aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/sem_ch4.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/sem_ch4.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/sem_ch4.adb5371
1 files changed, 5371 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/sem_ch4.adb b/gcc-4.2.1/gcc/ada/sem_ch4.adb
new file mode 100644
index 000000000..ac5f38da2
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/sem_ch4.adb
@@ -0,0 +1,5371 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 4 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Output; use Output;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Dist; use Sem_Dist;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sem_Type; use Sem_Type;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Tbuild; use Tbuild;
+
+with GNAT.Spelling_Checker; use GNAT.Spelling_Checker;
+
+package body Sem_Ch4 is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Analyze_Expression (N : Node_Id);
+ -- For expressions that are not names, this is just a call to analyze.
+ -- If the expression is a name, it may be a call to a parameterless
+ -- function, and if so must be converted into an explicit call node
+ -- and analyzed as such. This deproceduring must be done during the first
+ -- pass of overload resolution, because otherwise a procedure call with
+ -- overloaded actuals may fail to resolve. See 4327-001 for an example.
+
+ procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
+ -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
+ -- is an operator name or an expanded name whose selector is an operator
+ -- name, and one possible interpretation is as a predefined operator.
+
+ procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
+ -- If the prefix of a selected_component is overloaded, the proper
+ -- interpretation that yields a record type with the proper selector
+ -- name must be selected.
+
+ procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
+ -- Procedure to analyze a user defined binary operator, which is resolved
+ -- like a function, but instead of a list of actuals it is presented
+ -- with the left and right operands of an operator node.
+
+ procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
+ -- Procedure to analyze a user defined unary operator, which is resolved
+ -- like a function, but instead of a list of actuals, it is presented with
+ -- the operand of the operator node.
+
+ procedure Ambiguous_Operands (N : Node_Id);
+ -- for equality, membership, and comparison operators with overloaded
+ -- arguments, list possible interpretations.
+
+ procedure Analyze_One_Call
+ (N : Node_Id;
+ Nam : Entity_Id;
+ Report : Boolean;
+ Success : out Boolean;
+ Skip_First : Boolean := False);
+ -- Check one interpretation of an overloaded subprogram name for
+ -- compatibility with the types of the actuals in a call. If there is a
+ -- single interpretation which does not match, post error if Report is
+ -- set to True.
+ --
+ -- Nam is the entity that provides the formals against which the actuals
+ -- are checked. Nam is either the name of a subprogram, or the internal
+ -- subprogram type constructed for an access_to_subprogram. If the actuals
+ -- are compatible with Nam, then Nam is added to the list of candidate
+ -- interpretations for N, and Success is set to True.
+ --
+ -- The flag Skip_First is used when analyzing a call that was rewritten
+ -- from object notation. In this case the first actual may have to receive
+ -- an explicit dereference, depending on the first formal of the operation
+ -- being called. The caller will have verified that the object is legal
+ -- for the call. If the remaining parameters match, the first parameter
+ -- will rewritten as a dereference if needed, prior to completing analysis.
+
+ procedure Check_Misspelled_Selector
+ (Prefix : Entity_Id;
+ Sel : Node_Id);
+ -- Give possible misspelling diagnostic if Sel is likely to be
+ -- a misspelling of one of the selectors of the Prefix.
+ -- This is called by Analyze_Selected_Component after producing
+ -- an invalid selector error message.
+
+ function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
+ -- Verify that type T is declared in scope S. Used to find intepretations
+ -- for operators given by expanded names. This is abstracted as a separate
+ -- function to handle extensions to System, where S is System, but T is
+ -- declared in the extension.
+
+ procedure Find_Arithmetic_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- L and R are the operands of an arithmetic operator. Find
+ -- consistent pairs of interpretations for L and R that have a
+ -- numeric type consistent with the semantics of the operator.
+
+ procedure Find_Comparison_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- L and R are operands of a comparison operator. Find consistent
+ -- pairs of interpretations for L and R.
+
+ procedure Find_Concatenation_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- For the four varieties of concatenation
+
+ procedure Find_Equality_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- Ditto for equality operators
+
+ procedure Find_Boolean_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- Ditto for binary logical operations
+
+ procedure Find_Negation_Types
+ (R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- Find consistent interpretation for operand of negation operator
+
+ procedure Find_Non_Universal_Interpretations
+ (N : Node_Id;
+ R : Node_Id;
+ Op_Id : Entity_Id;
+ T1 : Entity_Id);
+ -- For equality and comparison operators, the result is always boolean,
+ -- and the legality of the operation is determined from the visibility
+ -- of the operand types. If one of the operands has a universal interpre-
+ -- tation, the legality check uses some compatible non-universal
+ -- interpretation of the other operand. N can be an operator node, or
+ -- a function call whose name is an operator designator.
+
+ procedure Find_Unary_Types
+ (R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- Unary arithmetic types: plus, minus, abs
+
+ procedure Check_Arithmetic_Pair
+ (T1, T2 : Entity_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id);
+ -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
+ -- types for left and right operand. Determine whether they constitute
+ -- a valid pair for the given operator, and record the corresponding
+ -- interpretation of the operator node. The node N may be an operator
+ -- node (the usual case) or a function call whose prefix is an operator
+ -- designator. In both cases Op_Id is the operator name itself.
+
+ procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
+ -- Give detailed information on overloaded call where none of the
+ -- interpretations match. N is the call node, Nam the designator for
+ -- the overloaded entity being called.
+
+ function Junk_Operand (N : Node_Id) return Boolean;
+ -- Test for an operand that is an inappropriate entity (e.g. a package
+ -- name or a label). If so, issue an error message and return True. If
+ -- the operand is not an inappropriate entity kind, return False.
+
+ procedure Operator_Check (N : Node_Id);
+ -- Verify that an operator has received some valid interpretation. If none
+ -- was found, determine whether a use clause would make the operation
+ -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
+ -- every type compatible with the operator, even if the operator for the
+ -- type is not directly visible. The routine uses this type to emit a more
+ -- informative message.
+
+ procedure Process_Implicit_Dereference_Prefix
+ (E : Entity_Id;
+ P : Node_Id);
+ -- Called when P is the prefix of an implicit dereference, denoting an
+ -- object E. If in semantics only mode (-gnatc or generic), record that is
+ -- a reference to E. Normally, such a reference is generated only when the
+ -- implicit dereference is expanded into an explicit one. E may be empty,
+ -- in which case this procedure does nothing.
+
+ procedure Remove_Abstract_Operations (N : Node_Id);
+ -- Ada 2005: implementation of AI-310. An abstract non-dispatching
+ -- operation is not a candidate interpretation.
+
+ function Try_Indexed_Call
+ (N : Node_Id;
+ Nam : Entity_Id;
+ Typ : Entity_Id) return Boolean;
+ -- If a function has defaults for all its actuals, a call to it may
+ -- in fact be an indexing on the result of the call. Try_Indexed_Call
+ -- attempts the interpretation as an indexing, prior to analysis as
+ -- a call. If both are possible, the node is overloaded with both
+ -- interpretations (same symbol but two different types).
+
+ function Try_Indirect_Call
+ (N : Node_Id;
+ Nam : Entity_Id;
+ Typ : Entity_Id) return Boolean;
+ -- Similarly, a function F that needs no actuals can return an access
+ -- to a subprogram, and the call F (X) interpreted as F.all (X). In
+ -- this case the call may be overloaded with both interpretations.
+
+ function Try_Object_Operation (N : Node_Id) return Boolean;
+ -- Ada 2005 (AI-252): Give support to the object operation notation
+
+ ------------------------
+ -- Ambiguous_Operands --
+ ------------------------
+
+ procedure Ambiguous_Operands (N : Node_Id) is
+ procedure List_Operand_Interps (Opnd : Node_Id);
+
+ --------------------------
+ -- List_Operand_Interps --
+ --------------------------
+
+ procedure List_Operand_Interps (Opnd : Node_Id) is
+ Nam : Node_Id;
+ Err : Node_Id := N;
+
+ begin
+ if Is_Overloaded (Opnd) then
+ if Nkind (Opnd) in N_Op then
+ Nam := Opnd;
+ elsif Nkind (Opnd) = N_Function_Call then
+ Nam := Name (Opnd);
+ else
+ return;
+ end if;
+
+ else
+ return;
+ end if;
+
+ if Opnd = Left_Opnd (N) then
+ Error_Msg_N
+ ("\left operand has the following interpretations", N);
+ else
+ Error_Msg_N
+ ("\right operand has the following interpretations", N);
+ Err := Opnd;
+ end if;
+
+ List_Interps (Nam, Err);
+ end List_Operand_Interps;
+
+ -- Start of processing for Ambiguous_Operands
+
+ begin
+ if Nkind (N) = N_In
+ or else Nkind (N) = N_Not_In
+ then
+ Error_Msg_N ("ambiguous operands for membership", N);
+
+ elsif Nkind (N) = N_Op_Eq
+ or else Nkind (N) = N_Op_Ne
+ then
+ Error_Msg_N ("ambiguous operands for equality", N);
+
+ else
+ Error_Msg_N ("ambiguous operands for comparison", N);
+ end if;
+
+ if All_Errors_Mode then
+ List_Operand_Interps (Left_Opnd (N));
+ List_Operand_Interps (Right_Opnd (N));
+ else
+ Error_Msg_N ("\use -gnatf switch for details", N);
+ end if;
+ end Ambiguous_Operands;
+
+ -----------------------
+ -- Analyze_Aggregate --
+ -----------------------
+
+ -- Most of the analysis of Aggregates requires that the type be known,
+ -- and is therefore put off until resolution.
+
+ procedure Analyze_Aggregate (N : Node_Id) is
+ begin
+ if No (Etype (N)) then
+ Set_Etype (N, Any_Composite);
+ end if;
+ end Analyze_Aggregate;
+
+ -----------------------
+ -- Analyze_Allocator --
+ -----------------------
+
+ procedure Analyze_Allocator (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Sav_Errs : constant Nat := Serious_Errors_Detected;
+ E : Node_Id := Expression (N);
+ Acc_Type : Entity_Id;
+ Type_Id : Entity_Id;
+
+ begin
+ Check_Restriction (No_Allocators, N);
+
+ if Nkind (E) = N_Qualified_Expression then
+ Acc_Type := Create_Itype (E_Allocator_Type, N);
+ Set_Etype (Acc_Type, Acc_Type);
+ Init_Size_Align (Acc_Type);
+ Find_Type (Subtype_Mark (E));
+ Type_Id := Entity (Subtype_Mark (E));
+ Check_Fully_Declared (Type_Id, N);
+ Set_Directly_Designated_Type (Acc_Type, Type_Id);
+
+ if Is_Limited_Type (Type_Id)
+ and then Comes_From_Source (N)
+ and then not In_Instance_Body
+ then
+ -- Ada 2005 (AI-287): Do not post an error if the expression
+ -- corresponds to a limited aggregate. Limited aggregates
+ -- are checked in sem_aggr in a per-component manner
+ -- (compare with handling of Get_Value subprogram).
+
+ if Ada_Version >= Ada_05
+ and then Nkind (Expression (E)) = N_Aggregate
+ then
+ null;
+ else
+ Error_Msg_N ("initialization not allowed for limited types", N);
+ Explain_Limited_Type (Type_Id, N);
+ end if;
+ end if;
+
+ Analyze_And_Resolve (Expression (E), Type_Id);
+
+ -- A qualified expression requires an exact match of the type,
+ -- class-wide matching is not allowed.
+
+ if Is_Class_Wide_Type (Type_Id)
+ and then Base_Type (Etype (Expression (E))) /= Base_Type (Type_Id)
+ then
+ Wrong_Type (Expression (E), Type_Id);
+ end if;
+
+ Check_Non_Static_Context (Expression (E));
+
+ -- We don't analyze the qualified expression itself because it's
+ -- part of the allocator
+
+ Set_Etype (E, Type_Id);
+
+ -- Case where no qualified expression is present
+
+ else
+ declare
+ Def_Id : Entity_Id;
+ Base_Typ : Entity_Id;
+
+ begin
+ -- If the allocator includes a N_Subtype_Indication then a
+ -- constraint is present, otherwise the node is a subtype mark.
+ -- Introduce an explicit subtype declaration into the tree
+ -- defining some anonymous subtype and rewrite the allocator to
+ -- use this subtype rather than the subtype indication.
+
+ -- It is important to introduce the explicit subtype declaration
+ -- so that the bounds of the subtype indication are attached to
+ -- the tree in case the allocator is inside a generic unit.
+
+ if Nkind (E) = N_Subtype_Indication then
+
+ -- A constraint is only allowed for a composite type in Ada
+ -- 95. In Ada 83, a constraint is also allowed for an
+ -- access-to-composite type, but the constraint is ignored.
+
+ Find_Type (Subtype_Mark (E));
+ Base_Typ := Entity (Subtype_Mark (E));
+
+ if Is_Elementary_Type (Base_Typ) then
+ if not (Ada_Version = Ada_83
+ and then Is_Access_Type (Base_Typ))
+ then
+ Error_Msg_N ("constraint not allowed here", E);
+
+ if Nkind (Constraint (E))
+ = N_Index_Or_Discriminant_Constraint
+ then
+ Error_Msg_N
+ ("\if qualified expression was meant, " &
+ "use apostrophe", Constraint (E));
+ end if;
+ end if;
+
+ -- Get rid of the bogus constraint:
+
+ Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
+ Analyze_Allocator (N);
+ return;
+
+ -- Ada 2005, AI-363: if the designated type has a constrained
+ -- partial view, it cannot receive a discriminant constraint,
+ -- and the allocated object is unconstrained.
+
+ elsif Ada_Version >= Ada_05
+ and then Has_Constrained_Partial_View (Base_Typ)
+ then
+ Error_Msg_N
+ ("constraint no allowed when type " &
+ "has a constrained partial view", Constraint (E));
+ end if;
+
+ if Expander_Active then
+ Def_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+
+ Insert_Action (E,
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Indication => Relocate_Node (E)));
+
+ if Sav_Errs /= Serious_Errors_Detected
+ and then Nkind (Constraint (E))
+ = N_Index_Or_Discriminant_Constraint
+ then
+ Error_Msg_N
+ ("if qualified expression was meant, " &
+ "use apostrophe!", Constraint (E));
+ end if;
+
+ E := New_Occurrence_Of (Def_Id, Loc);
+ Rewrite (Expression (N), E);
+ end if;
+ end if;
+
+ Type_Id := Process_Subtype (E, N);
+ Acc_Type := Create_Itype (E_Allocator_Type, N);
+ Set_Etype (Acc_Type, Acc_Type);
+ Init_Size_Align (Acc_Type);
+ Set_Directly_Designated_Type (Acc_Type, Type_Id);
+ Check_Fully_Declared (Type_Id, N);
+
+ -- Ada 2005 (AI-231)
+
+ if Can_Never_Be_Null (Type_Id) then
+ Error_Msg_N ("(Ada 2005) qualified expression required",
+ Expression (N));
+ end if;
+
+ -- Check restriction against dynamically allocated protected
+ -- objects. Note that when limited aggregates are supported,
+ -- a similar test should be applied to an allocator with a
+ -- qualified expression ???
+
+ if Is_Protected_Type (Type_Id) then
+ Check_Restriction (No_Protected_Type_Allocators, N);
+ end if;
+
+ -- Check for missing initialization. Skip this check if we already
+ -- had errors on analyzing the allocator, since in that case these
+ -- are probably cascaded errors
+
+ if Is_Indefinite_Subtype (Type_Id)
+ and then Serious_Errors_Detected = Sav_Errs
+ then
+ if Is_Class_Wide_Type (Type_Id) then
+ Error_Msg_N
+ ("initialization required in class-wide allocation", N);
+ else
+ Error_Msg_N
+ ("initialization required in unconstrained allocation", N);
+ end if;
+ end if;
+ end;
+ end if;
+
+ if Is_Abstract (Type_Id) then
+ Error_Msg_N ("cannot allocate abstract object", E);
+ end if;
+
+ if Has_Task (Designated_Type (Acc_Type)) then
+ Check_Restriction (No_Tasking, N);
+ Check_Restriction (Max_Tasks, N);
+ Check_Restriction (No_Task_Allocators, N);
+ end if;
+
+ -- If the No_Streams restriction is set, check that the type of the
+ -- object is not, and does not contain, any subtype derived from
+ -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
+ -- Has_Stream just for efficiency reasons. There is no point in
+ -- spending time on a Has_Stream check if the restriction is not set.
+
+ if Restrictions.Set (No_Streams) then
+ if Has_Stream (Designated_Type (Acc_Type)) then
+ Check_Restriction (No_Streams, N);
+ end if;
+ end if;
+
+ Set_Etype (N, Acc_Type);
+
+ if not Is_Library_Level_Entity (Acc_Type) then
+ Check_Restriction (No_Local_Allocators, N);
+ end if;
+
+ if Serious_Errors_Detected > Sav_Errs then
+ Set_Error_Posted (N);
+ Set_Etype (N, Any_Type);
+ end if;
+ end Analyze_Allocator;
+
+ ---------------------------
+ -- Analyze_Arithmetic_Op --
+ ---------------------------
+
+ procedure Analyze_Arithmetic_Op (N : Node_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id;
+
+ begin
+ Candidate_Type := Empty;
+ Analyze_Expression (L);
+ Analyze_Expression (R);
+
+ -- If the entity is already set, the node is the instantiation of
+ -- a generic node with a non-local reference, or was manufactured
+ -- by a call to Make_Op_xxx. In either case the entity is known to
+ -- be valid, and we do not need to collect interpretations, instead
+ -- we just get the single possible interpretation.
+
+ Op_Id := Entity (N);
+
+ if Present (Op_Id) then
+ if Ekind (Op_Id) = E_Operator then
+
+ if (Nkind (N) = N_Op_Divide or else
+ Nkind (N) = N_Op_Mod or else
+ Nkind (N) = N_Op_Multiply or else
+ Nkind (N) = N_Op_Rem)
+ and then Treat_Fixed_As_Integer (N)
+ then
+ null;
+ else
+ Set_Etype (N, Any_Type);
+ Find_Arithmetic_Types (L, R, Op_Id, N);
+ end if;
+
+ else
+ Set_Etype (N, Any_Type);
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ -- Entity is not already set, so we do need to collect interpretations
+
+ else
+ Op_Id := Get_Name_Entity_Id (Chars (N));
+ Set_Etype (N, Any_Type);
+
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator
+ and then Present (Next_Entity (First_Entity (Op_Id)))
+ then
+ Find_Arithmetic_Types (L, R, Op_Id, N);
+
+ -- The following may seem superfluous, because an operator cannot
+ -- be generic, but this ignores the cleverness of the author of
+ -- ACVC bc1013a.
+
+ elsif Is_Overloadable (Op_Id) then
+ Analyze_User_Defined_Binary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Arithmetic_Op;
+
+ ------------------
+ -- Analyze_Call --
+ ------------------
+
+ -- Function, procedure, and entry calls are checked here. The Name in
+ -- the call may be overloaded. The actuals have been analyzed and may
+ -- themselves be overloaded. On exit from this procedure, the node N
+ -- may have zero, one or more interpretations. In the first case an
+ -- error message is produced. In the last case, the node is flagged
+ -- as overloaded and the interpretations are collected in All_Interp.
+
+ -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
+ -- the type-checking is similar to that of other calls.
+
+ procedure Analyze_Call (N : Node_Id) is
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Nam : Node_Id := Name (N);
+ X : Interp_Index;
+ It : Interp;
+ Nam_Ent : Entity_Id;
+ Success : Boolean := False;
+
+ function Name_Denotes_Function return Boolean;
+ -- If the type of the name is an access to subprogram, this may be
+ -- the type of a name, or the return type of the function being called.
+ -- If the name is not an entity then it can denote a protected function.
+ -- Until we distinguish Etype from Return_Type, we must use this
+ -- routine to resolve the meaning of the name in the call.
+
+ ---------------------------
+ -- Name_Denotes_Function --
+ ---------------------------
+
+ function Name_Denotes_Function return Boolean is
+ begin
+ if Is_Entity_Name (Nam) then
+ return Ekind (Entity (Nam)) = E_Function;
+
+ elsif Nkind (Nam) = N_Selected_Component then
+ return Ekind (Entity (Selector_Name (Nam))) = E_Function;
+
+ else
+ return False;
+ end if;
+ end Name_Denotes_Function;
+
+ -- Start of processing for Analyze_Call
+
+ begin
+ -- Initialize the type of the result of the call to the error type,
+ -- which will be reset if the type is successfully resolved.
+
+ Set_Etype (N, Any_Type);
+
+ if not Is_Overloaded (Nam) then
+
+ -- Only one interpretation to check
+
+ if Ekind (Etype (Nam)) = E_Subprogram_Type then
+ Nam_Ent := Etype (Nam);
+
+ -- If the prefix is an access_to_subprogram, this may be an indirect
+ -- call. This is the case if the name in the call is not an entity
+ -- name, or if it is a function name in the context of a procedure
+ -- call. In this latter case, we have a call to a parameterless
+ -- function that returns a pointer_to_procedure which is the entity
+ -- being called.
+
+ elsif Is_Access_Type (Etype (Nam))
+ and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
+ and then
+ (not Name_Denotes_Function
+ or else Nkind (N) = N_Procedure_Call_Statement)
+ then
+ Nam_Ent := Designated_Type (Etype (Nam));
+ Insert_Explicit_Dereference (Nam);
+
+ -- Selected component case. Simple entry or protected operation,
+ -- where the entry name is given by the selector name.
+
+ elsif Nkind (Nam) = N_Selected_Component then
+ Nam_Ent := Entity (Selector_Name (Nam));
+
+ if Ekind (Nam_Ent) /= E_Entry
+ and then Ekind (Nam_Ent) /= E_Entry_Family
+ and then Ekind (Nam_Ent) /= E_Function
+ and then Ekind (Nam_Ent) /= E_Procedure
+ then
+ Error_Msg_N ("name in call is not a callable entity", Nam);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- If the name is an Indexed component, it can be a call to a member
+ -- of an entry family. The prefix must be a selected component whose
+ -- selector is the entry. Analyze_Procedure_Call normalizes several
+ -- kinds of call into this form.
+
+ elsif Nkind (Nam) = N_Indexed_Component then
+
+ if Nkind (Prefix (Nam)) = N_Selected_Component then
+ Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
+ else
+ Error_Msg_N ("name in call is not a callable entity", Nam);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ elsif not Is_Entity_Name (Nam) then
+ Error_Msg_N ("name in call is not a callable entity", Nam);
+ Set_Etype (N, Any_Type);
+ return;
+
+ else
+ Nam_Ent := Entity (Nam);
+
+ -- If no interpretations, give error message
+
+ if not Is_Overloadable (Nam_Ent) then
+ declare
+ L : constant Boolean := Is_List_Member (N);
+ K : constant Node_Kind := Nkind (Parent (N));
+
+ begin
+ -- If the node is in a list whose parent is not an
+ -- expression then it must be an attempted procedure call.
+
+ if L and then K not in N_Subexpr then
+ if Ekind (Entity (Nam)) = E_Generic_Procedure then
+ Error_Msg_NE
+ ("must instantiate generic procedure& before call",
+ Nam, Entity (Nam));
+ else
+ Error_Msg_N
+ ("procedure or entry name expected", Nam);
+ end if;
+
+ -- Check for tasking cases where only an entry call will do
+
+ elsif not L
+ and then (K = N_Entry_Call_Alternative
+ or else K = N_Triggering_Alternative)
+ then
+ Error_Msg_N ("entry name expected", Nam);
+
+ -- Otherwise give general error message
+
+ else
+ Error_Msg_N ("invalid prefix in call", Nam);
+ end if;
+
+ return;
+ end;
+ end if;
+ end if;
+
+ Analyze_One_Call (N, Nam_Ent, True, Success);
+
+ -- If this is an indirect call, the return type of the access_to
+ -- subprogram may be an incomplete type. At the point of the call,
+ -- use the full type if available, and at the same time update
+ -- the return type of the access_to_subprogram.
+
+ if Success
+ and then Nkind (Nam) = N_Explicit_Dereference
+ and then Ekind (Etype (N)) = E_Incomplete_Type
+ and then Present (Full_View (Etype (N)))
+ then
+ Set_Etype (N, Full_View (Etype (N)));
+ Set_Etype (Nam_Ent, Etype (N));
+ end if;
+
+ else
+ -- An overloaded selected component must denote overloaded
+ -- operations of a concurrent type. The interpretations are
+ -- attached to the simple name of those operations.
+
+ if Nkind (Nam) = N_Selected_Component then
+ Nam := Selector_Name (Nam);
+ end if;
+
+ Get_First_Interp (Nam, X, It);
+
+ while Present (It.Nam) loop
+ Nam_Ent := It.Nam;
+
+ -- Name may be call that returns an access to subprogram, or more
+ -- generally an overloaded expression one of whose interpretations
+ -- yields an access to subprogram. If the name is an entity, we
+ -- do not dereference, because the node is a call that returns
+ -- the access type: note difference between f(x), where the call
+ -- may return an access subprogram type, and f(x)(y), where the
+ -- type returned by the call to f is implicitly dereferenced to
+ -- analyze the outer call.
+
+ if Is_Access_Type (Nam_Ent) then
+ Nam_Ent := Designated_Type (Nam_Ent);
+
+ elsif Is_Access_Type (Etype (Nam_Ent))
+ and then not Is_Entity_Name (Nam)
+ and then Ekind (Designated_Type (Etype (Nam_Ent)))
+ = E_Subprogram_Type
+ then
+ Nam_Ent := Designated_Type (Etype (Nam_Ent));
+ end if;
+
+ Analyze_One_Call (N, Nam_Ent, False, Success);
+
+ -- If the interpretation succeeds, mark the proper type of the
+ -- prefix (any valid candidate will do). If not, remove the
+ -- candidate interpretation. This only needs to be done for
+ -- overloaded protected operations, for other entities disambi-
+ -- guation is done directly in Resolve.
+
+ if Success then
+ Set_Etype (Nam, It.Typ);
+
+ elsif Nkind (Name (N)) = N_Selected_Component
+ or else Nkind (Name (N)) = N_Function_Call
+ then
+ Remove_Interp (X);
+ end if;
+
+ Get_Next_Interp (X, It);
+ end loop;
+
+ -- If the name is the result of a function call, it can only
+ -- be a call to a function returning an access to subprogram.
+ -- Insert explicit dereference.
+
+ if Nkind (Nam) = N_Function_Call then
+ Insert_Explicit_Dereference (Nam);
+ end if;
+
+ if Etype (N) = Any_Type then
+
+ -- None of the interpretations is compatible with the actuals
+
+ Diagnose_Call (N, Nam);
+
+ -- Special checks for uninstantiated put routines
+
+ if Nkind (N) = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Nam)
+ and then Chars (Nam) = Name_Put
+ and then List_Length (Actuals) = 1
+ then
+ declare
+ Arg : constant Node_Id := First (Actuals);
+ Typ : Entity_Id;
+
+ begin
+ if Nkind (Arg) = N_Parameter_Association then
+ Typ := Etype (Explicit_Actual_Parameter (Arg));
+ else
+ Typ := Etype (Arg);
+ end if;
+
+ if Is_Signed_Integer_Type (Typ) then
+ Error_Msg_N
+ ("possible missing instantiation of " &
+ "'Text_'I'O.'Integer_'I'O!", Nam);
+
+ elsif Is_Modular_Integer_Type (Typ) then
+ Error_Msg_N
+ ("possible missing instantiation of " &
+ "'Text_'I'O.'Modular_'I'O!", Nam);
+
+ elsif Is_Floating_Point_Type (Typ) then
+ Error_Msg_N
+ ("possible missing instantiation of " &
+ "'Text_'I'O.'Float_'I'O!", Nam);
+
+ elsif Is_Ordinary_Fixed_Point_Type (Typ) then
+ Error_Msg_N
+ ("possible missing instantiation of " &
+ "'Text_'I'O.'Fixed_'I'O!", Nam);
+
+ elsif Is_Decimal_Fixed_Point_Type (Typ) then
+ Error_Msg_N
+ ("possible missing instantiation of " &
+ "'Text_'I'O.'Decimal_'I'O!", Nam);
+
+ elsif Is_Enumeration_Type (Typ) then
+ Error_Msg_N
+ ("possible missing instantiation of " &
+ "'Text_'I'O.'Enumeration_'I'O!", Nam);
+ end if;
+ end;
+ end if;
+
+ elsif not Is_Overloaded (N)
+ and then Is_Entity_Name (Nam)
+ then
+ -- Resolution yields a single interpretation. Verify that
+ -- is has the proper capitalization.
+
+ Set_Entity_With_Style_Check (Nam, Entity (Nam));
+ Generate_Reference (Entity (Nam), Nam);
+
+ Set_Etype (Nam, Etype (Entity (Nam)));
+ else
+ Remove_Abstract_Operations (N);
+ end if;
+
+ End_Interp_List;
+ end if;
+ end Analyze_Call;
+
+ ---------------------------
+ -- Analyze_Comparison_Op --
+ ---------------------------
+
+ procedure Analyze_Comparison_Op (N : Node_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id := Entity (N);
+
+ begin
+ Set_Etype (N, Any_Type);
+ Candidate_Type := Empty;
+
+ Analyze_Expression (L);
+ Analyze_Expression (R);
+
+ if Present (Op_Id) then
+ if Ekind (Op_Id) = E_Operator then
+ Find_Comparison_Types (L, R, Op_Id, N);
+ else
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ if Is_Overloaded (L) then
+ Set_Etype (L, Intersect_Types (L, R));
+ end if;
+
+ else
+ Op_Id := Get_Name_Entity_Id (Chars (N));
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+ Find_Comparison_Types (L, R, Op_Id, N);
+ else
+ Analyze_User_Defined_Binary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Comparison_Op;
+
+ ---------------------------
+ -- Analyze_Concatenation --
+ ---------------------------
+
+ -- If the only one-dimensional array type in scope is String,
+ -- this is the resulting type of the operation. Otherwise there
+ -- will be a concatenation operation defined for each user-defined
+ -- one-dimensional array.
+
+ procedure Analyze_Concatenation (N : Node_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id := Entity (N);
+ LT : Entity_Id;
+ RT : Entity_Id;
+
+ begin
+ Set_Etype (N, Any_Type);
+ Candidate_Type := Empty;
+
+ Analyze_Expression (L);
+ Analyze_Expression (R);
+
+ -- If the entity is present, the node appears in an instance,
+ -- and denotes a predefined concatenation operation. The resulting
+ -- type is obtained from the arguments when possible. If the arguments
+ -- are aggregates, the array type and the concatenation type must be
+ -- visible.
+
+ if Present (Op_Id) then
+ if Ekind (Op_Id) = E_Operator then
+
+ LT := Base_Type (Etype (L));
+ RT := Base_Type (Etype (R));
+
+ if Is_Array_Type (LT)
+ and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
+ then
+ Add_One_Interp (N, Op_Id, LT);
+
+ elsif Is_Array_Type (RT)
+ and then LT = Base_Type (Component_Type (RT))
+ then
+ Add_One_Interp (N, Op_Id, RT);
+
+ -- If one operand is a string type or a user-defined array type,
+ -- and the other is a literal, result is of the specific type.
+
+ elsif
+ (Root_Type (LT) = Standard_String
+ or else Scope (LT) /= Standard_Standard)
+ and then Etype (R) = Any_String
+ then
+ Add_One_Interp (N, Op_Id, LT);
+
+ elsif
+ (Root_Type (RT) = Standard_String
+ or else Scope (RT) /= Standard_Standard)
+ and then Etype (L) = Any_String
+ then
+ Add_One_Interp (N, Op_Id, RT);
+
+ elsif not Is_Generic_Type (Etype (Op_Id)) then
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+
+ else
+ -- Type and its operations must be visible
+
+ Set_Entity (N, Empty);
+ Analyze_Concatenation (N);
+ end if;
+
+ else
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ else
+ Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+
+ -- Do not consider operators declared in dead code, they can
+ -- not be part of the resolution.
+
+ if Is_Eliminated (Op_Id) then
+ null;
+ else
+ Find_Concatenation_Types (L, R, Op_Id, N);
+ end if;
+
+ else
+ Analyze_User_Defined_Binary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Concatenation;
+
+ ------------------------------------
+ -- Analyze_Conditional_Expression --
+ ------------------------------------
+
+ procedure Analyze_Conditional_Expression (N : Node_Id) is
+ Condition : constant Node_Id := First (Expressions (N));
+ Then_Expr : constant Node_Id := Next (Condition);
+ Else_Expr : constant Node_Id := Next (Then_Expr);
+ begin
+ Analyze_Expression (Condition);
+ Analyze_Expression (Then_Expr);
+ Analyze_Expression (Else_Expr);
+ Set_Etype (N, Etype (Then_Expr));
+ end Analyze_Conditional_Expression;
+
+ -------------------------
+ -- Analyze_Equality_Op --
+ -------------------------
+
+ procedure Analyze_Equality_Op (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id;
+
+ begin
+ Set_Etype (N, Any_Type);
+ Candidate_Type := Empty;
+
+ Analyze_Expression (L);
+ Analyze_Expression (R);
+
+ -- If the entity is set, the node is a generic instance with a non-local
+ -- reference to the predefined operator or to a user-defined function.
+ -- It can also be an inequality that is expanded into the negation of a
+ -- call to a user-defined equality operator.
+
+ -- For the predefined case, the result is Boolean, regardless of the
+ -- type of the operands. The operands may even be limited, if they are
+ -- generic actuals. If they are overloaded, label the left argument with
+ -- the common type that must be present, or with the type of the formal
+ -- of the user-defined function.
+
+ if Present (Entity (N)) then
+ Op_Id := Entity (N);
+
+ if Ekind (Op_Id) = E_Operator then
+ Add_One_Interp (N, Op_Id, Standard_Boolean);
+ else
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ if Is_Overloaded (L) then
+ if Ekind (Op_Id) = E_Operator then
+ Set_Etype (L, Intersect_Types (L, R));
+ else
+ Set_Etype (L, Etype (First_Formal (Op_Id)));
+ end if;
+ end if;
+
+ else
+ Op_Id := Get_Name_Entity_Id (Chars (N));
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+ Find_Equality_Types (L, R, Op_Id, N);
+ else
+ Analyze_User_Defined_Binary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ -- If there was no match, and the operator is inequality, this may
+ -- be a case where inequality has not been made explicit, as for
+ -- tagged types. Analyze the node as the negation of an equality
+ -- operation. This cannot be done earlier, because before analysis
+ -- we cannot rule out the presence of an explicit inequality.
+
+ if Etype (N) = Any_Type
+ and then Nkind (N) = N_Op_Ne
+ then
+ Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+ Find_Equality_Types (L, R, Op_Id, N);
+ else
+ Analyze_User_Defined_Binary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+
+ if Etype (N) /= Any_Type then
+ Op_Id := Entity (N);
+
+ Rewrite (N,
+ Make_Op_Not (Loc,
+ Right_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Relocate_Node (Left_Opnd (N)),
+ Right_Opnd => Relocate_Node (Right_Opnd (N)))));
+
+ Set_Entity (Right_Opnd (N), Op_Id);
+ Analyze (N);
+ end if;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Equality_Op;
+
+ ----------------------------------
+ -- Analyze_Explicit_Dereference --
+ ----------------------------------
+
+ procedure Analyze_Explicit_Dereference (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Prefix (N);
+ T : Entity_Id;
+ I : Interp_Index;
+ It : Interp;
+ New_N : Node_Id;
+
+ function Is_Function_Type return Boolean;
+ -- Check whether node may be interpreted as an implicit function call
+
+ ----------------------
+ -- Is_Function_Type --
+ ----------------------
+
+ function Is_Function_Type return Boolean is
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (N) then
+ return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
+ and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
+
+ else
+ Get_First_Interp (N, I, It);
+ while Present (It.Nam) loop
+ if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
+ or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
+ then
+ return False;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ return True;
+ end if;
+ end Is_Function_Type;
+
+ -- Start of processing for Analyze_Explicit_Dereference
+
+ begin
+ Analyze (P);
+ Set_Etype (N, Any_Type);
+
+ -- Test for remote access to subprogram type, and if so return
+ -- after rewriting the original tree.
+
+ if Remote_AST_E_Dereference (P) then
+ return;
+ end if;
+
+ -- Normal processing for other than remote access to subprogram type
+
+ if not Is_Overloaded (P) then
+ if Is_Access_Type (Etype (P)) then
+
+ -- Set the Etype. We need to go thru Is_For_Access_Subtypes
+ -- to avoid other problems caused by the Private_Subtype
+ -- and it is safe to go to the Base_Type because this is the
+ -- same as converting the access value to its Base_Type.
+
+ declare
+ DT : Entity_Id := Designated_Type (Etype (P));
+
+ begin
+ if Ekind (DT) = E_Private_Subtype
+ and then Is_For_Access_Subtype (DT)
+ then
+ DT := Base_Type (DT);
+ end if;
+
+ Set_Etype (N, DT);
+ end;
+
+ elsif Etype (P) /= Any_Type then
+ Error_Msg_N ("prefix of dereference must be an access type", N);
+ return;
+ end if;
+
+ else
+ Get_First_Interp (P, I, It);
+ while Present (It.Nam) loop
+ T := It.Typ;
+
+ if Is_Access_Type (T) then
+ Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ -- Error if no interpretation of the prefix has an access type
+
+ if Etype (N) = Any_Type then
+ Error_Msg_N
+ ("access type required in prefix of explicit dereference", P);
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+ end if;
+
+ if Is_Function_Type
+ and then Nkind (Parent (N)) /= N_Indexed_Component
+
+ and then (Nkind (Parent (N)) /= N_Function_Call
+ or else N /= Name (Parent (N)))
+
+ and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
+ or else N /= Name (Parent (N)))
+
+ and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
+ and then (Nkind (Parent (N)) /= N_Attribute_Reference
+ or else
+ (Attribute_Name (Parent (N)) /= Name_Address
+ and then
+ Attribute_Name (Parent (N)) /= Name_Access))
+ then
+ -- Name is a function call with no actuals, in a context that
+ -- requires deproceduring (including as an actual in an enclosing
+ -- function or procedure call). There are some pathological cases
+ -- where the prefix might include functions that return access to
+ -- subprograms and others that return a regular type. Disambiguation
+ -- of those has to take place in Resolve.
+ -- See e.g. 7117-014 and E317-001.
+
+ New_N :=
+ Make_Function_Call (Loc,
+ Name => Make_Explicit_Dereference (Loc, P),
+ Parameter_Associations => New_List);
+
+ -- If the prefix is overloaded, remove operations that have formals,
+ -- we know that this is a parameterless call.
+
+ if Is_Overloaded (P) then
+ Get_First_Interp (P, I, It);
+ while Present (It.Nam) loop
+ T := It.Typ;
+
+ if No (First_Formal (Base_Type (Designated_Type (T)))) then
+ Set_Etype (P, T);
+ else
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ Rewrite (N, New_N);
+ Analyze (N);
+
+ elsif not Is_Function_Type
+ and then Is_Overloaded (N)
+ then
+ -- The prefix may include access to subprograms and other access
+ -- types. If the context selects the interpretation that is a call,
+ -- we cannot rewrite the node yet, but we include the result of
+ -- the call interpretation.
+
+ Get_First_Interp (N, I, It);
+ while Present (It.Nam) loop
+ if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
+ and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
+ then
+ Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+
+ -- A value of remote access-to-class-wide must not be dereferenced
+ -- (RM E.2.2(16)).
+
+ Validate_Remote_Access_To_Class_Wide_Type (N);
+ end Analyze_Explicit_Dereference;
+
+ ------------------------
+ -- Analyze_Expression --
+ ------------------------
+
+ procedure Analyze_Expression (N : Node_Id) is
+ begin
+ Analyze (N);
+ Check_Parameterless_Call (N);
+ end Analyze_Expression;
+
+ ------------------------------------
+ -- Analyze_Indexed_Component_Form --
+ ------------------------------------
+
+ procedure Analyze_Indexed_Component_Form (N : Node_Id) is
+ P : constant Node_Id := Prefix (N);
+ Exprs : constant List_Id := Expressions (N);
+ Exp : Node_Id;
+ P_T : Entity_Id;
+ E : Node_Id;
+ U_N : Entity_Id;
+
+ procedure Process_Function_Call;
+ -- Prefix in indexed component form is an overloadable entity,
+ -- so the node is a function call. Reformat it as such.
+
+ procedure Process_Indexed_Component;
+ -- Prefix in indexed component form is actually an indexed component.
+ -- This routine processes it, knowing that the prefix is already
+ -- resolved.
+
+ procedure Process_Indexed_Component_Or_Slice;
+ -- An indexed component with a single index may designate a slice if
+ -- the index is a subtype mark. This routine disambiguates these two
+ -- cases by resolving the prefix to see if it is a subtype mark.
+
+ procedure Process_Overloaded_Indexed_Component;
+ -- If the prefix of an indexed component is overloaded, the proper
+ -- interpretation is selected by the index types and the context.
+
+ ---------------------------
+ -- Process_Function_Call --
+ ---------------------------
+
+ procedure Process_Function_Call is
+ Actual : Node_Id;
+
+ begin
+ Change_Node (N, N_Function_Call);
+ Set_Name (N, P);
+ Set_Parameter_Associations (N, Exprs);
+
+ Actual := First (Parameter_Associations (N));
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next_Actual (Actual);
+ end loop;
+
+ Analyze_Call (N);
+ end Process_Function_Call;
+
+ -------------------------------
+ -- Process_Indexed_Component --
+ -------------------------------
+
+ procedure Process_Indexed_Component is
+ Exp : Node_Id;
+ Array_Type : Entity_Id;
+ Index : Node_Id;
+ Pent : Entity_Id := Empty;
+
+ begin
+ Exp := First (Exprs);
+
+ if Is_Overloaded (P) then
+ Process_Overloaded_Indexed_Component;
+
+ else
+ Array_Type := Etype (P);
+
+ if Is_Entity_Name (P) then
+ Pent := Entity (P);
+ elsif Nkind (P) = N_Selected_Component
+ and then Is_Entity_Name (Selector_Name (P))
+ then
+ Pent := Entity (Selector_Name (P));
+ end if;
+
+ -- Prefix must be appropriate for an array type, taking into
+ -- account a possible implicit dereference.
+
+ if Is_Access_Type (Array_Type) then
+ Array_Type := Designated_Type (Array_Type);
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+ Process_Implicit_Dereference_Prefix (Pent, P);
+ end if;
+
+ if Is_Array_Type (Array_Type) then
+ null;
+
+ elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
+ Analyze (Exp);
+ Set_Etype (N, Any_Type);
+
+ if not Has_Compatible_Type
+ (Exp, Entry_Index_Type (Pent))
+ then
+ Error_Msg_N ("invalid index type in entry name", N);
+
+ elsif Present (Next (Exp)) then
+ Error_Msg_N ("too many subscripts in entry reference", N);
+
+ else
+ Set_Etype (N, Etype (P));
+ end if;
+
+ return;
+
+ elsif Is_Record_Type (Array_Type)
+ and then Remote_AST_I_Dereference (P)
+ then
+ return;
+
+ elsif Array_Type = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+
+ -- Here we definitely have a bad indexing
+
+ else
+ if Nkind (Parent (N)) = N_Requeue_Statement
+ and then Present (Pent) and then Ekind (Pent) = E_Entry
+ then
+ Error_Msg_N
+ ("REQUEUE does not permit parameters", First (Exprs));
+
+ elsif Is_Entity_Name (P)
+ and then Etype (P) = Standard_Void_Type
+ then
+ Error_Msg_NE ("incorrect use of&", P, Entity (P));
+
+ else
+ Error_Msg_N ("array type required in indexed component", P);
+ end if;
+
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ Index := First_Index (Array_Type);
+ while Present (Index) and then Present (Exp) loop
+ if not Has_Compatible_Type (Exp, Etype (Index)) then
+ Wrong_Type (Exp, Etype (Index));
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ Next_Index (Index);
+ Next (Exp);
+ end loop;
+
+ Set_Etype (N, Component_Type (Array_Type));
+
+ if Present (Index) then
+ Error_Msg_N
+ ("too few subscripts in array reference", First (Exprs));
+
+ elsif Present (Exp) then
+ Error_Msg_N ("too many subscripts in array reference", Exp);
+ end if;
+ end if;
+ end Process_Indexed_Component;
+
+ ----------------------------------------
+ -- Process_Indexed_Component_Or_Slice --
+ ----------------------------------------
+
+ procedure Process_Indexed_Component_Or_Slice is
+ begin
+ Exp := First (Exprs);
+ while Present (Exp) loop
+ Analyze_Expression (Exp);
+ Next (Exp);
+ end loop;
+
+ Exp := First (Exprs);
+
+ -- If one index is present, and it is a subtype name, then the
+ -- node denotes a slice (note that the case of an explicit range
+ -- for a slice was already built as an N_Slice node in the first
+ -- place, so that case is not handled here).
+
+ -- We use a replace rather than a rewrite here because this is one
+ -- of the cases in which the tree built by the parser is plain wrong.
+
+ if No (Next (Exp))
+ and then Is_Entity_Name (Exp)
+ and then Is_Type (Entity (Exp))
+ then
+ Replace (N,
+ Make_Slice (Sloc (N),
+ Prefix => P,
+ Discrete_Range => New_Copy (Exp)));
+ Analyze (N);
+
+ -- Otherwise (more than one index present, or single index is not
+ -- a subtype name), then we have the indexed component case.
+
+ else
+ Process_Indexed_Component;
+ end if;
+ end Process_Indexed_Component_Or_Slice;
+
+ ------------------------------------------
+ -- Process_Overloaded_Indexed_Component --
+ ------------------------------------------
+
+ procedure Process_Overloaded_Indexed_Component is
+ Exp : Node_Id;
+ I : Interp_Index;
+ It : Interp;
+ Typ : Entity_Id;
+ Index : Node_Id;
+ Found : Boolean;
+
+ begin
+ Set_Etype (N, Any_Type);
+
+ Get_First_Interp (P, I, It);
+ while Present (It.Nam) loop
+ Typ := It.Typ;
+
+ if Is_Access_Type (Typ) then
+ Typ := Designated_Type (Typ);
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+ end if;
+
+ if Is_Array_Type (Typ) then
+
+ -- Got a candidate: verify that index types are compatible
+
+ Index := First_Index (Typ);
+ Found := True;
+ Exp := First (Exprs);
+ while Present (Index) and then Present (Exp) loop
+ if Has_Compatible_Type (Exp, Etype (Index)) then
+ null;
+ else
+ Found := False;
+ Remove_Interp (I);
+ exit;
+ end if;
+
+ Next_Index (Index);
+ Next (Exp);
+ end loop;
+
+ if Found and then No (Index) and then No (Exp) then
+ Add_One_Interp (N,
+ Etype (Component_Type (Typ)),
+ Etype (Component_Type (Typ)));
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if Etype (N) = Any_Type then
+ Error_Msg_N ("no legal interpetation for indexed component", N);
+ Set_Is_Overloaded (N, False);
+ end if;
+
+ End_Interp_List;
+ end Process_Overloaded_Indexed_Component;
+
+ -- Start of processing for Analyze_Indexed_Component_Form
+
+ begin
+ -- Get name of array, function or type
+
+ Analyze (P);
+ if Nkind (N) = N_Function_Call
+ or else Nkind (N) = N_Procedure_Call_Statement
+ then
+ -- If P is an explicit dereference whose prefix is of a
+ -- remote access-to-subprogram type, then N has already
+ -- been rewritten as a subprogram call and analyzed.
+
+ return;
+ end if;
+
+ pragma Assert (Nkind (N) = N_Indexed_Component);
+
+ P_T := Base_Type (Etype (P));
+
+ if Is_Entity_Name (P)
+ or else Nkind (P) = N_Operator_Symbol
+ then
+ U_N := Entity (P);
+
+ if Ekind (U_N) in Type_Kind then
+
+ -- Reformat node as a type conversion
+
+ E := Remove_Head (Exprs);
+
+ if Present (First (Exprs)) then
+ Error_Msg_N
+ ("argument of type conversion must be single expression", N);
+ end if;
+
+ Change_Node (N, N_Type_Conversion);
+ Set_Subtype_Mark (N, P);
+ Set_Etype (N, U_N);
+ Set_Expression (N, E);
+
+ -- After changing the node, call for the specific Analysis
+ -- routine directly, to avoid a double call to the expander.
+
+ Analyze_Type_Conversion (N);
+ return;
+ end if;
+
+ if Is_Overloadable (U_N) then
+ Process_Function_Call;
+
+ elsif Ekind (Etype (P)) = E_Subprogram_Type
+ or else (Is_Access_Type (Etype (P))
+ and then
+ Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
+ then
+ -- Call to access_to-subprogram with possible implicit dereference
+
+ Process_Function_Call;
+
+ elsif Is_Generic_Subprogram (U_N) then
+
+ -- A common beginner's (or C++ templates fan) error
+
+ Error_Msg_N ("generic subprogram cannot be called", N);
+ Set_Etype (N, Any_Type);
+ return;
+
+ else
+ Process_Indexed_Component_Or_Slice;
+ end if;
+
+ -- If not an entity name, prefix is an expression that may denote
+ -- an array or an access-to-subprogram.
+
+ else
+ if Ekind (P_T) = E_Subprogram_Type
+ or else (Is_Access_Type (P_T)
+ and then
+ Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
+ then
+ Process_Function_Call;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Is_Overloadable (Entity (Selector_Name (P)))
+ then
+ Process_Function_Call;
+
+ else
+ -- Indexed component, slice, or a call to a member of a family
+ -- entry, which will be converted to an entry call later.
+
+ Process_Indexed_Component_Or_Slice;
+ end if;
+ end if;
+ end Analyze_Indexed_Component_Form;
+
+ ------------------------
+ -- Analyze_Logical_Op --
+ ------------------------
+
+ procedure Analyze_Logical_Op (N : Node_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id := Entity (N);
+
+ begin
+ Set_Etype (N, Any_Type);
+ Candidate_Type := Empty;
+
+ Analyze_Expression (L);
+ Analyze_Expression (R);
+
+ if Present (Op_Id) then
+
+ if Ekind (Op_Id) = E_Operator then
+ Find_Boolean_Types (L, R, Op_Id, N);
+ else
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ else
+ Op_Id := Get_Name_Entity_Id (Chars (N));
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+ Find_Boolean_Types (L, R, Op_Id, N);
+ else
+ Analyze_User_Defined_Binary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Logical_Op;
+
+ ---------------------------
+ -- Analyze_Membership_Op --
+ ---------------------------
+
+ procedure Analyze_Membership_Op (N : Node_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+
+ Index : Interp_Index;
+ It : Interp;
+ Found : Boolean := False;
+ I_F : Interp_Index;
+ T_F : Entity_Id;
+
+ procedure Try_One_Interp (T1 : Entity_Id);
+ -- Routine to try one proposed interpretation. Note that the context
+ -- of the operation plays no role in resolving the arguments, so that
+ -- if there is more than one interpretation of the operands that is
+ -- compatible with a membership test, the operation is ambiguous.
+
+ --------------------
+ -- Try_One_Interp --
+ --------------------
+
+ procedure Try_One_Interp (T1 : Entity_Id) is
+ begin
+ if Has_Compatible_Type (R, T1) then
+ if Found
+ and then Base_Type (T1) /= Base_Type (T_F)
+ then
+ It := Disambiguate (L, I_F, Index, Any_Type);
+
+ if It = No_Interp then
+ Ambiguous_Operands (N);
+ Set_Etype (L, Any_Type);
+ return;
+
+ else
+ T_F := It.Typ;
+ end if;
+
+ else
+ Found := True;
+ T_F := T1;
+ I_F := Index;
+ end if;
+
+ Set_Etype (L, T_F);
+ end if;
+
+ end Try_One_Interp;
+
+ -- Start of processing for Analyze_Membership_Op
+
+ begin
+ Analyze_Expression (L);
+
+ if Nkind (R) = N_Range
+ or else (Nkind (R) = N_Attribute_Reference
+ and then Attribute_Name (R) = Name_Range)
+ then
+ Analyze (R);
+
+ if not Is_Overloaded (L) then
+ Try_One_Interp (Etype (L));
+
+ else
+ Get_First_Interp (L, Index, It);
+ while Present (It.Typ) loop
+ Try_One_Interp (It.Typ);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+
+ -- If not a range, it can only be a subtype mark, or else there
+ -- is a more basic error, to be diagnosed in Find_Type.
+
+ else
+ Find_Type (R);
+
+ if Is_Entity_Name (R) then
+ Check_Fully_Declared (Entity (R), R);
+ end if;
+ end if;
+
+ -- Compatibility between expression and subtype mark or range is
+ -- checked during resolution. The result of the operation is Boolean
+ -- in any case.
+
+ Set_Etype (N, Standard_Boolean);
+
+ if Comes_From_Source (N)
+ and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
+ then
+ Error_Msg_N ("membership test not applicable to cpp-class types", N);
+ end if;
+ end Analyze_Membership_Op;
+
+ ----------------------
+ -- Analyze_Negation --
+ ----------------------
+
+ procedure Analyze_Negation (N : Node_Id) is
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id := Entity (N);
+
+ begin
+ Set_Etype (N, Any_Type);
+ Candidate_Type := Empty;
+
+ Analyze_Expression (R);
+
+ if Present (Op_Id) then
+ if Ekind (Op_Id) = E_Operator then
+ Find_Negation_Types (R, Op_Id, N);
+ else
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ else
+ Op_Id := Get_Name_Entity_Id (Chars (N));
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+ Find_Negation_Types (R, Op_Id, N);
+ else
+ Analyze_User_Defined_Unary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Negation;
+
+ ------------------
+ -- Analyze_Null --
+ ------------------
+
+ procedure Analyze_Null (N : Node_Id) is
+ begin
+ Set_Etype (N, Any_Access);
+ end Analyze_Null;
+
+ ----------------------
+ -- Analyze_One_Call --
+ ----------------------
+
+ procedure Analyze_One_Call
+ (N : Node_Id;
+ Nam : Entity_Id;
+ Report : Boolean;
+ Success : out Boolean;
+ Skip_First : Boolean := False)
+ is
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Prev_T : constant Entity_Id := Etype (N);
+ Formal : Entity_Id;
+ Actual : Node_Id;
+ Is_Indexed : Boolean := False;
+ Subp_Type : constant Entity_Id := Etype (Nam);
+ Norm_OK : Boolean;
+
+ procedure Indicate_Name_And_Type;
+ -- If candidate interpretation matches, indicate name and type of
+ -- result on call node.
+
+ ----------------------------
+ -- Indicate_Name_And_Type --
+ ----------------------------
+
+ procedure Indicate_Name_And_Type is
+ begin
+ Add_One_Interp (N, Nam, Etype (Nam));
+ Success := True;
+
+ -- If the prefix of the call is a name, indicate the entity
+ -- being called. If it is not a name, it is an expression that
+ -- denotes an access to subprogram or else an entry or family. In
+ -- the latter case, the name is a selected component, and the entity
+ -- being called is noted on the selector.
+
+ if not Is_Type (Nam) then
+ if Is_Entity_Name (Name (N))
+ or else Nkind (Name (N)) = N_Operator_Symbol
+ then
+ Set_Entity (Name (N), Nam);
+
+ elsif Nkind (Name (N)) = N_Selected_Component then
+ Set_Entity (Selector_Name (Name (N)), Nam);
+ end if;
+ end if;
+
+ if Debug_Flag_E and not Report then
+ Write_Str (" Overloaded call ");
+ Write_Int (Int (N));
+ Write_Str (" compatible with ");
+ Write_Int (Int (Nam));
+ Write_Eol;
+ end if;
+ end Indicate_Name_And_Type;
+
+ -- Start of processing for Analyze_One_Call
+
+ begin
+ Success := False;
+
+ -- If the subprogram has no formals, or if all the formals have
+ -- defaults, and the return type is an array type, the node may
+ -- denote an indexing of the result of a parameterless call.
+
+ if Needs_No_Actuals (Nam)
+ and then Present (Actuals)
+ then
+ if Is_Array_Type (Subp_Type) then
+ Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type);
+
+ elsif Is_Access_Type (Subp_Type)
+ and then Is_Array_Type (Designated_Type (Subp_Type))
+ then
+ Is_Indexed :=
+ Try_Indexed_Call (N, Nam, Designated_Type (Subp_Type));
+
+ -- The prefix can also be a parameterless function that returns an
+ -- access to subprogram. in which case this is an indirect call.
+
+ elsif Is_Access_Type (Subp_Type)
+ and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
+ then
+ Is_Indexed := Try_Indirect_Call (N, Nam, Subp_Type);
+ end if;
+
+ end if;
+
+ Normalize_Actuals (N, Nam, (Report and not Is_Indexed), Norm_OK);
+
+ if not Norm_OK then
+
+ -- Mismatch in number or names of parameters
+
+ if Debug_Flag_E then
+ Write_Str (" normalization fails in call ");
+ Write_Int (Int (N));
+ Write_Str (" with subprogram ");
+ Write_Int (Int (Nam));
+ Write_Eol;
+ end if;
+
+ -- If the context expects a function call, discard any interpretation
+ -- that is a procedure. If the node is not overloaded, leave as is for
+ -- better error reporting when type mismatch is found.
+
+ elsif Nkind (N) = N_Function_Call
+ and then Is_Overloaded (Name (N))
+ and then Ekind (Nam) = E_Procedure
+ then
+ return;
+
+ -- Ditto for function calls in a procedure context
+
+ elsif Nkind (N) = N_Procedure_Call_Statement
+ and then Is_Overloaded (Name (N))
+ and then Etype (Nam) /= Standard_Void_Type
+ then
+ return;
+
+ elsif No (Actuals) then
+
+ -- If Normalize succeeds, then there are default parameters for
+ -- all formals.
+
+ Indicate_Name_And_Type;
+
+ elsif Ekind (Nam) = E_Operator then
+ if Nkind (N) = N_Procedure_Call_Statement then
+ return;
+ end if;
+
+ -- This can occur when the prefix of the call is an operator
+ -- name or an expanded name whose selector is an operator name.
+
+ Analyze_Operator_Call (N, Nam);
+
+ if Etype (N) /= Prev_T then
+
+ -- There may be a user-defined operator that hides the
+ -- current interpretation. We must check for this independently
+ -- of the analysis of the call with the user-defined operation,
+ -- because the parameter names may be wrong and yet the hiding
+ -- takes place. Fixes b34014o.
+
+ if Is_Overloaded (Name (N)) then
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Name (N), I, It);
+ while Present (It.Nam) loop
+ if Ekind (It.Nam) /= E_Operator
+ and then Hides_Op (It.Nam, Nam)
+ and then
+ Has_Compatible_Type
+ (First_Actual (N), Etype (First_Formal (It.Nam)))
+ and then (No (Next_Actual (First_Actual (N)))
+ or else Has_Compatible_Type
+ (Next_Actual (First_Actual (N)),
+ Etype (Next_Formal (First_Formal (It.Nam)))))
+ then
+ Set_Etype (N, Prev_T);
+ return;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+
+ -- If operator matches formals, record its name on the call.
+ -- If the operator is overloaded, Resolve will select the
+ -- correct one from the list of interpretations. The call
+ -- node itself carries the first candidate.
+
+ Set_Entity (Name (N), Nam);
+ Success := True;
+
+ elsif Report and then Etype (N) = Any_Type then
+ Error_Msg_N ("incompatible arguments for operator", N);
+ end if;
+
+ else
+ -- Normalize_Actuals has chained the named associations in the
+ -- correct order of the formals.
+
+ Actual := First_Actual (N);
+ Formal := First_Formal (Nam);
+
+ -- If we are analyzing a call rewritten from object notation,
+ -- skip first actual, which may be rewritten later as an
+ -- explicit dereference.
+
+ if Skip_First then
+ Next_Actual (Actual);
+ Next_Formal (Formal);
+ end if;
+
+ while Present (Actual) and then Present (Formal) loop
+ if Nkind (Parent (Actual)) /= N_Parameter_Association
+ or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
+ then
+ if Has_Compatible_Type (Actual, Etype (Formal)) then
+ Next_Actual (Actual);
+ Next_Formal (Formal);
+
+ else
+ if Debug_Flag_E then
+ Write_Str (" type checking fails in call ");
+ Write_Int (Int (N));
+ Write_Str (" with formal ");
+ Write_Int (Int (Formal));
+ Write_Str (" in subprogram ");
+ Write_Int (Int (Nam));
+ Write_Eol;
+ end if;
+
+ if Report and not Is_Indexed then
+
+ -- Ada 2005 (AI-251): Complete the error notification
+ -- to help new Ada 2005 users
+
+ if Is_Class_Wide_Type (Etype (Formal))
+ and then Is_Interface (Etype (Etype (Formal)))
+ and then not Interface_Present_In_Ancestor
+ (Typ => Etype (Actual),
+ Iface => Etype (Etype (Formal)))
+ then
+ Error_Msg_NE
+ ("(Ada 2005) does not implement interface }",
+ Actual, Etype (Etype (Formal)));
+ end if;
+
+ Wrong_Type (Actual, Etype (Formal));
+
+ if Nkind (Actual) = N_Op_Eq
+ and then Nkind (Left_Opnd (Actual)) = N_Identifier
+ then
+ Formal := First_Formal (Nam);
+ while Present (Formal) loop
+ if Chars (Left_Opnd (Actual)) = Chars (Formal) then
+ Error_Msg_N
+ ("possible misspelling of `='>`!", Actual);
+ exit;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ if All_Errors_Mode then
+ Error_Msg_Sloc := Sloc (Nam);
+
+ if Is_Overloadable (Nam)
+ and then Present (Alias (Nam))
+ and then not Comes_From_Source (Nam)
+ then
+ Error_Msg_NE
+ (" =='> in call to &#(inherited)!", Actual, Nam);
+
+ elsif Ekind (Nam) = E_Subprogram_Type then
+ declare
+ Access_To_Subprogram_Typ :
+ constant Entity_Id :=
+ Defining_Identifier
+ (Associated_Node_For_Itype (Nam));
+ begin
+ Error_Msg_NE (
+ " =='> in call to dereference of &#!",
+ Actual, Access_To_Subprogram_Typ);
+ end;
+
+ else
+ Error_Msg_NE (" =='> in call to &#!", Actual, Nam);
+
+ end if;
+ end if;
+ end if;
+
+ return;
+ end if;
+
+ else
+ -- Normalize_Actuals has verified that a default value exists
+ -- for this formal. Current actual names a subsequent formal.
+
+ Next_Formal (Formal);
+ end if;
+ end loop;
+
+ -- On exit, all actuals match
+
+ Indicate_Name_And_Type;
+ end if;
+ end Analyze_One_Call;
+
+ ---------------------------
+ -- Analyze_Operator_Call --
+ ---------------------------
+
+ procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
+ Op_Name : constant Name_Id := Chars (Op_Id);
+ Act1 : constant Node_Id := First_Actual (N);
+ Act2 : constant Node_Id := Next_Actual (Act1);
+
+ begin
+ -- Binary operator case
+
+ if Present (Act2) then
+
+ -- If more than two operands, then not binary operator after all
+
+ if Present (Next_Actual (Act2)) then
+ return;
+
+ elsif Op_Name = Name_Op_Add
+ or else Op_Name = Name_Op_Subtract
+ or else Op_Name = Name_Op_Multiply
+ or else Op_Name = Name_Op_Divide
+ or else Op_Name = Name_Op_Mod
+ or else Op_Name = Name_Op_Rem
+ or else Op_Name = Name_Op_Expon
+ then
+ Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
+
+ elsif Op_Name = Name_Op_And
+ or else Op_Name = Name_Op_Or
+ or else Op_Name = Name_Op_Xor
+ then
+ Find_Boolean_Types (Act1, Act2, Op_Id, N);
+
+ elsif Op_Name = Name_Op_Lt
+ or else Op_Name = Name_Op_Le
+ or else Op_Name = Name_Op_Gt
+ or else Op_Name = Name_Op_Ge
+ then
+ Find_Comparison_Types (Act1, Act2, Op_Id, N);
+
+ elsif Op_Name = Name_Op_Eq
+ or else Op_Name = Name_Op_Ne
+ then
+ Find_Equality_Types (Act1, Act2, Op_Id, N);
+
+ elsif Op_Name = Name_Op_Concat then
+ Find_Concatenation_Types (Act1, Act2, Op_Id, N);
+
+ -- Is this else null correct, or should it be an abort???
+
+ else
+ null;
+ end if;
+
+ -- Unary operator case
+
+ else
+ if Op_Name = Name_Op_Subtract or else
+ Op_Name = Name_Op_Add or else
+ Op_Name = Name_Op_Abs
+ then
+ Find_Unary_Types (Act1, Op_Id, N);
+
+ elsif
+ Op_Name = Name_Op_Not
+ then
+ Find_Negation_Types (Act1, Op_Id, N);
+
+ -- Is this else null correct, or should it be an abort???
+
+ else
+ null;
+ end if;
+ end if;
+ end Analyze_Operator_Call;
+
+ -------------------------------------------
+ -- Analyze_Overloaded_Selected_Component --
+ -------------------------------------------
+
+ procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
+ Nam : constant Node_Id := Prefix (N);
+ Sel : constant Node_Id := Selector_Name (N);
+ Comp : Entity_Id;
+ I : Interp_Index;
+ It : Interp;
+ T : Entity_Id;
+
+ begin
+ Set_Etype (Sel, Any_Type);
+
+ Get_First_Interp (Nam, I, It);
+ while Present (It.Typ) loop
+ if Is_Access_Type (It.Typ) then
+ T := Designated_Type (It.Typ);
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+ else
+ T := It.Typ;
+ end if;
+
+ if Is_Record_Type (T) then
+ Comp := First_Entity (T);
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (Sel)
+ and then Is_Visible_Component (Comp)
+ then
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Generate_Reference (Comp, Sel);
+
+ Set_Etype (Sel, Etype (Comp));
+ Add_One_Interp (N, Etype (Comp), Etype (Comp));
+
+ -- This also specifies a candidate to resolve the name.
+ -- Further overloading will be resolved from context.
+
+ Set_Etype (Nam, It.Typ);
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ elsif Is_Concurrent_Type (T) then
+ Comp := First_Entity (T);
+ while Present (Comp)
+ and then Comp /= First_Private_Entity (T)
+ loop
+ if Chars (Comp) = Chars (Sel) then
+ if Is_Overloadable (Comp) then
+ Add_One_Interp (Sel, Comp, Etype (Comp));
+ else
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Generate_Reference (Comp, Sel);
+ end if;
+
+ Set_Etype (Sel, Etype (Comp));
+ Set_Etype (N, Etype (Comp));
+ Set_Etype (Nam, It.Typ);
+
+ -- For access type case, introduce explicit deference for
+ -- more uniform treatment of entry calls.
+
+ if Is_Access_Type (Etype (Nam)) then
+ Insert_Explicit_Dereference (Nam);
+ Error_Msg_NW
+ (Warn_On_Dereference, "?implicit dereference", N);
+ end if;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ Set_Is_Overloaded (N, Is_Overloaded (Sel));
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if Etype (N) = Any_Type then
+ Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
+ Set_Entity (Sel, Any_Id);
+ Set_Etype (Sel, Any_Type);
+ end if;
+ end Analyze_Overloaded_Selected_Component;
+
+ ----------------------------------
+ -- Analyze_Qualified_Expression --
+ ----------------------------------
+
+ procedure Analyze_Qualified_Expression (N : Node_Id) is
+ Mark : constant Entity_Id := Subtype_Mark (N);
+ T : Entity_Id;
+
+ begin
+ Set_Etype (N, Any_Type);
+ Find_Type (Mark);
+ T := Entity (Mark);
+
+ if T = Any_Type then
+ return;
+ end if;
+
+ Check_Fully_Declared (T, N);
+ Analyze_Expression (Expression (N));
+ Set_Etype (N, T);
+ end Analyze_Qualified_Expression;
+
+ -------------------
+ -- Analyze_Range --
+ -------------------
+
+ procedure Analyze_Range (N : Node_Id) is
+ L : constant Node_Id := Low_Bound (N);
+ H : constant Node_Id := High_Bound (N);
+ I1, I2 : Interp_Index;
+ It1, It2 : Interp;
+
+ procedure Check_Common_Type (T1, T2 : Entity_Id);
+ -- Verify the compatibility of two types, and choose the
+ -- non universal one if the other is universal.
+
+ procedure Check_High_Bound (T : Entity_Id);
+ -- Test one interpretation of the low bound against all those
+ -- of the high bound.
+
+ procedure Check_Universal_Expression (N : Node_Id);
+ -- In Ada83, reject bounds of a universal range that are not
+ -- literals or entity names.
+
+ -----------------------
+ -- Check_Common_Type --
+ -----------------------
+
+ procedure Check_Common_Type (T1, T2 : Entity_Id) is
+ begin
+ if Covers (T1, T2) or else Covers (T2, T1) then
+ if T1 = Universal_Integer
+ or else T1 = Universal_Real
+ or else T1 = Any_Character
+ then
+ Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
+
+ elsif T1 = T2 then
+ Add_One_Interp (N, T1, T1);
+
+ else
+ Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
+ end if;
+ end if;
+ end Check_Common_Type;
+
+ ----------------------
+ -- Check_High_Bound --
+ ----------------------
+
+ procedure Check_High_Bound (T : Entity_Id) is
+ begin
+ if not Is_Overloaded (H) then
+ Check_Common_Type (T, Etype (H));
+ else
+ Get_First_Interp (H, I2, It2);
+ while Present (It2.Typ) loop
+ Check_Common_Type (T, It2.Typ);
+ Get_Next_Interp (I2, It2);
+ end loop;
+ end if;
+ end Check_High_Bound;
+
+ -----------------------------
+ -- Is_Universal_Expression --
+ -----------------------------
+
+ procedure Check_Universal_Expression (N : Node_Id) is
+ begin
+ if Etype (N) = Universal_Integer
+ and then Nkind (N) /= N_Integer_Literal
+ and then not Is_Entity_Name (N)
+ and then Nkind (N) /= N_Attribute_Reference
+ then
+ Error_Msg_N ("illegal bound in discrete range", N);
+ end if;
+ end Check_Universal_Expression;
+
+ -- Start of processing for Analyze_Range
+
+ begin
+ Set_Etype (N, Any_Type);
+ Analyze_Expression (L);
+ Analyze_Expression (H);
+
+ if Etype (L) = Any_Type or else Etype (H) = Any_Type then
+ return;
+
+ else
+ if not Is_Overloaded (L) then
+ Check_High_Bound (Etype (L));
+ else
+ Get_First_Interp (L, I1, It1);
+ while Present (It1.Typ) loop
+ Check_High_Bound (It1.Typ);
+ Get_Next_Interp (I1, It1);
+ end loop;
+ end if;
+
+ -- If result is Any_Type, then we did not find a compatible pair
+
+ if Etype (N) = Any_Type then
+ Error_Msg_N ("incompatible types in range ", N);
+ end if;
+ end if;
+
+ if Ada_Version = Ada_83
+ and then
+ (Nkind (Parent (N)) = N_Loop_Parameter_Specification
+ or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
+ then
+ Check_Universal_Expression (L);
+ Check_Universal_Expression (H);
+ end if;
+ end Analyze_Range;
+
+ -----------------------
+ -- Analyze_Reference --
+ -----------------------
+
+ procedure Analyze_Reference (N : Node_Id) is
+ P : constant Node_Id := Prefix (N);
+ Acc_Type : Entity_Id;
+ begin
+ Analyze (P);
+ Acc_Type := Create_Itype (E_Allocator_Type, N);
+ Set_Etype (Acc_Type, Acc_Type);
+ Init_Size_Align (Acc_Type);
+ Set_Directly_Designated_Type (Acc_Type, Etype (P));
+ Set_Etype (N, Acc_Type);
+ end Analyze_Reference;
+
+ --------------------------------
+ -- Analyze_Selected_Component --
+ --------------------------------
+
+ -- Prefix is a record type or a task or protected type. In the
+ -- later case, the selector must denote a visible entry.
+
+ procedure Analyze_Selected_Component (N : Node_Id) is
+ Name : constant Node_Id := Prefix (N);
+ Sel : constant Node_Id := Selector_Name (N);
+ Comp : Entity_Id;
+ Entity_List : Entity_Id;
+ Prefix_Type : Entity_Id;
+ Pent : Entity_Id := Empty;
+ Act_Decl : Node_Id;
+ In_Scope : Boolean;
+ Parent_N : Node_Id;
+
+ -- Start of processing for Analyze_Selected_Component
+
+ begin
+ Set_Etype (N, Any_Type);
+
+ if Is_Overloaded (Name) then
+ Analyze_Overloaded_Selected_Component (N);
+ return;
+
+ elsif Etype (Name) = Any_Type then
+ Set_Entity (Sel, Any_Id);
+ Set_Etype (Sel, Any_Type);
+ return;
+
+ else
+ Prefix_Type := Etype (Name);
+ end if;
+
+ if Is_Access_Type (Prefix_Type) then
+
+ -- A RACW object can never be used as prefix of a selected
+ -- component since that means it is dereferenced without
+ -- being a controlling operand of a dispatching operation
+ -- (RM E.2.2(15)).
+
+ if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N
+ ("invalid dereference of a remote access to class-wide value",
+ N);
+
+ -- Normal case of selected component applied to access type
+
+ else
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+
+ if Is_Entity_Name (Name) then
+ Pent := Entity (Name);
+ elsif Nkind (Name) = N_Selected_Component
+ and then Is_Entity_Name (Selector_Name (Name))
+ then
+ Pent := Entity (Selector_Name (Name));
+ end if;
+
+ Process_Implicit_Dereference_Prefix (Pent, Name);
+ end if;
+
+ Prefix_Type := Designated_Type (Prefix_Type);
+ end if;
+
+ if Ekind (Prefix_Type) = E_Private_Subtype then
+ Prefix_Type := Base_Type (Prefix_Type);
+ end if;
+
+ Entity_List := Prefix_Type;
+
+ -- For class-wide types, use the entity list of the root type. This
+ -- indirection is specially important for private extensions because
+ -- only the root type get switched (not the class-wide type).
+
+ if Is_Class_Wide_Type (Prefix_Type) then
+ Entity_List := Root_Type (Prefix_Type);
+ end if;
+
+ Comp := First_Entity (Entity_List);
+
+ -- If the selector has an original discriminant, the node appears in
+ -- an instance. Replace the discriminant with the corresponding one
+ -- in the current discriminated type. For nested generics, this must
+ -- be done transitively, so note the new original discriminant.
+
+ if Nkind (Sel) = N_Identifier
+ and then Present (Original_Discriminant (Sel))
+ then
+ Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
+
+ -- Mark entity before rewriting, for completeness and because
+ -- subsequent semantic checks might examine the original node.
+
+ Set_Entity (Sel, Comp);
+ Rewrite (Selector_Name (N),
+ New_Occurrence_Of (Comp, Sloc (N)));
+ Set_Original_Discriminant (Selector_Name (N), Comp);
+ Set_Etype (N, Etype (Comp));
+
+ if Is_Access_Type (Etype (Name)) then
+ Insert_Explicit_Dereference (Name);
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+ end if;
+
+ elsif Is_Record_Type (Prefix_Type) then
+
+ -- Find component with given name
+
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (Sel)
+ and then Is_Visible_Component (Comp)
+ then
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Generate_Reference (Comp, Sel);
+
+ Set_Etype (Sel, Etype (Comp));
+
+ if Ekind (Comp) = E_Discriminant then
+ if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
+ Error_Msg_N
+ ("cannot reference discriminant of Unchecked_Union",
+ Sel);
+ end if;
+
+ if Is_Generic_Type (Prefix_Type)
+ or else
+ Is_Generic_Type (Root_Type (Prefix_Type))
+ then
+ Set_Original_Discriminant (Sel, Comp);
+ end if;
+ end if;
+
+ -- Resolve the prefix early otherwise it is not possible to
+ -- build the actual subtype of the component: it may need
+ -- to duplicate this prefix and duplication is only allowed
+ -- on fully resolved expressions.
+
+ Resolve (Name);
+
+ -- Ada 2005 (AI-50217): Check wrong use of incomplete type.
+ -- Example:
+
+ -- limited with Pkg;
+ -- package Pkg is
+ -- type Acc_Inc is access Pkg.T;
+ -- X : Acc_Inc;
+ -- N : Natural := X.all.Comp; -- ERROR
+ -- end Pkg;
+
+ if Nkind (Name) = N_Explicit_Dereference
+ and then From_With_Type (Etype (Prefix (Name)))
+ and then not Is_Potentially_Use_Visible (Etype (Name))
+ then
+ Error_Msg_NE
+ ("premature usage of incomplete}", Prefix (Name),
+ Etype (Prefix (Name)));
+ end if;
+
+ -- We never need an actual subtype for the case of a selection
+ -- for a indexed component of a non-packed array, since in
+ -- this case gigi generates all the checks and can find the
+ -- necessary bounds information.
+
+ -- We also do not need an actual subtype for the case of
+ -- a first, last, length, or range attribute applied to a
+ -- non-packed array, since gigi can again get the bounds in
+ -- these cases (gigi cannot handle the packed case, since it
+ -- has the bounds of the packed array type, not the original
+ -- bounds of the type). However, if the prefix is itself a
+ -- selected component, as in a.b.c (i), gigi may regard a.b.c
+ -- as a dynamic-sized temporary, so we do generate an actual
+ -- subtype for this case.
+
+ Parent_N := Parent (N);
+
+ if not Is_Packed (Etype (Comp))
+ and then
+ ((Nkind (Parent_N) = N_Indexed_Component
+ and then Nkind (Name) /= N_Selected_Component)
+ or else
+ (Nkind (Parent_N) = N_Attribute_Reference
+ and then (Attribute_Name (Parent_N) = Name_First
+ or else
+ Attribute_Name (Parent_N) = Name_Last
+ or else
+ Attribute_Name (Parent_N) = Name_Length
+ or else
+ Attribute_Name (Parent_N) = Name_Range)))
+ then
+ Set_Etype (N, Etype (Comp));
+
+ -- If full analysis is not enabled, we do not generate an
+ -- actual subtype, because in the absence of expansion
+ -- reference to a formal of a protected type, for example,
+ -- will not be properly transformed, and will lead to
+ -- out-of-scope references in gigi.
+
+ -- In all other cases, we currently build an actual subtype.
+ -- It seems likely that many of these cases can be avoided,
+ -- but right now, the front end makes direct references to the
+ -- bounds (e.g. in generating a length check), and if we do
+ -- not make an actual subtype, we end up getting a direct
+ -- reference to a discriminant, which will not do.
+
+ elsif Full_Analysis then
+ Act_Decl :=
+ Build_Actual_Subtype_Of_Component (Etype (Comp), N);
+ Insert_Action (N, Act_Decl);
+
+ if No (Act_Decl) then
+ Set_Etype (N, Etype (Comp));
+
+ else
+ -- Component type depends on discriminants. Enter the
+ -- main attributes of the subtype.
+
+ declare
+ Subt : constant Entity_Id :=
+ Defining_Identifier (Act_Decl);
+
+ begin
+ Set_Etype (Subt, Base_Type (Etype (Comp)));
+ Set_Ekind (Subt, Ekind (Etype (Comp)));
+ Set_Etype (N, Subt);
+ end;
+ end if;
+
+ -- If Full_Analysis not enabled, just set the Etype
+
+ else
+ Set_Etype (N, Etype (Comp));
+ end if;
+
+ return;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ -- Ada 2005 (AI-252)
+
+ if Ada_Version >= Ada_05
+ and then Is_Tagged_Type (Prefix_Type)
+ and then Try_Object_Operation (N)
+ then
+ return;
+
+ -- If the transformation fails, it will be necessary to redo the
+ -- analysis with all errors enabled, to indicate candidate
+ -- interpretations and reasons for each failure ???
+
+ end if;
+
+ elsif Is_Private_Type (Prefix_Type) then
+
+ -- Allow access only to discriminants of the type. If the type has
+ -- no full view, gigi uses the parent type for the components, so we
+ -- do the same here.
+
+ if No (Full_View (Prefix_Type)) then
+ Entity_List := Root_Type (Base_Type (Prefix_Type));
+ Comp := First_Entity (Entity_List);
+ end if;
+
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (Sel) then
+ if Ekind (Comp) = E_Discriminant then
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Generate_Reference (Comp, Sel);
+
+ Set_Etype (Sel, Etype (Comp));
+ Set_Etype (N, Etype (Comp));
+
+ if Is_Generic_Type (Prefix_Type)
+ or else
+ Is_Generic_Type (Root_Type (Prefix_Type))
+ then
+ Set_Original_Discriminant (Sel, Comp);
+ end if;
+
+ else
+ Error_Msg_NE
+ ("invisible selector for }",
+ N, First_Subtype (Prefix_Type));
+ Set_Entity (Sel, Any_Id);
+ Set_Etype (N, Any_Type);
+ end if;
+
+ return;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ elsif Is_Concurrent_Type (Prefix_Type) then
+
+ -- Prefix is concurrent type. Find visible operation with given name
+ -- For a task, this can only include entries or discriminants if the
+ -- task type is not an enclosing scope. If it is an enclosing scope
+ -- (e.g. in an inner task) then all entities are visible, but the
+ -- prefix must denote the enclosing scope, i.e. can only be a direct
+ -- name or an expanded name.
+
+ Set_Etype (Sel, Any_Type);
+ In_Scope := In_Open_Scopes (Prefix_Type);
+
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (Sel) then
+ if Is_Overloadable (Comp) then
+ Add_One_Interp (Sel, Comp, Etype (Comp));
+
+ elsif Ekind (Comp) = E_Discriminant
+ or else Ekind (Comp) = E_Entry_Family
+ or else (In_Scope
+ and then Is_Entity_Name (Name))
+ then
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Generate_Reference (Comp, Sel);
+
+ else
+ goto Next_Comp;
+ end if;
+
+ Set_Etype (Sel, Etype (Comp));
+ Set_Etype (N, Etype (Comp));
+
+ if Ekind (Comp) = E_Discriminant then
+ Set_Original_Discriminant (Sel, Comp);
+ end if;
+
+ -- For access type case, introduce explicit deference for more
+ -- uniform treatment of entry calls.
+
+ if Is_Access_Type (Etype (Name)) then
+ Insert_Explicit_Dereference (Name);
+ Error_Msg_NW
+ (Warn_On_Dereference, "?implicit dereference", N);
+ end if;
+ end if;
+
+ <<Next_Comp>>
+ Next_Entity (Comp);
+ exit when not In_Scope
+ and then
+ Comp = First_Private_Entity (Base_Type (Prefix_Type));
+ end loop;
+
+ Set_Is_Overloaded (N, Is_Overloaded (Sel));
+
+ else
+ -- Invalid prefix
+
+ Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
+ end if;
+
+ -- If N still has no type, the component is not defined in the prefix
+
+ if Etype (N) = Any_Type then
+
+ -- If the prefix is a single concurrent object, use its name in the
+ -- error message, rather than that of its anonymous type.
+
+ if Is_Concurrent_Type (Prefix_Type)
+ and then Is_Internal_Name (Chars (Prefix_Type))
+ and then not Is_Derived_Type (Prefix_Type)
+ and then Is_Entity_Name (Name)
+ then
+
+ Error_Msg_Node_2 := Entity (Name);
+ Error_Msg_NE ("no selector& for&", N, Sel);
+
+ Check_Misspelled_Selector (Entity_List, Sel);
+
+ elsif Is_Generic_Type (Prefix_Type)
+ and then Ekind (Prefix_Type) = E_Record_Type_With_Private
+ and then Prefix_Type /= Etype (Prefix_Type)
+ and then Is_Record_Type (Etype (Prefix_Type))
+ then
+ -- If this is a derived formal type, the parent may have
+ -- different visibility at this point. Try for an inherited
+ -- component before reporting an error.
+
+ Set_Etype (Prefix (N), Etype (Prefix_Type));
+ Analyze_Selected_Component (N);
+ return;
+
+ elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
+ and then Is_Generic_Actual_Type (Prefix_Type)
+ and then Present (Full_View (Prefix_Type))
+ then
+ -- Similarly, if this the actual for a formal derived type, the
+ -- component inherited from the generic parent may not be visible
+ -- in the actual, but the selected component is legal.
+
+ declare
+ Comp : Entity_Id;
+
+ begin
+ Comp :=
+ First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (Sel) then
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Set_Etype (Sel, Etype (Comp));
+ Set_Etype (N, Etype (Comp));
+ return;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ pragma Assert (Etype (N) /= Any_Type);
+ end;
+
+ else
+ if Ekind (Prefix_Type) = E_Record_Subtype then
+
+ -- Check whether this is a component of the base type
+ -- which is absent from a statically constrained subtype.
+ -- This will raise constraint error at run-time, but is
+ -- not a compile-time error. When the selector is illegal
+ -- for base type as well fall through and generate a
+ -- compilation error anyway.
+
+ Comp := First_Component (Base_Type (Prefix_Type));
+ while Present (Comp) loop
+ if Chars (Comp) = Chars (Sel)
+ and then Is_Visible_Component (Comp)
+ then
+ Set_Entity_With_Style_Check (Sel, Comp);
+ Generate_Reference (Comp, Sel);
+ Set_Etype (Sel, Etype (Comp));
+ Set_Etype (N, Etype (Comp));
+
+ -- Emit appropriate message. Gigi will replace the
+ -- node subsequently with the appropriate Raise.
+
+ Apply_Compile_Time_Constraint_Error
+ (N, "component not present in }?",
+ CE_Discriminant_Check_Failed,
+ Ent => Prefix_Type, Rep => False);
+ Set_Raises_Constraint_Error (N);
+ return;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ end if;
+
+ Error_Msg_Node_2 := First_Subtype (Prefix_Type);
+ Error_Msg_NE ("no selector& for}", N, Sel);
+
+ Check_Misspelled_Selector (Entity_List, Sel);
+
+ end if;
+
+ Set_Entity (Sel, Any_Id);
+ Set_Etype (Sel, Any_Type);
+ end if;
+ end Analyze_Selected_Component;
+
+ ---------------------------
+ -- Analyze_Short_Circuit --
+ ---------------------------
+
+ procedure Analyze_Short_Circuit (N : Node_Id) is
+ L : constant Node_Id := Left_Opnd (N);
+ R : constant Node_Id := Right_Opnd (N);
+ Ind : Interp_Index;
+ It : Interp;
+
+ begin
+ Analyze_Expression (L);
+ Analyze_Expression (R);
+ Set_Etype (N, Any_Type);
+
+ if not Is_Overloaded (L) then
+
+ if Root_Type (Etype (L)) = Standard_Boolean
+ and then Has_Compatible_Type (R, Etype (L))
+ then
+ Add_One_Interp (N, Etype (L), Etype (L));
+ end if;
+
+ else
+ Get_First_Interp (L, Ind, It);
+ while Present (It.Typ) loop
+ if Root_Type (It.Typ) = Standard_Boolean
+ and then Has_Compatible_Type (R, It.Typ)
+ then
+ Add_One_Interp (N, It.Typ, It.Typ);
+ end if;
+
+ Get_Next_Interp (Ind, It);
+ end loop;
+ end if;
+
+ -- Here we have failed to find an interpretation. Clearly we
+ -- know that it is not the case that both operands can have
+ -- an interpretation of Boolean, but this is by far the most
+ -- likely intended interpretation. So we simply resolve both
+ -- operands as Booleans, and at least one of these resolutions
+ -- will generate an error message, and we do not need to give
+ -- a further error message on the short circuit operation itself.
+
+ if Etype (N) = Any_Type then
+ Resolve (L, Standard_Boolean);
+ Resolve (R, Standard_Boolean);
+ Set_Etype (N, Standard_Boolean);
+ end if;
+ end Analyze_Short_Circuit;
+
+ -------------------
+ -- Analyze_Slice --
+ -------------------
+
+ procedure Analyze_Slice (N : Node_Id) is
+ P : constant Node_Id := Prefix (N);
+ D : constant Node_Id := Discrete_Range (N);
+ Array_Type : Entity_Id;
+
+ procedure Analyze_Overloaded_Slice;
+ -- If the prefix is overloaded, select those interpretations that
+ -- yield a one-dimensional array type.
+
+ ------------------------------
+ -- Analyze_Overloaded_Slice --
+ ------------------------------
+
+ procedure Analyze_Overloaded_Slice is
+ I : Interp_Index;
+ It : Interp;
+ Typ : Entity_Id;
+
+ begin
+ Set_Etype (N, Any_Type);
+
+ Get_First_Interp (P, I, It);
+ while Present (It.Nam) loop
+ Typ := It.Typ;
+
+ if Is_Access_Type (Typ) then
+ Typ := Designated_Type (Typ);
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+ end if;
+
+ if Is_Array_Type (Typ)
+ and then Number_Dimensions (Typ) = 1
+ and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
+ then
+ Add_One_Interp (N, Typ, Typ);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if Etype (N) = Any_Type then
+ Error_Msg_N ("expect array type in prefix of slice", N);
+ end if;
+ end Analyze_Overloaded_Slice;
+
+ -- Start of processing for Analyze_Slice
+
+ begin
+ Analyze (P);
+ Analyze (D);
+
+ if Is_Overloaded (P) then
+ Analyze_Overloaded_Slice;
+
+ else
+ Array_Type := Etype (P);
+ Set_Etype (N, Any_Type);
+
+ if Is_Access_Type (Array_Type) then
+ Array_Type := Designated_Type (Array_Type);
+ Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
+ end if;
+
+ if not Is_Array_Type (Array_Type) then
+ Wrong_Type (P, Any_Array);
+
+ elsif Number_Dimensions (Array_Type) > 1 then
+ Error_Msg_N
+ ("type is not one-dimensional array in slice prefix", N);
+
+ elsif not
+ Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
+ then
+ Wrong_Type (D, Etype (First_Index (Array_Type)));
+
+ else
+ Set_Etype (N, Array_Type);
+ end if;
+ end if;
+ end Analyze_Slice;
+
+ -----------------------------
+ -- Analyze_Type_Conversion --
+ -----------------------------
+
+ procedure Analyze_Type_Conversion (N : Node_Id) is
+ Expr : constant Node_Id := Expression (N);
+ T : Entity_Id;
+
+ begin
+ -- If Conversion_OK is set, then the Etype is already set, and the
+ -- only processing required is to analyze the expression. This is
+ -- used to construct certain "illegal" conversions which are not
+ -- allowed by Ada semantics, but can be handled OK by Gigi, see
+ -- Sinfo for further details.
+
+ if Conversion_OK (N) then
+ Analyze (Expr);
+ return;
+ end if;
+
+ -- Otherwise full type analysis is required, as well as some semantic
+ -- checks to make sure the argument of the conversion is appropriate.
+
+ Find_Type (Subtype_Mark (N));
+ T := Entity (Subtype_Mark (N));
+ Set_Etype (N, T);
+ Check_Fully_Declared (T, N);
+ Analyze_Expression (Expr);
+ Validate_Remote_Type_Type_Conversion (N);
+
+ -- Only remaining step is validity checks on the argument. These
+ -- are skipped if the conversion does not come from the source.
+
+ if not Comes_From_Source (N) then
+ return;
+
+ elsif Nkind (Expr) = N_Null then
+ Error_Msg_N ("argument of conversion cannot be null", N);
+ Error_Msg_N ("\use qualified expression instead", N);
+ Set_Etype (N, Any_Type);
+
+ elsif Nkind (Expr) = N_Aggregate then
+ Error_Msg_N ("argument of conversion cannot be aggregate", N);
+ Error_Msg_N ("\use qualified expression instead", N);
+
+ elsif Nkind (Expr) = N_Allocator then
+ Error_Msg_N ("argument of conversion cannot be an allocator", N);
+ Error_Msg_N ("\use qualified expression instead", N);
+
+ elsif Nkind (Expr) = N_String_Literal then
+ Error_Msg_N ("argument of conversion cannot be string literal", N);
+ Error_Msg_N ("\use qualified expression instead", N);
+
+ elsif Nkind (Expr) = N_Character_Literal then
+ if Ada_Version = Ada_83 then
+ Resolve (Expr, T);
+ else
+ Error_Msg_N ("argument of conversion cannot be character literal",
+ N);
+ Error_Msg_N ("\use qualified expression instead", N);
+ end if;
+
+ elsif Nkind (Expr) = N_Attribute_Reference
+ and then
+ (Attribute_Name (Expr) = Name_Access or else
+ Attribute_Name (Expr) = Name_Unchecked_Access or else
+ Attribute_Name (Expr) = Name_Unrestricted_Access)
+ then
+ Error_Msg_N ("argument of conversion cannot be access", N);
+ Error_Msg_N ("\use qualified expression instead", N);
+ end if;
+ end Analyze_Type_Conversion;
+
+ ----------------------
+ -- Analyze_Unary_Op --
+ ----------------------
+
+ procedure Analyze_Unary_Op (N : Node_Id) is
+ R : constant Node_Id := Right_Opnd (N);
+ Op_Id : Entity_Id := Entity (N);
+
+ begin
+ Set_Etype (N, Any_Type);
+ Candidate_Type := Empty;
+
+ Analyze_Expression (R);
+
+ if Present (Op_Id) then
+ if Ekind (Op_Id) = E_Operator then
+ Find_Unary_Types (R, Op_Id, N);
+ else
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+
+ else
+ Op_Id := Get_Name_Entity_Id (Chars (N));
+ while Present (Op_Id) loop
+ if Ekind (Op_Id) = E_Operator then
+ if No (Next_Entity (First_Entity (Op_Id))) then
+ Find_Unary_Types (R, Op_Id, N);
+ end if;
+
+ elsif Is_Overloadable (Op_Id) then
+ Analyze_User_Defined_Unary_Op (N, Op_Id);
+ end if;
+
+ Op_Id := Homonym (Op_Id);
+ end loop;
+ end if;
+
+ Operator_Check (N);
+ end Analyze_Unary_Op;
+
+ ----------------------------------
+ -- Analyze_Unchecked_Expression --
+ ----------------------------------
+
+ procedure Analyze_Unchecked_Expression (N : Node_Id) is
+ begin
+ Analyze (Expression (N), Suppress => All_Checks);
+ Set_Etype (N, Etype (Expression (N)));
+ Save_Interps (Expression (N), N);
+ end Analyze_Unchecked_Expression;
+
+ ---------------------------------------
+ -- Analyze_Unchecked_Type_Conversion --
+ ---------------------------------------
+
+ procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
+ begin
+ Find_Type (Subtype_Mark (N));
+ Analyze_Expression (Expression (N));
+ Set_Etype (N, Entity (Subtype_Mark (N)));
+ end Analyze_Unchecked_Type_Conversion;
+
+ ------------------------------------
+ -- Analyze_User_Defined_Binary_Op --
+ ------------------------------------
+
+ procedure Analyze_User_Defined_Binary_Op
+ (N : Node_Id;
+ Op_Id : Entity_Id)
+ is
+ begin
+ -- Only do analysis if the operator Comes_From_Source, since otherwise
+ -- the operator was generated by the expander, and all such operators
+ -- always refer to the operators in package Standard.
+
+ if Comes_From_Source (N) then
+ declare
+ F1 : constant Entity_Id := First_Formal (Op_Id);
+ F2 : constant Entity_Id := Next_Formal (F1);
+
+ begin
+ -- Verify that Op_Id is a visible binary function. Note that since
+ -- we know Op_Id is overloaded, potentially use visible means use
+ -- visible for sure (RM 9.4(11)).
+
+ if Ekind (Op_Id) = E_Function
+ and then Present (F2)
+ and then (Is_Immediately_Visible (Op_Id)
+ or else Is_Potentially_Use_Visible (Op_Id))
+ and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
+ and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
+ then
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+
+ if Debug_Flag_E then
+ Write_Str ("user defined operator ");
+ Write_Name (Chars (Op_Id));
+ Write_Str (" on node ");
+ Write_Int (Int (N));
+ Write_Eol;
+ end if;
+ end if;
+ end;
+ end if;
+ end Analyze_User_Defined_Binary_Op;
+
+ -----------------------------------
+ -- Analyze_User_Defined_Unary_Op --
+ -----------------------------------
+
+ procedure Analyze_User_Defined_Unary_Op
+ (N : Node_Id;
+ Op_Id : Entity_Id)
+ is
+ begin
+ -- Only do analysis if the operator Comes_From_Source, since otherwise
+ -- the operator was generated by the expander, and all such operators
+ -- always refer to the operators in package Standard.
+
+ if Comes_From_Source (N) then
+ declare
+ F : constant Entity_Id := First_Formal (Op_Id);
+
+ begin
+ -- Verify that Op_Id is a visible unary function. Note that since
+ -- we know Op_Id is overloaded, potentially use visible means use
+ -- visible for sure (RM 9.4(11)).
+
+ if Ekind (Op_Id) = E_Function
+ and then No (Next_Formal (F))
+ and then (Is_Immediately_Visible (Op_Id)
+ or else Is_Potentially_Use_Visible (Op_Id))
+ and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
+ then
+ Add_One_Interp (N, Op_Id, Etype (Op_Id));
+ end if;
+ end;
+ end if;
+ end Analyze_User_Defined_Unary_Op;
+
+ ---------------------------
+ -- Check_Arithmetic_Pair --
+ ---------------------------
+
+ procedure Check_Arithmetic_Pair
+ (T1, T2 : Entity_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Op_Name : constant Name_Id := Chars (Op_Id);
+
+ function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
+ -- Check whether the fixed-point type Typ has a user-defined operator
+ -- (multiplication or division) that should hide the corresponding
+ -- predefined operator. Used to implement Ada 2005 AI-264, to make
+ -- such operators more visible and therefore useful.
+
+ function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
+ -- Get specific type (i.e. non-universal type if there is one)
+
+ ------------------
+ -- Has_Fixed_Op --
+ ------------------
+
+ function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
+ Ent : Entity_Id;
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+
+ begin
+ -- The operation is treated as primitive if it is declared in the
+ -- same scope as the type, and therefore on the same entity chain.
+
+ Ent := Next_Entity (Typ);
+ while Present (Ent) loop
+ if Chars (Ent) = Chars (Op) then
+ F1 := First_Formal (Ent);
+ F2 := Next_Formal (F1);
+
+ -- The operation counts as primitive if either operand or
+ -- result are of the given type, and both operands are fixed
+ -- point types.
+
+ if (Etype (F1) = Typ
+ and then Is_Fixed_Point_Type (Etype (F2)))
+
+ or else
+ (Etype (F2) = Typ
+ and then Is_Fixed_Point_Type (Etype (F1)))
+
+ or else
+ (Etype (Ent) = Typ
+ and then Is_Fixed_Point_Type (Etype (F1))
+ and then Is_Fixed_Point_Type (Etype (F2)))
+ then
+ return True;
+ end if;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+
+ return False;
+ end Has_Fixed_Op;
+
+ -------------------
+ -- Specific_Type --
+ -------------------
+
+ function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
+ begin
+ if T1 = Universal_Integer or else T1 = Universal_Real then
+ return Base_Type (T2);
+ else
+ return Base_Type (T1);
+ end if;
+ end Specific_Type;
+
+ -- Start of processing for Check_Arithmetic_Pair
+
+ begin
+ if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
+
+ if Is_Numeric_Type (T1)
+ and then Is_Numeric_Type (T2)
+ and then (Covers (T1, T2) or else Covers (T2, T1))
+ then
+ Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
+ end if;
+
+ elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
+
+ if Is_Fixed_Point_Type (T1)
+ and then (Is_Fixed_Point_Type (T2)
+ or else T2 = Universal_Real)
+ then
+ -- If Treat_Fixed_As_Integer is set then the Etype is already set
+ -- and no further processing is required (this is the case of an
+ -- operator constructed by Exp_Fixd for a fixed point operation)
+ -- Otherwise add one interpretation with universal fixed result
+ -- If the operator is given in functional notation, it comes
+ -- from source and Fixed_As_Integer cannot apply.
+
+ if (Nkind (N) not in N_Op
+ or else not Treat_Fixed_As_Integer (N))
+ and then
+ (not (Ada_Version >= Ada_05 and then Has_Fixed_Op (T1, Op_Id))
+ or else Nkind (Parent (N)) = N_Type_Conversion)
+ then
+ Add_One_Interp (N, Op_Id, Universal_Fixed);
+ end if;
+
+ elsif Is_Fixed_Point_Type (T2)
+ and then (Nkind (N) not in N_Op
+ or else not Treat_Fixed_As_Integer (N))
+ and then T1 = Universal_Real
+ and then
+ (not (Ada_Version >= Ada_05 and then Has_Fixed_Op (T1, Op_Id))
+ or else Nkind (Parent (N)) = N_Type_Conversion)
+ then
+ Add_One_Interp (N, Op_Id, Universal_Fixed);
+
+ elsif Is_Numeric_Type (T1)
+ and then Is_Numeric_Type (T2)
+ and then (Covers (T1, T2) or else Covers (T2, T1))
+ then
+ Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
+
+ elsif Is_Fixed_Point_Type (T1)
+ and then (Base_Type (T2) = Base_Type (Standard_Integer)
+ or else T2 = Universal_Integer)
+ then
+ Add_One_Interp (N, Op_Id, T1);
+
+ elsif T2 = Universal_Real
+ and then Base_Type (T1) = Base_Type (Standard_Integer)
+ and then Op_Name = Name_Op_Multiply
+ then
+ Add_One_Interp (N, Op_Id, Any_Fixed);
+
+ elsif T1 = Universal_Real
+ and then Base_Type (T2) = Base_Type (Standard_Integer)
+ then
+ Add_One_Interp (N, Op_Id, Any_Fixed);
+
+ elsif Is_Fixed_Point_Type (T2)
+ and then (Base_Type (T1) = Base_Type (Standard_Integer)
+ or else T1 = Universal_Integer)
+ and then Op_Name = Name_Op_Multiply
+ then
+ Add_One_Interp (N, Op_Id, T2);
+
+ elsif T1 = Universal_Real and then T2 = Universal_Integer then
+ Add_One_Interp (N, Op_Id, T1);
+
+ elsif T2 = Universal_Real
+ and then T1 = Universal_Integer
+ and then Op_Name = Name_Op_Multiply
+ then
+ Add_One_Interp (N, Op_Id, T2);
+ end if;
+
+ elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
+
+ -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
+ -- set does not require any special processing, since the Etype is
+ -- already set (case of operation constructed by Exp_Fixed).
+
+ if Is_Integer_Type (T1)
+ and then (Covers (T1, T2) or else Covers (T2, T1))
+ then
+ Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
+ end if;
+
+ elsif Op_Name = Name_Op_Expon then
+ if Is_Numeric_Type (T1)
+ and then not Is_Fixed_Point_Type (T1)
+ and then (Base_Type (T2) = Base_Type (Standard_Integer)
+ or else T2 = Universal_Integer)
+ then
+ Add_One_Interp (N, Op_Id, Base_Type (T1));
+ end if;
+
+ else pragma Assert (Nkind (N) in N_Op_Shift);
+
+ -- If not one of the predefined operators, the node may be one
+ -- of the intrinsic functions. Its kind is always specific, and
+ -- we can use it directly, rather than the name of the operation.
+
+ if Is_Integer_Type (T1)
+ and then (Base_Type (T2) = Base_Type (Standard_Integer)
+ or else T2 = Universal_Integer)
+ then
+ Add_One_Interp (N, Op_Id, Base_Type (T1));
+ end if;
+ end if;
+ end Check_Arithmetic_Pair;
+
+ -------------------------------
+ -- Check_Misspelled_Selector --
+ -------------------------------
+
+ procedure Check_Misspelled_Selector
+ (Prefix : Entity_Id;
+ Sel : Node_Id)
+ is
+ Max_Suggestions : constant := 2;
+ Nr_Of_Suggestions : Natural := 0;
+
+ Suggestion_1 : Entity_Id := Empty;
+ Suggestion_2 : Entity_Id := Empty;
+
+ Comp : Entity_Id;
+
+ begin
+ -- All the components of the prefix of selector Sel are matched
+ -- against Sel and a count is maintained of possible misspellings.
+ -- When at the end of the analysis there are one or two (not more!)
+ -- possible misspellings, these misspellings will be suggested as
+ -- possible correction.
+
+ if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
+
+ -- Concurrent types should be handled as well ???
+
+ return;
+ end if;
+
+ Get_Name_String (Chars (Sel));
+
+ declare
+ S : constant String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
+
+ begin
+ Comp := First_Entity (Prefix);
+ while Nr_Of_Suggestions <= Max_Suggestions
+ and then Present (Comp)
+ loop
+ if Is_Visible_Component (Comp) then
+ Get_Name_String (Chars (Comp));
+
+ if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then
+ Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
+
+ case Nr_Of_Suggestions is
+ when 1 => Suggestion_1 := Comp;
+ when 2 => Suggestion_2 := Comp;
+ when others => exit;
+ end case;
+ end if;
+ end if;
+
+ Comp := Next_Entity (Comp);
+ end loop;
+
+ -- Report at most two suggestions
+
+ if Nr_Of_Suggestions = 1 then
+ Error_Msg_NE ("\possible misspelling of&", Sel, Suggestion_1);
+
+ elsif Nr_Of_Suggestions = 2 then
+ Error_Msg_Node_2 := Suggestion_2;
+ Error_Msg_NE ("\possible misspelling of& or&",
+ Sel, Suggestion_1);
+ end if;
+ end;
+ end Check_Misspelled_Selector;
+
+ ----------------------
+ -- Defined_In_Scope --
+ ----------------------
+
+ function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
+ is
+ S1 : constant Entity_Id := Scope (Base_Type (T));
+ begin
+ return S1 = S
+ or else (S1 = System_Aux_Id and then S = Scope (S1));
+ end Defined_In_Scope;
+
+ -------------------
+ -- Diagnose_Call --
+ -------------------
+
+ procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
+ Actual : Node_Id;
+ X : Interp_Index;
+ It : Interp;
+ Success : Boolean;
+ Err_Mode : Boolean;
+ New_Nam : Node_Id;
+ Void_Interp_Seen : Boolean := False;
+
+ begin
+ if Ada_Version >= Ada_05 then
+ Actual := First_Actual (N);
+ while Present (Actual) loop
+
+ -- Ada 2005 (AI-50217): Post an error in case of premature
+ -- usage of an entity from the limited view.
+
+ if not Analyzed (Etype (Actual))
+ and then From_With_Type (Etype (Actual))
+ then
+ Error_Msg_Qual_Level := 1;
+ Error_Msg_NE
+ ("missing with_clause for scope of imported type&",
+ Actual, Etype (Actual));
+ Error_Msg_Qual_Level := 0;
+ end if;
+
+ Next_Actual (Actual);
+ end loop;
+ end if;
+
+ -- Analyze each candidate call again, with full error reporting
+ -- for each.
+
+ Error_Msg_N
+ ("no candidate interpretations match the actuals:!", Nam);
+ Err_Mode := All_Errors_Mode;
+ All_Errors_Mode := True;
+
+ -- If this is a call to an operation of a concurrent type,
+ -- the failed interpretations have been removed from the
+ -- name. Recover them to provide full diagnostics.
+
+ if Nkind (Parent (Nam)) = N_Selected_Component then
+ Set_Entity (Nam, Empty);
+ New_Nam := New_Copy_Tree (Parent (Nam));
+ Set_Is_Overloaded (New_Nam, False);
+ Set_Is_Overloaded (Selector_Name (New_Nam), False);
+ Set_Parent (New_Nam, Parent (Parent (Nam)));
+ Analyze_Selected_Component (New_Nam);
+ Get_First_Interp (Selector_Name (New_Nam), X, It);
+ else
+ Get_First_Interp (Nam, X, It);
+ end if;
+
+ while Present (It.Nam) loop
+ if Etype (It.Nam) = Standard_Void_Type then
+ Void_Interp_Seen := True;
+ end if;
+
+ Analyze_One_Call (N, It.Nam, True, Success);
+ Get_Next_Interp (X, It);
+ end loop;
+
+ if Nkind (N) = N_Function_Call then
+ Get_First_Interp (Nam, X, It);
+ while Present (It.Nam) loop
+ if Ekind (It.Nam) = E_Function
+ or else Ekind (It.Nam) = E_Operator
+ then
+ return;
+ else
+ Get_Next_Interp (X, It);
+ end if;
+ end loop;
+
+ -- If all interpretations are procedures, this deserves a
+ -- more precise message. Ditto if this appears as the prefix
+ -- of a selected component, which may be a lexical error.
+
+ Error_Msg_N
+ ("\context requires function call, found procedure name", Nam);
+
+ if Nkind (Parent (N)) = N_Selected_Component
+ and then N = Prefix (Parent (N))
+ then
+ Error_Msg_N (
+ "\period should probably be semicolon", Parent (N));
+ end if;
+
+ elsif Nkind (N) = N_Procedure_Call_Statement
+ and then not Void_Interp_Seen
+ then
+ Error_Msg_N (
+ "\function name found in procedure call", Nam);
+ end if;
+
+ All_Errors_Mode := Err_Mode;
+ end Diagnose_Call;
+
+ ---------------------------
+ -- Find_Arithmetic_Types --
+ ---------------------------
+
+ procedure Find_Arithmetic_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Index1 : Interp_Index;
+ Index2 : Interp_Index;
+ It1 : Interp;
+ It2 : Interp;
+
+ procedure Check_Right_Argument (T : Entity_Id);
+ -- Check right operand of operator
+
+ --------------------------
+ -- Check_Right_Argument --
+ --------------------------
+
+ procedure Check_Right_Argument (T : Entity_Id) is
+ begin
+ if not Is_Overloaded (R) then
+ Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
+ else
+ Get_First_Interp (R, Index2, It2);
+ while Present (It2.Typ) loop
+ Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
+ Get_Next_Interp (Index2, It2);
+ end loop;
+ end if;
+ end Check_Right_Argument;
+
+ -- Start processing for Find_Arithmetic_Types
+
+ begin
+ if not Is_Overloaded (L) then
+ Check_Right_Argument (Etype (L));
+
+ else
+ Get_First_Interp (L, Index1, It1);
+ while Present (It1.Typ) loop
+ Check_Right_Argument (It1.Typ);
+ Get_Next_Interp (Index1, It1);
+ end loop;
+ end if;
+
+ end Find_Arithmetic_Types;
+
+ ------------------------
+ -- Find_Boolean_Types --
+ ------------------------
+
+ procedure Find_Boolean_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Index : Interp_Index;
+ It : Interp;
+
+ procedure Check_Numeric_Argument (T : Entity_Id);
+ -- Special case for logical operations one of whose operands is an
+ -- integer literal. If both are literal the result is any modular type.
+
+ ----------------------------
+ -- Check_Numeric_Argument --
+ ----------------------------
+
+ procedure Check_Numeric_Argument (T : Entity_Id) is
+ begin
+ if T = Universal_Integer then
+ Add_One_Interp (N, Op_Id, Any_Modular);
+
+ elsif Is_Modular_Integer_Type (T) then
+ Add_One_Interp (N, Op_Id, T);
+ end if;
+ end Check_Numeric_Argument;
+
+ -- Start of processing for Find_Boolean_Types
+
+ begin
+ if not Is_Overloaded (L) then
+ if Etype (L) = Universal_Integer
+ or else Etype (L) = Any_Modular
+ then
+ if not Is_Overloaded (R) then
+ Check_Numeric_Argument (Etype (R));
+
+ else
+ Get_First_Interp (R, Index, It);
+ while Present (It.Typ) loop
+ Check_Numeric_Argument (It.Typ);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+
+ -- If operands are aggregates, we must assume that they may be
+ -- boolean arrays, and leave disambiguation for the second pass.
+ -- If only one is an aggregate, verify that the other one has an
+ -- interpretation as a boolean array
+
+ elsif Nkind (L) = N_Aggregate then
+ if Nkind (R) = N_Aggregate then
+ Add_One_Interp (N, Op_Id, Etype (L));
+
+ elsif not Is_Overloaded (R) then
+ if Valid_Boolean_Arg (Etype (R)) then
+ Add_One_Interp (N, Op_Id, Etype (R));
+ end if;
+
+ else
+ Get_First_Interp (R, Index, It);
+ while Present (It.Typ) loop
+ if Valid_Boolean_Arg (It.Typ) then
+ Add_One_Interp (N, Op_Id, It.Typ);
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+
+ elsif Valid_Boolean_Arg (Etype (L))
+ and then Has_Compatible_Type (R, Etype (L))
+ then
+ Add_One_Interp (N, Op_Id, Etype (L));
+ end if;
+
+ else
+ Get_First_Interp (L, Index, It);
+ while Present (It.Typ) loop
+ if Valid_Boolean_Arg (It.Typ)
+ and then Has_Compatible_Type (R, It.Typ)
+ then
+ Add_One_Interp (N, Op_Id, It.Typ);
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+ end Find_Boolean_Types;
+
+ ---------------------------
+ -- Find_Comparison_Types --
+ ---------------------------
+
+ procedure Find_Comparison_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Index : Interp_Index;
+ It : Interp;
+ Found : Boolean := False;
+ I_F : Interp_Index;
+ T_F : Entity_Id;
+ Scop : Entity_Id := Empty;
+
+ procedure Try_One_Interp (T1 : Entity_Id);
+ -- Routine to try one proposed interpretation. Note that the context
+ -- of the operator plays no role in resolving the arguments, so that
+ -- if there is more than one interpretation of the operands that is
+ -- compatible with comparison, the operation is ambiguous.
+
+ --------------------
+ -- Try_One_Interp --
+ --------------------
+
+ procedure Try_One_Interp (T1 : Entity_Id) is
+ begin
+
+ -- If the operator is an expanded name, then the type of the operand
+ -- must be defined in the corresponding scope. If the type is
+ -- universal, the context will impose the correct type.
+
+ if Present (Scop)
+ and then not Defined_In_Scope (T1, Scop)
+ and then T1 /= Universal_Integer
+ and then T1 /= Universal_Real
+ and then T1 /= Any_String
+ and then T1 /= Any_Composite
+ then
+ return;
+ end if;
+
+ if Valid_Comparison_Arg (T1)
+ and then Has_Compatible_Type (R, T1)
+ then
+ if Found
+ and then Base_Type (T1) /= Base_Type (T_F)
+ then
+ It := Disambiguate (L, I_F, Index, Any_Type);
+
+ if It = No_Interp then
+ Ambiguous_Operands (N);
+ Set_Etype (L, Any_Type);
+ return;
+
+ else
+ T_F := It.Typ;
+ end if;
+
+ else
+ Found := True;
+ T_F := T1;
+ I_F := Index;
+ end if;
+
+ Set_Etype (L, T_F);
+ Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
+
+ end if;
+ end Try_One_Interp;
+
+ -- Start processing for Find_Comparison_Types
+
+ begin
+ -- If left operand is aggregate, the right operand has to
+ -- provide a usable type for it.
+
+ if Nkind (L) = N_Aggregate
+ and then Nkind (R) /= N_Aggregate
+ then
+ Find_Comparison_Types (R, L, Op_Id, N);
+ return;
+ end if;
+
+ if Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Expanded_Name
+ then
+ Scop := Entity (Prefix (Name (N)));
+
+ -- The prefix may be a package renaming, and the subsequent test
+ -- requires the original package.
+
+ if Ekind (Scop) = E_Package
+ and then Present (Renamed_Entity (Scop))
+ then
+ Scop := Renamed_Entity (Scop);
+ Set_Entity (Prefix (Name (N)), Scop);
+ end if;
+ end if;
+
+ if not Is_Overloaded (L) then
+ Try_One_Interp (Etype (L));
+
+ else
+ Get_First_Interp (L, Index, It);
+ while Present (It.Typ) loop
+ Try_One_Interp (It.Typ);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+ end Find_Comparison_Types;
+
+ ----------------------------------------
+ -- Find_Non_Universal_Interpretations --
+ ----------------------------------------
+
+ procedure Find_Non_Universal_Interpretations
+ (N : Node_Id;
+ R : Node_Id;
+ Op_Id : Entity_Id;
+ T1 : Entity_Id)
+ is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if T1 = Universal_Integer
+ or else T1 = Universal_Real
+ then
+ if not Is_Overloaded (R) then
+ Add_One_Interp
+ (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
+ else
+ Get_First_Interp (R, Index, It);
+ while Present (It.Typ) loop
+ if Covers (It.Typ, T1) then
+ Add_One_Interp
+ (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+ else
+ Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
+ end if;
+ end Find_Non_Universal_Interpretations;
+
+ ------------------------------
+ -- Find_Concatenation_Types --
+ ------------------------------
+
+ procedure Find_Concatenation_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Op_Type : constant Entity_Id := Etype (Op_Id);
+
+ begin
+ if Is_Array_Type (Op_Type)
+ and then not Is_Limited_Type (Op_Type)
+
+ and then (Has_Compatible_Type (L, Op_Type)
+ or else
+ Has_Compatible_Type (L, Component_Type (Op_Type)))
+
+ and then (Has_Compatible_Type (R, Op_Type)
+ or else
+ Has_Compatible_Type (R, Component_Type (Op_Type)))
+ then
+ Add_One_Interp (N, Op_Id, Op_Type);
+ end if;
+ end Find_Concatenation_Types;
+
+ -------------------------
+ -- Find_Equality_Types --
+ -------------------------
+
+ procedure Find_Equality_Types
+ (L, R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Index : Interp_Index;
+ It : Interp;
+ Found : Boolean := False;
+ I_F : Interp_Index;
+ T_F : Entity_Id;
+ Scop : Entity_Id := Empty;
+
+ procedure Try_One_Interp (T1 : Entity_Id);
+ -- The context of the operator plays no role in resolving the
+ -- arguments, so that if there is more than one interpretation
+ -- of the operands that is compatible with equality, the construct
+ -- is ambiguous and an error can be emitted now, after trying to
+ -- disambiguate, i.e. applying preference rules.
+
+ --------------------
+ -- Try_One_Interp --
+ --------------------
+
+ procedure Try_One_Interp (T1 : Entity_Id) is
+ begin
+ -- If the operator is an expanded name, then the type of the operand
+ -- must be defined in the corresponding scope. If the type is
+ -- universal, the context will impose the correct type. An anonymous
+ -- type for a 'Access reference is also universal in this sense, as
+ -- the actual type is obtained from context.
+ -- In Ada 2005, the equality operator for anonymous access types
+ -- is declared in Standard, and preference rules apply to it.
+
+ if Present (Scop) then
+ if Defined_In_Scope (T1, Scop)
+ or else T1 = Universal_Integer
+ or else T1 = Universal_Real
+ or else T1 = Any_Access
+ or else T1 = Any_String
+ or else T1 = Any_Composite
+ or else (Ekind (T1) = E_Access_Subprogram_Type
+ and then not Comes_From_Source (T1))
+ then
+ null;
+
+ elsif Ekind (T1) = E_Anonymous_Access_Type
+ and then Scop = Standard_Standard
+ then
+ null;
+
+ else
+ -- The scope does not contain an operator for the type
+
+ return;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
+ -- Do not allow anonymous access types in equality operators.
+
+ if Ada_Version < Ada_05
+ and then Ekind (T1) = E_Anonymous_Access_Type
+ then
+ return;
+ end if;
+
+ if T1 /= Standard_Void_Type
+ and then not Is_Limited_Type (T1)
+ and then not Is_Limited_Composite (T1)
+ and then Has_Compatible_Type (R, T1)
+ then
+ if Found
+ and then Base_Type (T1) /= Base_Type (T_F)
+ then
+ It := Disambiguate (L, I_F, Index, Any_Type);
+
+ if It = No_Interp then
+ Ambiguous_Operands (N);
+ Set_Etype (L, Any_Type);
+ return;
+
+ else
+ T_F := It.Typ;
+ end if;
+
+ else
+ Found := True;
+ T_F := T1;
+ I_F := Index;
+ end if;
+
+ if not Analyzed (L) then
+ Set_Etype (L, T_F);
+ end if;
+
+ Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
+
+ -- Case of operator was not visible, Etype still set to Any_Type
+
+ if Etype (N) = Any_Type then
+ Found := False;
+ end if;
+
+ elsif Scop = Standard_Standard
+ and then Ekind (T1) = E_Anonymous_Access_Type
+ then
+ Found := True;
+ end if;
+ end Try_One_Interp;
+
+ -- Start of processing for Find_Equality_Types
+
+ begin
+ -- If left operand is aggregate, the right operand has to
+ -- provide a usable type for it.
+
+ if Nkind (L) = N_Aggregate
+ and then Nkind (R) /= N_Aggregate
+ then
+ Find_Equality_Types (R, L, Op_Id, N);
+ return;
+ end if;
+
+ if Nkind (N) = N_Function_Call
+ and then Nkind (Name (N)) = N_Expanded_Name
+ then
+ Scop := Entity (Prefix (Name (N)));
+
+ -- The prefix may be a package renaming, and the subsequent test
+ -- requires the original package.
+
+ if Ekind (Scop) = E_Package
+ and then Present (Renamed_Entity (Scop))
+ then
+ Scop := Renamed_Entity (Scop);
+ Set_Entity (Prefix (Name (N)), Scop);
+ end if;
+ end if;
+
+ if not Is_Overloaded (L) then
+ Try_One_Interp (Etype (L));
+
+ else
+ Get_First_Interp (L, Index, It);
+ while Present (It.Typ) loop
+ Try_One_Interp (It.Typ);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+ end Find_Equality_Types;
+
+ -------------------------
+ -- Find_Negation_Types --
+ -------------------------
+
+ procedure Find_Negation_Types
+ (R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (R) then
+ if Etype (R) = Universal_Integer then
+ Add_One_Interp (N, Op_Id, Any_Modular);
+ elsif Valid_Boolean_Arg (Etype (R)) then
+ Add_One_Interp (N, Op_Id, Etype (R));
+ end if;
+
+ else
+ Get_First_Interp (R, Index, It);
+ while Present (It.Typ) loop
+ if Valid_Boolean_Arg (It.Typ) then
+ Add_One_Interp (N, Op_Id, It.Typ);
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+ end Find_Negation_Types;
+
+ ----------------------
+ -- Find_Unary_Types --
+ ----------------------
+
+ procedure Find_Unary_Types
+ (R : Node_Id;
+ Op_Id : Entity_Id;
+ N : Node_Id)
+ is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (R) then
+ if Is_Numeric_Type (Etype (R)) then
+ Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
+ end if;
+
+ else
+ Get_First_Interp (R, Index, It);
+ while Present (It.Typ) loop
+ if Is_Numeric_Type (It.Typ) then
+ Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+ end Find_Unary_Types;
+
+ ------------------
+ -- Junk_Operand --
+ ------------------
+
+ function Junk_Operand (N : Node_Id) return Boolean is
+ Enode : Node_Id;
+
+ begin
+ if Error_Posted (N) then
+ return False;
+ end if;
+
+ -- Get entity to be tested
+
+ if Is_Entity_Name (N)
+ and then Present (Entity (N))
+ then
+ Enode := N;
+
+ -- An odd case, a procedure name gets converted to a very peculiar
+ -- function call, and here is where we detect this happening.
+
+ elsif Nkind (N) = N_Function_Call
+ and then Is_Entity_Name (Name (N))
+ and then Present (Entity (Name (N)))
+ then
+ Enode := Name (N);
+
+ -- Another odd case, there are at least some cases of selected
+ -- components where the selected component is not marked as having
+ -- an entity, even though the selector does have an entity
+
+ elsif Nkind (N) = N_Selected_Component
+ and then Present (Entity (Selector_Name (N)))
+ then
+ Enode := Selector_Name (N);
+
+ else
+ return False;
+ end if;
+
+ -- Now test the entity we got to see if it is a bad case
+
+ case Ekind (Entity (Enode)) is
+
+ when E_Package =>
+ Error_Msg_N
+ ("package name cannot be used as operand", Enode);
+
+ when Generic_Unit_Kind =>
+ Error_Msg_N
+ ("generic unit name cannot be used as operand", Enode);
+
+ when Type_Kind =>
+ Error_Msg_N
+ ("subtype name cannot be used as operand", Enode);
+
+ when Entry_Kind =>
+ Error_Msg_N
+ ("entry name cannot be used as operand", Enode);
+
+ when E_Procedure =>
+ Error_Msg_N
+ ("procedure name cannot be used as operand", Enode);
+
+ when E_Exception =>
+ Error_Msg_N
+ ("exception name cannot be used as operand", Enode);
+
+ when E_Block | E_Label | E_Loop =>
+ Error_Msg_N
+ ("label name cannot be used as operand", Enode);
+
+ when others =>
+ return False;
+
+ end case;
+
+ return True;
+ end Junk_Operand;
+
+ --------------------
+ -- Operator_Check --
+ --------------------
+
+ procedure Operator_Check (N : Node_Id) is
+ begin
+ Remove_Abstract_Operations (N);
+
+ -- Test for case of no interpretation found for operator
+
+ if Etype (N) = Any_Type then
+ declare
+ L : Node_Id;
+ R : Node_Id;
+
+ begin
+ R := Right_Opnd (N);
+
+ if Nkind (N) in N_Binary_Op then
+ L := Left_Opnd (N);
+ else
+ L := Empty;
+ end if;
+
+ -- If either operand has no type, then don't complain further,
+ -- since this simply means that we have a propagated error.
+
+ if R = Error
+ or else Etype (R) = Any_Type
+ or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
+ then
+ return;
+
+ -- We explicitly check for the case of concatenation of component
+ -- with component to avoid reporting spurious matching array types
+ -- that might happen to be lurking in distant packages (such as
+ -- run-time packages). This also prevents inconsistencies in the
+ -- messages for certain ACVC B tests, which can vary depending on
+ -- types declared in run-time interfaces. Another improvement when
+ -- aggregates are present is to look for a well-typed operand.
+
+ elsif Present (Candidate_Type)
+ and then (Nkind (N) /= N_Op_Concat
+ or else Is_Array_Type (Etype (L))
+ or else Is_Array_Type (Etype (R)))
+ then
+
+ if Nkind (N) = N_Op_Concat then
+ if Etype (L) /= Any_Composite
+ and then Is_Array_Type (Etype (L))
+ then
+ Candidate_Type := Etype (L);
+
+ elsif Etype (R) /= Any_Composite
+ and then Is_Array_Type (Etype (R))
+ then
+ Candidate_Type := Etype (R);
+ end if;
+ end if;
+
+ Error_Msg_NE
+ ("operator for} is not directly visible!",
+ N, First_Subtype (Candidate_Type));
+ Error_Msg_N ("use clause would make operation legal!", N);
+ return;
+
+ -- If either operand is a junk operand (e.g. package name), then
+ -- post appropriate error messages, but do not complain further.
+
+ -- Note that the use of OR in this test instead of OR ELSE is
+ -- quite deliberate, we may as well check both operands in the
+ -- binary operator case.
+
+ elsif Junk_Operand (R)
+ or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
+ then
+ return;
+
+ -- If we have a logical operator, one of whose operands is
+ -- Boolean, then we know that the other operand cannot resolve to
+ -- Boolean (since we got no interpretations), but in that case we
+ -- pretty much know that the other operand should be Boolean, so
+ -- resolve it that way (generating an error)
+
+ elsif Nkind (N) = N_Op_And
+ or else
+ Nkind (N) = N_Op_Or
+ or else
+ Nkind (N) = N_Op_Xor
+ then
+ if Etype (L) = Standard_Boolean then
+ Resolve (R, Standard_Boolean);
+ return;
+ elsif Etype (R) = Standard_Boolean then
+ Resolve (L, Standard_Boolean);
+ return;
+ end if;
+
+ -- For an arithmetic operator or comparison operator, if one
+ -- of the operands is numeric, then we know the other operand
+ -- is not the same numeric type. If it is a non-numeric type,
+ -- then probably it is intended to match the other operand.
+
+ elsif Nkind (N) = N_Op_Add or else
+ Nkind (N) = N_Op_Divide or else
+ Nkind (N) = N_Op_Ge or else
+ Nkind (N) = N_Op_Gt or else
+ Nkind (N) = N_Op_Le or else
+ Nkind (N) = N_Op_Lt or else
+ Nkind (N) = N_Op_Mod or else
+ Nkind (N) = N_Op_Multiply or else
+ Nkind (N) = N_Op_Rem or else
+ Nkind (N) = N_Op_Subtract
+ then
+ if Is_Numeric_Type (Etype (L))
+ and then not Is_Numeric_Type (Etype (R))
+ then
+ Resolve (R, Etype (L));
+ return;
+
+ elsif Is_Numeric_Type (Etype (R))
+ and then not Is_Numeric_Type (Etype (L))
+ then
+ Resolve (L, Etype (R));
+ return;
+ end if;
+
+ -- Comparisons on A'Access are common enough to deserve a
+ -- special message.
+
+ elsif (Nkind (N) = N_Op_Eq or else
+ Nkind (N) = N_Op_Ne)
+ and then Ekind (Etype (L)) = E_Access_Attribute_Type
+ and then Ekind (Etype (R)) = E_Access_Attribute_Type
+ then
+ Error_Msg_N
+ ("two access attributes cannot be compared directly", N);
+ Error_Msg_N
+ ("\they must be converted to an explicit type for comparison",
+ N);
+ return;
+
+ -- Another one for C programmers
+
+ elsif Nkind (N) = N_Op_Concat
+ and then Valid_Boolean_Arg (Etype (L))
+ and then Valid_Boolean_Arg (Etype (R))
+ then
+ Error_Msg_N ("invalid operands for concatenation", N);
+ Error_Msg_N ("\maybe AND was meant", N);
+ return;
+
+ -- A special case for comparison of access parameter with null
+
+ elsif Nkind (N) = N_Op_Eq
+ and then Is_Entity_Name (L)
+ and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
+ and then Nkind (Parameter_Type (Parent (Entity (L)))) =
+ N_Access_Definition
+ and then Nkind (R) = N_Null
+ then
+ Error_Msg_N ("access parameter is not allowed to be null", L);
+ Error_Msg_N ("\(call would raise Constraint_Error)", L);
+ return;
+ end if;
+
+ -- If we fall through then just give general message. Note that in
+ -- the following messages, if the operand is overloaded we choose
+ -- an arbitrary type to complain about, but that is probably more
+ -- useful than not giving a type at all.
+
+ if Nkind (N) in N_Unary_Op then
+ Error_Msg_Node_2 := Etype (R);
+ Error_Msg_N ("operator& not defined for}", N);
+ return;
+
+ else
+ if Nkind (N) in N_Binary_Op then
+ if not Is_Overloaded (L)
+ and then not Is_Overloaded (R)
+ and then Base_Type (Etype (L)) = Base_Type (Etype (R))
+ then
+ Error_Msg_Node_2 := First_Subtype (Etype (R));
+ Error_Msg_N ("there is no applicable operator& for}", N);
+
+ else
+ Error_Msg_N ("invalid operand types for operator&", N);
+
+ if Nkind (N) /= N_Op_Concat then
+ Error_Msg_NE ("\left operand has}!", N, Etype (L));
+ Error_Msg_NE ("\right operand has}!", N, Etype (R));
+ end if;
+ end if;
+ end if;
+ end if;
+ end;
+ end if;
+ end Operator_Check;
+
+ -----------------------------------------
+ -- Process_Implicit_Dereference_Prefix --
+ -----------------------------------------
+
+ procedure Process_Implicit_Dereference_Prefix
+ (E : Entity_Id;
+ P : Entity_Id)
+ is
+ Ref : Node_Id;
+
+ begin
+ if Present (E)
+ and then (Operating_Mode = Check_Semantics or else not Expander_Active)
+ then
+ -- We create a dummy reference to E to ensure that the reference
+ -- is not considered as part of an assignment (an implicit
+ -- dereference can never assign to its prefix). The Comes_From_Source
+ -- attribute needs to be propagated for accurate warnings.
+
+ Ref := New_Reference_To (E, Sloc (P));
+ Set_Comes_From_Source (Ref, Comes_From_Source (P));
+ Generate_Reference (E, Ref);
+ end if;
+ end Process_Implicit_Dereference_Prefix;
+
+ --------------------------------
+ -- Remove_Abstract_Operations --
+ --------------------------------
+
+ procedure Remove_Abstract_Operations (N : Node_Id) is
+ I : Interp_Index;
+ It : Interp;
+ Abstract_Op : Entity_Id := Empty;
+
+ -- AI-310: If overloaded, remove abstract non-dispatching operations. We
+ -- activate this if either extensions are enabled, or if the abstract
+ -- operation in question comes from a predefined file. This latter test
+ -- allows us to use abstract to make operations invisible to users. In
+ -- particular, if type Address is non-private and abstract subprograms
+ -- are used to hide its operators, they will be truly hidden.
+
+ type Operand_Position is (First_Op, Second_Op);
+ Univ_Type : constant Entity_Id := Universal_Interpretation (N);
+
+ procedure Remove_Address_Interpretations (Op : Operand_Position);
+ -- Ambiguities may arise when the operands are literal and the address
+ -- operations in s-auxdec are visible. In that case, remove the
+ -- interpretation of a literal as Address, to retain the semantics of
+ -- Address as a private type.
+
+ ------------------------------------
+ -- Remove_Address_Interpretations --
+ ------------------------------------
+
+ procedure Remove_Address_Interpretations (Op : Operand_Position) is
+ Formal : Entity_Id;
+
+ begin
+ if Is_Overloaded (N) then
+ Get_First_Interp (N, I, It);
+ while Present (It.Nam) loop
+ Formal := First_Entity (It.Nam);
+
+ if Op = Second_Op then
+ Formal := Next_Entity (Formal);
+ end if;
+
+ if Is_Descendent_Of_Address (Etype (Formal)) then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end Remove_Address_Interpretations;
+
+ -- Start of processing for Remove_Abstract_Operations
+
+ begin
+ if Is_Overloaded (N) then
+ Get_First_Interp (N, I, It);
+
+ while Present (It.Nam) loop
+ if not Is_Type (It.Nam)
+ and then Is_Abstract (It.Nam)
+ and then not Is_Dispatching_Operation (It.Nam)
+ then
+ Abstract_Op := It.Nam;
+
+ -- In Ada 2005, this operation does not participate in Overload
+ -- resolution. If the operation is defined in in a predefined
+ -- unit, it is one of the operations declared abstract in some
+ -- variants of System, and it must be removed as well.
+
+ if Ada_Version >= Ada_05
+ or else Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (It.Nam)))
+ or else Is_Descendent_Of_Address (It.Typ)
+ then
+ Remove_Interp (I);
+ exit;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if No (Abstract_Op) then
+
+ -- If some interpretation yields an integer type, it is still
+ -- possible that there are address interpretations. Remove them
+ -- if one operand is a literal, to avoid spurious ambiguities
+ -- on systems where Address is a visible integer type.
+
+ if Is_Overloaded (N)
+ and then Nkind (N) in N_Op
+ and then Is_Integer_Type (Etype (N))
+ then
+ if Nkind (N) in N_Binary_Op then
+ if Nkind (Right_Opnd (N)) = N_Integer_Literal then
+ Remove_Address_Interpretations (Second_Op);
+
+ elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
+ Remove_Address_Interpretations (First_Op);
+ end if;
+ end if;
+ end if;
+
+ elsif Nkind (N) in N_Op then
+
+ -- Remove interpretations that treat literals as addresses. This
+ -- is never appropriate, even when Address is defined as a visible
+ -- Integer type. The reason is that we would really prefer Address
+ -- to behave as a private type, even in this case, which is there
+ -- only to accomodate oddities of VMS address sizes. If Address is
+ -- a visible integer type, we get lots of overload ambiguities.
+
+ if Nkind (N) in N_Binary_Op then
+ declare
+ U1 : constant Boolean :=
+ Present (Universal_Interpretation (Right_Opnd (N)));
+ U2 : constant Boolean :=
+ Present (Universal_Interpretation (Left_Opnd (N)));
+
+ begin
+ if U1 then
+ Remove_Address_Interpretations (Second_Op);
+ end if;
+
+ if U2 then
+ Remove_Address_Interpretations (First_Op);
+ end if;
+
+ if not (U1 and U2) then
+
+ -- Remove corresponding predefined operator, which is
+ -- always added to the overload set.
+
+ Get_First_Interp (N, I, It);
+ while Present (It.Nam) loop
+ if Scope (It.Nam) = Standard_Standard
+ and then Base_Type (It.Typ) =
+ Base_Type (Etype (Abstract_Op))
+ then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ elsif Is_Overloaded (N)
+ and then Present (Univ_Type)
+ then
+ -- If both operands have a universal interpretation,
+ -- it is still necessary to remove interpretations that
+ -- yield Address. Any remaining ambiguities will be
+ -- removed in Disambiguate.
+
+ Get_First_Interp (N, I, It);
+ while Present (It.Nam) loop
+ if Is_Descendent_Of_Address (It.Typ) then
+ Remove_Interp (I);
+
+ elsif not Is_Type (It.Nam) then
+ Set_Entity (N, It.Nam);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end;
+ end if;
+
+ elsif Nkind (N) = N_Function_Call
+ and then
+ (Nkind (Name (N)) = N_Operator_Symbol
+ or else
+ (Nkind (Name (N)) = N_Expanded_Name
+ and then
+ Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
+ then
+
+ declare
+ Arg1 : constant Node_Id := First (Parameter_Associations (N));
+ U1 : constant Boolean :=
+ Present (Universal_Interpretation (Arg1));
+ U2 : constant Boolean :=
+ Present (Next (Arg1)) and then
+ Present (Universal_Interpretation (Next (Arg1)));
+
+ begin
+ if U1 then
+ Remove_Address_Interpretations (First_Op);
+ end if;
+
+ if U2 then
+ Remove_Address_Interpretations (Second_Op);
+ end if;
+
+ if not (U1 and U2) then
+ Get_First_Interp (N, I, It);
+ while Present (It.Nam) loop
+ if Scope (It.Nam) = Standard_Standard
+ and then It.Typ = Base_Type (Etype (Abstract_Op))
+ then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end;
+ end if;
+
+ -- If the removal has left no valid interpretations, emit
+ -- error message now and label node as illegal.
+
+ if Present (Abstract_Op) then
+ Get_First_Interp (N, I, It);
+
+ if No (It.Nam) then
+
+ -- Removal of abstract operation left no viable candidate
+
+ Set_Etype (N, Any_Type);
+ Error_Msg_Sloc := Sloc (Abstract_Op);
+ Error_Msg_NE
+ ("cannot call abstract operation& declared#", N, Abstract_Op);
+ end if;
+ end if;
+ end if;
+ end Remove_Abstract_Operations;
+
+ -----------------------
+ -- Try_Indirect_Call --
+ -----------------------
+
+ function Try_Indirect_Call
+ (N : Node_Id;
+ Nam : Entity_Id;
+ Typ : Entity_Id) return Boolean
+ is
+ Actual : Node_Id;
+ Formal : Entity_Id;
+ Call_OK : Boolean;
+
+ begin
+ Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
+
+ Actual := First_Actual (N);
+ Formal := First_Formal (Designated_Type (Typ));
+ while Present (Actual) and then Present (Formal) loop
+ if not Has_Compatible_Type (Actual, Etype (Formal)) then
+ return False;
+ end if;
+
+ Next (Actual);
+ Next_Formal (Formal);
+ end loop;
+
+ if No (Actual) and then No (Formal) then
+ Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
+
+ -- Nam is a candidate interpretation for the name in the call,
+ -- if it is not an indirect call.
+
+ if not Is_Type (Nam)
+ and then Is_Entity_Name (Name (N))
+ then
+ Set_Entity (Name (N), Nam);
+ end if;
+
+ return True;
+ else
+ return False;
+ end if;
+ end Try_Indirect_Call;
+
+ ----------------------
+ -- Try_Indexed_Call --
+ ----------------------
+
+ function Try_Indexed_Call
+ (N : Node_Id;
+ Nam : Entity_Id;
+ Typ : Entity_Id) return Boolean
+ is
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id;
+ Index : Entity_Id;
+
+ begin
+ Actual := First (Actuals);
+ Index := First_Index (Typ);
+ while Present (Actual) and then Present (Index) loop
+
+ -- If the parameter list has a named association, the expression
+ -- is definitely a call and not an indexed component.
+
+ if Nkind (Actual) = N_Parameter_Association then
+ return False;
+ end if;
+
+ if not Has_Compatible_Type (Actual, Etype (Index)) then
+ return False;
+ end if;
+
+ Next (Actual);
+ Next_Index (Index);
+ end loop;
+
+ if No (Actual) and then No (Index) then
+ Add_One_Interp (N, Nam, Component_Type (Typ));
+
+ -- Nam is a candidate interpretation for the name in the call,
+ -- if it is not an indirect call.
+
+ if not Is_Type (Nam)
+ and then Is_Entity_Name (Name (N))
+ then
+ Set_Entity (Name (N), Nam);
+ end if;
+
+ return True;
+ else
+ return False;
+ end if;
+ end Try_Indexed_Call;
+
+ --------------------------
+ -- Try_Object_Operation --
+ --------------------------
+
+ function Try_Object_Operation (N : Node_Id) return Boolean is
+ K : constant Node_Kind := Nkind (Parent (N));
+ Loc : constant Source_Ptr := Sloc (N);
+ Is_Subprg_Call : constant Boolean := K = N_Procedure_Call_Statement
+ or else K = N_Function_Call;
+ Obj : constant Node_Id := Prefix (N);
+ Subprog : constant Node_Id := Selector_Name (N);
+
+ Actual : Node_Id;
+ New_Call_Node : Node_Id := Empty;
+ Node_To_Replace : Node_Id;
+ Obj_Type : Entity_Id := Etype (Obj);
+
+ procedure Complete_Object_Operation
+ (Call_Node : Node_Id;
+ Node_To_Replace : Node_Id;
+ Subprog : Node_Id);
+ -- Make Subprog the name of Call_Node, replace Node_To_Replace with
+ -- Call_Node, insert the object (or its dereference) as the first actual
+ -- in the call, and complete the analysis of the call.
+
+ procedure Transform_Object_Operation
+ (Call_Node : out Node_Id;
+ Node_To_Replace : out Node_Id;
+ Subprog : Node_Id);
+ -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
+ -- Call_Node is the resulting subprogram call,
+ -- Node_To_Replace is either N or the parent of N, and Subprog
+ -- is a reference to the subprogram we are trying to match.
+
+ function Try_Class_Wide_Operation
+ (Call_Node : Node_Id;
+ Node_To_Replace : Node_Id) return Boolean;
+ -- Traverse all ancestor types looking for a class-wide subprogram
+ -- for which the current operation is a valid non-dispatching call.
+
+ function Try_Primitive_Operation
+ (Call_Node : Node_Id;
+ Node_To_Replace : Node_Id) return Boolean;
+ -- Traverse the list of primitive subprograms looking for a dispatching
+ -- operation for which the current node is a valid call .
+
+ -------------------------------
+ -- Complete_Object_Operation --
+ -------------------------------
+
+ procedure Complete_Object_Operation
+ (Call_Node : Node_Id;
+ Node_To_Replace : Node_Id;
+ Subprog : Node_Id)
+ is
+ Formal_Type : constant Entity_Id :=
+ Etype (First_Formal (Entity (Subprog)));
+ First_Actual : Node_Id;
+
+ begin
+ First_Actual := First (Parameter_Associations (Call_Node));
+ Set_Name (Call_Node, Subprog);
+
+ if Nkind (N) = N_Selected_Component
+ and then not Inside_A_Generic
+ then
+ Set_Entity (Selector_Name (N), Entity (Subprog));
+ end if;
+
+ -- If need be, rewrite first actual as an explicit dereference
+
+ if not Is_Access_Type (Formal_Type)
+ and then Is_Access_Type (Etype (Obj))
+ then
+ Rewrite (First_Actual,
+ Make_Explicit_Dereference (Sloc (Obj), Obj));
+ Analyze (First_Actual);
+
+ -- Conversely, if the formal is an access parameter and the
+ -- object is not, replace the actual with a 'Access reference.
+ -- Its analysis will check that the object is aliased.
+
+ elsif Is_Access_Type (Formal_Type)
+ and then not Is_Access_Type (Etype (Obj))
+ then
+ Rewrite (First_Actual,
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Access,
+ Prefix => Relocate_Node (Obj)));
+ Analyze (First_Actual);
+
+ else
+ Rewrite (First_Actual, Obj);
+ end if;
+
+ Rewrite (Node_To_Replace, Call_Node);
+ Analyze (Node_To_Replace);
+ end Complete_Object_Operation;
+
+ --------------------------------
+ -- Transform_Object_Operation --
+ --------------------------------
+
+ procedure Transform_Object_Operation
+ (Call_Node : out Node_Id;
+ Node_To_Replace : out Node_Id;
+ Subprog : Node_Id)
+ is
+ Parent_Node : constant Node_Id := Parent (N);
+
+ Dummy : constant Node_Id := New_Copy (Obj);
+ -- Placeholder used as a first parameter in the call, replaced
+ -- eventually by the proper object.
+
+ Actuals : List_Id;
+ Actual : Node_Id;
+
+ begin
+ -- Common case covering 1) Call to a procedure and 2) Call to a
+ -- function that has some additional actuals.
+
+ if (Nkind (Parent_Node) = N_Function_Call
+ or else
+ Nkind (Parent_Node) = N_Procedure_Call_Statement)
+
+ -- N is a selected component node containing the name of the
+ -- subprogram. If N is not the name of the parent node we must
+ -- not replace the parent node by the new construct. This case
+ -- occurs when N is a parameterless call to a subprogram that
+ -- is an actual parameter of a call to another subprogram. For
+ -- example:
+ -- Some_Subprogram (..., Obj.Operation, ...)
+
+ and then Name (Parent_Node) = N
+ then
+ Node_To_Replace := Parent_Node;
+
+ Actuals := Parameter_Associations (Parent_Node);
+
+ if Present (Actuals) then
+ Prepend (Dummy, Actuals);
+ else
+ Actuals := New_List (Dummy);
+ end if;
+
+ if Nkind (Parent_Node) = N_Procedure_Call_Statement then
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Copy_Tree (Subprog),
+ Parameter_Associations => Actuals);
+
+ else
+ Call_Node :=
+ Make_Function_Call (Loc,
+ Name => New_Copy_Tree (Subprog),
+ Parameter_Associations => Actuals);
+
+ end if;
+
+ -- Before analysis, the function call appears as an indexed component
+ -- if there are no named associations.
+
+ elsif Nkind (Parent_Node) = N_Indexed_Component
+ and then N = Prefix (Parent_Node)
+ then
+ Node_To_Replace := Parent_Node;
+
+ Actuals := Expressions (Parent_Node);
+
+ Actual := First (Actuals);
+ while Present (Actual) loop
+ Analyze (Actual);
+ Next (Actual);
+ end loop;
+
+ Prepend (Dummy, Actuals);
+
+ Call_Node :=
+ Make_Function_Call (Loc,
+ Name => New_Copy_Tree (Subprog),
+ Parameter_Associations => Actuals);
+
+ -- Parameterless call: Obj.F is rewritten as F (Obj)
+
+ else
+ Node_To_Replace := N;
+
+ Call_Node :=
+ Make_Function_Call (Loc,
+ Name => New_Copy_Tree (Subprog),
+ Parameter_Associations => New_List (Dummy));
+ end if;
+ end Transform_Object_Operation;
+
+ ------------------------------
+ -- Try_Class_Wide_Operation --
+ ------------------------------
+
+ function Try_Class_Wide_Operation
+ (Call_Node : Node_Id;
+ Node_To_Replace : Node_Id) return Boolean
+ is
+ Anc_Type : Entity_Id;
+ Hom : Entity_Id;
+ Hom_Ref : Node_Id;
+ Success : Boolean;
+
+ begin
+ -- Loop through ancestor types, traverse the homonym chain of the
+ -- subprogram, and try out those homonyms whose first formal has the
+ -- class-wide type of the ancestor.
+
+ -- Should we verify that it is declared in the same package as the
+ -- ancestor type ???
+
+ Anc_Type := Obj_Type;
+
+ loop
+ Hom := Current_Entity (Subprog);
+ while Present (Hom) loop
+ if (Ekind (Hom) = E_Procedure
+ or else
+ Ekind (Hom) = E_Function)
+ and then Present (First_Formal (Hom))
+ and then Etype (First_Formal (Hom)) =
+ Class_Wide_Type (Anc_Type)
+ then
+ Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
+
+ Set_Etype (Call_Node, Any_Type);
+ Set_Parent (Call_Node, Parent (Node_To_Replace));
+
+ Set_Name (Call_Node, Hom_Ref);
+
+ Analyze_One_Call
+ (N => Call_Node,
+ Nam => Hom,
+ Report => False,
+ Success => Success,
+ Skip_First => True);
+
+ if Success then
+
+ -- Reformat into the proper call
+
+ Complete_Object_Operation
+ (Call_Node => Call_Node,
+ Node_To_Replace => Node_To_Replace,
+ Subprog => Hom_Ref);
+
+ return True;
+ end if;
+ end if;
+
+ Hom := Homonym (Hom);
+ end loop;
+
+ -- Examine other ancestor types
+
+ exit when Etype (Anc_Type) = Anc_Type;
+ Anc_Type := Etype (Anc_Type);
+ end loop;
+
+ -- Nothing matched
+
+ return False;
+ end Try_Class_Wide_Operation;
+
+ -----------------------------
+ -- Try_Primitive_Operation --
+ -----------------------------
+
+ function Try_Primitive_Operation
+ (Call_Node : Node_Id;
+ Node_To_Replace : Node_Id) return Boolean
+ is
+ Elmt : Elmt_Id;
+ Prim_Op : Entity_Id;
+ Prim_Op_Ref : Node_Id := Empty;
+ Success : Boolean := False;
+ Op_Exists : Boolean := False;
+
+ function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
+ -- Verify that the prefix, dereferenced if need be, is a valid
+ -- controlling argument in a call to Op. The remaining actuals
+ -- are checked in the subsequent call to Analyze_One_Call.
+
+ -----------------------------
+ -- Valid_First_Argument_Of --
+ -----------------------------
+
+ function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (First_Formal (Op));
+
+ begin
+ -- Simple case
+
+ return Base_Type (Obj_Type) = Typ
+
+ -- Prefix can be dereferenced
+
+ or else
+ (Is_Access_Type (Obj_Type)
+ and then Designated_Type (Obj_Type) = Typ)
+
+ -- Formal is an access parameter, for which the object
+ -- can provide an access.
+
+ or else
+ (Ekind (Typ) = E_Anonymous_Access_Type
+ and then Designated_Type (Typ) = Obj_Type);
+ end Valid_First_Argument_Of;
+
+ -- Start of processing for Try_Primitive_Operation
+
+ begin
+ -- Look for subprograms in the list of primitive operations
+ -- The name must be identical, and the kind of call indicates
+ -- the expected kind of operation (function or procedure).
+
+ Elmt := First_Elmt (Primitive_Operations (Obj_Type));
+ while Present (Elmt) loop
+ Prim_Op := Node (Elmt);
+
+ if Chars (Prim_Op) = Chars (Subprog)
+ and then Present (First_Formal (Prim_Op))
+ and then Valid_First_Argument_Of (Prim_Op)
+ and then
+ (Nkind (Call_Node) = N_Function_Call)
+ = (Ekind (Prim_Op) = E_Function)
+ then
+ -- If this primitive operation corresponds with an immediate
+ -- ancestor interface there is no need to add it to the list
+ -- of interpretations; the corresponding aliased primitive is
+ -- also in this list of primitive operations and will be
+ -- used instead.
+
+ if Present (Abstract_Interface_Alias (Prim_Op))
+ and then Present (DTC_Entity (Alias (Prim_Op)))
+ and then Etype (DTC_Entity (Alias (Prim_Op))) = RTE (RE_Tag)
+ then
+ goto Continue;
+ end if;
+
+ if not Success then
+ Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
+
+ Set_Etype (Call_Node, Any_Type);
+ Set_Parent (Call_Node, Parent (Node_To_Replace));
+
+ Set_Name (Call_Node, Prim_Op_Ref);
+
+ Analyze_One_Call
+ (N => Call_Node,
+ Nam => Prim_Op,
+ Report => False,
+ Success => Success,
+ Skip_First => True);
+
+ if Success then
+ Op_Exists := True;
+
+ -- If the operation is a procedure call, there can only
+ -- be one candidate and we found it. If it is a function
+ -- we must collect all interpretations, because there
+ -- may be several primitive operations that differ only
+ -- in the return type.
+
+ if Nkind (Call_Node) = N_Procedure_Call_Statement then
+ exit;
+ end if;
+ end if;
+
+ elsif Ekind (Prim_Op) = E_Function then
+
+ -- Collect remaining function interpretations, to be
+ -- resolved from context.
+
+ Add_One_Interp (Prim_Op_Ref, Prim_Op, Etype (Prim_Op));
+ end if;
+ end if;
+
+ <<Continue>>
+ Next_Elmt (Elmt);
+ end loop;
+
+ if Op_Exists then
+ Complete_Object_Operation
+ (Call_Node => Call_Node,
+ Node_To_Replace => Node_To_Replace,
+ Subprog => Prim_Op_Ref);
+ end if;
+
+ return Op_Exists;
+ end Try_Primitive_Operation;
+
+ -- Start of processing for Try_Object_Operation
+
+ begin
+ if Is_Access_Type (Obj_Type) then
+ Obj_Type := Designated_Type (Obj_Type);
+ end if;
+
+ if Ekind (Obj_Type) = E_Private_Subtype then
+ Obj_Type := Base_Type (Obj_Type);
+ end if;
+
+ if Is_Class_Wide_Type (Obj_Type) then
+ Obj_Type := Etype (Class_Wide_Type (Obj_Type));
+ end if;
+
+ -- The type may have be obtained through a limited_with clause,
+ -- in which case the primitive operations are available on its
+ -- non-limited view.
+
+ if Ekind (Obj_Type) = E_Incomplete_Type
+ and then From_With_Type (Obj_Type)
+ then
+ Obj_Type := Non_Limited_View (Obj_Type);
+ end if;
+
+ if not Is_Tagged_Type (Obj_Type) then
+ return False;
+ end if;
+
+ -- Analyze the actuals if node is know to be a subprogram call
+
+ if Is_Subprg_Call and then N = Name (Parent (N)) then
+ Actual := First (Parameter_Associations (Parent (N)));
+ while Present (Actual) loop
+ Analyze_Expression (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ Analyze_Expression (Obj);
+
+ -- Build a subprogram call node, using a copy of Obj as its first
+ -- actual. This is a placeholder, to be replaced by an explicit
+ -- dereference when needed.
+
+ Transform_Object_Operation
+ (Call_Node => New_Call_Node,
+ Node_To_Replace => Node_To_Replace,
+ Subprog => Subprog);
+
+ Set_Etype (New_Call_Node, Any_Type);
+ Set_Parent (New_Call_Node, Parent (Node_To_Replace));
+
+ return
+ Try_Primitive_Operation
+ (Call_Node => New_Call_Node,
+ Node_To_Replace => Node_To_Replace)
+
+ or else
+ Try_Class_Wide_Operation
+ (Call_Node => New_Call_Node,
+ Node_To_Replace => Node_To_Replace);
+ end Try_Object_Operation;
+
+end Sem_Ch4;