aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/combine.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/combine.c')
-rw-r--r--gcc-4.2.1/gcc/combine.c12648
1 files changed, 0 insertions, 12648 deletions
diff --git a/gcc-4.2.1/gcc/combine.c b/gcc-4.2.1/gcc/combine.c
deleted file mode 100644
index c5655ea40..000000000
--- a/gcc-4.2.1/gcc/combine.c
+++ /dev/null
@@ -1,12648 +0,0 @@
-/* Optimize by combining instructions for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-/* This module is essentially the "combiner" phase of the U. of Arizona
- Portable Optimizer, but redone to work on our list-structured
- representation for RTL instead of their string representation.
-
- The LOG_LINKS of each insn identify the most recent assignment
- to each REG used in the insn. It is a list of previous insns,
- each of which contains a SET for a REG that is used in this insn
- and not used or set in between. LOG_LINKs never cross basic blocks.
- They were set up by the preceding pass (lifetime analysis).
-
- We try to combine each pair of insns joined by a logical link.
- We also try to combine triples of insns A, B and C when
- C has a link back to B and B has a link back to A.
-
- LOG_LINKS does not have links for use of the CC0. They don't
- need to, because the insn that sets the CC0 is always immediately
- before the insn that tests it. So we always regard a branch
- insn as having a logical link to the preceding insn. The same is true
- for an insn explicitly using CC0.
-
- We check (with use_crosses_set_p) to avoid combining in such a way
- as to move a computation to a place where its value would be different.
-
- Combination is done by mathematically substituting the previous
- insn(s) values for the regs they set into the expressions in
- the later insns that refer to these regs. If the result is a valid insn
- for our target machine, according to the machine description,
- we install it, delete the earlier insns, and update the data flow
- information (LOG_LINKS and REG_NOTES) for what we did.
-
- There are a few exceptions where the dataflow information created by
- flow.c aren't completely updated:
-
- - reg_live_length is not updated
- - reg_n_refs is not adjusted in the rare case when a register is
- no longer required in a computation
- - there are extremely rare cases (see distribute_notes) when a
- REG_DEAD note is lost
- - a LOG_LINKS entry that refers to an insn with multiple SETs may be
- removed because there is no way to know which register it was
- linking
-
- To simplify substitution, we combine only when the earlier insn(s)
- consist of only a single assignment. To simplify updating afterward,
- we never combine when a subroutine call appears in the middle.
-
- Since we do not represent assignments to CC0 explicitly except when that
- is all an insn does, there is no LOG_LINKS entry in an insn that uses
- the condition code for the insn that set the condition code.
- Fortunately, these two insns must be consecutive.
- Therefore, every JUMP_INSN is taken to have an implicit logical link
- to the preceding insn. This is not quite right, since non-jumps can
- also use the condition code; but in practice such insns would not
- combine anyway. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "flags.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "insn-config.h"
-#include "function.h"
-/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
-#include "expr.h"
-#include "insn-attr.h"
-#include "recog.h"
-#include "real.h"
-#include "toplev.h"
-#include "target.h"
-#include "optabs.h"
-#include "insn-codes.h"
-#include "rtlhooks-def.h"
-/* Include output.h for dump_file. */
-#include "output.h"
-#include "params.h"
-#include "timevar.h"
-#include "tree-pass.h"
-
-/* Number of attempts to combine instructions in this function. */
-
-static int combine_attempts;
-
-/* Number of attempts that got as far as substitution in this function. */
-
-static int combine_merges;
-
-/* Number of instructions combined with added SETs in this function. */
-
-static int combine_extras;
-
-/* Number of instructions combined in this function. */
-
-static int combine_successes;
-
-/* Totals over entire compilation. */
-
-static int total_attempts, total_merges, total_extras, total_successes;
-
-/* combine_instructions may try to replace the right hand side of the
- second instruction with the value of an associated REG_EQUAL note
- before throwing it at try_combine. That is problematic when there
- is a REG_DEAD note for a register used in the old right hand side
- and can cause distribute_notes to do wrong things. This is the
- second instruction if it has been so modified, null otherwise. */
-
-static rtx i2mod;
-
-/* When I2MOD is nonnull, this is a copy of the old right hand side. */
-
-static rtx i2mod_old_rhs;
-
-/* When I2MOD is nonnull, this is a copy of the new right hand side. */
-
-static rtx i2mod_new_rhs;
-
-/* Vector mapping INSN_UIDs to cuids.
- The cuids are like uids but increase monotonically always.
- Combine always uses cuids so that it can compare them.
- But actually renumbering the uids, which we used to do,
- proves to be a bad idea because it makes it hard to compare
- the dumps produced by earlier passes with those from later passes. */
-
-static int *uid_cuid;
-static int max_uid_cuid;
-
-/* Get the cuid of an insn. */
-
-#define INSN_CUID(INSN) \
-(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
-
-/* Maximum register number, which is the size of the tables below. */
-
-static unsigned int combine_max_regno;
-
-struct reg_stat {
- /* Record last point of death of (hard or pseudo) register n. */
- rtx last_death;
-
- /* Record last point of modification of (hard or pseudo) register n. */
- rtx last_set;
-
- /* The next group of fields allows the recording of the last value assigned
- to (hard or pseudo) register n. We use this information to see if an
- operation being processed is redundant given a prior operation performed
- on the register. For example, an `and' with a constant is redundant if
- all the zero bits are already known to be turned off.
-
- We use an approach similar to that used by cse, but change it in the
- following ways:
-
- (1) We do not want to reinitialize at each label.
- (2) It is useful, but not critical, to know the actual value assigned
- to a register. Often just its form is helpful.
-
- Therefore, we maintain the following fields:
-
- last_set_value the last value assigned
- last_set_label records the value of label_tick when the
- register was assigned
- last_set_table_tick records the value of label_tick when a
- value using the register is assigned
- last_set_invalid set to nonzero when it is not valid
- to use the value of this register in some
- register's value
-
- To understand the usage of these tables, it is important to understand
- the distinction between the value in last_set_value being valid and
- the register being validly contained in some other expression in the
- table.
-
- (The next two parameters are out of date).
-
- reg_stat[i].last_set_value is valid if it is nonzero, and either
- reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
-
- Register I may validly appear in any expression returned for the value
- of another register if reg_n_sets[i] is 1. It may also appear in the
- value for register J if reg_stat[j].last_set_invalid is zero, or
- reg_stat[i].last_set_label < reg_stat[j].last_set_label.
-
- If an expression is found in the table containing a register which may
- not validly appear in an expression, the register is replaced by
- something that won't match, (clobber (const_int 0)). */
-
- /* Record last value assigned to (hard or pseudo) register n. */
-
- rtx last_set_value;
-
- /* Record the value of label_tick when an expression involving register n
- is placed in last_set_value. */
-
- int last_set_table_tick;
-
- /* Record the value of label_tick when the value for register n is placed in
- last_set_value. */
-
- int last_set_label;
-
- /* These fields are maintained in parallel with last_set_value and are
- used to store the mode in which the register was last set, the bits
- that were known to be zero when it was last set, and the number of
- sign bits copies it was known to have when it was last set. */
-
- unsigned HOST_WIDE_INT last_set_nonzero_bits;
- char last_set_sign_bit_copies;
- ENUM_BITFIELD(machine_mode) last_set_mode : 8;
-
- /* Set nonzero if references to register n in expressions should not be
- used. last_set_invalid is set nonzero when this register is being
- assigned to and last_set_table_tick == label_tick. */
-
- char last_set_invalid;
-
- /* Some registers that are set more than once and used in more than one
- basic block are nevertheless always set in similar ways. For example,
- a QImode register may be loaded from memory in two places on a machine
- where byte loads zero extend.
-
- We record in the following fields if a register has some leading bits
- that are always equal to the sign bit, and what we know about the
- nonzero bits of a register, specifically which bits are known to be
- zero.
-
- If an entry is zero, it means that we don't know anything special. */
-
- unsigned char sign_bit_copies;
-
- unsigned HOST_WIDE_INT nonzero_bits;
-
- /* Record the value of the label_tick when the last truncation
- happened. The field truncated_to_mode is only valid if
- truncation_label == label_tick. */
-
- int truncation_label;
-
- /* Record the last truncation seen for this register. If truncation
- is not a nop to this mode we might be able to save an explicit
- truncation if we know that value already contains a truncated
- value. */
-
- ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
-};
-
-static struct reg_stat *reg_stat;
-
-/* Record the cuid of the last insn that invalidated memory
- (anything that writes memory, and subroutine calls, but not pushes). */
-
-static int mem_last_set;
-
-/* Record the cuid of the last CALL_INSN
- so we can tell whether a potential combination crosses any calls. */
-
-static int last_call_cuid;
-
-/* When `subst' is called, this is the insn that is being modified
- (by combining in a previous insn). The PATTERN of this insn
- is still the old pattern partially modified and it should not be
- looked at, but this may be used to examine the successors of the insn
- to judge whether a simplification is valid. */
-
-static rtx subst_insn;
-
-/* This is the lowest CUID that `subst' is currently dealing with.
- get_last_value will not return a value if the register was set at or
- after this CUID. If not for this mechanism, we could get confused if
- I2 or I1 in try_combine were an insn that used the old value of a register
- to obtain a new value. In that case, we might erroneously get the
- new value of the register when we wanted the old one. */
-
-static int subst_low_cuid;
-
-/* This contains any hard registers that are used in newpat; reg_dead_at_p
- must consider all these registers to be always live. */
-
-static HARD_REG_SET newpat_used_regs;
-
-/* This is an insn to which a LOG_LINKS entry has been added. If this
- insn is the earlier than I2 or I3, combine should rescan starting at
- that location. */
-
-static rtx added_links_insn;
-
-/* Basic block in which we are performing combines. */
-static basic_block this_basic_block;
-
-/* A bitmap indicating which blocks had registers go dead at entry.
- After combine, we'll need to re-do global life analysis with
- those blocks as starting points. */
-static sbitmap refresh_blocks;
-
-/* The following array records the insn_rtx_cost for every insn
- in the instruction stream. */
-
-static int *uid_insn_cost;
-
-/* Length of the currently allocated uid_insn_cost array. */
-
-static int last_insn_cost;
-
-/* Incremented for each label. */
-
-static int label_tick;
-
-/* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
- largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
-
-static enum machine_mode nonzero_bits_mode;
-
-/* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
- be safely used. It is zero while computing them and after combine has
- completed. This former test prevents propagating values based on
- previously set values, which can be incorrect if a variable is modified
- in a loop. */
-
-static int nonzero_sign_valid;
-
-
-/* Record one modification to rtl structure
- to be undone by storing old_contents into *where. */
-
-struct undo
-{
- struct undo *next;
- enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
- union { rtx r; int i; enum machine_mode m; } old_contents;
- union { rtx *r; int *i; } where;
-};
-
-/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
- num_undo says how many are currently recorded.
-
- other_insn is nonzero if we have modified some other insn in the process
- of working on subst_insn. It must be verified too. */
-
-struct undobuf
-{
- struct undo *undos;
- struct undo *frees;
- rtx other_insn;
-};
-
-static struct undobuf undobuf;
-
-/* Number of times the pseudo being substituted for
- was found and replaced. */
-
-static int n_occurrences;
-
-static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
- enum machine_mode,
- unsigned HOST_WIDE_INT,
- unsigned HOST_WIDE_INT *);
-static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
- enum machine_mode,
- unsigned int, unsigned int *);
-static void do_SUBST (rtx *, rtx);
-static void do_SUBST_INT (int *, int);
-static void init_reg_last (void);
-static void setup_incoming_promotions (void);
-static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
-static int cant_combine_insn_p (rtx);
-static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
-static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
-static int contains_muldiv (rtx);
-static rtx try_combine (rtx, rtx, rtx, int *);
-static void undo_all (void);
-static void undo_commit (void);
-static rtx *find_split_point (rtx *, rtx);
-static rtx subst (rtx, rtx, rtx, int, int);
-static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
-static rtx simplify_if_then_else (rtx);
-static rtx simplify_set (rtx);
-static rtx simplify_logical (rtx);
-static rtx expand_compound_operation (rtx);
-static rtx expand_field_assignment (rtx);
-static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
- rtx, unsigned HOST_WIDE_INT, int, int, int);
-static rtx extract_left_shift (rtx, int);
-static rtx make_compound_operation (rtx, enum rtx_code);
-static int get_pos_from_mask (unsigned HOST_WIDE_INT,
- unsigned HOST_WIDE_INT *);
-static rtx canon_reg_for_combine (rtx, rtx);
-static rtx force_to_mode (rtx, enum machine_mode,
- unsigned HOST_WIDE_INT, int);
-static rtx if_then_else_cond (rtx, rtx *, rtx *);
-static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
-static int rtx_equal_for_field_assignment_p (rtx, rtx);
-static rtx make_field_assignment (rtx);
-static rtx apply_distributive_law (rtx);
-static rtx distribute_and_simplify_rtx (rtx, int);
-static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
- unsigned HOST_WIDE_INT);
-static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
- unsigned HOST_WIDE_INT);
-static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
- HOST_WIDE_INT, enum machine_mode, int *);
-static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
-static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
- int);
-static int recog_for_combine (rtx *, rtx, rtx *);
-static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
-static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
-static void update_table_tick (rtx);
-static void record_value_for_reg (rtx, rtx, rtx);
-static void check_conversions (rtx, rtx);
-static void record_dead_and_set_regs_1 (rtx, rtx, void *);
-static void record_dead_and_set_regs (rtx);
-static int get_last_value_validate (rtx *, rtx, int, int);
-static rtx get_last_value (rtx);
-static int use_crosses_set_p (rtx, int);
-static void reg_dead_at_p_1 (rtx, rtx, void *);
-static int reg_dead_at_p (rtx, rtx);
-static void move_deaths (rtx, rtx, int, rtx, rtx *);
-static int reg_bitfield_target_p (rtx, rtx);
-static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
-static void distribute_links (rtx);
-static void mark_used_regs_combine (rtx);
-static int insn_cuid (rtx);
-static void record_promoted_value (rtx, rtx);
-static int unmentioned_reg_p_1 (rtx *, void *);
-static bool unmentioned_reg_p (rtx, rtx);
-static void record_truncated_value (rtx);
-static bool reg_truncated_to_mode (enum machine_mode, rtx);
-static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
-
-
-/* It is not safe to use ordinary gen_lowpart in combine.
- See comments in gen_lowpart_for_combine. */
-#undef RTL_HOOKS_GEN_LOWPART
-#define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
-
-/* Our implementation of gen_lowpart never emits a new pseudo. */
-#undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
-#define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
-
-#undef RTL_HOOKS_REG_NONZERO_REG_BITS
-#define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
-
-#undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
-#define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
-
-#undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
-#define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
-
-static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
-
-
-/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
- insn. The substitution can be undone by undo_all. If INTO is already
- set to NEWVAL, do not record this change. Because computing NEWVAL might
- also call SUBST, we have to compute it before we put anything into
- the undo table. */
-
-static void
-do_SUBST (rtx *into, rtx newval)
-{
- struct undo *buf;
- rtx oldval = *into;
-
- if (oldval == newval)
- return;
-
- /* We'd like to catch as many invalid transformations here as
- possible. Unfortunately, there are way too many mode changes
- that are perfectly valid, so we'd waste too much effort for
- little gain doing the checks here. Focus on catching invalid
- transformations involving integer constants. */
- if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
- && GET_CODE (newval) == CONST_INT)
- {
- /* Sanity check that we're replacing oldval with a CONST_INT
- that is a valid sign-extension for the original mode. */
- gcc_assert (INTVAL (newval)
- == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
-
- /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
- CONST_INT is not valid, because after the replacement, the
- original mode would be gone. Unfortunately, we can't tell
- when do_SUBST is called to replace the operand thereof, so we
- perform this test on oldval instead, checking whether an
- invalid replacement took place before we got here. */
- gcc_assert (!(GET_CODE (oldval) == SUBREG
- && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
- gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
- && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
- }
-
- if (undobuf.frees)
- buf = undobuf.frees, undobuf.frees = buf->next;
- else
- buf = XNEW (struct undo);
-
- buf->kind = UNDO_RTX;
- buf->where.r = into;
- buf->old_contents.r = oldval;
- *into = newval;
-
- buf->next = undobuf.undos, undobuf.undos = buf;
-}
-
-#define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
-
-/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
- for the value of a HOST_WIDE_INT value (including CONST_INT) is
- not safe. */
-
-static void
-do_SUBST_INT (int *into, int newval)
-{
- struct undo *buf;
- int oldval = *into;
-
- if (oldval == newval)
- return;
-
- if (undobuf.frees)
- buf = undobuf.frees, undobuf.frees = buf->next;
- else
- buf = XNEW (struct undo);
-
- buf->kind = UNDO_INT;
- buf->where.i = into;
- buf->old_contents.i = oldval;
- *into = newval;
-
- buf->next = undobuf.undos, undobuf.undos = buf;
-}
-
-#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
-
-/* Similar to SUBST, but just substitute the mode. This is used when
- changing the mode of a pseudo-register, so that any other
- references to the entry in the regno_reg_rtx array will change as
- well. */
-
-static void
-do_SUBST_MODE (rtx *into, enum machine_mode newval)
-{
- struct undo *buf;
- enum machine_mode oldval = GET_MODE (*into);
-
- if (oldval == newval)
- return;
-
- if (undobuf.frees)
- buf = undobuf.frees, undobuf.frees = buf->next;
- else
- buf = XNEW (struct undo);
-
- buf->kind = UNDO_MODE;
- buf->where.r = into;
- buf->old_contents.m = oldval;
- PUT_MODE (*into, newval);
-
- buf->next = undobuf.undos, undobuf.undos = buf;
-}
-
-#define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
-
-/* Subroutine of try_combine. Determine whether the combine replacement
- patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
- that the original instruction sequence I1, I2 and I3. Note that I1
- and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
- costs of all instructions can be estimated, and the replacements are
- more expensive than the original sequence. */
-
-static bool
-combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
-{
- int i1_cost, i2_cost, i3_cost;
- int new_i2_cost, new_i3_cost;
- int old_cost, new_cost;
-
- /* Lookup the original insn_rtx_costs. */
- i2_cost = INSN_UID (i2) <= last_insn_cost
- ? uid_insn_cost[INSN_UID (i2)] : 0;
- i3_cost = INSN_UID (i3) <= last_insn_cost
- ? uid_insn_cost[INSN_UID (i3)] : 0;
-
- if (i1)
- {
- i1_cost = INSN_UID (i1) <= last_insn_cost
- ? uid_insn_cost[INSN_UID (i1)] : 0;
- old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
- ? i1_cost + i2_cost + i3_cost : 0;
- }
- else
- {
- old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
- i1_cost = 0;
- }
-
- /* Calculate the replacement insn_rtx_costs. */
- new_i3_cost = insn_rtx_cost (newpat);
- if (newi2pat)
- {
- new_i2_cost = insn_rtx_cost (newi2pat);
- new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
- ? new_i2_cost + new_i3_cost : 0;
- }
- else
- {
- new_cost = new_i3_cost;
- new_i2_cost = 0;
- }
-
- if (undobuf.other_insn)
- {
- int old_other_cost, new_other_cost;
-
- old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
- ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
- new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
- if (old_other_cost > 0 && new_other_cost > 0)
- {
- old_cost += old_other_cost;
- new_cost += new_other_cost;
- }
- else
- old_cost = 0;
- }
-
- /* Disallow this recombination if both new_cost and old_cost are
- greater than zero, and new_cost is greater than old cost. */
- if (old_cost > 0
- && new_cost > old_cost)
- {
- if (dump_file)
- {
- if (i1)
- {
- fprintf (dump_file,
- "rejecting combination of insns %d, %d and %d\n",
- INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
- fprintf (dump_file, "original costs %d + %d + %d = %d\n",
- i1_cost, i2_cost, i3_cost, old_cost);
- }
- else
- {
- fprintf (dump_file,
- "rejecting combination of insns %d and %d\n",
- INSN_UID (i2), INSN_UID (i3));
- fprintf (dump_file, "original costs %d + %d = %d\n",
- i2_cost, i3_cost, old_cost);
- }
-
- if (newi2pat)
- {
- fprintf (dump_file, "replacement costs %d + %d = %d\n",
- new_i2_cost, new_i3_cost, new_cost);
- }
- else
- fprintf (dump_file, "replacement cost %d\n", new_cost);
- }
-
- return false;
- }
-
- /* Update the uid_insn_cost array with the replacement costs. */
- uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
- uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
- if (i1)
- uid_insn_cost[INSN_UID (i1)] = 0;
-
- return true;
-}
-
-/* Main entry point for combiner. F is the first insn of the function.
- NREGS is the first unused pseudo-reg number.
-
- Return nonzero if the combiner has turned an indirect jump
- instruction into a direct jump. */
-static int
-combine_instructions (rtx f, unsigned int nregs)
-{
- rtx insn, next;
-#ifdef HAVE_cc0
- rtx prev;
-#endif
- int i;
- unsigned int j = 0;
- rtx links, nextlinks;
- sbitmap_iterator sbi;
-
- int new_direct_jump_p = 0;
-
- combine_attempts = 0;
- combine_merges = 0;
- combine_extras = 0;
- combine_successes = 0;
-
- combine_max_regno = nregs;
-
- rtl_hooks = combine_rtl_hooks;
-
- reg_stat = XCNEWVEC (struct reg_stat, nregs);
-
- init_recog_no_volatile ();
-
- /* Compute maximum uid value so uid_cuid can be allocated. */
-
- for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
- if (INSN_UID (insn) > i)
- i = INSN_UID (insn);
-
- uid_cuid = XNEWVEC (int, i + 1);
- max_uid_cuid = i;
-
- nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
-
- /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
- problems when, for example, we have j <<= 1 in a loop. */
-
- nonzero_sign_valid = 0;
-
- /* Compute the mapping from uids to cuids.
- Cuids are numbers assigned to insns, like uids,
- except that cuids increase monotonically through the code.
-
- Scan all SETs and see if we can deduce anything about what
- bits are known to be zero for some registers and how many copies
- of the sign bit are known to exist for those registers.
-
- Also set any known values so that we can use it while searching
- for what bits are known to be set. */
-
- label_tick = 1;
-
- setup_incoming_promotions ();
-
- refresh_blocks = sbitmap_alloc (last_basic_block);
- sbitmap_zero (refresh_blocks);
-
- /* Allocate array of current insn_rtx_costs. */
- uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
- last_insn_cost = max_uid_cuid;
-
- for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
- {
- uid_cuid[INSN_UID (insn)] = ++i;
- subst_low_cuid = i;
- subst_insn = insn;
-
- if (INSN_P (insn))
- {
- note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
- NULL);
- record_dead_and_set_regs (insn);
-
-#ifdef AUTO_INC_DEC
- for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
- if (REG_NOTE_KIND (links) == REG_INC)
- set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
- NULL);
-#endif
-
- /* Record the current insn_rtx_cost of this instruction. */
- if (NONJUMP_INSN_P (insn))
- uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
- if (dump_file)
- fprintf(dump_file, "insn_cost %d: %d\n",
- INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
- }
-
- if (LABEL_P (insn))
- label_tick++;
- }
-
- nonzero_sign_valid = 1;
-
- /* Now scan all the insns in forward order. */
-
- label_tick = 1;
- last_call_cuid = 0;
- mem_last_set = 0;
- init_reg_last ();
- setup_incoming_promotions ();
-
- FOR_EACH_BB (this_basic_block)
- {
- for (insn = BB_HEAD (this_basic_block);
- insn != NEXT_INSN (BB_END (this_basic_block));
- insn = next ? next : NEXT_INSN (insn))
- {
- next = 0;
-
- if (LABEL_P (insn))
- label_tick++;
-
- else if (INSN_P (insn))
- {
- /* See if we know about function return values before this
- insn based upon SUBREG flags. */
- check_conversions (insn, PATTERN (insn));
-
- /* Try this insn with each insn it links back to. */
-
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- if ((next = try_combine (insn, XEXP (links, 0),
- NULL_RTX, &new_direct_jump_p)) != 0)
- goto retry;
-
- /* Try each sequence of three linked insns ending with this one. */
-
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- {
- rtx link = XEXP (links, 0);
-
- /* If the linked insn has been replaced by a note, then there
- is no point in pursuing this chain any further. */
- if (NOTE_P (link))
- continue;
-
- for (nextlinks = LOG_LINKS (link);
- nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, link,
- XEXP (nextlinks, 0),
- &new_direct_jump_p)) != 0)
- goto retry;
- }
-
-#ifdef HAVE_cc0
- /* Try to combine a jump insn that uses CC0
- with a preceding insn that sets CC0, and maybe with its
- logical predecessor as well.
- This is how we make decrement-and-branch insns.
- We need this special code because data flow connections
- via CC0 do not get entered in LOG_LINKS. */
-
- if (JUMP_P (insn)
- && (prev = prev_nonnote_insn (insn)) != 0
- && NONJUMP_INSN_P (prev)
- && sets_cc0_p (PATTERN (prev)))
- {
- if ((next = try_combine (insn, prev,
- NULL_RTX, &new_direct_jump_p)) != 0)
- goto retry;
-
- for (nextlinks = LOG_LINKS (prev); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, prev,
- XEXP (nextlinks, 0),
- &new_direct_jump_p)) != 0)
- goto retry;
- }
-
- /* Do the same for an insn that explicitly references CC0. */
- if (NONJUMP_INSN_P (insn)
- && (prev = prev_nonnote_insn (insn)) != 0
- && NONJUMP_INSN_P (prev)
- && sets_cc0_p (PATTERN (prev))
- && GET_CODE (PATTERN (insn)) == SET
- && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
- {
- if ((next = try_combine (insn, prev,
- NULL_RTX, &new_direct_jump_p)) != 0)
- goto retry;
-
- for (nextlinks = LOG_LINKS (prev); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, prev,
- XEXP (nextlinks, 0),
- &new_direct_jump_p)) != 0)
- goto retry;
- }
-
- /* Finally, see if any of the insns that this insn links to
- explicitly references CC0. If so, try this insn, that insn,
- and its predecessor if it sets CC0. */
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- if (NONJUMP_INSN_P (XEXP (links, 0))
- && GET_CODE (PATTERN (XEXP (links, 0))) == SET
- && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
- && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
- && NONJUMP_INSN_P (prev)
- && sets_cc0_p (PATTERN (prev))
- && (next = try_combine (insn, XEXP (links, 0),
- prev, &new_direct_jump_p)) != 0)
- goto retry;
-#endif
-
- /* Try combining an insn with two different insns whose results it
- uses. */
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- for (nextlinks = XEXP (links, 1); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, XEXP (links, 0),
- XEXP (nextlinks, 0),
- &new_direct_jump_p)) != 0)
- goto retry;
-
- /* Try this insn with each REG_EQUAL note it links back to. */
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- {
- rtx set, note;
- rtx temp = XEXP (links, 0);
- if ((set = single_set (temp)) != 0
- && (note = find_reg_equal_equiv_note (temp)) != 0
- && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
- /* Avoid using a register that may already been marked
- dead by an earlier instruction. */
- && ! unmentioned_reg_p (note, SET_SRC (set))
- && (GET_MODE (note) == VOIDmode
- ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
- : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
- {
- /* Temporarily replace the set's source with the
- contents of the REG_EQUAL note. The insn will
- be deleted or recognized by try_combine. */
- rtx orig = SET_SRC (set);
- SET_SRC (set) = note;
- i2mod = temp;
- i2mod_old_rhs = copy_rtx (orig);
- i2mod_new_rhs = copy_rtx (note);
- next = try_combine (insn, i2mod, NULL_RTX,
- &new_direct_jump_p);
- i2mod = NULL_RTX;
- if (next)
- goto retry;
- SET_SRC (set) = orig;
- }
- }
-
- if (!NOTE_P (insn))
- record_dead_and_set_regs (insn);
-
- retry:
- ;
- }
- }
- }
- clear_bb_flags ();
-
- EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
- BASIC_BLOCK (j)->flags |= BB_DIRTY;
- new_direct_jump_p |= purge_all_dead_edges ();
- delete_noop_moves ();
-
- update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
- PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
- | PROP_KILL_DEAD_CODE);
-
- /* Clean up. */
- sbitmap_free (refresh_blocks);
- free (uid_insn_cost);
- free (reg_stat);
- free (uid_cuid);
-
- {
- struct undo *undo, *next;
- for (undo = undobuf.frees; undo; undo = next)
- {
- next = undo->next;
- free (undo);
- }
- undobuf.frees = 0;
- }
-
- total_attempts += combine_attempts;
- total_merges += combine_merges;
- total_extras += combine_extras;
- total_successes += combine_successes;
-
- nonzero_sign_valid = 0;
- rtl_hooks = general_rtl_hooks;
-
- /* Make recognizer allow volatile MEMs again. */
- init_recog ();
-
- return new_direct_jump_p;
-}
-
-/* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
-
-static void
-init_reg_last (void)
-{
- unsigned int i;
- for (i = 0; i < combine_max_regno; i++)
- memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
-}
-
-/* Set up any promoted values for incoming argument registers. */
-
-static void
-setup_incoming_promotions (void)
-{
- unsigned int regno;
- rtx reg;
- enum machine_mode mode;
- int unsignedp;
- rtx first = get_insns ();
-
- if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
- {
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- /* Check whether this register can hold an incoming pointer
- argument. FUNCTION_ARG_REGNO_P tests outgoing register
- numbers, so translate if necessary due to register windows. */
- if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
- && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
- {
- record_value_for_reg
- (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
- : SIGN_EXTEND),
- GET_MODE (reg),
- gen_rtx_CLOBBER (mode, const0_rtx)));
- }
- }
-}
-
-/* Called via note_stores. If X is a pseudo that is narrower than
- HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
-
- If we are setting only a portion of X and we can't figure out what
- portion, assume all bits will be used since we don't know what will
- be happening.
-
- Similarly, set how many bits of X are known to be copies of the sign bit
- at all locations in the function. This is the smallest number implied
- by any set of X. */
-
-static void
-set_nonzero_bits_and_sign_copies (rtx x, rtx set,
- void *data ATTRIBUTE_UNUSED)
-{
- unsigned int num;
-
- if (REG_P (x)
- && REGNO (x) >= FIRST_PSEUDO_REGISTER
- /* If this register is undefined at the start of the file, we can't
- say what its contents were. */
- && ! REGNO_REG_SET_P
- (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
- {
- if (set == 0 || GET_CODE (set) == CLOBBER)
- {
- reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
- reg_stat[REGNO (x)].sign_bit_copies = 1;
- return;
- }
-
- /* If this is a complex assignment, see if we can convert it into a
- simple assignment. */
- set = expand_field_assignment (set);
-
- /* If this is a simple assignment, or we have a paradoxical SUBREG,
- set what we know about X. */
-
- if (SET_DEST (set) == x
- || (GET_CODE (SET_DEST (set)) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
- && SUBREG_REG (SET_DEST (set)) == x))
- {
- rtx src = SET_SRC (set);
-
-#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
- /* If X is narrower than a word and SRC is a non-negative
- constant that would appear negative in the mode of X,
- sign-extend it for use in reg_stat[].nonzero_bits because some
- machines (maybe most) will actually do the sign-extension
- and this is the conservative approach.
-
- ??? For 2.5, try to tighten up the MD files in this regard
- instead of this kludge. */
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
- && GET_CODE (src) == CONST_INT
- && INTVAL (src) > 0
- && 0 != (INTVAL (src)
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
- src = GEN_INT (INTVAL (src)
- | ((HOST_WIDE_INT) (-1)
- << GET_MODE_BITSIZE (GET_MODE (x))));
-#endif
-
- /* Don't call nonzero_bits if it cannot change anything. */
- if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
- reg_stat[REGNO (x)].nonzero_bits
- |= nonzero_bits (src, nonzero_bits_mode);
- num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
- if (reg_stat[REGNO (x)].sign_bit_copies == 0
- || reg_stat[REGNO (x)].sign_bit_copies > num)
- reg_stat[REGNO (x)].sign_bit_copies = num;
- }
- else
- {
- reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
- reg_stat[REGNO (x)].sign_bit_copies = 1;
- }
- }
-}
-
-/* See if INSN can be combined into I3. PRED and SUCC are optionally
- insns that were previously combined into I3 or that will be combined
- into the merger of INSN and I3.
-
- Return 0 if the combination is not allowed for any reason.
-
- If the combination is allowed, *PDEST will be set to the single
- destination of INSN and *PSRC to the single source, and this function
- will return 1. */
-
-static int
-can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
- rtx *pdest, rtx *psrc)
-{
- int i;
- rtx set = 0, src, dest;
- rtx p;
-#ifdef AUTO_INC_DEC
- rtx link;
-#endif
- int all_adjacent = (succ ? (next_active_insn (insn) == succ
- && next_active_insn (succ) == i3)
- : next_active_insn (insn) == i3);
-
- /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
- or a PARALLEL consisting of such a SET and CLOBBERs.
-
- If INSN has CLOBBER parallel parts, ignore them for our processing.
- By definition, these happen during the execution of the insn. When it
- is merged with another insn, all bets are off. If they are, in fact,
- needed and aren't also supplied in I3, they may be added by
- recog_for_combine. Otherwise, it won't match.
-
- We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
- note.
-
- Get the source and destination of INSN. If more than one, can't
- combine. */
-
- if (GET_CODE (PATTERN (insn)) == SET)
- set = PATTERN (insn);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
- {
- for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
- {
- rtx elt = XVECEXP (PATTERN (insn), 0, i);
- rtx note;
-
- switch (GET_CODE (elt))
- {
- /* This is important to combine floating point insns
- for the SH4 port. */
- case USE:
- /* Combining an isolated USE doesn't make sense.
- We depend here on combinable_i3pat to reject them. */
- /* The code below this loop only verifies that the inputs of
- the SET in INSN do not change. We call reg_set_between_p
- to verify that the REG in the USE does not change between
- I3 and INSN.
- If the USE in INSN was for a pseudo register, the matching
- insn pattern will likely match any register; combining this
- with any other USE would only be safe if we knew that the
- used registers have identical values, or if there was
- something to tell them apart, e.g. different modes. For
- now, we forgo such complicated tests and simply disallow
- combining of USES of pseudo registers with any other USE. */
- if (REG_P (XEXP (elt, 0))
- && GET_CODE (PATTERN (i3)) == PARALLEL)
- {
- rtx i3pat = PATTERN (i3);
- int i = XVECLEN (i3pat, 0) - 1;
- unsigned int regno = REGNO (XEXP (elt, 0));
-
- do
- {
- rtx i3elt = XVECEXP (i3pat, 0, i);
-
- if (GET_CODE (i3elt) == USE
- && REG_P (XEXP (i3elt, 0))
- && (REGNO (XEXP (i3elt, 0)) == regno
- ? reg_set_between_p (XEXP (elt, 0),
- PREV_INSN (insn), i3)
- : regno >= FIRST_PSEUDO_REGISTER))
- return 0;
- }
- while (--i >= 0);
- }
- break;
-
- /* We can ignore CLOBBERs. */
- case CLOBBER:
- break;
-
- case SET:
- /* Ignore SETs whose result isn't used but not those that
- have side-effects. */
- if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
- && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
- || INTVAL (XEXP (note, 0)) <= 0)
- && ! side_effects_p (elt))
- break;
-
- /* If we have already found a SET, this is a second one and
- so we cannot combine with this insn. */
- if (set)
- return 0;
-
- set = elt;
- break;
-
- default:
- /* Anything else means we can't combine. */
- return 0;
- }
- }
-
- if (set == 0
- /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
- so don't do anything with it. */
- || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
- return 0;
- }
- else
- return 0;
-
- if (set == 0)
- return 0;
-
- set = expand_field_assignment (set);
- src = SET_SRC (set), dest = SET_DEST (set);
-
- /* Don't eliminate a store in the stack pointer. */
- if (dest == stack_pointer_rtx
- /* Don't combine with an insn that sets a register to itself if it has
- a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
- || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
- /* Can't merge an ASM_OPERANDS. */
- || GET_CODE (src) == ASM_OPERANDS
- /* Can't merge a function call. */
- || GET_CODE (src) == CALL
- /* Don't eliminate a function call argument. */
- || (CALL_P (i3)
- && (find_reg_fusage (i3, USE, dest)
- || (REG_P (dest)
- && REGNO (dest) < FIRST_PSEUDO_REGISTER
- && global_regs[REGNO (dest)])))
- /* Don't substitute into an incremented register. */
- || FIND_REG_INC_NOTE (i3, dest)
- || (succ && FIND_REG_INC_NOTE (succ, dest))
- /* Don't substitute into a non-local goto, this confuses CFG. */
- || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
-#if 0
- /* Don't combine the end of a libcall into anything. */
- /* ??? This gives worse code, and appears to be unnecessary, since no
- pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
- use REG_RETVAL notes for noconflict blocks, but other code here
- makes sure that those insns don't disappear. */
- || find_reg_note (insn, REG_RETVAL, NULL_RTX)
-#endif
- /* Make sure that DEST is not used after SUCC but before I3. */
- || (succ && ! all_adjacent
- && reg_used_between_p (dest, succ, i3))
- /* Make sure that the value that is to be substituted for the register
- does not use any registers whose values alter in between. However,
- If the insns are adjacent, a use can't cross a set even though we
- think it might (this can happen for a sequence of insns each setting
- the same destination; last_set of that register might point to
- a NOTE). If INSN has a REG_EQUIV note, the register is always
- equivalent to the memory so the substitution is valid even if there
- are intervening stores. Also, don't move a volatile asm or
- UNSPEC_VOLATILE across any other insns. */
- || (! all_adjacent
- && (((!MEM_P (src)
- || ! find_reg_note (insn, REG_EQUIV, src))
- && use_crosses_set_p (src, INSN_CUID (insn)))
- || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
- || GET_CODE (src) == UNSPEC_VOLATILE))
- /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
- better register allocation by not doing the combine. */
- || find_reg_note (i3, REG_NO_CONFLICT, dest)
- || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
- /* Don't combine across a CALL_INSN, because that would possibly
- change whether the life span of some REGs crosses calls or not,
- and it is a pain to update that information.
- Exception: if source is a constant, moving it later can't hurt.
- Accept that special case, because it helps -fforce-addr a lot. */
- || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
- return 0;
-
- /* DEST must either be a REG or CC0. */
- if (REG_P (dest))
- {
- /* If register alignment is being enforced for multi-word items in all
- cases except for parameters, it is possible to have a register copy
- insn referencing a hard register that is not allowed to contain the
- mode being copied and which would not be valid as an operand of most
- insns. Eliminate this problem by not combining with such an insn.
-
- Also, on some machines we don't want to extend the life of a hard
- register. */
-
- if (REG_P (src)
- && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
- && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
- /* Don't extend the life of a hard register unless it is
- user variable (if we have few registers) or it can't
- fit into the desired register (meaning something special
- is going on).
- Also avoid substituting a return register into I3, because
- reload can't handle a conflict with constraints of other
- inputs. */
- || (REGNO (src) < FIRST_PSEUDO_REGISTER
- && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
- return 0;
- }
- else if (GET_CODE (dest) != CC0)
- return 0;
-
-
- if (GET_CODE (PATTERN (i3)) == PARALLEL)
- for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
- {
- /* Don't substitute for a register intended as a clobberable
- operand. */
- rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
- if (rtx_equal_p (reg, dest))
- return 0;
-
- /* If the clobber represents an earlyclobber operand, we must not
- substitute an expression containing the clobbered register.
- As we do not analyze the constraint strings here, we have to
- make the conservative assumption. However, if the register is
- a fixed hard reg, the clobber cannot represent any operand;
- we leave it up to the machine description to either accept or
- reject use-and-clobber patterns. */
- if (!REG_P (reg)
- || REGNO (reg) >= FIRST_PSEUDO_REGISTER
- || !fixed_regs[REGNO (reg)])
- if (reg_overlap_mentioned_p (reg, src))
- return 0;
- }
-
- /* If INSN contains anything volatile, or is an `asm' (whether volatile
- or not), reject, unless nothing volatile comes between it and I3 */
-
- if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
- {
- /* Make sure succ doesn't contain a volatile reference. */
- if (succ != 0 && volatile_refs_p (PATTERN (succ)))
- return 0;
-
- for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
- if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
- return 0;
- }
-
- /* If INSN is an asm, and DEST is a hard register, reject, since it has
- to be an explicit register variable, and was chosen for a reason. */
-
- if (GET_CODE (src) == ASM_OPERANDS
- && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
- return 0;
-
- /* If there are any volatile insns between INSN and I3, reject, because
- they might affect machine state. */
-
- for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
- if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
- return 0;
-
- /* If INSN contains an autoincrement or autodecrement, make sure that
- register is not used between there and I3, and not already used in
- I3 either. Neither must it be used in PRED or SUCC, if they exist.
- Also insist that I3 not be a jump; if it were one
- and the incremented register were spilled, we would lose. */
-
-#ifdef AUTO_INC_DEC
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && (JUMP_P (i3)
- || reg_used_between_p (XEXP (link, 0), insn, i3)
- || (pred != NULL_RTX
- && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
- || (succ != NULL_RTX
- && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
- || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
- return 0;
-#endif
-
-#ifdef HAVE_cc0
- /* Don't combine an insn that follows a CC0-setting insn.
- An insn that uses CC0 must not be separated from the one that sets it.
- We do, however, allow I2 to follow a CC0-setting insn if that insn
- is passed as I1; in that case it will be deleted also.
- We also allow combining in this case if all the insns are adjacent
- because that would leave the two CC0 insns adjacent as well.
- It would be more logical to test whether CC0 occurs inside I1 or I2,
- but that would be much slower, and this ought to be equivalent. */
-
- p = prev_nonnote_insn (insn);
- if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
- && ! all_adjacent)
- return 0;
-#endif
-
- /* If we get here, we have passed all the tests and the combination is
- to be allowed. */
-
- *pdest = dest;
- *psrc = src;
-
- return 1;
-}
-
-/* LOC is the location within I3 that contains its pattern or the component
- of a PARALLEL of the pattern. We validate that it is valid for combining.
-
- One problem is if I3 modifies its output, as opposed to replacing it
- entirely, we can't allow the output to contain I2DEST or I1DEST as doing
- so would produce an insn that is not equivalent to the original insns.
-
- Consider:
-
- (set (reg:DI 101) (reg:DI 100))
- (set (subreg:SI (reg:DI 101) 0) <foo>)
-
- This is NOT equivalent to:
-
- (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
- (set (reg:DI 101) (reg:DI 100))])
-
- Not only does this modify 100 (in which case it might still be valid
- if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
-
- We can also run into a problem if I2 sets a register that I1
- uses and I1 gets directly substituted into I3 (not via I2). In that
- case, we would be getting the wrong value of I2DEST into I3, so we
- must reject the combination. This case occurs when I2 and I1 both
- feed into I3, rather than when I1 feeds into I2, which feeds into I3.
- If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
- of a SET must prevent combination from occurring.
-
- Before doing the above check, we first try to expand a field assignment
- into a set of logical operations.
-
- If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
- we place a register that is both set and used within I3. If more than one
- such register is detected, we fail.
-
- Return 1 if the combination is valid, zero otherwise. */
-
-static int
-combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
- int i1_not_in_src, rtx *pi3dest_killed)
-{
- rtx x = *loc;
-
- if (GET_CODE (x) == SET)
- {
- rtx set = x ;
- rtx dest = SET_DEST (set);
- rtx src = SET_SRC (set);
- rtx inner_dest = dest;
- rtx subdest;
-
- while (GET_CODE (inner_dest) == STRICT_LOW_PART
- || GET_CODE (inner_dest) == SUBREG
- || GET_CODE (inner_dest) == ZERO_EXTRACT)
- inner_dest = XEXP (inner_dest, 0);
-
- /* Check for the case where I3 modifies its output, as discussed
- above. We don't want to prevent pseudos from being combined
- into the address of a MEM, so only prevent the combination if
- i1 or i2 set the same MEM. */
- if ((inner_dest != dest &&
- (!MEM_P (inner_dest)
- || rtx_equal_p (i2dest, inner_dest)
- || (i1dest && rtx_equal_p (i1dest, inner_dest)))
- && (reg_overlap_mentioned_p (i2dest, inner_dest)
- || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
-
- /* This is the same test done in can_combine_p except we can't test
- all_adjacent; we don't have to, since this instruction will stay
- in place, thus we are not considering increasing the lifetime of
- INNER_DEST.
-
- Also, if this insn sets a function argument, combining it with
- something that might need a spill could clobber a previous
- function argument; the all_adjacent test in can_combine_p also
- checks this; here, we do a more specific test for this case. */
-
- || (REG_P (inner_dest)
- && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
- && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
- GET_MODE (inner_dest))))
- || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
- return 0;
-
- /* If DEST is used in I3, it is being killed in this insn, so
- record that for later. We have to consider paradoxical
- subregs here, since they kill the whole register, but we
- ignore partial subregs, STRICT_LOW_PART, etc.
- Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
- STACK_POINTER_REGNUM, since these are always considered to be
- live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
- subdest = dest;
- if (GET_CODE (subdest) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (subdest))
- >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
- subdest = SUBREG_REG (subdest);
- if (pi3dest_killed
- && REG_P (subdest)
- && reg_referenced_p (subdest, PATTERN (i3))
- && REGNO (subdest) != FRAME_POINTER_REGNUM
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
-#endif
-#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && (REGNO (subdest) != ARG_POINTER_REGNUM
- || ! fixed_regs [REGNO (subdest)])
-#endif
- && REGNO (subdest) != STACK_POINTER_REGNUM)
- {
- if (*pi3dest_killed)
- return 0;
-
- *pi3dest_killed = subdest;
- }
- }
-
- else if (GET_CODE (x) == PARALLEL)
- {
- int i;
-
- for (i = 0; i < XVECLEN (x, 0); i++)
- if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
- i1_not_in_src, pi3dest_killed))
- return 0;
- }
-
- return 1;
-}
-
-/* Return 1 if X is an arithmetic expression that contains a multiplication
- and division. We don't count multiplications by powers of two here. */
-
-static int
-contains_muldiv (rtx x)
-{
- switch (GET_CODE (x))
- {
- case MOD: case DIV: case UMOD: case UDIV:
- return 1;
-
- case MULT:
- return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
- && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
- default:
- if (BINARY_P (x))
- return contains_muldiv (XEXP (x, 0))
- || contains_muldiv (XEXP (x, 1));
-
- if (UNARY_P (x))
- return contains_muldiv (XEXP (x, 0));
-
- return 0;
- }
-}
-
-/* Determine whether INSN can be used in a combination. Return nonzero if
- not. This is used in try_combine to detect early some cases where we
- can't perform combinations. */
-
-static int
-cant_combine_insn_p (rtx insn)
-{
- rtx set;
- rtx src, dest;
-
- /* If this isn't really an insn, we can't do anything.
- This can occur when flow deletes an insn that it has merged into an
- auto-increment address. */
- if (! INSN_P (insn))
- return 1;
-
- /* Never combine loads and stores involving hard regs that are likely
- to be spilled. The register allocator can usually handle such
- reg-reg moves by tying. If we allow the combiner to make
- substitutions of likely-spilled regs, reload might die.
- As an exception, we allow combinations involving fixed regs; these are
- not available to the register allocator so there's no risk involved. */
-
- set = single_set (insn);
- if (! set)
- return 0;
- src = SET_SRC (set);
- dest = SET_DEST (set);
- if (GET_CODE (src) == SUBREG)
- src = SUBREG_REG (src);
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
- if (REG_P (src) && REG_P (dest)
- && ((REGNO (src) < FIRST_PSEUDO_REGISTER
- && ! fixed_regs[REGNO (src)]
- && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
- || (REGNO (dest) < FIRST_PSEUDO_REGISTER
- && ! fixed_regs[REGNO (dest)]
- && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
- return 1;
-
- return 0;
-}
-
-struct likely_spilled_retval_info
-{
- unsigned regno, nregs;
- unsigned mask;
-};
-
-/* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
- hard registers that are known to be written to / clobbered in full. */
-static void
-likely_spilled_retval_1 (rtx x, rtx set, void *data)
-{
- struct likely_spilled_retval_info *info = data;
- unsigned regno, nregs;
- unsigned new_mask;
-
- if (!REG_P (XEXP (set, 0)))
- return;
- regno = REGNO (x);
- if (regno >= info->regno + info->nregs)
- return;
- nregs = hard_regno_nregs[regno][GET_MODE (x)];
- if (regno + nregs <= info->regno)
- return;
- new_mask = (2U << (nregs - 1)) - 1;
- if (regno < info->regno)
- new_mask >>= info->regno - regno;
- else
- new_mask <<= regno - info->regno;
- info->mask &= new_mask;
-}
-
-/* Return nonzero iff part of the return value is live during INSN, and
- it is likely spilled. This can happen when more than one insn is needed
- to copy the return value, e.g. when we consider to combine into the
- second copy insn for a complex value. */
-
-static int
-likely_spilled_retval_p (rtx insn)
-{
- rtx use = BB_END (this_basic_block);
- rtx reg, p;
- unsigned regno, nregs;
- /* We assume here that no machine mode needs more than
- 32 hard registers when the value overlaps with a register
- for which FUNCTION_VALUE_REGNO_P is true. */
- unsigned mask;
- struct likely_spilled_retval_info info;
-
- if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
- return 0;
- reg = XEXP (PATTERN (use), 0);
- if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
- return 0;
- regno = REGNO (reg);
- nregs = hard_regno_nregs[regno][GET_MODE (reg)];
- if (nregs == 1)
- return 0;
- mask = (2U << (nregs - 1)) - 1;
-
- /* Disregard parts of the return value that are set later. */
- info.regno = regno;
- info.nregs = nregs;
- info.mask = mask;
- for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
- note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
- mask = info.mask;
-
- /* Check if any of the (probably) live return value registers is
- likely spilled. */
- nregs --;
- do
- {
- if ((mask & 1 << nregs)
- && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
- return 1;
- } while (nregs--);
- return 0;
-}
-
-/* Adjust INSN after we made a change to its destination.
-
- Changing the destination can invalidate notes that say something about
- the results of the insn and a LOG_LINK pointing to the insn. */
-
-static void
-adjust_for_new_dest (rtx insn)
-{
- rtx *loc;
-
- /* For notes, be conservative and simply remove them. */
- loc = &REG_NOTES (insn);
- while (*loc)
- {
- enum reg_note kind = REG_NOTE_KIND (*loc);
- if (kind == REG_EQUAL || kind == REG_EQUIV)
- *loc = XEXP (*loc, 1);
- else
- loc = &XEXP (*loc, 1);
- }
-
- /* The new insn will have a destination that was previously the destination
- of an insn just above it. Call distribute_links to make a LOG_LINK from
- the next use of that destination. */
- distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
-}
-
-/* Return TRUE if combine can reuse reg X in mode MODE.
- ADDED_SETS is nonzero if the original set is still required. */
-static bool
-can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
-{
- unsigned int regno;
-
- if (!REG_P(x))
- return false;
-
- regno = REGNO (x);
- /* Allow hard registers if the new mode is legal, and occupies no more
- registers than the old mode. */
- if (regno < FIRST_PSEUDO_REGISTER)
- return (HARD_REGNO_MODE_OK (regno, mode)
- && (hard_regno_nregs[regno][GET_MODE (x)]
- >= hard_regno_nregs[regno][mode]));
-
- /* Or a pseudo that is only used once. */
- return (REG_N_SETS (regno) == 1 && !added_sets
- && !REG_USERVAR_P (x));
-}
-
-
-/* Check whether X, the destination of a set, refers to part of
- the register specified by REG. */
-
-static bool
-reg_subword_p (rtx x, rtx reg)
-{
- /* Check that reg is an integer mode register. */
- if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
- return false;
-
- if (GET_CODE (x) == STRICT_LOW_PART
- || GET_CODE (x) == ZERO_EXTRACT)
- x = XEXP (x, 0);
-
- return GET_CODE (x) == SUBREG
- && SUBREG_REG (x) == reg
- && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
-}
-
-
-/* Try to combine the insns I1 and I2 into I3.
- Here I1 and I2 appear earlier than I3.
- I1 can be zero; then we combine just I2 into I3.
-
- If we are combining three insns and the resulting insn is not recognized,
- try splitting it into two insns. If that happens, I2 and I3 are retained
- and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
- are pseudo-deleted.
-
- Return 0 if the combination does not work. Then nothing is changed.
- If we did the combination, return the insn at which combine should
- resume scanning.
-
- Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
- new direct jump instruction. */
-
-static rtx
-try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
-{
- /* New patterns for I3 and I2, respectively. */
- rtx newpat, newi2pat = 0;
- rtvec newpat_vec_with_clobbers = 0;
- int substed_i2 = 0, substed_i1 = 0;
- /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
- int added_sets_1, added_sets_2;
- /* Total number of SETs to put into I3. */
- int total_sets;
- /* Nonzero if I2's body now appears in I3. */
- int i2_is_used;
- /* INSN_CODEs for new I3, new I2, and user of condition code. */
- int insn_code_number, i2_code_number = 0, other_code_number = 0;
- /* Contains I3 if the destination of I3 is used in its source, which means
- that the old life of I3 is being killed. If that usage is placed into
- I2 and not in I3, a REG_DEAD note must be made. */
- rtx i3dest_killed = 0;
- /* SET_DEST and SET_SRC of I2 and I1. */
- rtx i2dest, i2src, i1dest = 0, i1src = 0;
- /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
- rtx i1pat = 0, i2pat = 0;
- /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
- int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
- int i2dest_killed = 0, i1dest_killed = 0;
- int i1_feeds_i3 = 0;
- /* Notes that must be added to REG_NOTES in I3 and I2. */
- rtx new_i3_notes, new_i2_notes;
- /* Notes that we substituted I3 into I2 instead of the normal case. */
- int i3_subst_into_i2 = 0;
- /* Notes that I1, I2 or I3 is a MULT operation. */
- int have_mult = 0;
- int swap_i2i3 = 0;
-
- int maxreg;
- rtx temp;
- rtx link;
- int i;
-
- /* Exit early if one of the insns involved can't be used for
- combinations. */
- if (cant_combine_insn_p (i3)
- || cant_combine_insn_p (i2)
- || (i1 && cant_combine_insn_p (i1))
- || likely_spilled_retval_p (i3)
- /* We also can't do anything if I3 has a
- REG_LIBCALL note since we don't want to disrupt the contiguity of a
- libcall. */
-#if 0
- /* ??? This gives worse code, and appears to be unnecessary, since no
- pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
- || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
-#endif
- )
- return 0;
-
- combine_attempts++;
- undobuf.other_insn = 0;
-
- /* Reset the hard register usage information. */
- CLEAR_HARD_REG_SET (newpat_used_regs);
-
- /* If I1 and I2 both feed I3, they can be in any order. To simplify the
- code below, set I1 to be the earlier of the two insns. */
- if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
- temp = i1, i1 = i2, i2 = temp;
-
- added_links_insn = 0;
-
- /* First check for one important special-case that the code below will
- not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
- and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
- we may be able to replace that destination with the destination of I3.
- This occurs in the common code where we compute both a quotient and
- remainder into a structure, in which case we want to do the computation
- directly into the structure to avoid register-register copies.
-
- Note that this case handles both multiple sets in I2 and also
- cases where I2 has a number of CLOBBER or PARALLELs.
-
- We make very conservative checks below and only try to handle the
- most common cases of this. For example, we only handle the case
- where I2 and I3 are adjacent to avoid making difficult register
- usage tests. */
-
- if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
- && REG_P (SET_SRC (PATTERN (i3)))
- && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
- && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
- && GET_CODE (PATTERN (i2)) == PARALLEL
- && ! side_effects_p (SET_DEST (PATTERN (i3)))
- /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
- below would need to check what is inside (and reg_overlap_mentioned_p
- doesn't support those codes anyway). Don't allow those destinations;
- the resulting insn isn't likely to be recognized anyway. */
- && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
- && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
- SET_DEST (PATTERN (i3)))
- && next_real_insn (i2) == i3)
- {
- rtx p2 = PATTERN (i2);
-
- /* Make sure that the destination of I3,
- which we are going to substitute into one output of I2,
- is not used within another output of I2. We must avoid making this:
- (parallel [(set (mem (reg 69)) ...)
- (set (reg 69) ...)])
- which is not well-defined as to order of actions.
- (Besides, reload can't handle output reloads for this.)
-
- The problem can also happen if the dest of I3 is a memory ref,
- if another dest in I2 is an indirect memory ref. */
- for (i = 0; i < XVECLEN (p2, 0); i++)
- if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
- || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
- && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
- SET_DEST (XVECEXP (p2, 0, i))))
- break;
-
- if (i == XVECLEN (p2, 0))
- for (i = 0; i < XVECLEN (p2, 0); i++)
- if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
- || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
- && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
- {
- combine_merges++;
-
- subst_insn = i3;
- subst_low_cuid = INSN_CUID (i2);
-
- added_sets_2 = added_sets_1 = 0;
- i2dest = SET_SRC (PATTERN (i3));
- i2dest_killed = dead_or_set_p (i2, i2dest);
-
- /* Replace the dest in I2 with our dest and make the resulting
- insn the new pattern for I3. Then skip to where we
- validate the pattern. Everything was set up above. */
- SUBST (SET_DEST (XVECEXP (p2, 0, i)),
- SET_DEST (PATTERN (i3)));
-
- newpat = p2;
- i3_subst_into_i2 = 1;
- goto validate_replacement;
- }
- }
-
- /* If I2 is setting a pseudo to a constant and I3 is setting some
- sub-part of it to another constant, merge them by making a new
- constant. */
- if (i1 == 0
- && (temp = single_set (i2)) != 0
- && (GET_CODE (SET_SRC (temp)) == CONST_INT
- || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
- && GET_CODE (PATTERN (i3)) == SET
- && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
- || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
- && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
- {
- rtx dest = SET_DEST (PATTERN (i3));
- int offset = -1;
- int width = 0;
-
- if (GET_CODE (dest) == ZERO_EXTRACT)
- {
- if (GET_CODE (XEXP (dest, 1)) == CONST_INT
- && GET_CODE (XEXP (dest, 2)) == CONST_INT)
- {
- width = INTVAL (XEXP (dest, 1));
- offset = INTVAL (XEXP (dest, 2));
- dest = XEXP (dest, 0);
- if (BITS_BIG_ENDIAN)
- offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
- }
- }
- else
- {
- if (GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- width = GET_MODE_BITSIZE (GET_MODE (dest));
- offset = 0;
- }
-
- if (offset >= 0)
- {
- /* If this is the low part, we're done. */
- if (subreg_lowpart_p (dest))
- ;
- /* Handle the case where inner is twice the size of outer. */
- else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
- == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
- offset += GET_MODE_BITSIZE (GET_MODE (dest));
- /* Otherwise give up for now. */
- else
- offset = -1;
- }
-
- if (offset >= 0)
- {
- HOST_WIDE_INT mhi, ohi, ihi;
- HOST_WIDE_INT mlo, olo, ilo;
- rtx inner = SET_SRC (PATTERN (i3));
- rtx outer = SET_SRC (temp);
-
- if (GET_CODE (outer) == CONST_INT)
- {
- olo = INTVAL (outer);
- ohi = olo < 0 ? -1 : 0;
- }
- else
- {
- olo = CONST_DOUBLE_LOW (outer);
- ohi = CONST_DOUBLE_HIGH (outer);
- }
-
- if (GET_CODE (inner) == CONST_INT)
- {
- ilo = INTVAL (inner);
- ihi = ilo < 0 ? -1 : 0;
- }
- else
- {
- ilo = CONST_DOUBLE_LOW (inner);
- ihi = CONST_DOUBLE_HIGH (inner);
- }
-
- if (width < HOST_BITS_PER_WIDE_INT)
- {
- mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
- mhi = 0;
- }
- else if (width < HOST_BITS_PER_WIDE_INT * 2)
- {
- mhi = ((unsigned HOST_WIDE_INT) 1
- << (width - HOST_BITS_PER_WIDE_INT)) - 1;
- mlo = -1;
- }
- else
- {
- mlo = -1;
- mhi = -1;
- }
-
- ilo &= mlo;
- ihi &= mhi;
-
- if (offset >= HOST_BITS_PER_WIDE_INT)
- {
- mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
- mlo = 0;
- ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
- ilo = 0;
- }
- else if (offset > 0)
- {
- mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
- >> (HOST_BITS_PER_WIDE_INT - offset));
- mlo = mlo << offset;
- ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
- >> (HOST_BITS_PER_WIDE_INT - offset));
- ilo = ilo << offset;
- }
-
- olo = (olo & ~mlo) | ilo;
- ohi = (ohi & ~mhi) | ihi;
-
- combine_merges++;
- subst_insn = i3;
- subst_low_cuid = INSN_CUID (i2);
- added_sets_2 = added_sets_1 = 0;
- i2dest = SET_DEST (temp);
- i2dest_killed = dead_or_set_p (i2, i2dest);
-
- SUBST (SET_SRC (temp),
- immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
-
- newpat = PATTERN (i2);
- goto validate_replacement;
- }
- }
-
-#ifndef HAVE_cc0
- /* If we have no I1 and I2 looks like:
- (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
- (set Y OP)])
- make up a dummy I1 that is
- (set Y OP)
- and change I2 to be
- (set (reg:CC X) (compare:CC Y (const_int 0)))
-
- (We can ignore any trailing CLOBBERs.)
-
- This undoes a previous combination and allows us to match a branch-and-
- decrement insn. */
-
- if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
- && XVECLEN (PATTERN (i2), 0) >= 2
- && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
- && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
- == MODE_CC)
- && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
- && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
- && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
- && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
- && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
- SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
- {
- for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
- if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
- break;
-
- if (i == 1)
- {
- /* We make I1 with the same INSN_UID as I2. This gives it
- the same INSN_CUID for value tracking. Our fake I1 will
- never appear in the insn stream so giving it the same INSN_UID
- as I2 will not cause a problem. */
-
- i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
- BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
- XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
- NULL_RTX);
-
- SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
- SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
- SET_DEST (PATTERN (i1)));
- }
- }
-#endif
-
- /* Verify that I2 and I1 are valid for combining. */
- if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
- || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
- {
- undo_all ();
- return 0;
- }
-
- /* Record whether I2DEST is used in I2SRC and similarly for the other
- cases. Knowing this will help in register status updating below. */
- i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
- i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
- i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
- i2dest_killed = dead_or_set_p (i2, i2dest);
- i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
-
- /* See if I1 directly feeds into I3. It does if I1DEST is not used
- in I2SRC. */
- i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
-
- /* Ensure that I3's pattern can be the destination of combines. */
- if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
- i1 && i2dest_in_i1src && i1_feeds_i3,
- &i3dest_killed))
- {
- undo_all ();
- return 0;
- }
-
- /* See if any of the insns is a MULT operation. Unless one is, we will
- reject a combination that is, since it must be slower. Be conservative
- here. */
- if (GET_CODE (i2src) == MULT
- || (i1 != 0 && GET_CODE (i1src) == MULT)
- || (GET_CODE (PATTERN (i3)) == SET
- && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
- have_mult = 1;
-
- /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
- We used to do this EXCEPT in one case: I3 has a post-inc in an
- output operand. However, that exception can give rise to insns like
- mov r3,(r3)+
- which is a famous insn on the PDP-11 where the value of r3 used as the
- source was model-dependent. Avoid this sort of thing. */
-
-#if 0
- if (!(GET_CODE (PATTERN (i3)) == SET
- && REG_P (SET_SRC (PATTERN (i3)))
- && MEM_P (SET_DEST (PATTERN (i3)))
- && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
- || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
- /* It's not the exception. */
-#endif
-#ifdef AUTO_INC_DEC
- for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
- || (i1 != 0
- && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
- {
- undo_all ();
- return 0;
- }
-#endif
-
- /* See if the SETs in I1 or I2 need to be kept around in the merged
- instruction: whenever the value set there is still needed past I3.
- For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
-
- For the SET in I1, we have two cases: If I1 and I2 independently
- feed into I3, the set in I1 needs to be kept around if I1DEST dies
- or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
- in I1 needs to be kept around unless I1DEST dies or is set in either
- I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
- I1DEST. If so, we know I1 feeds into I2. */
-
- added_sets_2 = ! dead_or_set_p (i3, i2dest);
-
- added_sets_1
- = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
- : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
-
- /* If the set in I2 needs to be kept around, we must make a copy of
- PATTERN (I2), so that when we substitute I1SRC for I1DEST in
- PATTERN (I2), we are only substituting for the original I1DEST, not into
- an already-substituted copy. This also prevents making self-referential
- rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
- I2DEST. */
-
- if (added_sets_2)
- {
- if (GET_CODE (PATTERN (i2)) == PARALLEL)
- i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
- else
- i2pat = copy_rtx (PATTERN (i2));
- }
-
- if (added_sets_1)
- {
- if (GET_CODE (PATTERN (i1)) == PARALLEL)
- i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
- else
- i1pat = copy_rtx (PATTERN (i1));
- }
-
- combine_merges++;
-
- /* Substitute in the latest insn for the regs set by the earlier ones. */
-
- maxreg = max_reg_num ();
-
- subst_insn = i3;
-
-#ifndef HAVE_cc0
- /* Many machines that don't use CC0 have insns that can both perform an
- arithmetic operation and set the condition code. These operations will
- be represented as a PARALLEL with the first element of the vector
- being a COMPARE of an arithmetic operation with the constant zero.
- The second element of the vector will set some pseudo to the result
- of the same arithmetic operation. If we simplify the COMPARE, we won't
- match such a pattern and so will generate an extra insn. Here we test
- for this case, where both the comparison and the operation result are
- needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
- I2SRC. Later we will make the PARALLEL that contains I2. */
-
- if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
- && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
- && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
- && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
- {
-#ifdef SELECT_CC_MODE
- rtx *cc_use;
- enum machine_mode compare_mode;
-#endif
-
- newpat = PATTERN (i3);
- SUBST (XEXP (SET_SRC (newpat), 0), i2src);
-
- i2_is_used = 1;
-
-#ifdef SELECT_CC_MODE
- /* See if a COMPARE with the operand we substituted in should be done
- with the mode that is currently being used. If not, do the same
- processing we do in `subst' for a SET; namely, if the destination
- is used only once, try to replace it with a register of the proper
- mode and also replace the COMPARE. */
- if (undobuf.other_insn == 0
- && (cc_use = find_single_use (SET_DEST (newpat), i3,
- &undobuf.other_insn))
- && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
- i2src, const0_rtx))
- != GET_MODE (SET_DEST (newpat))))
- {
- if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
- compare_mode))
- {
- unsigned int regno = REGNO (SET_DEST (newpat));
- rtx new_dest;
-
- if (regno < FIRST_PSEUDO_REGISTER)
- new_dest = gen_rtx_REG (compare_mode, regno);
- else
- {
- SUBST_MODE (regno_reg_rtx[regno], compare_mode);
- new_dest = regno_reg_rtx[regno];
- }
-
- SUBST (SET_DEST (newpat), new_dest);
- SUBST (XEXP (*cc_use, 0), new_dest);
- SUBST (SET_SRC (newpat),
- gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
- }
- else
- undobuf.other_insn = 0;
- }
-#endif
- }
- else
-#endif
- {
- /* It is possible that the source of I2 or I1 may be performing
- an unneeded operation, such as a ZERO_EXTEND of something
- that is known to have the high part zero. Handle that case
- by letting subst look at the innermost one of them.
-
- Another way to do this would be to have a function that tries
- to simplify a single insn instead of merging two or more
- insns. We don't do this because of the potential of infinite
- loops and because of the potential extra memory required.
- However, doing it the way we are is a bit of a kludge and
- doesn't catch all cases.
-
- But only do this if -fexpensive-optimizations since it slows
- things down and doesn't usually win.
-
- This is not done in the COMPARE case above because the
- unmodified I2PAT is used in the PARALLEL and so a pattern
- with a modified I2SRC would not match. */
-
- if (flag_expensive_optimizations)
- {
- /* Pass pc_rtx so no substitutions are done, just
- simplifications. */
- if (i1)
- {
- subst_low_cuid = INSN_CUID (i1);
- i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
- }
- else
- {
- subst_low_cuid = INSN_CUID (i2);
- i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
- }
- }
-
- n_occurrences = 0; /* `subst' counts here */
-
- /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
- need to make a unique copy of I2SRC each time we substitute it
- to avoid self-referential rtl. */
-
- subst_low_cuid = INSN_CUID (i2);
- newpat = subst (PATTERN (i3), i2dest, i2src, 0,
- ! i1_feeds_i3 && i1dest_in_i1src);
- substed_i2 = 1;
-
- /* Record whether i2's body now appears within i3's body. */
- i2_is_used = n_occurrences;
- }
-
- /* If we already got a failure, don't try to do more. Otherwise,
- try to substitute in I1 if we have it. */
-
- if (i1 && GET_CODE (newpat) != CLOBBER)
- {
- /* Before we can do this substitution, we must redo the test done
- above (see detailed comments there) that ensures that I1DEST
- isn't mentioned in any SETs in NEWPAT that are field assignments. */
-
- if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
- 0, (rtx*) 0))
- {
- undo_all ();
- return 0;
- }
-
- n_occurrences = 0;
- subst_low_cuid = INSN_CUID (i1);
- newpat = subst (newpat, i1dest, i1src, 0, 0);
- substed_i1 = 1;
- }
-
- /* Fail if an autoincrement side-effect has been duplicated. Be careful
- to count all the ways that I2SRC and I1SRC can be used. */
- if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
- && i2_is_used + added_sets_2 > 1)
- || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
- && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
- > 1))
- /* Fail if we tried to make a new register. */
- || max_reg_num () != maxreg
- /* Fail if we couldn't do something and have a CLOBBER. */
- || GET_CODE (newpat) == CLOBBER
- /* Fail if this new pattern is a MULT and we didn't have one before
- at the outer level. */
- || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
- && ! have_mult))
- {
- undo_all ();
- return 0;
- }
-
- /* If the actions of the earlier insns must be kept
- in addition to substituting them into the latest one,
- we must make a new PARALLEL for the latest insn
- to hold additional the SETs. */
-
- if (added_sets_1 || added_sets_2)
- {
- combine_extras++;
-
- if (GET_CODE (newpat) == PARALLEL)
- {
- rtvec old = XVEC (newpat, 0);
- total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
- newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
- memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
- sizeof (old->elem[0]) * old->num_elem);
- }
- else
- {
- rtx old = newpat;
- total_sets = 1 + added_sets_1 + added_sets_2;
- newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
- XVECEXP (newpat, 0, 0) = old;
- }
-
- if (added_sets_1)
- XVECEXP (newpat, 0, --total_sets) = i1pat;
-
- if (added_sets_2)
- {
- /* If there is no I1, use I2's body as is. We used to also not do
- the subst call below if I2 was substituted into I3,
- but that could lose a simplification. */
- if (i1 == 0)
- XVECEXP (newpat, 0, --total_sets) = i2pat;
- else
- /* See comment where i2pat is assigned. */
- XVECEXP (newpat, 0, --total_sets)
- = subst (i2pat, i1dest, i1src, 0, 0);
- }
- }
-
- /* We come here when we are replacing a destination in I2 with the
- destination of I3. */
- validate_replacement:
-
- /* Note which hard regs this insn has as inputs. */
- mark_used_regs_combine (newpat);
-
- /* If recog_for_combine fails, it strips existing clobbers. If we'll
- consider splitting this pattern, we might need these clobbers. */
- if (i1 && GET_CODE (newpat) == PARALLEL
- && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
- {
- int len = XVECLEN (newpat, 0);
-
- newpat_vec_with_clobbers = rtvec_alloc (len);
- for (i = 0; i < len; i++)
- RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
- }
-
- /* Is the result of combination a valid instruction? */
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
-
- /* If the result isn't valid, see if it is a PARALLEL of two SETs where
- the second SET's destination is a register that is unused and isn't
- marked as an instruction that might trap in an EH region. In that case,
- we just need the first SET. This can occur when simplifying a divmod
- insn. We *must* test for this case here because the code below that
- splits two independent SETs doesn't handle this case correctly when it
- updates the register status.
-
- It's pointless doing this if we originally had two sets, one from
- i3, and one from i2. Combining then splitting the parallel results
- in the original i2 again plus an invalid insn (which we delete).
- The net effect is only to move instructions around, which makes
- debug info less accurate.
-
- Also check the case where the first SET's destination is unused.
- That would not cause incorrect code, but does cause an unneeded
- insn to remain. */
-
- if (insn_code_number < 0
- && !(added_sets_2 && i1 == 0)
- && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && asm_noperands (newpat) < 0)
- {
- rtx set0 = XVECEXP (newpat, 0, 0);
- rtx set1 = XVECEXP (newpat, 0, 1);
- rtx note;
-
- if (((REG_P (SET_DEST (set1))
- && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
- || (GET_CODE (SET_DEST (set1)) == SUBREG
- && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
- && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
- || INTVAL (XEXP (note, 0)) <= 0)
- && ! side_effects_p (SET_SRC (set1)))
- {
- newpat = set0;
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
-
- else if (((REG_P (SET_DEST (set0))
- && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
- || (GET_CODE (SET_DEST (set0)) == SUBREG
- && find_reg_note (i3, REG_UNUSED,
- SUBREG_REG (SET_DEST (set0)))))
- && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
- || INTVAL (XEXP (note, 0)) <= 0)
- && ! side_effects_p (SET_SRC (set0)))
- {
- newpat = set1;
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
-
- if (insn_code_number >= 0)
- {
- /* If we will be able to accept this, we have made a
- change to the destination of I3. This requires us to
- do a few adjustments. */
-
- PATTERN (i3) = newpat;
- adjust_for_new_dest (i3);
- }
- }
- }
-
- /* If we were combining three insns and the result is a simple SET
- with no ASM_OPERANDS that wasn't recognized, try to split it into two
- insns. There are two ways to do this. It can be split using a
- machine-specific method (like when you have an addition of a large
- constant) or by combine in the function find_split_point. */
-
- if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
- && asm_noperands (newpat) < 0)
- {
- rtx m_split, *split;
-
- /* See if the MD file can split NEWPAT. If it can't, see if letting it
- use I2DEST as a scratch register will help. In the latter case,
- convert I2DEST to the mode of the source of NEWPAT if we can. */
-
- m_split = split_insns (newpat, i3);
-
- /* We can only use I2DEST as a scratch reg if it doesn't overlap any
- inputs of NEWPAT. */
-
- /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
- possible to try that as a scratch reg. This would require adding
- more code to make it work though. */
-
- if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
- {
- enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
-
- /* First try to split using the original register as a
- scratch register. */
- m_split = split_insns (gen_rtx_PARALLEL
- (VOIDmode,
- gen_rtvec (2, newpat,
- gen_rtx_CLOBBER (VOIDmode,
- i2dest))),
- i3);
-
- /* If that didn't work, try changing the mode of I2DEST if
- we can. */
- if (m_split == 0
- && new_mode != GET_MODE (i2dest)
- && new_mode != VOIDmode
- && can_change_dest_mode (i2dest, added_sets_2, new_mode))
- {
- enum machine_mode old_mode = GET_MODE (i2dest);
- rtx ni2dest;
-
- if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
- ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
- else
- {
- SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
- ni2dest = regno_reg_rtx[REGNO (i2dest)];
- }
-
- m_split = split_insns (gen_rtx_PARALLEL
- (VOIDmode,
- gen_rtvec (2, newpat,
- gen_rtx_CLOBBER (VOIDmode,
- ni2dest))),
- i3);
-
- if (m_split == 0
- && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
- {
- struct undo *buf;
-
- PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
- buf = undobuf.undos;
- undobuf.undos = buf->next;
- buf->next = undobuf.frees;
- undobuf.frees = buf;
- }
- }
- }
-
- /* If recog_for_combine has discarded clobbers, try to use them
- again for the split. */
- if (m_split == 0 && newpat_vec_with_clobbers)
- m_split
- = split_insns (gen_rtx_PARALLEL (VOIDmode,
- newpat_vec_with_clobbers), i3);
-
- if (m_split && NEXT_INSN (m_split) == NULL_RTX)
- {
- m_split = PATTERN (m_split);
- insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
- if (insn_code_number >= 0)
- newpat = m_split;
- }
- else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
- && (next_real_insn (i2) == i3
- || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
- {
- rtx i2set, i3set;
- rtx newi3pat = PATTERN (NEXT_INSN (m_split));
- newi2pat = PATTERN (m_split);
-
- i3set = single_set (NEXT_INSN (m_split));
- i2set = single_set (m_split);
-
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
-
- /* If I2 or I3 has multiple SETs, we won't know how to track
- register status, so don't use these insns. If I2's destination
- is used between I2 and I3, we also can't use these insns. */
-
- if (i2_code_number >= 0 && i2set && i3set
- && (next_real_insn (i2) == i3
- || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
- insn_code_number = recog_for_combine (&newi3pat, i3,
- &new_i3_notes);
- if (insn_code_number >= 0)
- newpat = newi3pat;
-
- /* It is possible that both insns now set the destination of I3.
- If so, we must show an extra use of it. */
-
- if (insn_code_number >= 0)
- {
- rtx new_i3_dest = SET_DEST (i3set);
- rtx new_i2_dest = SET_DEST (i2set);
-
- while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
- || GET_CODE (new_i3_dest) == STRICT_LOW_PART
- || GET_CODE (new_i3_dest) == SUBREG)
- new_i3_dest = XEXP (new_i3_dest, 0);
-
- while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
- || GET_CODE (new_i2_dest) == STRICT_LOW_PART
- || GET_CODE (new_i2_dest) == SUBREG)
- new_i2_dest = XEXP (new_i2_dest, 0);
-
- if (REG_P (new_i3_dest)
- && REG_P (new_i2_dest)
- && REGNO (new_i3_dest) == REGNO (new_i2_dest))
- REG_N_SETS (REGNO (new_i2_dest))++;
- }
- }
-
- /* If we can split it and use I2DEST, go ahead and see if that
- helps things be recognized. Verify that none of the registers
- are set between I2 and I3. */
- if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
-#ifdef HAVE_cc0
- && REG_P (i2dest)
-#endif
- /* We need I2DEST in the proper mode. If it is a hard register
- or the only use of a pseudo, we can change its mode.
- Make sure we don't change a hard register to have a mode that
- isn't valid for it, or change the number of registers. */
- && (GET_MODE (*split) == GET_MODE (i2dest)
- || GET_MODE (*split) == VOIDmode
- || can_change_dest_mode (i2dest, added_sets_2,
- GET_MODE (*split)))
- && (next_real_insn (i2) == i3
- || ! use_crosses_set_p (*split, INSN_CUID (i2)))
- /* We can't overwrite I2DEST if its value is still used by
- NEWPAT. */
- && ! reg_referenced_p (i2dest, newpat))
- {
- rtx newdest = i2dest;
- enum rtx_code split_code = GET_CODE (*split);
- enum machine_mode split_mode = GET_MODE (*split);
- bool subst_done = false;
- newi2pat = NULL_RTX;
-
- /* Get NEWDEST as a register in the proper mode. We have already
- validated that we can do this. */
- if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
- {
- if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
- newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
- else
- {
- SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
- newdest = regno_reg_rtx[REGNO (i2dest)];
- }
- }
-
- /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
- an ASHIFT. This can occur if it was inside a PLUS and hence
- appeared to be a memory address. This is a kludge. */
- if (split_code == MULT
- && GET_CODE (XEXP (*split, 1)) == CONST_INT
- && INTVAL (XEXP (*split, 1)) > 0
- && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
- {
- SUBST (*split, gen_rtx_ASHIFT (split_mode,
- XEXP (*split, 0), GEN_INT (i)));
- /* Update split_code because we may not have a multiply
- anymore. */
- split_code = GET_CODE (*split);
- }
-
-#ifdef INSN_SCHEDULING
- /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
- be written as a ZERO_EXTEND. */
- if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
- {
-#ifdef LOAD_EXTEND_OP
- /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
- what it really is. */
- if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
- == SIGN_EXTEND)
- SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
- SUBREG_REG (*split)));
- else
-#endif
- SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
- SUBREG_REG (*split)));
- }
-#endif
-
- /* Attempt to split binary operators using arithmetic identities. */
- if (BINARY_P (SET_SRC (newpat))
- && split_mode == GET_MODE (SET_SRC (newpat))
- && ! side_effects_p (SET_SRC (newpat)))
- {
- rtx setsrc = SET_SRC (newpat);
- enum machine_mode mode = GET_MODE (setsrc);
- enum rtx_code code = GET_CODE (setsrc);
- rtx src_op0 = XEXP (setsrc, 0);
- rtx src_op1 = XEXP (setsrc, 1);
-
- /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
- if (rtx_equal_p (src_op0, src_op1))
- {
- newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
- SUBST (XEXP (setsrc, 0), newdest);
- SUBST (XEXP (setsrc, 1), newdest);
- subst_done = true;
- }
- /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
- else if ((code == PLUS || code == MULT)
- && GET_CODE (src_op0) == code
- && GET_CODE (XEXP (src_op0, 0)) == code
- && (INTEGRAL_MODE_P (mode)
- || (FLOAT_MODE_P (mode)
- && flag_unsafe_math_optimizations)))
- {
- rtx p = XEXP (XEXP (src_op0, 0), 0);
- rtx q = XEXP (XEXP (src_op0, 0), 1);
- rtx r = XEXP (src_op0, 1);
- rtx s = src_op1;
-
- /* Split both "((X op Y) op X) op Y" and
- "((X op Y) op Y) op X" as "T op T" where T is
- "X op Y". */
- if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
- || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
- {
- newi2pat = gen_rtx_SET (VOIDmode, newdest,
- XEXP (src_op0, 0));
- SUBST (XEXP (setsrc, 0), newdest);
- SUBST (XEXP (setsrc, 1), newdest);
- subst_done = true;
- }
- /* Split "((X op X) op Y) op Y)" as "T op T" where
- T is "X op Y". */
- else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
- {
- rtx tmp = simplify_gen_binary (code, mode, p, r);
- newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
- SUBST (XEXP (setsrc, 0), newdest);
- SUBST (XEXP (setsrc, 1), newdest);
- subst_done = true;
- }
- }
- }
-
- if (!subst_done)
- {
- newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
- SUBST (*split, newdest);
- }
-
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
-
- /* recog_for_combine might have added CLOBBERs to newi2pat.
- Make sure NEWPAT does not depend on the clobbered regs. */
- if (GET_CODE (newi2pat) == PARALLEL)
- for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
- {
- rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
- if (reg_overlap_mentioned_p (reg, newpat))
- {
- undo_all ();
- return 0;
- }
- }
-
- /* If the split point was a MULT and we didn't have one before,
- don't use one now. */
- if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
- }
-
- /* Check for a case where we loaded from memory in a narrow mode and
- then sign extended it, but we need both registers. In that case,
- we have a PARALLEL with both loads from the same memory location.
- We can split this into a load from memory followed by a register-register
- copy. This saves at least one insn, more if register allocation can
- eliminate the copy.
-
- We cannot do this if the destination of the first assignment is a
- condition code register or cc0. We eliminate this case by making sure
- the SET_DEST and SET_SRC have the same mode.
-
- We cannot do this if the destination of the second assignment is
- a register that we have already assumed is zero-extended. Similarly
- for a SUBREG of such a register. */
-
- else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
- && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
- && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
- == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
- XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
- && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
- INSN_CUID (i2))
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
- && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
- (REG_P (temp)
- && reg_stat[REGNO (temp)].nonzero_bits != 0
- && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
- && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
- && (reg_stat[REGNO (temp)].nonzero_bits
- != GET_MODE_MASK (word_mode))))
- && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
- && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
- (REG_P (temp)
- && reg_stat[REGNO (temp)].nonzero_bits != 0
- && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
- && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
- && (reg_stat[REGNO (temp)].nonzero_bits
- != GET_MODE_MASK (word_mode)))))
- && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
- SET_SRC (XVECEXP (newpat, 0, 1)))
- && ! find_reg_note (i3, REG_UNUSED,
- SET_DEST (XVECEXP (newpat, 0, 0))))
- {
- rtx ni2dest;
-
- newi2pat = XVECEXP (newpat, 0, 0);
- ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
- newpat = XVECEXP (newpat, 0, 1);
- SUBST (SET_SRC (newpat),
- gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
-
- if (i2_code_number >= 0)
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
-
- if (insn_code_number >= 0)
- swap_i2i3 = 1;
- }
-
- /* Similarly, check for a case where we have a PARALLEL of two independent
- SETs but we started with three insns. In this case, we can do the sets
- as two separate insns. This case occurs when some SET allows two
- other insns to combine, but the destination of that SET is still live. */
-
- else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
- && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
- && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
- INSN_CUID (i2))
- && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
- XVECEXP (newpat, 0, 0))
- && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
- XVECEXP (newpat, 0, 1))
- && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
- && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
-#ifdef HAVE_cc0
- /* We cannot split the parallel into two sets if both sets
- reference cc0. */
- && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
- && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
-#endif
- )
- {
- /* Normally, it doesn't matter which of the two is done first,
- but it does if one references cc0. In that case, it has to
- be first. */
-#ifdef HAVE_cc0
- if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
- {
- newi2pat = XVECEXP (newpat, 0, 0);
- newpat = XVECEXP (newpat, 0, 1);
- }
- else
-#endif
- {
- newi2pat = XVECEXP (newpat, 0, 1);
- newpat = XVECEXP (newpat, 0, 0);
- }
-
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
-
- if (i2_code_number >= 0)
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
-
- /* If it still isn't recognized, fail and change things back the way they
- were. */
- if ((insn_code_number < 0
- /* Is the result a reasonable ASM_OPERANDS? */
- && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
- {
- undo_all ();
- return 0;
- }
-
- /* If we had to change another insn, make sure it is valid also. */
- if (undobuf.other_insn)
- {
- rtx other_pat = PATTERN (undobuf.other_insn);
- rtx new_other_notes;
- rtx note, next;
-
- CLEAR_HARD_REG_SET (newpat_used_regs);
-
- other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
- &new_other_notes);
-
- if (other_code_number < 0 && ! check_asm_operands (other_pat))
- {
- undo_all ();
- return 0;
- }
-
- PATTERN (undobuf.other_insn) = other_pat;
-
- /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
- are still valid. Then add any non-duplicate notes added by
- recog_for_combine. */
- for (note = REG_NOTES (undobuf.other_insn); note; note = next)
- {
- next = XEXP (note, 1);
-
- if (REG_NOTE_KIND (note) == REG_UNUSED
- && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
- {
- if (REG_P (XEXP (note, 0)))
- REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
-
- remove_note (undobuf.other_insn, note);
- }
- }
-
- for (note = new_other_notes; note; note = XEXP (note, 1))
- if (REG_P (XEXP (note, 0)))
- REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
-
- distribute_notes (new_other_notes, undobuf.other_insn,
- undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
- }
-#ifdef HAVE_cc0
- /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
- they are adjacent to each other or not. */
- {
- rtx p = prev_nonnote_insn (i3);
- if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
- && sets_cc0_p (newi2pat))
- {
- undo_all ();
- return 0;
- }
- }
-#endif
-
- /* Only allow this combination if insn_rtx_costs reports that the
- replacement instructions are cheaper than the originals. */
- if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
- {
- undo_all ();
- return 0;
- }
-
- /* We now know that we can do this combination. Merge the insns and
- update the status of registers and LOG_LINKS. */
-
- if (swap_i2i3)
- {
- rtx insn;
- rtx link;
- rtx ni2dest;
-
- /* I3 now uses what used to be its destination and which is now
- I2's destination. This requires us to do a few adjustments. */
- PATTERN (i3) = newpat;
- adjust_for_new_dest (i3);
-
- /* We need a LOG_LINK from I3 to I2. But we used to have one,
- so we still will.
-
- However, some later insn might be using I2's dest and have
- a LOG_LINK pointing at I3. We must remove this link.
- The simplest way to remove the link is to point it at I1,
- which we know will be a NOTE. */
-
- /* newi2pat is usually a SET here; however, recog_for_combine might
- have added some clobbers. */
- if (GET_CODE (newi2pat) == PARALLEL)
- ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
- else
- ni2dest = SET_DEST (newi2pat);
-
- for (insn = NEXT_INSN (i3);
- insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
- || insn != BB_HEAD (this_basic_block->next_bb));
- insn = NEXT_INSN (insn))
- {
- if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
- {
- for (link = LOG_LINKS (insn); link;
- link = XEXP (link, 1))
- if (XEXP (link, 0) == i3)
- XEXP (link, 0) = i1;
-
- break;
- }
- }
- }
-
- {
- rtx i3notes, i2notes, i1notes = 0;
- rtx i3links, i2links, i1links = 0;
- rtx midnotes = 0;
- unsigned int regno;
- /* Compute which registers we expect to eliminate. newi2pat may be setting
- either i3dest or i2dest, so we must check it. Also, i1dest may be the
- same as i3dest, in which case newi2pat may be setting i1dest. */
- rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
- || i2dest_in_i2src || i2dest_in_i1src
- || !i2dest_killed
- ? 0 : i2dest);
- rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
- || (newi2pat && reg_set_p (i1dest, newi2pat))
- || !i1dest_killed
- ? 0 : i1dest);
-
- /* Get the old REG_NOTES and LOG_LINKS from all our insns and
- clear them. */
- i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
- i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
- if (i1)
- i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
-
- /* Ensure that we do not have something that should not be shared but
- occurs multiple times in the new insns. Check this by first
- resetting all the `used' flags and then copying anything is shared. */
-
- reset_used_flags (i3notes);
- reset_used_flags (i2notes);
- reset_used_flags (i1notes);
- reset_used_flags (newpat);
- reset_used_flags (newi2pat);
- if (undobuf.other_insn)
- reset_used_flags (PATTERN (undobuf.other_insn));
-
- i3notes = copy_rtx_if_shared (i3notes);
- i2notes = copy_rtx_if_shared (i2notes);
- i1notes = copy_rtx_if_shared (i1notes);
- newpat = copy_rtx_if_shared (newpat);
- newi2pat = copy_rtx_if_shared (newi2pat);
- if (undobuf.other_insn)
- reset_used_flags (PATTERN (undobuf.other_insn));
-
- INSN_CODE (i3) = insn_code_number;
- PATTERN (i3) = newpat;
-
- if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
- {
- rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
-
- reset_used_flags (call_usage);
- call_usage = copy_rtx (call_usage);
-
- if (substed_i2)
- replace_rtx (call_usage, i2dest, i2src);
-
- if (substed_i1)
- replace_rtx (call_usage, i1dest, i1src);
-
- CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
- }
-
- if (undobuf.other_insn)
- INSN_CODE (undobuf.other_insn) = other_code_number;
-
- /* We had one special case above where I2 had more than one set and
- we replaced a destination of one of those sets with the destination
- of I3. In that case, we have to update LOG_LINKS of insns later
- in this basic block. Note that this (expensive) case is rare.
-
- Also, in this case, we must pretend that all REG_NOTEs for I2
- actually came from I3, so that REG_UNUSED notes from I2 will be
- properly handled. */
-
- if (i3_subst_into_i2)
- {
- for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
- if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
- || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
- && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
- && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
- && ! find_reg_note (i2, REG_UNUSED,
- SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
- for (temp = NEXT_INSN (i2);
- temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
- || BB_HEAD (this_basic_block) != temp);
- temp = NEXT_INSN (temp))
- if (temp != i3 && INSN_P (temp))
- for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
- if (XEXP (link, 0) == i2)
- XEXP (link, 0) = i3;
-
- if (i3notes)
- {
- rtx link = i3notes;
- while (XEXP (link, 1))
- link = XEXP (link, 1);
- XEXP (link, 1) = i2notes;
- }
- else
- i3notes = i2notes;
- i2notes = 0;
- }
-
- LOG_LINKS (i3) = 0;
- REG_NOTES (i3) = 0;
- LOG_LINKS (i2) = 0;
- REG_NOTES (i2) = 0;
-
- if (newi2pat)
- {
- INSN_CODE (i2) = i2_code_number;
- PATTERN (i2) = newi2pat;
- }
- else
- SET_INSN_DELETED (i2);
-
- if (i1)
- {
- LOG_LINKS (i1) = 0;
- REG_NOTES (i1) = 0;
- SET_INSN_DELETED (i1);
- }
-
- /* Get death notes for everything that is now used in either I3 or
- I2 and used to die in a previous insn. If we built two new
- patterns, move from I1 to I2 then I2 to I3 so that we get the
- proper movement on registers that I2 modifies. */
-
- if (newi2pat)
- {
- move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
- move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
- }
- else
- move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
- i3, &midnotes);
-
- /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
- if (i3notes)
- distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- if (i2notes)
- distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- if (i1notes)
- distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- if (midnotes)
- distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
-
- /* Distribute any notes added to I2 or I3 by recog_for_combine. We
- know these are REG_UNUSED and want them to go to the desired insn,
- so we always pass it as i3. We have not counted the notes in
- reg_n_deaths yet, so we need to do so now. */
-
- if (newi2pat && new_i2_notes)
- {
- for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
- if (REG_P (XEXP (temp, 0)))
- REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
-
- distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
- }
-
- if (new_i3_notes)
- {
- for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
- if (REG_P (XEXP (temp, 0)))
- REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
-
- distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
- }
-
- /* If I3DEST was used in I3SRC, it really died in I3. We may need to
- put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
- I3DEST, the death must be somewhere before I2, not I3. If we passed I3
- in that case, it might delete I2. Similarly for I2 and I1.
- Show an additional death due to the REG_DEAD note we make here. If
- we discard it in distribute_notes, we will decrement it again. */
-
- if (i3dest_killed)
- {
- if (REG_P (i3dest_killed))
- REG_N_DEATHS (REGNO (i3dest_killed))++;
-
- if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
- distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
- NULL_RTX),
- NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
- else
- distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
- NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- }
-
- if (i2dest_in_i2src)
- {
- if (REG_P (i2dest))
- REG_N_DEATHS (REGNO (i2dest))++;
-
- if (newi2pat && reg_set_p (i2dest, newi2pat))
- distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
- NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
- else
- distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- NULL_RTX, NULL_RTX);
- }
-
- if (i1dest_in_i1src)
- {
- if (REG_P (i1dest))
- REG_N_DEATHS (REGNO (i1dest))++;
-
- if (newi2pat && reg_set_p (i1dest, newi2pat))
- distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
- NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
- else
- distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- NULL_RTX, NULL_RTX);
- }
-
- distribute_links (i3links);
- distribute_links (i2links);
- distribute_links (i1links);
-
- if (REG_P (i2dest))
- {
- rtx link;
- rtx i2_insn = 0, i2_val = 0, set;
-
- /* The insn that used to set this register doesn't exist, and
- this life of the register may not exist either. See if one of
- I3's links points to an insn that sets I2DEST. If it does,
- that is now the last known value for I2DEST. If we don't update
- this and I2 set the register to a value that depended on its old
- contents, we will get confused. If this insn is used, thing
- will be set correctly in combine_instructions. */
-
- for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
- if ((set = single_set (XEXP (link, 0))) != 0
- && rtx_equal_p (i2dest, SET_DEST (set)))
- i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
-
- record_value_for_reg (i2dest, i2_insn, i2_val);
-
- /* If the reg formerly set in I2 died only once and that was in I3,
- zero its use count so it won't make `reload' do any work. */
- if (! added_sets_2
- && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
- && ! i2dest_in_i2src)
- {
- regno = REGNO (i2dest);
- REG_N_SETS (regno)--;
- }
- }
-
- if (i1 && REG_P (i1dest))
- {
- rtx link;
- rtx i1_insn = 0, i1_val = 0, set;
-
- for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
- if ((set = single_set (XEXP (link, 0))) != 0
- && rtx_equal_p (i1dest, SET_DEST (set)))
- i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
-
- record_value_for_reg (i1dest, i1_insn, i1_val);
-
- regno = REGNO (i1dest);
- if (! added_sets_1 && ! i1dest_in_i1src)
- REG_N_SETS (regno)--;
- }
-
- /* Update reg_stat[].nonzero_bits et al for any changes that may have
- been made to this insn. The order of
- set_nonzero_bits_and_sign_copies() is important. Because newi2pat
- can affect nonzero_bits of newpat */
- if (newi2pat)
- note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
- note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
-
- /* Set new_direct_jump_p if a new return or simple jump instruction
- has been created.
-
- If I3 is now an unconditional jump, ensure that it has a
- BARRIER following it since it may have initially been a
- conditional jump. It may also be the last nonnote insn. */
-
- if (returnjump_p (i3) || any_uncondjump_p (i3))
- {
- *new_direct_jump_p = 1;
- mark_jump_label (PATTERN (i3), i3, 0);
-
- if ((temp = next_nonnote_insn (i3)) == NULL_RTX
- || !BARRIER_P (temp))
- emit_barrier_after (i3);
- }
-
- if (undobuf.other_insn != NULL_RTX
- && (returnjump_p (undobuf.other_insn)
- || any_uncondjump_p (undobuf.other_insn)))
- {
- *new_direct_jump_p = 1;
-
- if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
- || !BARRIER_P (temp))
- emit_barrier_after (undobuf.other_insn);
- }
-
- /* An NOOP jump does not need barrier, but it does need cleaning up
- of CFG. */
- if (GET_CODE (newpat) == SET
- && SET_SRC (newpat) == pc_rtx
- && SET_DEST (newpat) == pc_rtx)
- *new_direct_jump_p = 1;
- }
-
- combine_successes++;
- undo_commit ();
-
- if (added_links_insn
- && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
- && INSN_CUID (added_links_insn) < INSN_CUID (i3))
- return added_links_insn;
- else
- return newi2pat ? i2 : i3;
-}
-
-/* Undo all the modifications recorded in undobuf. */
-
-static void
-undo_all (void)
-{
- struct undo *undo, *next;
-
- for (undo = undobuf.undos; undo; undo = next)
- {
- next = undo->next;
- switch (undo->kind)
- {
- case UNDO_RTX:
- *undo->where.r = undo->old_contents.r;
- break;
- case UNDO_INT:
- *undo->where.i = undo->old_contents.i;
- break;
- case UNDO_MODE:
- PUT_MODE (*undo->where.r, undo->old_contents.m);
- break;
- default:
- gcc_unreachable ();
- }
-
- undo->next = undobuf.frees;
- undobuf.frees = undo;
- }
-
- undobuf.undos = 0;
-}
-
-/* We've committed to accepting the changes we made. Move all
- of the undos to the free list. */
-
-static void
-undo_commit (void)
-{
- struct undo *undo, *next;
-
- for (undo = undobuf.undos; undo; undo = next)
- {
- next = undo->next;
- undo->next = undobuf.frees;
- undobuf.frees = undo;
- }
- undobuf.undos = 0;
-}
-
-/* Find the innermost point within the rtx at LOC, possibly LOC itself,
- where we have an arithmetic expression and return that point. LOC will
- be inside INSN.
-
- try_combine will call this function to see if an insn can be split into
- two insns. */
-
-static rtx *
-find_split_point (rtx *loc, rtx insn)
-{
- rtx x = *loc;
- enum rtx_code code = GET_CODE (x);
- rtx *split;
- unsigned HOST_WIDE_INT len = 0;
- HOST_WIDE_INT pos = 0;
- int unsignedp = 0;
- rtx inner = NULL_RTX;
-
- /* First special-case some codes. */
- switch (code)
- {
- case SUBREG:
-#ifdef INSN_SCHEDULING
- /* If we are making a paradoxical SUBREG invalid, it becomes a split
- point. */
- if (MEM_P (SUBREG_REG (x)))
- return loc;
-#endif
- return find_split_point (&SUBREG_REG (x), insn);
-
- case MEM:
-#ifdef HAVE_lo_sum
- /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
- using LO_SUM and HIGH. */
- if (GET_CODE (XEXP (x, 0)) == CONST
- || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
- {
- SUBST (XEXP (x, 0),
- gen_rtx_LO_SUM (Pmode,
- gen_rtx_HIGH (Pmode, XEXP (x, 0)),
- XEXP (x, 0)));
- return &XEXP (XEXP (x, 0), 0);
- }
-#endif
-
- /* If we have a PLUS whose second operand is a constant and the
- address is not valid, perhaps will can split it up using
- the machine-specific way to split large constants. We use
- the first pseudo-reg (one of the virtual regs) as a placeholder;
- it will not remain in the result. */
- if (GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
- {
- rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
- rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
- subst_insn);
-
- /* This should have produced two insns, each of which sets our
- placeholder. If the source of the second is a valid address,
- we can make put both sources together and make a split point
- in the middle. */
-
- if (seq
- && NEXT_INSN (seq) != NULL_RTX
- && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
- && NONJUMP_INSN_P (seq)
- && GET_CODE (PATTERN (seq)) == SET
- && SET_DEST (PATTERN (seq)) == reg
- && ! reg_mentioned_p (reg,
- SET_SRC (PATTERN (seq)))
- && NONJUMP_INSN_P (NEXT_INSN (seq))
- && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
- && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
- && memory_address_p (GET_MODE (x),
- SET_SRC (PATTERN (NEXT_INSN (seq)))))
- {
- rtx src1 = SET_SRC (PATTERN (seq));
- rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
-
- /* Replace the placeholder in SRC2 with SRC1. If we can
- find where in SRC2 it was placed, that can become our
- split point and we can replace this address with SRC2.
- Just try two obvious places. */
-
- src2 = replace_rtx (src2, reg, src1);
- split = 0;
- if (XEXP (src2, 0) == src1)
- split = &XEXP (src2, 0);
- else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
- && XEXP (XEXP (src2, 0), 0) == src1)
- split = &XEXP (XEXP (src2, 0), 0);
-
- if (split)
- {
- SUBST (XEXP (x, 0), src2);
- return split;
- }
- }
-
- /* If that didn't work, perhaps the first operand is complex and
- needs to be computed separately, so make a split point there.
- This will occur on machines that just support REG + CONST
- and have a constant moved through some previous computation. */
-
- else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
- && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
- && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
- return &XEXP (XEXP (x, 0), 0);
- }
- break;
-
- case SET:
-#ifdef HAVE_cc0
- /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
- ZERO_EXTRACT, the most likely reason why this doesn't match is that
- we need to put the operand into a register. So split at that
- point. */
-
- if (SET_DEST (x) == cc0_rtx
- && GET_CODE (SET_SRC (x)) != COMPARE
- && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
- && !OBJECT_P (SET_SRC (x))
- && ! (GET_CODE (SET_SRC (x)) == SUBREG
- && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
- return &SET_SRC (x);
-#endif
-
- /* See if we can split SET_SRC as it stands. */
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
-
- /* See if we can split SET_DEST as it stands. */
- split = find_split_point (&SET_DEST (x), insn);
- if (split && split != &SET_DEST (x))
- return split;
-
- /* See if this is a bitfield assignment with everything constant. If
- so, this is an IOR of an AND, so split it into that. */
- if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
- && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
- && GET_CODE (SET_SRC (x)) == CONST_INT
- && ((INTVAL (XEXP (SET_DEST (x), 1))
- + INTVAL (XEXP (SET_DEST (x), 2)))
- <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
- && ! side_effects_p (XEXP (SET_DEST (x), 0)))
- {
- HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
- unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
- unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
- rtx dest = XEXP (SET_DEST (x), 0);
- enum machine_mode mode = GET_MODE (dest);
- unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
- rtx or_mask;
-
- if (BITS_BIG_ENDIAN)
- pos = GET_MODE_BITSIZE (mode) - len - pos;
-
- or_mask = gen_int_mode (src << pos, mode);
- if (src == mask)
- SUBST (SET_SRC (x),
- simplify_gen_binary (IOR, mode, dest, or_mask));
- else
- {
- rtx negmask = gen_int_mode (~(mask << pos), mode);
- SUBST (SET_SRC (x),
- simplify_gen_binary (IOR, mode,
- simplify_gen_binary (AND, mode,
- dest, negmask),
- or_mask));
- }
-
- SUBST (SET_DEST (x), dest);
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
-
- /* Otherwise, see if this is an operation that we can split into two.
- If so, try to split that. */
- code = GET_CODE (SET_SRC (x));
-
- switch (code)
- {
- case AND:
- /* If we are AND'ing with a large constant that is only a single
- bit and the result is only being used in a context where we
- need to know if it is zero or nonzero, replace it with a bit
- extraction. This will avoid the large constant, which might
- have taken more than one insn to make. If the constant were
- not a valid argument to the AND but took only one insn to make,
- this is no worse, but if it took more than one insn, it will
- be better. */
-
- if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
- && REG_P (XEXP (SET_SRC (x), 0))
- && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
- && REG_P (SET_DEST (x))
- && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
- && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
- && XEXP (*split, 0) == SET_DEST (x)
- && XEXP (*split, 1) == const0_rtx)
- {
- rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
- XEXP (SET_SRC (x), 0),
- pos, NULL_RTX, 1, 1, 0, 0);
- if (extraction != 0)
- {
- SUBST (SET_SRC (x), extraction);
- return find_split_point (loc, insn);
- }
- }
- break;
-
- case NE:
- /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
- is known to be on, this can be converted into a NEG of a shift. */
- if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
- && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
- && 1 <= (pos = exact_log2
- (nonzero_bits (XEXP (SET_SRC (x), 0),
- GET_MODE (XEXP (SET_SRC (x), 0))))))
- {
- enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
-
- SUBST (SET_SRC (x),
- gen_rtx_NEG (mode,
- gen_rtx_LSHIFTRT (mode,
- XEXP (SET_SRC (x), 0),
- GEN_INT (pos))));
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
- break;
-
- case SIGN_EXTEND:
- inner = XEXP (SET_SRC (x), 0);
-
- /* We can't optimize if either mode is a partial integer
- mode as we don't know how many bits are significant
- in those modes. */
- if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
- || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
- break;
-
- pos = 0;
- len = GET_MODE_BITSIZE (GET_MODE (inner));
- unsignedp = 0;
- break;
-
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
- && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
- {
- inner = XEXP (SET_SRC (x), 0);
- len = INTVAL (XEXP (SET_SRC (x), 1));
- pos = INTVAL (XEXP (SET_SRC (x), 2));
-
- if (BITS_BIG_ENDIAN)
- pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
- unsignedp = (code == ZERO_EXTRACT);
- }
- break;
-
- default:
- break;
- }
-
- if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
- {
- enum machine_mode mode = GET_MODE (SET_SRC (x));
-
- /* For unsigned, we have a choice of a shift followed by an
- AND or two shifts. Use two shifts for field sizes where the
- constant might be too large. We assume here that we can
- always at least get 8-bit constants in an AND insn, which is
- true for every current RISC. */
-
- if (unsignedp && len <= 8)
- {
- SUBST (SET_SRC (x),
- gen_rtx_AND (mode,
- gen_rtx_LSHIFTRT
- (mode, gen_lowpart (mode, inner),
- GEN_INT (pos)),
- GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
- else
- {
- SUBST (SET_SRC (x),
- gen_rtx_fmt_ee
- (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
- gen_rtx_ASHIFT (mode,
- gen_lowpart (mode, inner),
- GEN_INT (GET_MODE_BITSIZE (mode)
- - len - pos)),
- GEN_INT (GET_MODE_BITSIZE (mode) - len)));
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
- }
-
- /* See if this is a simple operation with a constant as the second
- operand. It might be that this constant is out of range and hence
- could be used as a split point. */
- if (BINARY_P (SET_SRC (x))
- && CONSTANT_P (XEXP (SET_SRC (x), 1))
- && (OBJECT_P (XEXP (SET_SRC (x), 0))
- || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
- && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
- return &XEXP (SET_SRC (x), 1);
-
- /* Finally, see if this is a simple operation with its first operand
- not in a register. The operation might require this operand in a
- register, so return it as a split point. We can always do this
- because if the first operand were another operation, we would have
- already found it as a split point. */
- if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
- && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
- return &XEXP (SET_SRC (x), 0);
-
- return 0;
-
- case AND:
- case IOR:
- /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
- it is better to write this as (not (ior A B)) so we can split it.
- Similarly for IOR. */
- if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
- {
- SUBST (*loc,
- gen_rtx_NOT (GET_MODE (x),
- gen_rtx_fmt_ee (code == IOR ? AND : IOR,
- GET_MODE (x),
- XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 1), 0))));
- return find_split_point (loc, insn);
- }
-
- /* Many RISC machines have a large set of logical insns. If the
- second operand is a NOT, put it first so we will try to split the
- other operand first. */
- if (GET_CODE (XEXP (x, 1)) == NOT)
- {
- rtx tem = XEXP (x, 0);
- SUBST (XEXP (x, 0), XEXP (x, 1));
- SUBST (XEXP (x, 1), tem);
- }
- break;
-
- default:
- break;
- }
-
- /* Otherwise, select our actions depending on our rtx class. */
- switch (GET_RTX_CLASS (code))
- {
- case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
- case RTX_TERNARY:
- split = find_split_point (&XEXP (x, 2), insn);
- if (split)
- return split;
- /* ... fall through ... */
- case RTX_BIN_ARITH:
- case RTX_COMM_ARITH:
- case RTX_COMPARE:
- case RTX_COMM_COMPARE:
- split = find_split_point (&XEXP (x, 1), insn);
- if (split)
- return split;
- /* ... fall through ... */
- case RTX_UNARY:
- /* Some machines have (and (shift ...) ...) insns. If X is not
- an AND, but XEXP (X, 0) is, use it as our split point. */
- if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
- return &XEXP (x, 0);
-
- split = find_split_point (&XEXP (x, 0), insn);
- if (split)
- return split;
- return loc;
-
- default:
- /* Otherwise, we don't have a split point. */
- return 0;
- }
-}
-
-/* Throughout X, replace FROM with TO, and return the result.
- The result is TO if X is FROM;
- otherwise the result is X, but its contents may have been modified.
- If they were modified, a record was made in undobuf so that
- undo_all will (among other things) return X to its original state.
-
- If the number of changes necessary is too much to record to undo,
- the excess changes are not made, so the result is invalid.
- The changes already made can still be undone.
- undobuf.num_undo is incremented for such changes, so by testing that
- the caller can tell whether the result is valid.
-
- `n_occurrences' is incremented each time FROM is replaced.
-
- IN_DEST is nonzero if we are processing the SET_DEST of a SET.
-
- UNIQUE_COPY is nonzero if each substitution must be unique. We do this
- by copying if `n_occurrences' is nonzero. */
-
-static rtx
-subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
-{
- enum rtx_code code = GET_CODE (x);
- enum machine_mode op0_mode = VOIDmode;
- const char *fmt;
- int len, i;
- rtx new;
-
-/* Two expressions are equal if they are identical copies of a shared
- RTX or if they are both registers with the same register number
- and mode. */
-
-#define COMBINE_RTX_EQUAL_P(X,Y) \
- ((X) == (Y) \
- || (REG_P (X) && REG_P (Y) \
- && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
-
- if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
- {
- n_occurrences++;
- return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
- }
-
- /* If X and FROM are the same register but different modes, they will
- not have been seen as equal above. However, flow.c will make a
- LOG_LINKS entry for that case. If we do nothing, we will try to
- rerecognize our original insn and, when it succeeds, we will
- delete the feeding insn, which is incorrect.
-
- So force this insn not to match in this (rare) case. */
- if (! in_dest && code == REG && REG_P (from)
- && REGNO (x) == REGNO (from))
- return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
-
- /* If this is an object, we are done unless it is a MEM or LO_SUM, both
- of which may contain things that can be combined. */
- if (code != MEM && code != LO_SUM && OBJECT_P (x))
- return x;
-
- /* It is possible to have a subexpression appear twice in the insn.
- Suppose that FROM is a register that appears within TO.
- Then, after that subexpression has been scanned once by `subst',
- the second time it is scanned, TO may be found. If we were
- to scan TO here, we would find FROM within it and create a
- self-referent rtl structure which is completely wrong. */
- if (COMBINE_RTX_EQUAL_P (x, to))
- return to;
-
- /* Parallel asm_operands need special attention because all of the
- inputs are shared across the arms. Furthermore, unsharing the
- rtl results in recognition failures. Failure to handle this case
- specially can result in circular rtl.
-
- Solve this by doing a normal pass across the first entry of the
- parallel, and only processing the SET_DESTs of the subsequent
- entries. Ug. */
-
- if (code == PARALLEL
- && GET_CODE (XVECEXP (x, 0, 0)) == SET
- && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
- {
- new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
-
- /* If this substitution failed, this whole thing fails. */
- if (GET_CODE (new) == CLOBBER
- && XEXP (new, 0) == const0_rtx)
- return new;
-
- SUBST (XVECEXP (x, 0, 0), new);
-
- for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
- {
- rtx dest = SET_DEST (XVECEXP (x, 0, i));
-
- if (!REG_P (dest)
- && GET_CODE (dest) != CC0
- && GET_CODE (dest) != PC)
- {
- new = subst (dest, from, to, 0, unique_copy);
-
- /* If this substitution failed, this whole thing fails. */
- if (GET_CODE (new) == CLOBBER
- && XEXP (new, 0) == const0_rtx)
- return new;
-
- SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
- }
- }
- }
- else
- {
- len = GET_RTX_LENGTH (code);
- fmt = GET_RTX_FORMAT (code);
-
- /* We don't need to process a SET_DEST that is a register, CC0,
- or PC, so set up to skip this common case. All other cases
- where we want to suppress replacing something inside a
- SET_SRC are handled via the IN_DEST operand. */
- if (code == SET
- && (REG_P (SET_DEST (x))
- || GET_CODE (SET_DEST (x)) == CC0
- || GET_CODE (SET_DEST (x)) == PC))
- fmt = "ie";
-
- /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
- constant. */
- if (fmt[0] == 'e')
- op0_mode = GET_MODE (XEXP (x, 0));
-
- for (i = 0; i < len; i++)
- {
- if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- {
- if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
- {
- new = (unique_copy && n_occurrences
- ? copy_rtx (to) : to);
- n_occurrences++;
- }
- else
- {
- new = subst (XVECEXP (x, i, j), from, to, 0,
- unique_copy);
-
- /* If this substitution failed, this whole thing
- fails. */
- if (GET_CODE (new) == CLOBBER
- && XEXP (new, 0) == const0_rtx)
- return new;
- }
-
- SUBST (XVECEXP (x, i, j), new);
- }
- }
- else if (fmt[i] == 'e')
- {
- /* If this is a register being set, ignore it. */
- new = XEXP (x, i);
- if (in_dest
- && i == 0
- && (((code == SUBREG || code == ZERO_EXTRACT)
- && REG_P (new))
- || code == STRICT_LOW_PART))
- ;
-
- else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
- {
- /* In general, don't install a subreg involving two
- modes not tieable. It can worsen register
- allocation, and can even make invalid reload
- insns, since the reg inside may need to be copied
- from in the outside mode, and that may be invalid
- if it is an fp reg copied in integer mode.
-
- We allow two exceptions to this: It is valid if
- it is inside another SUBREG and the mode of that
- SUBREG and the mode of the inside of TO is
- tieable and it is valid if X is a SET that copies
- FROM to CC0. */
-
- if (GET_CODE (to) == SUBREG
- && ! MODES_TIEABLE_P (GET_MODE (to),
- GET_MODE (SUBREG_REG (to)))
- && ! (code == SUBREG
- && MODES_TIEABLE_P (GET_MODE (x),
- GET_MODE (SUBREG_REG (to))))
-#ifdef HAVE_cc0
- && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
-#endif
- )
- return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
-
-#ifdef CANNOT_CHANGE_MODE_CLASS
- if (code == SUBREG
- && REG_P (to)
- && REGNO (to) < FIRST_PSEUDO_REGISTER
- && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
- GET_MODE (to),
- GET_MODE (x)))
- return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
-#endif
-
- new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
- n_occurrences++;
- }
- else
- /* If we are in a SET_DEST, suppress most cases unless we
- have gone inside a MEM, in which case we want to
- simplify the address. We assume here that things that
- are actually part of the destination have their inner
- parts in the first expression. This is true for SUBREG,
- STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
- things aside from REG and MEM that should appear in a
- SET_DEST. */
- new = subst (XEXP (x, i), from, to,
- (((in_dest
- && (code == SUBREG || code == STRICT_LOW_PART
- || code == ZERO_EXTRACT))
- || code == SET)
- && i == 0), unique_copy);
-
- /* If we found that we will have to reject this combination,
- indicate that by returning the CLOBBER ourselves, rather than
- an expression containing it. This will speed things up as
- well as prevent accidents where two CLOBBERs are considered
- to be equal, thus producing an incorrect simplification. */
-
- if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
- return new;
-
- if (GET_CODE (x) == SUBREG
- && (GET_CODE (new) == CONST_INT
- || GET_CODE (new) == CONST_DOUBLE))
- {
- enum machine_mode mode = GET_MODE (x);
-
- x = simplify_subreg (GET_MODE (x), new,
- GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x));
- if (! x)
- x = gen_rtx_CLOBBER (mode, const0_rtx);
- }
- else if (GET_CODE (new) == CONST_INT
- && GET_CODE (x) == ZERO_EXTEND)
- {
- x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
- new, GET_MODE (XEXP (x, 0)));
- gcc_assert (x);
- }
- else
- SUBST (XEXP (x, i), new);
- }
- }
- }
-
- /* Try to simplify X. If the simplification changed the code, it is likely
- that further simplification will help, so loop, but limit the number
- of repetitions that will be performed. */
-
- for (i = 0; i < 4; i++)
- {
- /* If X is sufficiently simple, don't bother trying to do anything
- with it. */
- if (code != CONST_INT && code != REG && code != CLOBBER)
- x = combine_simplify_rtx (x, op0_mode, in_dest);
-
- if (GET_CODE (x) == code)
- break;
-
- code = GET_CODE (x);
-
- /* We no longer know the original mode of operand 0 since we
- have changed the form of X) */
- op0_mode = VOIDmode;
- }
-
- return x;
-}
-
-/* Simplify X, a piece of RTL. We just operate on the expression at the
- outer level; call `subst' to simplify recursively. Return the new
- expression.
-
- OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
- if we are inside a SET_DEST. */
-
-static rtx
-combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
-{
- enum rtx_code code = GET_CODE (x);
- enum machine_mode mode = GET_MODE (x);
- rtx temp;
- int i;
-
- /* If this is a commutative operation, put a constant last and a complex
- expression first. We don't need to do this for comparisons here. */
- if (COMMUTATIVE_ARITH_P (x)
- && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
- {
- temp = XEXP (x, 0);
- SUBST (XEXP (x, 0), XEXP (x, 1));
- SUBST (XEXP (x, 1), temp);
- }
-
- /* If this is a simple operation applied to an IF_THEN_ELSE, try
- applying it to the arms of the IF_THEN_ELSE. This often simplifies
- things. Check for cases where both arms are testing the same
- condition.
-
- Don't do anything if all operands are very simple. */
-
- if ((BINARY_P (x)
- && ((!OBJECT_P (XEXP (x, 0))
- && ! (GET_CODE (XEXP (x, 0)) == SUBREG
- && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
- || (!OBJECT_P (XEXP (x, 1))
- && ! (GET_CODE (XEXP (x, 1)) == SUBREG
- && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
- || (UNARY_P (x)
- && (!OBJECT_P (XEXP (x, 0))
- && ! (GET_CODE (XEXP (x, 0)) == SUBREG
- && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
- {
- rtx cond, true_rtx, false_rtx;
-
- cond = if_then_else_cond (x, &true_rtx, &false_rtx);
- if (cond != 0
- /* If everything is a comparison, what we have is highly unlikely
- to be simpler, so don't use it. */
- && ! (COMPARISON_P (x)
- && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
- {
- rtx cop1 = const0_rtx;
- enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
-
- if (cond_code == NE && COMPARISON_P (cond))
- return x;
-
- /* Simplify the alternative arms; this may collapse the true and
- false arms to store-flag values. Be careful to use copy_rtx
- here since true_rtx or false_rtx might share RTL with x as a
- result of the if_then_else_cond call above. */
- true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
- false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
-
- /* If true_rtx and false_rtx are not general_operands, an if_then_else
- is unlikely to be simpler. */
- if (general_operand (true_rtx, VOIDmode)
- && general_operand (false_rtx, VOIDmode))
- {
- enum rtx_code reversed;
-
- /* Restarting if we generate a store-flag expression will cause
- us to loop. Just drop through in this case. */
-
- /* If the result values are STORE_FLAG_VALUE and zero, we can
- just make the comparison operation. */
- if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
- x = simplify_gen_relational (cond_code, mode, VOIDmode,
- cond, cop1);
- else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
- && ((reversed = reversed_comparison_code_parts
- (cond_code, cond, cop1, NULL))
- != UNKNOWN))
- x = simplify_gen_relational (reversed, mode, VOIDmode,
- cond, cop1);
-
- /* Likewise, we can make the negate of a comparison operation
- if the result values are - STORE_FLAG_VALUE and zero. */
- else if (GET_CODE (true_rtx) == CONST_INT
- && INTVAL (true_rtx) == - STORE_FLAG_VALUE
- && false_rtx == const0_rtx)
- x = simplify_gen_unary (NEG, mode,
- simplify_gen_relational (cond_code,
- mode, VOIDmode,
- cond, cop1),
- mode);
- else if (GET_CODE (false_rtx) == CONST_INT
- && INTVAL (false_rtx) == - STORE_FLAG_VALUE
- && true_rtx == const0_rtx
- && ((reversed = reversed_comparison_code_parts
- (cond_code, cond, cop1, NULL))
- != UNKNOWN))
- x = simplify_gen_unary (NEG, mode,
- simplify_gen_relational (reversed,
- mode, VOIDmode,
- cond, cop1),
- mode);
- else
- return gen_rtx_IF_THEN_ELSE (mode,
- simplify_gen_relational (cond_code,
- mode,
- VOIDmode,
- cond,
- cop1),
- true_rtx, false_rtx);
-
- code = GET_CODE (x);
- op0_mode = VOIDmode;
- }
- }
- }
-
- /* Try to fold this expression in case we have constants that weren't
- present before. */
- temp = 0;
- switch (GET_RTX_CLASS (code))
- {
- case RTX_UNARY:
- if (op0_mode == VOIDmode)
- op0_mode = GET_MODE (XEXP (x, 0));
- temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
- break;
- case RTX_COMPARE:
- case RTX_COMM_COMPARE:
- {
- enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
- if (cmp_mode == VOIDmode)
- {
- cmp_mode = GET_MODE (XEXP (x, 1));
- if (cmp_mode == VOIDmode)
- cmp_mode = op0_mode;
- }
- temp = simplify_relational_operation (code, mode, cmp_mode,
- XEXP (x, 0), XEXP (x, 1));
- }
- break;
- case RTX_COMM_ARITH:
- case RTX_BIN_ARITH:
- temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
- break;
- case RTX_BITFIELD_OPS:
- case RTX_TERNARY:
- temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
- XEXP (x, 1), XEXP (x, 2));
- break;
- default:
- break;
- }
-
- if (temp)
- {
- x = temp;
- code = GET_CODE (temp);
- op0_mode = VOIDmode;
- mode = GET_MODE (temp);
- }
-
- /* First see if we can apply the inverse distributive law. */
- if (code == PLUS || code == MINUS
- || code == AND || code == IOR || code == XOR)
- {
- x = apply_distributive_law (x);
- code = GET_CODE (x);
- op0_mode = VOIDmode;
- }
-
- /* If CODE is an associative operation not otherwise handled, see if we
- can associate some operands. This can win if they are constants or
- if they are logically related (i.e. (a & b) & a). */
- if ((code == PLUS || code == MINUS || code == MULT || code == DIV
- || code == AND || code == IOR || code == XOR
- || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
- && ((INTEGRAL_MODE_P (mode) && code != DIV)
- || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
- {
- if (GET_CODE (XEXP (x, 0)) == code)
- {
- rtx other = XEXP (XEXP (x, 0), 0);
- rtx inner_op0 = XEXP (XEXP (x, 0), 1);
- rtx inner_op1 = XEXP (x, 1);
- rtx inner;
-
- /* Make sure we pass the constant operand if any as the second
- one if this is a commutative operation. */
- if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
- {
- rtx tem = inner_op0;
- inner_op0 = inner_op1;
- inner_op1 = tem;
- }
- inner = simplify_binary_operation (code == MINUS ? PLUS
- : code == DIV ? MULT
- : code,
- mode, inner_op0, inner_op1);
-
- /* For commutative operations, try the other pair if that one
- didn't simplify. */
- if (inner == 0 && COMMUTATIVE_ARITH_P (x))
- {
- other = XEXP (XEXP (x, 0), 1);
- inner = simplify_binary_operation (code, mode,
- XEXP (XEXP (x, 0), 0),
- XEXP (x, 1));
- }
-
- if (inner)
- return simplify_gen_binary (code, mode, other, inner);
- }
- }
-
- /* A little bit of algebraic simplification here. */
- switch (code)
- {
- case MEM:
- /* Ensure that our address has any ASHIFTs converted to MULT in case
- address-recognizing predicates are called later. */
- temp = make_compound_operation (XEXP (x, 0), MEM);
- SUBST (XEXP (x, 0), temp);
- break;
-
- case SUBREG:
- if (op0_mode == VOIDmode)
- op0_mode = GET_MODE (SUBREG_REG (x));
-
- /* See if this can be moved to simplify_subreg. */
- if (CONSTANT_P (SUBREG_REG (x))
- && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
- /* Don't call gen_lowpart if the inner mode
- is VOIDmode and we cannot simplify it, as SUBREG without
- inner mode is invalid. */
- && (GET_MODE (SUBREG_REG (x)) != VOIDmode
- || gen_lowpart_common (mode, SUBREG_REG (x))))
- return gen_lowpart (mode, SUBREG_REG (x));
-
- if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
- break;
- {
- rtx temp;
- temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
- SUBREG_BYTE (x));
- if (temp)
- return temp;
- }
-
- /* Don't change the mode of the MEM if that would change the meaning
- of the address. */
- if (MEM_P (SUBREG_REG (x))
- && (MEM_VOLATILE_P (SUBREG_REG (x))
- || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
- return gen_rtx_CLOBBER (mode, const0_rtx);
-
- /* Note that we cannot do any narrowing for non-constants since
- we might have been counting on using the fact that some bits were
- zero. We now do this in the SET. */
-
- break;
-
- case NEG:
- temp = expand_compound_operation (XEXP (x, 0));
-
- /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
- replaced by (lshiftrt X C). This will convert
- (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
-
- if (GET_CODE (temp) == ASHIFTRT
- && GET_CODE (XEXP (temp, 1)) == CONST_INT
- && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
- return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
- INTVAL (XEXP (temp, 1)));
-
- /* If X has only a single bit that might be nonzero, say, bit I, convert
- (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
- MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
- (sign_extract X 1 Y). But only do this if TEMP isn't a register
- or a SUBREG of one since we'd be making the expression more
- complex if it was just a register. */
-
- if (!REG_P (temp)
- && ! (GET_CODE (temp) == SUBREG
- && REG_P (SUBREG_REG (temp)))
- && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
- {
- rtx temp1 = simplify_shift_const
- (NULL_RTX, ASHIFTRT, mode,
- simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
- GET_MODE_BITSIZE (mode) - 1 - i),
- GET_MODE_BITSIZE (mode) - 1 - i);
-
- /* If all we did was surround TEMP with the two shifts, we
- haven't improved anything, so don't use it. Otherwise,
- we are better off with TEMP1. */
- if (GET_CODE (temp1) != ASHIFTRT
- || GET_CODE (XEXP (temp1, 0)) != ASHIFT
- || XEXP (XEXP (temp1, 0), 0) != temp)
- return temp1;
- }
- break;
-
- case TRUNCATE:
- /* We can't handle truncation to a partial integer mode here
- because we don't know the real bitsize of the partial
- integer mode. */
- if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
- break;
-
- if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
- SUBST (XEXP (x, 0),
- force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
- GET_MODE_MASK (mode), 0));
-
- /* Similarly to what we do in simplify-rtx.c, a truncate of a register
- whose value is a comparison can be replaced with a subreg if
- STORE_FLAG_VALUE permits. */
- if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
- && (temp = get_last_value (XEXP (x, 0)))
- && COMPARISON_P (temp))
- return gen_lowpart (mode, XEXP (x, 0));
- break;
-
-#ifdef HAVE_cc0
- case COMPARE:
- /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
- using cc0, in which case we want to leave it as a COMPARE
- so we can distinguish it from a register-register-copy. */
- if (XEXP (x, 1) == const0_rtx)
- return XEXP (x, 0);
-
- /* x - 0 is the same as x unless x's mode has signed zeros and
- allows rounding towards -infinity. Under those conditions,
- 0 - 0 is -0. */
- if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
- && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
- && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
- return XEXP (x, 0);
- break;
-#endif
-
- case CONST:
- /* (const (const X)) can become (const X). Do it this way rather than
- returning the inner CONST since CONST can be shared with a
- REG_EQUAL note. */
- if (GET_CODE (XEXP (x, 0)) == CONST)
- SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
- break;
-
-#ifdef HAVE_lo_sum
- case LO_SUM:
- /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
- can add in an offset. find_split_point will split this address up
- again if it doesn't match. */
- if (GET_CODE (XEXP (x, 0)) == HIGH
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
- return XEXP (x, 1);
- break;
-#endif
-
- case PLUS:
- /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
- when c is (const_int (pow2 + 1) / 2) is a sign extension of a
- bit-field and can be replaced by either a sign_extend or a
- sign_extract. The `and' may be a zero_extend and the two
- <c>, -<c> constants may be reversed. */
- if (GET_CODE (XEXP (x, 0)) == XOR
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
- && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
- || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
- && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
- && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
- == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
- || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
- == (unsigned int) i + 1))))
- return simplify_shift_const
- (NULL_RTX, ASHIFTRT, mode,
- simplify_shift_const (NULL_RTX, ASHIFT, mode,
- XEXP (XEXP (XEXP (x, 0), 0), 0),
- GET_MODE_BITSIZE (mode) - (i + 1)),
- GET_MODE_BITSIZE (mode) - (i + 1));
-
- /* If only the low-order bit of X is possibly nonzero, (plus x -1)
- can become (ashiftrt (ashift (xor x 1) C) C) where C is
- the bitsize of the mode - 1. This allows simplification of
- "a = (b & 8) == 0;" */
- if (XEXP (x, 1) == constm1_rtx
- && !REG_P (XEXP (x, 0))
- && ! (GET_CODE (XEXP (x, 0)) == SUBREG
- && REG_P (SUBREG_REG (XEXP (x, 0))))
- && nonzero_bits (XEXP (x, 0), mode) == 1)
- return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
- simplify_shift_const (NULL_RTX, ASHIFT, mode,
- gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
- GET_MODE_BITSIZE (mode) - 1),
- GET_MODE_BITSIZE (mode) - 1);
-
- /* If we are adding two things that have no bits in common, convert
- the addition into an IOR. This will often be further simplified,
- for example in cases like ((a & 1) + (a & 2)), which can
- become a & 3. */
-
- if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 0), mode)
- & nonzero_bits (XEXP (x, 1), mode)) == 0)
- {
- /* Try to simplify the expression further. */
- rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
- temp = combine_simplify_rtx (tor, mode, in_dest);
-
- /* If we could, great. If not, do not go ahead with the IOR
- replacement, since PLUS appears in many special purpose
- address arithmetic instructions. */
- if (GET_CODE (temp) != CLOBBER && temp != tor)
- return temp;
- }
- break;
-
- case MINUS:
- /* (minus <foo> (and <foo> (const_int -pow2))) becomes
- (and <foo> (const_int pow2-1)) */
- if (GET_CODE (XEXP (x, 1)) == AND
- && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
- && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
- && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
- return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
- -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
- break;
-
- case MULT:
- /* If we have (mult (plus A B) C), apply the distributive law and then
- the inverse distributive law to see if things simplify. This
- occurs mostly in addresses, often when unrolling loops. */
-
- if (GET_CODE (XEXP (x, 0)) == PLUS)
- {
- rtx result = distribute_and_simplify_rtx (x, 0);
- if (result)
- return result;
- }
-
- /* Try simplify a*(b/c) as (a*b)/c. */
- if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
- && GET_CODE (XEXP (x, 0)) == DIV)
- {
- rtx tem = simplify_binary_operation (MULT, mode,
- XEXP (XEXP (x, 0), 0),
- XEXP (x, 1));
- if (tem)
- return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
- }
- break;
-
- case UDIV:
- /* If this is a divide by a power of two, treat it as a shift if
- its first operand is a shift. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
- && (GET_CODE (XEXP (x, 0)) == ASHIFT
- || GET_CODE (XEXP (x, 0)) == LSHIFTRT
- || GET_CODE (XEXP (x, 0)) == ASHIFTRT
- || GET_CODE (XEXP (x, 0)) == ROTATE
- || GET_CODE (XEXP (x, 0)) == ROTATERT))
- return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
- break;
-
- case EQ: case NE:
- case GT: case GTU: case GE: case GEU:
- case LT: case LTU: case LE: case LEU:
- case UNEQ: case LTGT:
- case UNGT: case UNGE:
- case UNLT: case UNLE:
- case UNORDERED: case ORDERED:
- /* If the first operand is a condition code, we can't do anything
- with it. */
- if (GET_CODE (XEXP (x, 0)) == COMPARE
- || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
- && ! CC0_P (XEXP (x, 0))))
- {
- rtx op0 = XEXP (x, 0);
- rtx op1 = XEXP (x, 1);
- enum rtx_code new_code;
-
- if (GET_CODE (op0) == COMPARE)
- op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
-
- /* Simplify our comparison, if possible. */
- new_code = simplify_comparison (code, &op0, &op1);
-
- /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
- if only the low-order bit is possibly nonzero in X (such as when
- X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
- (xor X 1) or (minus 1 X); we use the former. Finally, if X is
- known to be either 0 or -1, NE becomes a NEG and EQ becomes
- (plus X 1).
-
- Remove any ZERO_EXTRACT we made when thinking this was a
- comparison. It may now be simpler to use, e.g., an AND. If a
- ZERO_EXTRACT is indeed appropriate, it will be placed back by
- the call to make_compound_operation in the SET case. */
-
- if (STORE_FLAG_VALUE == 1
- && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && nonzero_bits (op0, mode) == 1)
- return gen_lowpart (mode,
- expand_compound_operation (op0));
-
- else if (STORE_FLAG_VALUE == 1
- && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- {
- op0 = expand_compound_operation (op0);
- return simplify_gen_unary (NEG, mode,
- gen_lowpart (mode, op0),
- mode);
- }
-
- else if (STORE_FLAG_VALUE == 1
- && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && nonzero_bits (op0, mode) == 1)
- {
- op0 = expand_compound_operation (op0);
- return simplify_gen_binary (XOR, mode,
- gen_lowpart (mode, op0),
- const1_rtx);
- }
-
- else if (STORE_FLAG_VALUE == 1
- && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- {
- op0 = expand_compound_operation (op0);
- return plus_constant (gen_lowpart (mode, op0), 1);
- }
-
- /* If STORE_FLAG_VALUE is -1, we have cases similar to
- those above. */
- if (STORE_FLAG_VALUE == -1
- && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- return gen_lowpart (mode,
- expand_compound_operation (op0));
-
- else if (STORE_FLAG_VALUE == -1
- && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && nonzero_bits (op0, mode) == 1)
- {
- op0 = expand_compound_operation (op0);
- return simplify_gen_unary (NEG, mode,
- gen_lowpart (mode, op0),
- mode);
- }
-
- else if (STORE_FLAG_VALUE == -1
- && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- {
- op0 = expand_compound_operation (op0);
- return simplify_gen_unary (NOT, mode,
- gen_lowpart (mode, op0),
- mode);
- }
-
- /* If X is 0/1, (eq X 0) is X-1. */
- else if (STORE_FLAG_VALUE == -1
- && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && nonzero_bits (op0, mode) == 1)
- {
- op0 = expand_compound_operation (op0);
- return plus_constant (gen_lowpart (mode, op0), -1);
- }
-
- /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
- one bit that might be nonzero, we can convert (ne x 0) to
- (ashift x c) where C puts the bit in the sign bit. Remove any
- AND with STORE_FLAG_VALUE when we are done, since we are only
- going to test the sign bit. */
- if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
- == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
- {
- x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
- expand_compound_operation (op0),
- GET_MODE_BITSIZE (mode) - 1 - i);
- if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
- return XEXP (x, 0);
- else
- return x;
- }
-
- /* If the code changed, return a whole new comparison. */
- if (new_code != code)
- return gen_rtx_fmt_ee (new_code, mode, op0, op1);
-
- /* Otherwise, keep this operation, but maybe change its operands.
- This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
- SUBST (XEXP (x, 0), op0);
- SUBST (XEXP (x, 1), op1);
- }
- break;
-
- case IF_THEN_ELSE:
- return simplify_if_then_else (x);
-
- case ZERO_EXTRACT:
- case SIGN_EXTRACT:
- case ZERO_EXTEND:
- case SIGN_EXTEND:
- /* If we are processing SET_DEST, we are done. */
- if (in_dest)
- return x;
-
- return expand_compound_operation (x);
-
- case SET:
- return simplify_set (x);
-
- case AND:
- case IOR:
- return simplify_logical (x);
-
- case ASHIFT:
- case LSHIFTRT:
- case ASHIFTRT:
- case ROTATE:
- case ROTATERT:
- /* If this is a shift by a constant amount, simplify it. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- return simplify_shift_const (x, code, mode, XEXP (x, 0),
- INTVAL (XEXP (x, 1)));
-
- else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
- SUBST (XEXP (x, 1),
- force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
- ((HOST_WIDE_INT) 1
- << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
- - 1,
- 0));
- break;
-
- default:
- break;
- }
-
- return x;
-}
-
-/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
-
-static rtx
-simplify_if_then_else (rtx x)
-{
- enum machine_mode mode = GET_MODE (x);
- rtx cond = XEXP (x, 0);
- rtx true_rtx = XEXP (x, 1);
- rtx false_rtx = XEXP (x, 2);
- enum rtx_code true_code = GET_CODE (cond);
- int comparison_p = COMPARISON_P (cond);
- rtx temp;
- int i;
- enum rtx_code false_code;
- rtx reversed;
-
- /* Simplify storing of the truth value. */
- if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
- return simplify_gen_relational (true_code, mode, VOIDmode,
- XEXP (cond, 0), XEXP (cond, 1));
-
- /* Also when the truth value has to be reversed. */
- if (comparison_p
- && true_rtx == const0_rtx && false_rtx == const_true_rtx
- && (reversed = reversed_comparison (cond, mode)))
- return reversed;
-
- /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
- in it is being compared against certain values. Get the true and false
- comparisons and see if that says anything about the value of each arm. */
-
- if (comparison_p
- && ((false_code = reversed_comparison_code (cond, NULL))
- != UNKNOWN)
- && REG_P (XEXP (cond, 0)))
- {
- HOST_WIDE_INT nzb;
- rtx from = XEXP (cond, 0);
- rtx true_val = XEXP (cond, 1);
- rtx false_val = true_val;
- int swapped = 0;
-
- /* If FALSE_CODE is EQ, swap the codes and arms. */
-
- if (false_code == EQ)
- {
- swapped = 1, true_code = EQ, false_code = NE;
- temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
- }
-
- /* If we are comparing against zero and the expression being tested has
- only a single bit that might be nonzero, that is its value when it is
- not equal to zero. Similarly if it is known to be -1 or 0. */
-
- if (true_code == EQ && true_val == const0_rtx
- && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
- false_code = EQ, false_val = GEN_INT (nzb);
- else if (true_code == EQ && true_val == const0_rtx
- && (num_sign_bit_copies (from, GET_MODE (from))
- == GET_MODE_BITSIZE (GET_MODE (from))))
- false_code = EQ, false_val = constm1_rtx;
-
- /* Now simplify an arm if we know the value of the register in the
- branch and it is used in the arm. Be careful due to the potential
- of locally-shared RTL. */
-
- if (reg_mentioned_p (from, true_rtx))
- true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
- from, true_val),
- pc_rtx, pc_rtx, 0, 0);
- if (reg_mentioned_p (from, false_rtx))
- false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
- from, false_val),
- pc_rtx, pc_rtx, 0, 0);
-
- SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
- SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
-
- true_rtx = XEXP (x, 1);
- false_rtx = XEXP (x, 2);
- true_code = GET_CODE (cond);
- }
-
- /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
- reversed, do so to avoid needing two sets of patterns for
- subtract-and-branch insns. Similarly if we have a constant in the true
- arm, the false arm is the same as the first operand of the comparison, or
- the false arm is more complicated than the true arm. */
-
- if (comparison_p
- && reversed_comparison_code (cond, NULL) != UNKNOWN
- && (true_rtx == pc_rtx
- || (CONSTANT_P (true_rtx)
- && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
- || true_rtx == const0_rtx
- || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
- || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
- && !OBJECT_P (false_rtx))
- || reg_mentioned_p (true_rtx, false_rtx)
- || rtx_equal_p (false_rtx, XEXP (cond, 0))))
- {
- true_code = reversed_comparison_code (cond, NULL);
- SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
- SUBST (XEXP (x, 1), false_rtx);
- SUBST (XEXP (x, 2), true_rtx);
-
- temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
- cond = XEXP (x, 0);
-
- /* It is possible that the conditional has been simplified out. */
- true_code = GET_CODE (cond);
- comparison_p = COMPARISON_P (cond);
- }
-
- /* If the two arms are identical, we don't need the comparison. */
-
- if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
- return true_rtx;
-
- /* Convert a == b ? b : a to "a". */
- if (true_code == EQ && ! side_effects_p (cond)
- && !HONOR_NANS (mode)
- && rtx_equal_p (XEXP (cond, 0), false_rtx)
- && rtx_equal_p (XEXP (cond, 1), true_rtx))
- return false_rtx;
- else if (true_code == NE && ! side_effects_p (cond)
- && !HONOR_NANS (mode)
- && rtx_equal_p (XEXP (cond, 0), true_rtx)
- && rtx_equal_p (XEXP (cond, 1), false_rtx))
- return true_rtx;
-
- /* Look for cases where we have (abs x) or (neg (abs X)). */
-
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_CODE (false_rtx) == NEG
- && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
- && comparison_p
- && rtx_equal_p (true_rtx, XEXP (cond, 0))
- && ! side_effects_p (true_rtx))
- switch (true_code)
- {
- case GT:
- case GE:
- return simplify_gen_unary (ABS, mode, true_rtx, mode);
- case LT:
- case LE:
- return
- simplify_gen_unary (NEG, mode,
- simplify_gen_unary (ABS, mode, true_rtx, mode),
- mode);
- default:
- break;
- }
-
- /* Look for MIN or MAX. */
-
- if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
- && comparison_p
- && rtx_equal_p (XEXP (cond, 0), true_rtx)
- && rtx_equal_p (XEXP (cond, 1), false_rtx)
- && ! side_effects_p (cond))
- switch (true_code)
- {
- case GE:
- case GT:
- return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
- case LE:
- case LT:
- return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
- case GEU:
- case GTU:
- return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
- case LEU:
- case LTU:
- return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
- default:
- break;
- }
-
- /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
- second operand is zero, this can be done as (OP Z (mult COND C2)) where
- C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
- SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
- We can do this kind of thing in some cases when STORE_FLAG_VALUE is
- neither 1 or -1, but it isn't worth checking for. */
-
- if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && comparison_p
- && GET_MODE_CLASS (mode) == MODE_INT
- && ! side_effects_p (x))
- {
- rtx t = make_compound_operation (true_rtx, SET);
- rtx f = make_compound_operation (false_rtx, SET);
- rtx cond_op0 = XEXP (cond, 0);
- rtx cond_op1 = XEXP (cond, 1);
- enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
- enum machine_mode m = mode;
- rtx z = 0, c1 = NULL_RTX;
-
- if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
- || GET_CODE (t) == IOR || GET_CODE (t) == XOR
- || GET_CODE (t) == ASHIFT
- || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
- && rtx_equal_p (XEXP (t, 0), f))
- c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
-
- /* If an identity-zero op is commutative, check whether there
- would be a match if we swapped the operands. */
- else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
- || GET_CODE (t) == XOR)
- && rtx_equal_p (XEXP (t, 1), f))
- c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
- else if (GET_CODE (t) == SIGN_EXTEND
- && (GET_CODE (XEXP (t, 0)) == PLUS
- || GET_CODE (XEXP (t, 0)) == MINUS
- || GET_CODE (XEXP (t, 0)) == IOR
- || GET_CODE (XEXP (t, 0)) == XOR
- || GET_CODE (XEXP (t, 0)) == ASHIFT
- || GET_CODE (XEXP (t, 0)) == LSHIFTRT
- || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
- && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
- && (num_sign_bit_copies (f, GET_MODE (f))
- > (unsigned int)
- (GET_MODE_BITSIZE (mode)
- - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
- {
- c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
- extend_op = SIGN_EXTEND;
- m = GET_MODE (XEXP (t, 0));
- }
- else if (GET_CODE (t) == SIGN_EXTEND
- && (GET_CODE (XEXP (t, 0)) == PLUS
- || GET_CODE (XEXP (t, 0)) == IOR
- || GET_CODE (XEXP (t, 0)) == XOR)
- && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
- && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
- && (num_sign_bit_copies (f, GET_MODE (f))
- > (unsigned int)
- (GET_MODE_BITSIZE (mode)
- - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
- {
- c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
- extend_op = SIGN_EXTEND;
- m = GET_MODE (XEXP (t, 0));
- }
- else if (GET_CODE (t) == ZERO_EXTEND
- && (GET_CODE (XEXP (t, 0)) == PLUS
- || GET_CODE (XEXP (t, 0)) == MINUS
- || GET_CODE (XEXP (t, 0)) == IOR
- || GET_CODE (XEXP (t, 0)) == XOR
- || GET_CODE (XEXP (t, 0)) == ASHIFT
- || GET_CODE (XEXP (t, 0)) == LSHIFTRT
- || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
- && ((nonzero_bits (f, GET_MODE (f))
- & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
- == 0))
- {
- c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
- extend_op = ZERO_EXTEND;
- m = GET_MODE (XEXP (t, 0));
- }
- else if (GET_CODE (t) == ZERO_EXTEND
- && (GET_CODE (XEXP (t, 0)) == PLUS
- || GET_CODE (XEXP (t, 0)) == IOR
- || GET_CODE (XEXP (t, 0)) == XOR)
- && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
- && ((nonzero_bits (f, GET_MODE (f))
- & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
- == 0))
- {
- c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
- extend_op = ZERO_EXTEND;
- m = GET_MODE (XEXP (t, 0));
- }
-
- if (z)
- {
- temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
- cond_op0, cond_op1),
- pc_rtx, pc_rtx, 0, 0);
- temp = simplify_gen_binary (MULT, m, temp,
- simplify_gen_binary (MULT, m, c1,
- const_true_rtx));
- temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
- temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
-
- if (extend_op != UNKNOWN)
- temp = simplify_gen_unary (extend_op, mode, temp, m);
-
- return temp;
- }
- }
-
- /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
- 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
- negation of a single bit, we can convert this operation to a shift. We
- can actually do this more generally, but it doesn't seem worth it. */
-
- if (true_code == NE && XEXP (cond, 1) == const0_rtx
- && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
- && ((1 == nonzero_bits (XEXP (cond, 0), mode)
- && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
- || ((num_sign_bit_copies (XEXP (cond, 0), mode)
- == GET_MODE_BITSIZE (mode))
- && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
- return
- simplify_shift_const (NULL_RTX, ASHIFT, mode,
- gen_lowpart (mode, XEXP (cond, 0)), i);
-
- /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
- if (true_code == NE && XEXP (cond, 1) == const0_rtx
- && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
- && GET_MODE (XEXP (cond, 0)) == mode
- && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
- == nonzero_bits (XEXP (cond, 0), mode)
- && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
- return XEXP (cond, 0);
-
- return x;
-}
-
-/* Simplify X, a SET expression. Return the new expression. */
-
-static rtx
-simplify_set (rtx x)
-{
- rtx src = SET_SRC (x);
- rtx dest = SET_DEST (x);
- enum machine_mode mode
- = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
- rtx other_insn;
- rtx *cc_use;
-
- /* (set (pc) (return)) gets written as (return). */
- if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
- return src;
-
- /* Now that we know for sure which bits of SRC we are using, see if we can
- simplify the expression for the object knowing that we only need the
- low-order bits. */
-
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- {
- src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
- SUBST (SET_SRC (x), src);
- }
-
- /* If we are setting CC0 or if the source is a COMPARE, look for the use of
- the comparison result and try to simplify it unless we already have used
- undobuf.other_insn. */
- if ((GET_MODE_CLASS (mode) == MODE_CC
- || GET_CODE (src) == COMPARE
- || CC0_P (dest))
- && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
- && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
- && COMPARISON_P (*cc_use)
- && rtx_equal_p (XEXP (*cc_use, 0), dest))
- {
- enum rtx_code old_code = GET_CODE (*cc_use);
- enum rtx_code new_code;
- rtx op0, op1, tmp;
- int other_changed = 0;
- enum machine_mode compare_mode = GET_MODE (dest);
-
- if (GET_CODE (src) == COMPARE)
- op0 = XEXP (src, 0), op1 = XEXP (src, 1);
- else
- op0 = src, op1 = CONST0_RTX (GET_MODE (src));
-
- tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
- op0, op1);
- if (!tmp)
- new_code = old_code;
- else if (!CONSTANT_P (tmp))
- {
- new_code = GET_CODE (tmp);
- op0 = XEXP (tmp, 0);
- op1 = XEXP (tmp, 1);
- }
- else
- {
- rtx pat = PATTERN (other_insn);
- undobuf.other_insn = other_insn;
- SUBST (*cc_use, tmp);
-
- /* Attempt to simplify CC user. */
- if (GET_CODE (pat) == SET)
- {
- rtx new = simplify_rtx (SET_SRC (pat));
- if (new != NULL_RTX)
- SUBST (SET_SRC (pat), new);
- }
-
- /* Convert X into a no-op move. */
- SUBST (SET_DEST (x), pc_rtx);
- SUBST (SET_SRC (x), pc_rtx);
- return x;
- }
-
- /* Simplify our comparison, if possible. */
- new_code = simplify_comparison (new_code, &op0, &op1);
-
-#ifdef SELECT_CC_MODE
- /* If this machine has CC modes other than CCmode, check to see if we
- need to use a different CC mode here. */
- if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
- compare_mode = GET_MODE (op0);
- else
- compare_mode = SELECT_CC_MODE (new_code, op0, op1);
-
-#ifndef HAVE_cc0
- /* If the mode changed, we have to change SET_DEST, the mode in the
- compare, and the mode in the place SET_DEST is used. If SET_DEST is
- a hard register, just build new versions with the proper mode. If it
- is a pseudo, we lose unless it is only time we set the pseudo, in
- which case we can safely change its mode. */
- if (compare_mode != GET_MODE (dest))
- {
- if (can_change_dest_mode (dest, 0, compare_mode))
- {
- unsigned int regno = REGNO (dest);
- rtx new_dest;
-
- if (regno < FIRST_PSEUDO_REGISTER)
- new_dest = gen_rtx_REG (compare_mode, regno);
- else
- {
- SUBST_MODE (regno_reg_rtx[regno], compare_mode);
- new_dest = regno_reg_rtx[regno];
- }
-
- SUBST (SET_DEST (x), new_dest);
- SUBST (XEXP (*cc_use, 0), new_dest);
- other_changed = 1;
-
- dest = new_dest;
- }
- }
-#endif /* cc0 */
-#endif /* SELECT_CC_MODE */
-
- /* If the code changed, we have to build a new comparison in
- undobuf.other_insn. */
- if (new_code != old_code)
- {
- int other_changed_previously = other_changed;
- unsigned HOST_WIDE_INT mask;
-
- SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
- dest, const0_rtx));
- other_changed = 1;
-
- /* If the only change we made was to change an EQ into an NE or
- vice versa, OP0 has only one bit that might be nonzero, and OP1
- is zero, check if changing the user of the condition code will
- produce a valid insn. If it won't, we can keep the original code
- in that insn by surrounding our operation with an XOR. */
-
- if (((old_code == NE && new_code == EQ)
- || (old_code == EQ && new_code == NE))
- && ! other_changed_previously && op1 == const0_rtx
- && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
- && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
- {
- rtx pat = PATTERN (other_insn), note = 0;
-
- if ((recog_for_combine (&pat, other_insn, &note) < 0
- && ! check_asm_operands (pat)))
- {
- PUT_CODE (*cc_use, old_code);
- other_changed = 0;
-
- op0 = simplify_gen_binary (XOR, GET_MODE (op0),
- op0, GEN_INT (mask));
- }
- }
- }
-
- if (other_changed)
- undobuf.other_insn = other_insn;
-
-#ifdef HAVE_cc0
- /* If we are now comparing against zero, change our source if
- needed. If we do not use cc0, we always have a COMPARE. */
- if (op1 == const0_rtx && dest == cc0_rtx)
- {
- SUBST (SET_SRC (x), op0);
- src = op0;
- }
- else
-#endif
-
- /* Otherwise, if we didn't previously have a COMPARE in the
- correct mode, we need one. */
- if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
- {
- SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
- src = SET_SRC (x);
- }
- else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
- {
- SUBST (SET_SRC (x), op0);
- src = SET_SRC (x);
- }
- /* Otherwise, update the COMPARE if needed. */
- else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
- {
- SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
- src = SET_SRC (x);
- }
- }
- else
- {
- /* Get SET_SRC in a form where we have placed back any
- compound expressions. Then do the checks below. */
- src = make_compound_operation (src, SET);
- SUBST (SET_SRC (x), src);
- }
-
- /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
- and X being a REG or (subreg (reg)), we may be able to convert this to
- (set (subreg:m2 x) (op)).
-
- We can always do this if M1 is narrower than M2 because that means that
- we only care about the low bits of the result.
-
- However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
- perform a narrower operation than requested since the high-order bits will
- be undefined. On machine where it is defined, this transformation is safe
- as long as M1 and M2 have the same number of words. */
-
- if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
- && !OBJECT_P (SUBREG_REG (src))
- && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
- / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
-#ifndef WORD_REGISTER_OPERATIONS
- && (GET_MODE_SIZE (GET_MODE (src))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
-#endif
-#ifdef CANNOT_CHANGE_MODE_CLASS
- && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
- && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
- GET_MODE (SUBREG_REG (src)),
- GET_MODE (src)))
-#endif
- && (REG_P (dest)
- || (GET_CODE (dest) == SUBREG
- && REG_P (SUBREG_REG (dest)))))
- {
- SUBST (SET_DEST (x),
- gen_lowpart (GET_MODE (SUBREG_REG (src)),
- dest));
- SUBST (SET_SRC (x), SUBREG_REG (src));
-
- src = SET_SRC (x), dest = SET_DEST (x);
- }
-
-#ifdef HAVE_cc0
- /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
- in SRC. */
- if (dest == cc0_rtx
- && GET_CODE (src) == SUBREG
- && subreg_lowpart_p (src)
- && (GET_MODE_BITSIZE (GET_MODE (src))
- < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
- {
- rtx inner = SUBREG_REG (src);
- enum machine_mode inner_mode = GET_MODE (inner);
-
- /* Here we make sure that we don't have a sign bit on. */
- if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (inner, inner_mode)
- < ((unsigned HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
- {
- SUBST (SET_SRC (x), inner);
- src = SET_SRC (x);
- }
- }
-#endif
-
-#ifdef LOAD_EXTEND_OP
- /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
- would require a paradoxical subreg. Replace the subreg with a
- zero_extend to avoid the reload that would otherwise be required. */
-
- if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
- && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
- && SUBREG_BYTE (src) == 0
- && (GET_MODE_SIZE (GET_MODE (src))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
- && MEM_P (SUBREG_REG (src)))
- {
- SUBST (SET_SRC (x),
- gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
- GET_MODE (src), SUBREG_REG (src)));
-
- src = SET_SRC (x);
- }
-#endif
-
- /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
- are comparing an item known to be 0 or -1 against 0, use a logical
- operation instead. Check for one of the arms being an IOR of the other
- arm with some value. We compute three terms to be IOR'ed together. In
- practice, at most two will be nonzero. Then we do the IOR's. */
-
- if (GET_CODE (dest) != PC
- && GET_CODE (src) == IF_THEN_ELSE
- && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
- && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
- && XEXP (XEXP (src, 0), 1) == const0_rtx
- && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
-#ifdef HAVE_conditional_move
- && ! can_conditionally_move_p (GET_MODE (src))
-#endif
- && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
- GET_MODE (XEXP (XEXP (src, 0), 0)))
- == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
- && ! side_effects_p (src))
- {
- rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
- ? XEXP (src, 1) : XEXP (src, 2));
- rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
- ? XEXP (src, 2) : XEXP (src, 1));
- rtx term1 = const0_rtx, term2, term3;
-
- if (GET_CODE (true_rtx) == IOR
- && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
- term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
- else if (GET_CODE (true_rtx) == IOR
- && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
- term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
- else if (GET_CODE (false_rtx) == IOR
- && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
- term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
- else if (GET_CODE (false_rtx) == IOR
- && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
- term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
-
- term2 = simplify_gen_binary (AND, GET_MODE (src),
- XEXP (XEXP (src, 0), 0), true_rtx);
- term3 = simplify_gen_binary (AND, GET_MODE (src),
- simplify_gen_unary (NOT, GET_MODE (src),
- XEXP (XEXP (src, 0), 0),
- GET_MODE (src)),
- false_rtx);
-
- SUBST (SET_SRC (x),
- simplify_gen_binary (IOR, GET_MODE (src),
- simplify_gen_binary (IOR, GET_MODE (src),
- term1, term2),
- term3));
-
- src = SET_SRC (x);
- }
-
- /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
- whole thing fail. */
- if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
- return src;
- else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
- return dest;
- else
- /* Convert this into a field assignment operation, if possible. */
- return make_field_assignment (x);
-}
-
-/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
- result. */
-
-static rtx
-simplify_logical (rtx x)
-{
- enum machine_mode mode = GET_MODE (x);
- rtx op0 = XEXP (x, 0);
- rtx op1 = XEXP (x, 1);
-
- switch (GET_CODE (x))
- {
- case AND:
- /* We can call simplify_and_const_int only if we don't lose
- any (sign) bits when converting INTVAL (op1) to
- "unsigned HOST_WIDE_INT". */
- if (GET_CODE (op1) == CONST_INT
- && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- || INTVAL (op1) > 0))
- {
- x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
- if (GET_CODE (x) != AND)
- return x;
-
- op0 = XEXP (x, 0);
- op1 = XEXP (x, 1);
- }
-
- /* If we have any of (and (ior A B) C) or (and (xor A B) C),
- apply the distributive law and then the inverse distributive
- law to see if things simplify. */
- if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
- {
- rtx result = distribute_and_simplify_rtx (x, 0);
- if (result)
- return result;
- }
- if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
- {
- rtx result = distribute_and_simplify_rtx (x, 1);
- if (result)
- return result;
- }
- break;
-
- case IOR:
- /* If we have (ior (and A B) C), apply the distributive law and then
- the inverse distributive law to see if things simplify. */
-
- if (GET_CODE (op0) == AND)
- {
- rtx result = distribute_and_simplify_rtx (x, 0);
- if (result)
- return result;
- }
-
- if (GET_CODE (op1) == AND)
- {
- rtx result = distribute_and_simplify_rtx (x, 1);
- if (result)
- return result;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return x;
-}
-
-/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
- operations" because they can be replaced with two more basic operations.
- ZERO_EXTEND is also considered "compound" because it can be replaced with
- an AND operation, which is simpler, though only one operation.
-
- The function expand_compound_operation is called with an rtx expression
- and will convert it to the appropriate shifts and AND operations,
- simplifying at each stage.
-
- The function make_compound_operation is called to convert an expression
- consisting of shifts and ANDs into the equivalent compound expression.
- It is the inverse of this function, loosely speaking. */
-
-static rtx
-expand_compound_operation (rtx x)
-{
- unsigned HOST_WIDE_INT pos = 0, len;
- int unsignedp = 0;
- unsigned int modewidth;
- rtx tem;
-
- switch (GET_CODE (x))
- {
- case ZERO_EXTEND:
- unsignedp = 1;
- case SIGN_EXTEND:
- /* We can't necessarily use a const_int for a multiword mode;
- it depends on implicitly extending the value.
- Since we don't know the right way to extend it,
- we can't tell whether the implicit way is right.
-
- Even for a mode that is no wider than a const_int,
- we can't win, because we need to sign extend one of its bits through
- the rest of it, and we don't know which bit. */
- if (GET_CODE (XEXP (x, 0)) == CONST_INT)
- return x;
-
- /* Return if (subreg:MODE FROM 0) is not a safe replacement for
- (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
- because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
- reloaded. If not for that, MEM's would very rarely be safe.
-
- Reject MODEs bigger than a word, because we might not be able
- to reference a two-register group starting with an arbitrary register
- (and currently gen_lowpart might crash for a SUBREG). */
-
- if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
- return x;
-
- /* Reject MODEs that aren't scalar integers because turning vector
- or complex modes into shifts causes problems. */
-
- if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
- return x;
-
- len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
- /* If the inner object has VOIDmode (the only way this can happen
- is if it is an ASM_OPERANDS), we can't do anything since we don't
- know how much masking to do. */
- if (len == 0)
- return x;
-
- break;
-
- case ZERO_EXTRACT:
- unsignedp = 1;
-
- /* ... fall through ... */
-
- case SIGN_EXTRACT:
- /* If the operand is a CLOBBER, just return it. */
- if (GET_CODE (XEXP (x, 0)) == CLOBBER)
- return XEXP (x, 0);
-
- if (GET_CODE (XEXP (x, 1)) != CONST_INT
- || GET_CODE (XEXP (x, 2)) != CONST_INT
- || GET_MODE (XEXP (x, 0)) == VOIDmode)
- return x;
-
- /* Reject MODEs that aren't scalar integers because turning vector
- or complex modes into shifts causes problems. */
-
- if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
- return x;
-
- len = INTVAL (XEXP (x, 1));
- pos = INTVAL (XEXP (x, 2));
-
- /* This should stay within the object being extracted, fail otherwise. */
- if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
- return x;
-
- if (BITS_BIG_ENDIAN)
- pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
-
- break;
-
- default:
- return x;
- }
- /* Convert sign extension to zero extension, if we know that the high
- bit is not set, as this is easier to optimize. It will be converted
- back to cheaper alternative in make_extraction. */
- if (GET_CODE (x) == SIGN_EXTEND
- && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
- && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
- & ~(((unsigned HOST_WIDE_INT)
- GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
- >> 1))
- == 0)))
- {
- rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
- rtx temp2 = expand_compound_operation (temp);
-
- /* Make sure this is a profitable operation. */
- if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
- return temp2;
- else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
- return temp;
- else
- return x;
- }
-
- /* We can optimize some special cases of ZERO_EXTEND. */
- if (GET_CODE (x) == ZERO_EXTEND)
- {
- /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
- know that the last value didn't have any inappropriate bits
- set. */
- if (GET_CODE (XEXP (x, 0)) == TRUNCATE
- && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
- & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
- return XEXP (XEXP (x, 0), 0);
-
- /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
- if (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
- && subreg_lowpart_p (XEXP (x, 0))
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
- & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
- return SUBREG_REG (XEXP (x, 0));
-
- /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
- is a comparison and STORE_FLAG_VALUE permits. This is like
- the first case, but it works even when GET_MODE (x) is larger
- than HOST_WIDE_INT. */
- if (GET_CODE (XEXP (x, 0)) == TRUNCATE
- && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
- && COMPARISON_P (XEXP (XEXP (x, 0), 0))
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && ((HOST_WIDE_INT) STORE_FLAG_VALUE
- & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
- return XEXP (XEXP (x, 0), 0);
-
- /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
- if (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
- && subreg_lowpart_p (XEXP (x, 0))
- && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && ((HOST_WIDE_INT) STORE_FLAG_VALUE
- & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
- return SUBREG_REG (XEXP (x, 0));
-
- }
-
- /* If we reach here, we want to return a pair of shifts. The inner
- shift is a left shift of BITSIZE - POS - LEN bits. The outer
- shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
- logical depending on the value of UNSIGNEDP.
-
- If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
- converted into an AND of a shift.
-
- We must check for the case where the left shift would have a negative
- count. This can happen in a case like (x >> 31) & 255 on machines
- that can't shift by a constant. On those machines, we would first
- combine the shift with the AND to produce a variable-position
- extraction. Then the constant of 31 would be substituted in to produce
- a such a position. */
-
- modewidth = GET_MODE_BITSIZE (GET_MODE (x));
- if (modewidth + len >= pos)
- {
- enum machine_mode mode = GET_MODE (x);
- tem = gen_lowpart (mode, XEXP (x, 0));
- if (!tem || GET_CODE (tem) == CLOBBER)
- return x;
- tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
- tem, modewidth - pos - len);
- tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
- mode, tem, modewidth - len);
- }
- else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
- tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
- simplify_shift_const (NULL_RTX, LSHIFTRT,
- GET_MODE (x),
- XEXP (x, 0), pos),
- ((HOST_WIDE_INT) 1 << len) - 1);
- else
- /* Any other cases we can't handle. */
- return x;
-
- /* If we couldn't do this for some reason, return the original
- expression. */
- if (GET_CODE (tem) == CLOBBER)
- return x;
-
- return tem;
-}
-
-/* X is a SET which contains an assignment of one object into
- a part of another (such as a bit-field assignment, STRICT_LOW_PART,
- or certain SUBREGS). If possible, convert it into a series of
- logical operations.
-
- We half-heartedly support variable positions, but do not at all
- support variable lengths. */
-
-static rtx
-expand_field_assignment (rtx x)
-{
- rtx inner;
- rtx pos; /* Always counts from low bit. */
- int len;
- rtx mask, cleared, masked;
- enum machine_mode compute_mode;
-
- /* Loop until we find something we can't simplify. */
- while (1)
- {
- if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
- && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
- {
- inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
- len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
- pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
- }
- else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
- && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
- {
- inner = XEXP (SET_DEST (x), 0);
- len = INTVAL (XEXP (SET_DEST (x), 1));
- pos = XEXP (SET_DEST (x), 2);
-
- /* A constant position should stay within the width of INNER. */
- if (GET_CODE (pos) == CONST_INT
- && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
- break;
-
- if (BITS_BIG_ENDIAN)
- {
- if (GET_CODE (pos) == CONST_INT)
- pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
- - INTVAL (pos));
- else if (GET_CODE (pos) == MINUS
- && GET_CODE (XEXP (pos, 1)) == CONST_INT
- && (INTVAL (XEXP (pos, 1))
- == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
- /* If position is ADJUST - X, new position is X. */
- pos = XEXP (pos, 0);
- else
- pos = simplify_gen_binary (MINUS, GET_MODE (pos),
- GEN_INT (GET_MODE_BITSIZE (
- GET_MODE (inner))
- - len),
- pos);
- }
- }
-
- /* A SUBREG between two modes that occupy the same numbers of words
- can be done by moving the SUBREG to the source. */
- else if (GET_CODE (SET_DEST (x)) == SUBREG
- /* We need SUBREGs to compute nonzero_bits properly. */
- && nonzero_sign_valid
- && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
- {
- x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
- gen_lowpart
- (GET_MODE (SUBREG_REG (SET_DEST (x))),
- SET_SRC (x)));
- continue;
- }
- else
- break;
-
- while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
- inner = SUBREG_REG (inner);
-
- compute_mode = GET_MODE (inner);
-
- /* Don't attempt bitwise arithmetic on non scalar integer modes. */
- if (! SCALAR_INT_MODE_P (compute_mode))
- {
- enum machine_mode imode;
-
- /* Don't do anything for vector or complex integral types. */
- if (! FLOAT_MODE_P (compute_mode))
- break;
-
- /* Try to find an integral mode to pun with. */
- imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
- if (imode == BLKmode)
- break;
-
- compute_mode = imode;
- inner = gen_lowpart (imode, inner);
- }
-
- /* Compute a mask of LEN bits, if we can do this on the host machine. */
- if (len >= HOST_BITS_PER_WIDE_INT)
- break;
-
- /* Now compute the equivalent expression. Make a copy of INNER
- for the SET_DEST in case it is a MEM into which we will substitute;
- we don't want shared RTL in that case. */
- mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
- cleared = simplify_gen_binary (AND, compute_mode,
- simplify_gen_unary (NOT, compute_mode,
- simplify_gen_binary (ASHIFT,
- compute_mode,
- mask, pos),
- compute_mode),
- inner);
- masked = simplify_gen_binary (ASHIFT, compute_mode,
- simplify_gen_binary (
- AND, compute_mode,
- gen_lowpart (compute_mode, SET_SRC (x)),
- mask),
- pos);
-
- x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
- simplify_gen_binary (IOR, compute_mode,
- cleared, masked));
- }
-
- return x;
-}
-
-/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
- it is an RTX that represents a variable starting position; otherwise,
- POS is the (constant) starting bit position (counted from the LSB).
-
- UNSIGNEDP is nonzero for an unsigned reference and zero for a
- signed reference.
-
- IN_DEST is nonzero if this is a reference in the destination of a
- SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
- a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
- be used.
-
- IN_COMPARE is nonzero if we are in a COMPARE. This means that a
- ZERO_EXTRACT should be built even for bits starting at bit 0.
-
- MODE is the desired mode of the result (if IN_DEST == 0).
-
- The result is an RTX for the extraction or NULL_RTX if the target
- can't handle it. */
-
-static rtx
-make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
- rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
- int in_dest, int in_compare)
-{
- /* This mode describes the size of the storage area
- to fetch the overall value from. Within that, we
- ignore the POS lowest bits, etc. */
- enum machine_mode is_mode = GET_MODE (inner);
- enum machine_mode inner_mode;
- enum machine_mode wanted_inner_mode;
- enum machine_mode wanted_inner_reg_mode = word_mode;
- enum machine_mode pos_mode = word_mode;
- enum machine_mode extraction_mode = word_mode;
- enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
- rtx new = 0;
- rtx orig_pos_rtx = pos_rtx;
- HOST_WIDE_INT orig_pos;
-
- if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
- {
- /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
- consider just the QI as the memory to extract from.
- The subreg adds or removes high bits; its mode is
- irrelevant to the meaning of this extraction,
- since POS and LEN count from the lsb. */
- if (MEM_P (SUBREG_REG (inner)))
- is_mode = GET_MODE (SUBREG_REG (inner));
- inner = SUBREG_REG (inner);
- }
- else if (GET_CODE (inner) == ASHIFT
- && GET_CODE (XEXP (inner, 1)) == CONST_INT
- && pos_rtx == 0 && pos == 0
- && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
- {
- /* We're extracting the least significant bits of an rtx
- (ashift X (const_int C)), where LEN > C. Extract the
- least significant (LEN - C) bits of X, giving an rtx
- whose mode is MODE, then shift it left C times. */
- new = make_extraction (mode, XEXP (inner, 0),
- 0, 0, len - INTVAL (XEXP (inner, 1)),
- unsignedp, in_dest, in_compare);
- if (new != 0)
- return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
- }
-
- inner_mode = GET_MODE (inner);
-
- if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
- pos = INTVAL (pos_rtx), pos_rtx = 0;
-
- /* See if this can be done without an extraction. We never can if the
- width of the field is not the same as that of some integer mode. For
- registers, we can only avoid the extraction if the position is at the
- low-order bit and this is either not in the destination or we have the
- appropriate STRICT_LOW_PART operation available.
-
- For MEM, we can avoid an extract if the field starts on an appropriate
- boundary and we can change the mode of the memory reference. */
-
- if (tmode != BLKmode
- && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
- && !MEM_P (inner)
- && (inner_mode == tmode
- || !REG_P (inner)
- || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
- GET_MODE_BITSIZE (inner_mode))
- || reg_truncated_to_mode (tmode, inner))
- && (! in_dest
- || (REG_P (inner)
- && have_insn_for (STRICT_LOW_PART, tmode))))
- || (MEM_P (inner) && pos_rtx == 0
- && (pos
- % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
- : BITS_PER_UNIT)) == 0
- /* We can't do this if we are widening INNER_MODE (it
- may not be aligned, for one thing). */
- && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
- && (inner_mode == tmode
- || (! mode_dependent_address_p (XEXP (inner, 0))
- && ! MEM_VOLATILE_P (inner))))))
- {
- /* If INNER is a MEM, make a new MEM that encompasses just the desired
- field. If the original and current mode are the same, we need not
- adjust the offset. Otherwise, we do if bytes big endian.
-
- If INNER is not a MEM, get a piece consisting of just the field
- of interest (in this case POS % BITS_PER_WORD must be 0). */
-
- if (MEM_P (inner))
- {
- HOST_WIDE_INT offset;
-
- /* POS counts from lsb, but make OFFSET count in memory order. */
- if (BYTES_BIG_ENDIAN)
- offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
- else
- offset = pos / BITS_PER_UNIT;
-
- new = adjust_address_nv (inner, tmode, offset);
- }
- else if (REG_P (inner))
- {
- if (tmode != inner_mode)
- {
- /* We can't call gen_lowpart in a DEST since we
- always want a SUBREG (see below) and it would sometimes
- return a new hard register. */
- if (pos || in_dest)
- {
- HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
-
- if (WORDS_BIG_ENDIAN
- && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
- final_word = ((GET_MODE_SIZE (inner_mode)
- - GET_MODE_SIZE (tmode))
- / UNITS_PER_WORD) - final_word;
-
- final_word *= UNITS_PER_WORD;
- if (BYTES_BIG_ENDIAN &&
- GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
- final_word += (GET_MODE_SIZE (inner_mode)
- - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
-
- /* Avoid creating invalid subregs, for example when
- simplifying (x>>32)&255. */
- if (!validate_subreg (tmode, inner_mode, inner, final_word))
- return NULL_RTX;
-
- new = gen_rtx_SUBREG (tmode, inner, final_word);
- }
- else
- new = gen_lowpart (tmode, inner);
- }
- else
- new = inner;
- }
- else
- new = force_to_mode (inner, tmode,
- len >= HOST_BITS_PER_WIDE_INT
- ? ~(unsigned HOST_WIDE_INT) 0
- : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
- 0);
-
- /* If this extraction is going into the destination of a SET,
- make a STRICT_LOW_PART unless we made a MEM. */
-
- if (in_dest)
- return (MEM_P (new) ? new
- : (GET_CODE (new) != SUBREG
- ? gen_rtx_CLOBBER (tmode, const0_rtx)
- : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
-
- if (mode == tmode)
- return new;
-
- if (GET_CODE (new) == CONST_INT)
- return gen_int_mode (INTVAL (new), mode);
-
- /* If we know that no extraneous bits are set, and that the high
- bit is not set, convert the extraction to the cheaper of
- sign and zero extension, that are equivalent in these cases. */
- if (flag_expensive_optimizations
- && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
- && ((nonzero_bits (new, tmode)
- & ~(((unsigned HOST_WIDE_INT)
- GET_MODE_MASK (tmode))
- >> 1))
- == 0)))
- {
- rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
- rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
-
- /* Prefer ZERO_EXTENSION, since it gives more information to
- backends. */
- if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
- return temp;
- return temp1;
- }
-
- /* Otherwise, sign- or zero-extend unless we already are in the
- proper mode. */
-
- return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
- mode, new));
- }
-
- /* Unless this is a COMPARE or we have a funny memory reference,
- don't do anything with zero-extending field extracts starting at
- the low-order bit since they are simple AND operations. */
- if (pos_rtx == 0 && pos == 0 && ! in_dest
- && ! in_compare && unsignedp)
- return 0;
-
- /* Unless INNER is not MEM, reject this if we would be spanning bytes or
- if the position is not a constant and the length is not 1. In all
- other cases, we would only be going outside our object in cases when
- an original shift would have been undefined. */
- if (MEM_P (inner)
- && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
- || (pos_rtx != 0 && len != 1)))
- return 0;
-
- /* Get the mode to use should INNER not be a MEM, the mode for the position,
- and the mode for the result. */
- if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
- {
- wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
- pos_mode = mode_for_extraction (EP_insv, 2);
- extraction_mode = mode_for_extraction (EP_insv, 3);
- }
-
- if (! in_dest && unsignedp
- && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
- {
- wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
- pos_mode = mode_for_extraction (EP_extzv, 3);
- extraction_mode = mode_for_extraction (EP_extzv, 0);
- }
-
- if (! in_dest && ! unsignedp
- && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
- {
- wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
- pos_mode = mode_for_extraction (EP_extv, 3);
- extraction_mode = mode_for_extraction (EP_extv, 0);
- }
-
- /* Never narrow an object, since that might not be safe. */
-
- if (mode != VOIDmode
- && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
- extraction_mode = mode;
-
- if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
- && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
- pos_mode = GET_MODE (pos_rtx);
-
- /* If this is not from memory, the desired mode is the preferred mode
- for an extraction pattern's first input operand, or word_mode if there
- is none. */
- if (!MEM_P (inner))
- wanted_inner_mode = wanted_inner_reg_mode;
- else
- {
- /* Be careful not to go beyond the extracted object and maintain the
- natural alignment of the memory. */
- wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
- while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
- > GET_MODE_BITSIZE (wanted_inner_mode))
- {
- wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
- gcc_assert (wanted_inner_mode != VOIDmode);
- }
-
- /* If we have to change the mode of memory and cannot, the desired mode
- is EXTRACTION_MODE. */
- if (inner_mode != wanted_inner_mode
- && (mode_dependent_address_p (XEXP (inner, 0))
- || MEM_VOLATILE_P (inner)
- || pos_rtx))
- wanted_inner_mode = extraction_mode;
- }
-
- orig_pos = pos;
-
- if (BITS_BIG_ENDIAN)
- {
- /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
- BITS_BIG_ENDIAN style. If position is constant, compute new
- position. Otherwise, build subtraction.
- Note that POS is relative to the mode of the original argument.
- If it's a MEM we need to recompute POS relative to that.
- However, if we're extracting from (or inserting into) a register,
- we want to recompute POS relative to wanted_inner_mode. */
- int width = (MEM_P (inner)
- ? GET_MODE_BITSIZE (is_mode)
- : GET_MODE_BITSIZE (wanted_inner_mode));
-
- if (pos_rtx == 0)
- pos = width - len - pos;
- else
- pos_rtx
- = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
- /* POS may be less than 0 now, but we check for that below.
- Note that it can only be less than 0 if !MEM_P (inner). */
- }
-
- /* If INNER has a wider mode, and this is a constant extraction, try to
- make it smaller and adjust the byte to point to the byte containing
- the value. */
- if (wanted_inner_mode != VOIDmode
- && inner_mode != wanted_inner_mode
- && ! pos_rtx
- && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
- && MEM_P (inner)
- && ! mode_dependent_address_p (XEXP (inner, 0))
- && ! MEM_VOLATILE_P (inner))
- {
- int offset = 0;
-
- /* The computations below will be correct if the machine is big
- endian in both bits and bytes or little endian in bits and bytes.
- If it is mixed, we must adjust. */
-
- /* If bytes are big endian and we had a paradoxical SUBREG, we must
- adjust OFFSET to compensate. */
- if (BYTES_BIG_ENDIAN
- && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
- offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
-
- /* We can now move to the desired byte. */
- offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
- * GET_MODE_SIZE (wanted_inner_mode);
- pos %= GET_MODE_BITSIZE (wanted_inner_mode);
-
- if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
- && is_mode != wanted_inner_mode)
- offset = (GET_MODE_SIZE (is_mode)
- - GET_MODE_SIZE (wanted_inner_mode) - offset);
-
- inner = adjust_address_nv (inner, wanted_inner_mode, offset);
- }
-
- /* If INNER is not memory, we can always get it into the proper mode. If we
- are changing its mode, POS must be a constant and smaller than the size
- of the new mode. */
- else if (!MEM_P (inner))
- {
- if (GET_MODE (inner) != wanted_inner_mode
- && (pos_rtx != 0
- || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
- return 0;
-
- if (orig_pos < 0)
- return 0;
-
- inner = force_to_mode (inner, wanted_inner_mode,
- pos_rtx
- || len + orig_pos >= HOST_BITS_PER_WIDE_INT
- ? ~(unsigned HOST_WIDE_INT) 0
- : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
- << orig_pos),
- 0);
- }
-
- /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
- have to zero extend. Otherwise, we can just use a SUBREG. */
- if (pos_rtx != 0
- && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
- {
- rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
-
- /* If we know that no extraneous bits are set, and that the high
- bit is not set, convert extraction to cheaper one - either
- SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
- cases. */
- if (flag_expensive_optimizations
- && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
- && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
- & ~(((unsigned HOST_WIDE_INT)
- GET_MODE_MASK (GET_MODE (pos_rtx)))
- >> 1))
- == 0)))
- {
- rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
-
- /* Prefer ZERO_EXTENSION, since it gives more information to
- backends. */
- if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
- temp = temp1;
- }
- pos_rtx = temp;
- }
- else if (pos_rtx != 0
- && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
- pos_rtx = gen_lowpart (pos_mode, pos_rtx);
-
- /* Make POS_RTX unless we already have it and it is correct. If we don't
- have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
- be a CONST_INT. */
- if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
- pos_rtx = orig_pos_rtx;
-
- else if (pos_rtx == 0)
- pos_rtx = GEN_INT (pos);
-
- /* Make the required operation. See if we can use existing rtx. */
- new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
- extraction_mode, inner, GEN_INT (len), pos_rtx);
- if (! in_dest)
- new = gen_lowpart (mode, new);
-
- return new;
-}
-
-/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
- with any other operations in X. Return X without that shift if so. */
-
-static rtx
-extract_left_shift (rtx x, int count)
-{
- enum rtx_code code = GET_CODE (x);
- enum machine_mode mode = GET_MODE (x);
- rtx tem;
-
- switch (code)
- {
- case ASHIFT:
- /* This is the shift itself. If it is wide enough, we will return
- either the value being shifted if the shift count is equal to
- COUNT or a shift for the difference. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= count)
- return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
- INTVAL (XEXP (x, 1)) - count);
- break;
-
- case NEG: case NOT:
- if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
- return simplify_gen_unary (code, mode, tem, mode);
-
- break;
-
- case PLUS: case IOR: case XOR: case AND:
- /* If we can safely shift this constant and we find the inner shift,
- make a new operation. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
- && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
- return simplify_gen_binary (code, mode, tem,
- GEN_INT (INTVAL (XEXP (x, 1)) >> count));
-
- break;
-
- default:
- break;
- }
-
- return 0;
-}
-
-/* Look at the expression rooted at X. Look for expressions
- equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
- Form these expressions.
-
- Return the new rtx, usually just X.
-
- Also, for machines like the VAX that don't have logical shift insns,
- try to convert logical to arithmetic shift operations in cases where
- they are equivalent. This undoes the canonicalizations to logical
- shifts done elsewhere.
-
- We try, as much as possible, to re-use rtl expressions to save memory.
-
- IN_CODE says what kind of expression we are processing. Normally, it is
- SET. In a memory address (inside a MEM, PLUS or minus, the latter two
- being kludges), it is MEM. When processing the arguments of a comparison
- or a COMPARE against zero, it is COMPARE. */
-
-static rtx
-make_compound_operation (rtx x, enum rtx_code in_code)
-{
- enum rtx_code code = GET_CODE (x);
- enum machine_mode mode = GET_MODE (x);
- int mode_width = GET_MODE_BITSIZE (mode);
- rtx rhs, lhs;
- enum rtx_code next_code;
- int i;
- rtx new = 0;
- rtx tem;
- const char *fmt;
-
- /* Select the code to be used in recursive calls. Once we are inside an
- address, we stay there. If we have a comparison, set to COMPARE,
- but once inside, go back to our default of SET. */
-
- next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
- : ((code == COMPARE || COMPARISON_P (x))
- && XEXP (x, 1) == const0_rtx) ? COMPARE
- : in_code == COMPARE ? SET : in_code);
-
- /* Process depending on the code of this operation. If NEW is set
- nonzero, it will be returned. */
-
- switch (code)
- {
- case ASHIFT:
- /* Convert shifts by constants into multiplications if inside
- an address. */
- if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
- && INTVAL (XEXP (x, 1)) >= 0)
- {
- new = make_compound_operation (XEXP (x, 0), next_code);
- new = gen_rtx_MULT (mode, new,
- GEN_INT ((HOST_WIDE_INT) 1
- << INTVAL (XEXP (x, 1))));
- }
- break;
-
- case AND:
- /* If the second operand is not a constant, we can't do anything
- with it. */
- if (GET_CODE (XEXP (x, 1)) != CONST_INT)
- break;
-
- /* If the constant is a power of two minus one and the first operand
- is a logical right shift, make an extraction. */
- if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- {
- new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
- new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
- 0, in_code == COMPARE);
- }
-
- /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
- else if (GET_CODE (XEXP (x, 0)) == SUBREG
- && subreg_lowpart_p (XEXP (x, 0))
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- {
- new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
- next_code);
- new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
- XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
- 0, in_code == COMPARE);
- }
- /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
- else if ((GET_CODE (XEXP (x, 0)) == XOR
- || GET_CODE (XEXP (x, 0)) == IOR)
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- {
- /* Apply the distributive law, and then try to make extractions. */
- new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
- gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
- XEXP (x, 1)),
- gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
- XEXP (x, 1)));
- new = make_compound_operation (new, in_code);
- }
-
- /* If we are have (and (rotate X C) M) and C is larger than the number
- of bits in M, this is an extraction. */
-
- else if (GET_CODE (XEXP (x, 0)) == ROTATE
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
- && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
- {
- new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
- new = make_extraction (mode, new,
- (GET_MODE_BITSIZE (mode)
- - INTVAL (XEXP (XEXP (x, 0), 1))),
- NULL_RTX, i, 1, 0, in_code == COMPARE);
- }
-
- /* On machines without logical shifts, if the operand of the AND is
- a logical shift and our mask turns off all the propagated sign
- bits, we can replace the logical shift with an arithmetic shift. */
- else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && !have_insn_for (LSHIFTRT, mode)
- && have_insn_for (ASHIFTRT, mode)
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
- && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
-
- mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
- if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
- SUBST (XEXP (x, 0),
- gen_rtx_ASHIFTRT (mode,
- make_compound_operation
- (XEXP (XEXP (x, 0), 0), next_code),
- XEXP (XEXP (x, 0), 1)));
- }
-
- /* If the constant is one less than a power of two, this might be
- representable by an extraction even if no shift is present.
- If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
- we are in a COMPARE. */
- else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- new = make_extraction (mode,
- make_compound_operation (XEXP (x, 0),
- next_code),
- 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
-
- /* If we are in a comparison and this is an AND with a power of two,
- convert this into the appropriate bit extract. */
- else if (in_code == COMPARE
- && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
- new = make_extraction (mode,
- make_compound_operation (XEXP (x, 0),
- next_code),
- i, NULL_RTX, 1, 1, 0, 1);
-
- break;
-
- case LSHIFTRT:
- /* If the sign bit is known to be zero, replace this with an
- arithmetic shift. */
- if (have_insn_for (ASHIFTRT, mode)
- && ! have_insn_for (LSHIFTRT, mode)
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
- {
- new = gen_rtx_ASHIFTRT (mode,
- make_compound_operation (XEXP (x, 0),
- next_code),
- XEXP (x, 1));
- break;
- }
-
- /* ... fall through ... */
-
- case ASHIFTRT:
- lhs = XEXP (x, 0);
- rhs = XEXP (x, 1);
-
- /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
- this is a SIGN_EXTRACT. */
- if (GET_CODE (rhs) == CONST_INT
- && GET_CODE (lhs) == ASHIFT
- && GET_CODE (XEXP (lhs, 1)) == CONST_INT
- && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
- {
- new = make_compound_operation (XEXP (lhs, 0), next_code);
- new = make_extraction (mode, new,
- INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
- NULL_RTX, mode_width - INTVAL (rhs),
- code == LSHIFTRT, 0, in_code == COMPARE);
- break;
- }
-
- /* See if we have operations between an ASHIFTRT and an ASHIFT.
- If so, try to merge the shifts into a SIGN_EXTEND. We could
- also do this for some cases of SIGN_EXTRACT, but it doesn't
- seem worth the effort; the case checked for occurs on Alpha. */
-
- if (!OBJECT_P (lhs)
- && ! (GET_CODE (lhs) == SUBREG
- && (OBJECT_P (SUBREG_REG (lhs))))
- && GET_CODE (rhs) == CONST_INT
- && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
- && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
- new = make_extraction (mode, make_compound_operation (new, next_code),
- 0, NULL_RTX, mode_width - INTVAL (rhs),
- code == LSHIFTRT, 0, in_code == COMPARE);
-
- break;
-
- case SUBREG:
- /* Call ourselves recursively on the inner expression. If we are
- narrowing the object and it has a different RTL code from
- what it originally did, do this SUBREG as a force_to_mode. */
-
- tem = make_compound_operation (SUBREG_REG (x), in_code);
-
- {
- rtx simplified;
- simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
- SUBREG_BYTE (x));
-
- if (simplified)
- tem = simplified;
-
- if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
- && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
- && subreg_lowpart_p (x))
- {
- rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
- 0);
-
- /* If we have something other than a SUBREG, we might have
- done an expansion, so rerun ourselves. */
- if (GET_CODE (newer) != SUBREG)
- newer = make_compound_operation (newer, in_code);
-
- return newer;
- }
-
- if (simplified)
- return tem;
- }
- break;
-
- default:
- break;
- }
-
- if (new)
- {
- x = gen_lowpart (mode, new);
- code = GET_CODE (x);
- }
-
- /* Now recursively process each operand of this operation. */
- fmt = GET_RTX_FORMAT (code);
- for (i = 0; i < GET_RTX_LENGTH (code); i++)
- if (fmt[i] == 'e')
- {
- new = make_compound_operation (XEXP (x, i), next_code);
- SUBST (XEXP (x, i), new);
- }
-
- /* If this is a commutative operation, the changes to the operands
- may have made it noncanonical. */
- if (COMMUTATIVE_ARITH_P (x)
- && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
- {
- tem = XEXP (x, 0);
- SUBST (XEXP (x, 0), XEXP (x, 1));
- SUBST (XEXP (x, 1), tem);
- }
-
- return x;
-}
-
-/* Given M see if it is a value that would select a field of bits
- within an item, but not the entire word. Return -1 if not.
- Otherwise, return the starting position of the field, where 0 is the
- low-order bit.
-
- *PLEN is set to the length of the field. */
-
-static int
-get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
-{
- /* Get the bit number of the first 1 bit from the right, -1 if none. */
- int pos = exact_log2 (m & -m);
- int len = 0;
-
- if (pos >= 0)
- /* Now shift off the low-order zero bits and see if we have a
- power of two minus 1. */
- len = exact_log2 ((m >> pos) + 1);
-
- if (len <= 0)
- pos = -1;
-
- *plen = len;
- return pos;
-}
-
-/* If X refers to a register that equals REG in value, replace these
- references with REG. */
-static rtx
-canon_reg_for_combine (rtx x, rtx reg)
-{
- rtx op0, op1, op2;
- const char *fmt;
- int i;
- bool copied;
-
- enum rtx_code code = GET_CODE (x);
- switch (GET_RTX_CLASS (code))
- {
- case RTX_UNARY:
- op0 = canon_reg_for_combine (XEXP (x, 0), reg);
- if (op0 != XEXP (x, 0))
- return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
- GET_MODE (reg));
- break;
-
- case RTX_BIN_ARITH:
- case RTX_COMM_ARITH:
- op0 = canon_reg_for_combine (XEXP (x, 0), reg);
- op1 = canon_reg_for_combine (XEXP (x, 1), reg);
- if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
- break;
-
- case RTX_COMPARE:
- case RTX_COMM_COMPARE:
- op0 = canon_reg_for_combine (XEXP (x, 0), reg);
- op1 = canon_reg_for_combine (XEXP (x, 1), reg);
- if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
- GET_MODE (op0), op0, op1);
- break;
-
- case RTX_TERNARY:
- case RTX_BITFIELD_OPS:
- op0 = canon_reg_for_combine (XEXP (x, 0), reg);
- op1 = canon_reg_for_combine (XEXP (x, 1), reg);
- op2 = canon_reg_for_combine (XEXP (x, 2), reg);
- if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
- return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
- GET_MODE (op0), op0, op1, op2);
-
- case RTX_OBJ:
- if (REG_P (x))
- {
- if (rtx_equal_p (get_last_value (reg), x)
- || rtx_equal_p (reg, get_last_value (x)))
- return reg;
- else
- break;
- }
-
- /* fall through */
-
- default:
- fmt = GET_RTX_FORMAT (code);
- copied = false;
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- {
- rtx op = canon_reg_for_combine (XEXP (x, i), reg);
- if (op != XEXP (x, i))
- {
- if (!copied)
- {
- copied = true;
- x = copy_rtx (x);
- }
- XEXP (x, i) = op;
- }
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
- if (op != XVECEXP (x, i, j))
- {
- if (!copied)
- {
- copied = true;
- x = copy_rtx (x);
- }
- XVECEXP (x, i, j) = op;
- }
- }
- }
-
- break;
- }
-
- return x;
-}
-
-/* Return X converted to MODE. If the value is already truncated to
- MODE we can just return a subreg even though in the general case we
- would need an explicit truncation. */
-
-static rtx
-gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
-{
- if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
- || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (GET_MODE (x)))
- || (REG_P (x) && reg_truncated_to_mode (mode, x)))
- return gen_lowpart (mode, x);
- else
- return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
-}
-
-/* See if X can be simplified knowing that we will only refer to it in
- MODE and will only refer to those bits that are nonzero in MASK.
- If other bits are being computed or if masking operations are done
- that select a superset of the bits in MASK, they can sometimes be
- ignored.
-
- Return a possibly simplified expression, but always convert X to
- MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
-
- If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
- are all off in X. This is used when X will be complemented, by either
- NOT, NEG, or XOR. */
-
-static rtx
-force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
- int just_select)
-{
- enum rtx_code code = GET_CODE (x);
- int next_select = just_select || code == XOR || code == NOT || code == NEG;
- enum machine_mode op_mode;
- unsigned HOST_WIDE_INT fuller_mask, nonzero;
- rtx op0, op1, temp;
-
- /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
- code below will do the wrong thing since the mode of such an
- expression is VOIDmode.
-
- Also do nothing if X is a CLOBBER; this can happen if X was
- the return value from a call to gen_lowpart. */
- if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
- return x;
-
- /* We want to perform the operation is its present mode unless we know
- that the operation is valid in MODE, in which case we do the operation
- in MODE. */
- op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
- && have_insn_for (code, mode))
- ? mode : GET_MODE (x));
-
- /* It is not valid to do a right-shift in a narrower mode
- than the one it came in with. */
- if ((code == LSHIFTRT || code == ASHIFTRT)
- && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
- op_mode = GET_MODE (x);
-
- /* Truncate MASK to fit OP_MODE. */
- if (op_mode)
- mask &= GET_MODE_MASK (op_mode);
-
- /* When we have an arithmetic operation, or a shift whose count we
- do not know, we need to assume that all bits up to the highest-order
- bit in MASK will be needed. This is how we form such a mask. */
- if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
- fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
- else
- fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
- - 1);
-
- /* Determine what bits of X are guaranteed to be (non)zero. */
- nonzero = nonzero_bits (x, mode);
-
- /* If none of the bits in X are needed, return a zero. */
- if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
- x = const0_rtx;
-
- /* If X is a CONST_INT, return a new one. Do this here since the
- test below will fail. */
- if (GET_CODE (x) == CONST_INT)
- {
- if (SCALAR_INT_MODE_P (mode))
- return gen_int_mode (INTVAL (x) & mask, mode);
- else
- {
- x = GEN_INT (INTVAL (x) & mask);
- return gen_lowpart_common (mode, x);
- }
- }
-
- /* If X is narrower than MODE and we want all the bits in X's mode, just
- get X in the proper mode. */
- if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
- && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
- return gen_lowpart (mode, x);
-
- switch (code)
- {
- case CLOBBER:
- /* If X is a (clobber (const_int)), return it since we know we are
- generating something that won't match. */
- return x;
-
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- case ZERO_EXTRACT:
- case SIGN_EXTRACT:
- x = expand_compound_operation (x);
- if (GET_CODE (x) != code)
- return force_to_mode (x, mode, mask, next_select);
- break;
-
- case SUBREG:
- if (subreg_lowpart_p (x)
- /* We can ignore the effect of this SUBREG if it narrows the mode or
- if the constant masks to zero all the bits the mode doesn't
- have. */
- && ((GET_MODE_SIZE (GET_MODE (x))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- || (0 == (mask
- & GET_MODE_MASK (GET_MODE (x))
- & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
- return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
- break;
-
- case AND:
- /* If this is an AND with a constant, convert it into an AND
- whose constant is the AND of that constant with MASK. If it
- remains an AND of MASK, delete it since it is redundant. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
- mask & INTVAL (XEXP (x, 1)));
-
- /* If X is still an AND, see if it is an AND with a mask that
- is just some low-order bits. If so, and it is MASK, we don't
- need it. */
-
- if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
- && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
- == mask))
- x = XEXP (x, 0);
-
- /* If it remains an AND, try making another AND with the bits
- in the mode mask that aren't in MASK turned on. If the
- constant in the AND is wide enough, this might make a
- cheaper constant. */
-
- if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_MODE_MASK (GET_MODE (x)) != mask
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
- {
- HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
- | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
- int width = GET_MODE_BITSIZE (GET_MODE (x));
- rtx y;
-
- /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
- number, sign extend it. */
- if (width > 0 && width < HOST_BITS_PER_WIDE_INT
- && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
- cval |= (HOST_WIDE_INT) -1 << width;
-
- y = simplify_gen_binary (AND, GET_MODE (x),
- XEXP (x, 0), GEN_INT (cval));
- if (rtx_cost (y, SET) < rtx_cost (x, SET))
- x = y;
- }
-
- break;
- }
-
- goto binop;
-
- case PLUS:
- /* In (and (plus FOO C1) M), if M is a mask that just turns off
- low-order bits (as in an alignment operation) and FOO is already
- aligned to that boundary, mask C1 to that boundary as well.
- This may eliminate that PLUS and, later, the AND. */
-
- {
- unsigned int width = GET_MODE_BITSIZE (mode);
- unsigned HOST_WIDE_INT smask = mask;
-
- /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
- number, sign extend it. */
-
- if (width < HOST_BITS_PER_WIDE_INT
- && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
- smask |= (HOST_WIDE_INT) -1 << width;
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && exact_log2 (- smask) >= 0
- && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
- && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
- return force_to_mode (plus_constant (XEXP (x, 0),
- (INTVAL (XEXP (x, 1)) & smask)),
- mode, smask, next_select);
- }
-
- /* ... fall through ... */
-
- case MULT:
- /* For PLUS, MINUS and MULT, we need any bits less significant than the
- most significant bit in MASK since carries from those bits will
- affect the bits we are interested in. */
- mask = fuller_mask;
- goto binop;
-
- case MINUS:
- /* If X is (minus C Y) where C's least set bit is larger than any bit
- in the mask, then we may replace with (neg Y). */
- if (GET_CODE (XEXP (x, 0)) == CONST_INT
- && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
- & -INTVAL (XEXP (x, 0))))
- > mask))
- {
- x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
- GET_MODE (x));
- return force_to_mode (x, mode, mask, next_select);
- }
-
- /* Similarly, if C contains every bit in the fuller_mask, then we may
- replace with (not Y). */
- if (GET_CODE (XEXP (x, 0)) == CONST_INT
- && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
- == INTVAL (XEXP (x, 0))))
- {
- x = simplify_gen_unary (NOT, GET_MODE (x),
- XEXP (x, 1), GET_MODE (x));
- return force_to_mode (x, mode, mask, next_select);
- }
-
- mask = fuller_mask;
- goto binop;
-
- case IOR:
- case XOR:
- /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
- LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
- operation which may be a bitfield extraction. Ensure that the
- constant we form is not wider than the mode of X. */
-
- if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
- && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && ((INTVAL (XEXP (XEXP (x, 0), 1))
- + floor_log2 (INTVAL (XEXP (x, 1))))
- < GET_MODE_BITSIZE (GET_MODE (x)))
- && (INTVAL (XEXP (x, 1))
- & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
- {
- temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
- << INTVAL (XEXP (XEXP (x, 0), 1)));
- temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
- XEXP (XEXP (x, 0), 0), temp);
- x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
- XEXP (XEXP (x, 0), 1));
- return force_to_mode (x, mode, mask, next_select);
- }
-
- binop:
- /* For most binary operations, just propagate into the operation and
- change the mode if we have an operation of that mode. */
-
- op0 = gen_lowpart_or_truncate (op_mode,
- force_to_mode (XEXP (x, 0), mode, mask,
- next_select));
- op1 = gen_lowpart_or_truncate (op_mode,
- force_to_mode (XEXP (x, 1), mode, mask,
- next_select));
-
- if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- x = simplify_gen_binary (code, op_mode, op0, op1);
- break;
-
- case ASHIFT:
- /* For left shifts, do the same, but just for the first operand.
- However, we cannot do anything with shifts where we cannot
- guarantee that the counts are smaller than the size of the mode
- because such a count will have a different meaning in a
- wider mode. */
-
- if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
- && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
- && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
- < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
- break;
-
- /* If the shift count is a constant and we can do arithmetic in
- the mode of the shift, refine which bits we need. Otherwise, use the
- conservative form of the mask. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
- && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
- mask >>= INTVAL (XEXP (x, 1));
- else
- mask = fuller_mask;
-
- op0 = gen_lowpart_or_truncate (op_mode,
- force_to_mode (XEXP (x, 0), op_mode,
- mask, next_select));
-
- if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
- x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
- break;
-
- case LSHIFTRT:
- /* Here we can only do something if the shift count is a constant,
- this shift constant is valid for the host, and we can do arithmetic
- in OP_MODE. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
- {
- rtx inner = XEXP (x, 0);
- unsigned HOST_WIDE_INT inner_mask;
-
- /* Select the mask of the bits we need for the shift operand. */
- inner_mask = mask << INTVAL (XEXP (x, 1));
-
- /* We can only change the mode of the shift if we can do arithmetic
- in the mode of the shift and INNER_MASK is no wider than the
- width of X's mode. */
- if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
- op_mode = GET_MODE (x);
-
- inner = force_to_mode (inner, op_mode, inner_mask, next_select);
-
- if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
- x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
- }
-
- /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
- shift and AND produces only copies of the sign bit (C2 is one less
- than a power of two), we can do this with just a shift. */
-
- if (GET_CODE (x) == LSHIFTRT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- /* The shift puts one of the sign bit copies in the least significant
- bit. */
- && ((INTVAL (XEXP (x, 1))
- + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
- >= GET_MODE_BITSIZE (GET_MODE (x)))
- && exact_log2 (mask + 1) >= 0
- /* Number of bits left after the shift must be more than the mask
- needs. */
- && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
- <= GET_MODE_BITSIZE (GET_MODE (x)))
- /* Must be more sign bit copies than the mask needs. */
- && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
- >= exact_log2 (mask + 1)))
- x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
- GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
- - exact_log2 (mask + 1)));
-
- goto shiftrt;
-
- case ASHIFTRT:
- /* If we are just looking for the sign bit, we don't need this shift at
- all, even if it has a variable count. */
- if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
- && (mask == ((unsigned HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
- return force_to_mode (XEXP (x, 0), mode, mask, next_select);
-
- /* If this is a shift by a constant, get a mask that contains those bits
- that are not copies of the sign bit. We then have two cases: If
- MASK only includes those bits, this can be a logical shift, which may
- allow simplifications. If MASK is a single-bit field not within
- those bits, we are requesting a copy of the sign bit and hence can
- shift the sign bit to the appropriate location. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- int i;
-
- /* If the considered data is wider than HOST_WIDE_INT, we can't
- represent a mask for all its bits in a single scalar.
- But we only care about the lower bits, so calculate these. */
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
- {
- nonzero = ~(HOST_WIDE_INT) 0;
-
- /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
- is the number of bits a full-width mask would have set.
- We need only shift if these are fewer than nonzero can
- hold. If not, we must keep all bits set in nonzero. */
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
- < HOST_BITS_PER_WIDE_INT)
- nonzero >>= INTVAL (XEXP (x, 1))
- + HOST_BITS_PER_WIDE_INT
- - GET_MODE_BITSIZE (GET_MODE (x)) ;
- }
- else
- {
- nonzero = GET_MODE_MASK (GET_MODE (x));
- nonzero >>= INTVAL (XEXP (x, 1));
- }
-
- if ((mask & ~nonzero) == 0)
- {
- x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
- XEXP (x, 0), INTVAL (XEXP (x, 1)));
- if (GET_CODE (x) != ASHIFTRT)
- return force_to_mode (x, mode, mask, next_select);
- }
-
- else if ((i = exact_log2 (mask)) >= 0)
- {
- x = simplify_shift_const
- (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
- GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
-
- if (GET_CODE (x) != ASHIFTRT)
- return force_to_mode (x, mode, mask, next_select);
- }
- }
-
- /* If MASK is 1, convert this to an LSHIFTRT. This can be done
- even if the shift count isn't a constant. */
- if (mask == 1)
- x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
- XEXP (x, 0), XEXP (x, 1));
-
- shiftrt:
-
- /* If this is a zero- or sign-extension operation that just affects bits
- we don't care about, remove it. Be sure the call above returned
- something that is still a shift. */
-
- if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && (INTVAL (XEXP (x, 1))
- <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
- && GET_CODE (XEXP (x, 0)) == ASHIFT
- && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
- return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
- next_select);
-
- break;
-
- case ROTATE:
- case ROTATERT:
- /* If the shift count is constant and we can do computations
- in the mode of X, compute where the bits we care about are.
- Otherwise, we can't do anything. Don't change the mode of
- the shift or propagate MODE into the shift, though. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0)
- {
- temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
- GET_MODE (x), GEN_INT (mask),
- XEXP (x, 1));
- if (temp && GET_CODE (temp) == CONST_INT)
- SUBST (XEXP (x, 0),
- force_to_mode (XEXP (x, 0), GET_MODE (x),
- INTVAL (temp), next_select));
- }
- break;
-
- case NEG:
- /* If we just want the low-order bit, the NEG isn't needed since it
- won't change the low-order bit. */
- if (mask == 1)
- return force_to_mode (XEXP (x, 0), mode, mask, just_select);
-
- /* We need any bits less significant than the most significant bit in
- MASK since carries from those bits will affect the bits we are
- interested in. */
- mask = fuller_mask;
- goto unop;
-
- case NOT:
- /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
- same as the XOR case above. Ensure that the constant we form is not
- wider than the mode of X. */
-
- if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
- && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
- < GET_MODE_BITSIZE (GET_MODE (x)))
- && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
- {
- temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
- GET_MODE (x));
- temp = simplify_gen_binary (XOR, GET_MODE (x),
- XEXP (XEXP (x, 0), 0), temp);
- x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
- temp, XEXP (XEXP (x, 0), 1));
-
- return force_to_mode (x, mode, mask, next_select);
- }
-
- /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
- use the full mask inside the NOT. */
- mask = fuller_mask;
-
- unop:
- op0 = gen_lowpart_or_truncate (op_mode,
- force_to_mode (XEXP (x, 0), mode, mask,
- next_select));
- if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
- x = simplify_gen_unary (code, op_mode, op0, op_mode);
- break;
-
- case NE:
- /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
- in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
- which is equal to STORE_FLAG_VALUE. */
- if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
- && GET_MODE (XEXP (x, 0)) == mode
- && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
- && (nonzero_bits (XEXP (x, 0), mode)
- == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
- return force_to_mode (XEXP (x, 0), mode, mask, next_select);
-
- break;
-
- case IF_THEN_ELSE:
- /* We have no way of knowing if the IF_THEN_ELSE can itself be
- written in a narrower mode. We play it safe and do not do so. */
-
- SUBST (XEXP (x, 1),
- gen_lowpart_or_truncate (GET_MODE (x),
- force_to_mode (XEXP (x, 1), mode,
- mask, next_select)));
- SUBST (XEXP (x, 2),
- gen_lowpart_or_truncate (GET_MODE (x),
- force_to_mode (XEXP (x, 2), mode,
- mask, next_select)));
- break;
-
- default:
- break;
- }
-
- /* Ensure we return a value of the proper mode. */
- return gen_lowpart_or_truncate (mode, x);
-}
-
-/* Return nonzero if X is an expression that has one of two values depending on
- whether some other value is zero or nonzero. In that case, we return the
- value that is being tested, *PTRUE is set to the value if the rtx being
- returned has a nonzero value, and *PFALSE is set to the other alternative.
-
- If we return zero, we set *PTRUE and *PFALSE to X. */
-
-static rtx
-if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
-{
- enum machine_mode mode = GET_MODE (x);
- enum rtx_code code = GET_CODE (x);
- rtx cond0, cond1, true0, true1, false0, false1;
- unsigned HOST_WIDE_INT nz;
-
- /* If we are comparing a value against zero, we are done. */
- if ((code == NE || code == EQ)
- && XEXP (x, 1) == const0_rtx)
- {
- *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
- *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
- return XEXP (x, 0);
- }
-
- /* If this is a unary operation whose operand has one of two values, apply
- our opcode to compute those values. */
- else if (UNARY_P (x)
- && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
- {
- *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
- *pfalse = simplify_gen_unary (code, mode, false0,
- GET_MODE (XEXP (x, 0)));
- return cond0;
- }
-
- /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
- make can't possibly match and would suppress other optimizations. */
- else if (code == COMPARE)
- ;
-
- /* If this is a binary operation, see if either side has only one of two
- values. If either one does or if both do and they are conditional on
- the same value, compute the new true and false values. */
- else if (BINARY_P (x))
- {
- cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
- cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
-
- if ((cond0 != 0 || cond1 != 0)
- && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
- {
- /* If if_then_else_cond returned zero, then true/false are the
- same rtl. We must copy one of them to prevent invalid rtl
- sharing. */
- if (cond0 == 0)
- true0 = copy_rtx (true0);
- else if (cond1 == 0)
- true1 = copy_rtx (true1);
-
- if (COMPARISON_P (x))
- {
- *ptrue = simplify_gen_relational (code, mode, VOIDmode,
- true0, true1);
- *pfalse = simplify_gen_relational (code, mode, VOIDmode,
- false0, false1);
- }
- else
- {
- *ptrue = simplify_gen_binary (code, mode, true0, true1);
- *pfalse = simplify_gen_binary (code, mode, false0, false1);
- }
-
- return cond0 ? cond0 : cond1;
- }
-
- /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
- operands is zero when the other is nonzero, and vice-versa,
- and STORE_FLAG_VALUE is 1 or -1. */
-
- if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && (code == PLUS || code == IOR || code == XOR || code == MINUS
- || code == UMAX)
- && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
- {
- rtx op0 = XEXP (XEXP (x, 0), 1);
- rtx op1 = XEXP (XEXP (x, 1), 1);
-
- cond0 = XEXP (XEXP (x, 0), 0);
- cond1 = XEXP (XEXP (x, 1), 0);
-
- if (COMPARISON_P (cond0)
- && COMPARISON_P (cond1)
- && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
- && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
- && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
- || ((swap_condition (GET_CODE (cond0))
- == reversed_comparison_code (cond1, NULL))
- && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
- && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
- && ! side_effects_p (x))
- {
- *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
- *pfalse = simplify_gen_binary (MULT, mode,
- (code == MINUS
- ? simplify_gen_unary (NEG, mode,
- op1, mode)
- : op1),
- const_true_rtx);
- return cond0;
- }
- }
-
- /* Similarly for MULT, AND and UMIN, except that for these the result
- is always zero. */
- if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && (code == MULT || code == AND || code == UMIN)
- && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
- {
- cond0 = XEXP (XEXP (x, 0), 0);
- cond1 = XEXP (XEXP (x, 1), 0);
-
- if (COMPARISON_P (cond0)
- && COMPARISON_P (cond1)
- && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
- && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
- && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
- || ((swap_condition (GET_CODE (cond0))
- == reversed_comparison_code (cond1, NULL))
- && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
- && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
- && ! side_effects_p (x))
- {
- *ptrue = *pfalse = const0_rtx;
- return cond0;
- }
- }
- }
-
- else if (code == IF_THEN_ELSE)
- {
- /* If we have IF_THEN_ELSE already, extract the condition and
- canonicalize it if it is NE or EQ. */
- cond0 = XEXP (x, 0);
- *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
- if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
- return XEXP (cond0, 0);
- else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
- {
- *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
- return XEXP (cond0, 0);
- }
- else
- return cond0;
- }
-
- /* If X is a SUBREG, we can narrow both the true and false values
- if the inner expression, if there is a condition. */
- else if (code == SUBREG
- && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
- &true0, &false0)))
- {
- true0 = simplify_gen_subreg (mode, true0,
- GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
- false0 = simplify_gen_subreg (mode, false0,
- GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
- if (true0 && false0)
- {
- *ptrue = true0;
- *pfalse = false0;
- return cond0;
- }
- }
-
- /* If X is a constant, this isn't special and will cause confusions
- if we treat it as such. Likewise if it is equivalent to a constant. */
- else if (CONSTANT_P (x)
- || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
- ;
-
- /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
- will be least confusing to the rest of the compiler. */
- else if (mode == BImode)
- {
- *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
- return x;
- }
-
- /* If X is known to be either 0 or -1, those are the true and
- false values when testing X. */
- else if (x == constm1_rtx || x == const0_rtx
- || (mode != VOIDmode
- && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
- {
- *ptrue = constm1_rtx, *pfalse = const0_rtx;
- return x;
- }
-
- /* Likewise for 0 or a single bit. */
- else if (SCALAR_INT_MODE_P (mode)
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
- {
- *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
- return x;
- }
-
- /* Otherwise fail; show no condition with true and false values the same. */
- *ptrue = *pfalse = x;
- return 0;
-}
-
-/* Return the value of expression X given the fact that condition COND
- is known to be true when applied to REG as its first operand and VAL
- as its second. X is known to not be shared and so can be modified in
- place.
-
- We only handle the simplest cases, and specifically those cases that
- arise with IF_THEN_ELSE expressions. */
-
-static rtx
-known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
-{
- enum rtx_code code = GET_CODE (x);
- rtx temp;
- const char *fmt;
- int i, j;
-
- if (side_effects_p (x))
- return x;
-
- /* If either operand of the condition is a floating point value,
- then we have to avoid collapsing an EQ comparison. */
- if (cond == EQ
- && rtx_equal_p (x, reg)
- && ! FLOAT_MODE_P (GET_MODE (x))
- && ! FLOAT_MODE_P (GET_MODE (val)))
- return val;
-
- if (cond == UNEQ && rtx_equal_p (x, reg))
- return val;
-
- /* If X is (abs REG) and we know something about REG's relationship
- with zero, we may be able to simplify this. */
-
- if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
- switch (cond)
- {
- case GE: case GT: case EQ:
- return XEXP (x, 0);
- case LT: case LE:
- return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
- XEXP (x, 0),
- GET_MODE (XEXP (x, 0)));
- default:
- break;
- }
-
- /* The only other cases we handle are MIN, MAX, and comparisons if the
- operands are the same as REG and VAL. */
-
- else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
- {
- if (rtx_equal_p (XEXP (x, 0), val))
- cond = swap_condition (cond), temp = val, val = reg, reg = temp;
-
- if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
- {
- if (COMPARISON_P (x))
- {
- if (comparison_dominates_p (cond, code))
- return const_true_rtx;
-
- code = reversed_comparison_code (x, NULL);
- if (code != UNKNOWN
- && comparison_dominates_p (cond, code))
- return const0_rtx;
- else
- return x;
- }
- else if (code == SMAX || code == SMIN
- || code == UMIN || code == UMAX)
- {
- int unsignedp = (code == UMIN || code == UMAX);
-
- /* Do not reverse the condition when it is NE or EQ.
- This is because we cannot conclude anything about
- the value of 'SMAX (x, y)' when x is not equal to y,
- but we can when x equals y. */
- if ((code == SMAX || code == UMAX)
- && ! (cond == EQ || cond == NE))
- cond = reverse_condition (cond);
-
- switch (cond)
- {
- case GE: case GT:
- return unsignedp ? x : XEXP (x, 1);
- case LE: case LT:
- return unsignedp ? x : XEXP (x, 0);
- case GEU: case GTU:
- return unsignedp ? XEXP (x, 1) : x;
- case LEU: case LTU:
- return unsignedp ? XEXP (x, 0) : x;
- default:
- break;
- }
- }
- }
- }
- else if (code == SUBREG)
- {
- enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
- rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
-
- if (SUBREG_REG (x) != r)
- {
- /* We must simplify subreg here, before we lose track of the
- original inner_mode. */
- new = simplify_subreg (GET_MODE (x), r,
- inner_mode, SUBREG_BYTE (x));
- if (new)
- return new;
- else
- SUBST (SUBREG_REG (x), r);
- }
-
- return x;
- }
- /* We don't have to handle SIGN_EXTEND here, because even in the
- case of replacing something with a modeless CONST_INT, a
- CONST_INT is already (supposed to be) a valid sign extension for
- its narrower mode, which implies it's already properly
- sign-extended for the wider mode. Now, for ZERO_EXTEND, the
- story is different. */
- else if (code == ZERO_EXTEND)
- {
- enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
- rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
-
- if (XEXP (x, 0) != r)
- {
- /* We must simplify the zero_extend here, before we lose
- track of the original inner_mode. */
- new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
- r, inner_mode);
- if (new)
- return new;
- else
- SUBST (XEXP (x, 0), r);
- }
-
- return x;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
- cond, reg, val));
- }
-
- return x;
-}
-
-/* See if X and Y are equal for the purposes of seeing if we can rewrite an
- assignment as a field assignment. */
-
-static int
-rtx_equal_for_field_assignment_p (rtx x, rtx y)
-{
- if (x == y || rtx_equal_p (x, y))
- return 1;
-
- if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
- Note that all SUBREGs of MEM are paradoxical; otherwise they
- would have been rewritten. */
- if (MEM_P (x) && GET_CODE (y) == SUBREG
- && MEM_P (SUBREG_REG (y))
- && rtx_equal_p (SUBREG_REG (y),
- gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
- return 1;
-
- if (MEM_P (y) && GET_CODE (x) == SUBREG
- && MEM_P (SUBREG_REG (x))
- && rtx_equal_p (SUBREG_REG (x),
- gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
- return 1;
-
- /* We used to see if get_last_value of X and Y were the same but that's
- not correct. In one direction, we'll cause the assignment to have
- the wrong destination and in the case, we'll import a register into this
- insn that might have already have been dead. So fail if none of the
- above cases are true. */
- return 0;
-}
-
-/* See if X, a SET operation, can be rewritten as a bit-field assignment.
- Return that assignment if so.
-
- We only handle the most common cases. */
-
-static rtx
-make_field_assignment (rtx x)
-{
- rtx dest = SET_DEST (x);
- rtx src = SET_SRC (x);
- rtx assign;
- rtx rhs, lhs;
- HOST_WIDE_INT c1;
- HOST_WIDE_INT pos;
- unsigned HOST_WIDE_INT len;
- rtx other;
- enum machine_mode mode;
-
- /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
- a clear of a one-bit field. We will have changed it to
- (and (rotate (const_int -2) POS) DEST), so check for that. Also check
- for a SUBREG. */
-
- if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
- && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
- && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
- && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
- {
- assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
- 1, 1, 1, 0);
- if (assign != 0)
- return gen_rtx_SET (VOIDmode, assign, const0_rtx);
- return x;
- }
-
- if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
- && subreg_lowpart_p (XEXP (src, 0))
- && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
- && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
- && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
- && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
- && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
- {
- assign = make_extraction (VOIDmode, dest, 0,
- XEXP (SUBREG_REG (XEXP (src, 0)), 1),
- 1, 1, 1, 0);
- if (assign != 0)
- return gen_rtx_SET (VOIDmode, assign, const0_rtx);
- return x;
- }
-
- /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
- one-bit field. */
- if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
- && XEXP (XEXP (src, 0), 0) == const1_rtx
- && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
- {
- assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
- 1, 1, 1, 0);
- if (assign != 0)
- return gen_rtx_SET (VOIDmode, assign, const1_rtx);
- return x;
- }
-
- /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
- SRC is an AND with all bits of that field set, then we can discard
- the AND. */
- if (GET_CODE (dest) == ZERO_EXTRACT
- && GET_CODE (XEXP (dest, 1)) == CONST_INT
- && GET_CODE (src) == AND
- && GET_CODE (XEXP (src, 1)) == CONST_INT)
- {
- HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
- unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
- unsigned HOST_WIDE_INT ze_mask;
-
- if (width >= HOST_BITS_PER_WIDE_INT)
- ze_mask = -1;
- else
- ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
-
- /* Complete overlap. We can remove the source AND. */
- if ((and_mask & ze_mask) == ze_mask)
- return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
-
- /* Partial overlap. We can reduce the source AND. */
- if ((and_mask & ze_mask) != and_mask)
- {
- mode = GET_MODE (src);
- src = gen_rtx_AND (mode, XEXP (src, 0),
- gen_int_mode (and_mask & ze_mask, mode));
- return gen_rtx_SET (VOIDmode, dest, src);
- }
- }
-
- /* The other case we handle is assignments into a constant-position
- field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
- a mask that has all one bits except for a group of zero bits and
- OTHER is known to have zeros where C1 has ones, this is such an
- assignment. Compute the position and length from C1. Shift OTHER
- to the appropriate position, force it to the required mode, and
- make the extraction. Check for the AND in both operands. */
-
- if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
- return x;
-
- rhs = expand_compound_operation (XEXP (src, 0));
- lhs = expand_compound_operation (XEXP (src, 1));
-
- if (GET_CODE (rhs) == AND
- && GET_CODE (XEXP (rhs, 1)) == CONST_INT
- && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
- c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
- else if (GET_CODE (lhs) == AND
- && GET_CODE (XEXP (lhs, 1)) == CONST_INT
- && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
- c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
- else
- return x;
-
- pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
- if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
- || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
- || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
- return x;
-
- assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
- if (assign == 0)
- return x;
-
- /* The mode to use for the source is the mode of the assignment, or of
- what is inside a possible STRICT_LOW_PART. */
- mode = (GET_CODE (assign) == STRICT_LOW_PART
- ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
-
- /* Shift OTHER right POS places and make it the source, restricting it
- to the proper length and mode. */
-
- src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
- GET_MODE (src),
- other, pos),
- dest);
- src = force_to_mode (src, mode,
- GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
- ? ~(unsigned HOST_WIDE_INT) 0
- : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
- 0);
-
- /* If SRC is masked by an AND that does not make a difference in
- the value being stored, strip it. */
- if (GET_CODE (assign) == ZERO_EXTRACT
- && GET_CODE (XEXP (assign, 1)) == CONST_INT
- && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
- && GET_CODE (src) == AND
- && GET_CODE (XEXP (src, 1)) == CONST_INT
- && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
- == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
- src = XEXP (src, 0);
-
- return gen_rtx_SET (VOIDmode, assign, src);
-}
-
-/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
- if so. */
-
-static rtx
-apply_distributive_law (rtx x)
-{
- enum rtx_code code = GET_CODE (x);
- enum rtx_code inner_code;
- rtx lhs, rhs, other;
- rtx tem;
-
- /* Distributivity is not true for floating point as it can change the
- value. So we don't do it unless -funsafe-math-optimizations. */
- if (FLOAT_MODE_P (GET_MODE (x))
- && ! flag_unsafe_math_optimizations)
- return x;
-
- /* The outer operation can only be one of the following: */
- if (code != IOR && code != AND && code != XOR
- && code != PLUS && code != MINUS)
- return x;
-
- lhs = XEXP (x, 0);
- rhs = XEXP (x, 1);
-
- /* If either operand is a primitive we can't do anything, so get out
- fast. */
- if (OBJECT_P (lhs) || OBJECT_P (rhs))
- return x;
-
- lhs = expand_compound_operation (lhs);
- rhs = expand_compound_operation (rhs);
- inner_code = GET_CODE (lhs);
- if (inner_code != GET_CODE (rhs))
- return x;
-
- /* See if the inner and outer operations distribute. */
- switch (inner_code)
- {
- case LSHIFTRT:
- case ASHIFTRT:
- case AND:
- case IOR:
- /* These all distribute except over PLUS. */
- if (code == PLUS || code == MINUS)
- return x;
- break;
-
- case MULT:
- if (code != PLUS && code != MINUS)
- return x;
- break;
-
- case ASHIFT:
- /* This is also a multiply, so it distributes over everything. */
- break;
-
- case SUBREG:
- /* Non-paradoxical SUBREGs distributes over all operations,
- provided the inner modes and byte offsets are the same, this
- is an extraction of a low-order part, we don't convert an fp
- operation to int or vice versa, this is not a vector mode,
- and we would not be converting a single-word operation into a
- multi-word operation. The latter test is not required, but
- it prevents generating unneeded multi-word operations. Some
- of the previous tests are redundant given the latter test,
- but are retained because they are required for correctness.
-
- We produce the result slightly differently in this case. */
-
- if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
- || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
- || ! subreg_lowpart_p (lhs)
- || (GET_MODE_CLASS (GET_MODE (lhs))
- != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
- || (GET_MODE_SIZE (GET_MODE (lhs))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
- || VECTOR_MODE_P (GET_MODE (lhs))
- || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
- /* Result might need to be truncated. Don't change mode if
- explicit truncation is needed. */
- || !TRULY_NOOP_TRUNCATION
- (GET_MODE_BITSIZE (GET_MODE (x)),
- GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
- return x;
-
- tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
- SUBREG_REG (lhs), SUBREG_REG (rhs));
- return gen_lowpart (GET_MODE (x), tem);
-
- default:
- return x;
- }
-
- /* Set LHS and RHS to the inner operands (A and B in the example
- above) and set OTHER to the common operand (C in the example).
- There is only one way to do this unless the inner operation is
- commutative. */
- if (COMMUTATIVE_ARITH_P (lhs)
- && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
- other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
- else if (COMMUTATIVE_ARITH_P (lhs)
- && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
- other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
- else if (COMMUTATIVE_ARITH_P (lhs)
- && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
- other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
- else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
- other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
- else
- return x;
-
- /* Form the new inner operation, seeing if it simplifies first. */
- tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
-
- /* There is one exception to the general way of distributing:
- (a | c) ^ (b | c) -> (a ^ b) & ~c */
- if (code == XOR && inner_code == IOR)
- {
- inner_code = AND;
- other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
- }
-
- /* We may be able to continuing distributing the result, so call
- ourselves recursively on the inner operation before forming the
- outer operation, which we return. */
- return simplify_gen_binary (inner_code, GET_MODE (x),
- apply_distributive_law (tem), other);
-}
-
-/* See if X is of the form (* (+ A B) C), and if so convert to
- (+ (* A C) (* B C)) and try to simplify.
-
- Most of the time, this results in no change. However, if some of
- the operands are the same or inverses of each other, simplifications
- will result.
-
- For example, (and (ior A B) (not B)) can occur as the result of
- expanding a bit field assignment. When we apply the distributive
- law to this, we get (ior (and (A (not B))) (and (B (not B)))),
- which then simplifies to (and (A (not B))).
-
- Note that no checks happen on the validity of applying the inverse
- distributive law. This is pointless since we can do it in the
- few places where this routine is called.
-
- N is the index of the term that is decomposed (the arithmetic operation,
- i.e. (+ A B) in the first example above). !N is the index of the term that
- is distributed, i.e. of C in the first example above. */
-static rtx
-distribute_and_simplify_rtx (rtx x, int n)
-{
- enum machine_mode mode;
- enum rtx_code outer_code, inner_code;
- rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
-
- decomposed = XEXP (x, n);
- if (!ARITHMETIC_P (decomposed))
- return NULL_RTX;
-
- mode = GET_MODE (x);
- outer_code = GET_CODE (x);
- distributed = XEXP (x, !n);
-
- inner_code = GET_CODE (decomposed);
- inner_op0 = XEXP (decomposed, 0);
- inner_op1 = XEXP (decomposed, 1);
-
- /* Special case (and (xor B C) (not A)), which is equivalent to
- (xor (ior A B) (ior A C)) */
- if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
- {
- distributed = XEXP (distributed, 0);
- outer_code = IOR;
- }
-
- if (n == 0)
- {
- /* Distribute the second term. */
- new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
- new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
- }
- else
- {
- /* Distribute the first term. */
- new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
- new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
- }
-
- tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
- new_op0, new_op1));
- if (GET_CODE (tmp) != outer_code
- && rtx_cost (tmp, SET) < rtx_cost (x, SET))
- return tmp;
-
- return NULL_RTX;
-}
-
-/* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
- in MODE. Return an equivalent form, if different from (and VAROP
- (const_int CONSTOP)). Otherwise, return NULL_RTX. */
-
-static rtx
-simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
- unsigned HOST_WIDE_INT constop)
-{
- unsigned HOST_WIDE_INT nonzero;
- unsigned HOST_WIDE_INT orig_constop;
- rtx orig_varop;
- int i;
-
- orig_varop = varop;
- orig_constop = constop;
- if (GET_CODE (varop) == CLOBBER)
- return NULL_RTX;
-
- /* Simplify VAROP knowing that we will be only looking at some of the
- bits in it.
-
- Note by passing in CONSTOP, we guarantee that the bits not set in
- CONSTOP are not significant and will never be examined. We must
- ensure that is the case by explicitly masking out those bits
- before returning. */
- varop = force_to_mode (varop, mode, constop, 0);
-
- /* If VAROP is a CLOBBER, we will fail so return it. */
- if (GET_CODE (varop) == CLOBBER)
- return varop;
-
- /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
- to VAROP and return the new constant. */
- if (GET_CODE (varop) == CONST_INT)
- return gen_int_mode (INTVAL (varop) & constop, mode);
-
- /* See what bits may be nonzero in VAROP. Unlike the general case of
- a call to nonzero_bits, here we don't care about bits outside
- MODE. */
-
- nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
-
- /* Turn off all bits in the constant that are known to already be zero.
- Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
- which is tested below. */
-
- constop &= nonzero;
-
- /* If we don't have any bits left, return zero. */
- if (constop == 0)
- return const0_rtx;
-
- /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
- a power of two, we can replace this with an ASHIFT. */
- if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
- && (i = exact_log2 (constop)) >= 0)
- return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
-
- /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
- or XOR, then try to apply the distributive law. This may eliminate
- operations if either branch can be simplified because of the AND.
- It may also make some cases more complex, but those cases probably
- won't match a pattern either with or without this. */
-
- if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
- return
- gen_lowpart
- (mode,
- apply_distributive_law
- (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
- simplify_and_const_int (NULL_RTX,
- GET_MODE (varop),
- XEXP (varop, 0),
- constop),
- simplify_and_const_int (NULL_RTX,
- GET_MODE (varop),
- XEXP (varop, 1),
- constop))));
-
- /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
- the AND and see if one of the operands simplifies to zero. If so, we
- may eliminate it. */
-
- if (GET_CODE (varop) == PLUS
- && exact_log2 (constop + 1) >= 0)
- {
- rtx o0, o1;
-
- o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
- o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
- if (o0 == const0_rtx)
- return o1;
- if (o1 == const0_rtx)
- return o0;
- }
-
- /* Make a SUBREG if necessary. If we can't make it, fail. */
- varop = gen_lowpart (mode, varop);
- if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
- return NULL_RTX;
-
- /* If we are only masking insignificant bits, return VAROP. */
- if (constop == nonzero)
- return varop;
-
- if (varop == orig_varop && constop == orig_constop)
- return NULL_RTX;
-
- /* Otherwise, return an AND. */
- return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
-}
-
-
-/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
- in MODE.
-
- Return an equivalent form, if different from X. Otherwise, return X. If
- X is zero, we are to always construct the equivalent form. */
-
-static rtx
-simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
- unsigned HOST_WIDE_INT constop)
-{
- rtx tem = simplify_and_const_int_1 (mode, varop, constop);
- if (tem)
- return tem;
-
- if (!x)
- x = simplify_gen_binary (AND, GET_MODE (varop), varop,
- gen_int_mode (constop, mode));
- if (GET_MODE (x) != mode)
- x = gen_lowpart (mode, x);
- return x;
-}
-
-/* Given a REG, X, compute which bits in X can be nonzero.
- We don't care about bits outside of those defined in MODE.
-
- For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
- a shift, AND, or zero_extract, we can do better. */
-
-static rtx
-reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
- rtx known_x ATTRIBUTE_UNUSED,
- enum machine_mode known_mode ATTRIBUTE_UNUSED,
- unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
- unsigned HOST_WIDE_INT *nonzero)
-{
- rtx tem;
-
- /* If X is a register whose nonzero bits value is current, use it.
- Otherwise, if X is a register whose value we can find, use that
- value. Otherwise, use the previously-computed global nonzero bits
- for this register. */
-
- if (reg_stat[REGNO (x)].last_set_value != 0
- && (reg_stat[REGNO (x)].last_set_mode == mode
- || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
- && GET_MODE_CLASS (mode) == MODE_INT))
- && (reg_stat[REGNO (x)].last_set_label == label_tick
- || (REGNO (x) >= FIRST_PSEUDO_REGISTER
- && REG_N_SETS (REGNO (x)) == 1
- && ! REGNO_REG_SET_P
- (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
- REGNO (x))))
- && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
- {
- *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
- return NULL;
- }
-
- tem = get_last_value (x);
-
- if (tem)
- {
-#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
- /* If X is narrower than MODE and TEM is a non-negative
- constant that would appear negative in the mode of X,
- sign-extend it for use in reg_nonzero_bits because some
- machines (maybe most) will actually do the sign-extension
- and this is the conservative approach.
-
- ??? For 2.5, try to tighten up the MD files in this regard
- instead of this kludge. */
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
- && GET_CODE (tem) == CONST_INT
- && INTVAL (tem) > 0
- && 0 != (INTVAL (tem)
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
- tem = GEN_INT (INTVAL (tem)
- | ((HOST_WIDE_INT) (-1)
- << GET_MODE_BITSIZE (GET_MODE (x))));
-#endif
- return tem;
- }
- else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
- {
- unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
- /* We don't know anything about the upper bits. */
- mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
- *nonzero &= mask;
- }
-
- return NULL;
-}
-
-/* Return the number of bits at the high-order end of X that are known to
- be equal to the sign bit. X will be used in mode MODE; if MODE is
- VOIDmode, X will be used in its own mode. The returned value will always
- be between 1 and the number of bits in MODE. */
-
-static rtx
-reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
- rtx known_x ATTRIBUTE_UNUSED,
- enum machine_mode known_mode
- ATTRIBUTE_UNUSED,
- unsigned int known_ret ATTRIBUTE_UNUSED,
- unsigned int *result)
-{
- rtx tem;
-
- if (reg_stat[REGNO (x)].last_set_value != 0
- && reg_stat[REGNO (x)].last_set_mode == mode
- && (reg_stat[REGNO (x)].last_set_label == label_tick
- || (REGNO (x) >= FIRST_PSEUDO_REGISTER
- && REG_N_SETS (REGNO (x)) == 1
- && ! REGNO_REG_SET_P
- (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
- REGNO (x))))
- && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
- {
- *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
- return NULL;
- }
-
- tem = get_last_value (x);
- if (tem != 0)
- return tem;
-
- if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
- && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
- *result = reg_stat[REGNO (x)].sign_bit_copies;
-
- return NULL;
-}
-
-/* Return the number of "extended" bits there are in X, when interpreted
- as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
- unsigned quantities, this is the number of high-order zero bits.
- For signed quantities, this is the number of copies of the sign bit
- minus 1. In both case, this function returns the number of "spare"
- bits. For example, if two quantities for which this function returns
- at least 1 are added, the addition is known not to overflow.
-
- This function will always return 0 unless called during combine, which
- implies that it must be called from a define_split. */
-
-unsigned int
-extended_count (rtx x, enum machine_mode mode, int unsignedp)
-{
- if (nonzero_sign_valid == 0)
- return 0;
-
- return (unsignedp
- ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
- - floor_log2 (nonzero_bits (x, mode)))
- : 0)
- : num_sign_bit_copies (x, mode) - 1);
-}
-
-/* This function is called from `simplify_shift_const' to merge two
- outer operations. Specifically, we have already found that we need
- to perform operation *POP0 with constant *PCONST0 at the outermost
- position. We would now like to also perform OP1 with constant CONST1
- (with *POP0 being done last).
-
- Return 1 if we can do the operation and update *POP0 and *PCONST0 with
- the resulting operation. *PCOMP_P is set to 1 if we would need to
- complement the innermost operand, otherwise it is unchanged.
-
- MODE is the mode in which the operation will be done. No bits outside
- the width of this mode matter. It is assumed that the width of this mode
- is smaller than or equal to HOST_BITS_PER_WIDE_INT.
-
- If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
- IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
- result is simply *PCONST0.
-
- If the resulting operation cannot be expressed as one operation, we
- return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
-
-static int
-merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
-{
- enum rtx_code op0 = *pop0;
- HOST_WIDE_INT const0 = *pconst0;
-
- const0 &= GET_MODE_MASK (mode);
- const1 &= GET_MODE_MASK (mode);
-
- /* If OP0 is an AND, clear unimportant bits in CONST1. */
- if (op0 == AND)
- const1 &= const0;
-
- /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
- if OP0 is SET. */
-
- if (op1 == UNKNOWN || op0 == SET)
- return 1;
-
- else if (op0 == UNKNOWN)
- op0 = op1, const0 = const1;
-
- else if (op0 == op1)
- {
- switch (op0)
- {
- case AND:
- const0 &= const1;
- break;
- case IOR:
- const0 |= const1;
- break;
- case XOR:
- const0 ^= const1;
- break;
- case PLUS:
- const0 += const1;
- break;
- case NEG:
- op0 = UNKNOWN;
- break;
- default:
- break;
- }
- }
-
- /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
- else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
- return 0;
-
- /* If the two constants aren't the same, we can't do anything. The
- remaining six cases can all be done. */
- else if (const0 != const1)
- return 0;
-
- else
- switch (op0)
- {
- case IOR:
- if (op1 == AND)
- /* (a & b) | b == b */
- op0 = SET;
- else /* op1 == XOR */
- /* (a ^ b) | b == a | b */
- {;}
- break;
-
- case XOR:
- if (op1 == AND)
- /* (a & b) ^ b == (~a) & b */
- op0 = AND, *pcomp_p = 1;
- else /* op1 == IOR */
- /* (a | b) ^ b == a & ~b */
- op0 = AND, const0 = ~const0;
- break;
-
- case AND:
- if (op1 == IOR)
- /* (a | b) & b == b */
- op0 = SET;
- else /* op1 == XOR */
- /* (a ^ b) & b) == (~a) & b */
- *pcomp_p = 1;
- break;
- default:
- break;
- }
-
- /* Check for NO-OP cases. */
- const0 &= GET_MODE_MASK (mode);
- if (const0 == 0
- && (op0 == IOR || op0 == XOR || op0 == PLUS))
- op0 = UNKNOWN;
- else if (const0 == 0 && op0 == AND)
- op0 = SET;
- else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
- && op0 == AND)
- op0 = UNKNOWN;
-
- /* ??? Slightly redundant with the above mask, but not entirely.
- Moving this above means we'd have to sign-extend the mode mask
- for the final test. */
- const0 = trunc_int_for_mode (const0, mode);
-
- *pop0 = op0;
- *pconst0 = const0;
-
- return 1;
-}
-
-/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
- The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
- simplify it. Otherwise, return a simplified value.
-
- The shift is normally computed in the widest mode we find in VAROP, as
- long as it isn't a different number of words than RESULT_MODE. Exceptions
- are ASHIFTRT and ROTATE, which are always done in their original mode. */
-
-static rtx
-simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
- rtx varop, int orig_count)
-{
- enum rtx_code orig_code = code;
- rtx orig_varop = varop;
- int count;
- enum machine_mode mode = result_mode;
- enum machine_mode shift_mode, tmode;
- unsigned int mode_words
- = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
- /* We form (outer_op (code varop count) (outer_const)). */
- enum rtx_code outer_op = UNKNOWN;
- HOST_WIDE_INT outer_const = 0;
- int complement_p = 0;
- rtx new, x;
-
- /* Make sure and truncate the "natural" shift on the way in. We don't
- want to do this inside the loop as it makes it more difficult to
- combine shifts. */
- if (SHIFT_COUNT_TRUNCATED)
- orig_count &= GET_MODE_BITSIZE (mode) - 1;
-
- /* If we were given an invalid count, don't do anything except exactly
- what was requested. */
-
- if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
- return NULL_RTX;
-
- count = orig_count;
-
- /* Unless one of the branches of the `if' in this loop does a `continue',
- we will `break' the loop after the `if'. */
-
- while (count != 0)
- {
- /* If we have an operand of (clobber (const_int 0)), fail. */
- if (GET_CODE (varop) == CLOBBER)
- return NULL_RTX;
-
- /* If we discovered we had to complement VAROP, leave. Making a NOT
- here would cause an infinite loop. */
- if (complement_p)
- break;
-
- /* Convert ROTATERT to ROTATE. */
- if (code == ROTATERT)
- {
- unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
- code = ROTATE;
- if (VECTOR_MODE_P (result_mode))
- count = bitsize / GET_MODE_NUNITS (result_mode) - count;
- else
- count = bitsize - count;
- }
-
- /* We need to determine what mode we will do the shift in. If the
- shift is a right shift or a ROTATE, we must always do it in the mode
- it was originally done in. Otherwise, we can do it in MODE, the
- widest mode encountered. */
- shift_mode
- = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
- ? result_mode : mode);
-
- /* Handle cases where the count is greater than the size of the mode
- minus 1. For ASHIFT, use the size minus one as the count (this can
- occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
- take the count modulo the size. For other shifts, the result is
- zero.
-
- Since these shifts are being produced by the compiler by combining
- multiple operations, each of which are defined, we know what the
- result is supposed to be. */
-
- if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
- {
- if (code == ASHIFTRT)
- count = GET_MODE_BITSIZE (shift_mode) - 1;
- else if (code == ROTATE || code == ROTATERT)
- count %= GET_MODE_BITSIZE (shift_mode);
- else
- {
- /* We can't simply return zero because there may be an
- outer op. */
- varop = const0_rtx;
- count = 0;
- break;
- }
- }
-
- /* An arithmetic right shift of a quantity known to be -1 or 0
- is a no-op. */
- if (code == ASHIFTRT
- && (num_sign_bit_copies (varop, shift_mode)
- == GET_MODE_BITSIZE (shift_mode)))
- {
- count = 0;
- break;
- }
-
- /* If we are doing an arithmetic right shift and discarding all but
- the sign bit copies, this is equivalent to doing a shift by the
- bitsize minus one. Convert it into that shift because it will often
- allow other simplifications. */
-
- if (code == ASHIFTRT
- && (count + num_sign_bit_copies (varop, shift_mode)
- >= GET_MODE_BITSIZE (shift_mode)))
- count = GET_MODE_BITSIZE (shift_mode) - 1;
-
- /* We simplify the tests below and elsewhere by converting
- ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
- `make_compound_operation' will convert it to an ASHIFTRT for
- those machines (such as VAX) that don't have an LSHIFTRT. */
- if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
- && code == ASHIFTRT
- && ((nonzero_bits (varop, shift_mode)
- & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
- == 0))
- code = LSHIFTRT;
-
- if (((code == LSHIFTRT
- && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
- && !(nonzero_bits (varop, shift_mode) >> count))
- || (code == ASHIFT
- && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
- && !((nonzero_bits (varop, shift_mode) << count)
- & GET_MODE_MASK (shift_mode))))
- && !side_effects_p (varop))
- varop = const0_rtx;
-
- switch (GET_CODE (varop))
- {
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- new = expand_compound_operation (varop);
- if (new != varop)
- {
- varop = new;
- continue;
- }
- break;
-
- case MEM:
- /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
- minus the width of a smaller mode, we can do this with a
- SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
- if ((code == ASHIFTRT || code == LSHIFTRT)
- && ! mode_dependent_address_p (XEXP (varop, 0))
- && ! MEM_VOLATILE_P (varop)
- && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
- MODE_INT, 1)) != BLKmode)
- {
- new = adjust_address_nv (varop, tmode,
- BYTES_BIG_ENDIAN ? 0
- : count / BITS_PER_UNIT);
-
- varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
- : ZERO_EXTEND, mode, new);
- count = 0;
- continue;
- }
- break;
-
- case SUBREG:
- /* If VAROP is a SUBREG, strip it as long as the inner operand has
- the same number of words as what we've seen so far. Then store
- the widest mode in MODE. */
- if (subreg_lowpart_p (varop)
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
- > GET_MODE_SIZE (GET_MODE (varop)))
- && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
- == mode_words)
- {
- varop = SUBREG_REG (varop);
- if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
- mode = GET_MODE (varop);
- continue;
- }
- break;
-
- case MULT:
- /* Some machines use MULT instead of ASHIFT because MULT
- is cheaper. But it is still better on those machines to
- merge two shifts into one. */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
- {
- varop
- = simplify_gen_binary (ASHIFT, GET_MODE (varop),
- XEXP (varop, 0),
- GEN_INT (exact_log2 (
- INTVAL (XEXP (varop, 1)))));
- continue;
- }
- break;
-
- case UDIV:
- /* Similar, for when divides are cheaper. */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
- {
- varop
- = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
- XEXP (varop, 0),
- GEN_INT (exact_log2 (
- INTVAL (XEXP (varop, 1)))));
- continue;
- }
- break;
-
- case ASHIFTRT:
- /* If we are extracting just the sign bit of an arithmetic
- right shift, that shift is not needed. However, the sign
- bit of a wider mode may be different from what would be
- interpreted as the sign bit in a narrower mode, so, if
- the result is narrower, don't discard the shift. */
- if (code == LSHIFTRT
- && count == (GET_MODE_BITSIZE (result_mode) - 1)
- && (GET_MODE_BITSIZE (result_mode)
- >= GET_MODE_BITSIZE (GET_MODE (varop))))
- {
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* ... fall through ... */
-
- case LSHIFTRT:
- case ASHIFT:
- case ROTATE:
- /* Here we have two nested shifts. The result is usually the
- AND of a new shift with a mask. We compute the result below. */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && INTVAL (XEXP (varop, 1)) >= 0
- && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
- && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && !VECTOR_MODE_P (result_mode))
- {
- enum rtx_code first_code = GET_CODE (varop);
- unsigned int first_count = INTVAL (XEXP (varop, 1));
- unsigned HOST_WIDE_INT mask;
- rtx mask_rtx;
-
- /* We have one common special case. We can't do any merging if
- the inner code is an ASHIFTRT of a smaller mode. However, if
- we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
- with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
- we can convert it to
- (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
- This simplifies certain SIGN_EXTEND operations. */
- if (code == ASHIFT && first_code == ASHIFTRT
- && count == (GET_MODE_BITSIZE (result_mode)
- - GET_MODE_BITSIZE (GET_MODE (varop))))
- {
- /* C3 has the low-order C1 bits zero. */
-
- mask = (GET_MODE_MASK (mode)
- & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
-
- varop = simplify_and_const_int (NULL_RTX, result_mode,
- XEXP (varop, 0), mask);
- varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
- varop, count);
- count = first_count;
- code = ASHIFTRT;
- continue;
- }
-
- /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
- than C1 high-order bits equal to the sign bit, we can convert
- this to either an ASHIFT or an ASHIFTRT depending on the
- two counts.
-
- We cannot do this if VAROP's mode is not SHIFT_MODE. */
-
- if (code == ASHIFTRT && first_code == ASHIFT
- && GET_MODE (varop) == shift_mode
- && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
- > first_count))
- {
- varop = XEXP (varop, 0);
- count -= first_count;
- if (count < 0)
- {
- count = -count;
- code = ASHIFT;
- }
-
- continue;
- }
-
- /* There are some cases we can't do. If CODE is ASHIFTRT,
- we can only do this if FIRST_CODE is also ASHIFTRT.
-
- We can't do the case when CODE is ROTATE and FIRST_CODE is
- ASHIFTRT.
-
- If the mode of this shift is not the mode of the outer shift,
- we can't do this if either shift is a right shift or ROTATE.
-
- Finally, we can't do any of these if the mode is too wide
- unless the codes are the same.
-
- Handle the case where the shift codes are the same
- first. */
-
- if (code == first_code)
- {
- if (GET_MODE (varop) != result_mode
- && (code == ASHIFTRT || code == LSHIFTRT
- || code == ROTATE))
- break;
-
- count += first_count;
- varop = XEXP (varop, 0);
- continue;
- }
-
- if (code == ASHIFTRT
- || (code == ROTATE && first_code == ASHIFTRT)
- || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
- || (GET_MODE (varop) != result_mode
- && (first_code == ASHIFTRT || first_code == LSHIFTRT
- || first_code == ROTATE
- || code == ROTATE)))
- break;
-
- /* To compute the mask to apply after the shift, shift the
- nonzero bits of the inner shift the same way the
- outer shift will. */
-
- mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
-
- mask_rtx
- = simplify_const_binary_operation (code, result_mode, mask_rtx,
- GEN_INT (count));
-
- /* Give up if we can't compute an outer operation to use. */
- if (mask_rtx == 0
- || GET_CODE (mask_rtx) != CONST_INT
- || ! merge_outer_ops (&outer_op, &outer_const, AND,
- INTVAL (mask_rtx),
- result_mode, &complement_p))
- break;
-
- /* If the shifts are in the same direction, we add the
- counts. Otherwise, we subtract them. */
- if ((code == ASHIFTRT || code == LSHIFTRT)
- == (first_code == ASHIFTRT || first_code == LSHIFTRT))
- count += first_count;
- else
- count -= first_count;
-
- /* If COUNT is positive, the new shift is usually CODE,
- except for the two exceptions below, in which case it is
- FIRST_CODE. If the count is negative, FIRST_CODE should
- always be used */
- if (count > 0
- && ((first_code == ROTATE && code == ASHIFT)
- || (first_code == ASHIFTRT && code == LSHIFTRT)))
- code = first_code;
- else if (count < 0)
- code = first_code, count = -count;
-
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* If we have (A << B << C) for any shift, we can convert this to
- (A << C << B). This wins if A is a constant. Only try this if
- B is not a constant. */
-
- else if (GET_CODE (varop) == code
- && GET_CODE (XEXP (varop, 0)) == CONST_INT
- && GET_CODE (XEXP (varop, 1)) != CONST_INT)
- {
- rtx new = simplify_const_binary_operation (code, mode,
- XEXP (varop, 0),
- GEN_INT (count));
- varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
- count = 0;
- continue;
- }
- break;
-
- case NOT:
- /* Make this fit the case below. */
- varop = gen_rtx_XOR (mode, XEXP (varop, 0),
- GEN_INT (GET_MODE_MASK (mode)));
- continue;
-
- case IOR:
- case AND:
- case XOR:
- /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
- with C the size of VAROP - 1 and the shift is logical if
- STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
- we have an (le X 0) operation. If we have an arithmetic shift
- and STORE_FLAG_VALUE is 1 or we have a logical shift with
- STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
-
- if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
- && XEXP (XEXP (varop, 0), 1) == constm1_rtx
- && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && (code == LSHIFTRT || code == ASHIFTRT)
- && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
- && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
- {
- count = 0;
- varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
- const0_rtx);
-
- if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
- varop = gen_rtx_NEG (GET_MODE (varop), varop);
-
- continue;
- }
-
- /* If we have (shift (logical)), move the logical to the outside
- to allow it to possibly combine with another logical and the
- shift to combine with another shift. This also canonicalizes to
- what a ZERO_EXTRACT looks like. Also, some machines have
- (and (shift)) insns. */
-
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- /* We can't do this if we have (ashiftrt (xor)) and the
- constant has its sign bit set in shift_mode. */
- && !(code == ASHIFTRT && GET_CODE (varop) == XOR
- && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
- shift_mode))
- && (new = simplify_const_binary_operation (code, result_mode,
- XEXP (varop, 1),
- GEN_INT (count))) != 0
- && GET_CODE (new) == CONST_INT
- && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
- INTVAL (new), result_mode, &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* If we can't do that, try to simplify the shift in each arm of the
- logical expression, make a new logical expression, and apply
- the inverse distributive law. This also can't be done
- for some (ashiftrt (xor)). */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && !(code == ASHIFTRT && GET_CODE (varop) == XOR
- && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
- shift_mode)))
- {
- rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
- XEXP (varop, 0), count);
- rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
- XEXP (varop, 1), count);
-
- varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
- lhs, rhs);
- varop = apply_distributive_law (varop);
-
- count = 0;
- continue;
- }
- break;
-
- case EQ:
- /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
- says that the sign bit can be tested, FOO has mode MODE, C is
- GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
- that may be nonzero. */
- if (code == LSHIFTRT
- && XEXP (varop, 1) == const0_rtx
- && GET_MODE (XEXP (varop, 0)) == result_mode
- && count == (GET_MODE_BITSIZE (result_mode) - 1)
- && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
- && STORE_FLAG_VALUE == -1
- && nonzero_bits (XEXP (varop, 0), result_mode) == 1
- && merge_outer_ops (&outer_op, &outer_const, XOR,
- (HOST_WIDE_INT) 1, result_mode,
- &complement_p))
- {
- varop = XEXP (varop, 0);
- count = 0;
- continue;
- }
- break;
-
- case NEG:
- /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
- than the number of bits in the mode is equivalent to A. */
- if (code == LSHIFTRT
- && count == (GET_MODE_BITSIZE (result_mode) - 1)
- && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
- {
- varop = XEXP (varop, 0);
- count = 0;
- continue;
- }
-
- /* NEG commutes with ASHIFT since it is multiplication. Move the
- NEG outside to allow shifts to combine. */
- if (code == ASHIFT
- && merge_outer_ops (&outer_op, &outer_const, NEG,
- (HOST_WIDE_INT) 0, result_mode,
- &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
- break;
-
- case PLUS:
- /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
- is one less than the number of bits in the mode is
- equivalent to (xor A 1). */
- if (code == LSHIFTRT
- && count == (GET_MODE_BITSIZE (result_mode) - 1)
- && XEXP (varop, 1) == constm1_rtx
- && nonzero_bits (XEXP (varop, 0), result_mode) == 1
- && merge_outer_ops (&outer_op, &outer_const, XOR,
- (HOST_WIDE_INT) 1, result_mode,
- &complement_p))
- {
- count = 0;
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
- that might be nonzero in BAR are those being shifted out and those
- bits are known zero in FOO, we can replace the PLUS with FOO.
- Similarly in the other operand order. This code occurs when
- we are computing the size of a variable-size array. */
-
- if ((code == ASHIFTRT || code == LSHIFTRT)
- && count < HOST_BITS_PER_WIDE_INT
- && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
- && (nonzero_bits (XEXP (varop, 1), result_mode)
- & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
- {
- varop = XEXP (varop, 0);
- continue;
- }
- else if ((code == ASHIFTRT || code == LSHIFTRT)
- && count < HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
- && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
- >> count)
- && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
- & nonzero_bits (XEXP (varop, 1),
- result_mode)))
- {
- varop = XEXP (varop, 1);
- continue;
- }
-
- /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
- if (code == ASHIFT
- && GET_CODE (XEXP (varop, 1)) == CONST_INT
- && (new = simplify_const_binary_operation (ASHIFT, result_mode,
- XEXP (varop, 1),
- GEN_INT (count))) != 0
- && GET_CODE (new) == CONST_INT
- && merge_outer_ops (&outer_op, &outer_const, PLUS,
- INTVAL (new), result_mode, &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* Check for 'PLUS signbit', which is the canonical form of 'XOR
- signbit', and attempt to change the PLUS to an XOR and move it to
- the outer operation as is done above in the AND/IOR/XOR case
- leg for shift(logical). See details in logical handling above
- for reasoning in doing so. */
- if (code == LSHIFTRT
- && GET_CODE (XEXP (varop, 1)) == CONST_INT
- && mode_signbit_p (result_mode, XEXP (varop, 1))
- && (new = simplify_const_binary_operation (code, result_mode,
- XEXP (varop, 1),
- GEN_INT (count))) != 0
- && GET_CODE (new) == CONST_INT
- && merge_outer_ops (&outer_op, &outer_const, XOR,
- INTVAL (new), result_mode, &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
-
- break;
-
- case MINUS:
- /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
- with C the size of VAROP - 1 and the shift is logical if
- STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
- we have a (gt X 0) operation. If the shift is arithmetic with
- STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
- we have a (neg (gt X 0)) operation. */
-
- if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
- && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
- && (code == LSHIFTRT || code == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
- && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
- {
- count = 0;
- varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
- const0_rtx);
-
- if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
- varop = gen_rtx_NEG (GET_MODE (varop), varop);
-
- continue;
- }
- break;
-
- case TRUNCATE:
- /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
- if the truncate does not affect the value. */
- if (code == LSHIFTRT
- && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
- && (INTVAL (XEXP (XEXP (varop, 0), 1))
- >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
- - GET_MODE_BITSIZE (GET_MODE (varop)))))
- {
- rtx varop_inner = XEXP (varop, 0);
-
- varop_inner
- = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
- XEXP (varop_inner, 0),
- GEN_INT
- (count + INTVAL (XEXP (varop_inner, 1))));
- varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
- count = 0;
- continue;
- }
- break;
-
- default:
- break;
- }
-
- break;
- }
-
- /* We need to determine what mode to do the shift in. If the shift is
- a right shift or ROTATE, we must always do it in the mode it was
- originally done in. Otherwise, we can do it in MODE, the widest mode
- encountered. The code we care about is that of the shift that will
- actually be done, not the shift that was originally requested. */
- shift_mode
- = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
- ? result_mode : mode);
-
- /* We have now finished analyzing the shift. The result should be
- a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
- OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
- to the result of the shift. OUTER_CONST is the relevant constant,
- but we must turn off all bits turned off in the shift. */
-
- if (outer_op == UNKNOWN
- && orig_code == code && orig_count == count
- && varop == orig_varop
- && shift_mode == GET_MODE (varop))
- return NULL_RTX;
-
- /* Make a SUBREG if necessary. If we can't make it, fail. */
- varop = gen_lowpart (shift_mode, varop);
- if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
- return NULL_RTX;
-
- /* If we have an outer operation and we just made a shift, it is
- possible that we could have simplified the shift were it not
- for the outer operation. So try to do the simplification
- recursively. */
-
- if (outer_op != UNKNOWN)
- x = simplify_shift_const_1 (code, shift_mode, varop, count);
- else
- x = NULL_RTX;
-
- if (x == NULL_RTX)
- x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
-
- /* If we were doing an LSHIFTRT in a wider mode than it was originally,
- turn off all the bits that the shift would have turned off. */
- if (orig_code == LSHIFTRT && result_mode != shift_mode)
- x = simplify_and_const_int (NULL_RTX, shift_mode, x,
- GET_MODE_MASK (result_mode) >> orig_count);
-
- /* Do the remainder of the processing in RESULT_MODE. */
- x = gen_lowpart_or_truncate (result_mode, x);
-
- /* If COMPLEMENT_P is set, we have to complement X before doing the outer
- operation. */
- if (complement_p)
- x = simplify_gen_unary (NOT, result_mode, x, result_mode);
-
- if (outer_op != UNKNOWN)
- {
- if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
- outer_const = trunc_int_for_mode (outer_const, result_mode);
-
- if (outer_op == AND)
- x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
- else if (outer_op == SET)
- {
- /* This means that we have determined that the result is
- equivalent to a constant. This should be rare. */
- if (!side_effects_p (x))
- x = GEN_INT (outer_const);
- }
- else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
- x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
- else
- x = simplify_gen_binary (outer_op, result_mode, x,
- GEN_INT (outer_const));
- }
-
- return x;
-}
-
-/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
- The result of the shift is RESULT_MODE. If we cannot simplify it,
- return X or, if it is NULL, synthesize the expression with
- simplify_gen_binary. Otherwise, return a simplified value.
-
- The shift is normally computed in the widest mode we find in VAROP, as
- long as it isn't a different number of words than RESULT_MODE. Exceptions
- are ASHIFTRT and ROTATE, which are always done in their original mode. */
-
-static rtx
-simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
- rtx varop, int count)
-{
- rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
- if (tem)
- return tem;
-
- if (!x)
- x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
- if (GET_MODE (x) != result_mode)
- x = gen_lowpart (result_mode, x);
- return x;
-}
-
-
-/* Like recog, but we receive the address of a pointer to a new pattern.
- We try to match the rtx that the pointer points to.
- If that fails, we may try to modify or replace the pattern,
- storing the replacement into the same pointer object.
-
- Modifications include deletion or addition of CLOBBERs.
-
- PNOTES is a pointer to a location where any REG_UNUSED notes added for
- the CLOBBERs are placed.
-
- The value is the final insn code from the pattern ultimately matched,
- or -1. */
-
-static int
-recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
-{
- rtx pat = *pnewpat;
- int insn_code_number;
- int num_clobbers_to_add = 0;
- int i;
- rtx notes = 0;
- rtx old_notes, old_pat;
-
- /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
- we use to indicate that something didn't match. If we find such a
- thing, force rejection. */
- if (GET_CODE (pat) == PARALLEL)
- for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
- && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
- return -1;
-
- old_pat = PATTERN (insn);
- old_notes = REG_NOTES (insn);
- PATTERN (insn) = pat;
- REG_NOTES (insn) = 0;
-
- insn_code_number = recog (pat, insn, &num_clobbers_to_add);
-
- /* If it isn't, there is the possibility that we previously had an insn
- that clobbered some register as a side effect, but the combined
- insn doesn't need to do that. So try once more without the clobbers
- unless this represents an ASM insn. */
-
- if (insn_code_number < 0 && ! check_asm_operands (pat)
- && GET_CODE (pat) == PARALLEL)
- {
- int pos;
-
- for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
- if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
- {
- if (i != pos)
- SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
- pos++;
- }
-
- SUBST_INT (XVECLEN (pat, 0), pos);
-
- if (pos == 1)
- pat = XVECEXP (pat, 0, 0);
-
- PATTERN (insn) = pat;
- insn_code_number = recog (pat, insn, &num_clobbers_to_add);
- }
- PATTERN (insn) = old_pat;
- REG_NOTES (insn) = old_notes;
-
- /* Recognize all noop sets, these will be killed by followup pass. */
- if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
- insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
-
- /* If we had any clobbers to add, make a new pattern than contains
- them. Then check to make sure that all of them are dead. */
- if (num_clobbers_to_add)
- {
- rtx newpat = gen_rtx_PARALLEL (VOIDmode,
- rtvec_alloc (GET_CODE (pat) == PARALLEL
- ? (XVECLEN (pat, 0)
- + num_clobbers_to_add)
- : num_clobbers_to_add + 1));
-
- if (GET_CODE (pat) == PARALLEL)
- for (i = 0; i < XVECLEN (pat, 0); i++)
- XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
- else
- XVECEXP (newpat, 0, 0) = pat;
-
- add_clobbers (newpat, insn_code_number);
-
- for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
- i < XVECLEN (newpat, 0); i++)
- {
- if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
- && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
- return -1;
- notes = gen_rtx_EXPR_LIST (REG_UNUSED,
- XEXP (XVECEXP (newpat, 0, i), 0), notes);
- }
- pat = newpat;
- }
-
- *pnewpat = pat;
- *pnotes = notes;
-
- return insn_code_number;
-}
-
-/* Like gen_lowpart_general but for use by combine. In combine it
- is not possible to create any new pseudoregs. However, it is
- safe to create invalid memory addresses, because combine will
- try to recognize them and all they will do is make the combine
- attempt fail.
-
- If for some reason this cannot do its job, an rtx
- (clobber (const_int 0)) is returned.
- An insn containing that will not be recognized. */
-
-static rtx
-gen_lowpart_for_combine (enum machine_mode omode, rtx x)
-{
- enum machine_mode imode = GET_MODE (x);
- unsigned int osize = GET_MODE_SIZE (omode);
- unsigned int isize = GET_MODE_SIZE (imode);
- rtx result;
-
- if (omode == imode)
- return x;
-
- /* Return identity if this is a CONST or symbolic reference. */
- if (omode == Pmode
- && (GET_CODE (x) == CONST
- || GET_CODE (x) == SYMBOL_REF
- || GET_CODE (x) == LABEL_REF))
- return x;
-
- /* We can only support MODE being wider than a word if X is a
- constant integer or has a mode the same size. */
- if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
- && ! ((imode == VOIDmode
- && (GET_CODE (x) == CONST_INT
- || GET_CODE (x) == CONST_DOUBLE))
- || isize == osize))
- goto fail;
-
- /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
- won't know what to do. So we will strip off the SUBREG here and
- process normally. */
- if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
- {
- x = SUBREG_REG (x);
-
- /* For use in case we fall down into the address adjustments
- further below, we need to adjust the known mode and size of
- x; imode and isize, since we just adjusted x. */
- imode = GET_MODE (x);
-
- if (imode == omode)
- return x;
-
- isize = GET_MODE_SIZE (imode);
- }
-
- result = gen_lowpart_common (omode, x);
-
-#ifdef CANNOT_CHANGE_MODE_CLASS
- if (result != 0 && GET_CODE (result) == SUBREG)
- record_subregs_of_mode (result);
-#endif
-
- if (result)
- return result;
-
- if (MEM_P (x))
- {
- int offset = 0;
-
- /* Refuse to work on a volatile memory ref or one with a mode-dependent
- address. */
- if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
- goto fail;
-
- /* If we want to refer to something bigger than the original memref,
- generate a paradoxical subreg instead. That will force a reload
- of the original memref X. */
- if (isize < osize)
- return gen_rtx_SUBREG (omode, x, 0);
-
- if (WORDS_BIG_ENDIAN)
- offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
-
- /* Adjust the address so that the address-after-the-data is
- unchanged. */
- if (BYTES_BIG_ENDIAN)
- offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
-
- return adjust_address_nv (x, omode, offset);
- }
-
- /* If X is a comparison operator, rewrite it in a new mode. This
- probably won't match, but may allow further simplifications. */
- else if (COMPARISON_P (x))
- return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
-
- /* If we couldn't simplify X any other way, just enclose it in a
- SUBREG. Normally, this SUBREG won't match, but some patterns may
- include an explicit SUBREG or we may simplify it further in combine. */
- else
- {
- int offset = 0;
- rtx res;
-
- offset = subreg_lowpart_offset (omode, imode);
- if (imode == VOIDmode)
- {
- imode = int_mode_for_mode (omode);
- x = gen_lowpart_common (imode, x);
- if (x == NULL)
- goto fail;
- }
- res = simplify_gen_subreg (omode, x, imode, offset);
- if (res)
- return res;
- }
-
- fail:
- return gen_rtx_CLOBBER (imode, const0_rtx);
-}
-
-/* Simplify a comparison between *POP0 and *POP1 where CODE is the
- comparison code that will be tested.
-
- The result is a possibly different comparison code to use. *POP0 and
- *POP1 may be updated.
-
- It is possible that we might detect that a comparison is either always
- true or always false. However, we do not perform general constant
- folding in combine, so this knowledge isn't useful. Such tautologies
- should have been detected earlier. Hence we ignore all such cases. */
-
-static enum rtx_code
-simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
-{
- rtx op0 = *pop0;
- rtx op1 = *pop1;
- rtx tem, tem1;
- int i;
- enum machine_mode mode, tmode;
-
- /* Try a few ways of applying the same transformation to both operands. */
- while (1)
- {
-#ifndef WORD_REGISTER_OPERATIONS
- /* The test below this one won't handle SIGN_EXTENDs on these machines,
- so check specially. */
- if (code != GTU && code != GEU && code != LTU && code != LEU
- && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
- && GET_CODE (XEXP (op0, 0)) == ASHIFT
- && GET_CODE (XEXP (op1, 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
- && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
- && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
- == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && XEXP (op0, 1) == XEXP (op1, 1)
- && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
- && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
- && (INTVAL (XEXP (op0, 1))
- == (GET_MODE_BITSIZE (GET_MODE (op0))
- - (GET_MODE_BITSIZE
- (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
- {
- op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
- op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
- }
-#endif
-
- /* If both operands are the same constant shift, see if we can ignore the
- shift. We can if the shift is a rotate or if the bits shifted out of
- this shift are known to be zero for both inputs and if the type of
- comparison is compatible with the shift. */
- if (GET_CODE (op0) == GET_CODE (op1)
- && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
- && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
- || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
- && (code != GT && code != LT && code != GE && code != LE))
- || (GET_CODE (op0) == ASHIFTRT
- && (code != GTU && code != LTU
- && code != GEU && code != LEU)))
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) >= 0
- && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
- && XEXP (op0, 1) == XEXP (op1, 1))
- {
- enum machine_mode mode = GET_MODE (op0);
- unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
- int shift_count = INTVAL (XEXP (op0, 1));
-
- if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
- mask &= (mask >> shift_count) << shift_count;
- else if (GET_CODE (op0) == ASHIFT)
- mask = (mask & (mask << shift_count)) >> shift_count;
-
- if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
- && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
- op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
- else
- break;
- }
-
- /* If both operands are AND's of a paradoxical SUBREG by constant, the
- SUBREGs are of the same mode, and, in both cases, the AND would
- be redundant if the comparison was done in the narrower mode,
- do the comparison in the narrower mode (e.g., we are AND'ing with 1
- and the operand's possibly nonzero bits are 0xffffff01; in that case
- if we only care about QImode, we don't need the AND). This case
- occurs if the output mode of an scc insn is not SImode and
- STORE_FLAG_VALUE == 1 (e.g., the 386).
-
- Similarly, check for a case where the AND's are ZERO_EXTEND
- operations from some narrower mode even though a SUBREG is not
- present. */
-
- else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op1, 1)) == CONST_INT)
- {
- rtx inner_op0 = XEXP (op0, 0);
- rtx inner_op1 = XEXP (op1, 0);
- HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
- HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
- int changed = 0;
-
- if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (inner_op0))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
- && (GET_MODE (SUBREG_REG (inner_op0))
- == GET_MODE (SUBREG_REG (inner_op1)))
- && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
- <= HOST_BITS_PER_WIDE_INT)
- && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
- GET_MODE (SUBREG_REG (inner_op0)))))
- && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
- GET_MODE (SUBREG_REG (inner_op1))))))
- {
- op0 = SUBREG_REG (inner_op0);
- op1 = SUBREG_REG (inner_op1);
-
- /* The resulting comparison is always unsigned since we masked
- off the original sign bit. */
- code = unsigned_condition (code);
-
- changed = 1;
- }
-
- else if (c0 == c1)
- for (tmode = GET_CLASS_NARROWEST_MODE
- (GET_MODE_CLASS (GET_MODE (op0)));
- tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
- if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
- {
- op0 = gen_lowpart (tmode, inner_op0);
- op1 = gen_lowpart (tmode, inner_op1);
- code = unsigned_condition (code);
- changed = 1;
- break;
- }
-
- if (! changed)
- break;
- }
-
- /* If both operands are NOT, we can strip off the outer operation
- and adjust the comparison code for swapped operands; similarly for
- NEG, except that this must be an equality comparison. */
- else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
- || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
- && (code == EQ || code == NE)))
- op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
-
- else
- break;
- }
-
- /* If the first operand is a constant, swap the operands and adjust the
- comparison code appropriately, but don't do this if the second operand
- is already a constant integer. */
- if (swap_commutative_operands_p (op0, op1))
- {
- tem = op0, op0 = op1, op1 = tem;
- code = swap_condition (code);
- }
-
- /* We now enter a loop during which we will try to simplify the comparison.
- For the most part, we only are concerned with comparisons with zero,
- but some things may really be comparisons with zero but not start
- out looking that way. */
-
- while (GET_CODE (op1) == CONST_INT)
- {
- enum machine_mode mode = GET_MODE (op0);
- unsigned int mode_width = GET_MODE_BITSIZE (mode);
- unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
- int equality_comparison_p;
- int sign_bit_comparison_p;
- int unsigned_comparison_p;
- HOST_WIDE_INT const_op;
-
- /* We only want to handle integral modes. This catches VOIDmode,
- CCmode, and the floating-point modes. An exception is that we
- can handle VOIDmode if OP0 is a COMPARE or a comparison
- operation. */
-
- if (GET_MODE_CLASS (mode) != MODE_INT
- && ! (mode == VOIDmode
- && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
- break;
-
- /* Get the constant we are comparing against and turn off all bits
- not on in our mode. */
- const_op = INTVAL (op1);
- if (mode != VOIDmode)
- const_op = trunc_int_for_mode (const_op, mode);
- op1 = GEN_INT (const_op);
-
- /* If we are comparing against a constant power of two and the value
- being compared can only have that single bit nonzero (e.g., it was
- `and'ed with that bit), we can replace this with a comparison
- with zero. */
- if (const_op
- && (code == EQ || code == NE || code == GE || code == GEU
- || code == LT || code == LTU)
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && exact_log2 (const_op) >= 0
- && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
- {
- code = (code == EQ || code == GE || code == GEU ? NE : EQ);
- op1 = const0_rtx, const_op = 0;
- }
-
- /* Similarly, if we are comparing a value known to be either -1 or
- 0 with -1, change it to the opposite comparison against zero. */
-
- if (const_op == -1
- && (code == EQ || code == NE || code == GT || code == LE
- || code == GEU || code == LTU)
- && num_sign_bit_copies (op0, mode) == mode_width)
- {
- code = (code == EQ || code == LE || code == GEU ? NE : EQ);
- op1 = const0_rtx, const_op = 0;
- }
-
- /* Do some canonicalizations based on the comparison code. We prefer
- comparisons against zero and then prefer equality comparisons.
- If we can reduce the size of a constant, we will do that too. */
-
- switch (code)
- {
- case LT:
- /* < C is equivalent to <= (C - 1) */
- if (const_op > 0)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = LE;
- /* ... fall through to LE case below. */
- }
- else
- break;
-
- case LE:
- /* <= C is equivalent to < (C + 1); we do this for C < 0 */
- if (const_op < 0)
- {
- const_op += 1;
- op1 = GEN_INT (const_op);
- code = LT;
- }
-
- /* If we are doing a <= 0 comparison on a value known to have
- a zero sign bit, we can replace this with == 0. */
- else if (const_op == 0
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (op0, mode)
- & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
- code = EQ;
- break;
-
- case GE:
- /* >= C is equivalent to > (C - 1). */
- if (const_op > 0)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = GT;
- /* ... fall through to GT below. */
- }
- else
- break;
-
- case GT:
- /* > C is equivalent to >= (C + 1); we do this for C < 0. */
- if (const_op < 0)
- {
- const_op += 1;
- op1 = GEN_INT (const_op);
- code = GE;
- }
-
- /* If we are doing a > 0 comparison on a value known to have
- a zero sign bit, we can replace this with != 0. */
- else if (const_op == 0
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (op0, mode)
- & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
- code = NE;
- break;
-
- case LTU:
- /* < C is equivalent to <= (C - 1). */
- if (const_op > 0)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = LEU;
- /* ... fall through ... */
- }
-
- /* (unsigned) < 0x80000000 is equivalent to >= 0. */
- else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
- && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
- {
- const_op = 0, op1 = const0_rtx;
- code = GE;
- break;
- }
- else
- break;
-
- case LEU:
- /* unsigned <= 0 is equivalent to == 0 */
- if (const_op == 0)
- code = EQ;
-
- /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
- else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
- && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
- {
- const_op = 0, op1 = const0_rtx;
- code = GE;
- }
- break;
-
- case GEU:
- /* >= C is equivalent to > (C - 1). */
- if (const_op > 1)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = GTU;
- /* ... fall through ... */
- }
-
- /* (unsigned) >= 0x80000000 is equivalent to < 0. */
- else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
- && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
- {
- const_op = 0, op1 = const0_rtx;
- code = LT;
- break;
- }
- else
- break;
-
- case GTU:
- /* unsigned > 0 is equivalent to != 0 */
- if (const_op == 0)
- code = NE;
-
- /* (unsigned) > 0x7fffffff is equivalent to < 0. */
- else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
- && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
- {
- const_op = 0, op1 = const0_rtx;
- code = LT;
- }
- break;
-
- default:
- break;
- }
-
- /* Compute some predicates to simplify code below. */
-
- equality_comparison_p = (code == EQ || code == NE);
- sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
- unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
- || code == GEU);
-
- /* If this is a sign bit comparison and we can do arithmetic in
- MODE, say that we will only be needing the sign bit of OP0. */
- if (sign_bit_comparison_p
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- op0 = force_to_mode (op0, mode,
- ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (mode) - 1)),
- 0);
-
- /* Now try cases based on the opcode of OP0. If none of the cases
- does a "continue", we exit this loop immediately after the
- switch. */
-
- switch (GET_CODE (op0))
- {
- case ZERO_EXTRACT:
- /* If we are extracting a single bit from a variable position in
- a constant that has only a single bit set and are comparing it
- with zero, we can convert this into an equality comparison
- between the position and the location of the single bit. */
- /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
- have already reduced the shift count modulo the word size. */
- if (!SHIFT_COUNT_TRUNCATED
- && GET_CODE (XEXP (op0, 0)) == CONST_INT
- && XEXP (op0, 1) == const1_rtx
- && equality_comparison_p && const_op == 0
- && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
- {
- if (BITS_BIG_ENDIAN)
- {
- enum machine_mode new_mode
- = mode_for_extraction (EP_extzv, 1);
- if (new_mode == MAX_MACHINE_MODE)
- i = BITS_PER_WORD - 1 - i;
- else
- {
- mode = new_mode;
- i = (GET_MODE_BITSIZE (mode) - 1 - i);
- }
- }
-
- op0 = XEXP (op0, 2);
- op1 = GEN_INT (i);
- const_op = i;
-
- /* Result is nonzero iff shift count is equal to I. */
- code = reverse_condition (code);
- continue;
- }
-
- /* ... fall through ... */
-
- case SIGN_EXTRACT:
- tem = expand_compound_operation (op0);
- if (tem != op0)
- {
- op0 = tem;
- continue;
- }
- break;
-
- case NOT:
- /* If testing for equality, we can take the NOT of the constant. */
- if (equality_comparison_p
- && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* If just looking at the sign bit, reverse the sense of the
- comparison. */
- if (sign_bit_comparison_p)
- {
- op0 = XEXP (op0, 0);
- code = (code == GE ? LT : GE);
- continue;
- }
- break;
-
- case NEG:
- /* If testing for equality, we can take the NEG of the constant. */
- if (equality_comparison_p
- && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* The remaining cases only apply to comparisons with zero. */
- if (const_op != 0)
- break;
-
- /* When X is ABS or is known positive,
- (neg X) is < 0 if and only if X != 0. */
-
- if (sign_bit_comparison_p
- && (GET_CODE (XEXP (op0, 0)) == ABS
- || (mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (op0, 0), mode)
- & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
- {
- op0 = XEXP (op0, 0);
- code = (code == LT ? NE : EQ);
- continue;
- }
-
- /* If we have NEG of something whose two high-order bits are the
- same, we know that "(-a) < 0" is equivalent to "a > 0". */
- if (num_sign_bit_copies (op0, mode) >= 2)
- {
- op0 = XEXP (op0, 0);
- code = swap_condition (code);
- continue;
- }
- break;
-
- case ROTATE:
- /* If we are testing equality and our count is a constant, we
- can perform the inverse operation on our RHS. */
- if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && (tem = simplify_binary_operation (ROTATERT, mode,
- op1, XEXP (op0, 1))) != 0)
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* If we are doing a < 0 or >= 0 comparison, it means we are testing
- a particular bit. Convert it to an AND of a constant of that
- bit. This will be converted into a ZERO_EXTRACT. */
- if (const_op == 0 && sign_bit_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- {
- op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
- ((HOST_WIDE_INT) 1
- << (mode_width - 1
- - INTVAL (XEXP (op0, 1)))));
- code = (code == LT ? NE : EQ);
- continue;
- }
-
- /* Fall through. */
-
- case ABS:
- /* ABS is ignorable inside an equality comparison with zero. */
- if (const_op == 0 && equality_comparison_p)
- {
- op0 = XEXP (op0, 0);
- continue;
- }
- break;
-
- case SIGN_EXTEND:
- /* Can simplify (compare (zero/sign_extend FOO) CONST) to
- (compare FOO CONST) if CONST fits in FOO's mode and we
- are either testing inequality or have an unsigned
- comparison with ZERO_EXTEND or a signed comparison with
- SIGN_EXTEND. But don't do it if we don't have a compare
- insn of the given mode, since we'd have to revert it
- later on, and then we wouldn't know whether to sign- or
- zero-extend. */
- mode = GET_MODE (XEXP (op0, 0));
- if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
- && ! unsigned_comparison_p
- && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- && ((unsigned HOST_WIDE_INT) const_op
- < (((unsigned HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (mode) - 1))))
- && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- op0 = XEXP (op0, 0);
- continue;
- }
- break;
-
- case SUBREG:
- /* Check for the case where we are comparing A - C1 with C2, that is
-
- (subreg:MODE (plus (A) (-C1))) op (C2)
-
- with C1 a constant, and try to lift the SUBREG, i.e. to do the
- comparison in the wider mode. One of the following two conditions
- must be true in order for this to be valid:
-
- 1. The mode extension results in the same bit pattern being added
- on both sides and the comparison is equality or unsigned. As
- C2 has been truncated to fit in MODE, the pattern can only be
- all 0s or all 1s.
-
- 2. The mode extension results in the sign bit being copied on
- each side.
-
- The difficulty here is that we have predicates for A but not for
- (A - C1) so we need to check that C1 is within proper bounds so
- as to perturbate A as little as possible. */
-
- if (mode_width <= HOST_BITS_PER_WIDE_INT
- && subreg_lowpart_p (op0)
- && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
- && GET_CODE (SUBREG_REG (op0)) == PLUS
- && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
- {
- enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
- rtx a = XEXP (SUBREG_REG (op0), 0);
- HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
-
- if ((c1 > 0
- && (unsigned HOST_WIDE_INT) c1
- < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
- && (equality_comparison_p || unsigned_comparison_p)
- /* (A - C1) zero-extends if it is positive and sign-extends
- if it is negative, C2 both zero- and sign-extends. */
- && ((0 == (nonzero_bits (a, inner_mode)
- & ~GET_MODE_MASK (mode))
- && const_op >= 0)
- /* (A - C1) sign-extends if it is positive and 1-extends
- if it is negative, C2 both sign- and 1-extends. */
- || (num_sign_bit_copies (a, inner_mode)
- > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
- - mode_width)
- && const_op < 0)))
- || ((unsigned HOST_WIDE_INT) c1
- < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
- /* (A - C1) always sign-extends, like C2. */
- && num_sign_bit_copies (a, inner_mode)
- > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
- - (mode_width - 1))))
- {
- op0 = SUBREG_REG (op0);
- continue;
- }
- }
-
- /* If the inner mode is narrower and we are extracting the low part,
- we can treat the SUBREG as if it were a ZERO_EXTEND. */
- if (subreg_lowpart_p (op0)
- && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
- /* Fall through */ ;
- else
- break;
-
- /* ... fall through ... */
-
- case ZERO_EXTEND:
- mode = GET_MODE (XEXP (op0, 0));
- if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
- && (unsigned_comparison_p || equality_comparison_p)
- && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
- && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- op0 = XEXP (op0, 0);
- continue;
- }
- break;
-
- case PLUS:
- /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
- this for equality comparisons due to pathological cases involving
- overflows. */
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (MINUS, mode,
- op1, XEXP (op0, 1))))
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
- if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
- && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
- {
- op0 = XEXP (XEXP (op0, 0), 0);
- code = (code == LT ? EQ : NE);
- continue;
- }
- break;
-
- case MINUS:
- /* We used to optimize signed comparisons against zero, but that
- was incorrect. Unsigned comparisons against zero (GTU, LEU)
- arrive here as equality comparisons, or (GEU, LTU) are
- optimized away. No need to special-case them. */
-
- /* (eq (minus A B) C) -> (eq A (plus B C)) or
- (eq B (minus A C)), whichever simplifies. We can only do
- this for equality comparisons due to pathological cases involving
- overflows. */
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (PLUS, mode,
- XEXP (op0, 1), op1)))
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (MINUS, mode,
- XEXP (op0, 0), op1)))
- {
- op0 = XEXP (op0, 1);
- op1 = tem;
- continue;
- }
-
- /* The sign bit of (minus (ashiftrt X C) X), where C is the number
- of bits in X minus 1, is one iff X > 0. */
- if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
- && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
- && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
- == mode_width - 1
- && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
- {
- op0 = XEXP (op0, 1);
- code = (code == GE ? LE : GT);
- continue;
- }
- break;
-
- case XOR:
- /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
- if C is zero or B is a constant. */
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (XOR, mode,
- XEXP (op0, 1), op1)))
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
- break;
-
- case EQ: case NE:
- case UNEQ: case LTGT:
- case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
- case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
- case UNORDERED: case ORDERED:
- /* We can't do anything if OP0 is a condition code value, rather
- than an actual data value. */
- if (const_op != 0
- || CC0_P (XEXP (op0, 0))
- || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
- break;
-
- /* Get the two operands being compared. */
- if (GET_CODE (XEXP (op0, 0)) == COMPARE)
- tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
- else
- tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
-
- /* Check for the cases where we simply want the result of the
- earlier test or the opposite of that result. */
- if (code == NE || code == EQ
- || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
- && (STORE_FLAG_VALUE
- & (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
- && (code == LT || code == GE)))
- {
- enum rtx_code new_code;
- if (code == LT || code == NE)
- new_code = GET_CODE (op0);
- else
- new_code = reversed_comparison_code (op0, NULL);
-
- if (new_code != UNKNOWN)
- {
- code = new_code;
- op0 = tem;
- op1 = tem1;
- continue;
- }
- }
- break;
-
- case IOR:
- /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
- iff X <= 0. */
- if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
- && XEXP (XEXP (op0, 0), 1) == constm1_rtx
- && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
- {
- op0 = XEXP (op0, 1);
- code = (code == GE ? GT : LE);
- continue;
- }
- break;
-
- case AND:
- /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
- will be converted to a ZERO_EXTRACT later. */
- if (const_op == 0 && equality_comparison_p
- && GET_CODE (XEXP (op0, 0)) == ASHIFT
- && XEXP (XEXP (op0, 0), 0) == const1_rtx)
- {
- op0 = simplify_and_const_int
- (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
- XEXP (op0, 1),
- XEXP (XEXP (op0, 0), 1)),
- (HOST_WIDE_INT) 1);
- continue;
- }
-
- /* If we are comparing (and (lshiftrt X C1) C2) for equality with
- zero and X is a comparison and C1 and C2 describe only bits set
- in STORE_FLAG_VALUE, we can compare with X. */
- if (const_op == 0 && equality_comparison_p
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
- && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
- {
- mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
- << INTVAL (XEXP (XEXP (op0, 0), 1)));
- if ((~STORE_FLAG_VALUE & mask) == 0
- && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
- || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
- && COMPARISON_P (tem))))
- {
- op0 = XEXP (XEXP (op0, 0), 0);
- continue;
- }
- }
-
- /* If we are doing an equality comparison of an AND of a bit equal
- to the sign bit, replace this with a LT or GE comparison of
- the underlying value. */
- if (equality_comparison_p
- && const_op == 0
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
- == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
- {
- op0 = XEXP (op0, 0);
- code = (code == EQ ? GE : LT);
- continue;
- }
-
- /* If this AND operation is really a ZERO_EXTEND from a narrower
- mode, the constant fits within that mode, and this is either an
- equality or unsigned comparison, try to do this comparison in
- the narrower mode.
-
- Note that in:
-
- (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
- -> (ne:DI (reg:SI 4) (const_int 0))
-
- unless TRULY_NOOP_TRUNCATION allows it or the register is
- known to hold a value of the required mode the
- transformation is invalid. */
- if ((equality_comparison_p || unsigned_comparison_p)
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
- & GET_MODE_MASK (mode))
- + 1)) >= 0
- && const_op >> i == 0
- && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
- && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
- GET_MODE_BITSIZE (GET_MODE (op0)))
- || (REG_P (XEXP (op0, 0))
- && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
- {
- op0 = gen_lowpart (tmode, XEXP (op0, 0));
- continue;
- }
-
- /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
- fits in both M1 and M2 and the SUBREG is either paradoxical
- or represents the low part, permute the SUBREG and the AND
- and try again. */
- if (GET_CODE (XEXP (op0, 0)) == SUBREG)
- {
- unsigned HOST_WIDE_INT c1;
- tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
- /* Require an integral mode, to avoid creating something like
- (AND:SF ...). */
- if (SCALAR_INT_MODE_P (tmode)
- /* It is unsafe to commute the AND into the SUBREG if the
- SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
- not defined. As originally written the upper bits
- have a defined value due to the AND operation.
- However, if we commute the AND inside the SUBREG then
- they no longer have defined values and the meaning of
- the code has been changed. */
- && (0
-#ifdef WORD_REGISTER_OPERATIONS
- || (mode_width > GET_MODE_BITSIZE (tmode)
- && mode_width <= BITS_PER_WORD)
-#endif
- || (mode_width <= GET_MODE_BITSIZE (tmode)
- && subreg_lowpart_p (XEXP (op0, 0))))
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
- && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
- && (c1 & ~GET_MODE_MASK (tmode)) == 0
- && c1 != mask
- && c1 != GET_MODE_MASK (tmode))
- {
- op0 = simplify_gen_binary (AND, tmode,
- SUBREG_REG (XEXP (op0, 0)),
- gen_int_mode (c1, tmode));
- op0 = gen_lowpart (mode, op0);
- continue;
- }
- }
-
- /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
- if (const_op == 0 && equality_comparison_p
- && XEXP (op0, 1) == const1_rtx
- && GET_CODE (XEXP (op0, 0)) == NOT)
- {
- op0 = simplify_and_const_int
- (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
- code = (code == NE ? EQ : NE);
- continue;
- }
-
- /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
- (eq (and (lshiftrt X) 1) 0).
- Also handle the case where (not X) is expressed using xor. */
- if (const_op == 0 && equality_comparison_p
- && XEXP (op0, 1) == const1_rtx
- && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
- {
- rtx shift_op = XEXP (XEXP (op0, 0), 0);
- rtx shift_count = XEXP (XEXP (op0, 0), 1);
-
- if (GET_CODE (shift_op) == NOT
- || (GET_CODE (shift_op) == XOR
- && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
- && GET_CODE (shift_count) == CONST_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (INTVAL (XEXP (shift_op, 1))
- == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
- {
- op0 = simplify_and_const_int
- (NULL_RTX, mode,
- gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
- (HOST_WIDE_INT) 1);
- code = (code == NE ? EQ : NE);
- continue;
- }
- }
- break;
-
- case ASHIFT:
- /* If we have (compare (ashift FOO N) (const_int C)) and
- the high order N bits of FOO (N+1 if an inequality comparison)
- are known to be zero, we can do this by comparing FOO with C
- shifted right N bits so long as the low-order N bits of C are
- zero. */
- if (GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) >= 0
- && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
- < HOST_BITS_PER_WIDE_INT)
- && ((const_op
- & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (op0, 0), mode)
- & ~(mask >> (INTVAL (XEXP (op0, 1))
- + ! equality_comparison_p))) == 0)
- {
- /* We must perform a logical shift, not an arithmetic one,
- as we want the top N bits of C to be zero. */
- unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
-
- temp >>= INTVAL (XEXP (op0, 1));
- op1 = gen_int_mode (temp, mode);
- op0 = XEXP (op0, 0);
- continue;
- }
-
- /* If we are doing a sign bit comparison, it means we are testing
- a particular bit. Convert it to the appropriate AND. */
- if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- {
- op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
- ((HOST_WIDE_INT) 1
- << (mode_width - 1
- - INTVAL (XEXP (op0, 1)))));
- code = (code == LT ? NE : EQ);
- continue;
- }
-
- /* If this an equality comparison with zero and we are shifting
- the low bit to the sign bit, we can convert this to an AND of the
- low-order bit. */
- if (const_op == 0 && equality_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
- == mode_width - 1)
- {
- op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
- (HOST_WIDE_INT) 1);
- continue;
- }
- break;
-
- case ASHIFTRT:
- /* If this is an equality comparison with zero, we can do this
- as a logical shift, which might be much simpler. */
- if (equality_comparison_p && const_op == 0
- && GET_CODE (XEXP (op0, 1)) == CONST_INT)
- {
- op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
- XEXP (op0, 0),
- INTVAL (XEXP (op0, 1)));
- continue;
- }
-
- /* If OP0 is a sign extension and CODE is not an unsigned comparison,
- do the comparison in a narrower mode. */
- if (! unsigned_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op0, 0)) == ASHIFT
- && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
- && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
- MODE_INT, 1)) != BLKmode
- && (((unsigned HOST_WIDE_INT) const_op
- + (GET_MODE_MASK (tmode) >> 1) + 1)
- <= GET_MODE_MASK (tmode)))
- {
- op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
- continue;
- }
-
- /* Likewise if OP0 is a PLUS of a sign extension with a
- constant, which is usually represented with the PLUS
- between the shifts. */
- if (! unsigned_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op0, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
- && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
- && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
- && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
- MODE_INT, 1)) != BLKmode
- && (((unsigned HOST_WIDE_INT) const_op
- + (GET_MODE_MASK (tmode) >> 1) + 1)
- <= GET_MODE_MASK (tmode)))
- {
- rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
- rtx add_const = XEXP (XEXP (op0, 0), 1);
- rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
- add_const, XEXP (op0, 1));
-
- op0 = simplify_gen_binary (PLUS, tmode,
- gen_lowpart (tmode, inner),
- new_const);
- continue;
- }
-
- /* ... fall through ... */
- case LSHIFTRT:
- /* If we have (compare (xshiftrt FOO N) (const_int C)) and
- the low order N bits of FOO are known to be zero, we can do this
- by comparing FOO with C shifted left N bits so long as no
- overflow occurs. */
- if (GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) >= 0
- && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (op0, 0), mode)
- & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
- && (((unsigned HOST_WIDE_INT) const_op
- + (GET_CODE (op0) != LSHIFTRT
- ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
- + 1)
- : 0))
- <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
- {
- /* If the shift was logical, then we must make the condition
- unsigned. */
- if (GET_CODE (op0) == LSHIFTRT)
- code = unsigned_condition (code);
-
- const_op <<= INTVAL (XEXP (op0, 1));
- op1 = GEN_INT (const_op);
- op0 = XEXP (op0, 0);
- continue;
- }
-
- /* If we are using this shift to extract just the sign bit, we
- can replace this with an LT or GE comparison. */
- if (const_op == 0
- && (equality_comparison_p || sign_bit_comparison_p)
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
- == mode_width - 1)
- {
- op0 = XEXP (op0, 0);
- code = (code == NE || code == GT ? LT : GE);
- continue;
- }
- break;
-
- default:
- break;
- }
-
- break;
- }
-
- /* Now make any compound operations involved in this comparison. Then,
- check for an outmost SUBREG on OP0 that is not doing anything or is
- paradoxical. The latter transformation must only be performed when
- it is known that the "extra" bits will be the same in op0 and op1 or
- that they don't matter. There are three cases to consider:
-
- 1. SUBREG_REG (op0) is a register. In this case the bits are don't
- care bits and we can assume they have any convenient value. So
- making the transformation is safe.
-
- 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
- In this case the upper bits of op0 are undefined. We should not make
- the simplification in that case as we do not know the contents of
- those bits.
-
- 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
- UNKNOWN. In that case we know those bits are zeros or ones. We must
- also be sure that they are the same as the upper bits of op1.
-
- We can never remove a SUBREG for a non-equality comparison because
- the sign bit is in a different place in the underlying object. */
-
- op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
- op1 = make_compound_operation (op1, SET);
-
- if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
- && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
- && (code == NE || code == EQ))
- {
- if (GET_MODE_SIZE (GET_MODE (op0))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
- {
- /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
- implemented. */
- if (REG_P (SUBREG_REG (op0)))
- {
- op0 = SUBREG_REG (op0);
- op1 = gen_lowpart (GET_MODE (op0), op1);
- }
- }
- else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
- <= HOST_BITS_PER_WIDE_INT)
- && (nonzero_bits (SUBREG_REG (op0),
- GET_MODE (SUBREG_REG (op0)))
- & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
- {
- tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
-
- if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
- & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
- op0 = SUBREG_REG (op0), op1 = tem;
- }
- }
-
- /* We now do the opposite procedure: Some machines don't have compare
- insns in all modes. If OP0's mode is an integer mode smaller than a
- word and we can't do a compare in that mode, see if there is a larger
- mode for which we can do the compare. There are a number of cases in
- which we can use the wider mode. */
-
- mode = GET_MODE (op0);
- if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_SIZE (mode) < UNITS_PER_WORD
- && ! have_insn_for (COMPARE, mode))
- for (tmode = GET_MODE_WIDER_MODE (mode);
- (tmode != VOIDmode
- && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
- tmode = GET_MODE_WIDER_MODE (tmode))
- if (have_insn_for (COMPARE, tmode))
- {
- int zero_extended;
-
- /* If the only nonzero bits in OP0 and OP1 are those in the
- narrower mode and this is an equality or unsigned comparison,
- we can use the wider mode. Similarly for sign-extended
- values, in which case it is true for all comparisons. */
- zero_extended = ((code == EQ || code == NE
- || code == GEU || code == GTU
- || code == LEU || code == LTU)
- && (nonzero_bits (op0, tmode)
- & ~GET_MODE_MASK (mode)) == 0
- && ((GET_CODE (op1) == CONST_INT
- || (nonzero_bits (op1, tmode)
- & ~GET_MODE_MASK (mode)) == 0)));
-
- if (zero_extended
- || ((num_sign_bit_copies (op0, tmode)
- > (unsigned int) (GET_MODE_BITSIZE (tmode)
- - GET_MODE_BITSIZE (mode)))
- && (num_sign_bit_copies (op1, tmode)
- > (unsigned int) (GET_MODE_BITSIZE (tmode)
- - GET_MODE_BITSIZE (mode)))))
- {
- /* If OP0 is an AND and we don't have an AND in MODE either,
- make a new AND in the proper mode. */
- if (GET_CODE (op0) == AND
- && !have_insn_for (AND, mode))
- op0 = simplify_gen_binary (AND, tmode,
- gen_lowpart (tmode,
- XEXP (op0, 0)),
- gen_lowpart (tmode,
- XEXP (op0, 1)));
-
- op0 = gen_lowpart (tmode, op0);
- if (zero_extended && GET_CODE (op1) == CONST_INT)
- op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
- op1 = gen_lowpart (tmode, op1);
- break;
- }
-
- /* If this is a test for negative, we can make an explicit
- test of the sign bit. */
-
- if (op1 == const0_rtx && (code == LT || code == GE)
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- {
- op0 = simplify_gen_binary (AND, tmode,
- gen_lowpart (tmode, op0),
- GEN_INT ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (mode)
- - 1)));
- code = (code == LT) ? NE : EQ;
- break;
- }
- }
-
-#ifdef CANONICALIZE_COMPARISON
- /* If this machine only supports a subset of valid comparisons, see if we
- can convert an unsupported one into a supported one. */
- CANONICALIZE_COMPARISON (code, op0, op1);
-#endif
-
- *pop0 = op0;
- *pop1 = op1;
-
- return code;
-}
-
-/* Utility function for record_value_for_reg. Count number of
- rtxs in X. */
-static int
-count_rtxs (rtx x)
-{
- enum rtx_code code = GET_CODE (x);
- const char *fmt;
- int i, ret = 1;
-
- if (GET_RTX_CLASS (code) == '2'
- || GET_RTX_CLASS (code) == 'c')
- {
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- if (x0 == x1)
- return 1 + 2 * count_rtxs (x0);
-
- if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
- || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
- && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
- return 2 + 2 * count_rtxs (x0)
- + count_rtxs (x == XEXP (x1, 0)
- ? XEXP (x1, 1) : XEXP (x1, 0));
-
- if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
- || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
- && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
- return 2 + 2 * count_rtxs (x1)
- + count_rtxs (x == XEXP (x0, 0)
- ? XEXP (x0, 1) : XEXP (x0, 0));
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- ret += count_rtxs (XEXP (x, i));
-
- return ret;
-}
-
-/* Utility function for following routine. Called when X is part of a value
- being stored into last_set_value. Sets last_set_table_tick
- for each register mentioned. Similar to mention_regs in cse.c */
-
-static void
-update_table_tick (rtx x)
-{
- enum rtx_code code = GET_CODE (x);
- const char *fmt = GET_RTX_FORMAT (code);
- int i;
-
- if (code == REG)
- {
- unsigned int regno = REGNO (x);
- unsigned int endregno
- = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
- unsigned int r;
-
- for (r = regno; r < endregno; r++)
- reg_stat[r].last_set_table_tick = label_tick;
-
- return;
- }
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- /* Note that we can't have an "E" in values stored; see
- get_last_value_validate. */
- if (fmt[i] == 'e')
- {
- /* Check for identical subexpressions. If x contains
- identical subexpression we only have to traverse one of
- them. */
- if (i == 0 && ARITHMETIC_P (x))
- {
- /* Note that at this point x1 has already been
- processed. */
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- /* If x0 and x1 are identical then there is no need to
- process x0. */
- if (x0 == x1)
- break;
-
- /* If x0 is identical to a subexpression of x1 then while
- processing x1, x0 has already been processed. Thus we
- are done with x. */
- if (ARITHMETIC_P (x1)
- && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
- break;
-
- /* If x1 is identical to a subexpression of x0 then we
- still have to process the rest of x0. */
- if (ARITHMETIC_P (x0)
- && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
- {
- update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
- break;
- }
- }
-
- update_table_tick (XEXP (x, i));
- }
-}
-
-/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
- are saying that the register is clobbered and we no longer know its
- value. If INSN is zero, don't update reg_stat[].last_set; this is
- only permitted with VALUE also zero and is used to invalidate the
- register. */
-
-static void
-record_value_for_reg (rtx reg, rtx insn, rtx value)
-{
- unsigned int regno = REGNO (reg);
- unsigned int endregno
- = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
- unsigned int i;
-
- /* If VALUE contains REG and we have a previous value for REG, substitute
- the previous value. */
- if (value && insn && reg_overlap_mentioned_p (reg, value))
- {
- rtx tem;
-
- /* Set things up so get_last_value is allowed to see anything set up to
- our insn. */
- subst_low_cuid = INSN_CUID (insn);
- tem = get_last_value (reg);
-
- /* If TEM is simply a binary operation with two CLOBBERs as operands,
- it isn't going to be useful and will take a lot of time to process,
- so just use the CLOBBER. */
-
- if (tem)
- {
- if (ARITHMETIC_P (tem)
- && GET_CODE (XEXP (tem, 0)) == CLOBBER
- && GET_CODE (XEXP (tem, 1)) == CLOBBER)
- tem = XEXP (tem, 0);
- else if (count_occurrences (value, reg, 1) >= 2)
- {
- /* If there are two or more occurrences of REG in VALUE,
- prevent the value from growing too much. */
- if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
- tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
- }
-
- value = replace_rtx (copy_rtx (value), reg, tem);
- }
- }
-
- /* For each register modified, show we don't know its value, that
- we don't know about its bitwise content, that its value has been
- updated, and that we don't know the location of the death of the
- register. */
- for (i = regno; i < endregno; i++)
- {
- if (insn)
- reg_stat[i].last_set = insn;
-
- reg_stat[i].last_set_value = 0;
- reg_stat[i].last_set_mode = 0;
- reg_stat[i].last_set_nonzero_bits = 0;
- reg_stat[i].last_set_sign_bit_copies = 0;
- reg_stat[i].last_death = 0;
- reg_stat[i].truncated_to_mode = 0;
- }
-
- /* Mark registers that are being referenced in this value. */
- if (value)
- update_table_tick (value);
-
- /* Now update the status of each register being set.
- If someone is using this register in this block, set this register
- to invalid since we will get confused between the two lives in this
- basic block. This makes using this register always invalid. In cse, we
- scan the table to invalidate all entries using this register, but this
- is too much work for us. */
-
- for (i = regno; i < endregno; i++)
- {
- reg_stat[i].last_set_label = label_tick;
- if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
- reg_stat[i].last_set_invalid = 1;
- else
- reg_stat[i].last_set_invalid = 0;
- }
-
- /* The value being assigned might refer to X (like in "x++;"). In that
- case, we must replace it with (clobber (const_int 0)) to prevent
- infinite loops. */
- if (value && ! get_last_value_validate (&value, insn,
- reg_stat[regno].last_set_label, 0))
- {
- value = copy_rtx (value);
- if (! get_last_value_validate (&value, insn,
- reg_stat[regno].last_set_label, 1))
- value = 0;
- }
-
- /* For the main register being modified, update the value, the mode, the
- nonzero bits, and the number of sign bit copies. */
-
- reg_stat[regno].last_set_value = value;
-
- if (value)
- {
- enum machine_mode mode = GET_MODE (reg);
- subst_low_cuid = INSN_CUID (insn);
- reg_stat[regno].last_set_mode = mode;
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- mode = nonzero_bits_mode;
- reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
- reg_stat[regno].last_set_sign_bit_copies
- = num_sign_bit_copies (value, GET_MODE (reg));
- }
-}
-
-/* Called via note_stores from record_dead_and_set_regs to handle one
- SET or CLOBBER in an insn. DATA is the instruction in which the
- set is occurring. */
-
-static void
-record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
-{
- rtx record_dead_insn = (rtx) data;
-
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
-
- if (!record_dead_insn)
- {
- if (REG_P (dest))
- record_value_for_reg (dest, NULL_RTX, NULL_RTX);
- return;
- }
-
- if (REG_P (dest))
- {
- /* If we are setting the whole register, we know its value. Otherwise
- show that we don't know the value. We can handle SUBREG in
- some cases. */
- if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
- record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
- else if (GET_CODE (setter) == SET
- && GET_CODE (SET_DEST (setter)) == SUBREG
- && SUBREG_REG (SET_DEST (setter)) == dest
- && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
- && subreg_lowpart_p (SET_DEST (setter)))
- record_value_for_reg (dest, record_dead_insn,
- gen_lowpart (GET_MODE (dest),
- SET_SRC (setter)));
- else
- record_value_for_reg (dest, record_dead_insn, NULL_RTX);
- }
- else if (MEM_P (dest)
- /* Ignore pushes, they clobber nothing. */
- && ! push_operand (dest, GET_MODE (dest)))
- mem_last_set = INSN_CUID (record_dead_insn);
-}
-
-/* Update the records of when each REG was most recently set or killed
- for the things done by INSN. This is the last thing done in processing
- INSN in the combiner loop.
-
- We update reg_stat[], in particular fields last_set, last_set_value,
- last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
- last_death, and also the similar information mem_last_set (which insn
- most recently modified memory) and last_call_cuid (which insn was the
- most recent subroutine call). */
-
-static void
-record_dead_and_set_regs (rtx insn)
-{
- rtx link;
- unsigned int i;
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- {
- if (REG_NOTE_KIND (link) == REG_DEAD
- && REG_P (XEXP (link, 0)))
- {
- unsigned int regno = REGNO (XEXP (link, 0));
- unsigned int endregno
- = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
- : 1);
-
- for (i = regno; i < endregno; i++)
- reg_stat[i].last_death = insn;
- }
- else if (REG_NOTE_KIND (link) == REG_INC)
- record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
- }
-
- if (CALL_P (insn))
- {
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
- {
- reg_stat[i].last_set_value = 0;
- reg_stat[i].last_set_mode = 0;
- reg_stat[i].last_set_nonzero_bits = 0;
- reg_stat[i].last_set_sign_bit_copies = 0;
- reg_stat[i].last_death = 0;
- reg_stat[i].truncated_to_mode = 0;
- }
-
- last_call_cuid = mem_last_set = INSN_CUID (insn);
-
- /* We can't combine into a call pattern. Remember, though, that
- the return value register is set at this CUID. We could
- still replace a register with the return value from the
- wrong subroutine call! */
- note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
- }
- else
- note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
-}
-
-/* If a SUBREG has the promoted bit set, it is in fact a property of the
- register present in the SUBREG, so for each such SUBREG go back and
- adjust nonzero and sign bit information of the registers that are
- known to have some zero/sign bits set.
-
- This is needed because when combine blows the SUBREGs away, the
- information on zero/sign bits is lost and further combines can be
- missed because of that. */
-
-static void
-record_promoted_value (rtx insn, rtx subreg)
-{
- rtx links, set;
- unsigned int regno = REGNO (SUBREG_REG (subreg));
- enum machine_mode mode = GET_MODE (subreg);
-
- if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
- return;
-
- for (links = LOG_LINKS (insn); links;)
- {
- insn = XEXP (links, 0);
- set = single_set (insn);
-
- if (! set || !REG_P (SET_DEST (set))
- || REGNO (SET_DEST (set)) != regno
- || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
- {
- links = XEXP (links, 1);
- continue;
- }
-
- if (reg_stat[regno].last_set == insn)
- {
- if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
- reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
- }
-
- if (REG_P (SET_SRC (set)))
- {
- regno = REGNO (SET_SRC (set));
- links = LOG_LINKS (insn);
- }
- else
- break;
- }
-}
-
-/* Check if X, a register, is known to contain a value already
- truncated to MODE. In this case we can use a subreg to refer to
- the truncated value even though in the generic case we would need
- an explicit truncation. */
-
-static bool
-reg_truncated_to_mode (enum machine_mode mode, rtx x)
-{
- enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
-
- if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
- return false;
- if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
- return true;
- if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (truncated)))
- return true;
- return false;
-}
-
-/* X is a REG or a SUBREG. If X is some sort of a truncation record
- it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
- a truncate into a subreg using this information. */
-
-static void
-record_truncated_value (rtx x)
-{
- enum machine_mode truncated_mode;
-
- if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
- {
- enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
- truncated_mode = GET_MODE (x);
-
- if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
- return;
-
- if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
- GET_MODE_BITSIZE (original_mode)))
- return;
-
- x = SUBREG_REG (x);
- }
- /* ??? For hard-regs we now record everything. We might be able to
- optimize this using last_set_mode. */
- else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
- truncated_mode = GET_MODE (x);
- else
- return;
-
- if (reg_stat[REGNO (x)].truncated_to_mode == 0
- || reg_stat[REGNO (x)].truncation_label < label_tick
- || (GET_MODE_SIZE (truncated_mode)
- < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
- {
- reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
- reg_stat[REGNO (x)].truncation_label = label_tick;
- }
-}
-
-/* Scan X for promoted SUBREGs and truncated REGs. For each one
- found, note what it implies to the registers used in it. */
-
-static void
-check_conversions (rtx insn, rtx x)
-{
- if (GET_CODE (x) == SUBREG || REG_P (x))
- {
- if (GET_CODE (x) == SUBREG
- && SUBREG_PROMOTED_VAR_P (x)
- && REG_P (SUBREG_REG (x)))
- record_promoted_value (insn, x);
-
- record_truncated_value (x);
- }
- else
- {
- const char *format = GET_RTX_FORMAT (GET_CODE (x));
- int i, j;
-
- for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
- switch (format[i])
- {
- case 'e':
- check_conversions (insn, XEXP (x, i));
- break;
- case 'V':
- case 'E':
- if (XVEC (x, i) != 0)
- for (j = 0; j < XVECLEN (x, i); j++)
- check_conversions (insn, XVECEXP (x, i, j));
- break;
- }
- }
-}
-
-/* Utility routine for the following function. Verify that all the registers
- mentioned in *LOC are valid when *LOC was part of a value set when
- label_tick == TICK. Return 0 if some are not.
-
- If REPLACE is nonzero, replace the invalid reference with
- (clobber (const_int 0)) and return 1. This replacement is useful because
- we often can get useful information about the form of a value (e.g., if
- it was produced by a shift that always produces -1 or 0) even though
- we don't know exactly what registers it was produced from. */
-
-static int
-get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
-{
- rtx x = *loc;
- const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
- int len = GET_RTX_LENGTH (GET_CODE (x));
- int i;
-
- if (REG_P (x))
- {
- unsigned int regno = REGNO (x);
- unsigned int endregno
- = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
- unsigned int j;
-
- for (j = regno; j < endregno; j++)
- if (reg_stat[j].last_set_invalid
- /* If this is a pseudo-register that was only set once and not
- live at the beginning of the function, it is always valid. */
- || (! (regno >= FIRST_PSEUDO_REGISTER
- && REG_N_SETS (regno) == 1
- && (! REGNO_REG_SET_P
- (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
- regno)))
- && reg_stat[j].last_set_label > tick))
- {
- if (replace)
- *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
- return replace;
- }
-
- return 1;
- }
- /* If this is a memory reference, make sure that there were
- no stores after it that might have clobbered the value. We don't
- have alias info, so we assume any store invalidates it. */
- else if (MEM_P (x) && !MEM_READONLY_P (x)
- && INSN_CUID (insn) <= mem_last_set)
- {
- if (replace)
- *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
- return replace;
- }
-
- for (i = 0; i < len; i++)
- {
- if (fmt[i] == 'e')
- {
- /* Check for identical subexpressions. If x contains
- identical subexpression we only have to traverse one of
- them. */
- if (i == 1 && ARITHMETIC_P (x))
- {
- /* Note that at this point x0 has already been checked
- and found valid. */
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- /* If x0 and x1 are identical then x is also valid. */
- if (x0 == x1)
- return 1;
-
- /* If x1 is identical to a subexpression of x0 then
- while checking x0, x1 has already been checked. Thus
- it is valid and so as x. */
- if (ARITHMETIC_P (x0)
- && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
- return 1;
-
- /* If x0 is identical to a subexpression of x1 then x is
- valid iff the rest of x1 is valid. */
- if (ARITHMETIC_P (x1)
- && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
- return
- get_last_value_validate (&XEXP (x1,
- x0 == XEXP (x1, 0) ? 1 : 0),
- insn, tick, replace);
- }
-
- if (get_last_value_validate (&XEXP (x, i), insn, tick,
- replace) == 0)
- return 0;
- }
- /* Don't bother with these. They shouldn't occur anyway. */
- else if (fmt[i] == 'E')
- return 0;
- }
-
- /* If we haven't found a reason for it to be invalid, it is valid. */
- return 1;
-}
-
-/* Get the last value assigned to X, if known. Some registers
- in the value may be replaced with (clobber (const_int 0)) if their value
- is known longer known reliably. */
-
-static rtx
-get_last_value (rtx x)
-{
- unsigned int regno;
- rtx value;
-
- /* If this is a non-paradoxical SUBREG, get the value of its operand and
- then convert it to the desired mode. If this is a paradoxical SUBREG,
- we cannot predict what values the "extra" bits might have. */
- if (GET_CODE (x) == SUBREG
- && subreg_lowpart_p (x)
- && (GET_MODE_SIZE (GET_MODE (x))
- <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- && (value = get_last_value (SUBREG_REG (x))) != 0)
- return gen_lowpart (GET_MODE (x), value);
-
- if (!REG_P (x))
- return 0;
-
- regno = REGNO (x);
- value = reg_stat[regno].last_set_value;
-
- /* If we don't have a value, or if it isn't for this basic block and
- it's either a hard register, set more than once, or it's a live
- at the beginning of the function, return 0.
-
- Because if it's not live at the beginning of the function then the reg
- is always set before being used (is never used without being set).
- And, if it's set only once, and it's always set before use, then all
- uses must have the same last value, even if it's not from this basic
- block. */
-
- if (value == 0
- || (reg_stat[regno].last_set_label != label_tick
- && (regno < FIRST_PSEUDO_REGISTER
- || REG_N_SETS (regno) != 1
- || (REGNO_REG_SET_P
- (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
- regno)))))
- return 0;
-
- /* If the value was set in a later insn than the ones we are processing,
- we can't use it even if the register was only set once. */
- if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
- return 0;
-
- /* If the value has all its registers valid, return it. */
- if (get_last_value_validate (&value, reg_stat[regno].last_set,
- reg_stat[regno].last_set_label, 0))
- return value;
-
- /* Otherwise, make a copy and replace any invalid register with
- (clobber (const_int 0)). If that fails for some reason, return 0. */
-
- value = copy_rtx (value);
- if (get_last_value_validate (&value, reg_stat[regno].last_set,
- reg_stat[regno].last_set_label, 1))
- return value;
-
- return 0;
-}
-
-/* Return nonzero if expression X refers to a REG or to memory
- that is set in an instruction more recent than FROM_CUID. */
-
-static int
-use_crosses_set_p (rtx x, int from_cuid)
-{
- const char *fmt;
- int i;
- enum rtx_code code = GET_CODE (x);
-
- if (code == REG)
- {
- unsigned int regno = REGNO (x);
- unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
-
-#ifdef PUSH_ROUNDING
- /* Don't allow uses of the stack pointer to be moved,
- because we don't know whether the move crosses a push insn. */
- if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
- return 1;
-#endif
- for (; regno < endreg; regno++)
- if (reg_stat[regno].last_set
- && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
- return 1;
- return 0;
- }
-
- if (code == MEM && mem_last_set > from_cuid)
- return 1;
-
- fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
- return 1;
- }
- else if (fmt[i] == 'e'
- && use_crosses_set_p (XEXP (x, i), from_cuid))
- return 1;
- }
- return 0;
-}
-
-/* Define three variables used for communication between the following
- routines. */
-
-static unsigned int reg_dead_regno, reg_dead_endregno;
-static int reg_dead_flag;
-
-/* Function called via note_stores from reg_dead_at_p.
-
- If DEST is within [reg_dead_regno, reg_dead_endregno), set
- reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
-
-static void
-reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
-{
- unsigned int regno, endregno;
-
- if (!REG_P (dest))
- return;
-
- regno = REGNO (dest);
- endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
-
- if (reg_dead_endregno > regno && reg_dead_regno < endregno)
- reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
-}
-
-/* Return nonzero if REG is known to be dead at INSN.
-
- We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
- referencing REG, it is dead. If we hit a SET referencing REG, it is
- live. Otherwise, see if it is live or dead at the start of the basic
- block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
- must be assumed to be always live. */
-
-static int
-reg_dead_at_p (rtx reg, rtx insn)
-{
- basic_block block;
- unsigned int i;
-
- /* Set variables for reg_dead_at_p_1. */
- reg_dead_regno = REGNO (reg);
- reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
- ? hard_regno_nregs[reg_dead_regno]
- [GET_MODE (reg)]
- : 1);
-
- reg_dead_flag = 0;
-
- /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
- we allow the machine description to decide whether use-and-clobber
- patterns are OK. */
- if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
- {
- for (i = reg_dead_regno; i < reg_dead_endregno; i++)
- if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
- return 0;
- }
-
- /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
- beginning of function. */
- for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
- insn = prev_nonnote_insn (insn))
- {
- note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
- if (reg_dead_flag)
- return reg_dead_flag == 1 ? 1 : 0;
-
- if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
- return 1;
- }
-
- /* Get the basic block that we were in. */
- if (insn == 0)
- block = ENTRY_BLOCK_PTR->next_bb;
- else
- {
- FOR_EACH_BB (block)
- if (insn == BB_HEAD (block))
- break;
-
- if (block == EXIT_BLOCK_PTR)
- return 0;
- }
-
- for (i = reg_dead_regno; i < reg_dead_endregno; i++)
- if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
- return 0;
-
- return 1;
-}
-
-/* Note hard registers in X that are used. This code is similar to
- that in flow.c, but much simpler since we don't care about pseudos. */
-
-static void
-mark_used_regs_combine (rtx x)
-{
- RTX_CODE code = GET_CODE (x);
- unsigned int regno;
- int i;
-
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case CONST_VECTOR:
- case PC:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- case ASM_INPUT:
-#ifdef HAVE_cc0
- /* CC0 must die in the insn after it is set, so we don't need to take
- special note of it here. */
- case CC0:
-#endif
- return;
-
- case CLOBBER:
- /* If we are clobbering a MEM, mark any hard registers inside the
- address as used. */
- if (MEM_P (XEXP (x, 0)))
- mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
- return;
-
- case REG:
- regno = REGNO (x);
- /* A hard reg in a wide mode may really be multiple registers.
- If so, mark all of them just like the first. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- unsigned int endregno, r;
-
- /* None of this applies to the stack, frame or arg pointers. */
- if (regno == STACK_POINTER_REGNUM
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- || regno == HARD_FRAME_POINTER_REGNUM
-#endif
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
-#endif
- || regno == FRAME_POINTER_REGNUM)
- return;
-
- endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
- for (r = regno; r < endregno; r++)
- SET_HARD_REG_BIT (newpat_used_regs, r);
- }
- return;
-
- case SET:
- {
- /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
- the address. */
- rtx testreg = SET_DEST (x);
-
- while (GET_CODE (testreg) == SUBREG
- || GET_CODE (testreg) == ZERO_EXTRACT
- || GET_CODE (testreg) == STRICT_LOW_PART)
- testreg = XEXP (testreg, 0);
-
- if (MEM_P (testreg))
- mark_used_regs_combine (XEXP (testreg, 0));
-
- mark_used_regs_combine (SET_SRC (x));
- }
- return;
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- {
- const char *fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- mark_used_regs_combine (XEXP (x, i));
- else if (fmt[i] == 'E')
- {
- int j;
-
- for (j = 0; j < XVECLEN (x, i); j++)
- mark_used_regs_combine (XVECEXP (x, i, j));
- }
- }
- }
-}
-
-/* Remove register number REGNO from the dead registers list of INSN.
-
- Return the note used to record the death, if there was one. */
-
-rtx
-remove_death (unsigned int regno, rtx insn)
-{
- rtx note = find_regno_note (insn, REG_DEAD, regno);
-
- if (note)
- {
- REG_N_DEATHS (regno)--;
- remove_note (insn, note);
- }
-
- return note;
-}
-
-/* For each register (hardware or pseudo) used within expression X, if its
- death is in an instruction with cuid between FROM_CUID (inclusive) and
- TO_INSN (exclusive), put a REG_DEAD note for that register in the
- list headed by PNOTES.
-
- That said, don't move registers killed by maybe_kill_insn.
-
- This is done when X is being merged by combination into TO_INSN. These
- notes will then be distributed as needed. */
-
-static void
-move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
- rtx *pnotes)
-{
- const char *fmt;
- int len, i;
- enum rtx_code code = GET_CODE (x);
-
- if (code == REG)
- {
- unsigned int regno = REGNO (x);
- rtx where_dead = reg_stat[regno].last_death;
- rtx before_dead, after_dead;
-
- /* Don't move the register if it gets killed in between from and to. */
- if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
- && ! reg_referenced_p (x, maybe_kill_insn))
- return;
-
- /* WHERE_DEAD could be a USE insn made by combine, so first we
- make sure that we have insns with valid INSN_CUID values. */
- before_dead = where_dead;
- while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
- before_dead = PREV_INSN (before_dead);
-
- after_dead = where_dead;
- while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
- after_dead = NEXT_INSN (after_dead);
-
- if (before_dead && after_dead
- && INSN_CUID (before_dead) >= from_cuid
- && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
- || (where_dead != after_dead
- && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
- {
- rtx note = remove_death (regno, where_dead);
-
- /* It is possible for the call above to return 0. This can occur
- when last_death points to I2 or I1 that we combined with.
- In that case make a new note.
-
- We must also check for the case where X is a hard register
- and NOTE is a death note for a range of hard registers
- including X. In that case, we must put REG_DEAD notes for
- the remaining registers in place of NOTE. */
-
- if (note != 0 && regno < FIRST_PSEUDO_REGISTER
- && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
- > GET_MODE_SIZE (GET_MODE (x))))
- {
- unsigned int deadregno = REGNO (XEXP (note, 0));
- unsigned int deadend
- = (deadregno + hard_regno_nregs[deadregno]
- [GET_MODE (XEXP (note, 0))]);
- unsigned int ourend
- = regno + hard_regno_nregs[regno][GET_MODE (x)];
- unsigned int i;
-
- for (i = deadregno; i < deadend; i++)
- if (i < regno || i >= ourend)
- REG_NOTES (where_dead)
- = gen_rtx_EXPR_LIST (REG_DEAD,
- regno_reg_rtx[i],
- REG_NOTES (where_dead));
- }
-
- /* If we didn't find any note, or if we found a REG_DEAD note that
- covers only part of the given reg, and we have a multi-reg hard
- register, then to be safe we must check for REG_DEAD notes
- for each register other than the first. They could have
- their own REG_DEAD notes lying around. */
- else if ((note == 0
- || (note != 0
- && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
- < GET_MODE_SIZE (GET_MODE (x)))))
- && regno < FIRST_PSEUDO_REGISTER
- && hard_regno_nregs[regno][GET_MODE (x)] > 1)
- {
- unsigned int ourend
- = regno + hard_regno_nregs[regno][GET_MODE (x)];
- unsigned int i, offset;
- rtx oldnotes = 0;
-
- if (note)
- offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
- else
- offset = 1;
-
- for (i = regno + offset; i < ourend; i++)
- move_deaths (regno_reg_rtx[i],
- maybe_kill_insn, from_cuid, to_insn, &oldnotes);
- }
-
- if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
- {
- XEXP (note, 1) = *pnotes;
- *pnotes = note;
- }
- else
- *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
-
- REG_N_DEATHS (regno)++;
- }
-
- return;
- }
-
- else if (GET_CODE (x) == SET)
- {
- rtx dest = SET_DEST (x);
-
- move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
-
- /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
- that accesses one word of a multi-word item, some
- piece of everything register in the expression is used by
- this insn, so remove any old death. */
- /* ??? So why do we test for equality of the sizes? */
-
- if (GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART
- || (GET_CODE (dest) == SUBREG
- && (((GET_MODE_SIZE (GET_MODE (dest))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
- {
- move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
- return;
- }
-
- /* If this is some other SUBREG, we know it replaces the entire
- value, so use that as the destination. */
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
-
- /* If this is a MEM, adjust deaths of anything used in the address.
- For a REG (the only other possibility), the entire value is
- being replaced so the old value is not used in this insn. */
-
- if (MEM_P (dest))
- move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
- to_insn, pnotes);
- return;
- }
-
- else if (GET_CODE (x) == CLOBBER)
- return;
-
- len = GET_RTX_LENGTH (code);
- fmt = GET_RTX_FORMAT (code);
-
- for (i = 0; i < len; i++)
- {
- if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
- to_insn, pnotes);
- }
- else if (fmt[i] == 'e')
- move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
- }
-}
-
-/* Return 1 if X is the target of a bit-field assignment in BODY, the
- pattern of an insn. X must be a REG. */
-
-static int
-reg_bitfield_target_p (rtx x, rtx body)
-{
- int i;
-
- if (GET_CODE (body) == SET)
- {
- rtx dest = SET_DEST (body);
- rtx target;
- unsigned int regno, tregno, endregno, endtregno;
-
- if (GET_CODE (dest) == ZERO_EXTRACT)
- target = XEXP (dest, 0);
- else if (GET_CODE (dest) == STRICT_LOW_PART)
- target = SUBREG_REG (XEXP (dest, 0));
- else
- return 0;
-
- if (GET_CODE (target) == SUBREG)
- target = SUBREG_REG (target);
-
- if (!REG_P (target))
- return 0;
-
- tregno = REGNO (target), regno = REGNO (x);
- if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
- return target == x;
-
- endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
- endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
-
- return endregno > tregno && regno < endtregno;
- }
-
- else if (GET_CODE (body) == PARALLEL)
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
- return 1;
-
- return 0;
-}
-
-/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
- as appropriate. I3 and I2 are the insns resulting from the combination
- insns including FROM (I2 may be zero).
-
- ELIM_I2 and ELIM_I1 are either zero or registers that we know will
- not need REG_DEAD notes because they are being substituted for. This
- saves searching in the most common cases.
-
- Each note in the list is either ignored or placed on some insns, depending
- on the type of note. */
-
-static void
-distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
- rtx elim_i1)
-{
- rtx note, next_note;
- rtx tem;
-
- for (note = notes; note; note = next_note)
- {
- rtx place = 0, place2 = 0;
-
- next_note = XEXP (note, 1);
- switch (REG_NOTE_KIND (note))
- {
- case REG_BR_PROB:
- case REG_BR_PRED:
- /* Doesn't matter much where we put this, as long as it's somewhere.
- It is preferable to keep these notes on branches, which is most
- likely to be i3. */
- place = i3;
- break;
-
- case REG_VALUE_PROFILE:
- /* Just get rid of this note, as it is unused later anyway. */
- break;
-
- case REG_NON_LOCAL_GOTO:
- if (JUMP_P (i3))
- place = i3;
- else
- {
- gcc_assert (i2 && JUMP_P (i2));
- place = i2;
- }
- break;
-
- case REG_EH_REGION:
- /* These notes must remain with the call or trapping instruction. */
- if (CALL_P (i3))
- place = i3;
- else if (i2 && CALL_P (i2))
- place = i2;
- else
- {
- gcc_assert (flag_non_call_exceptions);
- if (may_trap_p (i3))
- place = i3;
- else if (i2 && may_trap_p (i2))
- place = i2;
- /* ??? Otherwise assume we've combined things such that we
- can now prove that the instructions can't trap. Drop the
- note in this case. */
- }
- break;
-
- case REG_NORETURN:
- case REG_SETJMP:
- /* These notes must remain with the call. It should not be
- possible for both I2 and I3 to be a call. */
- if (CALL_P (i3))
- place = i3;
- else
- {
- gcc_assert (i2 && CALL_P (i2));
- place = i2;
- }
- break;
-
- case REG_UNUSED:
- /* Any clobbers for i3 may still exist, and so we must process
- REG_UNUSED notes from that insn.
-
- Any clobbers from i2 or i1 can only exist if they were added by
- recog_for_combine. In that case, recog_for_combine created the
- necessary REG_UNUSED notes. Trying to keep any original
- REG_UNUSED notes from these insns can cause incorrect output
- if it is for the same register as the original i3 dest.
- In that case, we will notice that the register is set in i3,
- and then add a REG_UNUSED note for the destination of i3, which
- is wrong. However, it is possible to have REG_UNUSED notes from
- i2 or i1 for register which were both used and clobbered, so
- we keep notes from i2 or i1 if they will turn into REG_DEAD
- notes. */
-
- /* If this register is set or clobbered in I3, put the note there
- unless there is one already. */
- if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
- {
- if (from_insn != i3)
- break;
-
- if (! (REG_P (XEXP (note, 0))
- ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
- : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
- place = i3;
- }
- /* Otherwise, if this register is used by I3, then this register
- now dies here, so we must put a REG_DEAD note here unless there
- is one already. */
- else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
- && ! (REG_P (XEXP (note, 0))
- ? find_regno_note (i3, REG_DEAD,
- REGNO (XEXP (note, 0)))
- : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
- {
- PUT_REG_NOTE_KIND (note, REG_DEAD);
- place = i3;
- }
- break;
-
- case REG_EQUAL:
- case REG_EQUIV:
- case REG_NOALIAS:
- /* These notes say something about results of an insn. We can
- only support them if they used to be on I3 in which case they
- remain on I3. Otherwise they are ignored.
-
- If the note refers to an expression that is not a constant, we
- must also ignore the note since we cannot tell whether the
- equivalence is still true. It might be possible to do
- slightly better than this (we only have a problem if I2DEST
- or I1DEST is present in the expression), but it doesn't
- seem worth the trouble. */
-
- if (from_insn == i3
- && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
- place = i3;
- break;
-
- case REG_INC:
- case REG_NO_CONFLICT:
- /* These notes say something about how a register is used. They must
- be present on any use of the register in I2 or I3. */
- if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
- place = i3;
-
- if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
- {
- if (place)
- place2 = i2;
- else
- place = i2;
- }
- break;
-
- case REG_LABEL:
- /* This can show up in several ways -- either directly in the
- pattern, or hidden off in the constant pool with (or without?)
- a REG_EQUAL note. */
- /* ??? Ignore the without-reg_equal-note problem for now. */
- if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
- || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
- && GET_CODE (XEXP (tem, 0)) == LABEL_REF
- && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
- place = i3;
-
- if (i2
- && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
- || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
- && GET_CODE (XEXP (tem, 0)) == LABEL_REF
- && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
- {
- if (place)
- place2 = i2;
- else
- place = i2;
- }
-
- /* Don't attach REG_LABEL note to a JUMP_INSN. Add
- a JUMP_LABEL instead or decrement LABEL_NUSES. */
- if (place && JUMP_P (place))
- {
- rtx label = JUMP_LABEL (place);
-
- if (!label)
- JUMP_LABEL (place) = XEXP (note, 0);
- else
- {
- gcc_assert (label == XEXP (note, 0));
- if (LABEL_P (label))
- LABEL_NUSES (label)--;
- }
- place = 0;
- }
- if (place2 && JUMP_P (place2))
- {
- rtx label = JUMP_LABEL (place2);
-
- if (!label)
- JUMP_LABEL (place2) = XEXP (note, 0);
- else
- {
- gcc_assert (label == XEXP (note, 0));
- if (LABEL_P (label))
- LABEL_NUSES (label)--;
- }
- place2 = 0;
- }
- break;
-
- case REG_NONNEG:
- /* This note says something about the value of a register prior
- to the execution of an insn. It is too much trouble to see
- if the note is still correct in all situations. It is better
- to simply delete it. */
- break;
-
- case REG_RETVAL:
- /* If the insn previously containing this note still exists,
- put it back where it was. Otherwise move it to the previous
- insn. Adjust the corresponding REG_LIBCALL note. */
- if (!NOTE_P (from_insn))
- place = from_insn;
- else
- {
- tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
- place = prev_real_insn (from_insn);
- if (tem && place)
- XEXP (tem, 0) = place;
- /* If we're deleting the last remaining instruction of a
- libcall sequence, don't add the notes. */
- else if (XEXP (note, 0) == from_insn)
- tem = place = 0;
- /* Don't add the dangling REG_RETVAL note. */
- else if (! tem)
- place = 0;
- }
- break;
-
- case REG_LIBCALL:
- /* This is handled similarly to REG_RETVAL. */
- if (!NOTE_P (from_insn))
- place = from_insn;
- else
- {
- tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
- place = next_real_insn (from_insn);
- if (tem && place)
- XEXP (tem, 0) = place;
- /* If we're deleting the last remaining instruction of a
- libcall sequence, don't add the notes. */
- else if (XEXP (note, 0) == from_insn)
- tem = place = 0;
- /* Don't add the dangling REG_LIBCALL note. */
- else if (! tem)
- place = 0;
- }
- break;
-
- case REG_DEAD:
- /* If we replaced the right hand side of FROM_INSN with a
- REG_EQUAL note, the original use of the dying register
- will not have been combined into I3 and I2. In such cases,
- FROM_INSN is guaranteed to be the first of the combined
- instructions, so we simply need to search back before
- FROM_INSN for the previous use or set of this register,
- then alter the notes there appropriately.
-
- If the register is used as an input in I3, it dies there.
- Similarly for I2, if it is nonzero and adjacent to I3.
-
- If the register is not used as an input in either I3 or I2
- and it is not one of the registers we were supposed to eliminate,
- there are two possibilities. We might have a non-adjacent I2
- or we might have somehow eliminated an additional register
- from a computation. For example, we might have had A & B where
- we discover that B will always be zero. In this case we will
- eliminate the reference to A.
-
- In both cases, we must search to see if we can find a previous
- use of A and put the death note there. */
-
- if (from_insn
- && from_insn == i2mod
- && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
- tem = from_insn;
- else
- {
- if (from_insn
- && CALL_P (from_insn)
- && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
- place = from_insn;
- else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
- place = i3;
- else if (i2 != 0 && next_nonnote_insn (i2) == i3
- && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
- place = i2;
- else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
- && !(i2mod
- && reg_overlap_mentioned_p (XEXP (note, 0),
- i2mod_old_rhs)))
- || rtx_equal_p (XEXP (note, 0), elim_i1))
- break;
- tem = i3;
- }
-
- if (place == 0)
- {
- basic_block bb = this_basic_block;
-
- for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
- {
- if (! INSN_P (tem))
- {
- if (tem == BB_HEAD (bb))
- break;
- continue;
- }
-
- /* If the register is being set at TEM, see if that is all
- TEM is doing. If so, delete TEM. Otherwise, make this
- into a REG_UNUSED note instead. Don't delete sets to
- global register vars. */
- if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
- || !global_regs[REGNO (XEXP (note, 0))])
- && reg_set_p (XEXP (note, 0), PATTERN (tem)))
- {
- rtx set = single_set (tem);
- rtx inner_dest = 0;
-#ifdef HAVE_cc0
- rtx cc0_setter = NULL_RTX;
-#endif
-
- if (set != 0)
- for (inner_dest = SET_DEST (set);
- (GET_CODE (inner_dest) == STRICT_LOW_PART
- || GET_CODE (inner_dest) == SUBREG
- || GET_CODE (inner_dest) == ZERO_EXTRACT);
- inner_dest = XEXP (inner_dest, 0))
- ;
-
- /* Verify that it was the set, and not a clobber that
- modified the register.
-
- CC0 targets must be careful to maintain setter/user
- pairs. If we cannot delete the setter due to side
- effects, mark the user with an UNUSED note instead
- of deleting it. */
-
- if (set != 0 && ! side_effects_p (SET_SRC (set))
- && rtx_equal_p (XEXP (note, 0), inner_dest)
-#ifdef HAVE_cc0
- && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
- || ((cc0_setter = prev_cc0_setter (tem)) != NULL
- && sets_cc0_p (PATTERN (cc0_setter)) > 0))
-#endif
- )
- {
- /* Move the notes and links of TEM elsewhere.
- This might delete other dead insns recursively.
- First set the pattern to something that won't use
- any register. */
- rtx old_notes = REG_NOTES (tem);
-
- PATTERN (tem) = pc_rtx;
- REG_NOTES (tem) = NULL;
-
- distribute_notes (old_notes, tem, tem, NULL_RTX,
- NULL_RTX, NULL_RTX);
- distribute_links (LOG_LINKS (tem));
-
- SET_INSN_DELETED (tem);
-
-#ifdef HAVE_cc0
- /* Delete the setter too. */
- if (cc0_setter)
- {
- PATTERN (cc0_setter) = pc_rtx;
- old_notes = REG_NOTES (cc0_setter);
- REG_NOTES (cc0_setter) = NULL;
-
- distribute_notes (old_notes, cc0_setter,
- cc0_setter, NULL_RTX,
- NULL_RTX, NULL_RTX);
- distribute_links (LOG_LINKS (cc0_setter));
-
- SET_INSN_DELETED (cc0_setter);
- }
-#endif
- }
- else
- {
- PUT_REG_NOTE_KIND (note, REG_UNUSED);
-
- /* If there isn't already a REG_UNUSED note, put one
- here. Do not place a REG_DEAD note, even if
- the register is also used here; that would not
- match the algorithm used in lifetime analysis
- and can cause the consistency check in the
- scheduler to fail. */
- if (! find_regno_note (tem, REG_UNUSED,
- REGNO (XEXP (note, 0))))
- place = tem;
- break;
- }
- }
- else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
- || (CALL_P (tem)
- && find_reg_fusage (tem, USE, XEXP (note, 0))))
- {
- place = tem;
-
- /* If we are doing a 3->2 combination, and we have a
- register which formerly died in i3 and was not used
- by i2, which now no longer dies in i3 and is used in
- i2 but does not die in i2, and place is between i2
- and i3, then we may need to move a link from place to
- i2. */
- if (i2 && INSN_UID (place) <= max_uid_cuid
- && INSN_CUID (place) > INSN_CUID (i2)
- && from_insn
- && INSN_CUID (from_insn) > INSN_CUID (i2)
- && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
- {
- rtx links = LOG_LINKS (place);
- LOG_LINKS (place) = 0;
- distribute_links (links);
- }
- break;
- }
-
- if (tem == BB_HEAD (bb))
- break;
- }
-
- /* We haven't found an insn for the death note and it
- is still a REG_DEAD note, but we have hit the beginning
- of the block. If the existing life info says the reg
- was dead, there's nothing left to do. Otherwise, we'll
- need to do a global life update after combine. */
- if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
- && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
- REGNO (XEXP (note, 0))))
- SET_BIT (refresh_blocks, this_basic_block->index);
- }
-
- /* If the register is set or already dead at PLACE, we needn't do
- anything with this note if it is still a REG_DEAD note.
- We check here if it is set at all, not if is it totally replaced,
- which is what `dead_or_set_p' checks, so also check for it being
- set partially. */
-
- if (place && REG_NOTE_KIND (note) == REG_DEAD)
- {
- unsigned int regno = REGNO (XEXP (note, 0));
-
- /* Similarly, if the instruction on which we want to place
- the note is a noop, we'll need do a global live update
- after we remove them in delete_noop_moves. */
- if (noop_move_p (place))
- SET_BIT (refresh_blocks, this_basic_block->index);
-
- if (dead_or_set_p (place, XEXP (note, 0))
- || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
- {
- /* Unless the register previously died in PLACE, clear
- last_death. [I no longer understand why this is
- being done.] */
- if (reg_stat[regno].last_death != place)
- reg_stat[regno].last_death = 0;
- place = 0;
- }
- else
- reg_stat[regno].last_death = place;
-
- /* If this is a death note for a hard reg that is occupying
- multiple registers, ensure that we are still using all
- parts of the object. If we find a piece of the object
- that is unused, we must arrange for an appropriate REG_DEAD
- note to be added for it. However, we can't just emit a USE
- and tag the note to it, since the register might actually
- be dead; so we recourse, and the recursive call then finds
- the previous insn that used this register. */
-
- if (place && regno < FIRST_PSEUDO_REGISTER
- && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
- {
- unsigned int endregno
- = regno + hard_regno_nregs[regno]
- [GET_MODE (XEXP (note, 0))];
- int all_used = 1;
- unsigned int i;
-
- for (i = regno; i < endregno; i++)
- if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
- && ! find_regno_fusage (place, USE, i))
- || dead_or_set_regno_p (place, i))
- all_used = 0;
-
- if (! all_used)
- {
- /* Put only REG_DEAD notes for pieces that are
- not already dead or set. */
-
- for (i = regno; i < endregno;
- i += hard_regno_nregs[i][reg_raw_mode[i]])
- {
- rtx piece = regno_reg_rtx[i];
- basic_block bb = this_basic_block;
-
- if (! dead_or_set_p (place, piece)
- && ! reg_bitfield_target_p (piece,
- PATTERN (place)))
- {
- rtx new_note
- = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
-
- distribute_notes (new_note, place, place,
- NULL_RTX, NULL_RTX, NULL_RTX);
- }
- else if (! refers_to_regno_p (i, i + 1,
- PATTERN (place), 0)
- && ! find_regno_fusage (place, USE, i))
- for (tem = PREV_INSN (place); ;
- tem = PREV_INSN (tem))
- {
- if (! INSN_P (tem))
- {
- if (tem == BB_HEAD (bb))
- {
- SET_BIT (refresh_blocks,
- this_basic_block->index);
- break;
- }
- continue;
- }
- if (dead_or_set_p (tem, piece)
- || reg_bitfield_target_p (piece,
- PATTERN (tem)))
- {
- REG_NOTES (tem)
- = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
- REG_NOTES (tem));
- break;
- }
- }
-
- }
-
- place = 0;
- }
- }
- }
- break;
-
- default:
- /* Any other notes should not be present at this point in the
- compilation. */
- gcc_unreachable ();
- }
-
- if (place)
- {
- XEXP (note, 1) = REG_NOTES (place);
- REG_NOTES (place) = note;
- }
- else if ((REG_NOTE_KIND (note) == REG_DEAD
- || REG_NOTE_KIND (note) == REG_UNUSED)
- && REG_P (XEXP (note, 0)))
- REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
-
- if (place2)
- {
- if ((REG_NOTE_KIND (note) == REG_DEAD
- || REG_NOTE_KIND (note) == REG_UNUSED)
- && REG_P (XEXP (note, 0)))
- REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
-
- REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
- REG_NOTE_KIND (note),
- XEXP (note, 0),
- REG_NOTES (place2));
- }
- }
-}
-
-/* Similarly to above, distribute the LOG_LINKS that used to be present on
- I3, I2, and I1 to new locations. This is also called to add a link
- pointing at I3 when I3's destination is changed. */
-
-static void
-distribute_links (rtx links)
-{
- rtx link, next_link;
-
- for (link = links; link; link = next_link)
- {
- rtx place = 0;
- rtx insn;
- rtx set, reg;
-
- next_link = XEXP (link, 1);
-
- /* If the insn that this link points to is a NOTE or isn't a single
- set, ignore it. In the latter case, it isn't clear what we
- can do other than ignore the link, since we can't tell which
- register it was for. Such links wouldn't be used by combine
- anyway.
-
- It is not possible for the destination of the target of the link to
- have been changed by combine. The only potential of this is if we
- replace I3, I2, and I1 by I3 and I2. But in that case the
- destination of I2 also remains unchanged. */
-
- if (NOTE_P (XEXP (link, 0))
- || (set = single_set (XEXP (link, 0))) == 0)
- continue;
-
- reg = SET_DEST (set);
- while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
- || GET_CODE (reg) == STRICT_LOW_PART)
- reg = XEXP (reg, 0);
-
- /* A LOG_LINK is defined as being placed on the first insn that uses
- a register and points to the insn that sets the register. Start
- searching at the next insn after the target of the link and stop
- when we reach a set of the register or the end of the basic block.
-
- Note that this correctly handles the link that used to point from
- I3 to I2. Also note that not much searching is typically done here
- since most links don't point very far away. */
-
- for (insn = NEXT_INSN (XEXP (link, 0));
- (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
- || BB_HEAD (this_basic_block->next_bb) != insn));
- insn = NEXT_INSN (insn))
- if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
- {
- if (reg_referenced_p (reg, PATTERN (insn)))
- place = insn;
- break;
- }
- else if (CALL_P (insn)
- && find_reg_fusage (insn, USE, reg))
- {
- place = insn;
- break;
- }
- else if (INSN_P (insn) && reg_set_p (reg, insn))
- break;
-
- /* If we found a place to put the link, place it there unless there
- is already a link to the same insn as LINK at that point. */
-
- if (place)
- {
- rtx link2;
-
- for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
- if (XEXP (link2, 0) == XEXP (link, 0))
- break;
-
- if (link2 == 0)
- {
- XEXP (link, 1) = LOG_LINKS (place);
- LOG_LINKS (place) = link;
-
- /* Set added_links_insn to the earliest insn we added a
- link to. */
- if (added_links_insn == 0
- || INSN_CUID (added_links_insn) > INSN_CUID (place))
- added_links_insn = place;
- }
- }
- }
-}
-
-/* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
- Check whether the expression pointer to by LOC is a register or
- memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
- Otherwise return zero. */
-
-static int
-unmentioned_reg_p_1 (rtx *loc, void *expr)
-{
- rtx x = *loc;
-
- if (x != NULL_RTX
- && (REG_P (x) || MEM_P (x))
- && ! reg_mentioned_p (x, (rtx) expr))
- return 1;
- return 0;
-}
-
-/* Check for any register or memory mentioned in EQUIV that is not
- mentioned in EXPR. This is used to restrict EQUIV to "specializations"
- of EXPR where some registers may have been replaced by constants. */
-
-static bool
-unmentioned_reg_p (rtx equiv, rtx expr)
-{
- return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
-}
-
-/* Compute INSN_CUID for INSN, which is an insn made by combine. */
-
-static int
-insn_cuid (rtx insn)
-{
- while (insn != 0 && INSN_UID (insn) > max_uid_cuid
- && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
- insn = NEXT_INSN (insn);
-
- gcc_assert (INSN_UID (insn) <= max_uid_cuid);
-
- return INSN_CUID (insn);
-}
-
-void
-dump_combine_stats (FILE *file)
-{
- fprintf
- (file,
- ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
- combine_attempts, combine_merges, combine_extras, combine_successes);
-}
-
-void
-dump_combine_total_stats (FILE *file)
-{
- fprintf
- (file,
- "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
- total_attempts, total_merges, total_extras, total_successes);
-}
-
-
-static bool
-gate_handle_combine (void)
-{
- return (optimize > 0);
-}
-
-/* Try combining insns through substitution. */
-static unsigned int
-rest_of_handle_combine (void)
-{
- int rebuild_jump_labels_after_combine
- = combine_instructions (get_insns (), max_reg_num ());
-
- /* Combining insns may have turned an indirect jump into a
- direct jump. Rebuild the JUMP_LABEL fields of jumping
- instructions. */
- if (rebuild_jump_labels_after_combine)
- {
- timevar_push (TV_JUMP);
- rebuild_jump_labels (get_insns ());
- timevar_pop (TV_JUMP);
-
- delete_dead_jumptables ();
- cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
- }
- return 0;
-}
-
-struct tree_opt_pass pass_combine =
-{
- "combine", /* name */
- gate_handle_combine, /* gate */
- rest_of_handle_combine, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_COMBINE, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_dump_func |
- TODO_ggc_collect, /* todo_flags_finish */
- 'c' /* letter */
-};
-