aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/utils.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/utils.c')
-rw-r--r--gcc-4.2.1/gcc/ada/utils.c3410
1 files changed, 3410 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/utils.c b/gcc-4.2.1/gcc/ada/utils.c
new file mode 100644
index 000000000..8d02d3f38
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/utils.c
@@ -0,0 +1,3410 @@
+/****************************************************************************
+ * *
+ * GNAT COMPILER COMPONENTS *
+ * *
+ * U T I L S *
+ * *
+ * C Implementation File *
+ * *
+ * Copyright (C) 1992-2006, Free Software Foundation, Inc. *
+ * *
+ * GNAT is free software; you can redistribute it and/or modify it under *
+ * terms of the GNU General Public License as published by the Free Soft- *
+ * ware Foundation; either version 2, or (at your option) any later ver- *
+ * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
+ * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
+ * for more details. You should have received a copy of the GNU General *
+ * Public License distributed with GNAT; see file COPYING. If not, write *
+ * to the Free Software Foundation, 51 Franklin Street, Fifth Floor, *
+ * Boston, MA 02110-1301, USA. *
+ * *
+ * GNAT was originally developed by the GNAT team at New York University. *
+ * Extensive contributions were provided by Ada Core Technologies Inc. *
+ * *
+ ****************************************************************************/
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "defaults.h"
+#include "toplev.h"
+#include "output.h"
+#include "ggc.h"
+#include "debug.h"
+#include "convert.h"
+#include "target.h"
+#include "function.h"
+#include "cgraph.h"
+#include "tree-inline.h"
+#include "tree-gimple.h"
+#include "tree-dump.h"
+
+#include "ada.h"
+#include "types.h"
+#include "atree.h"
+#include "elists.h"
+#include "namet.h"
+#include "nlists.h"
+#include "stringt.h"
+#include "uintp.h"
+#include "fe.h"
+#include "sinfo.h"
+#include "einfo.h"
+#include "ada-tree.h"
+#include "gigi.h"
+
+#ifndef MAX_FIXED_MODE_SIZE
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
+#endif
+
+#ifndef MAX_BITS_PER_WORD
+#define MAX_BITS_PER_WORD BITS_PER_WORD
+#endif
+
+/* If nonzero, pretend we are allocating at global level. */
+int force_global;
+
+/* Tree nodes for the various types and decls we create. */
+tree gnat_std_decls[(int) ADT_LAST];
+
+/* Functions to call for each of the possible raise reasons. */
+tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
+
+/* List of functions called automatically at the beginning and
+ end of execution, on targets without .ctors/.dtors sections. */
+tree static_ctors;
+tree static_dtors;
+
+/* Forward declarations for handlers of attributes. */
+static tree handle_const_attribute (tree *, tree, tree, int, bool *);
+static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
+
+/* Table of machine-independent internal attributes for Ada. We support
+ this minimal set of attributes to accommodate the Alpha back-end which
+ unconditionally puts them on its builtins. */
+const struct attribute_spec gnat_internal_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
+ { "const", 0, 0, true, false, false, handle_const_attribute },
+ { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute },
+ { NULL, 0, 0, false, false, false, NULL }
+};
+
+/* Associates a GNAT tree node to a GCC tree node. It is used in
+ `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
+ of `save_gnu_tree' for more info. */
+static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
+
+/* This variable keeps a table for types for each precision so that we only
+ allocate each of them once. Signed and unsigned types are kept separate.
+
+ Note that these types are only used when fold-const requests something
+ special. Perhaps we should NOT share these types; we'll see how it
+ goes later. */
+static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
+
+/* Likewise for float types, but record these by mode. */
+static GTY(()) tree float_types[NUM_MACHINE_MODES];
+
+/* For each binding contour we allocate a binding_level structure to indicate
+ the binding depth. */
+
+struct gnat_binding_level GTY((chain_next ("%h.chain")))
+{
+ /* The binding level containing this one (the enclosing binding level). */
+ struct gnat_binding_level *chain;
+ /* The BLOCK node for this level. */
+ tree block;
+ /* If nonzero, the setjmp buffer that needs to be updated for any
+ variable-sized definition within this context. */
+ tree jmpbuf_decl;
+};
+
+/* The binding level currently in effect. */
+static GTY(()) struct gnat_binding_level *current_binding_level;
+
+/* A chain of gnat_binding_level structures awaiting reuse. */
+static GTY((deletable)) struct gnat_binding_level *free_binding_level;
+
+/* A chain of unused BLOCK nodes. */
+static GTY((deletable)) tree free_block_chain;
+
+struct language_function GTY(())
+{
+ int unused;
+};
+
+static void gnat_install_builtins (void);
+static tree merge_sizes (tree, tree, tree, bool, bool);
+static tree compute_related_constant (tree, tree);
+static tree split_plus (tree, tree *);
+static bool value_zerop (tree);
+static void gnat_gimplify_function (tree);
+static tree float_type_for_precision (int, enum machine_mode);
+static tree convert_to_fat_pointer (tree, tree);
+static tree convert_to_thin_pointer (tree, tree);
+static tree make_descriptor_field (const char *,tree, tree, tree);
+static bool potential_alignment_gap (tree, tree, tree);
+
+/* Initialize the association of GNAT nodes to GCC trees. */
+
+void
+init_gnat_to_gnu (void)
+{
+ associate_gnat_to_gnu
+ = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
+}
+
+/* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
+ which is to be associated with GNAT_ENTITY. Such GCC tree node is always
+ a ..._DECL node. If NO_CHECK is nonzero, the latter check is suppressed.
+
+ If GNU_DECL is zero, a previous association is to be reset. */
+
+void
+save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
+{
+ /* Check that GNAT_ENTITY is not already defined and that it is being set
+ to something which is a decl. Raise gigi 401 if not. Usually, this
+ means GNAT_ENTITY is defined twice, but occasionally is due to some
+ Gigi problem. */
+ gcc_assert (!gnu_decl
+ || (!associate_gnat_to_gnu[gnat_entity - First_Node_Id]
+ && (no_check || DECL_P (gnu_decl))));
+ associate_gnat_to_gnu[gnat_entity - First_Node_Id] = gnu_decl;
+}
+
+/* GNAT_ENTITY is a GNAT tree node for a defining identifier.
+ Return the ..._DECL node that was associated with it. If there is no tree
+ node associated with GNAT_ENTITY, abort.
+
+ In some cases, such as delayed elaboration or expressions that need to
+ be elaborated only once, GNAT_ENTITY is really not an entity. */
+
+tree
+get_gnu_tree (Entity_Id gnat_entity)
+{
+ gcc_assert (associate_gnat_to_gnu[gnat_entity - First_Node_Id]);
+ return associate_gnat_to_gnu[gnat_entity - First_Node_Id];
+}
+
+/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
+
+bool
+present_gnu_tree (Entity_Id gnat_entity)
+{
+ return (associate_gnat_to_gnu[gnat_entity - First_Node_Id]) != 0;
+}
+
+
+/* Return nonzero if we are currently in the global binding level. */
+
+int
+global_bindings_p (void)
+{
+ return ((force_global || !current_function_decl) ? -1 : 0);
+}
+
+/* Enter a new binding level. */
+
+void
+gnat_pushlevel ()
+{
+ struct gnat_binding_level *newlevel = NULL;
+
+ /* Reuse a struct for this binding level, if there is one. */
+ if (free_binding_level)
+ {
+ newlevel = free_binding_level;
+ free_binding_level = free_binding_level->chain;
+ }
+ else
+ newlevel
+ = (struct gnat_binding_level *)
+ ggc_alloc (sizeof (struct gnat_binding_level));
+
+ /* Use a free BLOCK, if any; otherwise, allocate one. */
+ if (free_block_chain)
+ {
+ newlevel->block = free_block_chain;
+ free_block_chain = TREE_CHAIN (free_block_chain);
+ TREE_CHAIN (newlevel->block) = NULL_TREE;
+ }
+ else
+ newlevel->block = make_node (BLOCK);
+
+ /* Point the BLOCK we just made to its parent. */
+ if (current_binding_level)
+ BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
+
+ BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
+ TREE_USED (newlevel->block) = 1;
+
+ /* Add this level to the front of the chain (stack) of levels that are
+ active. */
+ newlevel->chain = current_binding_level;
+ newlevel->jmpbuf_decl = NULL_TREE;
+ current_binding_level = newlevel;
+}
+
+/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
+ and point FNDECL to this BLOCK. */
+
+void
+set_current_block_context (tree fndecl)
+{
+ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
+ DECL_INITIAL (fndecl) = current_binding_level->block;
+}
+
+/* Set the jmpbuf_decl for the current binding level to DECL. */
+
+void
+set_block_jmpbuf_decl (tree decl)
+{
+ current_binding_level->jmpbuf_decl = decl;
+}
+
+/* Get the jmpbuf_decl, if any, for the current binding level. */
+
+tree
+get_block_jmpbuf_decl ()
+{
+ return current_binding_level->jmpbuf_decl;
+}
+
+/* Exit a binding level. Set any BLOCK into the current code group. */
+
+void
+gnat_poplevel ()
+{
+ struct gnat_binding_level *level = current_binding_level;
+ tree block = level->block;
+
+ BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
+ BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
+
+ /* If this is a function-level BLOCK don't do anything. Otherwise, if there
+ are no variables free the block and merge its subblocks into those of its
+ parent block. Otherwise, add it to the list of its parent. */
+ if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
+ ;
+ else if (BLOCK_VARS (block) == NULL_TREE)
+ {
+ BLOCK_SUBBLOCKS (level->chain->block)
+ = chainon (BLOCK_SUBBLOCKS (block),
+ BLOCK_SUBBLOCKS (level->chain->block));
+ TREE_CHAIN (block) = free_block_chain;
+ free_block_chain = block;
+ }
+ else
+ {
+ TREE_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
+ BLOCK_SUBBLOCKS (level->chain->block) = block;
+ TREE_USED (block) = 1;
+ set_block_for_group (block);
+ }
+
+ /* Free this binding structure. */
+ current_binding_level = level->chain;
+ level->chain = free_binding_level;
+ free_binding_level = level;
+}
+
+/* Insert BLOCK at the end of the list of subblocks of the
+ current binding level. This is used when a BIND_EXPR is expanded,
+ to handle the BLOCK node inside the BIND_EXPR. */
+
+void
+insert_block (tree block)
+{
+ TREE_USED (block) = 1;
+ TREE_CHAIN (block) = BLOCK_SUBBLOCKS (current_binding_level->block);
+ BLOCK_SUBBLOCKS (current_binding_level->block) = block;
+}
+
+/* Records a ..._DECL node DECL as belonging to the current lexical scope
+ and uses GNAT_NODE for location information and propagating flags. */
+
+void
+gnat_pushdecl (tree decl, Node_Id gnat_node)
+{
+ /* If at top level, there is no context. But PARM_DECLs always go in the
+ level of its function. */
+ if (global_bindings_p () && TREE_CODE (decl) != PARM_DECL)
+ DECL_CONTEXT (decl) = 0;
+ else
+ {
+ DECL_CONTEXT (decl) = current_function_decl;
+
+ /* Functions imported in another function are not really nested. */
+ if (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl))
+ DECL_NO_STATIC_CHAIN (decl) = 1;
+ }
+
+ TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node));
+
+ /* Set the location of DECL and emit a declaration for it. */
+ if (Present (gnat_node))
+ Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
+ add_decl_expr (decl, gnat_node);
+
+ /* Put the declaration on the list. The list of declarations is in reverse
+ order. The list will be reversed later. We don't do this for global
+ variables. Also, don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
+ the list. They will cause trouble with the debugger and aren't needed
+ anyway. */
+ if (!global_bindings_p ()
+ && (TREE_CODE (decl) != TYPE_DECL
+ || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE))
+ {
+ TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
+ BLOCK_VARS (current_binding_level->block) = decl;
+ }
+
+ /* For the declaration of a type, set its name if it either is not already
+ set, was set to an IDENTIFIER_NODE, indicating an internal name,
+ or if the previous type name was not derived from a source name.
+ We'd rather have the type named with a real name and all the pointer
+ types to the same object have the same POINTER_TYPE node. Code in this
+ function in c-decl.c makes a copy of the type node here, but that may
+ cause us trouble with incomplete types, so let's not try it (at least
+ for now). */
+
+ if (TREE_CODE (decl) == TYPE_DECL
+ && DECL_NAME (decl)
+ && (!TYPE_NAME (TREE_TYPE (decl))
+ || TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == IDENTIFIER_NODE
+ || (TREE_CODE (TYPE_NAME (TREE_TYPE (decl))) == TYPE_DECL
+ && DECL_ARTIFICIAL (TYPE_NAME (TREE_TYPE (decl)))
+ && !DECL_ARTIFICIAL (decl))))
+ TYPE_NAME (TREE_TYPE (decl)) = decl;
+
+ /* if (TREE_CODE (decl) != CONST_DECL)
+ rest_of_decl_compilation (decl, global_bindings_p (), 0); */
+}
+
+/* Do little here. Set up the standard declarations later after the
+ front end has been run. */
+
+void
+gnat_init_decl_processing (void)
+{
+ input_line = 0;
+
+ /* Make the binding_level structure for global names. */
+ current_function_decl = 0;
+ current_binding_level = 0;
+ free_binding_level = 0;
+ gnat_pushlevel ();
+
+ build_common_tree_nodes (true, true);
+
+ /* In Ada, we use a signed type for SIZETYPE. Use the signed type
+ corresponding to the size of Pmode. In most cases when ptr_mode and
+ Pmode differ, C will use the width of ptr_mode as sizetype. But we get
+ far better code using the width of Pmode. Make this here since we need
+ this before we can expand the GNAT types. */
+ size_type_node = gnat_type_for_size (GET_MODE_BITSIZE (Pmode), 0);
+ set_sizetype (size_type_node);
+ build_common_tree_nodes_2 (0);
+
+ /* Give names and make TYPE_DECLs for common types. */
+ gnat_pushdecl (build_decl (TYPE_DECL, get_identifier (SIZE_TYPE), sizetype),
+ Empty);
+ gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("integer"),
+ integer_type_node),
+ Empty);
+ gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("unsigned char"),
+ char_type_node),
+ Empty);
+ gnat_pushdecl (build_decl (TYPE_DECL, get_identifier ("long integer"),
+ long_integer_type_node),
+ Empty);
+
+ ptr_void_type_node = build_pointer_type (void_type_node);
+
+ gnat_install_builtins ();
+}
+
+/* Install the builtin functions the middle-end needs. */
+
+static void
+gnat_install_builtins ()
+{
+ /* Builtins used by generic optimizers. */
+ build_common_builtin_nodes ();
+
+ /* Target specific builtins, such as the AltiVec family on ppc. */
+ targetm.init_builtins ();
+}
+
+/* Create the predefined scalar types such as `integer_type_node' needed
+ in the gcc back-end and initialize the global binding level. */
+
+void
+init_gigi_decls (tree long_long_float_type, tree exception_type)
+{
+ tree endlink, decl;
+ unsigned int i;
+
+ /* Set the types that GCC and Gigi use from the front end. We would like
+ to do this for char_type_node, but it needs to correspond to the C
+ char type. */
+ if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE)
+ {
+ /* In this case, the builtin floating point types are VAX float,
+ so make up a type for use. */
+ longest_float_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE;
+ layout_type (longest_float_type_node);
+ create_type_decl (get_identifier ("longest float type"),
+ longest_float_type_node, NULL, false, true, Empty);
+ }
+ else
+ longest_float_type_node = TREE_TYPE (long_long_float_type);
+
+ except_type_node = TREE_TYPE (exception_type);
+
+ unsigned_type_node = gnat_type_for_size (INT_TYPE_SIZE, 1);
+ create_type_decl (get_identifier ("unsigned int"), unsigned_type_node,
+ NULL, false, true, Empty);
+
+ void_type_decl_node = create_type_decl (get_identifier ("void"),
+ void_type_node, NULL, false, true,
+ Empty);
+
+ void_ftype = build_function_type (void_type_node, NULL_TREE);
+ ptr_void_ftype = build_pointer_type (void_ftype);
+
+ /* Now declare runtime functions. */
+ endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
+
+ /* malloc is a function declaration tree for a function to allocate
+ memory. */
+ malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"),
+ NULL_TREE,
+ build_function_type (ptr_void_type_node,
+ tree_cons (NULL_TREE,
+ sizetype,
+ endlink)),
+ NULL_TREE, false, true, true, NULL,
+ Empty);
+
+ /* free is a function declaration tree for a function to free memory. */
+ free_decl
+ = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* Make the types and functions used for exception processing. */
+ jmpbuf_type
+ = build_array_type (gnat_type_for_mode (Pmode, 0),
+ build_index_type (build_int_cst (NULL_TREE, 5)));
+ create_type_decl (get_identifier ("JMPBUF_T"), jmpbuf_type, NULL,
+ false, true, Empty);
+ jmpbuf_ptr_type = build_pointer_type (jmpbuf_type);
+
+ /* Functions to get and set the jumpbuf pointer for the current thread. */
+ get_jmpbuf_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__get_jmpbuf_address_soft"),
+ NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE),
+ NULL_TREE, false, true, true, NULL, Empty);
+ /* Avoid creating superfluous edges to __builtin_setjmp receivers. */
+ DECL_IS_PURE (get_jmpbuf_decl) = 1;
+
+ set_jmpbuf_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__set_jmpbuf_address_soft"),
+ NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* Function to get the current exception. */
+ get_excptr_decl
+ = create_subprog_decl
+ (get_identifier ("system__soft_links__get_gnat_exception"),
+ NULL_TREE,
+ build_function_type (build_pointer_type (except_type_node), NULL_TREE),
+ NULL_TREE, false, true, true, NULL, Empty);
+ /* Avoid creating superfluous edges to __builtin_setjmp receivers. */
+ DECL_IS_PURE (get_excptr_decl) = 1;
+
+ /* Functions that raise exceptions. */
+ raise_nodefer_decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (except_type_node),
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* Dummy objects to materialize "others" and "all others" in the exception
+ tables. These are exported by a-exexpr.adb, so see this unit for the
+ types to use. */
+
+ others_decl
+ = create_var_decl (get_identifier ("OTHERS"),
+ get_identifier ("__gnat_others_value"),
+ integer_type_node, 0, 1, 0, 1, 1, 0, Empty);
+
+ all_others_decl
+ = create_var_decl (get_identifier ("ALL_OTHERS"),
+ get_identifier ("__gnat_all_others_value"),
+ integer_type_node, 0, 1, 0, 1, 1, 0, Empty);
+
+ /* Hooks to call when entering/leaving an exception handler. */
+ begin_handler_decl
+ = create_subprog_decl (get_identifier ("__gnat_begin_handler"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ end_handler_decl
+ = create_subprog_decl (get_identifier ("__gnat_end_handler"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ ptr_void_type_node,
+ endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ /* If in no exception handlers mode, all raise statements are redirected to
+ __gnat_last_chance_handler. No need to redefine raise_nodefer_decl, since
+ this procedure will never be called in this mode. */
+ if (No_Exception_Handlers_Set ())
+ {
+ decl
+ = create_subprog_decl
+ (get_identifier ("__gnat_last_chance_handler"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
+ gnat_raise_decls[i] = decl;
+ }
+ else
+ /* Otherwise, make one decl for each exception reason. */
+ for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
+ {
+ char name[17];
+
+ sprintf (name, "__gnat_rcheck_%.2d", i);
+ gnat_raise_decls[i]
+ = create_subprog_decl
+ (get_identifier (name), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE,
+ build_pointer_type
+ (char_type_node),
+ tree_cons (NULL_TREE,
+ integer_type_node,
+ endlink))),
+ NULL_TREE, false, true, true, NULL, Empty);
+ }
+
+ /* Indicate that these never return. */
+ TREE_THIS_VOLATILE (raise_nodefer_decl) = 1;
+ TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1;
+ TREE_TYPE (raise_nodefer_decl)
+ = build_qualified_type (TREE_TYPE (raise_nodefer_decl),
+ TYPE_QUAL_VOLATILE);
+
+ for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++)
+ {
+ TREE_THIS_VOLATILE (gnat_raise_decls[i]) = 1;
+ TREE_SIDE_EFFECTS (gnat_raise_decls[i]) = 1;
+ TREE_TYPE (gnat_raise_decls[i])
+ = build_qualified_type (TREE_TYPE (gnat_raise_decls[i]),
+ TYPE_QUAL_VOLATILE);
+ }
+
+ /* setjmp returns an integer and has one operand, which is a pointer to
+ a jmpbuf. */
+ setjmp_decl
+ = create_subprog_decl
+ (get_identifier ("__builtin_setjmp"), NULL_TREE,
+ build_function_type (integer_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL;
+ DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP;
+
+ /* update_setjmp_buf updates a setjmp buffer from the current stack pointer
+ address. */
+ update_setjmp_buf_decl
+ = create_subprog_decl
+ (get_identifier ("__builtin_update_setjmp_buf"), NULL_TREE,
+ build_function_type (void_type_node,
+ tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)),
+ NULL_TREE, false, true, true, NULL, Empty);
+
+ DECL_BUILT_IN_CLASS (update_setjmp_buf_decl) = BUILT_IN_NORMAL;
+ DECL_FUNCTION_CODE (update_setjmp_buf_decl) = BUILT_IN_UPDATE_SETJMP_BUF;
+
+ main_identifier_node = get_identifier ("main");
+}
+
+/* Given a record type (RECORD_TYPE) and a chain of FIELD_DECL nodes
+ (FIELDLIST), finish constructing the record or union type. If HAS_REP is
+ true, this record has a rep clause; don't call layout_type but merely set
+ the size and alignment ourselves. If DEFER_DEBUG is true, do not call
+ the debugging routines on this type; it will be done later. */
+
+void
+finish_record_type (tree record_type, tree fieldlist, bool has_rep,
+ bool defer_debug)
+{
+ enum tree_code code = TREE_CODE (record_type);
+ tree ada_size = bitsize_zero_node;
+ tree size = bitsize_zero_node;
+ bool var_size = false;
+ bool had_size = TYPE_SIZE (record_type) != 0;
+ bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
+ tree field;
+
+ TYPE_FIELDS (record_type) = fieldlist;
+ TYPE_STUB_DECL (record_type)
+ = build_decl (TYPE_DECL, NULL_TREE, record_type);
+
+ /* We don't need both the typedef name and the record name output in
+ the debugging information, since they are the same. */
+ DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1;
+
+ /* Globally initialize the record first. If this is a rep'ed record,
+ that just means some initializations; otherwise, layout the record. */
+
+ if (has_rep)
+ {
+ TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
+ TYPE_MODE (record_type) = BLKmode;
+
+ if (!had_size_unit)
+ TYPE_SIZE_UNIT (record_type) = size_zero_node;
+ if (!had_size)
+ TYPE_SIZE (record_type) = bitsize_zero_node;
+
+ /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
+ out just like a UNION_TYPE, since the size will be fixed. */
+ else if (code == QUAL_UNION_TYPE)
+ code = UNION_TYPE;
+ }
+ else
+ {
+ /* Ensure there isn't a size already set. There can be in an error
+ case where there is a rep clause but all fields have errors and
+ no longer have a position. */
+ TYPE_SIZE (record_type) = 0;
+ layout_type (record_type);
+ }
+
+ /* At this point, the position and size of each field is known. It was
+ either set before entry by a rep clause, or by laying out the type above.
+
+ We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
+ to compute the Ada size; the GCC size and alignment (for rep'ed records
+ that are not padding types); and the mode (for rep'ed records). We also
+ clear the DECL_BIT_FIELD indication for the cases we know have not been
+ handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
+
+ if (code == QUAL_UNION_TYPE)
+ fieldlist = nreverse (fieldlist);
+
+ for (field = fieldlist; field; field = TREE_CHAIN (field))
+ {
+ tree pos = bit_position (field);
+
+ tree type = TREE_TYPE (field);
+ tree this_size = DECL_SIZE (field);
+ tree this_ada_size = DECL_SIZE (field);
+
+ /* We need to make an XVE/XVU record if any field has variable size,
+ whether or not the record does. For example, if we have a union,
+ it may be that all fields, rounded up to the alignment, have the
+ same size, in which case we'll use that size. But the debug
+ output routines (except Dwarf2) won't be able to output the fields,
+ so we need to make the special record. */
+ if (TREE_CODE (this_size) != INTEGER_CST)
+ var_size = true;
+
+ if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE)
+ && !TYPE_IS_FAT_POINTER_P (type)
+ && !TYPE_CONTAINS_TEMPLATE_P (type)
+ && TYPE_ADA_SIZE (type))
+ this_ada_size = TYPE_ADA_SIZE (type);
+
+ /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
+ if (DECL_BIT_FIELD (field) && !STRICT_ALIGNMENT
+ && value_factor_p (pos, BITS_PER_UNIT)
+ && operand_equal_p (this_size, TYPE_SIZE (type), 0))
+ DECL_BIT_FIELD (field) = 0;
+
+ /* If we still have DECL_BIT_FIELD set at this point, we know the field
+ is technically not addressable. Except that it can actually be
+ addressed if the field is BLKmode and happens to be properly
+ aligned. */
+ DECL_NONADDRESSABLE_P (field)
+ |= DECL_BIT_FIELD (field) && DECL_MODE (field) != BLKmode;
+
+ if (has_rep && !DECL_BIT_FIELD (field))
+ TYPE_ALIGN (record_type)
+ = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
+
+ switch (code)
+ {
+ case UNION_TYPE:
+ ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
+ size = size_binop (MAX_EXPR, size, this_size);
+ break;
+
+ case QUAL_UNION_TYPE:
+ ada_size
+ = fold (build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_ada_size, ada_size));
+ size = fold (build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
+ this_size, size));
+ break;
+
+ case RECORD_TYPE:
+ /* Since we know here that all fields are sorted in order of
+ increasing bit position, the size of the record is one
+ higher than the ending bit of the last field processed
+ unless we have a rep clause, since in that case we might
+ have a field outside a QUAL_UNION_TYPE that has a higher ending
+ position. So use a MAX in that case. Also, if this field is a
+ QUAL_UNION_TYPE, we need to take into account the previous size in
+ the case of empty variants. */
+ ada_size
+ = merge_sizes (ada_size, pos, this_ada_size,
+ TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
+ size = merge_sizes (size, pos, this_size,
+ TREE_CODE (type) == QUAL_UNION_TYPE, has_rep);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ if (code == QUAL_UNION_TYPE)
+ nreverse (fieldlist);
+
+ /* If this is a padding record, we never want to make the size smaller than
+ what was specified in it, if any. */
+ if (TREE_CODE (record_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
+ size = TYPE_SIZE (record_type);
+
+ /* Now set any of the values we've just computed that apply. */
+ if (!TYPE_IS_FAT_POINTER_P (record_type)
+ && !TYPE_CONTAINS_TEMPLATE_P (record_type))
+ SET_TYPE_ADA_SIZE (record_type, ada_size);
+
+ if (has_rep)
+ {
+ tree size_unit
+ = (had_size_unit ? TYPE_SIZE_UNIT (record_type)
+ : convert (sizetype, size_binop (CEIL_DIV_EXPR, size,
+ bitsize_unit_node)));
+
+ TYPE_SIZE (record_type)
+ = variable_size (round_up (size, TYPE_ALIGN (record_type)));
+ TYPE_SIZE_UNIT (record_type)
+ = variable_size (round_up (size_unit,
+ TYPE_ALIGN (record_type) / BITS_PER_UNIT));
+
+ compute_record_mode (record_type);
+ }
+
+ if (!defer_debug)
+ write_record_type_debug_info (record_type);
+}
+
+/* Output the debug information associated to a record type. */
+
+void
+write_record_type_debug_info (tree record_type)
+{
+ tree fieldlist = TYPE_FIELDS (record_type);
+ tree field;
+ bool var_size = false;
+
+ for (field = fieldlist; field; field = TREE_CHAIN (field))
+ {
+ /* We need to make an XVE/XVU record if any field has variable size,
+ whether or not the record does. For example, if we have a union,
+ it may be that all fields, rounded up to the alignment, have the
+ same size, in which case we'll use that size. But the debug
+ output routines (except Dwarf2) won't be able to output the fields,
+ so we need to make the special record. */
+ if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST)
+ {
+ var_size = true;
+ break;
+ }
+ }
+
+ /* If this record is of variable size, rename it so that the
+ debugger knows it is and make a new, parallel, record
+ that tells the debugger how the record is laid out. See
+ exp_dbug.ads. But don't do this for records that are padding
+ since they confuse GDB. */
+ if (var_size
+ && !(TREE_CODE (record_type) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (record_type)))
+ {
+ tree new_record_type
+ = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? UNION_TYPE : TREE_CODE (record_type));
+ tree orig_name = TYPE_NAME (record_type);
+ tree orig_id
+ = (TREE_CODE (orig_name) == TYPE_DECL ? DECL_NAME (orig_name)
+ : orig_name);
+ tree new_id
+ = concat_id_with_name (orig_id,
+ TREE_CODE (record_type) == QUAL_UNION_TYPE
+ ? "XVU" : "XVE");
+ tree last_pos = bitsize_zero_node;
+ tree old_field;
+ tree prev_old_field = 0;
+
+ TYPE_NAME (new_record_type) = new_id;
+ TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
+ TYPE_STUB_DECL (new_record_type)
+ = build_decl (TYPE_DECL, NULL_TREE, new_record_type);
+ DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1;
+ DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
+ = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
+ TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
+ TYPE_SIZE_UNIT (new_record_type)
+ = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
+
+ /* Now scan all the fields, replacing each field with a new
+ field corresponding to the new encoding. */
+ for (old_field = TYPE_FIELDS (record_type); old_field;
+ old_field = TREE_CHAIN (old_field))
+ {
+ tree field_type = TREE_TYPE (old_field);
+ tree field_name = DECL_NAME (old_field);
+ tree new_field;
+ tree curpos = bit_position (old_field);
+ bool var = false;
+ unsigned int align = 0;
+ tree pos;
+
+ /* See how the position was modified from the last position.
+
+ There are two basic cases we support: a value was added
+ to the last position or the last position was rounded to
+ a boundary and they something was added. Check for the
+ first case first. If not, see if there is any evidence
+ of rounding. If so, round the last position and try
+ again.
+
+ If this is a union, the position can be taken as zero. */
+
+ if (TREE_CODE (new_record_type) == UNION_TYPE)
+ pos = bitsize_zero_node, align = 0;
+ else
+ pos = compute_related_constant (curpos, last_pos);
+
+ if (!pos && TREE_CODE (curpos) == MULT_EXPR
+ && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST)
+ {
+ align = TREE_INT_CST_LOW (TREE_OPERAND (curpos, 1));
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+ else if (!pos && TREE_CODE (curpos) == PLUS_EXPR
+ && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
+ && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
+ && host_integerp (TREE_OPERAND
+ (TREE_OPERAND (curpos, 0), 1),
+ 1))
+ {
+ align
+ = tree_low_cst
+ (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+ else if (potential_alignment_gap (prev_old_field, old_field,
+ pos))
+ {
+ align = TYPE_ALIGN (field_type);
+ pos = compute_related_constant (curpos,
+ round_up (last_pos, align));
+ }
+
+ /* If we can't compute a position, set it to zero.
+
+ ??? We really should abort here, but it's too much work
+ to get this correct for all cases. */
+
+ if (!pos)
+ pos = bitsize_zero_node;
+
+ /* See if this type is variable-size and make a new type
+ and indicate the indirection if so. */
+ if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
+ {
+ field_type = build_pointer_type (field_type);
+ var = true;
+ }
+
+ /* Make a new field name, if necessary. */
+ if (var || align != 0)
+ {
+ char suffix[6];
+
+ if (align != 0)
+ sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
+ align / BITS_PER_UNIT);
+ else
+ strcpy (suffix, "XVL");
+
+ field_name = concat_id_with_name (field_name, suffix);
+ }
+
+ new_field = create_field_decl (field_name, field_type,
+ new_record_type, 0,
+ DECL_SIZE (old_field), pos, 0);
+ TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
+ TYPE_FIELDS (new_record_type) = new_field;
+
+ /* If old_field is a QUAL_UNION_TYPE, take its size as being
+ zero. The only time it's not the last field of the record
+ is when there are other components at fixed positions after
+ it (meaning there was a rep clause for every field) and we
+ want to be able to encode them. */
+ last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
+ (TREE_CODE (TREE_TYPE (old_field))
+ == QUAL_UNION_TYPE)
+ ? bitsize_zero_node
+ : DECL_SIZE (old_field));
+ prev_old_field = old_field;
+ }
+
+ TYPE_FIELDS (new_record_type)
+ = nreverse (TYPE_FIELDS (new_record_type));
+
+ rest_of_type_compilation (new_record_type, global_bindings_p ());
+ }
+
+ rest_of_type_compilation (record_type, global_bindings_p ());
+}
+
+/* Utility function of above to merge LAST_SIZE, the previous size of a record
+ with FIRST_BIT and SIZE that describe a field. SPECIAL is nonzero
+ if this represents a QUAL_UNION_TYPE in which case we must look for
+ COND_EXPRs and replace a value of zero with the old size. If HAS_REP
+ is nonzero, we must take the MAX of the end position of this field
+ with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE.
+
+ We return an expression for the size. */
+
+static tree
+merge_sizes (tree last_size, tree first_bit, tree size, bool special,
+ bool has_rep)
+{
+ tree type = TREE_TYPE (last_size);
+ tree new;
+
+ if (!special || TREE_CODE (size) != COND_EXPR)
+ {
+ new = size_binop (PLUS_EXPR, first_bit, size);
+ if (has_rep)
+ new = size_binop (MAX_EXPR, last_size, new);
+ }
+
+ else
+ new = fold (build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
+ integer_zerop (TREE_OPERAND (size, 1))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 1),
+ 1, has_rep),
+ integer_zerop (TREE_OPERAND (size, 2))
+ ? last_size : merge_sizes (last_size, first_bit,
+ TREE_OPERAND (size, 2),
+ 1, has_rep)));
+
+ /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
+ when fed through substitute_in_expr) into thinking that a constant
+ size is not constant. */
+ while (TREE_CODE (new) == NON_LVALUE_EXPR)
+ new = TREE_OPERAND (new, 0);
+
+ return new;
+}
+
+/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
+ related by the addition of a constant. Return that constant if so. */
+
+static tree
+compute_related_constant (tree op0, tree op1)
+{
+ tree op0_var, op1_var;
+ tree op0_con = split_plus (op0, &op0_var);
+ tree op1_con = split_plus (op1, &op1_var);
+ tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
+
+ if (operand_equal_p (op0_var, op1_var, 0))
+ return result;
+ else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
+ return result;
+ else
+ return 0;
+}
+
+/* Utility function of above to split a tree OP which may be a sum, into a
+ constant part, which is returned, and a variable part, which is stored
+ in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
+ bitsizetype. */
+
+static tree
+split_plus (tree in, tree *pvar)
+{
+ /* Strip NOPS in order to ease the tree traversal and maximize the
+ potential for constant or plus/minus discovery. We need to be careful
+ to always return and set *pvar to bitsizetype trees, but it's worth
+ the effort. */
+ STRIP_NOPS (in);
+
+ *pvar = convert (bitsizetype, in);
+
+ if (TREE_CODE (in) == INTEGER_CST)
+ {
+ *pvar = bitsize_zero_node;
+ return convert (bitsizetype, in);
+ }
+ else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
+ {
+ tree lhs_var, rhs_var;
+ tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
+ tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
+
+ if (lhs_var == TREE_OPERAND (in, 0)
+ && rhs_var == TREE_OPERAND (in, 1))
+ return bitsize_zero_node;
+
+ *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
+ return size_binop (TREE_CODE (in), lhs_con, rhs_con);
+ }
+ else
+ return bitsize_zero_node;
+}
+
+/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
+ subprogram. If it is void_type_node, then we are dealing with a procedure,
+ otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
+ PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
+ copy-in/copy-out list to be stored into TYPE_CICO_LIST.
+ RETURNS_UNCONSTRAINED is nonzero if the function returns an unconstrained
+ object. RETURNS_BY_REF is nonzero if the function returns by reference.
+ RETURNS_WITH_DSP is nonzero if the function is to return with a
+ depressed stack pointer. RETURNS_BY_TARGET_PTR is true if the function
+ is to be passed (as its first parameter) the address of the place to copy
+ its result. */
+
+tree
+create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
+ bool returns_unconstrained, bool returns_by_ref,
+ bool returns_with_dsp, bool returns_by_target_ptr)
+{
+ /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
+ the subprogram formal parameters. This list is generated by traversing the
+ input list of PARM_DECL nodes. */
+ tree param_type_list = NULL;
+ tree param_decl;
+ tree type;
+
+ for (param_decl = param_decl_list; param_decl;
+ param_decl = TREE_CHAIN (param_decl))
+ param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
+ param_type_list);
+
+ /* The list of the function parameter types has to be terminated by the void
+ type to signal to the back-end that we are not dealing with a variable
+ parameter subprogram, but that the subprogram has a fixed number of
+ parameters. */
+ param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
+
+ /* The list of argument types has been created in reverse
+ so nreverse it. */
+ param_type_list = nreverse (param_type_list);
+
+ type = build_function_type (return_type, param_type_list);
+
+ /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
+ or the new type should, make a copy of TYPE. Likewise for
+ RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
+ if (TYPE_CI_CO_LIST (type) || cico_list
+ || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
+ || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref
+ || TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr)
+ type = copy_type (type);
+
+ TYPE_CI_CO_LIST (type) = cico_list;
+ TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
+ TYPE_RETURNS_STACK_DEPRESSED (type) = returns_with_dsp;
+ TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
+ TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr;
+ return type;
+}
+
+/* Return a copy of TYPE but safe to modify in any way. */
+
+tree
+copy_type (tree type)
+{
+ tree new = copy_node (type);
+
+ /* copy_node clears this field instead of copying it, because it is
+ aliased with TREE_CHAIN. */
+ TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type);
+
+ TYPE_POINTER_TO (new) = 0;
+ TYPE_REFERENCE_TO (new) = 0;
+ TYPE_MAIN_VARIANT (new) = new;
+ TYPE_NEXT_VARIANT (new) = 0;
+
+ return new;
+}
+
+/* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose
+ TYPE_INDEX_TYPE is INDEX. */
+
+tree
+create_index_type (tree min, tree max, tree index)
+{
+ /* First build a type for the desired range. */
+ tree type = build_index_2_type (min, max);
+
+ /* If this type has the TYPE_INDEX_TYPE we want, return it. Otherwise, if it
+ doesn't have TYPE_INDEX_TYPE set, set it to INDEX. If TYPE_INDEX_TYPE
+ is set, but not to INDEX, make a copy of this type with the requested
+ index type. Note that we have no way of sharing these types, but that's
+ only a small hole. */
+ if (TYPE_INDEX_TYPE (type) == index)
+ return type;
+ else if (TYPE_INDEX_TYPE (type))
+ type = copy_type (type);
+
+ SET_TYPE_INDEX_TYPE (type, index);
+ create_type_decl (NULL_TREE, type, NULL, true, false, Empty);
+ return type;
+}
+
+/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character
+ string) and TYPE is a ..._TYPE node giving its data type.
+ ARTIFICIAL_P is true if this is a declaration that was generated
+ by the compiler. DEBUG_INFO_P is true if we need to write debugging
+ information about this type. GNAT_NODE is used for the position of
+ the decl. */
+
+tree
+create_type_decl (tree type_name, tree type, struct attrib *attr_list,
+ bool artificial_p, bool debug_info_p, Node_Id gnat_node)
+{
+ tree type_decl = build_decl (TYPE_DECL, type_name, type);
+ enum tree_code code = TREE_CODE (type);
+
+ DECL_ARTIFICIAL (type_decl) = artificial_p;
+
+ process_attributes (type_decl, attr_list);
+
+ /* Pass type declaration information to the debugger unless this is an
+ UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support,
+ and ENUMERAL_TYPE or RECORD_TYPE which is handled separately, or
+ type for which debugging information was not requested. */
+ if (code == UNCONSTRAINED_ARRAY_TYPE || ! debug_info_p)
+ DECL_IGNORED_P (type_decl) = 1;
+ if (code == UNCONSTRAINED_ARRAY_TYPE || TYPE_IS_DUMMY_P (type)
+ || !debug_info_p)
+ DECL_IGNORED_P (type_decl) = 1;
+ else if (code != ENUMERAL_TYPE && code != RECORD_TYPE
+ && !((code == POINTER_TYPE || code == REFERENCE_TYPE)
+ && TYPE_IS_DUMMY_P (TREE_TYPE (type))))
+ rest_of_decl_compilation (type_decl, global_bindings_p (), 0);
+
+ if (!TYPE_IS_DUMMY_P (type))
+ gnat_pushdecl (type_decl, gnat_node);
+
+ return type_decl;
+}
+
+/* Returns a GCC VAR_DECL node. VAR_NAME gives the name of the variable.
+ ASM_NAME is its assembler name (if provided). TYPE is its data type
+ (a GCC ..._TYPE node). VAR_INIT is the GCC tree for an optional initial
+ expression; NULL_TREE if none.
+
+ CONST_FLAG is true if this variable is constant.
+
+ PUBLIC_FLAG is true if this definition is to be made visible outside of
+ the current compilation unit. This flag should be set when processing the
+ variable definitions in a package specification. EXTERN_FLAG is nonzero
+ when processing an external variable declaration (as opposed to a
+ definition: no storage is to be allocated for the variable here).
+
+ STATIC_FLAG is only relevant when not at top level. In that case
+ it indicates whether to always allocate storage to the variable.
+
+ GNAT_NODE is used for the position of the decl. */
+
+tree
+create_var_decl (tree var_name, tree asm_name, tree type, tree var_init,
+ bool const_flag, bool public_flag, bool extern_flag,
+ bool static_flag, struct attrib *attr_list, Node_Id gnat_node)
+{
+ bool init_const
+ = (!var_init
+ ? false
+ : (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (var_init))
+ && (global_bindings_p () || static_flag
+ ? 0 != initializer_constant_valid_p (var_init,
+ TREE_TYPE (var_init))
+ : TREE_CONSTANT (var_init))));
+ tree var_decl
+ = build_decl ((const_flag && init_const
+ /* Only make a CONST_DECL for sufficiently-small objects.
+ We consider complex double "sufficiently-small" */
+ && TYPE_SIZE (type) != 0
+ && host_integerp (TYPE_SIZE_UNIT (type), 1)
+ && 0 >= compare_tree_int (TYPE_SIZE_UNIT (type),
+ GET_MODE_SIZE (DCmode)))
+ ? CONST_DECL : VAR_DECL, var_name, type);
+
+ /* If this is external, throw away any initializations unless this is a
+ CONST_DECL (meaning we have a constant); they will be done elsewhere.
+ If we are defining a global here, leave a constant initialization and
+ save any variable elaborations for the elaboration routine. If we are
+ just annotating types, throw away the initialization if it isn't a
+ constant. */
+ if ((extern_flag && TREE_CODE (var_decl) != CONST_DECL)
+ || (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
+ var_init = NULL_TREE;
+
+ /* At the global level, an initializer requiring code to be generated
+ produces elaboration statements. Check that such statements are allowed,
+ that is, not violating a No_Elaboration_Code restriction. */
+ if (global_bindings_p () && var_init != 0 && ! init_const)
+ Check_Elaboration_Code_Allowed (gnat_node);
+
+ /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
+ try to fiddle with DECL_COMMON. However, on platforms that don't
+ support global BSS sections, uninitialized global variables would
+ go in DATA instead, thus increasing the size of the executable. */
+ if (!flag_no_common
+ && TREE_CODE (var_decl) == VAR_DECL
+ && !have_global_bss_p ())
+ DECL_COMMON (var_decl) = 1;
+ DECL_INITIAL (var_decl) = var_init;
+ TREE_READONLY (var_decl) = const_flag;
+ DECL_EXTERNAL (var_decl) = extern_flag;
+ TREE_PUBLIC (var_decl) = public_flag || extern_flag;
+ TREE_CONSTANT (var_decl) = TREE_CODE (var_decl) == CONST_DECL;
+ TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
+ = TYPE_VOLATILE (type);
+
+ /* If it's public and not external, always allocate storage for it.
+ At the global binding level we need to allocate static storage for the
+ variable if and only if it's not external. If we are not at the top level
+ we allocate automatic storage unless requested not to. */
+ TREE_STATIC (var_decl)
+ = public_flag || (global_bindings_p () ? !extern_flag : static_flag);
+
+ if (asm_name && VAR_OR_FUNCTION_DECL_P (var_decl))
+ SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
+
+ process_attributes (var_decl, attr_list);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (var_decl, gnat_node);
+
+ if (TREE_SIDE_EFFECTS (var_decl))
+ TREE_ADDRESSABLE (var_decl) = 1;
+
+ if (TREE_CODE (var_decl) != CONST_DECL)
+ rest_of_decl_compilation (var_decl, global_bindings_p (), 0);
+ else
+ /* expand CONST_DECLs to set their MODE, ALIGN, SIZE and SIZE_UNIT,
+ which we need for later back-annotations. */
+ expand_decl (var_decl);
+
+ return var_decl;
+}
+
+/* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its
+ type, and RECORD_TYPE is the type of the parent. PACKED is nonzero if
+ this field is in a record type with a "pragma pack". If SIZE is nonzero
+ it is the specified size for this field. If POS is nonzero, it is the bit
+ position. If ADDRESSABLE is nonzero, it means we are allowed to take
+ the address of this field for aliasing purposes. If it is negative, we
+ should not make a bitfield, which is used by make_aligning_type. */
+
+tree
+create_field_decl (tree field_name, tree field_type, tree record_type,
+ int packed, tree size, tree pos, int addressable)
+{
+ tree field_decl = build_decl (FIELD_DECL, field_name, field_type);
+
+ DECL_CONTEXT (field_decl) = record_type;
+ TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
+
+ /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
+ byte boundary since GCC cannot handle less-aligned BLKmode bitfields. */
+ if (packed && TYPE_MODE (field_type) == BLKmode)
+ DECL_ALIGN (field_decl) = BITS_PER_UNIT;
+
+ /* If a size is specified, use it. Otherwise, if the record type is packed
+ compute a size to use, which may differ from the object's natural size.
+ We always set a size in this case to trigger the checks for bitfield
+ creation below, which is typically required when no position has been
+ specified. */
+ if (size)
+ size = convert (bitsizetype, size);
+ else if (packed == 1)
+ {
+ size = rm_size (field_type);
+
+ /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to
+ byte. */
+ if (TREE_CODE (size) == INTEGER_CST
+ && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0)
+ size = round_up (size, BITS_PER_UNIT);
+ }
+
+ /* If we may, according to ADDRESSABLE, make a bitfield if a size is
+ specified for two reasons: first if the size differs from the natural
+ size. Second, if the alignment is insufficient. There are a number of
+ ways the latter can be true.
+
+ We never make a bitfield if the type of the field has a nonconstant size,
+ because no such entity requiring bitfield operations should reach here.
+
+ We do *preventively* make a bitfield when there might be the need for it
+ but we don't have all the necessary information to decide, as is the case
+ of a field with no specified position in a packed record.
+
+ We also don't look at STRICT_ALIGNMENT here, and rely on later processing
+ in layout_decl or finish_record_type to clear the bit_field indication if
+ it is in fact not needed. */
+ if (addressable >= 0
+ && size
+ && TREE_CODE (size) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
+ && (!operand_equal_p (TYPE_SIZE (field_type), size, 0)
+ || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
+ || packed
+ || (TYPE_ALIGN (record_type) != 0
+ && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
+ {
+ DECL_BIT_FIELD (field_decl) = 1;
+ DECL_SIZE (field_decl) = size;
+ if (!packed && !pos)
+ DECL_ALIGN (field_decl)
+ = (TYPE_ALIGN (record_type) != 0
+ ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type))
+ : TYPE_ALIGN (field_type));
+ }
+
+ DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
+ DECL_ALIGN (field_decl)
+ = MAX (DECL_ALIGN (field_decl),
+ DECL_BIT_FIELD (field_decl) ? 1
+ : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT
+ : TYPE_ALIGN (field_type));
+
+ if (pos)
+ {
+ /* We need to pass in the alignment the DECL is known to have.
+ This is the lowest-order bit set in POS, but no more than
+ the alignment of the record, if one is specified. Note
+ that an alignment of 0 is taken as infinite. */
+ unsigned int known_align;
+
+ if (host_integerp (pos, 1))
+ known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
+ else
+ known_align = BITS_PER_UNIT;
+
+ if (TYPE_ALIGN (record_type)
+ && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
+ known_align = TYPE_ALIGN (record_type);
+
+ layout_decl (field_decl, known_align);
+ SET_DECL_OFFSET_ALIGN (field_decl,
+ host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
+ : BITS_PER_UNIT);
+ pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
+ &DECL_FIELD_BIT_OFFSET (field_decl),
+ DECL_OFFSET_ALIGN (field_decl), pos);
+
+ DECL_HAS_REP_P (field_decl) = 1;
+ }
+
+ /* If the field type is passed by reference, we will have pointers to the
+ field, so it is addressable. */
+ if (must_pass_by_ref (field_type) || default_pass_by_ref (field_type))
+ addressable = 1;
+
+ /* ??? For now, we say that any field of aggregate type is addressable
+ because the front end may take 'Reference of it. */
+ if (AGGREGATE_TYPE_P (field_type))
+ addressable = 1;
+
+ /* Mark the decl as nonaddressable if it is indicated so semantically,
+ meaning we won't ever attempt to take the address of the field.
+
+ It may also be "technically" nonaddressable, meaning that even if we
+ attempt to take the field's address we will actually get the address of a
+ copy. This is the case for true bitfields, but the DECL_BIT_FIELD value
+ we have at this point is not accurate enough, so we don't account for
+ this here and let finish_record_type decide. */
+ DECL_NONADDRESSABLE_P (field_decl) = !addressable;
+
+ return field_decl;
+}
+
+/* Subroutine of previous function: return nonzero if EXP, ignoring any side
+ effects, has the value of zero. */
+
+static bool
+value_zerop (tree exp)
+{
+ if (TREE_CODE (exp) == COMPOUND_EXPR)
+ return value_zerop (TREE_OPERAND (exp, 1));
+
+ return integer_zerop (exp);
+}
+
+/* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter,
+ PARAM_TYPE is its type. READONLY is true if the parameter is
+ readonly (either an IN parameter or an address of a pass-by-ref
+ parameter). */
+
+tree
+create_param_decl (tree param_name, tree param_type, bool readonly)
+{
+ tree param_decl = build_decl (PARM_DECL, param_name, param_type);
+
+ /* Honor targetm.calls.promote_prototypes(), as not doing so can
+ lead to various ABI violations. */
+ if (targetm.calls.promote_prototypes (param_type)
+ && (TREE_CODE (param_type) == INTEGER_TYPE
+ || TREE_CODE (param_type) == ENUMERAL_TYPE)
+ && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
+ {
+ /* We have to be careful about biased types here. Make a subtype
+ of integer_type_node with the proper biasing. */
+ if (TREE_CODE (param_type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (param_type))
+ {
+ param_type
+ = copy_type (build_range_type (integer_type_node,
+ TYPE_MIN_VALUE (param_type),
+ TYPE_MAX_VALUE (param_type)));
+
+ TYPE_BIASED_REPRESENTATION_P (param_type) = 1;
+ }
+ else
+ param_type = integer_type_node;
+ }
+
+ DECL_ARG_TYPE (param_decl) = param_type;
+ TREE_READONLY (param_decl) = readonly;
+ return param_decl;
+}
+
+/* Given a DECL and ATTR_LIST, process the listed attributes. */
+
+void
+process_attributes (tree decl, struct attrib *attr_list)
+{
+ for (; attr_list; attr_list = attr_list->next)
+ switch (attr_list->type)
+ {
+ case ATTR_MACHINE_ATTRIBUTE:
+ decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args,
+ NULL_TREE),
+ ATTR_FLAG_TYPE_IN_PLACE);
+ break;
+
+ case ATTR_LINK_ALIAS:
+ if (! DECL_EXTERNAL (decl))
+ {
+ TREE_STATIC (decl) = 1;
+ assemble_alias (decl, attr_list->name);
+ }
+ break;
+
+ case ATTR_WEAK_EXTERNAL:
+ if (SUPPORTS_WEAK)
+ declare_weak (decl);
+ else
+ post_error ("?weak declarations not supported on this target",
+ attr_list->error_point);
+ break;
+
+ case ATTR_LINK_SECTION:
+ if (targetm.have_named_sections)
+ {
+ DECL_SECTION_NAME (decl)
+ = build_string (IDENTIFIER_LENGTH (attr_list->name),
+ IDENTIFIER_POINTER (attr_list->name));
+ DECL_COMMON (decl) = 0;
+ }
+ else
+ post_error ("?section attributes are not supported for this target",
+ attr_list->error_point);
+ break;
+
+ case ATTR_LINK_CONSTRUCTOR:
+ DECL_STATIC_CONSTRUCTOR (decl) = 1;
+ TREE_USED (decl) = 1;
+ break;
+
+ case ATTR_LINK_DESTRUCTOR:
+ DECL_STATIC_DESTRUCTOR (decl) = 1;
+ TREE_USED (decl) = 1;
+ break;
+ }
+}
+
+/* Return true if VALUE is a known to be a multiple of FACTOR, which must be
+ a power of 2. */
+
+bool
+value_factor_p (tree value, HOST_WIDE_INT factor)
+{
+ if (host_integerp (value, 1))
+ return tree_low_cst (value, 1) % factor == 0;
+
+ if (TREE_CODE (value) == MULT_EXPR)
+ return (value_factor_p (TREE_OPERAND (value, 0), factor)
+ || value_factor_p (TREE_OPERAND (value, 1), factor));
+
+ return 0;
+}
+
+/* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
+ unless we can prove these 2 fields are laid out in such a way that no gap
+ exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
+ is the distance in bits between the end of PREV_FIELD and the starting
+ position of CURR_FIELD. It is ignored if null. */
+
+static bool
+potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
+{
+ /* If this is the first field of the record, there cannot be any gap */
+ if (!prev_field)
+ return false;
+
+ /* If the previous field is a union type, then return False: The only
+ time when such a field is not the last field of the record is when
+ there are other components at fixed positions after it (meaning there
+ was a rep clause for every field), in which case we don't want the
+ alignment constraint to override them. */
+ if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
+ return false;
+
+ /* If the distance between the end of prev_field and the beginning of
+ curr_field is constant, then there is a gap if the value of this
+ constant is not null. */
+ if (offset && host_integerp (offset, 1))
+ return !integer_zerop (offset);
+
+ /* If the size and position of the previous field are constant,
+ then check the sum of this size and position. There will be a gap
+ iff it is not multiple of the current field alignment. */
+ if (host_integerp (DECL_SIZE (prev_field), 1)
+ && host_integerp (bit_position (prev_field), 1))
+ return ((tree_low_cst (bit_position (prev_field), 1)
+ + tree_low_cst (DECL_SIZE (prev_field), 1))
+ % DECL_ALIGN (curr_field) != 0);
+
+ /* If both the position and size of the previous field are multiples
+ of the current field alignment, there cannot be any gap. */
+ if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
+ && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
+ return false;
+
+ /* Fallback, return that there may be a potential gap */
+ return true;
+}
+
+/* Returns a LABEL_DECL node for LABEL_NAME. */
+
+tree
+create_label_decl (tree label_name)
+{
+ tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node);
+
+ DECL_CONTEXT (label_decl) = current_function_decl;
+ DECL_MODE (label_decl) = VOIDmode;
+ DECL_SOURCE_LOCATION (label_decl) = input_location;
+
+ return label_decl;
+}
+
+/* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
+ ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
+ node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
+ PARM_DECL nodes chained through the TREE_CHAIN field).
+
+ INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
+ appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
+
+tree
+create_subprog_decl (tree subprog_name, tree asm_name,
+ tree subprog_type, tree param_decl_list, bool inline_flag,
+ bool public_flag, bool extern_flag,
+ struct attrib *attr_list, Node_Id gnat_node)
+{
+ tree return_type = TREE_TYPE (subprog_type);
+ tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type);
+
+ /* If this is a function nested inside an inlined external function, it
+ means we aren't going to compile the outer function unless it is
+ actually inlined, so do the same for us. */
+ if (current_function_decl && DECL_INLINE (current_function_decl)
+ && DECL_EXTERNAL (current_function_decl))
+ extern_flag = true;
+
+ DECL_EXTERNAL (subprog_decl) = extern_flag;
+ TREE_PUBLIC (subprog_decl) = public_flag;
+ TREE_STATIC (subprog_decl) = 1;
+ TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
+ TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
+ TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
+ DECL_ARGUMENTS (subprog_decl) = param_decl_list;
+ DECL_RESULT (subprog_decl) = build_decl (RESULT_DECL, 0, return_type);
+ DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1;
+ DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1;
+
+ if (inline_flag)
+ DECL_DECLARED_INLINE_P (subprog_decl) = 1;
+
+ if (asm_name)
+ SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
+
+ process_attributes (subprog_decl, attr_list);
+
+ /* Add this decl to the current binding level. */
+ gnat_pushdecl (subprog_decl, gnat_node);
+
+ /* Output the assembler code and/or RTL for the declaration. */
+ rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
+
+ return subprog_decl;
+}
+
+/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
+ body. This routine needs to be invoked before processing the declarations
+ appearing in the subprogram. */
+
+void
+begin_subprog_body (tree subprog_decl)
+{
+ tree param_decl;
+
+ current_function_decl = subprog_decl;
+ announce_function (subprog_decl);
+
+ /* Enter a new binding level and show that all the parameters belong to
+ this function. */
+ gnat_pushlevel ();
+ for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
+ param_decl = TREE_CHAIN (param_decl))
+ DECL_CONTEXT (param_decl) = subprog_decl;
+
+ make_decl_rtl (subprog_decl);
+
+ /* We handle pending sizes via the elaboration of types, so we don't need to
+ save them. This causes them to be marked as part of the outer function
+ and then discarded. */
+ get_pending_sizes ();
+}
+
+/* Finish the definition of the current subprogram and compile it all the way
+ to assembler language output. BODY is the tree corresponding to
+ the subprogram. */
+
+void
+end_subprog_body (tree body)
+{
+ tree fndecl = current_function_decl;
+
+ /* Mark the BLOCK for this level as being for this function and pop the
+ level. Since the vars in it are the parameters, clear them. */
+ BLOCK_VARS (current_binding_level->block) = 0;
+ BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
+ DECL_INITIAL (fndecl) = current_binding_level->block;
+ gnat_poplevel ();
+
+ /* Deal with inline. If declared inline or we should default to inline,
+ set the flag in the decl. */
+ DECL_INLINE (fndecl)
+ = DECL_DECLARED_INLINE_P (fndecl) || flag_inline_trees == 2;
+
+ /* We handle pending sizes via the elaboration of types, so we don't
+ need to save them. */
+ get_pending_sizes ();
+
+ /* Mark the RESULT_DECL as being in this subprogram. */
+ DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
+
+ DECL_SAVED_TREE (fndecl) = body;
+
+ current_function_decl = DECL_CONTEXT (fndecl);
+ cfun = NULL;
+
+ /* If we're only annotating types, don't actually compile this function. */
+ if (type_annotate_only)
+ return;
+
+ /* If we don't have .ctors/.dtors sections, and this is a static
+ constructor or destructor, it must be recorded now. */
+ if (DECL_STATIC_CONSTRUCTOR (fndecl) && !targetm.have_ctors_dtors)
+ static_ctors = tree_cons (NULL_TREE, fndecl, static_ctors);
+
+ if (DECL_STATIC_DESTRUCTOR (fndecl) && !targetm.have_ctors_dtors)
+ static_dtors = tree_cons (NULL_TREE, fndecl, static_dtors);
+
+ /* We do different things for nested and non-nested functions.
+ ??? This should be in cgraph. */
+ if (!DECL_CONTEXT (fndecl))
+ {
+ gnat_gimplify_function (fndecl);
+ cgraph_finalize_function (fndecl, false);
+ }
+ else
+ /* Register this function with cgraph just far enough to get it
+ added to our parent's nested function list. */
+ (void) cgraph_node (fndecl);
+}
+
+/* Convert FNDECL's code to GIMPLE and handle any nested functions. */
+
+static void
+gnat_gimplify_function (tree fndecl)
+{
+ struct cgraph_node *cgn;
+
+ dump_function (TDI_original, fndecl);
+ gimplify_function_tree (fndecl);
+ dump_function (TDI_generic, fndecl);
+
+ /* Convert all nested functions to GIMPLE now. We do things in this order
+ so that items like VLA sizes are expanded properly in the context of the
+ correct function. */
+ cgn = cgraph_node (fndecl);
+ for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
+ gnat_gimplify_function (cgn->decl);
+}
+
+/* Return a definition for a builtin function named NAME and whose data type
+ is TYPE. TYPE should be a function type with argument types.
+ FUNCTION_CODE tells later passes how to compile calls to this function.
+ See tree.h for its possible values.
+
+ If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
+ the name to be called if we can't opencode the function. If
+ ATTRS is nonzero, use that for the function attribute list. */
+
+tree
+builtin_function (const char *name, tree type, int function_code,
+ enum built_in_class class, const char *library_name,
+ tree attrs)
+{
+ tree decl = build_decl (FUNCTION_DECL, get_identifier (name), type);
+
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+ if (library_name)
+ SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
+
+ gnat_pushdecl (decl, Empty);
+ DECL_BUILT_IN_CLASS (decl) = class;
+ DECL_FUNCTION_CODE (decl) = function_code;
+
+ /* Possibly apply some default attributes to this built-in function. */
+ if (attrs)
+ decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
+ else
+ decl_attributes (&decl, NULL_TREE, 0);
+
+ return decl;
+}
+
+/* Handle a "const" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_const_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_READONLY (*node) = 1;
+ else
+ *no_add_attrs = true;
+
+ return NULL_TREE;
+}
+
+/* Handle a "nothrow" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+static tree
+handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
+ tree ARG_UNUSED (args), int ARG_UNUSED (flags),
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) == FUNCTION_DECL)
+ TREE_NOTHROW (*node) = 1;
+ else
+ *no_add_attrs = true;
+
+ return NULL_TREE;
+}
+
+/* Return an integer type with the number of bits of precision given by
+ PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
+ it is a signed type. */
+
+tree
+gnat_type_for_size (unsigned precision, int unsignedp)
+{
+ tree t;
+ char type_name[20];
+
+ if (precision <= 2 * MAX_BITS_PER_WORD
+ && signed_and_unsigned_types[precision][unsignedp])
+ return signed_and_unsigned_types[precision][unsignedp];
+
+ if (unsignedp)
+ t = make_unsigned_type (precision);
+ else
+ t = make_signed_type (precision);
+
+ if (precision <= 2 * MAX_BITS_PER_WORD)
+ signed_and_unsigned_types[precision][unsignedp] = t;
+
+ if (!TYPE_NAME (t))
+ {
+ sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Likewise for floating-point types. */
+
+static tree
+float_type_for_precision (int precision, enum machine_mode mode)
+{
+ tree t;
+ char type_name[20];
+
+ if (float_types[(int) mode])
+ return float_types[(int) mode];
+
+ float_types[(int) mode] = t = make_node (REAL_TYPE);
+ TYPE_PRECISION (t) = precision;
+ layout_type (t);
+
+ gcc_assert (TYPE_MODE (t) == mode);
+ if (!TYPE_NAME (t))
+ {
+ sprintf (type_name, "FLOAT_%d", precision);
+ TYPE_NAME (t) = get_identifier (type_name);
+ }
+
+ return t;
+}
+
+/* Return a data type that has machine mode MODE. UNSIGNEDP selects
+ an unsigned type; otherwise a signed type is returned. */
+
+tree
+gnat_type_for_mode (enum machine_mode mode, int unsignedp)
+{
+ if (mode == BLKmode)
+ return NULL_TREE;
+ else if (mode == VOIDmode)
+ return void_type_node;
+ else if (COMPLEX_MODE_P (mode))
+ return NULL_TREE;
+ else if (SCALAR_FLOAT_MODE_P (mode))
+ return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
+ else if (SCALAR_INT_MODE_P (mode))
+ return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
+ else
+ return NULL_TREE;
+}
+
+/* Return the unsigned version of a TYPE_NODE, a scalar type. */
+
+tree
+gnat_unsigned_type (tree type_node)
+{
+ tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node)
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return the signed version of a TYPE_NODE, a scalar type. */
+
+tree
+gnat_signed_type (tree type_node)
+{
+ tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
+
+ if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = type_node;
+ }
+ else if (TREE_TYPE (type_node)
+ && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
+ && TYPE_MODULAR_P (TREE_TYPE (type_node)))
+ {
+ type = copy_node (type);
+ TREE_TYPE (type) = TREE_TYPE (type_node);
+ }
+
+ return type;
+}
+
+/* Return a type the same as TYPE except unsigned or signed according to
+ UNSIGNEDP. */
+
+tree
+gnat_signed_or_unsigned_type (int unsignedp, tree type)
+{
+ if (!INTEGRAL_TYPE_P (type) || TYPE_UNSIGNED (type) == unsignedp)
+ return type;
+ else
+ return gnat_type_for_size (TYPE_PRECISION (type), unsignedp);
+}
+
+/* EXP is an expression for the size of an object. If this size contains
+ discriminant references, replace them with the maximum (if MAX_P) or
+ minimum (if !MAX_P) possible value of the discriminant. */
+
+tree
+max_size (tree exp, bool max_p)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree type = TREE_TYPE (exp);
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ case tcc_constant:
+ return exp;
+
+ case tcc_exceptional:
+ if (code == TREE_LIST)
+ return tree_cons (TREE_PURPOSE (exp),
+ max_size (TREE_VALUE (exp), max_p),
+ TREE_CHAIN (exp)
+ ? max_size (TREE_CHAIN (exp), max_p) : NULL_TREE);
+ break;
+
+ case tcc_reference:
+ /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
+ modify. Otherwise, we treat it like a variable. */
+ if (!CONTAINS_PLACEHOLDER_P (exp))
+ return exp;
+
+ type = TREE_TYPE (TREE_OPERAND (exp, 1));
+ return
+ max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true);
+
+ case tcc_comparison:
+ return max_p ? size_one_node : size_zero_node;
+
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_expression:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ if (code == NON_LVALUE_EXPR)
+ return max_size (TREE_OPERAND (exp, 0), max_p);
+ else
+ return
+ fold (build1 (code, type,
+ max_size (TREE_OPERAND (exp, 0),
+ code == NEGATE_EXPR ? !max_p : max_p)));
+
+ case 2:
+ if (code == COMPOUND_EXPR)
+ return max_size (TREE_OPERAND (exp, 1), max_p);
+
+ /* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which
+ may provide a tighter bound on max_size. */
+ if (code == MINUS_EXPR
+ && TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR)
+ {
+ tree lhs = fold_build2 (MINUS_EXPR, type,
+ TREE_OPERAND (TREE_OPERAND (exp, 0), 1),
+ TREE_OPERAND (exp, 1));
+ tree rhs = fold_build2 (MINUS_EXPR, type,
+ TREE_OPERAND (TREE_OPERAND (exp, 0), 2),
+ TREE_OPERAND (exp, 1));
+ return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
+ max_size (lhs, max_p),
+ max_size (rhs, max_p));
+ }
+
+ {
+ tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
+ tree rhs = max_size (TREE_OPERAND (exp, 1),
+ code == MINUS_EXPR ? !max_p : max_p);
+
+ /* Special-case wanting the maximum value of a MIN_EXPR.
+ In that case, if one side overflows, return the other.
+ sizetype is signed, but we know sizes are non-negative.
+ Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
+ overflowing or the maximum possible value and the RHS
+ a variable. */
+ if (max_p
+ && code == MIN_EXPR
+ && TREE_CODE (rhs) == INTEGER_CST
+ && TREE_OVERFLOW (rhs))
+ return lhs;
+ else if (max_p
+ && code == MIN_EXPR
+ && TREE_CODE (lhs) == INTEGER_CST
+ && TREE_OVERFLOW (lhs))
+ return rhs;
+ else if ((code == MINUS_EXPR || code == PLUS_EXPR)
+ && ((TREE_CODE (lhs) == INTEGER_CST
+ && TREE_OVERFLOW (lhs))
+ || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
+ && !TREE_CONSTANT (rhs))
+ return lhs;
+ else
+ return fold (build2 (code, type, lhs, rhs));
+ }
+
+ case 3:
+ if (code == SAVE_EXPR)
+ return exp;
+ else if (code == COND_EXPR)
+ return fold (build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
+ max_size (TREE_OPERAND (exp, 1), max_p),
+ max_size (TREE_OPERAND (exp, 2), max_p)));
+ else if (code == CALL_EXPR && TREE_OPERAND (exp, 1))
+ return build3 (CALL_EXPR, type, TREE_OPERAND (exp, 0),
+ max_size (TREE_OPERAND (exp, 1), max_p), NULL);
+ }
+
+ /* Other tree classes cannot happen. */
+ default:
+ break;
+ }
+
+ gcc_unreachable ();
+}
+
+/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
+ EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
+ Return a constructor for the template. */
+
+tree
+build_template (tree template_type, tree array_type, tree expr)
+{
+ tree template_elts = NULL_TREE;
+ tree bound_list = NULL_TREE;
+ tree field;
+
+ if (TREE_CODE (array_type) == RECORD_TYPE
+ && (TYPE_IS_PADDING_P (array_type)
+ || TYPE_JUSTIFIED_MODULAR_P (array_type)))
+ array_type = TREE_TYPE (TYPE_FIELDS (array_type));
+
+ if (TREE_CODE (array_type) == ARRAY_TYPE
+ || (TREE_CODE (array_type) == INTEGER_TYPE
+ && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
+ bound_list = TYPE_ACTUAL_BOUNDS (array_type);
+
+ /* First make the list for a CONSTRUCTOR for the template. Go down the
+ field list of the template instead of the type chain because this
+ array might be an Ada array of arrays and we can't tell where the
+ nested arrays stop being the underlying object. */
+
+ for (field = TYPE_FIELDS (template_type); field;
+ (bound_list
+ ? (bound_list = TREE_CHAIN (bound_list))
+ : (array_type = TREE_TYPE (array_type))),
+ field = TREE_CHAIN (TREE_CHAIN (field)))
+ {
+ tree bounds, min, max;
+
+ /* If we have a bound list, get the bounds from there. Likewise
+ for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
+ DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
+ This will give us a maximum range. */
+ if (bound_list)
+ bounds = TREE_VALUE (bound_list);
+ else if (TREE_CODE (array_type) == ARRAY_TYPE)
+ bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
+ else if (expr && TREE_CODE (expr) == PARM_DECL
+ && DECL_BY_COMPONENT_PTR_P (expr))
+ bounds = TREE_TYPE (field);
+ else
+ gcc_unreachable ();
+
+ min = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MIN_VALUE (bounds));
+ max = convert (TREE_TYPE (field), TYPE_MAX_VALUE (bounds));
+
+ /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
+ substitute it from OBJECT. */
+ min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
+ max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
+
+ template_elts = tree_cons (TREE_CHAIN (field), max,
+ tree_cons (field, min, template_elts));
+ }
+
+ return gnat_build_constructor (template_type, nreverse (template_elts));
+}
+
+/* Build a VMS descriptor from a Mechanism_Type, which must specify
+ a descriptor type, and the GCC type of an object. Each FIELD_DECL
+ in the type contains in its DECL_INITIAL the expression to use when
+ a constructor is made for the type. GNAT_ENTITY is an entity used
+ to print out an error message if the mechanism cannot be applied to
+ an object of that type and also for the name. */
+
+tree
+build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
+{
+ tree record_type = make_node (RECORD_TYPE);
+ tree field_list = 0;
+ int class;
+ int dtype = 0;
+ tree inner_type;
+ int ndim;
+ int i;
+ tree *idx_arr;
+ tree tem;
+
+ /* If TYPE is an unconstrained array, use the underlying array type. */
+ if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
+
+ /* If this is an array, compute the number of dimensions in the array,
+ get the index types, and point to the inner type. */
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ ndim = 0;
+ else
+ for (ndim = 1, inner_type = type;
+ TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
+ && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
+ ndim++, inner_type = TREE_TYPE (inner_type))
+ ;
+
+ idx_arr = (tree *) alloca (ndim * sizeof (tree));
+
+ if (mech != By_Descriptor_NCA
+ && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
+ for (i = ndim - 1, inner_type = type;
+ i >= 0;
+ i--, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+ else
+ for (i = 0, inner_type = type;
+ i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ idx_arr[i] = TYPE_DOMAIN (inner_type);
+
+ /* Now get the DTYPE value. */
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE:
+ case ENUMERAL_TYPE:
+ if (TYPE_VAX_FLOATING_POINT_P (type))
+ switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
+ {
+ case 6:
+ dtype = 10;
+ break;
+ case 9:
+ dtype = 11;
+ break;
+ case 15:
+ dtype = 27;
+ break;
+ }
+ else
+ switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
+ {
+ case 8:
+ dtype = TYPE_UNSIGNED (type) ? 2 : 6;
+ break;
+ case 16:
+ dtype = TYPE_UNSIGNED (type) ? 3 : 7;
+ break;
+ case 32:
+ dtype = TYPE_UNSIGNED (type) ? 4 : 8;
+ break;
+ case 64:
+ dtype = TYPE_UNSIGNED (type) ? 5 : 9;
+ break;
+ case 128:
+ dtype = TYPE_UNSIGNED (type) ? 25 : 26;
+ break;
+ }
+ break;
+
+ case REAL_TYPE:
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
+ break;
+
+ case COMPLEX_TYPE:
+ if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type))
+ switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
+ {
+ case 6:
+ dtype = 12;
+ break;
+ case 9:
+ dtype = 13;
+ break;
+ case 15:
+ dtype = 29;
+ }
+ else
+ dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
+ break;
+
+ case ARRAY_TYPE:
+ dtype = 14;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Get the CLASS value. */
+ switch (mech)
+ {
+ case By_Descriptor_A:
+ class = 4;
+ break;
+ case By_Descriptor_NCA:
+ class = 10;
+ break;
+ case By_Descriptor_SB:
+ class = 15;
+ break;
+ default:
+ class = 1;
+ }
+
+ /* Make the type for a descriptor for VMS. The first four fields
+ are the same for all types. */
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("LENGTH", gnat_type_for_size (16, 1), record_type,
+ size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DTYPE",
+ gnat_type_for_size (8, 1),
+ record_type, size_int (dtype)));
+ field_list = chainon (field_list,
+ make_descriptor_field ("CLASS",
+ gnat_type_for_size (8, 1),
+ record_type, size_int (class)));
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("POINTER",
+ build_pointer_type_for_mode (type, SImode, false), record_type,
+ build1 (ADDR_EXPR,
+ build_pointer_type_for_mode (type, SImode, false),
+ build0 (PLACEHOLDER_EXPR, type))));
+
+ switch (mech)
+ {
+ case By_Descriptor:
+ case By_Descriptor_S:
+ break;
+
+ case By_Descriptor_SB:
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("SB_L1", gnat_type_for_size (32, 1), record_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("SB_L2", gnat_type_for_size (32, 1), record_type,
+ TREE_CODE (type) == ARRAY_TYPE
+ ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
+ break;
+
+ case By_Descriptor_A:
+ case By_Descriptor_NCA:
+ field_list = chainon (field_list,
+ make_descriptor_field ("SCALE",
+ gnat_type_for_size (8, 1),
+ record_type,
+ size_zero_node));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DIGITS",
+ gnat_type_for_size (8, 1),
+ record_type,
+ size_zero_node));
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("AFLAGS", gnat_type_for_size (8, 1), record_type,
+ size_int (mech == By_Descriptor_NCA
+ ? 0
+ /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
+ : (TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_CONVENTION_FORTRAN_P (type)
+ ? 224 : 192))));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("DIMCT",
+ gnat_type_for_size (8, 1),
+ record_type,
+ size_int (ndim)));
+
+ field_list = chainon (field_list,
+ make_descriptor_field ("ARSIZE",
+ gnat_type_for_size (32, 1),
+ record_type,
+ size_in_bytes (type)));
+
+ /* Now build a pointer to the 0,0,0... element. */
+ tem = build0 (PLACEHOLDER_EXPR, type);
+ for (i = 0, inner_type = type; i < ndim;
+ i++, inner_type = TREE_TYPE (inner_type))
+ tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
+ convert (TYPE_DOMAIN (inner_type), size_zero_node),
+ NULL_TREE, NULL_TREE);
+
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ ("A0",
+ build_pointer_type_for_mode (inner_type, SImode, false),
+ record_type,
+ build1 (ADDR_EXPR,
+ build_pointer_type_for_mode (inner_type, SImode,
+ false),
+ tem)));
+
+ /* Next come the addressing coefficients. */
+ tem = size_int (1);
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+ tree idx_length
+ = size_binop (MULT_EXPR, tem,
+ size_binop (PLUS_EXPR,
+ size_binop (MINUS_EXPR,
+ TYPE_MAX_VALUE (idx_arr[i]),
+ TYPE_MIN_VALUE (idx_arr[i])),
+ size_int (1)));
+
+ fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
+ fname[1] = '0' + i, fname[2] = 0;
+ field_list
+ = chainon (field_list,
+ make_descriptor_field (fname,
+ gnat_type_for_size (32, 1),
+ record_type, idx_length));
+
+ if (mech == By_Descriptor_NCA)
+ tem = idx_length;
+ }
+
+ /* Finally here are the bounds. */
+ for (i = 0; i < ndim; i++)
+ {
+ char fname[3];
+
+ fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ (fname, gnat_type_for_size (32, 1), record_type,
+ TYPE_MIN_VALUE (idx_arr[i])));
+
+ fname[0] = 'U';
+ field_list
+ = chainon (field_list,
+ make_descriptor_field
+ (fname, gnat_type_for_size (32, 1), record_type,
+ TYPE_MAX_VALUE (idx_arr[i])));
+ }
+ break;
+
+ default:
+ post_error ("unsupported descriptor type for &", gnat_entity);
+ }
+
+ finish_record_type (record_type, field_list, false, true);
+ create_type_decl (create_concat_name (gnat_entity, "DESC"), record_type,
+ NULL, true, false, gnat_entity);
+
+ return record_type;
+}
+
+/* Utility routine for above code to make a field. */
+
+static tree
+make_descriptor_field (const char *name, tree type,
+ tree rec_type, tree initial)
+{
+ tree field
+ = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
+
+ DECL_INITIAL (field) = initial;
+ return field;
+}
+
+/* Build a type to be used to represent an aliased object whose nominal
+ type is an unconstrained array. This consists of a RECORD_TYPE containing
+ a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
+ ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
+ is used to represent an arbitrary unconstrained object. Use NAME
+ as the name of the record. */
+
+tree
+build_unc_object_type (tree template_type, tree object_type, tree name)
+{
+ tree type = make_node (RECORD_TYPE);
+ tree template_field = create_field_decl (get_identifier ("BOUNDS"),
+ template_type, type, 0, 0, 0, 1);
+ tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
+ type, 0, 0, 0, 1);
+
+ TYPE_NAME (type) = name;
+ TYPE_CONTAINS_TEMPLATE_P (type) = 1;
+ finish_record_type (type,
+ chainon (chainon (NULL_TREE, template_field),
+ array_field),
+ false, false);
+
+ return type;
+}
+
+/* Same, taking a thin or fat pointer type instead of a template type. */
+
+tree
+build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
+ tree name)
+{
+ tree template_type;
+
+ gcc_assert (TYPE_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
+
+ template_type
+ = (TYPE_FAT_POINTER_P (thin_fat_ptr_type)
+ ? TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
+ : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
+ return build_unc_object_type (template_type, object_type, name);
+}
+
+/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In
+ the normal case this is just two adjustments, but we have more to do
+ if NEW is an UNCONSTRAINED_ARRAY_TYPE. */
+
+void
+update_pointer_to (tree old_type, tree new_type)
+{
+ tree ptr = TYPE_POINTER_TO (old_type);
+ tree ref = TYPE_REFERENCE_TO (old_type);
+ tree ptr1, ref1;
+ tree type;
+
+ /* If this is the main variant, process all the other variants first. */
+ if (TYPE_MAIN_VARIANT (old_type) == old_type)
+ for (type = TYPE_NEXT_VARIANT (old_type); type;
+ type = TYPE_NEXT_VARIANT (type))
+ update_pointer_to (type, new_type);
+
+ /* If no pointer or reference, we are done. */
+ if (!ptr && !ref)
+ return;
+
+ /* Merge the old type qualifiers in the new type.
+
+ Each old variant has qualifiers for specific reasons, and the new
+ designated type as well. Each set of qualifiers represents useful
+ information grabbed at some point, and merging the two simply unifies
+ these inputs into the final type description.
+
+ Consider for instance a volatile type frozen after an access to constant
+ type designating it. After the designated type freeze, we get here with a
+ volatile new_type and a dummy old_type with a readonly variant, created
+ when the access type was processed. We shall make a volatile and readonly
+ designated type, because that's what it really is.
+
+ We might also get here for a non-dummy old_type variant with different
+ qualifiers than the new_type ones, for instance in some cases of pointers
+ to private record type elaboration (see the comments around the call to
+ this routine from gnat_to_gnu_entity/E_Access_Type). We have to merge the
+ qualifiers in thoses cases too, to avoid accidentally discarding the
+ initial set, and will often end up with old_type == new_type then. */
+ new_type = build_qualified_type (new_type,
+ TYPE_QUALS (old_type)
+ | TYPE_QUALS (new_type));
+
+ /* If the new type and the old one are identical, there is nothing to
+ update. */
+ if (old_type == new_type)
+ return;
+
+ /* Otherwise, first handle the simple case. */
+ if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
+ {
+ TYPE_POINTER_TO (new_type) = ptr;
+ TYPE_REFERENCE_TO (new_type) = ref;
+
+ for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
+ for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1;
+ ptr1 = TYPE_NEXT_VARIANT (ptr1))
+ TREE_TYPE (ptr1) = new_type;
+
+ for (; ref; ref = TYPE_NEXT_REF_TO (ref))
+ for (ref1 = TYPE_MAIN_VARIANT (ref); ref1;
+ ref1 = TYPE_NEXT_VARIANT (ref1))
+ TREE_TYPE (ref1) = new_type;
+ }
+
+ /* Now deal with the unconstrained array case. In this case the "pointer"
+ is actually a RECORD_TYPE where the types of both fields are
+ pointers to void. In that case, copy the field list from the
+ old type to the new one and update the fields' context. */
+ else if (TREE_CODE (ptr) != RECORD_TYPE || !TYPE_IS_FAT_POINTER_P (ptr))
+ gcc_unreachable ();
+
+ else
+ {
+ tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
+ tree ptr_temp_type;
+ tree new_ref;
+ tree var;
+
+ SET_DECL_ORIGINAL_FIELD (TYPE_FIELDS (ptr),
+ TYPE_FIELDS (TYPE_POINTER_TO (new_type)));
+ SET_DECL_ORIGINAL_FIELD (TREE_CHAIN (TYPE_FIELDS (ptr)),
+ TREE_CHAIN (TYPE_FIELDS
+ (TYPE_POINTER_TO (new_type))));
+
+ TYPE_FIELDS (ptr) = TYPE_FIELDS (TYPE_POINTER_TO (new_type));
+ DECL_CONTEXT (TYPE_FIELDS (ptr)) = ptr;
+ DECL_CONTEXT (TREE_CHAIN (TYPE_FIELDS (ptr))) = ptr;
+
+ /* Rework the PLACEHOLDER_EXPR inside the reference to the
+ template bounds.
+
+ ??? This is now the only use of gnat_substitute_in_type, which
+ is now a very "heavy" routine to do this, so it should be replaced
+ at some point. */
+ ptr_temp_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (ptr)));
+ new_ref = build3 (COMPONENT_REF, ptr_temp_type,
+ build0 (PLACEHOLDER_EXPR, ptr),
+ TREE_CHAIN (TYPE_FIELDS (ptr)), NULL_TREE);
+
+ update_pointer_to
+ (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
+ gnat_substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
+ TREE_CHAIN (TYPE_FIELDS (ptr)), new_ref));
+
+ for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
+ {
+ SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);
+
+ /* This may seem a bit gross, in particular wrt DECL_CONTEXT, but
+ actually is in keeping with what build_qualified_type does. */
+ TYPE_FIELDS (var) = TYPE_FIELDS (ptr);
+ }
+
+ TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
+ = TREE_TYPE (new_type) = ptr;
+
+ /* Now handle updating the allocation record, what the thin pointer
+ points to. Update all pointers from the old record into the new
+ one, update the types of the fields, and recompute the size. */
+
+ update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
+
+ TREE_TYPE (TYPE_FIELDS (new_obj_rec)) = TREE_TYPE (ptr_temp_type);
+ TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr)));
+ DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TYPE_SIZE (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
+ DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
+ = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))));
+
+ TYPE_SIZE (new_obj_rec)
+ = size_binop (PLUS_EXPR,
+ DECL_SIZE (TYPE_FIELDS (new_obj_rec)),
+ DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
+ TYPE_SIZE_UNIT (new_obj_rec)
+ = size_binop (PLUS_EXPR,
+ DECL_SIZE_UNIT (TYPE_FIELDS (new_obj_rec)),
+ DECL_SIZE_UNIT (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))));
+ rest_of_type_compilation (ptr, global_bindings_p ());
+ }
+}
+
+/* Convert a pointer to a constrained array into a pointer to a fat
+ pointer. This involves making or finding a template. */
+
+static tree
+convert_to_fat_pointer (tree type, tree expr)
+{
+ tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))));
+ tree template, template_addr;
+ tree etype = TREE_TYPE (expr);
+
+ /* If EXPR is a constant of zero, we make a fat pointer that has a null
+ pointer to the template and array. */
+ if (integer_zerop (expr))
+ return
+ gnat_build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ convert (build_pointer_type (template_type),
+ expr),
+ NULL_TREE)));
+
+ /* If EXPR is a thin pointer, make the template and data from the record. */
+
+ else if (TYPE_THIN_POINTER_P (etype))
+ {
+ tree fields = TYPE_FIELDS (TREE_TYPE (etype));
+
+ expr = save_expr (expr);
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+ else
+ expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr);
+
+ template = build_component_ref (expr, NULL_TREE, fields, false);
+ expr = build_unary_op (ADDR_EXPR, NULL_TREE,
+ build_component_ref (expr, NULL_TREE,
+ TREE_CHAIN (fields), false));
+ }
+ else
+ /* Otherwise, build the constructor for the template. */
+ template = build_template (template_type, TREE_TYPE (etype), expr);
+
+ template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template);
+
+ /* The result is a CONSTRUCTOR for the fat pointer.
+
+ If expr is an argument of a foreign convention subprogram, the type it
+ points to is directly the component type. In this case, the expression
+ type may not match the corresponding FIELD_DECL type at this point, so we
+ call "convert" here to fix that up if necessary. This type consistency is
+ required, for instance because it ensures that possible later folding of
+ component_refs against this constructor always yields something of the
+ same type as the initial reference.
+
+ Note that the call to "build_template" above is still fine, because it
+ will only refer to the provided template_type in this case. */
+ return
+ gnat_build_constructor
+ (type, tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ template_addr, NULL_TREE)));
+}
+
+/* Convert to a thin pointer type, TYPE. The only thing we know how to convert
+ is something that is a fat pointer, so convert to it first if it EXPR
+ is not already a fat pointer. */
+
+static tree
+convert_to_thin_pointer (tree type, tree expr)
+{
+ if (!TYPE_FAT_POINTER_P (TREE_TYPE (expr)))
+ expr
+ = convert_to_fat_pointer
+ (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr);
+
+ /* We get the pointer to the data and use a NOP_EXPR to make it the
+ proper GCC type. */
+ expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)),
+ false);
+ expr = build1 (NOP_EXPR, type, expr);
+
+ return expr;
+}
+
+/* Create an expression whose value is that of EXPR,
+ converted to type TYPE. The TREE_TYPE of the value
+ is always TYPE. This function implements all reasonable
+ conversions; callers should filter out those that are
+ not permitted by the language being compiled. */
+
+tree
+convert (tree type, tree expr)
+{
+ enum tree_code code = TREE_CODE (type);
+ tree etype = TREE_TYPE (expr);
+ enum tree_code ecode = TREE_CODE (etype);
+
+ /* If EXPR is already the right type, we are done. */
+ if (type == etype)
+ return expr;
+
+ /* If the input type has padding, remove it by doing a component reference
+ to the field. If the output type has padding, make a constructor
+ to build the record. If both input and output have padding and are
+ of variable size, do this as an unchecked conversion. */
+ else if (ecode == RECORD_TYPE && code == RECORD_TYPE
+ && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype)
+ && (!TREE_CONSTANT (TYPE_SIZE (type))
+ || !TREE_CONSTANT (TYPE_SIZE (etype))))
+ ;
+ else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype))
+ {
+ /* If we have just converted to this padded type, just get
+ the inner expression. */
+ if (TREE_CODE (expr) == CONSTRUCTOR
+ && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (expr))
+ && VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->index
+ == TYPE_FIELDS (etype))
+ return VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->value;
+ else
+ return convert (type,
+ build_component_ref (expr, NULL_TREE,
+ TYPE_FIELDS (etype), false));
+ }
+ else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type))
+ {
+ /* If we previously converted from another type and our type is
+ of variable size, remove the conversion to avoid the need for
+ variable-size temporaries. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ && !TREE_CONSTANT (TYPE_SIZE (type)))
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we are just removing the padding from expr, convert the original
+ object if we have variable size. That will avoid the need
+ for some variable-size temporaries. */
+ if (TREE_CODE (expr) == COMPONENT_REF
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
+ && !TREE_CONSTANT (TYPE_SIZE (type)))
+ return convert (type, TREE_OPERAND (expr, 0));
+
+ /* If the result type is a padded type with a self-referentially-sized
+ field and the expression type is a record, do this as an
+ unchecked conversion. */
+ else if (TREE_CODE (etype) == RECORD_TYPE
+ && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
+ return unchecked_convert (type, expr, false);
+
+ else
+ return
+ gnat_build_constructor (type,
+ tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE
+ (TYPE_FIELDS (type)),
+ expr),
+ NULL_TREE));
+ }
+
+ /* If the input is a biased type, adjust first. */
+ if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
+ return convert (type, fold (build2 (PLUS_EXPR, TREE_TYPE (etype),
+ fold_convert (TREE_TYPE (etype),
+ expr),
+ TYPE_MIN_VALUE (etype))));
+
+ /* If the input is a justified modular type, we need to extract the actual
+ object before converting it to any other type with the exceptions of an
+ unconstrained array or of a mere type variant. It is useful to avoid the
+ extraction and conversion in the type variant case because it could end
+ up replacing a VAR_DECL expr by a constructor and we might be about the
+ take the address of the result. */
+ if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
+ && code != UNCONSTRAINED_ARRAY_TYPE
+ && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
+ return convert (type, build_component_ref (expr, NULL_TREE,
+ TYPE_FIELDS (etype), false));
+
+ /* If converting to a type that contains a template, convert to the data
+ type and then build the template. */
+ if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
+ {
+ tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)));
+
+ /* If the source already has a template, get a reference to the
+ associated array only, as we are going to rebuild a template
+ for the target type anyway. */
+ expr = maybe_unconstrained_array (expr);
+
+ return
+ gnat_build_constructor
+ (type,
+ tree_cons (TYPE_FIELDS (type),
+ build_template (TREE_TYPE (TYPE_FIELDS (type)),
+ obj_type, NULL_TREE),
+ tree_cons (TREE_CHAIN (TYPE_FIELDS (type)),
+ convert (obj_type, expr), NULL_TREE)));
+ }
+
+ /* There are some special cases of expressions that we process
+ specially. */
+ switch (TREE_CODE (expr))
+ {
+ case ERROR_MARK:
+ return expr;
+
+ case NULL_EXPR:
+ /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
+ conversion in gnat_expand_expr. NULL_EXPR does not represent
+ and actual value, so no conversion is needed. */
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+
+ case STRING_CST:
+ /* If we are converting a STRING_CST to another constrained array type,
+ just make a new one in the proper type. */
+ if (code == ecode && AGGREGATE_TYPE_P (etype)
+ && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
+ && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
+ {
+ expr = copy_node (expr);
+ TREE_TYPE (expr) = type;
+ return expr;
+ }
+ break;
+
+ case UNCONSTRAINED_ARRAY_REF:
+ /* Convert this to the type of the inner array by getting the address of
+ the array from the template. */
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (expr, 0),
+ get_identifier ("P_ARRAY"),
+ NULL_TREE, false));
+ etype = TREE_TYPE (expr);
+ ecode = TREE_CODE (etype);
+ break;
+
+ case VIEW_CONVERT_EXPR:
+ {
+ /* GCC 4.x is very sensitive to type consistency overall, and view
+ conversions thus are very frequent. Even though just "convert"ing
+ the inner operand to the output type is fine in most cases, it
+ might expose unexpected input/output type mismatches in special
+ circumstances so we avoid such recursive calls when we can. */
+
+ tree op0 = TREE_OPERAND (expr, 0);
+
+ /* If we are converting back to the original type, we can just
+ lift the input conversion. This is a common occurrence with
+ switches back-and-forth amongst type variants. */
+ if (type == TREE_TYPE (op0))
+ return op0;
+
+ /* Otherwise, if we're converting between two aggregate types, we
+ might be allowed to substitute the VIEW_CONVERT target type in
+ place or to just convert the inner expression. */
+ if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
+ {
+ /* If we are converting between type variants, we can just
+ substitute the VIEW_CONVERT in place. */
+ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
+ return build1 (VIEW_CONVERT_EXPR, type, op0);
+
+ /* Otherwise, we may just bypass the input view conversion unless
+ one of the types is a fat pointer, which is handled by
+ specialized code below which relies on exact type matching. */
+ else if (!TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
+ return convert (type, op0);
+ }
+ }
+ break;
+
+ case INDIRECT_REF:
+ /* If both types are record types, just convert the pointer and
+ make a new INDIRECT_REF.
+
+ ??? Disable this for now since it causes problems with the
+ code in build_binary_op for MODIFY_EXPR which wants to
+ strip off conversions. But that code really is a mess and
+ we need to do this a much better way some time. */
+ if (0
+ && (TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE)
+ && (TREE_CODE (etype) == RECORD_TYPE
+ || TREE_CODE (etype) == UNION_TYPE)
+ && !TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
+ return build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (build_pointer_type (type),
+ TREE_OPERAND (expr, 0)));
+ break;
+
+ default:
+ break;
+ }
+
+ /* Check for converting to a pointer to an unconstrained array. */
+ if (TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype))
+ return convert_to_fat_pointer (type, expr);
+
+ /* If we're converting between two aggregate types that have the same main
+ variant, just make a VIEW_CONVER_EXPR. */
+ else if (AGGREGATE_TYPE_P (type)
+ && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
+ return build1 (VIEW_CONVERT_EXPR, type, expr);
+
+ /* In all other cases of related types, make a NOP_EXPR. */
+ else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
+ || (code == INTEGER_CST && ecode == INTEGER_CST
+ && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type))))
+ return fold_convert (type, expr);
+
+ switch (code)
+ {
+ case VOID_TYPE:
+ return build1 (CONVERT_EXPR, type, expr);
+
+ case BOOLEAN_TYPE:
+ return fold_convert (type, gnat_truthvalue_conversion (expr));
+
+ case INTEGER_TYPE:
+ if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
+ && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
+ return unchecked_convert (type, expr, false);
+ else if (TYPE_BIASED_REPRESENTATION_P (type))
+ return fold_convert (type,
+ fold_build2 (MINUS_EXPR, TREE_TYPE (type),
+ convert (TREE_TYPE (type), expr),
+ TYPE_MIN_VALUE (type)));
+
+ /* ... fall through ... */
+
+ case ENUMERAL_TYPE:
+ return fold (convert_to_integer (type, expr));
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* If converting between two pointers to records denoting
+ both a template and type, adjust if needed to account
+ for any differing offsets, since one might be negative. */
+ if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type))
+ {
+ tree bit_diff
+ = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))),
+ bit_position (TYPE_FIELDS (TREE_TYPE (type))));
+ tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff,
+ sbitsize_int (BITS_PER_UNIT));
+
+ expr = build1 (NOP_EXPR, type, expr);
+ TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0));
+ if (integer_zerop (byte_diff))
+ return expr;
+
+ return build_binary_op (PLUS_EXPR, type, expr,
+ fold (convert_to_pointer (type, byte_diff)));
+ }
+
+ /* If converting to a thin pointer, handle specially. */
+ if (TYPE_THIN_POINTER_P (type)
+ && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
+ return convert_to_thin_pointer (type, expr);
+
+ /* If converting fat pointer to normal pointer, get the pointer to the
+ array and then convert it. */
+ else if (TYPE_FAT_POINTER_P (etype))
+ expr = build_component_ref (expr, get_identifier ("P_ARRAY"),
+ NULL_TREE, false);
+
+ return fold (convert_to_pointer (type, expr));
+
+ case REAL_TYPE:
+ return fold (convert_to_real (type, expr));
+
+ case RECORD_TYPE:
+ if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
+ return
+ gnat_build_constructor
+ (type, tree_cons (TYPE_FIELDS (type),
+ convert (TREE_TYPE (TYPE_FIELDS (type)), expr),
+ NULL_TREE));
+
+ /* ... fall through ... */
+
+ case ARRAY_TYPE:
+ /* In these cases, assume the front-end has validated the conversion.
+ If the conversion is valid, it will be a bit-wise conversion, so
+ it can be viewed as an unchecked conversion. */
+ return unchecked_convert (type, expr, false);
+
+ case UNION_TYPE:
+ /* This is a either a conversion between a tagged type and some
+ subtype, which we have to mark as a UNION_TYPE because of
+ overlapping fields or a conversion of an Unchecked_Union. */
+ return unchecked_convert (type, expr, false);
+
+ case UNCONSTRAINED_ARRAY_TYPE:
+ /* If EXPR is a constrained array, take its address, convert it to a
+ fat pointer, and then dereference it. Likewise if EXPR is a
+ record containing both a template and a constrained array.
+ Note that a record representing a justified modular type
+ always represents a packed constrained array. */
+ if (ecode == ARRAY_TYPE
+ || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
+ || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
+ return
+ build_unary_op
+ (INDIRECT_REF, NULL_TREE,
+ convert_to_fat_pointer (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+
+ /* Do something very similar for converting one unconstrained
+ array to another. */
+ else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
+ return
+ build_unary_op (INDIRECT_REF, NULL_TREE,
+ convert (TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR,
+ NULL_TREE, expr)));
+ else
+ gcc_unreachable ();
+
+ case COMPLEX_TYPE:
+ return fold (convert_to_complex (type, expr));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Remove all conversions that are done in EXP. This includes converting
+ from a padded type or to a justified modular type. If TRUE_ADDRESS
+ is true, always return the address of the containing object even if
+ the address is not bit-aligned. */
+
+tree
+remove_conversions (tree exp, bool true_address)
+{
+ switch (TREE_CODE (exp))
+ {
+ case CONSTRUCTOR:
+ if (true_address
+ && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
+ return
+ remove_conversions (VEC_index (constructor_elt,
+ CONSTRUCTOR_ELTS (exp), 0)->value,
+ true);
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE
+ && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
+ return remove_conversions (TREE_OPERAND (exp, 0), true_address);
+ break;
+
+ case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR:
+ case NOP_EXPR: case CONVERT_EXPR:
+ return remove_conversions (TREE_OPERAND (exp, 0), true_address);
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
+ refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P,
+ likewise return an expression pointing to the underlying array. */
+
+tree
+maybe_unconstrained_array (tree exp)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree new;
+
+ switch (TREE_CODE (TREE_TYPE (exp)))
+ {
+ case UNCONSTRAINED_ARRAY_TYPE:
+ if (code == UNCONSTRAINED_ARRAY_REF)
+ {
+ new
+ = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build_component_ref (TREE_OPERAND (exp, 0),
+ get_identifier ("P_ARRAY"),
+ NULL_TREE, false));
+ TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp);
+ return new;
+ }
+
+ else if (code == NULL_EXPR)
+ return build1 (NULL_EXPR,
+ TREE_TYPE (TREE_TYPE (TYPE_FIELDS
+ (TREE_TYPE (TREE_TYPE (exp))))),
+ TREE_OPERAND (exp, 0));
+
+ case RECORD_TYPE:
+ /* If this is a padded type, convert to the unpadded type and see if
+ it contains a template. */
+ if (TYPE_IS_PADDING_P (TREE_TYPE (exp)))
+ {
+ new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
+ if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE
+ && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new)))
+ return
+ build_component_ref (new, NULL_TREE,
+ TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new))),
+ 0);
+ }
+ else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp)))
+ return
+ build_component_ref (exp, NULL_TREE,
+ TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0);
+ break;
+
+ default:
+ break;
+ }
+
+ return exp;
+}
+
+/* Return an expression that does an unchecked conversion of EXPR to TYPE.
+ If NOTRUNC_P is true, truncation operations should be suppressed. */
+
+tree
+unchecked_convert (tree type, tree expr, bool notrunc_p)
+{
+ tree etype = TREE_TYPE (expr);
+
+ /* If the expression is already the right type, we are done. */
+ if (etype == type)
+ return expr;
+
+ /* If both types types are integral just do a normal conversion.
+ Likewise for a conversion to an unconstrained array. */
+ if ((((INTEGRAL_TYPE_P (type)
+ && !(TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (type)))
+ || (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type))
+ || (TREE_CODE (type) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (type)))
+ && ((INTEGRAL_TYPE_P (etype)
+ && !(TREE_CODE (etype) == INTEGER_TYPE
+ && TYPE_VAX_FLOATING_POINT_P (etype)))
+ || (POINTER_TYPE_P (etype) && !TYPE_THIN_POINTER_P (etype))
+ || (TREE_CODE (etype) == RECORD_TYPE
+ && TYPE_JUSTIFIED_MODULAR_P (etype))))
+ || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ {
+ tree rtype = type;
+
+ if (TREE_CODE (etype) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (etype))
+ {
+ tree ntype = copy_type (etype);
+
+ TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
+ TYPE_MAIN_VARIANT (ntype) = ntype;
+ expr = build1 (NOP_EXPR, ntype, expr);
+ }
+
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ {
+ rtype = copy_type (type);
+ TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
+ TYPE_MAIN_VARIANT (rtype) = rtype;
+ }
+
+ expr = convert (rtype, expr);
+ if (type != rtype)
+ expr = build1 (NOP_EXPR, type, expr);
+ }
+
+ /* If we are converting TO an integral type whose precision is not the
+ same as its size, first unchecked convert to a record that contains
+ an object of the output type. Then extract the field. */
+ else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
+ && 0 != compare_tree_int (TYPE_RM_SIZE (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type))))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field = create_field_decl (get_identifier ("OBJ"), type,
+ rec_type, 1, 0, 0, 0);
+
+ TYPE_FIELDS (rec_type) = field;
+ layout_type (rec_type);
+
+ expr = unchecked_convert (rec_type, expr, notrunc_p);
+ expr = build_component_ref (expr, NULL_TREE, field, 0);
+ }
+
+ /* Similarly for integral input type whose precision is not equal to its
+ size. */
+ else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype)
+ && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
+ GET_MODE_BITSIZE (TYPE_MODE (etype))))
+ {
+ tree rec_type = make_node (RECORD_TYPE);
+ tree field
+ = create_field_decl (get_identifier ("OBJ"), etype, rec_type,
+ 1, 0, 0, 0);
+
+ TYPE_FIELDS (rec_type) = field;
+ layout_type (rec_type);
+
+ expr = gnat_build_constructor (rec_type, build_tree_list (field, expr));
+ expr = unchecked_convert (type, expr, notrunc_p);
+ }
+
+ /* We have a special case when we are converting between two
+ unconstrained array types. In that case, take the address,
+ convert the fat pointer types, and dereference. */
+ else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE
+ && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
+ expr = build_unary_op (INDIRECT_REF, NULL_TREE,
+ build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
+ build_unary_op (ADDR_EXPR, NULL_TREE,
+ expr)));
+ else
+ {
+ expr = maybe_unconstrained_array (expr);
+
+ /* There's no point in doing two unchecked conversions in a row. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ etype = TREE_TYPE (expr);
+ expr = build1 (VIEW_CONVERT_EXPR, type, expr);
+ }
+
+ /* If the result is an integral type whose size is not equal to
+ the size of the underlying machine type, sign- or zero-extend
+ the result. We need not do this in the case where the input is
+ an integral type of the same precision and signedness or if the output
+ is a biased type or if both the input and output are unsigned. */
+ if (!notrunc_p
+ && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
+ && !(TREE_CODE (type) == INTEGER_TYPE
+ && TYPE_BIASED_REPRESENTATION_P (type))
+ && 0 != compare_tree_int (TYPE_RM_SIZE (type),
+ GET_MODE_BITSIZE (TYPE_MODE (type)))
+ && !(INTEGRAL_TYPE_P (etype)
+ && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
+ && operand_equal_p (TYPE_RM_SIZE (type),
+ (TYPE_RM_SIZE (etype) != 0
+ ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
+ 0))
+ && !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
+ {
+ tree base_type = gnat_type_for_mode (TYPE_MODE (type),
+ TYPE_UNSIGNED (type));
+ tree shift_expr
+ = convert (base_type,
+ size_binop (MINUS_EXPR,
+ bitsize_int
+ (GET_MODE_BITSIZE (TYPE_MODE (type))),
+ TYPE_RM_SIZE (type)));
+ expr
+ = convert (type,
+ build_binary_op (RSHIFT_EXPR, base_type,
+ build_binary_op (LSHIFT_EXPR, base_type,
+ convert (base_type, expr),
+ shift_expr),
+ shift_expr));
+ }
+
+ /* An unchecked conversion should never raise Constraint_Error. The code
+ below assumes that GCC's conversion routines overflow the same way that
+ the underlying hardware does. This is probably true. In the rare case
+ when it is false, we can rely on the fact that such conversions are
+ erroneous anyway. */
+ if (TREE_CODE (expr) == INTEGER_CST)
+ TREE_OVERFLOW (expr) = TREE_CONSTANT_OVERFLOW (expr) = 0;
+
+ /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
+ show no longer constant. */
+ if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
+ && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
+ OEP_ONLY_CONST))
+ TREE_CONSTANT (expr) = 0;
+
+ return expr;
+}
+
+/* Search the chain of currently reachable declarations for a builtin
+ FUNCTION_DECL node corresponding to function NAME (an IDENTIFIER_NODE).
+ Return the first node found, if any, or NULL_TREE otherwise. */
+
+tree
+builtin_decl_for (tree name __attribute__ ((unused)))
+{
+ /* ??? not clear yet how to implement this function in tree-ssa, so
+ return NULL_TREE for now */
+ return NULL_TREE;
+}
+
+#include "gt-ada-utils.h"
+#include "gtype-ada.h"