) \
+ ((C) == 'a' ? R24_REG \
+ : (C) == 'b' ? R25_REG \
+ : (C) == 'c' ? R27_REG \
+ : (C) == 'f' ? FLOAT_REGS \
+ : (C) == 'v' ? R0_REG \
+ : NO_REGS)
+
+/* Define this macro to change register usage conditional on target flags. */
+/* #define CONDITIONAL_REGISTER_USAGE */
+
+/* The letters I, J, K, L, M, N, O, and P in a register constraint string
+ can be used to stand for particular ranges of immediate operands.
+ This macro defines what the ranges are.
+ C is the letter, and VALUE is a constant value.
+ Return 1 if VALUE is in the range specified by C.
+
+ For Alpha:
+ `I' is used for the range of constants most insns can contain.
+ `J' is the constant zero.
+ `K' is used for the constant in an LDA insn.
+ `L' is used for the constant in a LDAH insn.
+ `M' is used for the constants that can be AND'ed with using a ZAP insn.
+ `N' is used for complemented 8-bit constants.
+ `O' is used for negated 8-bit constants.
+ `P' is used for the constants 1, 2 and 3. */
+
+#define CONST_OK_FOR_LETTER_P alpha_const_ok_for_letter_p
+
+/* Similar, but for floating or large integer constants, and defining letters
+ G and H. Here VALUE is the CONST_DOUBLE rtx itself.
+
+ For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
+ that is the operand of a ZAP insn. */
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P alpha_const_double_ok_for_letter_p
+
+/* Optional extra constraints for this machine.
+
+ For the Alpha, `Q' means that this is a memory operand but not a
+ reference to an unaligned location.
+
+ `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
+ function.
+
+ 'S' is a 6-bit constant (valid for a shift insn).
+
+ 'T' is a HIGH.
+
+ 'U' is a symbolic operand.
+
+ 'W' is a vector zero. */
+
+#define EXTRA_CONSTRAINT alpha_extra_constraint
+
+/* Given an rtx X being reloaded into a reg required to be
+ in class CLASS, return the class of reg to actually use.
+ In general this is just CLASS; but on some machines
+ in some cases it is preferable to use a more restrictive class. */
+
+#define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
+
+/* Loading and storing HImode or QImode values to and from memory
+ usually requires a scratch register. The exceptions are loading
+ QImode and HImode from an aligned address to a general register
+ unless byte instructions are permitted.
+ We also cannot load an unaligned address or a paradoxical SUBREG into an
+ FP register. */
+
+#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
+ alpha_secondary_reload_class((CLASS), (MODE), (IN), 1)
+
+#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
+ alpha_secondary_reload_class((CLASS), (MODE), (OUT), 0)
+
+/* If we are copying between general and FP registers, we need a memory
+ location unless the FIX extension is available. */
+
+#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
+ (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
+ || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
+
+/* Specify the mode to be used for memory when a secondary memory
+ location is needed. If MODE is floating-point, use it. Otherwise,
+ widen to a word like the default. This is needed because we always
+ store integers in FP registers in quadword format. This whole
+ area is very tricky! */
+#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
+ (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
+ : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
+ : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS. */
+
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* Return the class of registers that cannot change mode from FROM to TO. */
+
+#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
+ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
+ ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
+
+/* Define the cost of moving between registers of various classes. Moving
+ between FLOAT_REGS and anything else except float regs is expensive.
+ In fact, we make it quite expensive because we really don't want to
+ do these moves unless it is clearly worth it. Optimizations may
+ reduce the impact of not being able to allocate a pseudo to a
+ hard register. */
+
+#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
+ (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
+ : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
+ : 4+2*alpha_memory_latency)
+
+/* A C expressions returning the cost of moving data of MODE from a register to
+ or from memory.
+
+ On the Alpha, bump this up a bit. */
+
+extern int alpha_memory_latency;
+#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
+
+/* Provide the cost of a branch. Exact meaning under development. */
+#define BRANCH_COST 5
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Define this to nonzero if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame. */
+/* #define FRAME_GROWS_DOWNWARD 0 */
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated. */
+
+#define STARTING_FRAME_OFFSET 0
+
+/* If we generate an insn to push BYTES bytes,
+ this says how many the stack pointer really advances by.
+ On Alpha, don't define this because there are no push insns. */
+/* #define PUSH_ROUNDING(BYTES) */
+
+/* Define this to be nonzero if stack checking is built into the ABI. */
+#define STACK_CHECK_BUILTIN 1
+
+/* Define this if the maximum size of all the outgoing args is to be
+ accumulated and pushed during the prologue. The amount can be
+ found in the variable current_function_outgoing_args_size. */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+/* Offset of first parameter from the argument pointer register value. */
+
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Definitions for register eliminations.
+
+ We have two registers that can be eliminated on the Alpha. First, the
+ frame pointer register can often be eliminated in favor of the stack
+ pointer register. Secondly, the argument pointer register can always be
+ eliminated; it is replaced with either the stack or frame pointer. */
+
+/* This is an array of structures. Each structure initializes one pair
+ of eliminable registers. The "from" register number is given first,
+ followed by "to". Eliminations of the same "from" register are listed
+ in order of preference. */
+
+#define ELIMINABLE_REGS \
+{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
+
+/* Given FROM and TO register numbers, say whether this elimination is allowed.
+ Frame pointer elimination is automatically handled.
+
+ All eliminations are valid since the cases where FP can't be
+ eliminated are already handled. */
+
+#define CAN_ELIMINATE(FROM, TO) 1
+
+/* Round up to a multiple of 16 bytes. */
+#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
+
+/* Define the offset between two registers, one to be eliminated, and the other
+ its replacement, at the start of a routine. */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
+
+/* Define this if stack space is still allocated for a parameter passed
+ in a register. */
+/* #define REG_PARM_STACK_SPACE */
+
+/* Value is the number of bytes of arguments automatically
+ popped when returning from a subroutine call.
+ FUNDECL is the declaration node of the function (as a tree),
+ FUNTYPE is the data type of the function (as a tree),
+ or for a library call it is an identifier node for the subroutine name.
+ SIZE is the number of bytes of arguments passed on the stack. */
+
+#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
+
+/* Define how to find the value returned by a function.
+ VALTYPE is the data type of the value (as a tree).
+ If the precise function being called is known, FUNC is its FUNCTION_DECL;
+ otherwise, FUNC is 0.
+
+ On Alpha the value is found in $0 for integer functions and
+ $f0 for floating-point functions. */
+
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ function_value (VALTYPE, FUNC, VOIDmode)
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+#define LIBCALL_VALUE(MODE) \
+ function_value (NULL, NULL, MODE)
+
+/* 1 if N is a possible register number for a function value
+ as seen by the caller. */
+
+#define FUNCTION_VALUE_REGNO_P(N) \
+ ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
+
+/* 1 if N is a possible register number for function argument passing.
+ On Alpha, these are $16-$21 and $f16-$f21. */
+
+#define FUNCTION_ARG_REGNO_P(N) \
+ (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On Alpha, this is a single integer, which is a number of words
+ of arguments scanned so far.
+ Thus 6 or more means all following args should go on the stack. */
+
+#define CUMULATIVE_ARGS int
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
+ (CUM) = 0
+
+/* Define intermediate macro to compute the size (in registers) of an argument
+ for the Alpha. */
+
+#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
+ ((MODE) == TFmode || (MODE) == TCmode ? 1 \
+ : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ ((CUM) += \
+ (targetm.calls.must_pass_in_stack (MODE, TYPE)) \
+ ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
+
+/* Determine where to put an argument to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On Alpha the first 6 words of args are normally in registers
+ and the rest are pushed. */
+
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+ function_arg((CUM), (MODE), (TYPE), (NAMED))
+
+/* Try to output insns to set TARGET equal to the constant C if it can be
+ done in less than N insns. Do all computations in MODE. Returns the place
+ where the output has been placed if it can be done and the insns have been
+ emitted. If it would take more than N insns, zero is returned and no
+ insns and emitted. */
+
+/* Define the information needed to generate branch and scc insns. This is
+ stored from the compare operation. Note that we can't use "rtx" here
+ since it hasn't been defined! */
+
+struct alpha_compare
+{
+ struct rtx_def *op0, *op1;
+ int fp_p;
+};
+
+extern struct alpha_compare alpha_compare;
+
+/* Make (or fake) .linkage entry for function call.
+ IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
+
+/* This macro defines the start of an assembly comment. */
+
+#define ASM_COMMENT_START " #"
+
+/* This macro produces the initial definition of a function. */
+
+#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
+ alpha_start_function(FILE,NAME,DECL);
+
+/* This macro closes up a function definition for the assembler. */
+
+#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
+ alpha_end_function(FILE,NAME,DECL)
+
+/* Output any profiling code before the prologue. */
+
+#define PROFILE_BEFORE_PROLOGUE 1
+
+/* Never use profile counters. */
+
+#define NO_PROFILE_COUNTERS 1
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. Under OSF/1, profiling is enabled
+ by simply passing -pg to the assembler and linker. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO)
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+
+#define EXIT_IGNORE_STACK 1
+
+/* Define registers used by the epilogue and return instruction. */
+
+#define EPILOGUE_USES(REGNO) ((REGNO) == 26)
+
+/* Output assembler code for a block containing the constant parts
+ of a trampoline, leaving space for the variable parts.
+
+ The trampoline should set the static chain pointer to value placed
+ into the trampoline and should branch to the specified routine.
+ Note that $27 has been set to the address of the trampoline, so we can
+ use it for addressability of the two data items. */
+
+#define TRAMPOLINE_TEMPLATE(FILE) \
+do { \
+ fprintf (FILE, "\tldq $1,24($27)\n"); \
+ fprintf (FILE, "\tldq $27,16($27)\n"); \
+ fprintf (FILE, "\tjmp $31,($27),0\n"); \
+ fprintf (FILE, "\tnop\n"); \
+ fprintf (FILE, "\t.quad 0,0\n"); \
+} while (0)
+
+/* Section in which to place the trampoline. On Alpha, instructions
+ may only be placed in a text segment. */
+
+#define TRAMPOLINE_SECTION text_section
+
+/* Length in units of the trampoline for entering a nested function. */
+
+#define TRAMPOLINE_SIZE 32
+
+/* The alignment of a trampoline, in bits. */
+
+#define TRAMPOLINE_ALIGNMENT 64
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNADDR is an RTX for the address of the function's pure code.
+ CXT is an RTX for the static chain value for the function. */
+
+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
+ alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
+
+/* A C expression whose value is RTL representing the value of the return
+ address for the frame COUNT steps up from the current frame.
+ FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
+ the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
+
+#define RETURN_ADDR_RTX alpha_return_addr
+
+/* Before the prologue, RA lives in $26. */
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
+#define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
+#define DWARF_ZERO_REG 31
+
+/* Describe how we implement __builtin_eh_return. */
+#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
+#define EH_RETURN_HANDLER_RTX \
+ gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
+ current_function_outgoing_args_size))
+
+/* Addressing modes, and classification of registers for them. */
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in local-alloc.c. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) 0
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
+ || (REGNO) == 63 || reg_renumber[REGNO] == 63)
+
+/* Maximum number of registers that can appear in a valid memory address. */
+#define MAX_REGS_PER_ADDRESS 1
+
+/* Recognize any constant value that is a valid address. For the Alpha,
+ there are only constants none since we want to use LDA to load any
+ symbolic addresses into registers. */
+
+#define CONSTANT_ADDRESS_P(X) \
+ (GET_CODE (X) == CONST_INT \
+ && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
+
+/* Include all constant integers and constant doubles, but not
+ floating-point, except for floating-point zero. */
+
+#define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then. */
+
+/* Nonzero if X is a hard reg that can be used as an index
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_INDEX_P(X) 0
+
+/* Nonzero if X is a hard reg that can be used as a base reg
+ or if it is a pseudo reg. */
+#define NONSTRICT_REG_OK_FOR_BASE_P(X) \
+ (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
+
+/* ??? Nonzero if X is the frame pointer, or some virtual register
+ that may eliminate to the frame pointer. These will be allowed to
+ have offsets greater than 32K. This is done because register
+ elimination offsets will change the hi/lo split, and if we split
+ before reload, we will require additional instructions. */
+#define NONSTRICT_REG_OK_FP_BASE_P(X) \
+ (REGNO (X) == 31 || REGNO (X) == 63 \
+ || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
+ && REGNO (X) < LAST_VIRTUAL_REGISTER))
+
+/* Nonzero if X is a hard reg that can be used as a base reg. */
+#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
+
+#ifdef REG_OK_STRICT
+#define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
+#else
+#define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
+#endif
+
+/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
+ valid memory address for an instruction. */
+
+#ifdef REG_OK_STRICT
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
+do { \
+ if (alpha_legitimate_address_p (MODE, X, 1)) \
+ goto WIN; \
+} while (0)
+#else
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
+do { \
+ if (alpha_legitimate_address_p (MODE, X, 0)) \
+ goto WIN; \
+} while (0)
+#endif
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c. */
+
+#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
+do { \
+ rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
+ if (new_x) \
+ { \
+ X = new_x; \
+ goto WIN; \
+ } \
+} while (0)
+
+/* Try a machine-dependent way of reloading an illegitimate address
+ operand. If we find one, push the reload and jump to WIN. This
+ macro is used in only one place: `find_reloads_address' in reload.c. */
+
+#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
+do { \
+ rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
+ if (new_x) \
+ { \
+ X = new_x; \
+ goto WIN; \
+ } \
+} while (0)
+
+/* Go to LABEL if ADDR (a legitimate address expression)
+ has an effect that depends on the machine mode it is used for.
+ On the Alpha this is true only for the unaligned modes. We can
+ simplify this test since we know that the address must be valid. */
+
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
+{ if (GET_CODE (ADDR) == AND) goto LABEL; }
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE SImode
+
+/* Define as C expression which evaluates to nonzero if the tablejump
+ instruction expects the table to contain offsets from the address of the
+ table.
+
+ Do not define this if the table should contain absolute addresses.
+ On the Alpha, the table is really GP-relative, not relative to the PC
+ of the table, but we pretend that it is PC-relative; this should be OK,
+ but we should try to find some better way sometime. */
+#define CASE_VECTOR_PC_RELATIVE 1
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 1
+
+/* Max number of bytes we can move to or from memory
+ in one reasonably fast instruction. */
+
+#define MOVE_MAX 8
+
+/* If a memory-to-memory move would take MOVE_RATIO or more simple
+ move-instruction pairs, we will do a movmem or libcall instead.
+
+ Without byte/word accesses, we want no more than four instructions;
+ with, several single byte accesses are better. */
+
+#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
+
+/* Largest number of bytes of an object that can be placed in a register.
+ On the Alpha we have plenty of registers, so use TImode. */
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
+
+/* Nonzero if access to memory by bytes is no faster than for words.
+ Also nonzero if doing byte operations (specifically shifts) in registers
+ is undesirable.
+
+ On the Alpha, we want to not use the byte operation and instead use
+ masking operations to access fields; these will save instructions. */
+
+#define SLOW_BYTE_ACCESS 1
+
+/* Define if operations between registers always perform the operation
+ on the full register even if a narrower mode is specified. */
+#define WORD_REGISTER_OPERATIONS
+
+/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
+ will either zero-extend or sign-extend. The value of this macro should
+ be the code that says which one of the two operations is implicitly
+ done, UNKNOWN if none. */
+#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
+
+/* Define if loading short immediate values into registers sign extends. */
+#define SHORT_IMMEDIATES_SIGN_EXTEND
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* The CIX ctlz and cttz instructions return 64 for zero. */
+#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
+#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
+
+/* Define the value returned by a floating-point comparison instruction. */
+
+#define FLOAT_STORE_FLAG_VALUE(MODE) \
+ REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
+
+/* Canonicalize a comparison from one we don't have to one we do have. */
+
+#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
+ do { \
+ if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
+ && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
+ { \
+ rtx tem = (OP0); \
+ (OP0) = (OP1); \
+ (OP1) = tem; \
+ (CODE) = swap_condition (CODE); \
+ } \
+ if (((CODE) == LT || (CODE) == LTU) \
+ && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
+ { \
+ (CODE) = (CODE) == LT ? LE : LEU; \
+ (OP1) = GEN_INT (255); \
+ } \
+ } while (0)
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode DImode
+
+/* Mode of a function address in a call instruction (for indexing purposes). */
+
+#define FUNCTION_MODE Pmode
+
+/* Define this if addresses of constant functions
+ shouldn't be put through pseudo regs where they can be cse'd.
+ Desirable on machines where ordinary constants are expensive
+ but a CALL with constant address is cheap.
+
+ We define this on the Alpha so that gen_call and gen_call_value
+ get to see the SYMBOL_REF (for the hint field of the jsr). It will
+ then copy it into a register, thus actually letting the address be
+ cse'ed. */
+
+#define NO_FUNCTION_CSE
+
+/* Define this to be nonzero if shift instructions ignore all but the low-order
+ few bits. */
+#define SHIFT_COUNT_TRUNCATED 1
+
+/* Control the assembler format that we output. */
+
+/* Output to assembler file text saying following lines
+ may contain character constants, extra white space, comments, etc. */
+#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
+
+/* Output to assembler file text saying following lines
+ no longer contain unusual constructs. */
+#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
+
+#define TEXT_SECTION_ASM_OP "\t.text"
+
+/* Output before read-only data. */
+
+#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
+
+/* Output before writable data. */
+
+#define DATA_SECTION_ASM_OP "\t.data"
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+#define REGISTER_NAMES \
+{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
+ "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
+ "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
+ "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
+ "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
+ "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
+ "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
+ "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
+
+/* Strip name encoding when emitting labels. */
+
+#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
+do { \
+ const char *name_ = NAME; \
+ if (*name_ == '@' || *name_ == '%') \
+ name_ += 2; \
+ if (*name_ == '*') \
+ name_++; \
+ else \
+ fputs (user_label_prefix, STREAM); \
+ fputs (name_, STREAM); \
+} while (0)
+
+/* Globalizing directive for a label. */
+#define GLOBAL_ASM_OP "\t.globl "
+
+/* The prefix to add to user-visible assembler symbols. */
+
+#define USER_LABEL_PREFIX ""
+
+/* This is how to output a label for a jump table. Arguments are the same as
+ for (*targetm.asm_out.internal_label), except the insn for the jump table is
+ passed. */
+
+#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
+{ ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
+
+/* This is how to store into the string LABEL
+ the symbol_ref name of an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+ This is suitable for output with `assemble_name'. */
+
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
+ sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
+
+/* We use the default ASCII-output routine, except that we don't write more
+ than 50 characters since the assembler doesn't support very long lines. */
+
+#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
+ do { \
+ FILE *_hide_asm_out_file = (MYFILE); \
+ const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
+ int _hide_thissize = (MYLENGTH); \
+ int _size_so_far = 0; \
+ { \
+ FILE *asm_out_file = _hide_asm_out_file; \
+ const unsigned char *p = _hide_p; \
+ int thissize = _hide_thissize; \
+ int i; \
+ fprintf (asm_out_file, "\t.ascii \""); \
+ \
+ for (i = 0; i < thissize; i++) \
+ { \
+ register int c = p[i]; \
+ \
+ if (_size_so_far ++ > 50 && i < thissize - 4) \
+ _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
+ \
+ if (c == '\"' || c == '\\') \
+ putc ('\\', asm_out_file); \
+ if (c >= ' ' && c < 0177) \
+ putc (c, asm_out_file); \
+ else \
+ { \
+ fprintf (asm_out_file, "\\%o", c); \
+ /* After an octal-escape, if a digit follows, \
+ terminate one string constant and start another. \
+ The VAX assembler fails to stop reading the escape \
+ after three digits, so this is the only way we \
+ can get it to parse the data properly. */ \
+ if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
+ _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
+ } \
+ } \
+ fprintf (asm_out_file, "\"\n"); \
+ } \
+ } \
+ while (0)
+
+/* This is how to output an element of a case-vector that is relative. */
+
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+ fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
+ (VALUE))
+
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %d\n", LOG);
+
+/* This is how to advance the location counter by SIZE bytes. */
+
+#define ASM_OUTPUT_SKIP(FILE,SIZE) \
+ fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
+
+/* This says how to output an assembler line
+ to define a global common symbol. */
+
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
+( fputs ("\t.comm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
+
+/* This says how to output an assembler line
+ to define a local common symbol. */
+
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
+( fputs ("\t.lcomm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
+
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null. */
+
+#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
+
+/* Determine which codes are valid without a following integer. These must
+ not be alphabetic.
+
+ ~ Generates the name of the current function.
+
+ / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
+ attributes are examined to determine what is appropriate.
+
+ , Generates single precision suffix for floating point
+ instructions (s for IEEE, f for VAX)
+
+ - Generates double precision suffix for floating point
+ instructions (t for IEEE, g for VAX)
+
+ + Generates a nop instruction after a noreturn call at the very end
+ of the function
+ */
+
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
+ ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
+ || (CODE) == '#' || (CODE) == '*' || (CODE) == '&' || (CODE) == '+')
+
+/* Print a memory address as an operand to reference that memory location. */
+
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+ print_operand_address((FILE), (ADDR))
+
+/* Implement `va_start' for varargs and stdarg. */
+#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
+ alpha_va_start (valist, nextarg)
+
+/* Tell collect that the object format is ECOFF. */
+#define OBJECT_FORMAT_COFF
+#define EXTENDED_COFF
+
+/* If we use NM, pass -g to it so it only lists globals. */
+#define NM_FLAGS "-pg"
+
+/* Definitions for debugging. */
+
+#define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
+#define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
+#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
+
+#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
+#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
+#endif
+
+
+/* Correct the offset of automatic variables and arguments. Note that
+ the Alpha debug format wants all automatic variables and arguments
+ to be in terms of two different offsets from the virtual frame pointer,
+ which is the stack pointer before any adjustment in the function.
+ The offset for the argument pointer is fixed for the native compiler,
+ it is either zero (for the no arguments case) or large enough to hold
+ all argument registers.
+ The offset for the auto pointer is the fourth argument to the .frame
+ directive (local_offset).
+ To stay compatible with the native tools we use the same offsets
+ from the virtual frame pointer and adjust the debugger arg/auto offsets
+ accordingly. These debugger offsets are set up in output_prolog. */
+
+extern long alpha_arg_offset;
+extern long alpha_auto_offset;
+#define DEBUGGER_AUTO_OFFSET(X) \
+ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
+#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
+
+/* mips-tfile doesn't understand .stabd directives. */
+#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
+ dbxout_begin_stabn_sline (LINE); \
+ dbxout_stab_value_internal_label ("LM", &COUNTER); \
+} while (0)
+
+/* We want to use MIPS-style .loc directives for SDB line numbers. */
+extern int num_source_filenames;
+#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
+ fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
+
+#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
+ alpha_output_filename (STREAM, NAME)
+
+/* mips-tfile.c limits us to strings of one page. We must underestimate this
+ number, because the real length runs past this up to the next
+ continuation point. This is really a dbxout.c bug. */
+#define DBX_CONTIN_LENGTH 3000
+
+/* By default, turn on GDB extensions. */
+#define DEFAULT_GDB_EXTENSIONS 1
+
+/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
+#define NO_DBX_FUNCTION_END 1
+
+/* If we are smuggling stabs through the ALPHA ECOFF object
+ format, put a comment in front of the .stab<x> operation so
+ that the ALPHA assembler does not choke. The mips-tfile program
+ will correctly put the stab into the object file. */
+
+#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
+#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
+#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
+
+/* Forward references to tags are allowed. */
+#define SDB_ALLOW_FORWARD_REFERENCES
+
+/* Unknown tags are also allowed. */
+#define SDB_ALLOW_UNKNOWN_REFERENCES
+
+#define PUT_SDB_DEF(a) \
+do { \
+ fprintf (asm_out_file, "\t%s.def\t", \
+ (TARGET_GAS) ? "" : "#"); \
+ ASM_OUTPUT_LABELREF (asm_out_file, a); \
+ fputc (';', asm_out_file); \
+} while (0)
+
+#define PUT_SDB_PLAIN_DEF(a) \
+do { \
+ fprintf (asm_out_file, "\t%s.def\t.%s;", \
+ (TARGET_GAS) ? "" : "#", (a)); \
+} while (0)
+
+#define PUT_SDB_TYPE(a) \
+do { \
+ fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
+} while (0)
+
+/* For block start and end, we create labels, so that
+ later we can figure out where the correct offset is.
+ The normal .ent/.end serve well enough for functions,
+ so those are just commented out. */
+
+extern int sdb_label_count; /* block start/end next label # */
+
+#define PUT_SDB_BLOCK_START(LINE) \
+do { \
+ fprintf (asm_out_file, \
+ "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
+ sdb_label_count, \
+ (TARGET_GAS) ? "" : "#", \
+ sdb_label_count, \
+ (LINE)); \
+ sdb_label_count++; \
+} while (0)
+
+#define PUT_SDB_BLOCK_END(LINE) \
+do { \
+ fprintf (asm_out_file, \
+ "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
+ sdb_label_count, \
+ (TARGET_GAS) ? "" : "#", \
+ sdb_label_count, \
+ (LINE)); \
+ sdb_label_count++; \
+} while (0)
+
+#define PUT_SDB_FUNCTION_START(LINE)
+
+#define PUT_SDB_FUNCTION_END(LINE)
+
+#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
+
+/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
+ mips-tdump.c to print them out.
+
+ These must match the corresponding definitions in gdb/mipsread.c.
+ Unfortunately, gcc and gdb do not currently share any directories. */
+
+#define CODE_MASK 0x8F300
+#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
+#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
+#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
+
+/* Override some mips-tfile definitions. */
+
+#define SHASH_SIZE 511
+#define THASH_SIZE 55
+
+/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
+
+#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
+
+/* The system headers under Alpha systems are generally C++-aware. */
+#define NO_IMPLICIT_EXTERN_C