aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/cfgloopanal.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/cfgloopanal.c')
-rw-r--r--gcc-4.2.1/gcc/cfgloopanal.c595
1 files changed, 0 insertions, 595 deletions
diff --git a/gcc-4.2.1/gcc/cfgloopanal.c b/gcc-4.2.1/gcc/cfgloopanal.c
deleted file mode 100644
index da5458384..000000000
--- a/gcc-4.2.1/gcc/cfgloopanal.c
+++ /dev/null
@@ -1,595 +0,0 @@
-/* Natural loop analysis code for GNU compiler.
- Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "hard-reg-set.h"
-#include "obstack.h"
-#include "basic-block.h"
-#include "cfgloop.h"
-#include "expr.h"
-#include "output.h"
-
-/* Checks whether BB is executed exactly once in each LOOP iteration. */
-
-bool
-just_once_each_iteration_p (const struct loop *loop, basic_block bb)
-{
- /* It must be executed at least once each iteration. */
- if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
- return false;
-
- /* And just once. */
- if (bb->loop_father != loop)
- return false;
-
- /* But this was not enough. We might have some irreducible loop here. */
- if (bb->flags & BB_IRREDUCIBLE_LOOP)
- return false;
-
- return true;
-}
-
-/* Structure representing edge of a graph. */
-
-struct edge
-{
- int src, dest; /* Source and destination. */
- struct edge *pred_next, *succ_next;
- /* Next edge in predecessor and successor lists. */
- void *data; /* Data attached to the edge. */
-};
-
-/* Structure representing vertex of a graph. */
-
-struct vertex
-{
- struct edge *pred, *succ;
- /* Lists of predecessors and successors. */
- int component; /* Number of dfs restarts before reaching the
- vertex. */
- int post; /* Postorder number. */
-};
-
-/* Structure representing a graph. */
-
-struct graph
-{
- int n_vertices; /* Number of vertices. */
- struct vertex *vertices;
- /* The vertices. */
-};
-
-/* Dumps graph G into F. */
-
-extern void dump_graph (FILE *, struct graph *);
-
-void
-dump_graph (FILE *f, struct graph *g)
-{
- int i;
- struct edge *e;
-
- for (i = 0; i < g->n_vertices; i++)
- {
- if (!g->vertices[i].pred
- && !g->vertices[i].succ)
- continue;
-
- fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
- for (e = g->vertices[i].pred; e; e = e->pred_next)
- fprintf (f, " %d", e->src);
- fprintf (f, "\n");
-
- fprintf (f, "\t->");
- for (e = g->vertices[i].succ; e; e = e->succ_next)
- fprintf (f, " %d", e->dest);
- fprintf (f, "\n");
- }
-}
-
-/* Creates a new graph with N_VERTICES vertices. */
-
-static struct graph *
-new_graph (int n_vertices)
-{
- struct graph *g = XNEW (struct graph);
-
- g->n_vertices = n_vertices;
- g->vertices = XCNEWVEC (struct vertex, n_vertices);
-
- return g;
-}
-
-/* Adds an edge from F to T to graph G, with DATA attached. */
-
-static void
-add_edge (struct graph *g, int f, int t, void *data)
-{
- struct edge *e = xmalloc (sizeof (struct edge));
-
- e->src = f;
- e->dest = t;
- e->data = data;
-
- e->pred_next = g->vertices[t].pred;
- g->vertices[t].pred = e;
-
- e->succ_next = g->vertices[f].succ;
- g->vertices[f].succ = e;
-}
-
-/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
- The vertices in postorder are stored into QT. If FORWARD is false,
- backward dfs is run. */
-
-static void
-dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
-{
- int i, tick = 0, v, comp = 0, top;
- struct edge *e;
- struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
-
- for (i = 0; i < g->n_vertices; i++)
- {
- g->vertices[i].component = -1;
- g->vertices[i].post = -1;
- }
-
-#define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
-#define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
-#define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
-#define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
-
- for (i = 0; i < nq; i++)
- {
- v = qs[i];
- if (g->vertices[v].post != -1)
- continue;
-
- g->vertices[v].component = comp++;
- e = FST_EDGE (v);
- top = 0;
-
- while (1)
- {
- while (e && g->vertices[EDGE_DEST (e)].component != -1)
- e = NEXT_EDGE (e);
-
- if (!e)
- {
- if (qt)
- qt[tick] = v;
- g->vertices[v].post = tick++;
-
- if (!top)
- break;
-
- e = stack[--top];
- v = EDGE_SRC (e);
- e = NEXT_EDGE (e);
- continue;
- }
-
- stack[top++] = e;
- v = EDGE_DEST (e);
- e = FST_EDGE (v);
- g->vertices[v].component = comp - 1;
- }
- }
-
- free (stack);
-}
-
-/* Marks the edge E in graph G irreducible if it connects two vertices in the
- same scc. */
-
-static void
-check_irred (struct graph *g, struct edge *e)
-{
- edge real = e->data;
-
- /* All edges should lead from a component with higher number to the
- one with lower one. */
- gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
-
- if (g->vertices[e->src].component != g->vertices[e->dest].component)
- return;
-
- real->flags |= EDGE_IRREDUCIBLE_LOOP;
- if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
- real->src->flags |= BB_IRREDUCIBLE_LOOP;
-}
-
-/* Runs CALLBACK for all edges in G. */
-
-static void
-for_each_edge (struct graph *g,
- void (callback) (struct graph *, struct edge *))
-{
- struct edge *e;
- int i;
-
- for (i = 0; i < g->n_vertices; i++)
- for (e = g->vertices[i].succ; e; e = e->succ_next)
- callback (g, e);
-}
-
-/* Releases the memory occupied by G. */
-
-static void
-free_graph (struct graph *g)
-{
- struct edge *e, *n;
- int i;
-
- for (i = 0; i < g->n_vertices; i++)
- for (e = g->vertices[i].succ; e; e = n)
- {
- n = e->succ_next;
- free (e);
- }
- free (g->vertices);
- free (g);
-}
-
-/* Marks blocks and edges that are part of non-recognized loops; i.e. we
- throw away all latch edges and mark blocks inside any remaining cycle.
- Everything is a bit complicated due to fact we do not want to do this
- for parts of cycles that only "pass" through some loop -- i.e. for
- each cycle, we want to mark blocks that belong directly to innermost
- loop containing the whole cycle.
-
- LOOPS is the loop tree. */
-
-#define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
-#define BB_REPR(BB) ((BB)->index + 1)
-
-void
-mark_irreducible_loops (struct loops *loops)
-{
- basic_block act;
- edge e;
- edge_iterator ei;
- int i, src, dest;
- struct graph *g;
- int *queue1 = XNEWVEC (int, last_basic_block + loops->num);
- int *queue2 = XNEWVEC (int, last_basic_block + loops->num);
- int nq, depth;
- struct loop *cloop;
-
- /* Reset the flags. */
- FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- {
- act->flags &= ~BB_IRREDUCIBLE_LOOP;
- FOR_EACH_EDGE (e, ei, act->succs)
- e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
- }
-
- /* Create the edge lists. */
- g = new_graph (last_basic_block + loops->num);
-
- FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- FOR_EACH_EDGE (e, ei, act->succs)
- {
- /* Ignore edges to exit. */
- if (e->dest == EXIT_BLOCK_PTR)
- continue;
-
- /* And latch edges. */
- if (e->dest->loop_father->header == e->dest
- && e->dest->loop_father->latch == act)
- continue;
-
- /* Edges inside a single loop should be left where they are. Edges
- to subloop headers should lead to representative of the subloop,
- but from the same place.
-
- Edges exiting loops should lead from representative
- of the son of nearest common ancestor of the loops in that
- act lays. */
-
- src = BB_REPR (act);
- dest = BB_REPR (e->dest);
-
- if (e->dest->loop_father->header == e->dest)
- dest = LOOP_REPR (e->dest->loop_father);
-
- if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
- {
- depth = find_common_loop (act->loop_father,
- e->dest->loop_father)->depth + 1;
- if (depth == act->loop_father->depth)
- cloop = act->loop_father;
- else
- cloop = act->loop_father->pred[depth];
-
- src = LOOP_REPR (cloop);
- }
-
- add_edge (g, src, dest, e);
- }
-
- /* Find the strongly connected components. Use the algorithm of Tarjan --
- first determine the postorder dfs numbering in reversed graph, then
- run the dfs on the original graph in the order given by decreasing
- numbers assigned by the previous pass. */
- nq = 0;
- FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- {
- queue1[nq++] = BB_REPR (act);
- }
- for (i = 1; i < (int) loops->num; i++)
- if (loops->parray[i])
- queue1[nq++] = LOOP_REPR (loops->parray[i]);
- dfs (g, queue1, nq, queue2, false);
- for (i = 0; i < nq; i++)
- queue1[i] = queue2[nq - i - 1];
- dfs (g, queue1, nq, NULL, true);
-
- /* Mark the irreducible loops. */
- for_each_edge (g, check_irred);
-
- free_graph (g);
- free (queue1);
- free (queue2);
-
- loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
-}
-
-/* Counts number of insns inside LOOP. */
-int
-num_loop_insns (struct loop *loop)
-{
- basic_block *bbs, bb;
- unsigned i, ninsns = 0;
- rtx insn;
-
- bbs = get_loop_body (loop);
- for (i = 0; i < loop->num_nodes; i++)
- {
- bb = bbs[i];
- ninsns++;
- for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- ninsns++;
- }
- free(bbs);
-
- return ninsns;
-}
-
-/* Counts number of insns executed on average per iteration LOOP. */
-int
-average_num_loop_insns (struct loop *loop)
-{
- basic_block *bbs, bb;
- unsigned i, binsns, ninsns, ratio;
- rtx insn;
-
- ninsns = 0;
- bbs = get_loop_body (loop);
- for (i = 0; i < loop->num_nodes; i++)
- {
- bb = bbs[i];
-
- binsns = 1;
- for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- binsns++;
-
- ratio = loop->header->frequency == 0
- ? BB_FREQ_MAX
- : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
- ninsns += binsns * ratio;
- }
- free(bbs);
-
- ninsns /= BB_FREQ_MAX;
- if (!ninsns)
- ninsns = 1; /* To avoid division by zero. */
-
- return ninsns;
-}
-
-/* Returns expected number of LOOP iterations.
- Compute upper bound on number of iterations in case they do not fit integer
- to help loop peeling heuristics. Use exact counts if at all possible. */
-unsigned
-expected_loop_iterations (const struct loop *loop)
-{
- edge e;
- edge_iterator ei;
-
- if (loop->latch->count || loop->header->count)
- {
- gcov_type count_in, count_latch, expected;
-
- count_in = 0;
- count_latch = 0;
-
- FOR_EACH_EDGE (e, ei, loop->header->preds)
- if (e->src == loop->latch)
- count_latch = e->count;
- else
- count_in += e->count;
-
- if (count_in == 0)
- expected = count_latch * 2;
- else
- expected = (count_latch + count_in - 1) / count_in;
-
- /* Avoid overflows. */
- return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
- }
- else
- {
- int freq_in, freq_latch;
-
- freq_in = 0;
- freq_latch = 0;
-
- FOR_EACH_EDGE (e, ei, loop->header->preds)
- if (e->src == loop->latch)
- freq_latch = EDGE_FREQUENCY (e);
- else
- freq_in += EDGE_FREQUENCY (e);
-
- if (freq_in == 0)
- return freq_latch * 2;
-
- return (freq_latch + freq_in - 1) / freq_in;
- }
-}
-
-/* Returns the maximum level of nesting of subloops of LOOP. */
-
-unsigned
-get_loop_level (const struct loop *loop)
-{
- const struct loop *ploop;
- unsigned mx = 0, l;
-
- for (ploop = loop->inner; ploop; ploop = ploop->next)
- {
- l = get_loop_level (ploop);
- if (l >= mx)
- mx = l + 1;
- }
- return mx;
-}
-
-/* Returns estimate on cost of computing SEQ. */
-
-static unsigned
-seq_cost (rtx seq)
-{
- unsigned cost = 0;
- rtx set;
-
- for (; seq; seq = NEXT_INSN (seq))
- {
- set = single_set (seq);
- if (set)
- cost += rtx_cost (set, SET);
- else
- cost++;
- }
-
- return cost;
-}
-
-/* The properties of the target. */
-
-unsigned target_avail_regs; /* Number of available registers. */
-unsigned target_res_regs; /* Number of reserved registers. */
-unsigned target_small_cost; /* The cost for register when there is a free one. */
-unsigned target_pres_cost; /* The cost for register when there are not too many
- free ones. */
-unsigned target_spill_cost; /* The cost for register when we need to spill. */
-
-/* Initialize the constants for computing set costs. */
-
-void
-init_set_costs (void)
-{
- rtx seq;
- rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
- rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
- rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
- rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
- unsigned i;
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
- && !fixed_regs[i])
- target_avail_regs++;
-
- target_res_regs = 3;
-
- /* These are really just heuristic values. */
-
- start_sequence ();
- emit_move_insn (reg1, reg2);
- seq = get_insns ();
- end_sequence ();
- target_small_cost = seq_cost (seq);
- target_pres_cost = 2 * target_small_cost;
-
- start_sequence ();
- emit_move_insn (mem, reg1);
- emit_move_insn (reg2, mem);
- seq = get_insns ();
- end_sequence ();
- target_spill_cost = seq_cost (seq);
-}
-
-/* Calculates cost for having SIZE new loop global variables. REGS_USED is the
- number of global registers used in loop. N_USES is the number of relevant
- variable uses. */
-
-unsigned
-global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
-{
- unsigned regs_needed = regs_used + size;
- unsigned cost = 0;
-
- if (regs_needed + target_res_regs <= target_avail_regs)
- cost += target_small_cost * size;
- else if (regs_needed <= target_avail_regs)
- cost += target_pres_cost * size;
- else
- {
- cost += target_pres_cost * size;
- cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
- }
-
- return cost;
-}
-
-/* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */
-
-void
-mark_loop_exit_edges (struct loops *loops)
-{
- basic_block bb;
- edge e;
-
- if (loops->num <= 1)
- return;
-
- FOR_EACH_BB (bb)
- {
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (bb->loop_father->outer
- && loop_exit_edge_p (bb->loop_father, e))
- e->flags |= EDGE_LOOP_EXIT;
- else
- e->flags &= ~EDGE_LOOP_EXIT;
- }
- }
-}
-