aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/cfg.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/cfg.c')
-rw-r--r--gcc-4.2.1/gcc/cfg.c1156
1 files changed, 1156 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/cfg.c b/gcc-4.2.1/gcc/cfg.c
new file mode 100644
index 000000000..aa8eaca9e
--- /dev/null
+++ b/gcc-4.2.1/gcc/cfg.c
@@ -0,0 +1,1156 @@
+/* Control flow graph manipulation code for GNU compiler.
+ Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001, 2002, 2003, 2004, 2005
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This file contains low level functions to manipulate the CFG and
+ analyze it. All other modules should not transform the data structure
+ directly and use abstraction instead. The file is supposed to be
+ ordered bottom-up and should not contain any code dependent on a
+ particular intermediate language (RTL or trees).
+
+ Available functionality:
+ - Initialization/deallocation
+ init_flow, clear_edges
+ - Low level basic block manipulation
+ alloc_block, expunge_block
+ - Edge manipulation
+ make_edge, make_single_succ_edge, cached_make_edge, remove_edge
+ - Low level edge redirection (without updating instruction chain)
+ redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
+ - Dumping and debugging
+ dump_flow_info, debug_flow_info, dump_edge_info
+ - Allocation of AUX fields for basic blocks
+ alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
+ - clear_bb_flags
+ - Consistency checking
+ verify_flow_info
+ - Dumping and debugging
+ print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
+ */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "hard-reg-set.h"
+#include "regs.h"
+#include "flags.h"
+#include "output.h"
+#include "function.h"
+#include "except.h"
+#include "toplev.h"
+#include "tm_p.h"
+#include "obstack.h"
+#include "timevar.h"
+#include "tree-pass.h"
+#include "ggc.h"
+#include "hashtab.h"
+#include "alloc-pool.h"
+
+/* The obstack on which the flow graph components are allocated. */
+
+struct bitmap_obstack reg_obstack;
+
+void debug_flow_info (void);
+static void free_edge (edge);
+
+#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
+
+/* Called once at initialization time. */
+
+void
+init_flow (void)
+{
+ if (!cfun->cfg)
+ cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
+ n_edges = 0;
+ ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
+ ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
+ EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
+ EXIT_BLOCK_PTR->index = EXIT_BLOCK;
+ ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
+ EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
+}
+
+/* Helper function for remove_edge and clear_edges. Frees edge structure
+ without actually unlinking it from the pred/succ lists. */
+
+static void
+free_edge (edge e ATTRIBUTE_UNUSED)
+{
+ n_edges--;
+ ggc_free (e);
+}
+
+/* Free the memory associated with the edge structures. */
+
+void
+clear_edges (void)
+{
+ basic_block bb;
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_BB (bb)
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ free_edge (e);
+ VEC_truncate (edge, bb->succs, 0);
+ VEC_truncate (edge, bb->preds, 0);
+ }
+
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
+ free_edge (e);
+ VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
+ VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
+
+ gcc_assert (!n_edges);
+}
+
+/* Allocate memory for basic_block. */
+
+basic_block
+alloc_block (void)
+{
+ basic_block bb;
+ bb = ggc_alloc_cleared (sizeof (*bb));
+ return bb;
+}
+
+/* Link block B to chain after AFTER. */
+void
+link_block (basic_block b, basic_block after)
+{
+ b->next_bb = after->next_bb;
+ b->prev_bb = after;
+ after->next_bb = b;
+ b->next_bb->prev_bb = b;
+}
+
+/* Unlink block B from chain. */
+void
+unlink_block (basic_block b)
+{
+ b->next_bb->prev_bb = b->prev_bb;
+ b->prev_bb->next_bb = b->next_bb;
+ b->prev_bb = NULL;
+ b->next_bb = NULL;
+}
+
+/* Sequentially order blocks and compact the arrays. */
+void
+compact_blocks (void)
+{
+ int i;
+ basic_block bb;
+
+ SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
+ SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
+
+ i = NUM_FIXED_BLOCKS;
+ FOR_EACH_BB (bb)
+ {
+ SET_BASIC_BLOCK (i, bb);
+ bb->index = i;
+ i++;
+ }
+
+ gcc_assert (i == n_basic_blocks);
+
+ for (; i < last_basic_block; i++)
+ SET_BASIC_BLOCK (i, NULL);
+
+ last_basic_block = n_basic_blocks;
+}
+
+/* Remove block B from the basic block array. */
+
+void
+expunge_block (basic_block b)
+{
+ unlink_block (b);
+ SET_BASIC_BLOCK (b->index, NULL);
+ n_basic_blocks--;
+ /* We should be able to ggc_free here, but we are not.
+ The dead SSA_NAMES are left pointing to dead statements that are pointing
+ to dead basic blocks making garbage collector to die.
+ We should be able to release all dead SSA_NAMES and at the same time we should
+ clear out BB pointer of dead statements consistently. */
+}
+
+/* Connect E to E->src. */
+
+static inline void
+connect_src (edge e)
+{
+ VEC_safe_push (edge, gc, e->src->succs, e);
+}
+
+/* Connect E to E->dest. */
+
+static inline void
+connect_dest (edge e)
+{
+ basic_block dest = e->dest;
+ VEC_safe_push (edge, gc, dest->preds, e);
+ e->dest_idx = EDGE_COUNT (dest->preds) - 1;
+}
+
+/* Disconnect edge E from E->src. */
+
+static inline void
+disconnect_src (edge e)
+{
+ basic_block src = e->src;
+ edge_iterator ei;
+ edge tmp;
+
+ for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
+ {
+ if (tmp == e)
+ {
+ VEC_unordered_remove (edge, src->succs, ei.index);
+ return;
+ }
+ else
+ ei_next (&ei);
+ }
+
+ gcc_unreachable ();
+}
+
+/* Disconnect edge E from E->dest. */
+
+static inline void
+disconnect_dest (edge e)
+{
+ basic_block dest = e->dest;
+ unsigned int dest_idx = e->dest_idx;
+
+ VEC_unordered_remove (edge, dest->preds, dest_idx);
+
+ /* If we removed an edge in the middle of the edge vector, we need
+ to update dest_idx of the edge that moved into the "hole". */
+ if (dest_idx < EDGE_COUNT (dest->preds))
+ EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
+}
+
+/* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
+ created edge. Use this only if you are sure that this edge can't
+ possibly already exist. */
+
+edge
+unchecked_make_edge (basic_block src, basic_block dst, int flags)
+{
+ edge e;
+ e = ggc_alloc_cleared (sizeof (*e));
+ n_edges++;
+
+ e->src = src;
+ e->dest = dst;
+ e->flags = flags;
+
+ connect_src (e);
+ connect_dest (e);
+
+ execute_on_growing_pred (e);
+
+ return e;
+}
+
+/* Create an edge connecting SRC and DST with FLAGS optionally using
+ edge cache CACHE. Return the new edge, NULL if already exist. */
+
+edge
+cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
+{
+ if (edge_cache == NULL
+ || src == ENTRY_BLOCK_PTR
+ || dst == EXIT_BLOCK_PTR)
+ return make_edge (src, dst, flags);
+
+ /* Does the requested edge already exist? */
+ if (! TEST_BIT (edge_cache, dst->index))
+ {
+ /* The edge does not exist. Create one and update the
+ cache. */
+ SET_BIT (edge_cache, dst->index);
+ return unchecked_make_edge (src, dst, flags);
+ }
+
+ /* At this point, we know that the requested edge exists. Adjust
+ flags if necessary. */
+ if (flags)
+ {
+ edge e = find_edge (src, dst);
+ e->flags |= flags;
+ }
+
+ return NULL;
+}
+
+/* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
+ created edge or NULL if already exist. */
+
+edge
+make_edge (basic_block src, basic_block dest, int flags)
+{
+ edge e = find_edge (src, dest);
+
+ /* Make sure we don't add duplicate edges. */
+ if (e)
+ {
+ e->flags |= flags;
+ return NULL;
+ }
+
+ return unchecked_make_edge (src, dest, flags);
+}
+
+/* Create an edge connecting SRC to DEST and set probability by knowing
+ that it is the single edge leaving SRC. */
+
+edge
+make_single_succ_edge (basic_block src, basic_block dest, int flags)
+{
+ edge e = make_edge (src, dest, flags);
+
+ e->probability = REG_BR_PROB_BASE;
+ e->count = src->count;
+ return e;
+}
+
+/* This function will remove an edge from the flow graph. */
+
+void
+remove_edge (edge e)
+{
+ remove_predictions_associated_with_edge (e);
+ execute_on_shrinking_pred (e);
+
+ disconnect_src (e);
+ disconnect_dest (e);
+
+ free_edge (e);
+}
+
+/* Redirect an edge's successor from one block to another. */
+
+void
+redirect_edge_succ (edge e, basic_block new_succ)
+{
+ execute_on_shrinking_pred (e);
+
+ disconnect_dest (e);
+
+ e->dest = new_succ;
+
+ /* Reconnect the edge to the new successor block. */
+ connect_dest (e);
+
+ execute_on_growing_pred (e);
+}
+
+/* Like previous but avoid possible duplicate edge. */
+
+edge
+redirect_edge_succ_nodup (edge e, basic_block new_succ)
+{
+ edge s;
+
+ s = find_edge (e->src, new_succ);
+ if (s && s != e)
+ {
+ s->flags |= e->flags;
+ s->probability += e->probability;
+ if (s->probability > REG_BR_PROB_BASE)
+ s->probability = REG_BR_PROB_BASE;
+ s->count += e->count;
+ remove_edge (e);
+ e = s;
+ }
+ else
+ redirect_edge_succ (e, new_succ);
+
+ return e;
+}
+
+/* Redirect an edge's predecessor from one block to another. */
+
+void
+redirect_edge_pred (edge e, basic_block new_pred)
+{
+ disconnect_src (e);
+
+ e->src = new_pred;
+
+ /* Reconnect the edge to the new predecessor block. */
+ connect_src (e);
+}
+
+/* Clear all basic block flags, with the exception of partitioning. */
+void
+clear_bb_flags (void)
+{
+ basic_block bb;
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
+ bb->flags = (BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE)
+ | (bb->flags & BB_RTL));
+}
+
+/* Check the consistency of profile information. We can't do that
+ in verify_flow_info, as the counts may get invalid for incompletely
+ solved graphs, later eliminating of conditionals or roundoff errors.
+ It is still practical to have them reported for debugging of simple
+ testcases. */
+void
+check_bb_profile (basic_block bb, FILE * file)
+{
+ edge e;
+ int sum = 0;
+ gcov_type lsum;
+ edge_iterator ei;
+
+ if (profile_status == PROFILE_ABSENT)
+ return;
+
+ if (bb != EXIT_BLOCK_PTR)
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ sum += e->probability;
+ if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
+ fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
+ sum * 100.0 / REG_BR_PROB_BASE);
+ lsum = 0;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ lsum += e->count;
+ if (EDGE_COUNT (bb->succs)
+ && (lsum - bb->count > 100 || lsum - bb->count < -100))
+ fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
+ (int) lsum, (int) bb->count);
+ }
+ if (bb != ENTRY_BLOCK_PTR)
+ {
+ sum = 0;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ sum += EDGE_FREQUENCY (e);
+ if (abs (sum - bb->frequency) > 100)
+ fprintf (file,
+ "Invalid sum of incoming frequencies %i, should be %i\n",
+ sum, bb->frequency);
+ lsum = 0;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ lsum += e->count;
+ if (lsum - bb->count > 100 || lsum - bb->count < -100)
+ fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
+ (int) lsum, (int) bb->count);
+ }
+}
+
+/* Emit basic block information for BB. HEADER is true if the user wants
+ the generic information and the predecessors, FOOTER is true if they want
+ the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
+ global register liveness information. PREFIX is put in front of every
+ line. The output is emitted to FILE. */
+void
+dump_bb_info (basic_block bb, bool header, bool footer, int flags,
+ const char *prefix, FILE *file)
+{
+ edge e;
+ edge_iterator ei;
+
+ if (header)
+ {
+ fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
+ if (bb->prev_bb)
+ fprintf (file, ", prev %d", bb->prev_bb->index);
+ if (bb->next_bb)
+ fprintf (file, ", next %d", bb->next_bb->index);
+ fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
+ fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
+ fprintf (file, ", freq %i", bb->frequency);
+ if (maybe_hot_bb_p (bb))
+ fprintf (file, ", maybe hot");
+ if (probably_never_executed_bb_p (bb))
+ fprintf (file, ", probably never executed");
+ fprintf (file, ".\n");
+
+ fprintf (file, "%sPredecessors: ", prefix);
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ dump_edge_info (file, e, 0);
+ }
+
+ if (footer)
+ {
+ fprintf (file, "\n%sSuccessors: ", prefix);
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ dump_edge_info (file, e, 1);
+ }
+
+ if ((flags & TDF_DETAILS)
+ && (bb->flags & BB_RTL))
+ {
+ if (bb->il.rtl->global_live_at_start && header)
+ {
+ fprintf (file, "\n%sRegisters live at start:", prefix);
+ dump_regset (bb->il.rtl->global_live_at_start, file);
+ }
+
+ if (bb->il.rtl->global_live_at_end && footer)
+ {
+ fprintf (file, "\n%sRegisters live at end:", prefix);
+ dump_regset (bb->il.rtl->global_live_at_end, file);
+ }
+ }
+
+ putc ('\n', file);
+}
+
+void
+dump_flow_info (FILE *file, int flags)
+{
+ basic_block bb;
+
+ /* There are no pseudo registers after reload. Don't dump them. */
+ if (reg_n_info && !reload_completed
+ && (flags & TDF_DETAILS) != 0)
+ {
+ unsigned int i, max = max_reg_num ();
+ fprintf (file, "%d registers.\n", max);
+ for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
+ if (REG_N_REFS (i))
+ {
+ enum reg_class class, altclass;
+
+ fprintf (file, "\nRegister %d used %d times across %d insns",
+ i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
+ if (REG_BASIC_BLOCK (i) >= 0)
+ fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
+ if (REG_N_SETS (i))
+ fprintf (file, "; set %d time%s", REG_N_SETS (i),
+ (REG_N_SETS (i) == 1) ? "" : "s");
+ if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
+ fprintf (file, "; user var");
+ if (REG_N_DEATHS (i) != 1)
+ fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
+ if (REG_N_CALLS_CROSSED (i) == 1)
+ fprintf (file, "; crosses 1 call");
+ else if (REG_N_CALLS_CROSSED (i))
+ fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
+ if (regno_reg_rtx[i] != NULL
+ && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
+ fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
+
+ class = reg_preferred_class (i);
+ altclass = reg_alternate_class (i);
+ if (class != GENERAL_REGS || altclass != ALL_REGS)
+ {
+ if (altclass == ALL_REGS || class == ALL_REGS)
+ fprintf (file, "; pref %s", reg_class_names[(int) class]);
+ else if (altclass == NO_REGS)
+ fprintf (file, "; %s or none", reg_class_names[(int) class]);
+ else
+ fprintf (file, "; pref %s, else %s",
+ reg_class_names[(int) class],
+ reg_class_names[(int) altclass]);
+ }
+
+ if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
+ fprintf (file, "; pointer");
+ fprintf (file, ".\n");
+ }
+ }
+
+ fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
+ FOR_EACH_BB (bb)
+ {
+ dump_bb_info (bb, true, true, flags, "", file);
+ check_bb_profile (bb, file);
+ }
+
+ putc ('\n', file);
+}
+
+void
+debug_flow_info (void)
+{
+ dump_flow_info (stderr, TDF_DETAILS);
+}
+
+void
+dump_edge_info (FILE *file, edge e, int do_succ)
+{
+ basic_block side = (do_succ ? e->dest : e->src);
+
+ if (side == ENTRY_BLOCK_PTR)
+ fputs (" ENTRY", file);
+ else if (side == EXIT_BLOCK_PTR)
+ fputs (" EXIT", file);
+ else
+ fprintf (file, " %d", side->index);
+
+ if (e->probability)
+ fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
+
+ if (e->count)
+ {
+ fprintf (file, " count:");
+ fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
+ }
+
+ if (e->flags)
+ {
+ static const char * const bitnames[] = {
+ "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
+ "can_fallthru", "irreducible", "sibcall", "loop_exit",
+ "true", "false", "exec"
+ };
+ int comma = 0;
+ int i, flags = e->flags;
+
+ fputs (" (", file);
+ for (i = 0; flags; i++)
+ if (flags & (1 << i))
+ {
+ flags &= ~(1 << i);
+
+ if (comma)
+ fputc (',', file);
+ if (i < (int) ARRAY_SIZE (bitnames))
+ fputs (bitnames[i], file);
+ else
+ fprintf (file, "%d", i);
+ comma = 1;
+ }
+
+ fputc (')', file);
+ }
+}
+
+/* Simple routines to easily allocate AUX fields of basic blocks. */
+
+static struct obstack block_aux_obstack;
+static void *first_block_aux_obj = 0;
+static struct obstack edge_aux_obstack;
+static void *first_edge_aux_obj = 0;
+
+/* Allocate a memory block of SIZE as BB->aux. The obstack must
+ be first initialized by alloc_aux_for_blocks. */
+
+inline void
+alloc_aux_for_block (basic_block bb, int size)
+{
+ /* Verify that aux field is clear. */
+ gcc_assert (!bb->aux && first_block_aux_obj);
+ bb->aux = obstack_alloc (&block_aux_obstack, size);
+ memset (bb->aux, 0, size);
+}
+
+/* Initialize the block_aux_obstack and if SIZE is nonzero, call
+ alloc_aux_for_block for each basic block. */
+
+void
+alloc_aux_for_blocks (int size)
+{
+ static int initialized;
+
+ if (!initialized)
+ {
+ gcc_obstack_init (&block_aux_obstack);
+ initialized = 1;
+ }
+ else
+ /* Check whether AUX data are still allocated. */
+ gcc_assert (!first_block_aux_obj);
+
+ first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
+ if (size)
+ {
+ basic_block bb;
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
+ alloc_aux_for_block (bb, size);
+ }
+}
+
+/* Clear AUX pointers of all blocks. */
+
+void
+clear_aux_for_blocks (void)
+{
+ basic_block bb;
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
+ bb->aux = NULL;
+}
+
+/* Free data allocated in block_aux_obstack and clear AUX pointers
+ of all blocks. */
+
+void
+free_aux_for_blocks (void)
+{
+ gcc_assert (first_block_aux_obj);
+ obstack_free (&block_aux_obstack, first_block_aux_obj);
+ first_block_aux_obj = NULL;
+
+ clear_aux_for_blocks ();
+}
+
+/* Allocate a memory edge of SIZE as BB->aux. The obstack must
+ be first initialized by alloc_aux_for_edges. */
+
+inline void
+alloc_aux_for_edge (edge e, int size)
+{
+ /* Verify that aux field is clear. */
+ gcc_assert (!e->aux && first_edge_aux_obj);
+ e->aux = obstack_alloc (&edge_aux_obstack, size);
+ memset (e->aux, 0, size);
+}
+
+/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
+ alloc_aux_for_edge for each basic edge. */
+
+void
+alloc_aux_for_edges (int size)
+{
+ static int initialized;
+
+ if (!initialized)
+ {
+ gcc_obstack_init (&edge_aux_obstack);
+ initialized = 1;
+ }
+ else
+ /* Check whether AUX data are still allocated. */
+ gcc_assert (!first_edge_aux_obj);
+
+ first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
+ if (size)
+ {
+ basic_block bb;
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
+ {
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ alloc_aux_for_edge (e, size);
+ }
+ }
+}
+
+/* Clear AUX pointers of all edges. */
+
+void
+clear_aux_for_edges (void)
+{
+ basic_block bb;
+ edge e;
+
+ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
+ {
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ e->aux = NULL;
+ }
+}
+
+/* Free data allocated in edge_aux_obstack and clear AUX pointers
+ of all edges. */
+
+void
+free_aux_for_edges (void)
+{
+ gcc_assert (first_edge_aux_obj);
+ obstack_free (&edge_aux_obstack, first_edge_aux_obj);
+ first_edge_aux_obj = NULL;
+
+ clear_aux_for_edges ();
+}
+
+void
+debug_bb (basic_block bb)
+{
+ dump_bb (bb, stderr, 0);
+}
+
+basic_block
+debug_bb_n (int n)
+{
+ basic_block bb = BASIC_BLOCK (n);
+ dump_bb (bb, stderr, 0);
+ return bb;
+}
+
+/* Dumps cfg related information about basic block BB to FILE. */
+
+static void
+dump_cfg_bb_info (FILE *file, basic_block bb)
+{
+ unsigned i;
+ edge_iterator ei;
+ bool first = true;
+ static const char * const bb_bitnames[] =
+ {
+ "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
+ };
+ const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
+ edge e;
+
+ fprintf (file, "Basic block %d", bb->index);
+ for (i = 0; i < n_bitnames; i++)
+ if (bb->flags & (1 << i))
+ {
+ if (first)
+ fprintf (file, " (");
+ else
+ fprintf (file, ", ");
+ first = false;
+ fprintf (file, bb_bitnames[i]);
+ }
+ if (!first)
+ fprintf (file, ")");
+ fprintf (file, "\n");
+
+ fprintf (file, "Predecessors: ");
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ dump_edge_info (file, e, 0);
+
+ fprintf (file, "\nSuccessors: ");
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ dump_edge_info (file, e, 1);
+ fprintf (file, "\n\n");
+}
+
+/* Dumps a brief description of cfg to FILE. */
+
+void
+brief_dump_cfg (FILE *file)
+{
+ basic_block bb;
+
+ FOR_EACH_BB (bb)
+ {
+ dump_cfg_bb_info (file, bb);
+ }
+}
+
+/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
+ leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
+ redirected to destination of TAKEN_EDGE.
+
+ This function may leave the profile inconsistent in the case TAKEN_EDGE
+ frequency or count is believed to be lower than FREQUENCY or COUNT
+ respectively. */
+void
+update_bb_profile_for_threading (basic_block bb, int edge_frequency,
+ gcov_type count, edge taken_edge)
+{
+ edge c;
+ int prob;
+ edge_iterator ei;
+
+ bb->count -= count;
+ if (bb->count < 0)
+ {
+ if (dump_file)
+ fprintf (dump_file, "bb %i count became negative after threading",
+ bb->index);
+ bb->count = 0;
+ }
+
+ /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
+ Watch for overflows. */
+ if (bb->frequency)
+ prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
+ else
+ prob = 0;
+ if (prob > taken_edge->probability)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Jump threading proved probability of edge "
+ "%i->%i too small (it is %i, should be %i).\n",
+ taken_edge->src->index, taken_edge->dest->index,
+ taken_edge->probability, prob);
+ prob = taken_edge->probability;
+ }
+
+ /* Now rescale the probabilities. */
+ taken_edge->probability -= prob;
+ prob = REG_BR_PROB_BASE - prob;
+ bb->frequency -= edge_frequency;
+ if (bb->frequency < 0)
+ bb->frequency = 0;
+ if (prob <= 0)
+ {
+ if (dump_file)
+ fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
+ "frequency of block should end up being 0, it is %i\n",
+ bb->index, bb->frequency);
+ EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
+ ei = ei_start (bb->succs);
+ ei_next (&ei);
+ for (; (c = ei_safe_edge (ei)); ei_next (&ei))
+ c->probability = 0;
+ }
+ else if (prob != REG_BR_PROB_BASE)
+ {
+ int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
+
+ FOR_EACH_EDGE (c, ei, bb->succs)
+ {
+ c->probability = RDIV (c->probability * scale, 65536);
+ if (c->probability > REG_BR_PROB_BASE)
+ c->probability = REG_BR_PROB_BASE;
+ }
+ }
+
+ gcc_assert (bb == taken_edge->src);
+ taken_edge->count -= count;
+ if (taken_edge->count < 0)
+ {
+ if (dump_file)
+ fprintf (dump_file, "edge %i->%i count became negative after threading",
+ taken_edge->src->index, taken_edge->dest->index);
+ taken_edge->count = 0;
+ }
+}
+
+/* Multiply all frequencies of basic blocks in array BBS of length NBBS
+ by NUM/DEN, in int arithmetic. May lose some accuracy. */
+void
+scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
+{
+ int i;
+ edge e;
+ if (num < 0)
+ num = 0;
+ if (num > den)
+ return;
+ /* Assume that the users are producing the fraction from frequencies
+ that never grow far enough to risk arithmetic overflow. */
+ gcc_assert (num < 65536);
+ for (i = 0; i < nbbs; i++)
+ {
+ edge_iterator ei;
+ bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
+ bbs[i]->count = RDIV (bbs[i]->count * num, den);
+ FOR_EACH_EDGE (e, ei, bbs[i]->succs)
+ e->count = RDIV (e->count * num, den);
+ }
+}
+
+/* numbers smaller than this value are safe to multiply without getting
+ 64bit overflow. */
+#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
+
+/* Multiply all frequencies of basic blocks in array BBS of length NBBS
+ by NUM/DEN, in gcov_type arithmetic. More accurate than previous
+ function but considerably slower. */
+void
+scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
+ gcov_type den)
+{
+ int i;
+ edge e;
+ gcov_type fraction = RDIV (num * 65536, den);
+
+ gcc_assert (fraction >= 0);
+
+ if (num < MAX_SAFE_MULTIPLIER)
+ for (i = 0; i < nbbs; i++)
+ {
+ edge_iterator ei;
+ bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
+ if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
+ bbs[i]->count = RDIV (bbs[i]->count * num, den);
+ else
+ bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
+ FOR_EACH_EDGE (e, ei, bbs[i]->succs)
+ if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
+ e->count = RDIV (e->count * num, den);
+ else
+ e->count = RDIV (e->count * fraction, 65536);
+ }
+ else
+ for (i = 0; i < nbbs; i++)
+ {
+ edge_iterator ei;
+ if (sizeof (gcov_type) > sizeof (int))
+ bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
+ else
+ bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
+ bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
+ FOR_EACH_EDGE (e, ei, bbs[i]->succs)
+ e->count = RDIV (e->count * fraction, 65536);
+ }
+}
+
+/* Data structures used to maintain mapping between basic blocks and
+ copies. */
+static htab_t bb_original;
+static htab_t bb_copy;
+static alloc_pool original_copy_bb_pool;
+
+struct htab_bb_copy_original_entry
+{
+ /* Block we are attaching info to. */
+ int index1;
+ /* Index of original or copy (depending on the hashtable) */
+ int index2;
+};
+
+static hashval_t
+bb_copy_original_hash (const void *p)
+{
+ struct htab_bb_copy_original_entry *data
+ = ((struct htab_bb_copy_original_entry *)p);
+
+ return data->index1;
+}
+static int
+bb_copy_original_eq (const void *p, const void *q)
+{
+ struct htab_bb_copy_original_entry *data
+ = ((struct htab_bb_copy_original_entry *)p);
+ struct htab_bb_copy_original_entry *data2
+ = ((struct htab_bb_copy_original_entry *)q);
+
+ return data->index1 == data2->index1;
+}
+
+/* Initialize the data structures to maintain mapping between blocks
+ and its copies. */
+void
+initialize_original_copy_tables (void)
+{
+ gcc_assert (!original_copy_bb_pool);
+ original_copy_bb_pool
+ = create_alloc_pool ("original_copy",
+ sizeof (struct htab_bb_copy_original_entry), 10);
+ bb_original = htab_create (10, bb_copy_original_hash,
+ bb_copy_original_eq, NULL);
+ bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
+}
+
+/* Free the data structures to maintain mapping between blocks and
+ its copies. */
+void
+free_original_copy_tables (void)
+{
+ gcc_assert (original_copy_bb_pool);
+ htab_delete (bb_copy);
+ htab_delete (bb_original);
+ free_alloc_pool (original_copy_bb_pool);
+ bb_copy = NULL;
+ bb_original = NULL;
+ original_copy_bb_pool = NULL;
+}
+
+/* Set original for basic block. Do nothing when data structures are not
+ initialized so passes not needing this don't need to care. */
+void
+set_bb_original (basic_block bb, basic_block original)
+{
+ if (original_copy_bb_pool)
+ {
+ struct htab_bb_copy_original_entry **slot;
+ struct htab_bb_copy_original_entry key;
+
+ key.index1 = bb->index;
+ slot =
+ (struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
+ &key, INSERT);
+ if (*slot)
+ (*slot)->index2 = original->index;
+ else
+ {
+ *slot = pool_alloc (original_copy_bb_pool);
+ (*slot)->index1 = bb->index;
+ (*slot)->index2 = original->index;
+ }
+ }
+}
+
+/* Get the original basic block. */
+basic_block
+get_bb_original (basic_block bb)
+{
+ struct htab_bb_copy_original_entry *entry;
+ struct htab_bb_copy_original_entry key;
+
+ gcc_assert (original_copy_bb_pool);
+
+ key.index1 = bb->index;
+ entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
+ if (entry)
+ return BASIC_BLOCK (entry->index2);
+ else
+ return NULL;
+}
+
+/* Set copy for basic block. Do nothing when data structures are not
+ initialized so passes not needing this don't need to care. */
+void
+set_bb_copy (basic_block bb, basic_block copy)
+{
+ if (original_copy_bb_pool)
+ {
+ struct htab_bb_copy_original_entry **slot;
+ struct htab_bb_copy_original_entry key;
+
+ key.index1 = bb->index;
+ slot =
+ (struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
+ &key, INSERT);
+ if (*slot)
+ (*slot)->index2 = copy->index;
+ else
+ {
+ *slot = pool_alloc (original_copy_bb_pool);
+ (*slot)->index1 = bb->index;
+ (*slot)->index2 = copy->index;
+ }
+ }
+}
+
+/* Get the copy of basic block. */
+basic_block
+get_bb_copy (basic_block bb)
+{
+ struct htab_bb_copy_original_entry *entry;
+ struct htab_bb_copy_original_entry key;
+
+ gcc_assert (original_copy_bb_pool);
+
+ key.index1 = bb->index;
+ entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
+ if (entry)
+ return BASIC_BLOCK (entry->index2);
+ else
+ return NULL;
+}