aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/alias.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/alias.c')
-rw-r--r--gcc-4.2.1/gcc/alias.c2638
1 files changed, 0 insertions, 2638 deletions
diff --git a/gcc-4.2.1/gcc/alias.c b/gcc-4.2.1/gcc/alias.c
deleted file mode 100644
index 7c51ad79d..000000000
--- a/gcc-4.2.1/gcc/alias.c
+++ /dev/null
@@ -1,2638 +0,0 @@
-/* Alias analysis for GNU C
- Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
- Free Software Foundation, Inc.
- Contributed by John Carr (jfc@mit.edu).
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "function.h"
-#include "alias.h"
-#include "emit-rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "flags.h"
-#include "output.h"
-#include "toplev.h"
-#include "cselib.h"
-#include "splay-tree.h"
-#include "ggc.h"
-#include "langhooks.h"
-#include "timevar.h"
-#include "target.h"
-#include "cgraph.h"
-#include "varray.h"
-#include "tree-pass.h"
-#include "ipa-type-escape.h"
-
-/* The aliasing API provided here solves related but different problems:
-
- Say there exists (in c)
-
- struct X {
- struct Y y1;
- struct Z z2;
- } x1, *px1, *px2;
-
- struct Y y2, *py;
- struct Z z2, *pz;
-
-
- py = &px1.y1;
- px2 = &x1;
-
- Consider the four questions:
-
- Can a store to x1 interfere with px2->y1?
- Can a store to x1 interfere with px2->z2?
- (*px2).z2
- Can a store to x1 change the value pointed to by with py?
- Can a store to x1 change the value pointed to by with pz?
-
- The answer to these questions can be yes, yes, yes, and maybe.
-
- The first two questions can be answered with a simple examination
- of the type system. If structure X contains a field of type Y then
- a store thru a pointer to an X can overwrite any field that is
- contained (recursively) in an X (unless we know that px1 != px2).
-
- The last two of the questions can be solved in the same way as the
- first two questions but this is too conservative. The observation
- is that in some cases analysis we can know if which (if any) fields
- are addressed and if those addresses are used in bad ways. This
- analysis may be language specific. In C, arbitrary operations may
- be applied to pointers. However, there is some indication that
- this may be too conservative for some C++ types.
-
- The pass ipa-type-escape does this analysis for the types whose
- instances do not escape across the compilation boundary.
-
- Historically in GCC, these two problems were combined and a single
- data structure was used to represent the solution to these
- problems. We now have two similar but different data structures,
- The data structure to solve the last two question is similar to the
- first, but does not contain have the fields in it whose address are
- never taken. For types that do escape the compilation unit, the
- data structures will have identical information.
-*/
-
-/* The alias sets assigned to MEMs assist the back-end in determining
- which MEMs can alias which other MEMs. In general, two MEMs in
- different alias sets cannot alias each other, with one important
- exception. Consider something like:
-
- struct S { int i; double d; };
-
- a store to an `S' can alias something of either type `int' or type
- `double'. (However, a store to an `int' cannot alias a `double'
- and vice versa.) We indicate this via a tree structure that looks
- like:
- struct S
- / \
- / \
- |/_ _\|
- int double
-
- (The arrows are directed and point downwards.)
- In this situation we say the alias set for `struct S' is the
- `superset' and that those for `int' and `double' are `subsets'.
-
- To see whether two alias sets can point to the same memory, we must
- see if either alias set is a subset of the other. We need not trace
- past immediate descendants, however, since we propagate all
- grandchildren up one level.
-
- Alias set zero is implicitly a superset of all other alias sets.
- However, this is no actual entry for alias set zero. It is an
- error to attempt to explicitly construct a subset of zero. */
-
-struct alias_set_entry GTY(())
-{
- /* The alias set number, as stored in MEM_ALIAS_SET. */
- HOST_WIDE_INT alias_set;
-
- /* The children of the alias set. These are not just the immediate
- children, but, in fact, all descendants. So, if we have:
-
- struct T { struct S s; float f; }
-
- continuing our example above, the children here will be all of
- `int', `double', `float', and `struct S'. */
- splay_tree GTY((param1_is (int), param2_is (int))) children;
-
- /* Nonzero if would have a child of zero: this effectively makes this
- alias set the same as alias set zero. */
- int has_zero_child;
-};
-typedef struct alias_set_entry *alias_set_entry;
-
-static int rtx_equal_for_memref_p (rtx, rtx);
-static rtx find_symbolic_term (rtx);
-static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
-static void record_set (rtx, rtx, void *);
-static int base_alias_check (rtx, rtx, enum machine_mode,
- enum machine_mode);
-static rtx find_base_value (rtx);
-static int mems_in_disjoint_alias_sets_p (rtx, rtx);
-static int insert_subset_children (splay_tree_node, void*);
-static tree find_base_decl (tree);
-static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
-static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
- int (*) (rtx, int));
-static int aliases_everything_p (rtx);
-static bool nonoverlapping_component_refs_p (tree, tree);
-static tree decl_for_component_ref (tree);
-static rtx adjust_offset_for_component_ref (tree, rtx);
-static int nonoverlapping_memrefs_p (rtx, rtx);
-static int write_dependence_p (rtx, rtx, int);
-
-static void memory_modified_1 (rtx, rtx, void *);
-static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
-
-/* Set up all info needed to perform alias analysis on memory references. */
-
-/* Returns the size in bytes of the mode of X. */
-#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
-
-/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
- different alias sets. We ignore alias sets in functions making use
- of variable arguments because the va_arg macros on some systems are
- not legal ANSI C. */
-#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
- mems_in_disjoint_alias_sets_p (MEM1, MEM2)
-
-/* Cap the number of passes we make over the insns propagating alias
- information through set chains. 10 is a completely arbitrary choice. */
-#define MAX_ALIAS_LOOP_PASSES 10
-
-/* reg_base_value[N] gives an address to which register N is related.
- If all sets after the first add or subtract to the current value
- or otherwise modify it so it does not point to a different top level
- object, reg_base_value[N] is equal to the address part of the source
- of the first set.
-
- A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
- expressions represent certain special values: function arguments and
- the stack, frame, and argument pointers.
-
- The contents of an ADDRESS is not normally used, the mode of the
- ADDRESS determines whether the ADDRESS is a function argument or some
- other special value. Pointer equality, not rtx_equal_p, determines whether
- two ADDRESS expressions refer to the same base address.
-
- The only use of the contents of an ADDRESS is for determining if the
- current function performs nonlocal memory memory references for the
- purposes of marking the function as a constant function. */
-
-static GTY(()) VEC(rtx,gc) *reg_base_value;
-static rtx *new_reg_base_value;
-
-/* We preserve the copy of old array around to avoid amount of garbage
- produced. About 8% of garbage produced were attributed to this
- array. */
-static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
-
-/* Static hunks of RTL used by the aliasing code; these are initialized
- once per function to avoid unnecessary RTL allocations. */
-static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
-
-#define REG_BASE_VALUE(X) \
- (REGNO (X) < VEC_length (rtx, reg_base_value) \
- ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
-
-/* Vector indexed by N giving the initial (unchanging) value known for
- pseudo-register N. This array is initialized in init_alias_analysis,
- and does not change until end_alias_analysis is called. */
-static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
-
-/* Indicates number of valid entries in reg_known_value. */
-static GTY(()) unsigned int reg_known_value_size;
-
-/* Vector recording for each reg_known_value whether it is due to a
- REG_EQUIV note. Future passes (viz., reload) may replace the
- pseudo with the equivalent expression and so we account for the
- dependences that would be introduced if that happens.
-
- The REG_EQUIV notes created in assign_parms may mention the arg
- pointer, and there are explicit insns in the RTL that modify the
- arg pointer. Thus we must ensure that such insns don't get
- scheduled across each other because that would invalidate the
- REG_EQUIV notes. One could argue that the REG_EQUIV notes are
- wrong, but solving the problem in the scheduler will likely give
- better code, so we do it here. */
-static bool *reg_known_equiv_p;
-
-/* True when scanning insns from the start of the rtl to the
- NOTE_INSN_FUNCTION_BEG note. */
-static bool copying_arguments;
-
-DEF_VEC_P(alias_set_entry);
-DEF_VEC_ALLOC_P(alias_set_entry,gc);
-
-/* The splay-tree used to store the various alias set entries. */
-static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
-
-/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
- such an entry, or NULL otherwise. */
-
-static inline alias_set_entry
-get_alias_set_entry (HOST_WIDE_INT alias_set)
-{
- return VEC_index (alias_set_entry, alias_sets, alias_set);
-}
-
-/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
- the two MEMs cannot alias each other. */
-
-static inline int
-mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
-{
-/* Perform a basic sanity check. Namely, that there are no alias sets
- if we're not using strict aliasing. This helps to catch bugs
- whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
- where a MEM is allocated in some way other than by the use of
- gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
- use alias sets to indicate that spilled registers cannot alias each
- other, we might need to remove this check. */
- gcc_assert (flag_strict_aliasing
- || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
-
- return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
-}
-
-/* Insert the NODE into the splay tree given by DATA. Used by
- record_alias_subset via splay_tree_foreach. */
-
-static int
-insert_subset_children (splay_tree_node node, void *data)
-{
- splay_tree_insert ((splay_tree) data, node->key, node->value);
-
- return 0;
-}
-
-/* Return 1 if the two specified alias sets may conflict. */
-
-int
-alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
-{
- alias_set_entry ase;
-
- /* If have no alias set information for one of the operands, we have
- to assume it can alias anything. */
- if (set1 == 0 || set2 == 0
- /* If the two alias sets are the same, they may alias. */
- || set1 == set2)
- return 1;
-
- /* See if the first alias set is a subset of the second. */
- ase = get_alias_set_entry (set1);
- if (ase != 0
- && (ase->has_zero_child
- || splay_tree_lookup (ase->children,
- (splay_tree_key) set2)))
- return 1;
-
- /* Now do the same, but with the alias sets reversed. */
- ase = get_alias_set_entry (set2);
- if (ase != 0
- && (ase->has_zero_child
- || splay_tree_lookup (ase->children,
- (splay_tree_key) set1)))
- return 1;
-
- /* The two alias sets are distinct and neither one is the
- child of the other. Therefore, they cannot alias. */
- return 0;
-}
-
-/* Return 1 if the two specified alias sets might conflict, or if any subtype
- of these alias sets might conflict. */
-
-int
-alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
-{
- if (set1 == 0 || set2 == 0 || set1 == set2)
- return 1;
-
- return 0;
-}
-
-
-/* Return 1 if any MEM object of type T1 will always conflict (using the
- dependency routines in this file) with any MEM object of type T2.
- This is used when allocating temporary storage. If T1 and/or T2 are
- NULL_TREE, it means we know nothing about the storage. */
-
-int
-objects_must_conflict_p (tree t1, tree t2)
-{
- HOST_WIDE_INT set1, set2;
-
- /* If neither has a type specified, we don't know if they'll conflict
- because we may be using them to store objects of various types, for
- example the argument and local variables areas of inlined functions. */
- if (t1 == 0 && t2 == 0)
- return 0;
-
- /* If they are the same type, they must conflict. */
- if (t1 == t2
- /* Likewise if both are volatile. */
- || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
- return 1;
-
- set1 = t1 ? get_alias_set (t1) : 0;
- set2 = t2 ? get_alias_set (t2) : 0;
-
- /* Otherwise they conflict if they have no alias set or the same. We
- can't simply use alias_sets_conflict_p here, because we must make
- sure that every subtype of t1 will conflict with every subtype of
- t2 for which a pair of subobjects of these respective subtypes
- overlaps on the stack. */
- return set1 == 0 || set2 == 0 || set1 == set2;
-}
-
-/* T is an expression with pointer type. Find the DECL on which this
- expression is based. (For example, in `a[i]' this would be `a'.)
- If there is no such DECL, or a unique decl cannot be determined,
- NULL_TREE is returned. */
-
-static tree
-find_base_decl (tree t)
-{
- tree d0, d1;
-
- if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
- return 0;
-
- /* If this is a declaration, return it. If T is based on a restrict
- qualified decl, return that decl. */
- if (DECL_P (t))
- {
- if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
- t = DECL_GET_RESTRICT_BASE (t);
- return t;
- }
-
- /* Handle general expressions. It would be nice to deal with
- COMPONENT_REFs here. If we could tell that `a' and `b' were the
- same, then `a->f' and `b->f' are also the same. */
- switch (TREE_CODE_CLASS (TREE_CODE (t)))
- {
- case tcc_unary:
- return find_base_decl (TREE_OPERAND (t, 0));
-
- case tcc_binary:
- /* Return 0 if found in neither or both are the same. */
- d0 = find_base_decl (TREE_OPERAND (t, 0));
- d1 = find_base_decl (TREE_OPERAND (t, 1));
- if (d0 == d1)
- return d0;
- else if (d0 == 0)
- return d1;
- else if (d1 == 0)
- return d0;
- else
- return 0;
-
- default:
- return 0;
- }
-}
-
-/* Return true if all nested component references handled by
- get_inner_reference in T are such that we should use the alias set
- provided by the object at the heart of T.
-
- This is true for non-addressable components (which don't have their
- own alias set), as well as components of objects in alias set zero.
- This later point is a special case wherein we wish to override the
- alias set used by the component, but we don't have per-FIELD_DECL
- assignable alias sets. */
-
-bool
-component_uses_parent_alias_set (tree t)
-{
- while (1)
- {
- /* If we're at the end, it vacuously uses its own alias set. */
- if (!handled_component_p (t))
- return false;
-
- switch (TREE_CODE (t))
- {
- case COMPONENT_REF:
- if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
- return true;
- break;
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
- return true;
- break;
-
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- break;
-
- default:
- /* Bitfields and casts are never addressable. */
- return true;
- }
-
- t = TREE_OPERAND (t, 0);
- if (get_alias_set (TREE_TYPE (t)) == 0)
- return true;
- }
-}
-
-/* Return the alias set for T, which may be either a type or an
- expression. Call language-specific routine for help, if needed. */
-
-HOST_WIDE_INT
-get_alias_set (tree t)
-{
- HOST_WIDE_INT set;
-
- /* If we're not doing any alias analysis, just assume everything
- aliases everything else. Also return 0 if this or its type is
- an error. */
- if (! flag_strict_aliasing || t == error_mark_node
- || (! TYPE_P (t)
- && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
- return 0;
-
- /* We can be passed either an expression or a type. This and the
- language-specific routine may make mutually-recursive calls to each other
- to figure out what to do. At each juncture, we see if this is a tree
- that the language may need to handle specially. First handle things that
- aren't types. */
- if (! TYPE_P (t))
- {
- tree inner = t;
-
- /* Remove any nops, then give the language a chance to do
- something with this tree before we look at it. */
- STRIP_NOPS (t);
- set = lang_hooks.get_alias_set (t);
- if (set != -1)
- return set;
-
- /* First see if the actual object referenced is an INDIRECT_REF from a
- restrict-qualified pointer or a "void *". */
- while (handled_component_p (inner))
- {
- inner = TREE_OPERAND (inner, 0);
- STRIP_NOPS (inner);
- }
-
- /* Check for accesses through restrict-qualified pointers. */
- if (INDIRECT_REF_P (inner))
- {
- tree decl = find_base_decl (TREE_OPERAND (inner, 0));
-
- if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
- {
- /* If we haven't computed the actual alias set, do it now. */
- if (DECL_POINTER_ALIAS_SET (decl) == -2)
- {
- tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
-
- /* No two restricted pointers can point at the same thing.
- However, a restricted pointer can point at the same thing
- as an unrestricted pointer, if that unrestricted pointer
- is based on the restricted pointer. So, we make the
- alias set for the restricted pointer a subset of the
- alias set for the type pointed to by the type of the
- decl. */
- HOST_WIDE_INT pointed_to_alias_set
- = get_alias_set (pointed_to_type);
-
- if (pointed_to_alias_set == 0)
- /* It's not legal to make a subset of alias set zero. */
- DECL_POINTER_ALIAS_SET (decl) = 0;
- else if (AGGREGATE_TYPE_P (pointed_to_type))
- /* For an aggregate, we must treat the restricted
- pointer the same as an ordinary pointer. If we
- were to make the type pointed to by the
- restricted pointer a subset of the pointed-to
- type, then we would believe that other subsets
- of the pointed-to type (such as fields of that
- type) do not conflict with the type pointed to
- by the restricted pointer. */
- DECL_POINTER_ALIAS_SET (decl)
- = pointed_to_alias_set;
- else
- {
- DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
- record_alias_subset (pointed_to_alias_set,
- DECL_POINTER_ALIAS_SET (decl));
- }
- }
-
- /* We use the alias set indicated in the declaration. */
- return DECL_POINTER_ALIAS_SET (decl);
- }
-
- /* If we have an INDIRECT_REF via a void pointer, we don't
- know anything about what that might alias. Likewise if the
- pointer is marked that way. */
- else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
- || (TYPE_REF_CAN_ALIAS_ALL
- (TREE_TYPE (TREE_OPERAND (inner, 0)))))
- return 0;
- }
-
- /* Otherwise, pick up the outermost object that we could have a pointer
- to, processing conversions as above. */
- while (component_uses_parent_alias_set (t))
- {
- t = TREE_OPERAND (t, 0);
- STRIP_NOPS (t);
- }
-
- /* If we've already determined the alias set for a decl, just return
- it. This is necessary for C++ anonymous unions, whose component
- variables don't look like union members (boo!). */
- if (TREE_CODE (t) == VAR_DECL
- && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
- return MEM_ALIAS_SET (DECL_RTL (t));
-
- /* Now all we care about is the type. */
- t = TREE_TYPE (t);
- }
-
- /* Variant qualifiers don't affect the alias set, so get the main
- variant. If this is a type with a known alias set, return it. */
- t = TYPE_MAIN_VARIANT (t);
- if (TYPE_ALIAS_SET_KNOWN_P (t))
- return TYPE_ALIAS_SET (t);
-
- /* See if the language has special handling for this type. */
- set = lang_hooks.get_alias_set (t);
- if (set != -1)
- return set;
-
- /* There are no objects of FUNCTION_TYPE, so there's no point in
- using up an alias set for them. (There are, of course, pointers
- and references to functions, but that's different.) */
- else if (TREE_CODE (t) == FUNCTION_TYPE)
- set = 0;
-
- /* Unless the language specifies otherwise, let vector types alias
- their components. This avoids some nasty type punning issues in
- normal usage. And indeed lets vectors be treated more like an
- array slice. */
- else if (TREE_CODE (t) == VECTOR_TYPE)
- set = get_alias_set (TREE_TYPE (t));
-
- else
- /* Otherwise make a new alias set for this type. */
- set = new_alias_set ();
-
- TYPE_ALIAS_SET (t) = set;
-
- /* If this is an aggregate type, we must record any component aliasing
- information. */
- if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
- record_component_aliases (t);
-
- return set;
-}
-
-/* Return a brand-new alias set. */
-
-HOST_WIDE_INT
-new_alias_set (void)
-{
- if (flag_strict_aliasing)
- {
- if (alias_sets == 0)
- VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
- VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
- return VEC_length (alias_set_entry, alias_sets) - 1;
- }
- else
- return 0;
-}
-
-/* Indicate that things in SUBSET can alias things in SUPERSET, but that
- not everything that aliases SUPERSET also aliases SUBSET. For example,
- in C, a store to an `int' can alias a load of a structure containing an
- `int', and vice versa. But it can't alias a load of a 'double' member
- of the same structure. Here, the structure would be the SUPERSET and
- `int' the SUBSET. This relationship is also described in the comment at
- the beginning of this file.
-
- This function should be called only once per SUPERSET/SUBSET pair.
-
- It is illegal for SUPERSET to be zero; everything is implicitly a
- subset of alias set zero. */
-
-static void
-record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
-{
- alias_set_entry superset_entry;
- alias_set_entry subset_entry;
-
- /* It is possible in complex type situations for both sets to be the same,
- in which case we can ignore this operation. */
- if (superset == subset)
- return;
-
- gcc_assert (superset);
-
- superset_entry = get_alias_set_entry (superset);
- if (superset_entry == 0)
- {
- /* Create an entry for the SUPERSET, so that we have a place to
- attach the SUBSET. */
- superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
- superset_entry->alias_set = superset;
- superset_entry->children
- = splay_tree_new_ggc (splay_tree_compare_ints);
- superset_entry->has_zero_child = 0;
- VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
- }
-
- if (subset == 0)
- superset_entry->has_zero_child = 1;
- else
- {
- subset_entry = get_alias_set_entry (subset);
- /* If there is an entry for the subset, enter all of its children
- (if they are not already present) as children of the SUPERSET. */
- if (subset_entry)
- {
- if (subset_entry->has_zero_child)
- superset_entry->has_zero_child = 1;
-
- splay_tree_foreach (subset_entry->children, insert_subset_children,
- superset_entry->children);
- }
-
- /* Enter the SUBSET itself as a child of the SUPERSET. */
- splay_tree_insert (superset_entry->children,
- (splay_tree_key) subset, 0);
- }
-}
-
-/* Record that component types of TYPE, if any, are part of that type for
- aliasing purposes. For record types, we only record component types
- for fields that are marked addressable. For array types, we always
- record the component types, so the front end should not call this
- function if the individual component aren't addressable. */
-
-void
-record_component_aliases (tree type)
-{
- HOST_WIDE_INT superset = get_alias_set (type);
- tree field;
-
- if (superset == 0)
- return;
-
- switch (TREE_CODE (type))
- {
- case ARRAY_TYPE:
- if (! TYPE_NONALIASED_COMPONENT (type))
- record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
- break;
-
- case RECORD_TYPE:
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- /* Recursively record aliases for the base classes, if there are any. */
- if (TYPE_BINFO (type))
- {
- int i;
- tree binfo, base_binfo;
-
- for (binfo = TYPE_BINFO (type), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
- record_alias_subset (superset,
- get_alias_set (BINFO_TYPE (base_binfo)));
- }
- for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
- record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
- break;
-
- case COMPLEX_TYPE:
- record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
- break;
-
- default:
- break;
- }
-}
-
-/* Allocate an alias set for use in storing and reading from the varargs
- spill area. */
-
-static GTY(()) HOST_WIDE_INT varargs_set = -1;
-
-HOST_WIDE_INT
-get_varargs_alias_set (void)
-{
-#if 1
- /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
- varargs alias set to an INDIRECT_REF (FIXME!), so we can't
- consistently use the varargs alias set for loads from the varargs
- area. So don't use it anywhere. */
- return 0;
-#else
- if (varargs_set == -1)
- varargs_set = new_alias_set ();
-
- return varargs_set;
-#endif
-}
-
-/* Likewise, but used for the fixed portions of the frame, e.g., register
- save areas. */
-
-static GTY(()) HOST_WIDE_INT frame_set = -1;
-
-HOST_WIDE_INT
-get_frame_alias_set (void)
-{
- if (frame_set == -1)
- frame_set = new_alias_set ();
-
- return frame_set;
-}
-
-/* Inside SRC, the source of a SET, find a base address. */
-
-static rtx
-find_base_value (rtx src)
-{
- unsigned int regno;
-
- switch (GET_CODE (src))
- {
- case SYMBOL_REF:
- case LABEL_REF:
- return src;
-
- case REG:
- regno = REGNO (src);
- /* At the start of a function, argument registers have known base
- values which may be lost later. Returning an ADDRESS
- expression here allows optimization based on argument values
- even when the argument registers are used for other purposes. */
- if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
- return new_reg_base_value[regno];
-
- /* If a pseudo has a known base value, return it. Do not do this
- for non-fixed hard regs since it can result in a circular
- dependency chain for registers which have values at function entry.
-
- The test above is not sufficient because the scheduler may move
- a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
- if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
- && regno < VEC_length (rtx, reg_base_value))
- {
- /* If we're inside init_alias_analysis, use new_reg_base_value
- to reduce the number of relaxation iterations. */
- if (new_reg_base_value && new_reg_base_value[regno]
- && REG_N_SETS (regno) == 1)
- return new_reg_base_value[regno];
-
- if (VEC_index (rtx, reg_base_value, regno))
- return VEC_index (rtx, reg_base_value, regno);
- }
-
- return 0;
-
- case MEM:
- /* Check for an argument passed in memory. Only record in the
- copying-arguments block; it is too hard to track changes
- otherwise. */
- if (copying_arguments
- && (XEXP (src, 0) == arg_pointer_rtx
- || (GET_CODE (XEXP (src, 0)) == PLUS
- && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
- return gen_rtx_ADDRESS (VOIDmode, src);
- return 0;
-
- case CONST:
- src = XEXP (src, 0);
- if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
- break;
-
- /* ... fall through ... */
-
- case PLUS:
- case MINUS:
- {
- rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
-
- /* If either operand is a REG that is a known pointer, then it
- is the base. */
- if (REG_P (src_0) && REG_POINTER (src_0))
- return find_base_value (src_0);
- if (REG_P (src_1) && REG_POINTER (src_1))
- return find_base_value (src_1);
-
- /* If either operand is a REG, then see if we already have
- a known value for it. */
- if (REG_P (src_0))
- {
- temp = find_base_value (src_0);
- if (temp != 0)
- src_0 = temp;
- }
-
- if (REG_P (src_1))
- {
- temp = find_base_value (src_1);
- if (temp!= 0)
- src_1 = temp;
- }
-
- /* If either base is named object or a special address
- (like an argument or stack reference), then use it for the
- base term. */
- if (src_0 != 0
- && (GET_CODE (src_0) == SYMBOL_REF
- || GET_CODE (src_0) == LABEL_REF
- || (GET_CODE (src_0) == ADDRESS
- && GET_MODE (src_0) != VOIDmode)))
- return src_0;
-
- if (src_1 != 0
- && (GET_CODE (src_1) == SYMBOL_REF
- || GET_CODE (src_1) == LABEL_REF
- || (GET_CODE (src_1) == ADDRESS
- && GET_MODE (src_1) != VOIDmode)))
- return src_1;
-
- /* Guess which operand is the base address:
- If either operand is a symbol, then it is the base. If
- either operand is a CONST_INT, then the other is the base. */
- if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
- return find_base_value (src_0);
- else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
- return find_base_value (src_1);
-
- return 0;
- }
-
- case LO_SUM:
- /* The standard form is (lo_sum reg sym) so look only at the
- second operand. */
- return find_base_value (XEXP (src, 1));
-
- case AND:
- /* If the second operand is constant set the base
- address to the first operand. */
- if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
- return find_base_value (XEXP (src, 0));
- return 0;
-
- case TRUNCATE:
- if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
- break;
- /* Fall through. */
- case HIGH:
- case PRE_INC:
- case PRE_DEC:
- case POST_INC:
- case POST_DEC:
- case PRE_MODIFY:
- case POST_MODIFY:
- return find_base_value (XEXP (src, 0));
-
- case ZERO_EXTEND:
- case SIGN_EXTEND: /* used for NT/Alpha pointers */
- {
- rtx temp = find_base_value (XEXP (src, 0));
-
- if (temp != 0 && CONSTANT_P (temp))
- temp = convert_memory_address (Pmode, temp);
-
- return temp;
- }
-
- default:
- break;
- }
-
- return 0;
-}
-
-/* Called from init_alias_analysis indirectly through note_stores. */
-
-/* While scanning insns to find base values, reg_seen[N] is nonzero if
- register N has been set in this function. */
-static char *reg_seen;
-
-/* Addresses which are known not to alias anything else are identified
- by a unique integer. */
-static int unique_id;
-
-static void
-record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
-{
- unsigned regno;
- rtx src;
- int n;
-
- if (!REG_P (dest))
- return;
-
- regno = REGNO (dest);
-
- gcc_assert (regno < VEC_length (rtx, reg_base_value));
-
- /* If this spans multiple hard registers, then we must indicate that every
- register has an unusable value. */
- if (regno < FIRST_PSEUDO_REGISTER)
- n = hard_regno_nregs[regno][GET_MODE (dest)];
- else
- n = 1;
- if (n != 1)
- {
- while (--n >= 0)
- {
- reg_seen[regno + n] = 1;
- new_reg_base_value[regno + n] = 0;
- }
- return;
- }
-
- if (set)
- {
- /* A CLOBBER wipes out any old value but does not prevent a previously
- unset register from acquiring a base address (i.e. reg_seen is not
- set). */
- if (GET_CODE (set) == CLOBBER)
- {
- new_reg_base_value[regno] = 0;
- return;
- }
- src = SET_SRC (set);
- }
- else
- {
- if (reg_seen[regno])
- {
- new_reg_base_value[regno] = 0;
- return;
- }
- reg_seen[regno] = 1;
- new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
- GEN_INT (unique_id++));
- return;
- }
-
- /* If this is not the first set of REGNO, see whether the new value
- is related to the old one. There are two cases of interest:
-
- (1) The register might be assigned an entirely new value
- that has the same base term as the original set.
-
- (2) The set might be a simple self-modification that
- cannot change REGNO's base value.
-
- If neither case holds, reject the original base value as invalid.
- Note that the following situation is not detected:
-
- extern int x, y; int *p = &x; p += (&y-&x);
-
- ANSI C does not allow computing the difference of addresses
- of distinct top level objects. */
- if (new_reg_base_value[regno] != 0
- && find_base_value (src) != new_reg_base_value[regno])
- switch (GET_CODE (src))
- {
- case LO_SUM:
- case MINUS:
- if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
- new_reg_base_value[regno] = 0;
- break;
- case PLUS:
- /* If the value we add in the PLUS is also a valid base value,
- this might be the actual base value, and the original value
- an index. */
- {
- rtx other = NULL_RTX;
-
- if (XEXP (src, 0) == dest)
- other = XEXP (src, 1);
- else if (XEXP (src, 1) == dest)
- other = XEXP (src, 0);
-
- if (! other || find_base_value (other))
- new_reg_base_value[regno] = 0;
- break;
- }
- case AND:
- if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
- new_reg_base_value[regno] = 0;
- break;
- default:
- new_reg_base_value[regno] = 0;
- break;
- }
- /* If this is the first set of a register, record the value. */
- else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
- && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
- new_reg_base_value[regno] = find_base_value (src);
-
- reg_seen[regno] = 1;
-}
-
-/* Clear alias info for a register. This is used if an RTL transformation
- changes the value of a register. This is used in flow by AUTO_INC_DEC
- optimizations. We don't need to clear reg_base_value, since flow only
- changes the offset. */
-
-void
-clear_reg_alias_info (rtx reg)
-{
- unsigned int regno = REGNO (reg);
-
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < reg_known_value_size)
- {
- reg_known_value[regno] = reg;
- reg_known_equiv_p[regno] = false;
- }
- }
-}
-
-/* If a value is known for REGNO, return it. */
-
-rtx
-get_reg_known_value (unsigned int regno)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < reg_known_value_size)
- return reg_known_value[regno];
- }
- return NULL;
-}
-
-/* Set it. */
-
-static void
-set_reg_known_value (unsigned int regno, rtx val)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < reg_known_value_size)
- reg_known_value[regno] = val;
- }
-}
-
-/* Similarly for reg_known_equiv_p. */
-
-bool
-get_reg_known_equiv_p (unsigned int regno)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < reg_known_value_size)
- return reg_known_equiv_p[regno];
- }
- return false;
-}
-
-static void
-set_reg_known_equiv_p (unsigned int regno, bool val)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < reg_known_value_size)
- reg_known_equiv_p[regno] = val;
- }
-}
-
-
-/* Returns a canonical version of X, from the point of view alias
- analysis. (For example, if X is a MEM whose address is a register,
- and the register has a known value (say a SYMBOL_REF), then a MEM
- whose address is the SYMBOL_REF is returned.) */
-
-rtx
-canon_rtx (rtx x)
-{
- /* Recursively look for equivalences. */
- if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
- {
- rtx t = get_reg_known_value (REGNO (x));
- if (t == x)
- return x;
- if (t)
- return canon_rtx (t);
- }
-
- if (GET_CODE (x) == PLUS)
- {
- rtx x0 = canon_rtx (XEXP (x, 0));
- rtx x1 = canon_rtx (XEXP (x, 1));
-
- if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
- {
- if (GET_CODE (x0) == CONST_INT)
- return plus_constant (x1, INTVAL (x0));
- else if (GET_CODE (x1) == CONST_INT)
- return plus_constant (x0, INTVAL (x1));
- return gen_rtx_PLUS (GET_MODE (x), x0, x1);
- }
- }
-
- /* This gives us much better alias analysis when called from
- the loop optimizer. Note we want to leave the original
- MEM alone, but need to return the canonicalized MEM with
- all the flags with their original values. */
- else if (MEM_P (x))
- x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
-
- return x;
-}
-
-/* Return 1 if X and Y are identical-looking rtx's.
- Expect that X and Y has been already canonicalized.
-
- We use the data in reg_known_value above to see if two registers with
- different numbers are, in fact, equivalent. */
-
-static int
-rtx_equal_for_memref_p (rtx x, rtx y)
-{
- int i;
- int j;
- enum rtx_code code;
- const char *fmt;
-
- if (x == 0 && y == 0)
- return 1;
- if (x == 0 || y == 0)
- return 0;
-
- if (x == y)
- return 1;
-
- code = GET_CODE (x);
- /* Rtx's of different codes cannot be equal. */
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
- (REG:SI x) and (REG:HI x) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* Some RTL can be compared without a recursive examination. */
- switch (code)
- {
- case REG:
- return REGNO (x) == REGNO (y);
-
- case LABEL_REF:
- return XEXP (x, 0) == XEXP (y, 0);
-
- case SYMBOL_REF:
- return XSTR (x, 0) == XSTR (y, 0);
-
- case VALUE:
- case CONST_INT:
- case CONST_DOUBLE:
- /* There's no need to compare the contents of CONST_DOUBLEs or
- CONST_INTs because pointer equality is a good enough
- comparison for these nodes. */
- return 0;
-
- default:
- break;
- }
-
- /* canon_rtx knows how to handle plus. No need to canonicalize. */
- if (code == PLUS)
- return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
- || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
- /* For commutative operations, the RTX match if the operand match in any
- order. Also handle the simple binary and unary cases without a loop. */
- if (COMMUTATIVE_P (x))
- {
- rtx xop0 = canon_rtx (XEXP (x, 0));
- rtx yop0 = canon_rtx (XEXP (y, 0));
- rtx yop1 = canon_rtx (XEXP (y, 1));
-
- return ((rtx_equal_for_memref_p (xop0, yop0)
- && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
- || (rtx_equal_for_memref_p (xop0, yop1)
- && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
- }
- else if (NON_COMMUTATIVE_P (x))
- {
- return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
- canon_rtx (XEXP (y, 0)))
- && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
- canon_rtx (XEXP (y, 1))));
- }
- else if (UNARY_P (x))
- return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
- canon_rtx (XEXP (y, 0)));
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things.
-
- Limit cases to types which actually appear in addresses. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
- canon_rtx (XVECEXP (y, i, j))) == 0)
- return 0;
- break;
-
- case 'e':
- if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
- canon_rtx (XEXP (y, i))) == 0)
- return 0;
- break;
-
- /* This can happen for asm operands. */
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- /* This can happen for an asm which clobbers memory. */
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- gcc_unreachable ();
- }
- }
- return 1;
-}
-
-/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
- X and return it, or return 0 if none found. */
-
-static rtx
-find_symbolic_term (rtx x)
-{
- int i;
- enum rtx_code code;
- const char *fmt;
-
- code = GET_CODE (x);
- if (code == SYMBOL_REF || code == LABEL_REF)
- return x;
- if (OBJECT_P (x))
- return 0;
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- rtx t;
-
- if (fmt[i] == 'e')
- {
- t = find_symbolic_term (XEXP (x, i));
- if (t != 0)
- return t;
- }
- else if (fmt[i] == 'E')
- break;
- }
- return 0;
-}
-
-rtx
-find_base_term (rtx x)
-{
- cselib_val *val;
- struct elt_loc_list *l;
-
-#if defined (FIND_BASE_TERM)
- /* Try machine-dependent ways to find the base term. */
- x = FIND_BASE_TERM (x);
-#endif
-
- switch (GET_CODE (x))
- {
- case REG:
- return REG_BASE_VALUE (x);
-
- case TRUNCATE:
- if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
- return 0;
- /* Fall through. */
- case HIGH:
- case PRE_INC:
- case PRE_DEC:
- case POST_INC:
- case POST_DEC:
- case PRE_MODIFY:
- case POST_MODIFY:
- return find_base_term (XEXP (x, 0));
-
- case ZERO_EXTEND:
- case SIGN_EXTEND: /* Used for Alpha/NT pointers */
- {
- rtx temp = find_base_term (XEXP (x, 0));
-
- if (temp != 0 && CONSTANT_P (temp))
- temp = convert_memory_address (Pmode, temp);
-
- return temp;
- }
-
- case VALUE:
- val = CSELIB_VAL_PTR (x);
- if (!val)
- return 0;
- for (l = val->locs; l; l = l->next)
- if ((x = find_base_term (l->loc)) != 0)
- return x;
- return 0;
-
- case CONST:
- x = XEXP (x, 0);
- if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
- return 0;
- /* Fall through. */
- case LO_SUM:
- case PLUS:
- case MINUS:
- {
- rtx tmp1 = XEXP (x, 0);
- rtx tmp2 = XEXP (x, 1);
-
- /* This is a little bit tricky since we have to determine which of
- the two operands represents the real base address. Otherwise this
- routine may return the index register instead of the base register.
-
- That may cause us to believe no aliasing was possible, when in
- fact aliasing is possible.
-
- We use a few simple tests to guess the base register. Additional
- tests can certainly be added. For example, if one of the operands
- is a shift or multiply, then it must be the index register and the
- other operand is the base register. */
-
- if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
- return find_base_term (tmp2);
-
- /* If either operand is known to be a pointer, then use it
- to determine the base term. */
- if (REG_P (tmp1) && REG_POINTER (tmp1))
- return find_base_term (tmp1);
-
- if (REG_P (tmp2) && REG_POINTER (tmp2))
- return find_base_term (tmp2);
-
- /* Neither operand was known to be a pointer. Go ahead and find the
- base term for both operands. */
- tmp1 = find_base_term (tmp1);
- tmp2 = find_base_term (tmp2);
-
- /* If either base term is named object or a special address
- (like an argument or stack reference), then use it for the
- base term. */
- if (tmp1 != 0
- && (GET_CODE (tmp1) == SYMBOL_REF
- || GET_CODE (tmp1) == LABEL_REF
- || (GET_CODE (tmp1) == ADDRESS
- && GET_MODE (tmp1) != VOIDmode)))
- return tmp1;
-
- if (tmp2 != 0
- && (GET_CODE (tmp2) == SYMBOL_REF
- || GET_CODE (tmp2) == LABEL_REF
- || (GET_CODE (tmp2) == ADDRESS
- && GET_MODE (tmp2) != VOIDmode)))
- return tmp2;
-
- /* We could not determine which of the two operands was the
- base register and which was the index. So we can determine
- nothing from the base alias check. */
- return 0;
- }
-
- case AND:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
- return find_base_term (XEXP (x, 0));
- return 0;
-
- case SYMBOL_REF:
- case LABEL_REF:
- return x;
-
- default:
- return 0;
- }
-}
-
-/* Return 0 if the addresses X and Y are known to point to different
- objects, 1 if they might be pointers to the same object. */
-
-static int
-base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
- enum machine_mode y_mode)
-{
- rtx x_base = find_base_term (x);
- rtx y_base = find_base_term (y);
-
- /* If the address itself has no known base see if a known equivalent
- value has one. If either address still has no known base, nothing
- is known about aliasing. */
- if (x_base == 0)
- {
- rtx x_c;
-
- if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
- return 1;
-
- x_base = find_base_term (x_c);
- if (x_base == 0)
- return 1;
- }
-
- if (y_base == 0)
- {
- rtx y_c;
- if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
- return 1;
-
- y_base = find_base_term (y_c);
- if (y_base == 0)
- return 1;
- }
-
- /* If the base addresses are equal nothing is known about aliasing. */
- if (rtx_equal_p (x_base, y_base))
- return 1;
-
- /* The base addresses of the read and write are different expressions.
- If they are both symbols and they are not accessed via AND, there is
- no conflict. We can bring knowledge of object alignment into play
- here. For example, on alpha, "char a, b;" can alias one another,
- though "char a; long b;" cannot. */
- if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
- {
- if (GET_CODE (x) == AND && GET_CODE (y) == AND)
- return 1;
- if (GET_CODE (x) == AND
- && (GET_CODE (XEXP (x, 1)) != CONST_INT
- || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
- return 1;
- if (GET_CODE (y) == AND
- && (GET_CODE (XEXP (y, 1)) != CONST_INT
- || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
- return 1;
- /* Differing symbols never alias. */
- return 0;
- }
-
- /* If one address is a stack reference there can be no alias:
- stack references using different base registers do not alias,
- a stack reference can not alias a parameter, and a stack reference
- can not alias a global. */
- if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
- || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
- return 0;
-
- if (! flag_argument_noalias)
- return 1;
-
- if (flag_argument_noalias > 1)
- return 0;
-
- /* Weak noalias assertion (arguments are distinct, but may match globals). */
- return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
-}
-
-/* Convert the address X into something we can use. This is done by returning
- it unchanged unless it is a value; in the latter case we call cselib to get
- a more useful rtx. */
-
-rtx
-get_addr (rtx x)
-{
- cselib_val *v;
- struct elt_loc_list *l;
-
- if (GET_CODE (x) != VALUE)
- return x;
- v = CSELIB_VAL_PTR (x);
- if (v)
- {
- for (l = v->locs; l; l = l->next)
- if (CONSTANT_P (l->loc))
- return l->loc;
- for (l = v->locs; l; l = l->next)
- if (!REG_P (l->loc) && !MEM_P (l->loc))
- return l->loc;
- if (v->locs)
- return v->locs->loc;
- }
- return x;
-}
-
-/* Return the address of the (N_REFS + 1)th memory reference to ADDR
- where SIZE is the size in bytes of the memory reference. If ADDR
- is not modified by the memory reference then ADDR is returned. */
-
-static rtx
-addr_side_effect_eval (rtx addr, int size, int n_refs)
-{
- int offset = 0;
-
- switch (GET_CODE (addr))
- {
- case PRE_INC:
- offset = (n_refs + 1) * size;
- break;
- case PRE_DEC:
- offset = -(n_refs + 1) * size;
- break;
- case POST_INC:
- offset = n_refs * size;
- break;
- case POST_DEC:
- offset = -n_refs * size;
- break;
-
- default:
- return addr;
- }
-
- if (offset)
- addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
- GEN_INT (offset));
- else
- addr = XEXP (addr, 0);
- addr = canon_rtx (addr);
-
- return addr;
-}
-
-/* Return nonzero if X and Y (memory addresses) could reference the
- same location in memory. C is an offset accumulator. When
- C is nonzero, we are testing aliases between X and Y + C.
- XSIZE is the size in bytes of the X reference,
- similarly YSIZE is the size in bytes for Y.
- Expect that canon_rtx has been already called for X and Y.
-
- If XSIZE or YSIZE is zero, we do not know the amount of memory being
- referenced (the reference was BLKmode), so make the most pessimistic
- assumptions.
-
- If XSIZE or YSIZE is negative, we may access memory outside the object
- being referenced as a side effect. This can happen when using AND to
- align memory references, as is done on the Alpha.
-
- Nice to notice that varying addresses cannot conflict with fp if no
- local variables had their addresses taken, but that's too hard now. */
-
-static int
-memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
-{
- if (GET_CODE (x) == VALUE)
- x = get_addr (x);
- if (GET_CODE (y) == VALUE)
- y = get_addr (y);
- if (GET_CODE (x) == HIGH)
- x = XEXP (x, 0);
- else if (GET_CODE (x) == LO_SUM)
- x = XEXP (x, 1);
- else
- x = addr_side_effect_eval (x, xsize, 0);
- if (GET_CODE (y) == HIGH)
- y = XEXP (y, 0);
- else if (GET_CODE (y) == LO_SUM)
- y = XEXP (y, 1);
- else
- y = addr_side_effect_eval (y, ysize, 0);
-
- if (rtx_equal_for_memref_p (x, y))
- {
- if (xsize <= 0 || ysize <= 0)
- return 1;
- if (c >= 0 && xsize > c)
- return 1;
- if (c < 0 && ysize+c > 0)
- return 1;
- return 0;
- }
-
- /* This code used to check for conflicts involving stack references and
- globals but the base address alias code now handles these cases. */
-
- if (GET_CODE (x) == PLUS)
- {
- /* The fact that X is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (rtx_equal_for_memref_p (x1, y1))
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- if (rtx_equal_for_memref_p (x0, y0))
- return memrefs_conflict_p (xsize, x1, ysize, y1, c);
- if (GET_CODE (x1) == CONST_INT)
- {
- if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x0, ysize, y0,
- c - INTVAL (x1) + INTVAL (y1));
- else
- return memrefs_conflict_p (xsize, x0, ysize, y,
- c - INTVAL (x1));
- }
- else if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
-
- return 1;
- }
- else if (GET_CODE (x1) == CONST_INT)
- return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
- }
- else if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
- else
- return 1;
- }
-
- if (GET_CODE (x) == GET_CODE (y))
- switch (GET_CODE (x))
- {
- case MULT:
- {
- /* Handle cases where we expect the second operands to be the
- same, and check only whether the first operand would conflict
- or not. */
- rtx x0, y0;
- rtx x1 = canon_rtx (XEXP (x, 1));
- rtx y1 = canon_rtx (XEXP (y, 1));
- if (! rtx_equal_for_memref_p (x1, y1))
- return 1;
- x0 = canon_rtx (XEXP (x, 0));
- y0 = canon_rtx (XEXP (y, 0));
- if (rtx_equal_for_memref_p (x0, y0))
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
-
- /* Can't properly adjust our sizes. */
- if (GET_CODE (x1) != CONST_INT)
- return 1;
- xsize /= INTVAL (x1);
- ysize /= INTVAL (x1);
- c /= INTVAL (x1);
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- }
-
- default:
- break;
- }
-
- /* Treat an access through an AND (e.g. a subword access on an Alpha)
- as an access with indeterminate size. Assume that references
- besides AND are aligned, so if the size of the other reference is
- at least as large as the alignment, assume no other overlap. */
- if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
- xsize = -1;
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
- }
- if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
- {
- /* ??? If we are indexing far enough into the array/structure, we
- may yet be able to determine that we can not overlap. But we
- also need to that we are far enough from the end not to overlap
- a following reference, so we do nothing with that for now. */
- if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
- ysize = -1;
- return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
- }
-
- if (CONSTANT_P (x))
- {
- if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
- {
- c += (INTVAL (y) - INTVAL (x));
- return (xsize <= 0 || ysize <= 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
- }
-
- if (GET_CODE (x) == CONST)
- {
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, canon_rtx (XEXP (y, 0)), c);
- else
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, y, c);
- }
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, x, ysize,
- canon_rtx (XEXP (y, 0)), c);
-
- if (CONSTANT_P (y))
- return (xsize <= 0 || ysize <= 0
- || (rtx_equal_for_memref_p (x, y)
- && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
-
- return 1;
- }
- return 1;
-}
-
-/* Functions to compute memory dependencies.
-
- Since we process the insns in execution order, we can build tables
- to keep track of what registers are fixed (and not aliased), what registers
- are varying in known ways, and what registers are varying in unknown
- ways.
-
- If both memory references are volatile, then there must always be a
- dependence between the two references, since their order can not be
- changed. A volatile and non-volatile reference can be interchanged
- though.
-
- A MEM_IN_STRUCT reference at a non-AND varying address can never
- conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
- also must allow AND addresses, because they may generate accesses
- outside the object being referenced. This is used to generate
- aligned addresses from unaligned addresses, for instance, the alpha
- storeqi_unaligned pattern. */
-
-/* Read dependence: X is read after read in MEM takes place. There can
- only be a dependence here if both reads are volatile. */
-
-int
-read_dependence (rtx mem, rtx x)
-{
- return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
-}
-
-/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
- MEM2 is a reference to a structure at a varying address, or returns
- MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
- value is returned MEM1 and MEM2 can never alias. VARIES_P is used
- to decide whether or not an address may vary; it should return
- nonzero whenever variation is possible.
- MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
-
-static rtx
-fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
- rtx mem2_addr,
- int (*varies_p) (rtx, int))
-{
- if (! flag_strict_aliasing)
- return NULL_RTX;
-
- if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
- && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
- /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
- varying address. */
- return mem1;
-
- if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
- && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
- /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
- varying address. */
- return mem2;
-
- return NULL_RTX;
-}
-
-/* Returns nonzero if something about the mode or address format MEM1
- indicates that it might well alias *anything*. */
-
-static int
-aliases_everything_p (rtx mem)
-{
- if (GET_CODE (XEXP (mem, 0)) == AND)
- /* If the address is an AND, it's very hard to know at what it is
- actually pointing. */
- return 1;
-
- return 0;
-}
-
-/* Return true if we can determine that the fields referenced cannot
- overlap for any pair of objects. */
-
-static bool
-nonoverlapping_component_refs_p (tree x, tree y)
-{
- tree fieldx, fieldy, typex, typey, orig_y;
-
- do
- {
- /* The comparison has to be done at a common type, since we don't
- know how the inheritance hierarchy works. */
- orig_y = y;
- do
- {
- fieldx = TREE_OPERAND (x, 1);
- typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
-
- y = orig_y;
- do
- {
- fieldy = TREE_OPERAND (y, 1);
- typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
-
- if (typex == typey)
- goto found;
-
- y = TREE_OPERAND (y, 0);
- }
- while (y && TREE_CODE (y) == COMPONENT_REF);
-
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
- /* Never found a common type. */
- return false;
-
- found:
- /* If we're left with accessing different fields of a structure,
- then no overlap. */
- if (TREE_CODE (typex) == RECORD_TYPE
- && fieldx != fieldy)
- return true;
-
- /* The comparison on the current field failed. If we're accessing
- a very nested structure, look at the next outer level. */
- x = TREE_OPERAND (x, 0);
- y = TREE_OPERAND (y, 0);
- }
- while (x && y
- && TREE_CODE (x) == COMPONENT_REF
- && TREE_CODE (y) == COMPONENT_REF);
-
- return false;
-}
-
-/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
-
-static tree
-decl_for_component_ref (tree x)
-{
- do
- {
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
-
- return x && DECL_P (x) ? x : NULL_TREE;
-}
-
-/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
- offset of the field reference. */
-
-static rtx
-adjust_offset_for_component_ref (tree x, rtx offset)
-{
- HOST_WIDE_INT ioffset;
-
- if (! offset)
- return NULL_RTX;
-
- ioffset = INTVAL (offset);
- do
- {
- tree offset = component_ref_field_offset (x);
- tree field = TREE_OPERAND (x, 1);
-
- if (! host_integerp (offset, 1))
- return NULL_RTX;
- ioffset += (tree_low_cst (offset, 1)
- + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
- / BITS_PER_UNIT));
-
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
-
- return GEN_INT (ioffset);
-}
-
-/* Return nonzero if we can determine the exprs corresponding to memrefs
- X and Y and they do not overlap. */
-
-static int
-nonoverlapping_memrefs_p (rtx x, rtx y)
-{
- tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
- rtx rtlx, rtly;
- rtx basex, basey;
- rtx moffsetx, moffsety;
- HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
-
- /* Unless both have exprs, we can't tell anything. */
- if (exprx == 0 || expry == 0)
- return 0;
-
- /* If both are field references, we may be able to determine something. */
- if (TREE_CODE (exprx) == COMPONENT_REF
- && TREE_CODE (expry) == COMPONENT_REF
- && nonoverlapping_component_refs_p (exprx, expry))
- return 1;
-
-
- /* If the field reference test failed, look at the DECLs involved. */
- moffsetx = MEM_OFFSET (x);
- if (TREE_CODE (exprx) == COMPONENT_REF)
- {
- if (TREE_CODE (expry) == VAR_DECL
- && POINTER_TYPE_P (TREE_TYPE (expry)))
- {
- tree field = TREE_OPERAND (exprx, 1);
- tree fieldcontext = DECL_FIELD_CONTEXT (field);
- if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
- TREE_TYPE (field)))
- return 1;
- }
- {
- tree t = decl_for_component_ref (exprx);
- if (! t)
- return 0;
- moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
- exprx = t;
- }
- }
- else if (INDIRECT_REF_P (exprx))
- {
- exprx = TREE_OPERAND (exprx, 0);
- if (flag_argument_noalias < 2
- || TREE_CODE (exprx) != PARM_DECL)
- return 0;
- }
-
- moffsety = MEM_OFFSET (y);
- if (TREE_CODE (expry) == COMPONENT_REF)
- {
- if (TREE_CODE (exprx) == VAR_DECL
- && POINTER_TYPE_P (TREE_TYPE (exprx)))
- {
- tree field = TREE_OPERAND (expry, 1);
- tree fieldcontext = DECL_FIELD_CONTEXT (field);
- if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
- TREE_TYPE (field)))
- return 1;
- }
- {
- tree t = decl_for_component_ref (expry);
- if (! t)
- return 0;
- moffsety = adjust_offset_for_component_ref (expry, moffsety);
- expry = t;
- }
- }
- else if (INDIRECT_REF_P (expry))
- {
- expry = TREE_OPERAND (expry, 0);
- if (flag_argument_noalias < 2
- || TREE_CODE (expry) != PARM_DECL)
- return 0;
- }
-
- if (! DECL_P (exprx) || ! DECL_P (expry))
- return 0;
-
- rtlx = DECL_RTL (exprx);
- rtly = DECL_RTL (expry);
-
- /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
- can't overlap unless they are the same because we never reuse that part
- of the stack frame used for locals for spilled pseudos. */
- if ((!MEM_P (rtlx) || !MEM_P (rtly))
- && ! rtx_equal_p (rtlx, rtly))
- return 1;
-
- /* Get the base and offsets of both decls. If either is a register, we
- know both are and are the same, so use that as the base. The only
- we can avoid overlap is if we can deduce that they are nonoverlapping
- pieces of that decl, which is very rare. */
- basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
- if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
- offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
-
- basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
- if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
- offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
-
- /* If the bases are different, we know they do not overlap if both
- are constants or if one is a constant and the other a pointer into the
- stack frame. Otherwise a different base means we can't tell if they
- overlap or not. */
- if (! rtx_equal_p (basex, basey))
- return ((CONSTANT_P (basex) && CONSTANT_P (basey))
- || (CONSTANT_P (basex) && REG_P (basey)
- && REGNO_PTR_FRAME_P (REGNO (basey)))
- || (CONSTANT_P (basey) && REG_P (basex)
- && REGNO_PTR_FRAME_P (REGNO (basex))));
-
- sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
- : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
- : -1);
- sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
- : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
- -1);
-
- /* If we have an offset for either memref, it can update the values computed
- above. */
- if (moffsetx)
- offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
- if (moffsety)
- offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
-
- /* If a memref has both a size and an offset, we can use the smaller size.
- We can't do this if the offset isn't known because we must view this
- memref as being anywhere inside the DECL's MEM. */
- if (MEM_SIZE (x) && moffsetx)
- sizex = INTVAL (MEM_SIZE (x));
- if (MEM_SIZE (y) && moffsety)
- sizey = INTVAL (MEM_SIZE (y));
-
- /* Put the values of the memref with the lower offset in X's values. */
- if (offsetx > offsety)
- {
- tem = offsetx, offsetx = offsety, offsety = tem;
- tem = sizex, sizex = sizey, sizey = tem;
- }
-
- /* If we don't know the size of the lower-offset value, we can't tell
- if they conflict. Otherwise, we do the test. */
- return sizex >= 0 && offsety >= offsetx + sizex;
-}
-
-/* True dependence: X is read after store in MEM takes place. */
-
-int
-true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
- int (*varies) (rtx, int))
-{
- rtx x_addr, mem_addr;
- rtx base;
-
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return 1;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
- This is used in epilogue deallocation functions. */
- if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
- return 1;
- if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
- return 1;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return 1;
-
- if (DIFFERENT_ALIAS_SETS_P (x, mem))
- return 0;
-
- /* Read-only memory is by definition never modified, and therefore can't
- conflict with anything. We don't expect to find read-only set on MEM,
- but stupid user tricks can produce them, so don't die. */
- if (MEM_READONLY_P (x))
- return 0;
-
- if (nonoverlapping_memrefs_p (mem, x))
- return 0;
-
- if (mem_mode == VOIDmode)
- mem_mode = GET_MODE (mem);
-
- x_addr = get_addr (XEXP (x, 0));
- mem_addr = get_addr (XEXP (mem, 0));
-
- base = find_base_term (x_addr);
- if (base && (GET_CODE (base) == LABEL_REF
- || (GET_CODE (base) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (base))))
- return 0;
-
- if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
- return 0;
-
- x_addr = canon_rtx (x_addr);
- mem_addr = canon_rtx (mem_addr);
-
- if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
- SIZE_FOR_MODE (x), x_addr, 0))
- return 0;
-
- if (aliases_everything_p (x))
- return 1;
-
- /* We cannot use aliases_everything_p to test MEM, since we must look
- at MEM_MODE, rather than GET_MODE (MEM). */
- if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
- return 1;
-
- /* In true_dependence we also allow BLKmode to alias anything. Why
- don't we do this in anti_dependence and output_dependence? */
- if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
- return 1;
-
- return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
- varies);
-}
-
-/* Canonical true dependence: X is read after store in MEM takes place.
- Variant of true_dependence which assumes MEM has already been
- canonicalized (hence we no longer do that here).
- The mem_addr argument has been added, since true_dependence computed
- this value prior to canonicalizing. */
-
-int
-canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
- rtx x, int (*varies) (rtx, int))
-{
- rtx x_addr;
-
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return 1;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
- This is used in epilogue deallocation functions. */
- if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
- return 1;
- if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
- return 1;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return 1;
-
- if (DIFFERENT_ALIAS_SETS_P (x, mem))
- return 0;
-
- /* Read-only memory is by definition never modified, and therefore can't
- conflict with anything. We don't expect to find read-only set on MEM,
- but stupid user tricks can produce them, so don't die. */
- if (MEM_READONLY_P (x))
- return 0;
-
- if (nonoverlapping_memrefs_p (x, mem))
- return 0;
-
- x_addr = get_addr (XEXP (x, 0));
-
- if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
- return 0;
-
- x_addr = canon_rtx (x_addr);
- if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
- SIZE_FOR_MODE (x), x_addr, 0))
- return 0;
-
- if (aliases_everything_p (x))
- return 1;
-
- /* We cannot use aliases_everything_p to test MEM, since we must look
- at MEM_MODE, rather than GET_MODE (MEM). */
- if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
- return 1;
-
- /* In true_dependence we also allow BLKmode to alias anything. Why
- don't we do this in anti_dependence and output_dependence? */
- if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
- return 1;
-
- return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
- varies);
-}
-
-/* Returns nonzero if a write to X might alias a previous read from
- (or, if WRITEP is nonzero, a write to) MEM. */
-
-static int
-write_dependence_p (rtx mem, rtx x, int writep)
-{
- rtx x_addr, mem_addr;
- rtx fixed_scalar;
- rtx base;
-
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return 1;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
- This is used in epilogue deallocation functions. */
- if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
- return 1;
- if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
- return 1;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return 1;
-
- if (DIFFERENT_ALIAS_SETS_P (x, mem))
- return 0;
-
- /* A read from read-only memory can't conflict with read-write memory. */
- if (!writep && MEM_READONLY_P (mem))
- return 0;
-
- if (nonoverlapping_memrefs_p (x, mem))
- return 0;
-
- x_addr = get_addr (XEXP (x, 0));
- mem_addr = get_addr (XEXP (mem, 0));
-
- if (! writep)
- {
- base = find_base_term (mem_addr);
- if (base && (GET_CODE (base) == LABEL_REF
- || (GET_CODE (base) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (base))))
- return 0;
- }
-
- if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
- GET_MODE (mem)))
- return 0;
-
- x_addr = canon_rtx (x_addr);
- mem_addr = canon_rtx (mem_addr);
-
- if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
- SIZE_FOR_MODE (x), x_addr, 0))
- return 0;
-
- fixed_scalar
- = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
- rtx_addr_varies_p);
-
- return (!(fixed_scalar == mem && !aliases_everything_p (x))
- && !(fixed_scalar == x && !aliases_everything_p (mem)));
-}
-
-/* Anti dependence: X is written after read in MEM takes place. */
-
-int
-anti_dependence (rtx mem, rtx x)
-{
- return write_dependence_p (mem, x, /*writep=*/0);
-}
-
-/* Output dependence: X is written after store in MEM takes place. */
-
-int
-output_dependence (rtx mem, rtx x)
-{
- return write_dependence_p (mem, x, /*writep=*/1);
-}
-
-
-void
-init_alias_once (void)
-{
- int i;
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- /* Check whether this register can hold an incoming pointer
- argument. FUNCTION_ARG_REGNO_P tests outgoing register
- numbers, so translate if necessary due to register windows. */
- if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
- && HARD_REGNO_MODE_OK (i, Pmode))
- static_reg_base_value[i]
- = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
-
- static_reg_base_value[STACK_POINTER_REGNUM]
- = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
- static_reg_base_value[ARG_POINTER_REGNUM]
- = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
- static_reg_base_value[FRAME_POINTER_REGNUM]
- = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
- = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
-#endif
-}
-
-/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
- to be memory reference. */
-static bool memory_modified;
-static void
-memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
-{
- if (MEM_P (x))
- {
- if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
- memory_modified = true;
- }
-}
-
-
-/* Return true when INSN possibly modify memory contents of MEM
- (i.e. address can be modified). */
-bool
-memory_modified_in_insn_p (rtx mem, rtx insn)
-{
- if (!INSN_P (insn))
- return false;
- memory_modified = false;
- note_stores (PATTERN (insn), memory_modified_1, mem);
- return memory_modified;
-}
-
-/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
- array. */
-
-void
-init_alias_analysis (void)
-{
- unsigned int maxreg = max_reg_num ();
- int changed, pass;
- int i;
- unsigned int ui;
- rtx insn;
-
- timevar_push (TV_ALIAS_ANALYSIS);
-
- reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
- reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
- reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
-
- /* If we have memory allocated from the previous run, use it. */
- if (old_reg_base_value)
- reg_base_value = old_reg_base_value;
-
- if (reg_base_value)
- VEC_truncate (rtx, reg_base_value, 0);
-
- VEC_safe_grow (rtx, gc, reg_base_value, maxreg);
- memset (VEC_address (rtx, reg_base_value), 0,
- sizeof (rtx) * VEC_length (rtx, reg_base_value));
-
- new_reg_base_value = XNEWVEC (rtx, maxreg);
- reg_seen = XNEWVEC (char, maxreg);
-
- /* The basic idea is that each pass through this loop will use the
- "constant" information from the previous pass to propagate alias
- information through another level of assignments.
-
- This could get expensive if the assignment chains are long. Maybe
- we should throttle the number of iterations, possibly based on
- the optimization level or flag_expensive_optimizations.
-
- We could propagate more information in the first pass by making use
- of REG_N_SETS to determine immediately that the alias information
- for a pseudo is "constant".
-
- A program with an uninitialized variable can cause an infinite loop
- here. Instead of doing a full dataflow analysis to detect such problems
- we just cap the number of iterations for the loop.
-
- The state of the arrays for the set chain in question does not matter
- since the program has undefined behavior. */
-
- pass = 0;
- do
- {
- /* Assume nothing will change this iteration of the loop. */
- changed = 0;
-
- /* We want to assign the same IDs each iteration of this loop, so
- start counting from zero each iteration of the loop. */
- unique_id = 0;
-
- /* We're at the start of the function each iteration through the
- loop, so we're copying arguments. */
- copying_arguments = true;
-
- /* Wipe the potential alias information clean for this pass. */
- memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
-
- /* Wipe the reg_seen array clean. */
- memset (reg_seen, 0, maxreg);
-
- /* Mark all hard registers which may contain an address.
- The stack, frame and argument pointers may contain an address.
- An argument register which can hold a Pmode value may contain
- an address even if it is not in BASE_REGS.
-
- The address expression is VOIDmode for an argument and
- Pmode for other registers. */
-
- memcpy (new_reg_base_value, static_reg_base_value,
- FIRST_PSEUDO_REGISTER * sizeof (rtx));
-
- /* Walk the insns adding values to the new_reg_base_value array. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- {
- if (INSN_P (insn))
- {
- rtx note, set;
-
-#if defined (HAVE_prologue) || defined (HAVE_epilogue)
- /* The prologue/epilogue insns are not threaded onto the
- insn chain until after reload has completed. Thus,
- there is no sense wasting time checking if INSN is in
- the prologue/epilogue until after reload has completed. */
- if (reload_completed
- && prologue_epilogue_contains (insn))
- continue;
-#endif
-
- /* If this insn has a noalias note, process it, Otherwise,
- scan for sets. A simple set will have no side effects
- which could change the base value of any other register. */
-
- if (GET_CODE (PATTERN (insn)) == SET
- && REG_NOTES (insn) != 0
- && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
- record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
- else
- note_stores (PATTERN (insn), record_set, NULL);
-
- set = single_set (insn);
-
- if (set != 0
- && REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
- {
- unsigned int regno = REGNO (SET_DEST (set));
- rtx src = SET_SRC (set);
- rtx t;
-
- if (REG_NOTES (insn) != 0
- && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
- && REG_N_SETS (regno) == 1)
- || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
- && GET_CODE (XEXP (note, 0)) != EXPR_LIST
- && ! rtx_varies_p (XEXP (note, 0), 1)
- && ! reg_overlap_mentioned_p (SET_DEST (set),
- XEXP (note, 0)))
- {
- set_reg_known_value (regno, XEXP (note, 0));
- set_reg_known_equiv_p (regno,
- REG_NOTE_KIND (note) == REG_EQUIV);
- }
- else if (REG_N_SETS (regno) == 1
- && GET_CODE (src) == PLUS
- && REG_P (XEXP (src, 0))
- && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
- && GET_CODE (XEXP (src, 1)) == CONST_INT)
- {
- t = plus_constant (t, INTVAL (XEXP (src, 1)));
- set_reg_known_value (regno, t);
- set_reg_known_equiv_p (regno, 0);
- }
- else if (REG_N_SETS (regno) == 1
- && ! rtx_varies_p (src, 1))
- {
- set_reg_known_value (regno, src);
- set_reg_known_equiv_p (regno, 0);
- }
- }
- }
- else if (NOTE_P (insn)
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
- copying_arguments = false;
- }
-
- /* Now propagate values from new_reg_base_value to reg_base_value. */
- gcc_assert (maxreg == (unsigned int) max_reg_num());
-
- for (ui = 0; ui < maxreg; ui++)
- {
- if (new_reg_base_value[ui]
- && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
- && ! rtx_equal_p (new_reg_base_value[ui],
- VEC_index (rtx, reg_base_value, ui)))
- {
- VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
- changed = 1;
- }
- }
- }
- while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
-
- /* Fill in the remaining entries. */
- for (i = 0; i < (int)reg_known_value_size; i++)
- if (reg_known_value[i] == 0)
- reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
-
- /* Simplify the reg_base_value array so that no register refers to
- another register, except to special registers indirectly through
- ADDRESS expressions.
-
- In theory this loop can take as long as O(registers^2), but unless
- there are very long dependency chains it will run in close to linear
- time.
-
- This loop may not be needed any longer now that the main loop does
- a better job at propagating alias information. */
- pass = 0;
- do
- {
- changed = 0;
- pass++;
- for (ui = 0; ui < maxreg; ui++)
- {
- rtx base = VEC_index (rtx, reg_base_value, ui);
- if (base && REG_P (base))
- {
- unsigned int base_regno = REGNO (base);
- if (base_regno == ui) /* register set from itself */
- VEC_replace (rtx, reg_base_value, ui, 0);
- else
- VEC_replace (rtx, reg_base_value, ui,
- VEC_index (rtx, reg_base_value, base_regno));
- changed = 1;
- }
- }
- }
- while (changed && pass < MAX_ALIAS_LOOP_PASSES);
-
- /* Clean up. */
- free (new_reg_base_value);
- new_reg_base_value = 0;
- free (reg_seen);
- reg_seen = 0;
- timevar_pop (TV_ALIAS_ANALYSIS);
-}
-
-void
-end_alias_analysis (void)
-{
- old_reg_base_value = reg_base_value;
- ggc_free (reg_known_value);
- reg_known_value = 0;
- reg_known_value_size = 0;
- free (reg_known_equiv_p);
- reg_known_equiv_p = 0;
-}
-
-#include "gt-alias.h"