aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/sem_attr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/sem_attr.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/sem_attr.adb7898
1 files changed, 0 insertions, 7898 deletions
diff --git a/gcc-4.2.1/gcc/ada/sem_attr.adb b/gcc-4.2.1/gcc/ada/sem_attr.adb
deleted file mode 100644
index 1a7288367..000000000
--- a/gcc-4.2.1/gcc/ada/sem_attr.adb
+++ /dev/null
@@ -1,7898 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M _ A T T R --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 2, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING. If not, write --
--- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
--- Boston, MA 02110-1301, USA. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Eval_Fat;
-with Exp_Util; use Exp_Util;
-with Expander; use Expander;
-with Freeze; use Freeze;
-with Lib; use Lib;
-with Lib.Xref; use Lib.Xref;
-with Namet; use Namet;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sdefault; use Sdefault;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch6; use Sem_Ch6;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Dist; use Sem_Dist;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Stand; use Stand;
-with Sinfo; use Sinfo;
-with Sinput; use Sinput;
-with Stringt; use Stringt;
-with Targparm; use Targparm;
-with Ttypes; use Ttypes;
-with Ttypef; use Ttypef;
-with Tbuild; use Tbuild;
-with Uintp; use Uintp;
-with Urealp; use Urealp;
-
-package body Sem_Attr is
-
- True_Value : constant Uint := Uint_1;
- False_Value : constant Uint := Uint_0;
- -- Synonyms to be used when these constants are used as Boolean values
-
- Bad_Attribute : exception;
- -- Exception raised if an error is detected during attribute processing,
- -- used so that we can abandon the processing so we don't run into
- -- trouble with cascaded errors.
-
- -- The following array is the list of attributes defined in the Ada 83 RM
-
- Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
- Attribute_Address |
- Attribute_Aft |
- Attribute_Alignment |
- Attribute_Base |
- Attribute_Callable |
- Attribute_Constrained |
- Attribute_Count |
- Attribute_Delta |
- Attribute_Digits |
- Attribute_Emax |
- Attribute_Epsilon |
- Attribute_First |
- Attribute_First_Bit |
- Attribute_Fore |
- Attribute_Image |
- Attribute_Large |
- Attribute_Last |
- Attribute_Last_Bit |
- Attribute_Leading_Part |
- Attribute_Length |
- Attribute_Machine_Emax |
- Attribute_Machine_Emin |
- Attribute_Machine_Mantissa |
- Attribute_Machine_Overflows |
- Attribute_Machine_Radix |
- Attribute_Machine_Rounds |
- Attribute_Mantissa |
- Attribute_Pos |
- Attribute_Position |
- Attribute_Pred |
- Attribute_Range |
- Attribute_Safe_Emax |
- Attribute_Safe_Large |
- Attribute_Safe_Small |
- Attribute_Size |
- Attribute_Small |
- Attribute_Storage_Size |
- Attribute_Succ |
- Attribute_Terminated |
- Attribute_Val |
- Attribute_Value |
- Attribute_Width => True,
- others => False);
-
- -----------------------
- -- Local_Subprograms --
- -----------------------
-
- procedure Eval_Attribute (N : Node_Id);
- -- Performs compile time evaluation of attributes where possible, leaving
- -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
- -- set, and replacing the node with a literal node if the value can be
- -- computed at compile time. All static attribute references are folded,
- -- as well as a number of cases of non-static attributes that can always
- -- be computed at compile time (e.g. floating-point model attributes that
- -- are applied to non-static subtypes). Of course in such cases, the
- -- Is_Static_Expression flag will not be set on the resulting literal.
- -- Note that the only required action of this procedure is to catch the
- -- static expression cases as described in the RM. Folding of other cases
- -- is done where convenient, but some additional non-static folding is in
- -- N_Expand_Attribute_Reference in cases where this is more convenient.
-
- function Is_Anonymous_Tagged_Base
- (Anon : Entity_Id;
- Typ : Entity_Id)
- return Boolean;
- -- For derived tagged types that constrain parent discriminants we build
- -- an anonymous unconstrained base type. We need to recognize the relation
- -- between the two when analyzing an access attribute for a constrained
- -- component, before the full declaration for Typ has been analyzed, and
- -- where therefore the prefix of the attribute does not match the enclosing
- -- scope.
-
- -----------------------
- -- Analyze_Attribute --
- -----------------------
-
- procedure Analyze_Attribute (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Aname : constant Name_Id := Attribute_Name (N);
- P : constant Node_Id := Prefix (N);
- Exprs : constant List_Id := Expressions (N);
- Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
- E1 : Node_Id;
- E2 : Node_Id;
-
- P_Type : Entity_Id;
- -- Type of prefix after analysis
-
- P_Base_Type : Entity_Id;
- -- Base type of prefix after analysis
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Analyze_Access_Attribute;
- -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
- -- Internally, Id distinguishes which of the three cases is involved.
-
- procedure Check_Array_Or_Scalar_Type;
- -- Common procedure used by First, Last, Range attribute to check
- -- that the prefix is a constrained array or scalar type, or a name
- -- of an array object, and that an argument appears only if appropriate
- -- (i.e. only in the array case).
-
- procedure Check_Array_Type;
- -- Common semantic checks for all array attributes. Checks that the
- -- prefix is a constrained array type or the name of an array object.
- -- The error message for non-arrays is specialized appropriately.
-
- procedure Check_Asm_Attribute;
- -- Common semantic checks for Asm_Input and Asm_Output attributes
-
- procedure Check_Component;
- -- Common processing for Bit_Position, First_Bit, Last_Bit, and
- -- Position. Checks prefix is an appropriate selected component.
-
- procedure Check_Decimal_Fixed_Point_Type;
- -- Check that prefix of attribute N is a decimal fixed-point type
-
- procedure Check_Dereference;
- -- If the prefix of attribute is an object of an access type, then
- -- introduce an explicit deference, and adjust P_Type accordingly.
-
- procedure Check_Discrete_Type;
- -- Verify that prefix of attribute N is a discrete type
-
- procedure Check_E0;
- -- Check that no attribute arguments are present
-
- procedure Check_Either_E0_Or_E1;
- -- Check that there are zero or one attribute arguments present
-
- procedure Check_E1;
- -- Check that exactly one attribute argument is present
-
- procedure Check_E2;
- -- Check that two attribute arguments are present
-
- procedure Check_Enum_Image;
- -- If the prefix type is an enumeration type, set all its literals
- -- as referenced, since the image function could possibly end up
- -- referencing any of the literals indirectly.
-
- procedure Check_Fixed_Point_Type;
- -- Verify that prefix of attribute N is a fixed type
-
- procedure Check_Fixed_Point_Type_0;
- -- Verify that prefix of attribute N is a fixed type and that
- -- no attribute expressions are present
-
- procedure Check_Floating_Point_Type;
- -- Verify that prefix of attribute N is a float type
-
- procedure Check_Floating_Point_Type_0;
- -- Verify that prefix of attribute N is a float type and that
- -- no attribute expressions are present
-
- procedure Check_Floating_Point_Type_1;
- -- Verify that prefix of attribute N is a float type and that
- -- exactly one attribute expression is present
-
- procedure Check_Floating_Point_Type_2;
- -- Verify that prefix of attribute N is a float type and that
- -- two attribute expressions are present
-
- procedure Legal_Formal_Attribute;
- -- Common processing for attributes Definite, Has_Access_Values,
- -- and Has_Discriminants
-
- procedure Check_Integer_Type;
- -- Verify that prefix of attribute N is an integer type
-
- procedure Check_Library_Unit;
- -- Verify that prefix of attribute N is a library unit
-
- procedure Check_Modular_Integer_Type;
- -- Verify that prefix of attribute N is a modular integer type
-
- procedure Check_Not_Incomplete_Type;
- -- Check that P (the prefix of the attribute) is not an incomplete
- -- type or a private type for which no full view has been given.
-
- procedure Check_Object_Reference (P : Node_Id);
- -- Check that P (the prefix of the attribute) is an object reference
-
- procedure Check_Program_Unit;
- -- Verify that prefix of attribute N is a program unit
-
- procedure Check_Real_Type;
- -- Verify that prefix of attribute N is fixed or float type
-
- procedure Check_Scalar_Type;
- -- Verify that prefix of attribute N is a scalar type
-
- procedure Check_Standard_Prefix;
- -- Verify that prefix of attribute N is package Standard
-
- procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
- -- Validity checking for stream attribute. Nam is the TSS name of the
- -- corresponding possible defined attribute function (e.g. for the
- -- Read attribute, Nam will be TSS_Stream_Read).
-
- procedure Check_Task_Prefix;
- -- Verify that prefix of attribute N is a task or task type
-
- procedure Check_Type;
- -- Verify that the prefix of attribute N is a type
-
- procedure Check_Unit_Name (Nod : Node_Id);
- -- Check that Nod is of the form of a library unit name, i.e that
- -- it is an identifier, or a selected component whose prefix is
- -- itself of the form of a library unit name. Note that this is
- -- quite different from Check_Program_Unit, since it only checks
- -- the syntactic form of the name, not the semantic identity. This
- -- is because it is used with attributes (Elab_Body, Elab_Spec, and
- -- UET_Address) which can refer to non-visible unit.
-
- procedure Error_Attr (Msg : String; Error_Node : Node_Id);
- pragma No_Return (Error_Attr);
- procedure Error_Attr;
- pragma No_Return (Error_Attr);
- -- Posts error using Error_Msg_N at given node, sets type of attribute
- -- node to Any_Type, and then raises Bad_Attribute to avoid any further
- -- semantic processing. The message typically contains a % insertion
- -- character which is replaced by the attribute name. The call with
- -- no arguments is used when the caller has already generated the
- -- required error messages.
-
- procedure Standard_Attribute (Val : Int);
- -- Used to process attributes whose prefix is package Standard which
- -- yield values of type Universal_Integer. The attribute reference
- -- node is rewritten with an integer literal of the given value.
-
- procedure Unexpected_Argument (En : Node_Id);
- -- Signal unexpected attribute argument (En is the argument)
-
- procedure Validate_Non_Static_Attribute_Function_Call;
- -- Called when processing an attribute that is a function call to a
- -- non-static function, i.e. an attribute function that either takes
- -- non-scalar arguments or returns a non-scalar result. Verifies that
- -- such a call does not appear in a preelaborable context.
-
- ------------------------------
- -- Analyze_Access_Attribute --
- ------------------------------
-
- procedure Analyze_Access_Attribute is
- Acc_Type : Entity_Id;
-
- Scop : Entity_Id;
- Typ : Entity_Id;
-
- function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
- -- Build an access-to-object type whose designated type is DT,
- -- and whose Ekind is appropriate to the attribute type. The
- -- type that is constructed is returned as the result.
-
- procedure Build_Access_Subprogram_Type (P : Node_Id);
- -- Build an access to subprogram whose designated type is
- -- the type of the prefix. If prefix is overloaded, so it the
- -- node itself. The result is stored in Acc_Type.
-
- ------------------------------
- -- Build_Access_Object_Type --
- ------------------------------
-
- function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
- Typ : Entity_Id;
-
- begin
- if Aname = Name_Unrestricted_Access then
- Typ :=
- New_Internal_Entity
- (E_Allocator_Type, Current_Scope, Loc, 'A');
- else
- Typ :=
- New_Internal_Entity
- (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
- end if;
-
- Set_Etype (Typ, Typ);
- Init_Size_Align (Typ);
- Set_Is_Itype (Typ);
- Set_Associated_Node_For_Itype (Typ, N);
- Set_Directly_Designated_Type (Typ, DT);
- return Typ;
- end Build_Access_Object_Type;
-
- ----------------------------------
- -- Build_Access_Subprogram_Type --
- ----------------------------------
-
- procedure Build_Access_Subprogram_Type (P : Node_Id) is
- Index : Interp_Index;
- It : Interp;
-
- function Get_Kind (E : Entity_Id) return Entity_Kind;
- -- Distinguish between access to regular/protected subprograms
-
- --------------
- -- Get_Kind --
- --------------
-
- function Get_Kind (E : Entity_Id) return Entity_Kind is
- begin
- if Convention (E) = Convention_Protected then
- return E_Access_Protected_Subprogram_Type;
- else
- return E_Access_Subprogram_Type;
- end if;
- end Get_Kind;
-
- -- Start of processing for Build_Access_Subprogram_Type
-
- begin
- -- In the case of an access to subprogram, use the name of the
- -- subprogram itself as the designated type. Type-checking in
- -- this case compares the signatures of the designated types.
-
- Set_Etype (N, Any_Type);
-
- if not Is_Overloaded (P) then
- if not Is_Intrinsic_Subprogram (Entity (P)) then
- Acc_Type :=
- New_Internal_Entity
- (Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
- Set_Etype (Acc_Type, Acc_Type);
- Set_Directly_Designated_Type (Acc_Type, Entity (P));
- Set_Etype (N, Acc_Type);
- end if;
-
- else
- Get_First_Interp (P, Index, It);
- while Present (It.Nam) loop
- if not Is_Intrinsic_Subprogram (It.Nam) then
- Acc_Type :=
- New_Internal_Entity
- (Get_Kind (It.Nam), Current_Scope, Loc, 'A');
- Set_Etype (Acc_Type, Acc_Type);
- Set_Directly_Designated_Type (Acc_Type, It.Nam);
- Add_One_Interp (N, Acc_Type, Acc_Type);
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end if;
-
- if Etype (N) = Any_Type then
- Error_Attr ("prefix of % attribute cannot be intrinsic", P);
- end if;
- end Build_Access_Subprogram_Type;
-
- -- Start of processing for Analyze_Access_Attribute
-
- begin
- Check_E0;
-
- if Nkind (P) = N_Character_Literal then
- Error_Attr
- ("prefix of % attribute cannot be enumeration literal", P);
- end if;
-
- -- Case of access to subprogram
-
- if Is_Entity_Name (P)
- and then Is_Overloadable (Entity (P))
- then
- -- Not allowed for nested subprograms if No_Implicit_Dynamic_Code
- -- restriction set (since in general a trampoline is required).
-
- if not Is_Library_Level_Entity (Entity (P)) then
- Check_Restriction (No_Implicit_Dynamic_Code, P);
- end if;
-
- if Is_Always_Inlined (Entity (P)) then
- Error_Attr
- ("prefix of % attribute cannot be Inline_Always subprogram",
- P);
- end if;
-
- -- Build the appropriate subprogram type
-
- Build_Access_Subprogram_Type (P);
-
- -- For unrestricted access, kill current values, since this
- -- attribute allows a reference to a local subprogram that
- -- could modify local variables to be passed out of scope
-
- if Aname = Name_Unrestricted_Access then
- Kill_Current_Values;
- end if;
-
- return;
-
- -- Component is an operation of a protected type
-
- elsif Nkind (P) = N_Selected_Component
- and then Is_Overloadable (Entity (Selector_Name (P)))
- then
- if Ekind (Entity (Selector_Name (P))) = E_Entry then
- Error_Attr ("prefix of % attribute must be subprogram", P);
- end if;
-
- Build_Access_Subprogram_Type (Selector_Name (P));
- return;
- end if;
-
- -- Deal with incorrect reference to a type, but note that some
- -- accesses are allowed (references to the current type instance).
-
- if Is_Entity_Name (P) then
- Typ := Entity (P);
-
- -- The reference may appear in an aggregate that has been expanded
- -- into a loop. Locate scope of type definition, if any.
-
- Scop := Current_Scope;
- while Ekind (Scop) = E_Loop loop
- Scop := Scope (Scop);
- end loop;
-
- if Is_Type (Typ) then
-
- -- OK if we are within the scope of a limited type
- -- let's mark the component as having per object constraint
-
- if Is_Anonymous_Tagged_Base (Scop, Typ) then
- Typ := Scop;
- Set_Entity (P, Typ);
- Set_Etype (P, Typ);
- end if;
-
- if Typ = Scop then
- declare
- Q : Node_Id := Parent (N);
-
- begin
- while Present (Q)
- and then Nkind (Q) /= N_Component_Declaration
- loop
- Q := Parent (Q);
- end loop;
-
- if Present (Q) then
- Set_Has_Per_Object_Constraint (
- Defining_Identifier (Q), True);
- end if;
- end;
-
- if Nkind (P) = N_Expanded_Name then
- Error_Msg_N
- ("current instance prefix must be a direct name", P);
- end if;
-
- -- If a current instance attribute appears within a
- -- a component constraint it must appear alone; other
- -- contexts (default expressions, within a task body)
- -- are not subject to this restriction.
-
- if not In_Default_Expression
- and then not Has_Completion (Scop)
- and then
- Nkind (Parent (N)) /= N_Discriminant_Association
- and then
- Nkind (Parent (N)) /= N_Index_Or_Discriminant_Constraint
- then
- Error_Msg_N
- ("current instance attribute must appear alone", N);
- end if;
-
- -- OK if we are in initialization procedure for the type
- -- in question, in which case the reference to the type
- -- is rewritten as a reference to the current object.
-
- elsif Ekind (Scop) = E_Procedure
- and then Is_Init_Proc (Scop)
- and then Etype (First_Formal (Scop)) = Typ
- then
- Rewrite (N,
- Make_Attribute_Reference (Loc,
- Prefix => Make_Identifier (Loc, Name_uInit),
- Attribute_Name => Name_Unrestricted_Access));
- Analyze (N);
- return;
-
- -- OK if a task type, this test needs sharpening up ???
-
- elsif Is_Task_Type (Typ) then
- null;
-
- -- Otherwise we have an error case
-
- else
- Error_Attr ("% attribute cannot be applied to type", P);
- return;
- end if;
- end if;
- end if;
-
- -- If we fall through, we have a normal access to object case.
- -- Unrestricted_Access is legal wherever an allocator would be
- -- legal, so its Etype is set to E_Allocator. The expected type
- -- of the other attributes is a general access type, and therefore
- -- we label them with E_Access_Attribute_Type.
-
- if not Is_Overloaded (P) then
- Acc_Type := Build_Access_Object_Type (P_Type);
- Set_Etype (N, Acc_Type);
- else
- declare
- Index : Interp_Index;
- It : Interp;
- begin
- Set_Etype (N, Any_Type);
- Get_First_Interp (P, Index, It);
- while Present (It.Typ) loop
- Acc_Type := Build_Access_Object_Type (It.Typ);
- Add_One_Interp (N, Acc_Type, Acc_Type);
- Get_Next_Interp (Index, It);
- end loop;
- end;
- end if;
-
- -- If we have an access to an object, and the attribute comes
- -- from source, then set the object as potentially source modified.
- -- We do this because the resulting access pointer can be used to
- -- modify the variable, and we might not detect this, leading to
- -- some junk warnings.
-
- if Is_Entity_Name (P) then
- Set_Never_Set_In_Source (Entity (P), False);
- end if;
-
- -- Check for aliased view unless unrestricted case. We allow
- -- a nonaliased prefix when within an instance because the
- -- prefix may have been a tagged formal object, which is
- -- defined to be aliased even when the actual might not be
- -- (other instance cases will have been caught in the generic).
- -- Similarly, within an inlined body we know that the attribute
- -- is legal in the original subprogram, and therefore legal in
- -- the expansion.
-
- if Aname /= Name_Unrestricted_Access
- and then not Is_Aliased_View (P)
- and then not In_Instance
- and then not In_Inlined_Body
- then
- Error_Attr ("prefix of % attribute must be aliased", P);
- end if;
- end Analyze_Access_Attribute;
-
- --------------------------------
- -- Check_Array_Or_Scalar_Type --
- --------------------------------
-
- procedure Check_Array_Or_Scalar_Type is
- Index : Entity_Id;
-
- D : Int;
- -- Dimension number for array attributes
-
- begin
- -- Case of string literal or string literal subtype. These cases
- -- cannot arise from legal Ada code, but the expander is allowed
- -- to generate them. They require special handling because string
- -- literal subtypes do not have standard bounds (the whole idea
- -- of these subtypes is to avoid having to generate the bounds)
-
- if Ekind (P_Type) = E_String_Literal_Subtype then
- Set_Etype (N, Etype (First_Index (P_Base_Type)));
- return;
-
- -- Scalar types
-
- elsif Is_Scalar_Type (P_Type) then
- Check_Type;
-
- if Present (E1) then
- Error_Attr ("invalid argument in % attribute", E1);
- else
- Set_Etype (N, P_Base_Type);
- return;
- end if;
-
- -- The following is a special test to allow 'First to apply to
- -- private scalar types if the attribute comes from generated
- -- code. This occurs in the case of Normalize_Scalars code.
-
- elsif Is_Private_Type (P_Type)
- and then Present (Full_View (P_Type))
- and then Is_Scalar_Type (Full_View (P_Type))
- and then not Comes_From_Source (N)
- then
- Set_Etype (N, Implementation_Base_Type (P_Type));
-
- -- Array types other than string literal subtypes handled above
-
- else
- Check_Array_Type;
-
- -- We know prefix is an array type, or the name of an array
- -- object, and that the expression, if present, is static
- -- and within the range of the dimensions of the type.
-
- pragma Assert (Is_Array_Type (P_Type));
- Index := First_Index (P_Base_Type);
-
- if No (E1) then
-
- -- First dimension assumed
-
- Set_Etype (N, Base_Type (Etype (Index)));
-
- else
- D := UI_To_Int (Intval (E1));
-
- for J in 1 .. D - 1 loop
- Next_Index (Index);
- end loop;
-
- Set_Etype (N, Base_Type (Etype (Index)));
- Set_Etype (E1, Standard_Integer);
- end if;
- end if;
- end Check_Array_Or_Scalar_Type;
-
- ----------------------
- -- Check_Array_Type --
- ----------------------
-
- procedure Check_Array_Type is
- D : Int;
- -- Dimension number for array attributes
-
- begin
- -- If the type is a string literal type, then this must be generated
- -- internally, and no further check is required on its legality.
-
- if Ekind (P_Type) = E_String_Literal_Subtype then
- return;
-
- -- If the type is a composite, it is an illegal aggregate, no point
- -- in going on.
-
- elsif P_Type = Any_Composite then
- raise Bad_Attribute;
- end if;
-
- -- Normal case of array type or subtype
-
- Check_Either_E0_Or_E1;
- Check_Dereference;
-
- if Is_Array_Type (P_Type) then
- if not Is_Constrained (P_Type)
- and then Is_Entity_Name (P)
- and then Is_Type (Entity (P))
- then
- -- Note: we do not call Error_Attr here, since we prefer to
- -- continue, using the relevant index type of the array,
- -- even though it is unconstrained. This gives better error
- -- recovery behavior.
-
- Error_Msg_Name_1 := Aname;
- Error_Msg_N
- ("prefix for % attribute must be constrained array", P);
- end if;
-
- D := Number_Dimensions (P_Type);
-
- else
- if Is_Private_Type (P_Type) then
- Error_Attr
- ("prefix for % attribute may not be private type", P);
-
- elsif Is_Access_Type (P_Type)
- and then Is_Array_Type (Designated_Type (P_Type))
- and then Is_Entity_Name (P)
- and then Is_Type (Entity (P))
- then
- Error_Attr ("prefix of % attribute cannot be access type", P);
-
- elsif Attr_Id = Attribute_First
- or else
- Attr_Id = Attribute_Last
- then
- Error_Attr ("invalid prefix for % attribute", P);
-
- else
- Error_Attr ("prefix for % attribute must be array", P);
- end if;
- end if;
-
- if Present (E1) then
- Resolve (E1, Any_Integer);
- Set_Etype (E1, Standard_Integer);
-
- if not Is_Static_Expression (E1)
- or else Raises_Constraint_Error (E1)
- then
- Flag_Non_Static_Expr
- ("expression for dimension must be static!", E1);
- Error_Attr;
-
- elsif UI_To_Int (Expr_Value (E1)) > D
- or else UI_To_Int (Expr_Value (E1)) < 1
- then
- Error_Attr ("invalid dimension number for array type", E1);
- end if;
- end if;
- end Check_Array_Type;
-
- -------------------------
- -- Check_Asm_Attribute --
- -------------------------
-
- procedure Check_Asm_Attribute is
- begin
- Check_Type;
- Check_E2;
-
- -- Check first argument is static string expression
-
- Analyze_And_Resolve (E1, Standard_String);
-
- if Etype (E1) = Any_Type then
- return;
-
- elsif not Is_OK_Static_Expression (E1) then
- Flag_Non_Static_Expr
- ("constraint argument must be static string expression!", E1);
- Error_Attr;
- end if;
-
- -- Check second argument is right type
-
- Analyze_And_Resolve (E2, Entity (P));
-
- -- Note: that is all we need to do, we don't need to check
- -- that it appears in a correct context. The Ada type system
- -- will do that for us.
-
- end Check_Asm_Attribute;
-
- ---------------------
- -- Check_Component --
- ---------------------
-
- procedure Check_Component is
- begin
- Check_E0;
-
- if Nkind (P) /= N_Selected_Component
- or else
- (Ekind (Entity (Selector_Name (P))) /= E_Component
- and then
- Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
- then
- Error_Attr
- ("prefix for % attribute must be selected component", P);
- end if;
- end Check_Component;
-
- ------------------------------------
- -- Check_Decimal_Fixed_Point_Type --
- ------------------------------------
-
- procedure Check_Decimal_Fixed_Point_Type is
- begin
- Check_Type;
-
- if not Is_Decimal_Fixed_Point_Type (P_Type) then
- Error_Attr
- ("prefix of % attribute must be decimal type", P);
- end if;
- end Check_Decimal_Fixed_Point_Type;
-
- -----------------------
- -- Check_Dereference --
- -----------------------
-
- procedure Check_Dereference is
- begin
-
- -- Case of a subtype mark
-
- if Is_Entity_Name (P)
- and then Is_Type (Entity (P))
- then
- return;
- end if;
-
- -- Case of an expression
-
- Resolve (P);
-
- if Is_Access_Type (P_Type) then
-
- -- If there is an implicit dereference, then we must freeze
- -- the designated type of the access type, since the type of
- -- the referenced array is this type (see AI95-00106).
-
- Freeze_Before (N, Designated_Type (P_Type));
-
- Rewrite (P,
- Make_Explicit_Dereference (Sloc (P),
- Prefix => Relocate_Node (P)));
-
- Analyze_And_Resolve (P);
- P_Type := Etype (P);
-
- if P_Type = Any_Type then
- raise Bad_Attribute;
- end if;
-
- P_Base_Type := Base_Type (P_Type);
- end if;
- end Check_Dereference;
-
- -------------------------
- -- Check_Discrete_Type --
- -------------------------
-
- procedure Check_Discrete_Type is
- begin
- Check_Type;
-
- if not Is_Discrete_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be discrete type", P);
- end if;
- end Check_Discrete_Type;
-
- --------------
- -- Check_E0 --
- --------------
-
- procedure Check_E0 is
- begin
- if Present (E1) then
- Unexpected_Argument (E1);
- end if;
- end Check_E0;
-
- --------------
- -- Check_E1 --
- --------------
-
- procedure Check_E1 is
- begin
- Check_Either_E0_Or_E1;
-
- if No (E1) then
-
- -- Special-case attributes that are functions and that appear as
- -- the prefix of another attribute. Error is posted on parent.
-
- if Nkind (Parent (N)) = N_Attribute_Reference
- and then (Attribute_Name (Parent (N)) = Name_Address
- or else
- Attribute_Name (Parent (N)) = Name_Code_Address
- or else
- Attribute_Name (Parent (N)) = Name_Access)
- then
- Error_Msg_Name_1 := Attribute_Name (Parent (N));
- Error_Msg_N ("illegal prefix for % attribute", Parent (N));
- Set_Etype (Parent (N), Any_Type);
- Set_Entity (Parent (N), Any_Type);
- raise Bad_Attribute;
-
- else
- Error_Attr ("missing argument for % attribute", N);
- end if;
- end if;
- end Check_E1;
-
- --------------
- -- Check_E2 --
- --------------
-
- procedure Check_E2 is
- begin
- if No (E1) then
- Error_Attr ("missing arguments for % attribute (2 required)", N);
- elsif No (E2) then
- Error_Attr ("missing argument for % attribute (2 required)", N);
- end if;
- end Check_E2;
-
- ---------------------------
- -- Check_Either_E0_Or_E1 --
- ---------------------------
-
- procedure Check_Either_E0_Or_E1 is
- begin
- if Present (E2) then
- Unexpected_Argument (E2);
- end if;
- end Check_Either_E0_Or_E1;
-
- ----------------------
- -- Check_Enum_Image --
- ----------------------
-
- procedure Check_Enum_Image is
- Lit : Entity_Id;
-
- begin
- if Is_Enumeration_Type (P_Base_Type) then
- Lit := First_Literal (P_Base_Type);
- while Present (Lit) loop
- Set_Referenced (Lit);
- Next_Literal (Lit);
- end loop;
- end if;
- end Check_Enum_Image;
-
- ----------------------------
- -- Check_Fixed_Point_Type --
- ----------------------------
-
- procedure Check_Fixed_Point_Type is
- begin
- Check_Type;
-
- if not Is_Fixed_Point_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be fixed point type", P);
- end if;
- end Check_Fixed_Point_Type;
-
- ------------------------------
- -- Check_Fixed_Point_Type_0 --
- ------------------------------
-
- procedure Check_Fixed_Point_Type_0 is
- begin
- Check_Fixed_Point_Type;
- Check_E0;
- end Check_Fixed_Point_Type_0;
-
- -------------------------------
- -- Check_Floating_Point_Type --
- -------------------------------
-
- procedure Check_Floating_Point_Type is
- begin
- Check_Type;
-
- if not Is_Floating_Point_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be float type", P);
- end if;
- end Check_Floating_Point_Type;
-
- ---------------------------------
- -- Check_Floating_Point_Type_0 --
- ---------------------------------
-
- procedure Check_Floating_Point_Type_0 is
- begin
- Check_Floating_Point_Type;
- Check_E0;
- end Check_Floating_Point_Type_0;
-
- ---------------------------------
- -- Check_Floating_Point_Type_1 --
- ---------------------------------
-
- procedure Check_Floating_Point_Type_1 is
- begin
- Check_Floating_Point_Type;
- Check_E1;
- end Check_Floating_Point_Type_1;
-
- ---------------------------------
- -- Check_Floating_Point_Type_2 --
- ---------------------------------
-
- procedure Check_Floating_Point_Type_2 is
- begin
- Check_Floating_Point_Type;
- Check_E2;
- end Check_Floating_Point_Type_2;
-
- ------------------------
- -- Check_Integer_Type --
- ------------------------
-
- procedure Check_Integer_Type is
- begin
- Check_Type;
-
- if not Is_Integer_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be integer type", P);
- end if;
- end Check_Integer_Type;
-
- ------------------------
- -- Check_Library_Unit --
- ------------------------
-
- procedure Check_Library_Unit is
- begin
- if not Is_Compilation_Unit (Entity (P)) then
- Error_Attr ("prefix of % attribute must be library unit", P);
- end if;
- end Check_Library_Unit;
-
- --------------------------------
- -- Check_Modular_Integer_Type --
- --------------------------------
-
- procedure Check_Modular_Integer_Type is
- begin
- Check_Type;
-
- if not Is_Modular_Integer_Type (P_Type) then
- Error_Attr
- ("prefix of % attribute must be modular integer type", P);
- end if;
- end Check_Modular_Integer_Type;
-
- -------------------------------
- -- Check_Not_Incomplete_Type --
- -------------------------------
-
- procedure Check_Not_Incomplete_Type is
- E : Entity_Id;
- Typ : Entity_Id;
-
- begin
- -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
- -- dereference we have to check wrong uses of incomplete types
- -- (other wrong uses are checked at their freezing point).
-
- -- Example 1: Limited-with
-
- -- limited with Pkg;
- -- package P is
- -- type Acc is access Pkg.T;
- -- X : Acc;
- -- S : Integer := X.all'Size; -- ERROR
- -- end P;
-
- -- Example 2: Tagged incomplete
-
- -- type T is tagged;
- -- type Acc is access all T;
- -- X : Acc;
- -- S : constant Integer := X.all'Size; -- ERROR
- -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
-
- if Ada_Version >= Ada_05
- and then Nkind (P) = N_Explicit_Dereference
- then
- E := P;
- while Nkind (E) = N_Explicit_Dereference loop
- E := Prefix (E);
- end loop;
-
- if From_With_Type (Etype (E)) then
- Error_Attr
- ("prefix of % attribute cannot be an incomplete type", P);
-
- else
- if Is_Access_Type (Etype (E)) then
- Typ := Directly_Designated_Type (Etype (E));
- else
- Typ := Etype (E);
- end if;
-
- if Ekind (Typ) = E_Incomplete_Type
- and then No (Full_View (Typ))
- then
- Error_Attr
- ("prefix of % attribute cannot be an incomplete type", P);
- end if;
- end if;
- end if;
-
- if not Is_Entity_Name (P)
- or else not Is_Type (Entity (P))
- or else In_Default_Expression
- then
- return;
- else
- Check_Fully_Declared (P_Type, P);
- end if;
- end Check_Not_Incomplete_Type;
-
- ----------------------------
- -- Check_Object_Reference --
- ----------------------------
-
- procedure Check_Object_Reference (P : Node_Id) is
- Rtyp : Entity_Id;
-
- begin
- -- If we need an object, and we have a prefix that is the name of
- -- a function entity, convert it into a function call.
-
- if Is_Entity_Name (P)
- and then Ekind (Entity (P)) = E_Function
- then
- Rtyp := Etype (Entity (P));
-
- Rewrite (P,
- Make_Function_Call (Sloc (P),
- Name => Relocate_Node (P)));
-
- Analyze_And_Resolve (P, Rtyp);
-
- -- Otherwise we must have an object reference
-
- elsif not Is_Object_Reference (P) then
- Error_Attr ("prefix of % attribute must be object", P);
- end if;
- end Check_Object_Reference;
-
- ------------------------
- -- Check_Program_Unit --
- ------------------------
-
- procedure Check_Program_Unit is
- begin
- if Is_Entity_Name (P) then
- declare
- K : constant Entity_Kind := Ekind (Entity (P));
- T : constant Entity_Id := Etype (Entity (P));
-
- begin
- if K in Subprogram_Kind
- or else K in Task_Kind
- or else K in Protected_Kind
- or else K = E_Package
- or else K in Generic_Unit_Kind
- or else (K = E_Variable
- and then
- (Is_Task_Type (T)
- or else
- Is_Protected_Type (T)))
- then
- return;
- end if;
- end;
- end if;
-
- Error_Attr ("prefix of % attribute must be program unit", P);
- end Check_Program_Unit;
-
- ---------------------
- -- Check_Real_Type --
- ---------------------
-
- procedure Check_Real_Type is
- begin
- Check_Type;
-
- if not Is_Real_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be real type", P);
- end if;
- end Check_Real_Type;
-
- -----------------------
- -- Check_Scalar_Type --
- -----------------------
-
- procedure Check_Scalar_Type is
- begin
- Check_Type;
-
- if not Is_Scalar_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be scalar type", P);
- end if;
- end Check_Scalar_Type;
-
- ---------------------------
- -- Check_Standard_Prefix --
- ---------------------------
-
- procedure Check_Standard_Prefix is
- begin
- Check_E0;
-
- if Nkind (P) /= N_Identifier
- or else Chars (P) /= Name_Standard
- then
- Error_Attr ("only allowed prefix for % attribute is Standard", P);
- end if;
-
- end Check_Standard_Prefix;
-
- ----------------------------
- -- Check_Stream_Attribute --
- ----------------------------
-
- procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
- Etyp : Entity_Id;
- Btyp : Entity_Id;
- begin
- Validate_Non_Static_Attribute_Function_Call;
-
- -- With the exception of 'Input, Stream attributes are procedures,
- -- and can only appear at the position of procedure calls. We check
- -- for this here, before they are rewritten, to give a more precise
- -- diagnostic.
-
- if Nam = TSS_Stream_Input then
- null;
-
- elsif Is_List_Member (N)
- and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
- and then Nkind (Parent (N)) /= N_Aggregate
- then
- null;
-
- else
- Error_Attr
- ("invalid context for attribute%, which is a procedure", N);
- end if;
-
- Check_Type;
- Btyp := Implementation_Base_Type (P_Type);
-
- -- Stream attributes not allowed on limited types unless the
- -- attribute reference was generated by the expander (in which
- -- case the underlying type will be used, as described in Sinfo),
- -- or the attribute was specified explicitly for the type itself
- -- or one of its ancestors (taking visibility rules into account if
- -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
- -- (with no visibility restriction).
-
- if Comes_From_Source (N)
- and then not Stream_Attribute_Available (P_Type, Nam)
- and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
- then
- Error_Msg_Name_1 := Aname;
-
- if Is_Limited_Type (P_Type) then
- Error_Msg_NE
- ("limited type& has no% attribute", P, P_Type);
- Explain_Limited_Type (P_Type, P);
- else
- Error_Msg_NE
- ("attribute% for type& is not available", P, P_Type);
- end if;
- end if;
-
- -- Check for violation of restriction No_Stream_Attributes
-
- if Is_RTE (P_Type, RE_Exception_Id)
- or else
- Is_RTE (P_Type, RE_Exception_Occurrence)
- then
- Check_Restriction (No_Exception_Registration, P);
- end if;
-
- -- Here we must check that the first argument is an access type
- -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
-
- Analyze_And_Resolve (E1);
- Etyp := Etype (E1);
-
- -- Note: the double call to Root_Type here is needed because the
- -- root type of a class-wide type is the corresponding type (e.g.
- -- X for X'Class, and we really want to go to the root.
-
- if not Is_Access_Type (Etyp)
- or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
- RTE (RE_Root_Stream_Type)
- then
- Error_Attr
- ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
- end if;
-
- -- Check that the second argument is of the right type if there is
- -- one (the Input attribute has only one argument so this is skipped)
-
- if Present (E2) then
- Analyze (E2);
-
- if Nam = TSS_Stream_Read
- and then not Is_OK_Variable_For_Out_Formal (E2)
- then
- Error_Attr
- ("second argument of % attribute must be a variable", E2);
- end if;
-
- Resolve (E2, P_Type);
- end if;
- end Check_Stream_Attribute;
-
- -----------------------
- -- Check_Task_Prefix --
- -----------------------
-
- procedure Check_Task_Prefix is
- begin
- Analyze (P);
-
- -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
- -- task interface class-wide types.
-
- if Is_Task_Type (Etype (P))
- or else (Is_Access_Type (Etype (P))
- and then Is_Task_Type (Designated_Type (Etype (P))))
- or else (Ada_Version >= Ada_05
- and then Ekind (Etype (P)) = E_Class_Wide_Type
- and then Is_Interface (Etype (P))
- and then Is_Task_Interface (Etype (P)))
- then
- Resolve (P);
-
- else
- if Ada_Version >= Ada_05 then
- Error_Attr ("prefix of % attribute must be a task or a task "
- & "interface class-wide object", P);
-
- else
- Error_Attr ("prefix of % attribute must be a task", P);
- end if;
- end if;
- end Check_Task_Prefix;
-
- ----------------
- -- Check_Type --
- ----------------
-
- -- The possibilities are an entity name denoting a type, or an
- -- attribute reference that denotes a type (Base or Class). If
- -- the type is incomplete, replace it with its full view.
-
- procedure Check_Type is
- begin
- if not Is_Entity_Name (P)
- or else not Is_Type (Entity (P))
- then
- Error_Attr ("prefix of % attribute must be a type", P);
-
- elsif Ekind (Entity (P)) = E_Incomplete_Type
- and then Present (Full_View (Entity (P)))
- then
- P_Type := Full_View (Entity (P));
- Set_Entity (P, P_Type);
- end if;
- end Check_Type;
-
- ---------------------
- -- Check_Unit_Name --
- ---------------------
-
- procedure Check_Unit_Name (Nod : Node_Id) is
- begin
- if Nkind (Nod) = N_Identifier then
- return;
-
- elsif Nkind (Nod) = N_Selected_Component then
- Check_Unit_Name (Prefix (Nod));
-
- if Nkind (Selector_Name (Nod)) = N_Identifier then
- return;
- end if;
- end if;
-
- Error_Attr ("argument for % attribute must be unit name", P);
- end Check_Unit_Name;
-
- ----------------
- -- Error_Attr --
- ----------------
-
- procedure Error_Attr is
- begin
- Set_Etype (N, Any_Type);
- Set_Entity (N, Any_Type);
- raise Bad_Attribute;
- end Error_Attr;
-
- procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
- begin
- Error_Msg_Name_1 := Aname;
- Error_Msg_N (Msg, Error_Node);
- Error_Attr;
- end Error_Attr;
-
- ----------------------------
- -- Legal_Formal_Attribute --
- ----------------------------
-
- procedure Legal_Formal_Attribute is
- begin
- Check_E0;
-
- if not Is_Entity_Name (P)
- or else not Is_Type (Entity (P))
- then
- Error_Attr ("prefix of % attribute must be generic type", N);
-
- elsif Is_Generic_Actual_Type (Entity (P))
- or else In_Instance
- or else In_Inlined_Body
- then
- null;
-
- elsif Is_Generic_Type (Entity (P)) then
- if not Is_Indefinite_Subtype (Entity (P)) then
- Error_Attr
- ("prefix of % attribute must be indefinite generic type", N);
- end if;
-
- else
- Error_Attr
- ("prefix of % attribute must be indefinite generic type", N);
- end if;
-
- Set_Etype (N, Standard_Boolean);
- end Legal_Formal_Attribute;
-
- ------------------------
- -- Standard_Attribute --
- ------------------------
-
- procedure Standard_Attribute (Val : Int) is
- begin
- Check_Standard_Prefix;
-
- -- First a special check (more like a kludge really). For GNAT5
- -- on Windows, the alignments in GCC are severely mixed up. In
- -- particular, we have a situation where the maximum alignment
- -- that GCC thinks is possible is greater than the guaranteed
- -- alignment at run-time. That causes many problems. As a partial
- -- cure for this situation, we force a value of 4 for the maximum
- -- alignment attribute on this target. This still does not solve
- -- all problems, but it helps.
-
- -- A further (even more horrible) dimension to this kludge is now
- -- installed. There are two uses for Maximum_Alignment, one is to
- -- determine the maximum guaranteed alignment, that's the one we
- -- want the kludge to yield as 4. The other use is to maximally
- -- align objects, we can't use 4 here, since for example, long
- -- long integer has an alignment of 8, so we will get errors.
-
- -- It is of course impossible to determine which use the programmer
- -- has in mind, but an approximation for now is to disconnect the
- -- kludge if the attribute appears in an alignment clause.
-
- -- To be removed if GCC ever gets its act together here ???
-
- Alignment_Kludge : declare
- P : Node_Id;
-
- function On_X86 return Boolean;
- -- Determine if target is x86 (ia32), return True if so
-
- ------------
- -- On_X86 --
- ------------
-
- function On_X86 return Boolean is
- T : constant String := Sdefault.Target_Name.all;
-
- begin
- -- There is no clean way to check this. That's not surprising,
- -- the front end should not be doing this kind of test ???. The
- -- way we do it is test for either "86" or "pentium" being in
- -- the string for the target name. However, we need to exclude
- -- x86_64 for this check.
-
- for J in T'First .. T'Last - 1 loop
- if (T (J .. J + 1) = "86"
- and then
- (J + 4 > T'Last
- or else T (J + 2 .. J + 4) /= "_64"))
- or else (J <= T'Last - 6
- and then T (J .. J + 6) = "pentium")
- then
- return True;
- end if;
- end loop;
-
- return False;
- end On_X86;
-
- begin
- if Aname = Name_Maximum_Alignment and then On_X86 then
- P := Parent (N);
-
- while Nkind (P) in N_Subexpr loop
- P := Parent (P);
- end loop;
-
- if Nkind (P) /= N_Attribute_Definition_Clause
- or else Chars (P) /= Name_Alignment
- then
- Rewrite (N, Make_Integer_Literal (Loc, 4));
- Analyze (N);
- return;
- end if;
- end if;
- end Alignment_Kludge;
-
- -- Normally we get the value from gcc ???
-
- Rewrite (N, Make_Integer_Literal (Loc, Val));
- Analyze (N);
- end Standard_Attribute;
-
- -------------------------
- -- Unexpected Argument --
- -------------------------
-
- procedure Unexpected_Argument (En : Node_Id) is
- begin
- Error_Attr ("unexpected argument for % attribute", En);
- end Unexpected_Argument;
-
- -------------------------------------------------
- -- Validate_Non_Static_Attribute_Function_Call --
- -------------------------------------------------
-
- -- This function should be moved to Sem_Dist ???
-
- procedure Validate_Non_Static_Attribute_Function_Call is
- begin
- if In_Preelaborated_Unit
- and then not In_Subprogram_Or_Concurrent_Unit
- then
- Flag_Non_Static_Expr
- ("non-static function call in preelaborated unit!", N);
- end if;
- end Validate_Non_Static_Attribute_Function_Call;
-
- -----------------------------------------------
- -- Start of Processing for Analyze_Attribute --
- -----------------------------------------------
-
- begin
- -- Immediate return if unrecognized attribute (already diagnosed
- -- by parser, so there is nothing more that we need to do)
-
- if not Is_Attribute_Name (Aname) then
- raise Bad_Attribute;
- end if;
-
- -- Deal with Ada 83 and Features issues
-
- if Comes_From_Source (N) then
- if not Attribute_83 (Attr_Id) then
- if Ada_Version = Ada_83 and then Comes_From_Source (N) then
- Error_Msg_Name_1 := Aname;
- Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
- end if;
-
- if Attribute_Impl_Def (Attr_Id) then
- Check_Restriction (No_Implementation_Attributes, N);
- end if;
- end if;
- end if;
-
- -- Remote access to subprogram type access attribute reference needs
- -- unanalyzed copy for tree transformation. The analyzed copy is used
- -- for its semantic information (whether prefix is a remote subprogram
- -- name), the unanalyzed copy is used to construct new subtree rooted
- -- with N_Aggregate which represents a fat pointer aggregate.
-
- if Aname = Name_Access then
- Discard_Node (Copy_Separate_Tree (N));
- end if;
-
- -- Analyze prefix and exit if error in analysis. If the prefix is an
- -- incomplete type, use full view if available. A special case is
- -- that we never analyze the prefix of an Elab_Body or Elab_Spec
- -- or UET_Address attribute.
-
- if Aname /= Name_Elab_Body
- and then
- Aname /= Name_Elab_Spec
- and then
- Aname /= Name_UET_Address
- then
- Analyze (P);
- P_Type := Etype (P);
-
- if Is_Entity_Name (P)
- and then Present (Entity (P))
- and then Is_Type (Entity (P))
- then
- if Ekind (Entity (P)) = E_Incomplete_Type then
- P_Type := Get_Full_View (P_Type);
- Set_Entity (P, P_Type);
- Set_Etype (P, P_Type);
-
- elsif Entity (P) = Current_Scope
- and then Is_Record_Type (Entity (P))
- then
-
- -- Use of current instance within the type. Verify that if the
- -- attribute appears within a constraint, it yields an access
- -- type, other uses are illegal.
-
- declare
- Par : Node_Id;
-
- begin
- Par := Parent (N);
- while Present (Par)
- and then Nkind (Parent (Par)) /= N_Component_Definition
- loop
- Par := Parent (Par);
- end loop;
-
- if Present (Par)
- and then Nkind (Par) = N_Subtype_Indication
- then
- if Attr_Id /= Attribute_Access
- and then Attr_Id /= Attribute_Unchecked_Access
- and then Attr_Id /= Attribute_Unrestricted_Access
- then
- Error_Msg_N
- ("in a constraint the current instance can only"
- & " be used with an access attribute", N);
- end if;
- end if;
- end;
- end if;
- end if;
-
- if P_Type = Any_Type then
- raise Bad_Attribute;
- end if;
-
- P_Base_Type := Base_Type (P_Type);
- end if;
-
- -- Analyze expressions that may be present, exiting if an error occurs
-
- if No (Exprs) then
- E1 := Empty;
- E2 := Empty;
-
- else
- E1 := First (Exprs);
- Analyze (E1);
-
- -- Check for missing or bad expression (result of previous error)
-
- if No (E1) or else Etype (E1) = Any_Type then
- raise Bad_Attribute;
- end if;
-
- E2 := Next (E1);
-
- if Present (E2) then
- Analyze (E2);
-
- if Etype (E2) = Any_Type then
- raise Bad_Attribute;
- end if;
-
- if Present (Next (E2)) then
- Unexpected_Argument (Next (E2));
- end if;
- end if;
- end if;
-
- -- Ada 2005 (AI-345): Ensure that the compiler gives exactly the current
- -- output compiling in Ada 95 mode
-
- if Ada_Version < Ada_05
- and then Is_Overloaded (P)
- and then Aname /= Name_Access
- and then Aname /= Name_Address
- and then Aname /= Name_Code_Address
- and then Aname /= Name_Count
- and then Aname /= Name_Unchecked_Access
- then
- Error_Attr ("ambiguous prefix for % attribute", P);
-
- elsif Ada_Version >= Ada_05
- and then Is_Overloaded (P)
- and then Aname /= Name_Access
- and then Aname /= Name_Address
- and then Aname /= Name_Code_Address
- and then Aname /= Name_Unchecked_Access
- then
- -- Ada 2005 (AI-345): Since protected and task types have primitive
- -- entry wrappers, the attributes Count, Caller and AST_Entry require
- -- a context check
-
- if Ada_Version >= Ada_05
- and then (Aname = Name_Count
- or else Aname = Name_Caller
- or else Aname = Name_AST_Entry)
- then
- declare
- Count : Natural := 0;
- I : Interp_Index;
- It : Interp;
-
- begin
- Get_First_Interp (P, I, It);
-
- while Present (It.Nam) loop
- if Comes_From_Source (It.Nam) then
- Count := Count + 1;
- else
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
-
- if Count > 1 then
- Error_Attr ("ambiguous prefix for % attribute", P);
- else
- Set_Is_Overloaded (P, False);
- end if;
- end;
-
- else
- Error_Attr ("ambiguous prefix for % attribute", P);
- end if;
- end if;
-
- -- Remaining processing depends on attribute
-
- case Attr_Id is
-
- ------------------
- -- Abort_Signal --
- ------------------
-
- when Attribute_Abort_Signal =>
- Check_Standard_Prefix;
- Rewrite (N,
- New_Reference_To (Stand.Abort_Signal, Loc));
- Analyze (N);
-
- ------------
- -- Access --
- ------------
-
- when Attribute_Access =>
- Analyze_Access_Attribute;
-
- -------------
- -- Address --
- -------------
-
- when Attribute_Address =>
- Check_E0;
-
- -- Check for some junk cases, where we have to allow the address
- -- attribute but it does not make much sense, so at least for now
- -- just replace with Null_Address.
-
- -- We also do this if the prefix is a reference to the AST_Entry
- -- attribute. If expansion is active, the attribute will be
- -- replaced by a function call, and address will work fine and
- -- get the proper value, but if expansion is not active, then
- -- the check here allows proper semantic analysis of the reference.
-
- -- An Address attribute created by expansion is legal even when it
- -- applies to other entity-denoting expressions.
-
- if Is_Entity_Name (P) then
- declare
- Ent : constant Entity_Id := Entity (P);
-
- begin
- if Is_Subprogram (Ent) then
- if not Is_Library_Level_Entity (Ent) then
- Check_Restriction (No_Implicit_Dynamic_Code, P);
- end if;
-
- Set_Address_Taken (Ent);
-
- -- An Address attribute is accepted when generated by
- -- the compiler for dispatching operation, and an error
- -- is issued once the subprogram is frozen (to avoid
- -- confusing errors about implicit uses of Address in
- -- the dispatch table initialization).
-
- if Is_Always_Inlined (Entity (P))
- and then Comes_From_Source (P)
- then
- Error_Attr
- ("prefix of % attribute cannot be Inline_Always" &
- " subprogram", P);
- end if;
-
- elsif Is_Object (Ent)
- or else Ekind (Ent) = E_Label
- then
- Set_Address_Taken (Ent);
-
- -- If we have an address of an object, and the attribute
- -- comes from source, then set the object as potentially
- -- source modified. We do this because the resulting address
- -- can potentially be used to modify the variable and we
- -- might not detect this, leading to some junk warnings.
-
- Set_Never_Set_In_Source (Ent, False);
-
- elsif (Is_Concurrent_Type (Etype (Ent))
- and then Etype (Ent) = Base_Type (Ent))
- or else Ekind (Ent) = E_Package
- or else Is_Generic_Unit (Ent)
- then
- Rewrite (N,
- New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
-
- else
- Error_Attr ("invalid prefix for % attribute", P);
- end if;
- end;
-
- elsif Nkind (P) = N_Attribute_Reference
- and then Attribute_Name (P) = Name_AST_Entry
- then
- Rewrite (N,
- New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
-
- elsif Is_Object_Reference (P) then
- null;
-
- elsif Nkind (P) = N_Selected_Component
- and then Is_Subprogram (Entity (Selector_Name (P)))
- then
- null;
-
- -- What exactly are we allowing here ??? and is this properly
- -- documented in the sinfo documentation for this node ???
-
- elsif not Comes_From_Source (N) then
- null;
-
- else
- Error_Attr ("invalid prefix for % attribute", P);
- end if;
-
- Set_Etype (N, RTE (RE_Address));
-
- ------------------
- -- Address_Size --
- ------------------
-
- when Attribute_Address_Size =>
- Standard_Attribute (System_Address_Size);
-
- --------------
- -- Adjacent --
- --------------
-
- when Attribute_Adjacent =>
- Check_Floating_Point_Type_2;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
- Resolve (E2, P_Base_Type);
-
- ---------
- -- Aft --
- ---------
-
- when Attribute_Aft =>
- Check_Fixed_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- ---------------
- -- Alignment --
- ---------------
-
- when Attribute_Alignment =>
-
- -- Don't we need more checking here, cf Size ???
-
- Check_E0;
- Check_Not_Incomplete_Type;
- Set_Etype (N, Universal_Integer);
-
- ---------------
- -- Asm_Input --
- ---------------
-
- when Attribute_Asm_Input =>
- Check_Asm_Attribute;
- Set_Etype (N, RTE (RE_Asm_Input_Operand));
-
- ----------------
- -- Asm_Output --
- ----------------
-
- when Attribute_Asm_Output =>
- Check_Asm_Attribute;
-
- if Etype (E2) = Any_Type then
- return;
-
- elsif Aname = Name_Asm_Output then
- if not Is_Variable (E2) then
- Error_Attr
- ("second argument for Asm_Output is not variable", E2);
- end if;
- end if;
-
- Note_Possible_Modification (E2);
- Set_Etype (N, RTE (RE_Asm_Output_Operand));
-
- ---------------
- -- AST_Entry --
- ---------------
-
- when Attribute_AST_Entry => AST_Entry : declare
- Ent : Entity_Id;
- Pref : Node_Id;
- Ptyp : Entity_Id;
-
- Indexed : Boolean;
- -- Indicates if entry family index is present. Note the coding
- -- here handles the entry family case, but in fact it cannot be
- -- executed currently, because pragma AST_Entry does not permit
- -- the specification of an entry family.
-
- procedure Bad_AST_Entry;
- -- Signal a bad AST_Entry pragma
-
- function OK_Entry (E : Entity_Id) return Boolean;
- -- Checks that E is of an appropriate entity kind for an entry
- -- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
- -- is set True for the entry family case). In the True case,
- -- makes sure that Is_AST_Entry is set on the entry.
-
- procedure Bad_AST_Entry is
- begin
- Error_Attr ("prefix for % attribute must be task entry", P);
- end Bad_AST_Entry;
-
- function OK_Entry (E : Entity_Id) return Boolean is
- Result : Boolean;
-
- begin
- if Indexed then
- Result := (Ekind (E) = E_Entry_Family);
- else
- Result := (Ekind (E) = E_Entry);
- end if;
-
- if Result then
- if not Is_AST_Entry (E) then
- Error_Msg_Name_2 := Aname;
- Error_Attr
- ("% attribute requires previous % pragma", P);
- end if;
- end if;
-
- return Result;
- end OK_Entry;
-
- -- Start of processing for AST_Entry
-
- begin
- Check_VMS (N);
- Check_E0;
-
- -- Deal with entry family case
-
- if Nkind (P) = N_Indexed_Component then
- Pref := Prefix (P);
- Indexed := True;
- else
- Pref := P;
- Indexed := False;
- end if;
-
- Ptyp := Etype (Pref);
-
- if Ptyp = Any_Type or else Error_Posted (Pref) then
- return;
- end if;
-
- -- If the prefix is a selected component whose prefix is of an
- -- access type, then introduce an explicit dereference.
- -- ??? Could we reuse Check_Dereference here?
-
- if Nkind (Pref) = N_Selected_Component
- and then Is_Access_Type (Ptyp)
- then
- Rewrite (Pref,
- Make_Explicit_Dereference (Sloc (Pref),
- Relocate_Node (Pref)));
- Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
- end if;
-
- -- Prefix can be of the form a.b, where a is a task object
- -- and b is one of the entries of the corresponding task type.
-
- if Nkind (Pref) = N_Selected_Component
- and then OK_Entry (Entity (Selector_Name (Pref)))
- and then Is_Object_Reference (Prefix (Pref))
- and then Is_Task_Type (Etype (Prefix (Pref)))
- then
- null;
-
- -- Otherwise the prefix must be an entry of a containing task,
- -- or of a variable of the enclosing task type.
-
- else
- if Nkind (Pref) = N_Identifier
- or else Nkind (Pref) = N_Expanded_Name
- then
- Ent := Entity (Pref);
-
- if not OK_Entry (Ent)
- or else not In_Open_Scopes (Scope (Ent))
- then
- Bad_AST_Entry;
- end if;
-
- else
- Bad_AST_Entry;
- end if;
- end if;
-
- Set_Etype (N, RTE (RE_AST_Handler));
- end AST_Entry;
-
- ----------
- -- Base --
- ----------
-
- -- Note: when the base attribute appears in the context of a subtype
- -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
- -- the following circuit.
-
- when Attribute_Base => Base : declare
- Typ : Entity_Id;
-
- begin
- Check_Either_E0_Or_E1;
- Find_Type (P);
- Typ := Entity (P);
-
- if Ada_Version >= Ada_95
- and then not Is_Scalar_Type (Typ)
- and then not Is_Generic_Type (Typ)
- then
- Error_Msg_N ("prefix of Base attribute must be scalar type", N);
-
- elsif Sloc (Typ) = Standard_Location
- and then Base_Type (Typ) = Typ
- and then Warn_On_Redundant_Constructs
- then
- Error_Msg_NE
- ("?redudant attribute, & is its own base type", N, Typ);
- end if;
-
- Set_Etype (N, Base_Type (Entity (P)));
-
- -- If we have an expression present, then really this is a conversion
- -- and the tree must be reformed. Note that this is one of the cases
- -- in which we do a replace rather than a rewrite, because the
- -- original tree is junk.
-
- if Present (E1) then
- Replace (N,
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- Make_Attribute_Reference (Loc,
- Prefix => Prefix (N),
- Attribute_Name => Name_Base),
- Expression => Relocate_Node (E1)));
-
- -- E1 may be overloaded, and its interpretations preserved
-
- Save_Interps (E1, Expression (N));
- Analyze (N);
-
- -- For other cases, set the proper type as the entity of the
- -- attribute reference, and then rewrite the node to be an
- -- occurrence of the referenced base type. This way, no one
- -- else in the compiler has to worry about the base attribute.
-
- else
- Set_Entity (N, Base_Type (Entity (P)));
- Rewrite (N,
- New_Reference_To (Entity (N), Loc));
- Analyze (N);
- end if;
- end Base;
-
- ---------
- -- Bit --
- ---------
-
- when Attribute_Bit => Bit :
- begin
- Check_E0;
-
- if not Is_Object_Reference (P) then
- Error_Attr ("prefix for % attribute must be object", P);
-
- -- What about the access object cases ???
-
- else
- null;
- end if;
-
- Set_Etype (N, Universal_Integer);
- end Bit;
-
- ---------------
- -- Bit_Order --
- ---------------
-
- when Attribute_Bit_Order => Bit_Order :
- begin
- Check_E0;
- Check_Type;
-
- if not Is_Record_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be record type", P);
- end if;
-
- if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
- Rewrite (N,
- New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
- else
- Rewrite (N,
- New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
- end if;
-
- Set_Etype (N, RTE (RE_Bit_Order));
- Resolve (N);
-
- -- Reset incorrect indication of staticness
-
- Set_Is_Static_Expression (N, False);
- end Bit_Order;
-
- ------------------
- -- Bit_Position --
- ------------------
-
- -- Note: in generated code, we can have a Bit_Position attribute
- -- applied to a (naked) record component (i.e. the prefix is an
- -- identifier that references an E_Component or E_Discriminant
- -- entity directly, and this is interpreted as expected by Gigi.
- -- The following code will not tolerate such usage, but when the
- -- expander creates this special case, it marks it as analyzed
- -- immediately and sets an appropriate type.
-
- when Attribute_Bit_Position =>
-
- if Comes_From_Source (N) then
- Check_Component;
- end if;
-
- Set_Etype (N, Universal_Integer);
-
- ------------------
- -- Body_Version --
- ------------------
-
- when Attribute_Body_Version =>
- Check_E0;
- Check_Program_Unit;
- Set_Etype (N, RTE (RE_Version_String));
-
- --------------
- -- Callable --
- --------------
-
- when Attribute_Callable =>
- Check_E0;
- Set_Etype (N, Standard_Boolean);
- Check_Task_Prefix;
-
- ------------
- -- Caller --
- ------------
-
- when Attribute_Caller => Caller : declare
- Ent : Entity_Id;
- S : Entity_Id;
-
- begin
- Check_E0;
-
- if Nkind (P) = N_Identifier
- or else Nkind (P) = N_Expanded_Name
- then
- Ent := Entity (P);
-
- if not Is_Entry (Ent) then
- Error_Attr ("invalid entry name", N);
- end if;
-
- else
- Error_Attr ("invalid entry name", N);
- return;
- end if;
-
- for J in reverse 0 .. Scope_Stack.Last loop
- S := Scope_Stack.Table (J).Entity;
-
- if S = Scope (Ent) then
- Error_Attr ("Caller must appear in matching accept or body", N);
- elsif S = Ent then
- exit;
- end if;
- end loop;
-
- Set_Etype (N, RTE (RO_AT_Task_Id));
- end Caller;
-
- -------------
- -- Ceiling --
- -------------
-
- when Attribute_Ceiling =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- -----------
- -- Class --
- -----------
-
- when Attribute_Class => Class : declare
- P : constant Entity_Id := Prefix (N);
-
- begin
- Check_Restriction (No_Dispatch, N);
- Check_Either_E0_Or_E1;
-
- -- If we have an expression present, then really this is a conversion
- -- and the tree must be reformed into a proper conversion. This is a
- -- Replace rather than a Rewrite, because the original tree is junk.
- -- If expression is overloaded, propagate interpretations to new one.
-
- if Present (E1) then
- Replace (N,
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- Make_Attribute_Reference (Loc,
- Prefix => P,
- Attribute_Name => Name_Class),
- Expression => Relocate_Node (E1)));
-
- Save_Interps (E1, Expression (N));
-
- if not Is_Interface (Etype (P)) then
- Analyze (N);
-
- -- Ada 2005 (AI-251): In case of abstract interfaces we have to
- -- analyze and resolve the type conversion to generate the code
- -- that displaces the reference to the base of the object.
-
- else
- Analyze_And_Resolve (N, Etype (P));
- end if;
-
- -- Otherwise we just need to find the proper type
-
- else
- Find_Type (N);
- end if;
-
- end Class;
-
- ------------------
- -- Code_Address --
- ------------------
-
- when Attribute_Code_Address =>
- Check_E0;
-
- if Nkind (P) = N_Attribute_Reference
- and then (Attribute_Name (P) = Name_Elab_Body
- or else
- Attribute_Name (P) = Name_Elab_Spec)
- then
- null;
-
- elsif not Is_Entity_Name (P)
- or else (Ekind (Entity (P)) /= E_Function
- and then
- Ekind (Entity (P)) /= E_Procedure)
- then
- Error_Attr ("invalid prefix for % attribute", P);
- Set_Address_Taken (Entity (P));
- end if;
-
- Set_Etype (N, RTE (RE_Address));
-
- --------------------
- -- Component_Size --
- --------------------
-
- when Attribute_Component_Size =>
- Check_E0;
- Set_Etype (N, Universal_Integer);
-
- -- Note: unlike other array attributes, unconstrained arrays are OK
-
- if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
- null;
- else
- Check_Array_Type;
- end if;
-
- -------------
- -- Compose --
- -------------
-
- when Attribute_Compose =>
- Check_Floating_Point_Type_2;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
- Resolve (E2, Any_Integer);
-
- -----------------
- -- Constrained --
- -----------------
-
- when Attribute_Constrained =>
- Check_E0;
- Set_Etype (N, Standard_Boolean);
-
- -- Case from RM J.4(2) of constrained applied to private type
-
- if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
- Check_Restriction (No_Obsolescent_Features, N);
-
- if Warn_On_Obsolescent_Feature then
- Error_Msg_N
- ("constrained for private type is an " &
- "obsolescent feature ('R'M 'J.4)?", N);
- end if;
-
- -- If we are within an instance, the attribute must be legal
- -- because it was valid in the generic unit. Ditto if this is
- -- an inlining of a function declared in an instance.
-
- if In_Instance
- or else In_Inlined_Body
- then
- return;
-
- -- For sure OK if we have a real private type itself, but must
- -- be completed, cannot apply Constrained to incomplete type.
-
- elsif Is_Private_Type (Entity (P)) then
-
- -- Note: this is one of the Annex J features that does not
- -- generate a warning from -gnatwj, since in fact it seems
- -- very useful, and is used in the GNAT runtime.
-
- Check_Not_Incomplete_Type;
- return;
- end if;
-
- -- Normal (non-obsolescent case) of application to object of
- -- a discriminated type.
-
- else
- Check_Object_Reference (P);
-
- -- If N does not come from source, then we allow the
- -- the attribute prefix to be of a private type whose
- -- full type has discriminants. This occurs in cases
- -- involving expanded calls to stream attributes.
-
- if not Comes_From_Source (N) then
- P_Type := Underlying_Type (P_Type);
- end if;
-
- -- Must have discriminants or be an access type designating
- -- a type with discriminants. If it is a classwide type is
- -- has unknown discriminants.
-
- if Has_Discriminants (P_Type)
- or else Has_Unknown_Discriminants (P_Type)
- or else
- (Is_Access_Type (P_Type)
- and then Has_Discriminants (Designated_Type (P_Type)))
- then
- return;
-
- -- Also allow an object of a generic type if extensions allowed
- -- and allow this for any type at all.
-
- elsif (Is_Generic_Type (P_Type)
- or else Is_Generic_Actual_Type (P_Type))
- and then Extensions_Allowed
- then
- return;
- end if;
- end if;
-
- -- Fall through if bad prefix
-
- Error_Attr
- ("prefix of % attribute must be object of discriminated type", P);
-
- ---------------
- -- Copy_Sign --
- ---------------
-
- when Attribute_Copy_Sign =>
- Check_Floating_Point_Type_2;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
- Resolve (E2, P_Base_Type);
-
- -----------
- -- Count --
- -----------
-
- when Attribute_Count => Count :
- declare
- Ent : Entity_Id;
- S : Entity_Id;
- Tsk : Entity_Id;
-
- begin
- Check_E0;
-
- if Nkind (P) = N_Identifier
- or else Nkind (P) = N_Expanded_Name
- then
- Ent := Entity (P);
-
- if Ekind (Ent) /= E_Entry then
- Error_Attr ("invalid entry name", N);
- end if;
-
- elsif Nkind (P) = N_Indexed_Component then
- if not Is_Entity_Name (Prefix (P))
- or else No (Entity (Prefix (P)))
- or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
- then
- if Nkind (Prefix (P)) = N_Selected_Component
- and then Present (Entity (Selector_Name (Prefix (P))))
- and then Ekind (Entity (Selector_Name (Prefix (P)))) =
- E_Entry_Family
- then
- Error_Attr
- ("attribute % must apply to entry of current task", P);
-
- else
- Error_Attr ("invalid entry family name", P);
- end if;
- return;
-
- else
- Ent := Entity (Prefix (P));
- end if;
-
- elsif Nkind (P) = N_Selected_Component
- and then Present (Entity (Selector_Name (P)))
- and then Ekind (Entity (Selector_Name (P))) = E_Entry
- then
- Error_Attr
- ("attribute % must apply to entry of current task", P);
-
- else
- Error_Attr ("invalid entry name", N);
- return;
- end if;
-
- for J in reverse 0 .. Scope_Stack.Last loop
- S := Scope_Stack.Table (J).Entity;
-
- if S = Scope (Ent) then
- if Nkind (P) = N_Expanded_Name then
- Tsk := Entity (Prefix (P));
-
- -- The prefix denotes either the task type, or else a
- -- single task whose task type is being analyzed.
-
- if (Is_Type (Tsk)
- and then Tsk = S)
-
- or else (not Is_Type (Tsk)
- and then Etype (Tsk) = S
- and then not (Comes_From_Source (S)))
- then
- null;
- else
- Error_Attr
- ("Attribute % must apply to entry of current task", N);
- end if;
- end if;
-
- exit;
-
- elsif Ekind (Scope (Ent)) in Task_Kind
- and then Ekind (S) /= E_Loop
- and then Ekind (S) /= E_Block
- and then Ekind (S) /= E_Entry
- and then Ekind (S) /= E_Entry_Family
- then
- Error_Attr ("Attribute % cannot appear in inner unit", N);
-
- elsif Ekind (Scope (Ent)) = E_Protected_Type
- and then not Has_Completion (Scope (Ent))
- then
- Error_Attr ("attribute % can only be used inside body", N);
- end if;
- end loop;
-
- if Is_Overloaded (P) then
- declare
- Index : Interp_Index;
- It : Interp;
-
- begin
- Get_First_Interp (P, Index, It);
-
- while Present (It.Nam) loop
- if It.Nam = Ent then
- null;
-
- -- Ada 2005 (AI-345): Do not consider primitive entry
- -- wrappers generated for task or protected types.
-
- elsif Ada_Version >= Ada_05
- and then not Comes_From_Source (It.Nam)
- then
- null;
-
- else
- Error_Attr ("ambiguous entry name", N);
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end;
- end if;
-
- Set_Etype (N, Universal_Integer);
- end Count;
-
- -----------------------
- -- Default_Bit_Order --
- -----------------------
-
- when Attribute_Default_Bit_Order => Default_Bit_Order :
- begin
- Check_Standard_Prefix;
- Check_E0;
-
- if Bytes_Big_Endian then
- Rewrite (N,
- Make_Integer_Literal (Loc, False_Value));
- else
- Rewrite (N,
- Make_Integer_Literal (Loc, True_Value));
- end if;
-
- Set_Etype (N, Universal_Integer);
- Set_Is_Static_Expression (N);
- end Default_Bit_Order;
-
- --------------
- -- Definite --
- --------------
-
- when Attribute_Definite =>
- Legal_Formal_Attribute;
-
- -----------
- -- Delta --
- -----------
-
- when Attribute_Delta =>
- Check_Fixed_Point_Type_0;
- Set_Etype (N, Universal_Real);
-
- ------------
- -- Denorm --
- ------------
-
- when Attribute_Denorm =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Standard_Boolean);
-
- ------------
- -- Digits --
- ------------
-
- when Attribute_Digits =>
- Check_E0;
- Check_Type;
-
- if not Is_Floating_Point_Type (P_Type)
- and then not Is_Decimal_Fixed_Point_Type (P_Type)
- then
- Error_Attr
- ("prefix of % attribute must be float or decimal type", P);
- end if;
-
- Set_Etype (N, Universal_Integer);
-
- ---------------
- -- Elab_Body --
- ---------------
-
- -- Also handles processing for Elab_Spec
-
- when Attribute_Elab_Body | Attribute_Elab_Spec =>
- Check_E0;
- Check_Unit_Name (P);
- Set_Etype (N, Standard_Void_Type);
-
- -- We have to manually call the expander in this case to get
- -- the necessary expansion (normally attributes that return
- -- entities are not expanded).
-
- Expand (N);
-
- ---------------
- -- Elab_Spec --
- ---------------
-
- -- Shares processing with Elab_Body
-
- ----------------
- -- Elaborated --
- ----------------
-
- when Attribute_Elaborated =>
- Check_E0;
- Check_Library_Unit;
- Set_Etype (N, Standard_Boolean);
-
- ----------
- -- Emax --
- ----------
-
- when Attribute_Emax =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- --------------
- -- Enum_Rep --
- --------------
-
- when Attribute_Enum_Rep => Enum_Rep : declare
- begin
- if Present (E1) then
- Check_E1;
- Check_Discrete_Type;
- Resolve (E1, P_Base_Type);
-
- else
- if not Is_Entity_Name (P)
- or else (not Is_Object (Entity (P))
- and then
- Ekind (Entity (P)) /= E_Enumeration_Literal)
- then
- Error_Attr
- ("prefix of %attribute must be " &
- "discrete type/object or enum literal", P);
- end if;
- end if;
-
- Set_Etype (N, Universal_Integer);
- end Enum_Rep;
-
- -------------
- -- Epsilon --
- -------------
-
- when Attribute_Epsilon =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Real);
-
- --------------
- -- Exponent --
- --------------
-
- when Attribute_Exponent =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, Universal_Integer);
- Resolve (E1, P_Base_Type);
-
- ------------------
- -- External_Tag --
- ------------------
-
- when Attribute_External_Tag =>
- Check_E0;
- Check_Type;
-
- Set_Etype (N, Standard_String);
-
- if not Is_Tagged_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be tagged", P);
- end if;
-
- -----------
- -- First --
- -----------
-
- when Attribute_First =>
- Check_Array_Or_Scalar_Type;
-
- ---------------
- -- First_Bit --
- ---------------
-
- when Attribute_First_Bit =>
- Check_Component;
- Set_Etype (N, Universal_Integer);
-
- -----------------
- -- Fixed_Value --
- -----------------
-
- when Attribute_Fixed_Value =>
- Check_E1;
- Check_Fixed_Point_Type;
- Resolve (E1, Any_Integer);
- Set_Etype (N, P_Base_Type);
-
- -----------
- -- Floor --
- -----------
-
- when Attribute_Floor =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- ----------
- -- Fore --
- ----------
-
- when Attribute_Fore =>
- Check_Fixed_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- --------------
- -- Fraction --
- --------------
-
- when Attribute_Fraction =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- -----------------------
- -- Has_Access_Values --
- -----------------------
-
- when Attribute_Has_Access_Values =>
- Check_Type;
- Check_E0;
- Set_Etype (N, Standard_Boolean);
-
- -----------------------
- -- Has_Discriminants --
- -----------------------
-
- when Attribute_Has_Discriminants =>
- Legal_Formal_Attribute;
-
- --------------
- -- Identity --
- --------------
-
- when Attribute_Identity =>
- Check_E0;
- Analyze (P);
-
- if Etype (P) = Standard_Exception_Type then
- Set_Etype (N, RTE (RE_Exception_Id));
-
- -- Ada 2005 (AI-345): Attribute 'Identity may be applied to
- -- task interface class-wide types.
-
- elsif Is_Task_Type (Etype (P))
- or else (Is_Access_Type (Etype (P))
- and then Is_Task_Type (Designated_Type (Etype (P))))
- or else (Ada_Version >= Ada_05
- and then Ekind (Etype (P)) = E_Class_Wide_Type
- and then Is_Interface (Etype (P))
- and then Is_Task_Interface (Etype (P)))
- then
- Resolve (P);
- Set_Etype (N, RTE (RO_AT_Task_Id));
-
- else
- if Ada_Version >= Ada_05 then
- Error_Attr ("prefix of % attribute must be an exception, a "
- & "task or a task interface class-wide object", P);
- else
- Error_Attr ("prefix of % attribute must be a task or an "
- & "exception", P);
- end if;
- end if;
-
- -----------
- -- Image --
- -----------
-
- when Attribute_Image => Image :
- begin
- Set_Etype (N, Standard_String);
- Check_Scalar_Type;
-
- if Is_Real_Type (P_Type) then
- if Ada_Version = Ada_83 and then Comes_From_Source (N) then
- Error_Msg_Name_1 := Aname;
- Error_Msg_N
- ("(Ada 83) % attribute not allowed for real types", N);
- end if;
- end if;
-
- if Is_Enumeration_Type (P_Type) then
- Check_Restriction (No_Enumeration_Maps, N);
- end if;
-
- Check_E1;
- Resolve (E1, P_Base_Type);
- Check_Enum_Image;
- Validate_Non_Static_Attribute_Function_Call;
- end Image;
-
- ---------
- -- Img --
- ---------
-
- when Attribute_Img => Img :
- begin
- Set_Etype (N, Standard_String);
-
- if not Is_Scalar_Type (P_Type)
- or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
- then
- Error_Attr
- ("prefix of % attribute must be scalar object name", N);
- end if;
-
- Check_Enum_Image;
- end Img;
-
- -----------
- -- Input --
- -----------
-
- when Attribute_Input =>
- Check_E1;
- Check_Stream_Attribute (TSS_Stream_Input);
- Set_Etype (N, P_Base_Type);
-
- -------------------
- -- Integer_Value --
- -------------------
-
- when Attribute_Integer_Value =>
- Check_E1;
- Check_Integer_Type;
- Resolve (E1, Any_Fixed);
- Set_Etype (N, P_Base_Type);
-
- -----------
- -- Large --
- -----------
-
- when Attribute_Large =>
- Check_E0;
- Check_Real_Type;
- Set_Etype (N, Universal_Real);
-
- ----------
- -- Last --
- ----------
-
- when Attribute_Last =>
- Check_Array_Or_Scalar_Type;
-
- --------------
- -- Last_Bit --
- --------------
-
- when Attribute_Last_Bit =>
- Check_Component;
- Set_Etype (N, Universal_Integer);
-
- ------------------
- -- Leading_Part --
- ------------------
-
- when Attribute_Leading_Part =>
- Check_Floating_Point_Type_2;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
- Resolve (E2, Any_Integer);
-
- ------------
- -- Length --
- ------------
-
- when Attribute_Length =>
- Check_Array_Type;
- Set_Etype (N, Universal_Integer);
-
- -------------
- -- Machine --
- -------------
-
- when Attribute_Machine =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- ------------------
- -- Machine_Emax --
- ------------------
-
- when Attribute_Machine_Emax =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- ------------------
- -- Machine_Emin --
- ------------------
-
- when Attribute_Machine_Emin =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- ----------------------
- -- Machine_Mantissa --
- ----------------------
-
- when Attribute_Machine_Mantissa =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- -----------------------
- -- Machine_Overflows --
- -----------------------
-
- when Attribute_Machine_Overflows =>
- Check_Real_Type;
- Check_E0;
- Set_Etype (N, Standard_Boolean);
-
- -------------------
- -- Machine_Radix --
- -------------------
-
- when Attribute_Machine_Radix =>
- Check_Real_Type;
- Check_E0;
- Set_Etype (N, Universal_Integer);
-
- ----------------------
- -- Machine_Rounding --
- ----------------------
-
- when Attribute_Machine_Rounding =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- --------------------
- -- Machine_Rounds --
- --------------------
-
- when Attribute_Machine_Rounds =>
- Check_Real_Type;
- Check_E0;
- Set_Etype (N, Standard_Boolean);
-
- ------------------
- -- Machine_Size --
- ------------------
-
- when Attribute_Machine_Size =>
- Check_E0;
- Check_Type;
- Check_Not_Incomplete_Type;
- Set_Etype (N, Universal_Integer);
-
- --------------
- -- Mantissa --
- --------------
-
- when Attribute_Mantissa =>
- Check_E0;
- Check_Real_Type;
- Set_Etype (N, Universal_Integer);
-
- ---------
- -- Max --
- ---------
-
- when Attribute_Max =>
- Check_E2;
- Check_Scalar_Type;
- Resolve (E1, P_Base_Type);
- Resolve (E2, P_Base_Type);
- Set_Etype (N, P_Base_Type);
-
- ----------------------------------
- -- Max_Size_In_Storage_Elements --
- ----------------------------------
-
- when Attribute_Max_Size_In_Storage_Elements =>
- Check_E0;
- Check_Type;
- Check_Not_Incomplete_Type;
- Set_Etype (N, Universal_Integer);
-
- -----------------------
- -- Maximum_Alignment --
- -----------------------
-
- when Attribute_Maximum_Alignment =>
- Standard_Attribute (Ttypes.Maximum_Alignment);
-
- --------------------
- -- Mechanism_Code --
- --------------------
-
- when Attribute_Mechanism_Code =>
- if not Is_Entity_Name (P)
- or else not Is_Subprogram (Entity (P))
- then
- Error_Attr ("prefix of % attribute must be subprogram", P);
- end if;
-
- Check_Either_E0_Or_E1;
-
- if Present (E1) then
- Resolve (E1, Any_Integer);
- Set_Etype (E1, Standard_Integer);
-
- if not Is_Static_Expression (E1) then
- Flag_Non_Static_Expr
- ("expression for parameter number must be static!", E1);
- Error_Attr;
-
- elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
- or else UI_To_Int (Intval (E1)) < 0
- then
- Error_Attr ("invalid parameter number for %attribute", E1);
- end if;
- end if;
-
- Set_Etype (N, Universal_Integer);
-
- ---------
- -- Min --
- ---------
-
- when Attribute_Min =>
- Check_E2;
- Check_Scalar_Type;
- Resolve (E1, P_Base_Type);
- Resolve (E2, P_Base_Type);
- Set_Etype (N, P_Base_Type);
-
- ---------
- -- Mod --
- ---------
-
- when Attribute_Mod =>
-
- -- Note: this attribute is only allowed in Ada 2005 mode, but
- -- we do not need to test that here, since Mod is only recognized
- -- as an attribute name in Ada 2005 mode during the parse.
-
- Check_E1;
- Check_Modular_Integer_Type;
- Resolve (E1, Any_Integer);
- Set_Etype (N, P_Base_Type);
-
- -----------
- -- Model --
- -----------
-
- when Attribute_Model =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- ----------------
- -- Model_Emin --
- ----------------
-
- when Attribute_Model_Emin =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- -------------------
- -- Model_Epsilon --
- -------------------
-
- when Attribute_Model_Epsilon =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Real);
-
- --------------------
- -- Model_Mantissa --
- --------------------
-
- when Attribute_Model_Mantissa =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- -----------------
- -- Model_Small --
- -----------------
-
- when Attribute_Model_Small =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Real);
-
- -------------
- -- Modulus --
- -------------
-
- when Attribute_Modulus =>
- Check_E0;
- Check_Modular_Integer_Type;
- Set_Etype (N, Universal_Integer);
-
- --------------------
- -- Null_Parameter --
- --------------------
-
- when Attribute_Null_Parameter => Null_Parameter : declare
- Parnt : constant Node_Id := Parent (N);
- GParnt : constant Node_Id := Parent (Parnt);
-
- procedure Bad_Null_Parameter (Msg : String);
- -- Used if bad Null parameter attribute node is found. Issues
- -- given error message, and also sets the type to Any_Type to
- -- avoid blowups later on from dealing with a junk node.
-
- procedure Must_Be_Imported (Proc_Ent : Entity_Id);
- -- Called to check that Proc_Ent is imported subprogram
-
- ------------------------
- -- Bad_Null_Parameter --
- ------------------------
-
- procedure Bad_Null_Parameter (Msg : String) is
- begin
- Error_Msg_N (Msg, N);
- Set_Etype (N, Any_Type);
- end Bad_Null_Parameter;
-
- ----------------------
- -- Must_Be_Imported --
- ----------------------
-
- procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
- Pent : Entity_Id := Proc_Ent;
-
- begin
- while Present (Alias (Pent)) loop
- Pent := Alias (Pent);
- end loop;
-
- -- Ignore check if procedure not frozen yet (we will get
- -- another chance when the default parameter is reanalyzed)
-
- if not Is_Frozen (Pent) then
- return;
-
- elsif not Is_Imported (Pent) then
- Bad_Null_Parameter
- ("Null_Parameter can only be used with imported subprogram");
-
- else
- return;
- end if;
- end Must_Be_Imported;
-
- -- Start of processing for Null_Parameter
-
- begin
- Check_Type;
- Check_E0;
- Set_Etype (N, P_Type);
-
- -- Case of attribute used as default expression
-
- if Nkind (Parnt) = N_Parameter_Specification then
- Must_Be_Imported (Defining_Entity (GParnt));
-
- -- Case of attribute used as actual for subprogram (positional)
-
- elsif (Nkind (Parnt) = N_Procedure_Call_Statement
- or else
- Nkind (Parnt) = N_Function_Call)
- and then Is_Entity_Name (Name (Parnt))
- then
- Must_Be_Imported (Entity (Name (Parnt)));
-
- -- Case of attribute used as actual for subprogram (named)
-
- elsif Nkind (Parnt) = N_Parameter_Association
- and then (Nkind (GParnt) = N_Procedure_Call_Statement
- or else
- Nkind (GParnt) = N_Function_Call)
- and then Is_Entity_Name (Name (GParnt))
- then
- Must_Be_Imported (Entity (Name (GParnt)));
-
- -- Not an allowed case
-
- else
- Bad_Null_Parameter
- ("Null_Parameter must be actual or default parameter");
- end if;
-
- end Null_Parameter;
-
- -----------------
- -- Object_Size --
- -----------------
-
- when Attribute_Object_Size =>
- Check_E0;
- Check_Type;
- Check_Not_Incomplete_Type;
- Set_Etype (N, Universal_Integer);
-
- ------------
- -- Output --
- ------------
-
- when Attribute_Output =>
- Check_E2;
- Check_Stream_Attribute (TSS_Stream_Output);
- Set_Etype (N, Standard_Void_Type);
- Resolve (N, Standard_Void_Type);
-
- ------------------
- -- Partition_ID --
- ------------------
-
- when Attribute_Partition_ID =>
- Check_E0;
-
- if P_Type /= Any_Type then
- if not Is_Library_Level_Entity (Entity (P)) then
- Error_Attr
- ("prefix of % attribute must be library-level entity", P);
-
- -- The defining entity of prefix should not be declared inside
- -- a Pure unit. RM E.1(8).
- -- The Is_Pure flag has been set during declaration.
-
- elsif Is_Entity_Name (P)
- and then Is_Pure (Entity (P))
- then
- Error_Attr
- ("prefix of % attribute must not be declared pure", P);
- end if;
- end if;
-
- Set_Etype (N, Universal_Integer);
-
- -------------------------
- -- Passed_By_Reference --
- -------------------------
-
- when Attribute_Passed_By_Reference =>
- Check_E0;
- Check_Type;
- Set_Etype (N, Standard_Boolean);
-
- ------------------
- -- Pool_Address --
- ------------------
-
- when Attribute_Pool_Address =>
- Check_E0;
- Set_Etype (N, RTE (RE_Address));
-
- ---------
- -- Pos --
- ---------
-
- when Attribute_Pos =>
- Check_Discrete_Type;
- Check_E1;
- Resolve (E1, P_Base_Type);
- Set_Etype (N, Universal_Integer);
-
- --------------
- -- Position --
- --------------
-
- when Attribute_Position =>
- Check_Component;
- Set_Etype (N, Universal_Integer);
-
- ----------
- -- Pred --
- ----------
-
- when Attribute_Pred =>
- Check_Scalar_Type;
- Check_E1;
- Resolve (E1, P_Base_Type);
- Set_Etype (N, P_Base_Type);
-
- -- Nothing to do for real type case
-
- if Is_Real_Type (P_Type) then
- null;
-
- -- If not modular type, test for overflow check required
-
- else
- if not Is_Modular_Integer_Type (P_Type)
- and then not Range_Checks_Suppressed (P_Base_Type)
- then
- Enable_Range_Check (E1);
- end if;
- end if;
-
- -----------
- -- Range --
- -----------
-
- when Attribute_Range =>
- Check_Array_Or_Scalar_Type;
-
- if Ada_Version = Ada_83
- and then Is_Scalar_Type (P_Type)
- and then Comes_From_Source (N)
- then
- Error_Attr
- ("(Ada 83) % attribute not allowed for scalar type", P);
- end if;
-
- ------------------
- -- Range_Length --
- ------------------
-
- when Attribute_Range_Length =>
- Check_Discrete_Type;
- Set_Etype (N, Universal_Integer);
-
- ----------
- -- Read --
- ----------
-
- when Attribute_Read =>
- Check_E2;
- Check_Stream_Attribute (TSS_Stream_Read);
- Set_Etype (N, Standard_Void_Type);
- Resolve (N, Standard_Void_Type);
- Note_Possible_Modification (E2);
-
- ---------------
- -- Remainder --
- ---------------
-
- when Attribute_Remainder =>
- Check_Floating_Point_Type_2;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
- Resolve (E2, P_Base_Type);
-
- -----------
- -- Round --
- -----------
-
- when Attribute_Round =>
- Check_E1;
- Check_Decimal_Fixed_Point_Type;
- Set_Etype (N, P_Base_Type);
-
- -- Because the context is universal_real (3.5.10(12)) it is a legal
- -- context for a universal fixed expression. This is the only
- -- attribute whose functional description involves U_R.
-
- if Etype (E1) = Universal_Fixed then
- declare
- Conv : constant Node_Id := Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
- Expression => Relocate_Node (E1));
-
- begin
- Rewrite (E1, Conv);
- Analyze (E1);
- end;
- end if;
-
- Resolve (E1, Any_Real);
-
- --------------
- -- Rounding --
- --------------
-
- when Attribute_Rounding =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- ---------------
- -- Safe_Emax --
- ---------------
-
- when Attribute_Safe_Emax =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Integer);
-
- ----------------
- -- Safe_First --
- ----------------
-
- when Attribute_Safe_First =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Real);
-
- ----------------
- -- Safe_Large --
- ----------------
-
- when Attribute_Safe_Large =>
- Check_E0;
- Check_Real_Type;
- Set_Etype (N, Universal_Real);
-
- ---------------
- -- Safe_Last --
- ---------------
-
- when Attribute_Safe_Last =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Universal_Real);
-
- ----------------
- -- Safe_Small --
- ----------------
-
- when Attribute_Safe_Small =>
- Check_E0;
- Check_Real_Type;
- Set_Etype (N, Universal_Real);
-
- -----------
- -- Scale --
- -----------
-
- when Attribute_Scale =>
- Check_E0;
- Check_Decimal_Fixed_Point_Type;
- Set_Etype (N, Universal_Integer);
-
- -------------
- -- Scaling --
- -------------
-
- when Attribute_Scaling =>
- Check_Floating_Point_Type_2;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- ------------------
- -- Signed_Zeros --
- ------------------
-
- when Attribute_Signed_Zeros =>
- Check_Floating_Point_Type_0;
- Set_Etype (N, Standard_Boolean);
-
- ----------
- -- Size --
- ----------
-
- when Attribute_Size | Attribute_VADS_Size =>
- Check_E0;
-
- -- If prefix is parameterless function call, rewrite and resolve
- -- as such.
-
- if Is_Entity_Name (P)
- and then Ekind (Entity (P)) = E_Function
- then
- Resolve (P);
-
- -- Similar processing for a protected function call
-
- elsif Nkind (P) = N_Selected_Component
- and then Ekind (Entity (Selector_Name (P))) = E_Function
- then
- Resolve (P);
- end if;
-
- if Is_Object_Reference (P) then
- Check_Object_Reference (P);
-
- elsif Is_Entity_Name (P)
- and then (Is_Type (Entity (P))
- or else Ekind (Entity (P)) = E_Enumeration_Literal)
- then
- null;
-
- elsif Nkind (P) = N_Type_Conversion
- and then not Comes_From_Source (P)
- then
- null;
-
- else
- Error_Attr ("invalid prefix for % attribute", P);
- end if;
-
- Check_Not_Incomplete_Type;
- Set_Etype (N, Universal_Integer);
-
- -----------
- -- Small --
- -----------
-
- when Attribute_Small =>
- Check_E0;
- Check_Real_Type;
- Set_Etype (N, Universal_Real);
-
- ------------------
- -- Storage_Pool --
- ------------------
-
- when Attribute_Storage_Pool =>
- if Is_Access_Type (P_Type) then
- Check_E0;
-
- -- Set appropriate entity
-
- if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
- Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
- else
- Set_Entity (N, RTE (RE_Global_Pool_Object));
- end if;
-
- Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
-
- -- Validate_Remote_Access_To_Class_Wide_Type for attribute
- -- Storage_Pool since this attribute is not defined for such
- -- types (RM E.2.3(22)).
-
- Validate_Remote_Access_To_Class_Wide_Type (N);
-
- else
- Error_Attr ("prefix of % attribute must be access type", P);
- end if;
-
- ------------------
- -- Storage_Size --
- ------------------
-
- when Attribute_Storage_Size =>
-
- if Is_Task_Type (P_Type) then
- Check_E0;
- Set_Etype (N, Universal_Integer);
-
- elsif Is_Access_Type (P_Type) then
- if Is_Entity_Name (P)
- and then Is_Type (Entity (P))
- then
- Check_E0;
- Check_Type;
- Set_Etype (N, Universal_Integer);
-
- -- Validate_Remote_Access_To_Class_Wide_Type for attribute
- -- Storage_Size since this attribute is not defined for
- -- such types (RM E.2.3(22)).
-
- Validate_Remote_Access_To_Class_Wide_Type (N);
-
- -- The prefix is allowed to be an implicit dereference
- -- of an access value designating a task.
-
- else
- Check_E0;
- Check_Task_Prefix;
- Set_Etype (N, Universal_Integer);
- end if;
-
- else
- Error_Attr
- ("prefix of % attribute must be access or task type", P);
- end if;
-
- ------------------
- -- Storage_Unit --
- ------------------
-
- when Attribute_Storage_Unit =>
- Standard_Attribute (Ttypes.System_Storage_Unit);
-
- -----------------
- -- Stream_Size --
- -----------------
-
- when Attribute_Stream_Size =>
- Check_E0;
- Check_Type;
-
- if Is_Entity_Name (P)
- and then Is_Elementary_Type (Entity (P))
- then
- Set_Etype (N, Universal_Integer);
- else
- Error_Attr ("invalid prefix for % attribute", P);
- end if;
-
- ----------
- -- Succ --
- ----------
-
- when Attribute_Succ =>
- Check_Scalar_Type;
- Check_E1;
- Resolve (E1, P_Base_Type);
- Set_Etype (N, P_Base_Type);
-
- -- Nothing to do for real type case
-
- if Is_Real_Type (P_Type) then
- null;
-
- -- If not modular type, test for overflow check required
-
- else
- if not Is_Modular_Integer_Type (P_Type)
- and then not Range_Checks_Suppressed (P_Base_Type)
- then
- Enable_Range_Check (E1);
- end if;
- end if;
-
- ---------
- -- Tag --
- ---------
-
- when Attribute_Tag =>
- Check_E0;
- Check_Dereference;
-
- if not Is_Tagged_Type (P_Type) then
- Error_Attr ("prefix of % attribute must be tagged", P);
-
- -- Next test does not apply to generated code
- -- why not, and what does the illegal reference mean???
-
- elsif Is_Object_Reference (P)
- and then not Is_Class_Wide_Type (P_Type)
- and then Comes_From_Source (N)
- then
- Error_Attr
- ("% attribute can only be applied to objects of class-wide type",
- P);
- end if;
-
- Set_Etype (N, RTE (RE_Tag));
-
- -----------------
- -- Target_Name --
- -----------------
-
- when Attribute_Target_Name => Target_Name : declare
- TN : constant String := Sdefault.Target_Name.all;
- TL : Natural;
-
- begin
- Check_Standard_Prefix;
- Check_E0;
-
- TL := TN'Last;
-
- if TN (TL) = '/' or else TN (TL) = '\' then
- TL := TL - 1;
- end if;
-
- Rewrite (N,
- Make_String_Literal (Loc,
- Strval => TN (TN'First .. TL)));
- Analyze_And_Resolve (N, Standard_String);
- end Target_Name;
-
- ----------------
- -- Terminated --
- ----------------
-
- when Attribute_Terminated =>
- Check_E0;
- Set_Etype (N, Standard_Boolean);
- Check_Task_Prefix;
-
- ----------------
- -- To_Address --
- ----------------
-
- when Attribute_To_Address =>
- Check_E1;
- Analyze (P);
-
- if Nkind (P) /= N_Identifier
- or else Chars (P) /= Name_System
- then
- Error_Attr ("prefix of %attribute must be System", P);
- end if;
-
- Generate_Reference (RTE (RE_Address), P);
- Analyze_And_Resolve (E1, Any_Integer);
- Set_Etype (N, RTE (RE_Address));
-
- ----------------
- -- Truncation --
- ----------------
-
- when Attribute_Truncation =>
- Check_Floating_Point_Type_1;
- Resolve (E1, P_Base_Type);
- Set_Etype (N, P_Base_Type);
-
- ----------------
- -- Type_Class --
- ----------------
-
- when Attribute_Type_Class =>
- Check_E0;
- Check_Type;
- Check_Not_Incomplete_Type;
- Set_Etype (N, RTE (RE_Type_Class));
-
- -----------------
- -- UET_Address --
- -----------------
-
- when Attribute_UET_Address =>
- Check_E0;
- Check_Unit_Name (P);
- Set_Etype (N, RTE (RE_Address));
-
- -----------------------
- -- Unbiased_Rounding --
- -----------------------
-
- when Attribute_Unbiased_Rounding =>
- Check_Floating_Point_Type_1;
- Set_Etype (N, P_Base_Type);
- Resolve (E1, P_Base_Type);
-
- ----------------------
- -- Unchecked_Access --
- ----------------------
-
- when Attribute_Unchecked_Access =>
- if Comes_From_Source (N) then
- Check_Restriction (No_Unchecked_Access, N);
- end if;
-
- Analyze_Access_Attribute;
-
- -------------------------
- -- Unconstrained_Array --
- -------------------------
-
- when Attribute_Unconstrained_Array =>
- Check_E0;
- Check_Type;
- Check_Not_Incomplete_Type;
- Set_Etype (N, Standard_Boolean);
-
- ------------------------------
- -- Universal_Literal_String --
- ------------------------------
-
- -- This is a GNAT specific attribute whose prefix must be a named
- -- number where the expression is either a single numeric literal,
- -- or a numeric literal immediately preceded by a minus sign. The
- -- result is equivalent to a string literal containing the text of
- -- the literal as it appeared in the source program with a possible
- -- leading minus sign.
-
- when Attribute_Universal_Literal_String => Universal_Literal_String :
- begin
- Check_E0;
-
- if not Is_Entity_Name (P)
- or else Ekind (Entity (P)) not in Named_Kind
- then
- Error_Attr ("prefix for % attribute must be named number", P);
-
- else
- declare
- Expr : Node_Id;
- Negative : Boolean;
- S : Source_Ptr;
- Src : Source_Buffer_Ptr;
-
- begin
- Expr := Original_Node (Expression (Parent (Entity (P))));
-
- if Nkind (Expr) = N_Op_Minus then
- Negative := True;
- Expr := Original_Node (Right_Opnd (Expr));
- else
- Negative := False;
- end if;
-
- if Nkind (Expr) /= N_Integer_Literal
- and then Nkind (Expr) /= N_Real_Literal
- then
- Error_Attr
- ("named number for % attribute must be simple literal", N);
- end if;
-
- -- Build string literal corresponding to source literal text
-
- Start_String;
-
- if Negative then
- Store_String_Char (Get_Char_Code ('-'));
- end if;
-
- S := Sloc (Expr);
- Src := Source_Text (Get_Source_File_Index (S));
-
- while Src (S) /= ';' and then Src (S) /= ' ' loop
- Store_String_Char (Get_Char_Code (Src (S)));
- S := S + 1;
- end loop;
-
- -- Now we rewrite the attribute with the string literal
-
- Rewrite (N,
- Make_String_Literal (Loc, End_String));
- Analyze (N);
- end;
- end if;
- end Universal_Literal_String;
-
- -------------------------
- -- Unrestricted_Access --
- -------------------------
-
- -- This is a GNAT specific attribute which is like Access except that
- -- all scope checks and checks for aliased views are omitted.
-
- when Attribute_Unrestricted_Access =>
- if Comes_From_Source (N) then
- Check_Restriction (No_Unchecked_Access, N);
- end if;
-
- if Is_Entity_Name (P) then
- Set_Address_Taken (Entity (P));
- end if;
-
- Analyze_Access_Attribute;
-
- ---------
- -- Val --
- ---------
-
- when Attribute_Val => Val : declare
- begin
- Check_E1;
- Check_Discrete_Type;
- Resolve (E1, Any_Integer);
- Set_Etype (N, P_Base_Type);
-
- -- Note, we need a range check in general, but we wait for the
- -- Resolve call to do this, since we want to let Eval_Attribute
- -- have a chance to find an static illegality first!
- end Val;
-
- -----------
- -- Valid --
- -----------
-
- when Attribute_Valid =>
- Check_E0;
-
- -- Ignore check for object if we have a 'Valid reference generated
- -- by the expanded code, since in some cases valid checks can occur
- -- on items that are names, but are not objects (e.g. attributes).
-
- if Comes_From_Source (N) then
- Check_Object_Reference (P);
- end if;
-
- if not Is_Scalar_Type (P_Type) then
- Error_Attr ("object for % attribute must be of scalar type", P);
- end if;
-
- Set_Etype (N, Standard_Boolean);
-
- -----------
- -- Value --
- -----------
-
- when Attribute_Value => Value :
- begin
- Check_E1;
- Check_Scalar_Type;
-
- if Is_Enumeration_Type (P_Type) then
- Check_Restriction (No_Enumeration_Maps, N);
- end if;
-
- -- Set Etype before resolving expression because expansion of
- -- expression may require enclosing type. Note that the type
- -- returned by 'Value is the base type of the prefix type.
-
- Set_Etype (N, P_Base_Type);
- Validate_Non_Static_Attribute_Function_Call;
- end Value;
-
- ----------------
- -- Value_Size --
- ----------------
-
- when Attribute_Value_Size =>
- Check_E0;
- Check_Type;
- Check_Not_Incomplete_Type;
- Set_Etype (N, Universal_Integer);
-
- -------------
- -- Version --
- -------------
-
- when Attribute_Version =>
- Check_E0;
- Check_Program_Unit;
- Set_Etype (N, RTE (RE_Version_String));
-
- ------------------
- -- Wchar_T_Size --
- ------------------
-
- when Attribute_Wchar_T_Size =>
- Standard_Attribute (Interfaces_Wchar_T_Size);
-
- ----------------
- -- Wide_Image --
- ----------------
-
- when Attribute_Wide_Image => Wide_Image :
- begin
- Check_Scalar_Type;
- Set_Etype (N, Standard_Wide_String);
- Check_E1;
- Resolve (E1, P_Base_Type);
- Validate_Non_Static_Attribute_Function_Call;
- end Wide_Image;
-
- ---------------------
- -- Wide_Wide_Image --
- ---------------------
-
- when Attribute_Wide_Wide_Image => Wide_Wide_Image :
- begin
- Check_Scalar_Type;
- Set_Etype (N, Standard_Wide_Wide_String);
- Check_E1;
- Resolve (E1, P_Base_Type);
- Validate_Non_Static_Attribute_Function_Call;
- end Wide_Wide_Image;
-
- ----------------
- -- Wide_Value --
- ----------------
-
- when Attribute_Wide_Value => Wide_Value :
- begin
- Check_E1;
- Check_Scalar_Type;
-
- -- Set Etype before resolving expression because expansion
- -- of expression may require enclosing type.
-
- Set_Etype (N, P_Type);
- Validate_Non_Static_Attribute_Function_Call;
- end Wide_Value;
-
- ---------------------
- -- Wide_Wide_Value --
- ---------------------
-
- when Attribute_Wide_Wide_Value => Wide_Wide_Value :
- begin
- Check_E1;
- Check_Scalar_Type;
-
- -- Set Etype before resolving expression because expansion
- -- of expression may require enclosing type.
-
- Set_Etype (N, P_Type);
- Validate_Non_Static_Attribute_Function_Call;
- end Wide_Wide_Value;
-
- ---------------------
- -- Wide_Wide_Width --
- ---------------------
-
- when Attribute_Wide_Wide_Width =>
- Check_E0;
- Check_Scalar_Type;
- Set_Etype (N, Universal_Integer);
-
- ----------------
- -- Wide_Width --
- ----------------
-
- when Attribute_Wide_Width =>
- Check_E0;
- Check_Scalar_Type;
- Set_Etype (N, Universal_Integer);
-
- -----------
- -- Width --
- -----------
-
- when Attribute_Width =>
- Check_E0;
- Check_Scalar_Type;
- Set_Etype (N, Universal_Integer);
-
- ---------------
- -- Word_Size --
- ---------------
-
- when Attribute_Word_Size =>
- Standard_Attribute (System_Word_Size);
-
- -----------
- -- Write --
- -----------
-
- when Attribute_Write =>
- Check_E2;
- Check_Stream_Attribute (TSS_Stream_Write);
- Set_Etype (N, Standard_Void_Type);
- Resolve (N, Standard_Void_Type);
-
- end case;
-
- -- All errors raise Bad_Attribute, so that we get out before any further
- -- damage occurs when an error is detected (for example, if we check for
- -- one attribute expression, and the check succeeds, we want to be able
- -- to proceed securely assuming that an expression is in fact present.
-
- -- Note: we set the attribute analyzed in this case to prevent any
- -- attempt at reanalysis which could generate spurious error msgs.
-
- exception
- when Bad_Attribute =>
- Set_Analyzed (N);
- Set_Etype (N, Any_Type);
- return;
- end Analyze_Attribute;
-
- --------------------
- -- Eval_Attribute --
- --------------------
-
- procedure Eval_Attribute (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Aname : constant Name_Id := Attribute_Name (N);
- Id : constant Attribute_Id := Get_Attribute_Id (Aname);
- P : constant Node_Id := Prefix (N);
-
- C_Type : constant Entity_Id := Etype (N);
- -- The type imposed by the context
-
- E1 : Node_Id;
- -- First expression, or Empty if none
-
- E2 : Node_Id;
- -- Second expression, or Empty if none
-
- P_Entity : Entity_Id;
- -- Entity denoted by prefix
-
- P_Type : Entity_Id;
- -- The type of the prefix
-
- P_Base_Type : Entity_Id;
- -- The base type of the prefix type
-
- P_Root_Type : Entity_Id;
- -- The root type of the prefix type
-
- Static : Boolean;
- -- True if the result is Static. This is set by the general processing
- -- to true if the prefix is static, and all expressions are static. It
- -- can be reset as processing continues for particular attributes
-
- Lo_Bound, Hi_Bound : Node_Id;
- -- Expressions for low and high bounds of type or array index referenced
- -- by First, Last, or Length attribute for array, set by Set_Bounds.
-
- CE_Node : Node_Id;
- -- Constraint error node used if we have an attribute reference has
- -- an argument that raises a constraint error. In this case we replace
- -- the attribute with a raise constraint_error node. This is important
- -- processing, since otherwise gigi might see an attribute which it is
- -- unprepared to deal with.
-
- function Aft_Value return Nat;
- -- Computes Aft value for current attribute prefix (used by Aft itself
- -- and also by Width for computing the Width of a fixed point type).
-
- procedure Check_Expressions;
- -- In case where the attribute is not foldable, the expressions, if
- -- any, of the attribute, are in a non-static context. This procedure
- -- performs the required additional checks.
-
- function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
- -- Determines if the given type has compile time known bounds. Note
- -- that we enter the case statement even in cases where the prefix
- -- type does NOT have known bounds, so it is important to guard any
- -- attempt to evaluate both bounds with a call to this function.
-
- procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
- -- This procedure is called when the attribute N has a non-static
- -- but compile time known value given by Val. It includes the
- -- necessary checks for out of range values.
-
- procedure Float_Attribute_Universal_Integer
- (IEEES_Val : Int;
- IEEEL_Val : Int;
- IEEEX_Val : Int;
- VAXFF_Val : Int;
- VAXDF_Val : Int;
- VAXGF_Val : Int;
- AAMPS_Val : Int;
- AAMPL_Val : Int);
- -- This procedure evaluates a float attribute with no arguments that
- -- returns a universal integer result. The parameters give the values
- -- for the possible floating-point root types. See ttypef for details.
- -- The prefix type is a float type (and is thus not a generic type).
-
- procedure Float_Attribute_Universal_Real
- (IEEES_Val : String;
- IEEEL_Val : String;
- IEEEX_Val : String;
- VAXFF_Val : String;
- VAXDF_Val : String;
- VAXGF_Val : String;
- AAMPS_Val : String;
- AAMPL_Val : String);
- -- This procedure evaluates a float attribute with no arguments that
- -- returns a universal real result. The parameters give the values
- -- required for the possible floating-point root types in string
- -- format as real literals with a possible leading minus sign.
- -- The prefix type is a float type (and is thus not a generic type).
-
- function Fore_Value return Nat;
- -- Computes the Fore value for the current attribute prefix, which is
- -- known to be a static fixed-point type. Used by Fore and Width.
-
- function Mantissa return Uint;
- -- Returns the Mantissa value for the prefix type
-
- procedure Set_Bounds;
- -- Used for First, Last and Length attributes applied to an array or
- -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
- -- and high bound expressions for the index referenced by the attribute
- -- designator (i.e. the first index if no expression is present, and
- -- the N'th index if the value N is present as an expression). Also
- -- used for First and Last of scalar types. Static is reset to False
- -- if the type or index type is not statically constrained.
-
- function Statically_Denotes_Entity (N : Node_Id) return Boolean;
- -- Verify that the prefix of a potentially static array attribute
- -- satisfies the conditions of 4.9 (14).
-
- ---------------
- -- Aft_Value --
- ---------------
-
- function Aft_Value return Nat is
- Result : Nat;
- Delta_Val : Ureal;
-
- begin
- Result := 1;
- Delta_Val := Delta_Value (P_Type);
-
- while Delta_Val < Ureal_Tenth loop
- Delta_Val := Delta_Val * Ureal_10;
- Result := Result + 1;
- end loop;
-
- return Result;
- end Aft_Value;
-
- -----------------------
- -- Check_Expressions --
- -----------------------
-
- procedure Check_Expressions is
- E : Node_Id := E1;
-
- begin
- while Present (E) loop
- Check_Non_Static_Context (E);
- Next (E);
- end loop;
- end Check_Expressions;
-
- ----------------------------------
- -- Compile_Time_Known_Attribute --
- ----------------------------------
-
- procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
- T : constant Entity_Id := Etype (N);
-
- begin
- Fold_Uint (N, Val, False);
-
- -- Check that result is in bounds of the type if it is static
-
- if Is_In_Range (N, T) then
- null;
-
- elsif Is_Out_Of_Range (N, T) then
- Apply_Compile_Time_Constraint_Error
- (N, "value not in range of}?", CE_Range_Check_Failed);
-
- elsif not Range_Checks_Suppressed (T) then
- Enable_Range_Check (N);
-
- else
- Set_Do_Range_Check (N, False);
- end if;
- end Compile_Time_Known_Attribute;
-
- -------------------------------
- -- Compile_Time_Known_Bounds --
- -------------------------------
-
- function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
- begin
- return
- Compile_Time_Known_Value (Type_Low_Bound (Typ))
- and then
- Compile_Time_Known_Value (Type_High_Bound (Typ));
- end Compile_Time_Known_Bounds;
-
- ---------------------------------------
- -- Float_Attribute_Universal_Integer --
- ---------------------------------------
-
- procedure Float_Attribute_Universal_Integer
- (IEEES_Val : Int;
- IEEEL_Val : Int;
- IEEEX_Val : Int;
- VAXFF_Val : Int;
- VAXDF_Val : Int;
- VAXGF_Val : Int;
- AAMPS_Val : Int;
- AAMPL_Val : Int)
- is
- Val : Int;
- Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
-
- begin
- if Vax_Float (P_Base_Type) then
- if Digs = VAXFF_Digits then
- Val := VAXFF_Val;
- elsif Digs = VAXDF_Digits then
- Val := VAXDF_Val;
- else pragma Assert (Digs = VAXGF_Digits);
- Val := VAXGF_Val;
- end if;
-
- elsif Is_AAMP_Float (P_Base_Type) then
- if Digs = AAMPS_Digits then
- Val := AAMPS_Val;
- else pragma Assert (Digs = AAMPL_Digits);
- Val := AAMPL_Val;
- end if;
-
- else
- if Digs = IEEES_Digits then
- Val := IEEES_Val;
- elsif Digs = IEEEL_Digits then
- Val := IEEEL_Val;
- else pragma Assert (Digs = IEEEX_Digits);
- Val := IEEEX_Val;
- end if;
- end if;
-
- Fold_Uint (N, UI_From_Int (Val), True);
- end Float_Attribute_Universal_Integer;
-
- ------------------------------------
- -- Float_Attribute_Universal_Real --
- ------------------------------------
-
- procedure Float_Attribute_Universal_Real
- (IEEES_Val : String;
- IEEEL_Val : String;
- IEEEX_Val : String;
- VAXFF_Val : String;
- VAXDF_Val : String;
- VAXGF_Val : String;
- AAMPS_Val : String;
- AAMPL_Val : String)
- is
- Val : Node_Id;
- Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
-
- begin
- if Vax_Float (P_Base_Type) then
- if Digs = VAXFF_Digits then
- Val := Real_Convert (VAXFF_Val);
- elsif Digs = VAXDF_Digits then
- Val := Real_Convert (VAXDF_Val);
- else pragma Assert (Digs = VAXGF_Digits);
- Val := Real_Convert (VAXGF_Val);
- end if;
-
- elsif Is_AAMP_Float (P_Base_Type) then
- if Digs = AAMPS_Digits then
- Val := Real_Convert (AAMPS_Val);
- else pragma Assert (Digs = AAMPL_Digits);
- Val := Real_Convert (AAMPL_Val);
- end if;
-
- else
- if Digs = IEEES_Digits then
- Val := Real_Convert (IEEES_Val);
- elsif Digs = IEEEL_Digits then
- Val := Real_Convert (IEEEL_Val);
- else pragma Assert (Digs = IEEEX_Digits);
- Val := Real_Convert (IEEEX_Val);
- end if;
- end if;
-
- Set_Sloc (Val, Loc);
- Rewrite (N, Val);
- Set_Is_Static_Expression (N, Static);
- Analyze_And_Resolve (N, C_Type);
- end Float_Attribute_Universal_Real;
-
- ----------------
- -- Fore_Value --
- ----------------
-
- -- Note that the Fore calculation is based on the actual values
- -- of the bounds, and does not take into account possible rounding.
-
- function Fore_Value return Nat is
- Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
- Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
- Small : constant Ureal := Small_Value (P_Type);
- Lo_Real : constant Ureal := Lo * Small;
- Hi_Real : constant Ureal := Hi * Small;
- T : Ureal;
- R : Nat;
-
- begin
- -- Bounds are given in terms of small units, so first compute
- -- proper values as reals.
-
- T := UR_Max (abs Lo_Real, abs Hi_Real);
- R := 2;
-
- -- Loop to compute proper value if more than one digit required
-
- while T >= Ureal_10 loop
- R := R + 1;
- T := T / Ureal_10;
- end loop;
-
- return R;
- end Fore_Value;
-
- --------------
- -- Mantissa --
- --------------
-
- -- Table of mantissa values accessed by function Computed using
- -- the relation:
-
- -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
-
- -- where D is T'Digits (RM83 3.5.7)
-
- Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
- 1 => 5,
- 2 => 8,
- 3 => 11,
- 4 => 15,
- 5 => 18,
- 6 => 21,
- 7 => 25,
- 8 => 28,
- 9 => 31,
- 10 => 35,
- 11 => 38,
- 12 => 41,
- 13 => 45,
- 14 => 48,
- 15 => 51,
- 16 => 55,
- 17 => 58,
- 18 => 61,
- 19 => 65,
- 20 => 68,
- 21 => 71,
- 22 => 75,
- 23 => 78,
- 24 => 81,
- 25 => 85,
- 26 => 88,
- 27 => 91,
- 28 => 95,
- 29 => 98,
- 30 => 101,
- 31 => 104,
- 32 => 108,
- 33 => 111,
- 34 => 114,
- 35 => 118,
- 36 => 121,
- 37 => 124,
- 38 => 128,
- 39 => 131,
- 40 => 134);
-
- function Mantissa return Uint is
- begin
- return
- UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
- end Mantissa;
-
- ----------------
- -- Set_Bounds --
- ----------------
-
- procedure Set_Bounds is
- Ndim : Nat;
- Indx : Node_Id;
- Ityp : Entity_Id;
-
- begin
- -- For a string literal subtype, we have to construct the bounds.
- -- Valid Ada code never applies attributes to string literals, but
- -- it is convenient to allow the expander to generate attribute
- -- references of this type (e.g. First and Last applied to a string
- -- literal).
-
- -- Note that the whole point of the E_String_Literal_Subtype is to
- -- avoid this construction of bounds, but the cases in which we
- -- have to materialize them are rare enough that we don't worry!
-
- -- The low bound is simply the low bound of the base type. The
- -- high bound is computed from the length of the string and this
- -- low bound.
-
- if Ekind (P_Type) = E_String_Literal_Subtype then
- Ityp := Etype (First_Index (Base_Type (P_Type)));
- Lo_Bound := Type_Low_Bound (Ityp);
-
- Hi_Bound :=
- Make_Integer_Literal (Sloc (P),
- Intval =>
- Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
-
- Set_Parent (Hi_Bound, P);
- Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
- return;
-
- -- For non-array case, just get bounds of scalar type
-
- elsif Is_Scalar_Type (P_Type) then
- Ityp := P_Type;
-
- -- For a fixed-point type, we must freeze to get the attributes
- -- of the fixed-point type set now so we can reference them.
-
- if Is_Fixed_Point_Type (P_Type)
- and then not Is_Frozen (Base_Type (P_Type))
- and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
- and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
- then
- Freeze_Fixed_Point_Type (Base_Type (P_Type));
- end if;
-
- -- For array case, get type of proper index
-
- else
- if No (E1) then
- Ndim := 1;
- else
- Ndim := UI_To_Int (Expr_Value (E1));
- end if;
-
- Indx := First_Index (P_Type);
- for J in 1 .. Ndim - 1 loop
- Next_Index (Indx);
- end loop;
-
- -- If no index type, get out (some other error occurred, and
- -- we don't have enough information to complete the job!)
-
- if No (Indx) then
- Lo_Bound := Error;
- Hi_Bound := Error;
- return;
- end if;
-
- Ityp := Etype (Indx);
- end if;
-
- -- A discrete range in an index constraint is allowed to be a
- -- subtype indication. This is syntactically a pain, but should
- -- not propagate to the entity for the corresponding index subtype.
- -- After checking that the subtype indication is legal, the range
- -- of the subtype indication should be transfered to the entity.
- -- The attributes for the bounds should remain the simple retrievals
- -- that they are now.
-
- Lo_Bound := Type_Low_Bound (Ityp);
- Hi_Bound := Type_High_Bound (Ityp);
-
- if not Is_Static_Subtype (Ityp) then
- Static := False;
- end if;
- end Set_Bounds;
-
- -------------------------------
- -- Statically_Denotes_Entity --
- -------------------------------
-
- function Statically_Denotes_Entity (N : Node_Id) return Boolean is
- E : Entity_Id;
-
- begin
- if not Is_Entity_Name (N) then
- return False;
- else
- E := Entity (N);
- end if;
-
- return
- Nkind (Parent (E)) /= N_Object_Renaming_Declaration
- or else Statically_Denotes_Entity (Renamed_Object (E));
- end Statically_Denotes_Entity;
-
- -- Start of processing for Eval_Attribute
-
- begin
- -- Acquire first two expressions (at the moment, no attributes
- -- take more than two expressions in any case).
-
- if Present (Expressions (N)) then
- E1 := First (Expressions (N));
- E2 := Next (E1);
- else
- E1 := Empty;
- E2 := Empty;
- end if;
-
- -- Special processing for cases where the prefix is an object. For
- -- this purpose, a string literal counts as an object (attributes
- -- of string literals can only appear in generated code).
-
- if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
-
- -- For Component_Size, the prefix is an array object, and we apply
- -- the attribute to the type of the object. This is allowed for
- -- both unconstrained and constrained arrays, since the bounds
- -- have no influence on the value of this attribute.
-
- if Id = Attribute_Component_Size then
- P_Entity := Etype (P);
-
- -- For First and Last, the prefix is an array object, and we apply
- -- the attribute to the type of the array, but we need a constrained
- -- type for this, so we use the actual subtype if available.
-
- elsif Id = Attribute_First
- or else
- Id = Attribute_Last
- or else
- Id = Attribute_Length
- then
- declare
- AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
-
- begin
- if Present (AS) and then Is_Constrained (AS) then
- P_Entity := AS;
-
- -- If we have an unconstrained type, cannot fold
-
- else
- Check_Expressions;
- return;
- end if;
- end;
-
- -- For Size, give size of object if available, otherwise we
- -- cannot fold Size.
-
- elsif Id = Attribute_Size then
- if Is_Entity_Name (P)
- and then Known_Esize (Entity (P))
- then
- Compile_Time_Known_Attribute (N, Esize (Entity (P)));
- return;
-
- else
- Check_Expressions;
- return;
- end if;
-
- -- For Alignment, give size of object if available, otherwise we
- -- cannot fold Alignment.
-
- elsif Id = Attribute_Alignment then
- if Is_Entity_Name (P)
- and then Known_Alignment (Entity (P))
- then
- Fold_Uint (N, Alignment (Entity (P)), False);
- return;
-
- else
- Check_Expressions;
- return;
- end if;
-
- -- No other attributes for objects are folded
-
- else
- Check_Expressions;
- return;
- end if;
-
- -- Cases where P is not an object. Cannot do anything if P is
- -- not the name of an entity.
-
- elsif not Is_Entity_Name (P) then
- Check_Expressions;
- return;
-
- -- Otherwise get prefix entity
-
- else
- P_Entity := Entity (P);
- end if;
-
- -- At this stage P_Entity is the entity to which the attribute
- -- is to be applied. This is usually simply the entity of the
- -- prefix, except in some cases of attributes for objects, where
- -- as described above, we apply the attribute to the object type.
-
- -- First foldable possibility is a scalar or array type (RM 4.9(7))
- -- that is not generic (generic types are eliminated by RM 4.9(25)).
- -- Note we allow non-static non-generic types at this stage as further
- -- described below.
-
- if Is_Type (P_Entity)
- and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
- and then (not Is_Generic_Type (P_Entity))
- then
- P_Type := P_Entity;
-
- -- Second foldable possibility is an array object (RM 4.9(8))
-
- elsif (Ekind (P_Entity) = E_Variable
- or else
- Ekind (P_Entity) = E_Constant)
- and then Is_Array_Type (Etype (P_Entity))
- and then (not Is_Generic_Type (Etype (P_Entity)))
- then
- P_Type := Etype (P_Entity);
-
- -- If the entity is an array constant with an unconstrained nominal
- -- subtype then get the type from the initial value. If the value has
- -- been expanded into assignments, there is no expression and the
- -- attribute reference remains dynamic.
- -- We could do better here and retrieve the type ???
-
- if Ekind (P_Entity) = E_Constant
- and then not Is_Constrained (P_Type)
- then
- if No (Constant_Value (P_Entity)) then
- return;
- else
- P_Type := Etype (Constant_Value (P_Entity));
- end if;
- end if;
-
- -- Definite must be folded if the prefix is not a generic type,
- -- that is to say if we are within an instantiation. Same processing
- -- applies to the GNAT attributes Has_Discriminants, Type_Class,
- -- and Unconstrained_Array.
-
- elsif (Id = Attribute_Definite
- or else
- Id = Attribute_Has_Access_Values
- or else
- Id = Attribute_Has_Discriminants
- or else
- Id = Attribute_Type_Class
- or else
- Id = Attribute_Unconstrained_Array)
- and then not Is_Generic_Type (P_Entity)
- then
- P_Type := P_Entity;
-
- -- We can fold 'Size applied to a type if the size is known
- -- (as happens for a size from an attribute definition clause).
- -- At this stage, this can happen only for types (e.g. record
- -- types) for which the size is always non-static. We exclude
- -- generic types from consideration (since they have bogus
- -- sizes set within templates).
-
- elsif Id = Attribute_Size
- and then Is_Type (P_Entity)
- and then (not Is_Generic_Type (P_Entity))
- and then Known_Static_RM_Size (P_Entity)
- then
- Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
- return;
-
- -- We can fold 'Alignment applied to a type if the alignment is known
- -- (as happens for an alignment from an attribute definition clause).
- -- At this stage, this can happen only for types (e.g. record
- -- types) for which the size is always non-static. We exclude
- -- generic types from consideration (since they have bogus
- -- sizes set within templates).
-
- elsif Id = Attribute_Alignment
- and then Is_Type (P_Entity)
- and then (not Is_Generic_Type (P_Entity))
- and then Known_Alignment (P_Entity)
- then
- Compile_Time_Known_Attribute (N, Alignment (P_Entity));
- return;
-
- -- If this is an access attribute that is known to fail accessibility
- -- check, rewrite accordingly.
-
- elsif Attribute_Name (N) = Name_Access
- and then Raises_Constraint_Error (N)
- then
- Rewrite (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Accessibility_Check_Failed));
- Set_Etype (N, C_Type);
- return;
-
- -- No other cases are foldable (they certainly aren't static, and at
- -- the moment we don't try to fold any cases other than these three).
-
- else
- Check_Expressions;
- return;
- end if;
-
- -- If either attribute or the prefix is Any_Type, then propagate
- -- Any_Type to the result and don't do anything else at all.
-
- if P_Type = Any_Type
- or else (Present (E1) and then Etype (E1) = Any_Type)
- or else (Present (E2) and then Etype (E2) = Any_Type)
- then
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- -- Scalar subtype case. We have not yet enforced the static requirement
- -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
- -- of non-static attribute references (e.g. S'Digits for a non-static
- -- floating-point type, which we can compute at compile time).
-
- -- Note: this folding of non-static attributes is not simply a case of
- -- optimization. For many of the attributes affected, Gigi cannot handle
- -- the attribute and depends on the front end having folded them away.
-
- -- Note: although we don't require staticness at this stage, we do set
- -- the Static variable to record the staticness, for easy reference by
- -- those attributes where it matters (e.g. Succ and Pred), and also to
- -- be used to ensure that non-static folded things are not marked as
- -- being static (a check that is done right at the end).
-
- P_Root_Type := Root_Type (P_Type);
- P_Base_Type := Base_Type (P_Type);
-
- -- If the root type or base type is generic, then we cannot fold. This
- -- test is needed because subtypes of generic types are not always
- -- marked as being generic themselves (which seems odd???)
-
- if Is_Generic_Type (P_Root_Type)
- or else Is_Generic_Type (P_Base_Type)
- then
- return;
- end if;
-
- if Is_Scalar_Type (P_Type) then
- Static := Is_OK_Static_Subtype (P_Type);
-
- -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
- -- since we can't do anything with unconstrained arrays. In addition,
- -- only the First, Last and Length attributes are possibly static.
-
- -- Definite, Has_Access_Values, Has_Discriminants, Type_Class, and
- -- Unconstrained_Array are again exceptions, because they apply as
- -- well to unconstrained types.
-
- -- In addition Component_Size is an exception since it is possibly
- -- foldable, even though it is never static, and it does apply to
- -- unconstrained arrays. Furthermore, it is essential to fold this
- -- in the packed case, since otherwise the value will be incorrect.
-
- elsif Id = Attribute_Definite
- or else
- Id = Attribute_Has_Access_Values
- or else
- Id = Attribute_Has_Discriminants
- or else
- Id = Attribute_Type_Class
- or else
- Id = Attribute_Unconstrained_Array
- or else
- Id = Attribute_Component_Size
- then
- Static := False;
-
- else
- if not Is_Constrained (P_Type)
- or else (Id /= Attribute_First and then
- Id /= Attribute_Last and then
- Id /= Attribute_Length)
- then
- Check_Expressions;
- return;
- end if;
-
- -- The rules in (RM 4.9(7,8)) require a static array, but as in the
- -- scalar case, we hold off on enforcing staticness, since there are
- -- cases which we can fold at compile time even though they are not
- -- static (e.g. 'Length applied to a static index, even though other
- -- non-static indexes make the array type non-static). This is only
- -- an optimization, but it falls out essentially free, so why not.
- -- Again we compute the variable Static for easy reference later
- -- (note that no array attributes are static in Ada 83).
-
- Static := Ada_Version >= Ada_95
- and then Statically_Denotes_Entity (P);
-
- declare
- N : Node_Id;
-
- begin
- N := First_Index (P_Type);
- while Present (N) loop
- Static := Static and then Is_Static_Subtype (Etype (N));
-
- -- If however the index type is generic, attributes cannot
- -- be folded.
-
- if Is_Generic_Type (Etype (N))
- and then Id /= Attribute_Component_Size
- then
- return;
- end if;
-
- Next_Index (N);
- end loop;
- end;
- end if;
-
- -- Check any expressions that are present. Note that these expressions,
- -- depending on the particular attribute type, are either part of the
- -- attribute designator, or they are arguments in a case where the
- -- attribute reference returns a function. In the latter case, the
- -- rule in (RM 4.9(22)) applies and in particular requires the type
- -- of the expressions to be scalar in order for the attribute to be
- -- considered to be static.
-
- declare
- E : Node_Id;
-
- begin
- E := E1;
- while Present (E) loop
-
- -- If expression is not static, then the attribute reference
- -- result certainly cannot be static.
-
- if not Is_Static_Expression (E) then
- Static := False;
- end if;
-
- -- If the result is not known at compile time, or is not of
- -- a scalar type, then the result is definitely not static,
- -- so we can quit now.
-
- if not Compile_Time_Known_Value (E)
- or else not Is_Scalar_Type (Etype (E))
- then
- -- An odd special case, if this is a Pos attribute, this
- -- is where we need to apply a range check since it does
- -- not get done anywhere else.
-
- if Id = Attribute_Pos then
- if Is_Integer_Type (Etype (E)) then
- Apply_Range_Check (E, Etype (N));
- end if;
- end if;
-
- Check_Expressions;
- return;
-
- -- If the expression raises a constraint error, then so does
- -- the attribute reference. We keep going in this case because
- -- we are still interested in whether the attribute reference
- -- is static even if it is not static.
-
- elsif Raises_Constraint_Error (E) then
- Set_Raises_Constraint_Error (N);
- end if;
-
- Next (E);
- end loop;
-
- if Raises_Constraint_Error (Prefix (N)) then
- return;
- end if;
- end;
-
- -- Deal with the case of a static attribute reference that raises
- -- constraint error. The Raises_Constraint_Error flag will already
- -- have been set, and the Static flag shows whether the attribute
- -- reference is static. In any case we certainly can't fold such an
- -- attribute reference.
-
- -- Note that the rewriting of the attribute node with the constraint
- -- error node is essential in this case, because otherwise Gigi might
- -- blow up on one of the attributes it never expects to see.
-
- -- The constraint_error node must have the type imposed by the context,
- -- to avoid spurious errors in the enclosing expression.
-
- if Raises_Constraint_Error (N) then
- CE_Node :=
- Make_Raise_Constraint_Error (Sloc (N),
- Reason => CE_Range_Check_Failed);
- Set_Etype (CE_Node, Etype (N));
- Set_Raises_Constraint_Error (CE_Node);
- Check_Expressions;
- Rewrite (N, Relocate_Node (CE_Node));
- Set_Is_Static_Expression (N, Static);
- return;
- end if;
-
- -- At this point we have a potentially foldable attribute reference.
- -- If Static is set, then the attribute reference definitely obeys
- -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
- -- folded. If Static is not set, then the attribute may or may not
- -- be foldable, and the individual attribute processing routines
- -- test Static as required in cases where it makes a difference.
-
- -- In the case where Static is not set, we do know that all the
- -- expressions present are at least known at compile time (we
- -- assumed above that if this was not the case, then there was
- -- no hope of static evaluation). However, we did not require
- -- that the bounds of the prefix type be compile time known,
- -- let alone static). That's because there are many attributes
- -- that can be computed at compile time on non-static subtypes,
- -- even though such references are not static expressions.
-
- case Id is
-
- --------------
- -- Adjacent --
- --------------
-
- when Attribute_Adjacent =>
- Fold_Ureal (N,
- Eval_Fat.Adjacent
- (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
-
- ---------
- -- Aft --
- ---------
-
- when Attribute_Aft =>
- Fold_Uint (N, UI_From_Int (Aft_Value), True);
-
- ---------------
- -- Alignment --
- ---------------
-
- when Attribute_Alignment => Alignment_Block : declare
- P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
-
- begin
- -- Fold if alignment is set and not otherwise
-
- if Known_Alignment (P_TypeA) then
- Fold_Uint (N, Alignment (P_TypeA), Is_Discrete_Type (P_TypeA));
- end if;
- end Alignment_Block;
-
- ---------------
- -- AST_Entry --
- ---------------
-
- -- Can only be folded in No_Ast_Handler case
-
- when Attribute_AST_Entry =>
- if not Is_AST_Entry (P_Entity) then
- Rewrite (N,
- New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
- else
- null;
- end if;
-
- ---------
- -- Bit --
- ---------
-
- -- Bit can never be folded
-
- when Attribute_Bit =>
- null;
-
- ------------------
- -- Body_Version --
- ------------------
-
- -- Body_version can never be static
-
- when Attribute_Body_Version =>
- null;
-
- -------------
- -- Ceiling --
- -------------
-
- when Attribute_Ceiling =>
- Fold_Ureal (N,
- Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)), Static);
-
- --------------------
- -- Component_Size --
- --------------------
-
- when Attribute_Component_Size =>
- if Known_Static_Component_Size (P_Type) then
- Fold_Uint (N, Component_Size (P_Type), False);
- end if;
-
- -------------
- -- Compose --
- -------------
-
- when Attribute_Compose =>
- Fold_Ureal (N,
- Eval_Fat.Compose
- (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)),
- Static);
-
- -----------------
- -- Constrained --
- -----------------
-
- -- Constrained is never folded for now, there may be cases that
- -- could be handled at compile time. to be looked at later.
-
- when Attribute_Constrained =>
- null;
-
- ---------------
- -- Copy_Sign --
- ---------------
-
- when Attribute_Copy_Sign =>
- Fold_Ureal (N,
- Eval_Fat.Copy_Sign
- (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
-
- -----------
- -- Delta --
- -----------
-
- when Attribute_Delta =>
- Fold_Ureal (N, Delta_Value (P_Type), True);
-
- --------------
- -- Definite --
- --------------
-
- when Attribute_Definite =>
- Rewrite (N, New_Occurrence_Of (
- Boolean_Literals (not Is_Indefinite_Subtype (P_Entity)), Loc));
- Analyze_And_Resolve (N, Standard_Boolean);
-
- ------------
- -- Denorm --
- ------------
-
- when Attribute_Denorm =>
- Fold_Uint
- (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)), True);
-
- ------------
- -- Digits --
- ------------
-
- when Attribute_Digits =>
- Fold_Uint (N, Digits_Value (P_Type), True);
-
- ----------
- -- Emax --
- ----------
-
- when Attribute_Emax =>
-
- -- Ada 83 attribute is defined as (RM83 3.5.8)
-
- -- T'Emax = 4 * T'Mantissa
-
- Fold_Uint (N, 4 * Mantissa, True);
-
- --------------
- -- Enum_Rep --
- --------------
-
- when Attribute_Enum_Rep =>
-
- -- For an enumeration type with a non-standard representation use
- -- the Enumeration_Rep field of the proper constant. Note that this
- -- will not work for types Character/Wide_[Wide-]Character, since no
- -- real entities are created for the enumeration literals, but that
- -- does not matter since these two types do not have non-standard
- -- representations anyway.
-
- if Is_Enumeration_Type (P_Type)
- and then Has_Non_Standard_Rep (P_Type)
- then
- Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)), Static);
-
- -- For enumeration types with standard representations and all
- -- other cases (i.e. all integer and modular types), Enum_Rep
- -- is equivalent to Pos.
-
- else
- Fold_Uint (N, Expr_Value (E1), Static);
- end if;
-
- -------------
- -- Epsilon --
- -------------
-
- when Attribute_Epsilon =>
-
- -- Ada 83 attribute is defined as (RM83 3.5.8)
-
- -- T'Epsilon = 2.0**(1 - T'Mantissa)
-
- Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
-
- --------------
- -- Exponent --
- --------------
-
- when Attribute_Exponent =>
- Fold_Uint (N,
- Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)), Static);
-
- -----------
- -- First --
- -----------
-
- when Attribute_First => First_Attr :
- begin
- Set_Bounds;
-
- if Compile_Time_Known_Value (Lo_Bound) then
- if Is_Real_Type (P_Type) then
- Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
- else
- Fold_Uint (N, Expr_Value (Lo_Bound), Static);
- end if;
- end if;
- end First_Attr;
-
- -----------------
- -- Fixed_Value --
- -----------------
-
- when Attribute_Fixed_Value =>
- null;
-
- -----------
- -- Floor --
- -----------
-
- when Attribute_Floor =>
- Fold_Ureal (N,
- Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)), Static);
-
- ----------
- -- Fore --
- ----------
-
- when Attribute_Fore =>
- if Compile_Time_Known_Bounds (P_Type) then
- Fold_Uint (N, UI_From_Int (Fore_Value), Static);
- end if;
-
- --------------
- -- Fraction --
- --------------
-
- when Attribute_Fraction =>
- Fold_Ureal (N,
- Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)), Static);
-
- -----------------------
- -- Has_Access_Values --
- -----------------------
-
- when Attribute_Has_Access_Values =>
- Rewrite (N, New_Occurrence_Of
- (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
- Analyze_And_Resolve (N, Standard_Boolean);
-
- -----------------------
- -- Has_Discriminants --
- -----------------------
-
- when Attribute_Has_Discriminants =>
- Rewrite (N, New_Occurrence_Of (
- Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
- Analyze_And_Resolve (N, Standard_Boolean);
-
- --------------
- -- Identity --
- --------------
-
- when Attribute_Identity =>
- null;
-
- -----------
- -- Image --
- -----------
-
- -- Image is a scalar attribute, but is never static, because it is
- -- not a static function (having a non-scalar argument (RM 4.9(22))
-
- when Attribute_Image =>
- null;
-
- ---------
- -- Img --
- ---------
-
- -- Img is a scalar attribute, but is never static, because it is
- -- not a static function (having a non-scalar argument (RM 4.9(22))
-
- when Attribute_Img =>
- null;
-
- -------------------
- -- Integer_Value --
- -------------------
-
- when Attribute_Integer_Value =>
- null;
-
- -----------
- -- Large --
- -----------
-
- when Attribute_Large =>
-
- -- For fixed-point, we use the identity:
-
- -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
-
- if Is_Fixed_Point_Type (P_Type) then
- Rewrite (N,
- Make_Op_Multiply (Loc,
- Left_Opnd =>
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Op_Expon (Loc,
- Left_Opnd =>
- Make_Real_Literal (Loc, Ureal_2),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => P,
- Attribute_Name => Name_Mantissa)),
- Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
-
- Right_Opnd =>
- Make_Real_Literal (Loc, Small_Value (Entity (P)))));
-
- Analyze_And_Resolve (N, C_Type);
-
- -- Floating-point (Ada 83 compatibility)
-
- else
- -- Ada 83 attribute is defined as (RM83 3.5.8)
-
- -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
-
- -- where
-
- -- T'Emax = 4 * T'Mantissa
-
- Fold_Ureal (N,
- Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
- True);
- end if;
-
- ----------
- -- Last --
- ----------
-
- when Attribute_Last => Last :
- begin
- Set_Bounds;
-
- if Compile_Time_Known_Value (Hi_Bound) then
- if Is_Real_Type (P_Type) then
- Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
- else
- Fold_Uint (N, Expr_Value (Hi_Bound), Static);
- end if;
- end if;
- end Last;
-
- ------------------
- -- Leading_Part --
- ------------------
-
- when Attribute_Leading_Part =>
- Fold_Ureal (N,
- Eval_Fat.Leading_Part
- (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
-
- ------------
- -- Length --
- ------------
-
- when Attribute_Length => Length : declare
- Ind : Node_Id;
-
- begin
- -- In the case of a generic index type, the bounds may
- -- appear static but the computation is not meaningful,
- -- and may generate a spurious warning.
-
- Ind := First_Index (P_Type);
-
- while Present (Ind) loop
- if Is_Generic_Type (Etype (Ind)) then
- return;
- end if;
-
- Next_Index (Ind);
- end loop;
-
- Set_Bounds;
-
- if Compile_Time_Known_Value (Lo_Bound)
- and then Compile_Time_Known_Value (Hi_Bound)
- then
- Fold_Uint (N,
- UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
- True);
- end if;
- end Length;
-
- -------------
- -- Machine --
- -------------
-
- when Attribute_Machine =>
- Fold_Ureal (N,
- Eval_Fat.Machine
- (P_Root_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
- Static);
-
- ------------------
- -- Machine_Emax --
- ------------------
-
- when Attribute_Machine_Emax =>
- Float_Attribute_Universal_Integer (
- IEEES_Machine_Emax,
- IEEEL_Machine_Emax,
- IEEEX_Machine_Emax,
- VAXFF_Machine_Emax,
- VAXDF_Machine_Emax,
- VAXGF_Machine_Emax,
- AAMPS_Machine_Emax,
- AAMPL_Machine_Emax);
-
- ------------------
- -- Machine_Emin --
- ------------------
-
- when Attribute_Machine_Emin =>
- Float_Attribute_Universal_Integer (
- IEEES_Machine_Emin,
- IEEEL_Machine_Emin,
- IEEEX_Machine_Emin,
- VAXFF_Machine_Emin,
- VAXDF_Machine_Emin,
- VAXGF_Machine_Emin,
- AAMPS_Machine_Emin,
- AAMPL_Machine_Emin);
-
- ----------------------
- -- Machine_Mantissa --
- ----------------------
-
- when Attribute_Machine_Mantissa =>
- Float_Attribute_Universal_Integer (
- IEEES_Machine_Mantissa,
- IEEEL_Machine_Mantissa,
- IEEEX_Machine_Mantissa,
- VAXFF_Machine_Mantissa,
- VAXDF_Machine_Mantissa,
- VAXGF_Machine_Mantissa,
- AAMPS_Machine_Mantissa,
- AAMPL_Machine_Mantissa);
-
- -----------------------
- -- Machine_Overflows --
- -----------------------
-
- when Attribute_Machine_Overflows =>
-
- -- Always true for fixed-point
-
- if Is_Fixed_Point_Type (P_Type) then
- Fold_Uint (N, True_Value, True);
-
- -- Floating point case
-
- else
- Fold_Uint (N,
- UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
- True);
- end if;
-
- -------------------
- -- Machine_Radix --
- -------------------
-
- when Attribute_Machine_Radix =>
- if Is_Fixed_Point_Type (P_Type) then
- if Is_Decimal_Fixed_Point_Type (P_Type)
- and then Machine_Radix_10 (P_Type)
- then
- Fold_Uint (N, Uint_10, True);
- else
- Fold_Uint (N, Uint_2, True);
- end if;
-
- -- All floating-point type always have radix 2
-
- else
- Fold_Uint (N, Uint_2, True);
- end if;
-
- ----------------------
- -- Machine_Rounding --
- ----------------------
-
- -- Note: for the folding case, it is fine to treat Machine_Rounding
- -- exactly the same way as Rounding, since this is one of the allowed
- -- behaviors, and performance is not an issue here. It might be a bit
- -- better to give the same result as it would give at run-time, even
- -- though the non-determinism is certainly permitted.
-
- when Attribute_Machine_Rounding =>
- Fold_Ureal (N,
- Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
-
- --------------------
- -- Machine_Rounds --
- --------------------
-
- when Attribute_Machine_Rounds =>
-
- -- Always False for fixed-point
-
- if Is_Fixed_Point_Type (P_Type) then
- Fold_Uint (N, False_Value, True);
-
- -- Else yield proper floating-point result
-
- else
- Fold_Uint
- (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)), True);
- end if;
-
- ------------------
- -- Machine_Size --
- ------------------
-
- -- Note: Machine_Size is identical to Object_Size
-
- when Attribute_Machine_Size => Machine_Size : declare
- P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
-
- begin
- if Known_Esize (P_TypeA) then
- Fold_Uint (N, Esize (P_TypeA), True);
- end if;
- end Machine_Size;
-
- --------------
- -- Mantissa --
- --------------
-
- when Attribute_Mantissa =>
-
- -- Fixed-point mantissa
-
- if Is_Fixed_Point_Type (P_Type) then
-
- -- Compile time foldable case
-
- if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
- and then
- Compile_Time_Known_Value (Type_High_Bound (P_Type))
- then
- -- The calculation of the obsolete Ada 83 attribute Mantissa
- -- is annoying, because of AI00143, quoted here:
-
- -- !question 84-01-10
-
- -- Consider the model numbers for F:
-
- -- type F is delta 1.0 range -7.0 .. 8.0;
-
- -- The wording requires that F'MANTISSA be the SMALLEST
- -- integer number for which each bound of the specified
- -- range is either a model number or lies at most small
- -- distant from a model number. This means F'MANTISSA
- -- is required to be 3 since the range -7.0 .. 7.0 fits
- -- in 3 signed bits, and 8 is "at most" 1.0 from a model
- -- number, namely, 7. Is this analysis correct? Note that
- -- this implies the upper bound of the range is not
- -- represented as a model number.
-
- -- !response 84-03-17
-
- -- The analysis is correct. The upper and lower bounds for
- -- a fixed point type can lie outside the range of model
- -- numbers.
-
- declare
- Siz : Uint;
- LBound : Ureal;
- UBound : Ureal;
- Bound : Ureal;
- Max_Man : Uint;
-
- begin
- LBound := Expr_Value_R (Type_Low_Bound (P_Type));
- UBound := Expr_Value_R (Type_High_Bound (P_Type));
- Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
- Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
-
- -- If the Bound is exactly a model number, i.e. a multiple
- -- of Small, then we back it off by one to get the integer
- -- value that must be representable.
-
- if Small_Value (P_Type) * Max_Man = Bound then
- Max_Man := Max_Man - 1;
- end if;
-
- -- Now find corresponding size = Mantissa value
-
- Siz := Uint_0;
- while 2 ** Siz < Max_Man loop
- Siz := Siz + 1;
- end loop;
-
- Fold_Uint (N, Siz, True);
- end;
-
- else
- -- The case of dynamic bounds cannot be evaluated at compile
- -- time. Instead we use a runtime routine (see Exp_Attr).
-
- null;
- end if;
-
- -- Floating-point Mantissa
-
- else
- Fold_Uint (N, Mantissa, True);
- end if;
-
- ---------
- -- Max --
- ---------
-
- when Attribute_Max => Max :
- begin
- if Is_Real_Type (P_Type) then
- Fold_Ureal
- (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
- else
- Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
- end if;
- end Max;
-
- ----------------------------------
- -- Max_Size_In_Storage_Elements --
- ----------------------------------
-
- -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
- -- Storage_Unit boundary. We can fold any cases for which the size
- -- is known by the front end.
-
- when Attribute_Max_Size_In_Storage_Elements =>
- if Known_Esize (P_Type) then
- Fold_Uint (N,
- (Esize (P_Type) + System_Storage_Unit - 1) /
- System_Storage_Unit,
- Static);
- end if;
-
- --------------------
- -- Mechanism_Code --
- --------------------
-
- when Attribute_Mechanism_Code =>
- declare
- Val : Int;
- Formal : Entity_Id;
- Mech : Mechanism_Type;
-
- begin
- if No (E1) then
- Mech := Mechanism (P_Entity);
-
- else
- Val := UI_To_Int (Expr_Value (E1));
-
- Formal := First_Formal (P_Entity);
- for J in 1 .. Val - 1 loop
- Next_Formal (Formal);
- end loop;
- Mech := Mechanism (Formal);
- end if;
-
- if Mech < 0 then
- Fold_Uint (N, UI_From_Int (Int (-Mech)), True);
- end if;
- end;
-
- ---------
- -- Min --
- ---------
-
- when Attribute_Min => Min :
- begin
- if Is_Real_Type (P_Type) then
- Fold_Ureal
- (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
- else
- Fold_Uint
- (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
- end if;
- end Min;
-
- ---------
- -- Mod --
- ---------
-
- when Attribute_Mod =>
- Fold_Uint
- (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
-
- -----------
- -- Model --
- -----------
-
- when Attribute_Model =>
- Fold_Ureal (N,
- Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)), Static);
-
- ----------------
- -- Model_Emin --
- ----------------
-
- when Attribute_Model_Emin =>
- Float_Attribute_Universal_Integer (
- IEEES_Model_Emin,
- IEEEL_Model_Emin,
- IEEEX_Model_Emin,
- VAXFF_Model_Emin,
- VAXDF_Model_Emin,
- VAXGF_Model_Emin,
- AAMPS_Model_Emin,
- AAMPL_Model_Emin);
-
- -------------------
- -- Model_Epsilon --
- -------------------
-
- when Attribute_Model_Epsilon =>
- Float_Attribute_Universal_Real (
- IEEES_Model_Epsilon'Universal_Literal_String,
- IEEEL_Model_Epsilon'Universal_Literal_String,
- IEEEX_Model_Epsilon'Universal_Literal_String,
- VAXFF_Model_Epsilon'Universal_Literal_String,
- VAXDF_Model_Epsilon'Universal_Literal_String,
- VAXGF_Model_Epsilon'Universal_Literal_String,
- AAMPS_Model_Epsilon'Universal_Literal_String,
- AAMPL_Model_Epsilon'Universal_Literal_String);
-
- --------------------
- -- Model_Mantissa --
- --------------------
-
- when Attribute_Model_Mantissa =>
- Float_Attribute_Universal_Integer (
- IEEES_Model_Mantissa,
- IEEEL_Model_Mantissa,
- IEEEX_Model_Mantissa,
- VAXFF_Model_Mantissa,
- VAXDF_Model_Mantissa,
- VAXGF_Model_Mantissa,
- AAMPS_Model_Mantissa,
- AAMPL_Model_Mantissa);
-
- -----------------
- -- Model_Small --
- -----------------
-
- when Attribute_Model_Small =>
- Float_Attribute_Universal_Real (
- IEEES_Model_Small'Universal_Literal_String,
- IEEEL_Model_Small'Universal_Literal_String,
- IEEEX_Model_Small'Universal_Literal_String,
- VAXFF_Model_Small'Universal_Literal_String,
- VAXDF_Model_Small'Universal_Literal_String,
- VAXGF_Model_Small'Universal_Literal_String,
- AAMPS_Model_Small'Universal_Literal_String,
- AAMPL_Model_Small'Universal_Literal_String);
-
- -------------
- -- Modulus --
- -------------
-
- when Attribute_Modulus =>
- Fold_Uint (N, Modulus (P_Type), True);
-
- --------------------
- -- Null_Parameter --
- --------------------
-
- -- Cannot fold, we know the value sort of, but the whole point is
- -- that there is no way to talk about this imaginary value except
- -- by using the attribute, so we leave it the way it is.
-
- when Attribute_Null_Parameter =>
- null;
-
- -----------------
- -- Object_Size --
- -----------------
-
- -- The Object_Size attribute for a type returns the Esize of the
- -- type and can be folded if this value is known.
-
- when Attribute_Object_Size => Object_Size : declare
- P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
-
- begin
- if Known_Esize (P_TypeA) then
- Fold_Uint (N, Esize (P_TypeA), True);
- end if;
- end Object_Size;
-
- -------------------------
- -- Passed_By_Reference --
- -------------------------
-
- -- Scalar types are never passed by reference
-
- when Attribute_Passed_By_Reference =>
- Fold_Uint (N, False_Value, True);
-
- ---------
- -- Pos --
- ---------
-
- when Attribute_Pos =>
- Fold_Uint (N, Expr_Value (E1), True);
-
- ----------
- -- Pred --
- ----------
-
- when Attribute_Pred => Pred :
- begin
- -- Floating-point case
-
- if Is_Floating_Point_Type (P_Type) then
- Fold_Ureal (N,
- Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)), Static);
-
- -- Fixed-point case
-
- elsif Is_Fixed_Point_Type (P_Type) then
- Fold_Ureal (N,
- Expr_Value_R (E1) - Small_Value (P_Type), True);
-
- -- Modular integer case (wraps)
-
- elsif Is_Modular_Integer_Type (P_Type) then
- Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
-
- -- Other scalar cases
-
- else
- pragma Assert (Is_Scalar_Type (P_Type));
-
- if Is_Enumeration_Type (P_Type)
- and then Expr_Value (E1) =
- Expr_Value (Type_Low_Bound (P_Base_Type))
- then
- Apply_Compile_Time_Constraint_Error
- (N, "Pred of `&''First`",
- CE_Overflow_Check_Failed,
- Ent => P_Base_Type,
- Warn => not Static);
-
- Check_Expressions;
- return;
- end if;
-
- Fold_Uint (N, Expr_Value (E1) - 1, Static);
- end if;
- end Pred;
-
- -----------
- -- Range --
- -----------
-
- -- No processing required, because by this stage, Range has been
- -- replaced by First .. Last, so this branch can never be taken.
-
- when Attribute_Range =>
- raise Program_Error;
-
- ------------------
- -- Range_Length --
- ------------------
-
- when Attribute_Range_Length =>
- Set_Bounds;
-
- if Compile_Time_Known_Value (Hi_Bound)
- and then Compile_Time_Known_Value (Lo_Bound)
- then
- Fold_Uint (N,
- UI_Max
- (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
- Static);
- end if;
-
- ---------------
- -- Remainder --
- ---------------
-
- when Attribute_Remainder => Remainder : declare
- X : constant Ureal := Expr_Value_R (E1);
- Y : constant Ureal := Expr_Value_R (E2);
-
- begin
- if UR_Is_Zero (Y) then
- Apply_Compile_Time_Constraint_Error
- (N, "division by zero in Remainder",
- CE_Overflow_Check_Failed,
- Warn => not Static);
-
- Check_Expressions;
- return;
- end if;
-
- Fold_Ureal (N, Eval_Fat.Remainder (P_Root_Type, X, Y), Static);
- end Remainder;
-
- -----------
- -- Round --
- -----------
-
- when Attribute_Round => Round :
- declare
- Sr : Ureal;
- Si : Uint;
-
- begin
- -- First we get the (exact result) in units of small
-
- Sr := Expr_Value_R (E1) / Small_Value (C_Type);
-
- -- Now round that exactly to an integer
-
- Si := UR_To_Uint (Sr);
-
- -- Finally the result is obtained by converting back to real
-
- Fold_Ureal (N, Si * Small_Value (C_Type), Static);
- end Round;
-
- --------------
- -- Rounding --
- --------------
-
- when Attribute_Rounding =>
- Fold_Ureal (N,
- Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
-
- ---------------
- -- Safe_Emax --
- ---------------
-
- when Attribute_Safe_Emax =>
- Float_Attribute_Universal_Integer (
- IEEES_Safe_Emax,
- IEEEL_Safe_Emax,
- IEEEX_Safe_Emax,
- VAXFF_Safe_Emax,
- VAXDF_Safe_Emax,
- VAXGF_Safe_Emax,
- AAMPS_Safe_Emax,
- AAMPL_Safe_Emax);
-
- ----------------
- -- Safe_First --
- ----------------
-
- when Attribute_Safe_First =>
- Float_Attribute_Universal_Real (
- IEEES_Safe_First'Universal_Literal_String,
- IEEEL_Safe_First'Universal_Literal_String,
- IEEEX_Safe_First'Universal_Literal_String,
- VAXFF_Safe_First'Universal_Literal_String,
- VAXDF_Safe_First'Universal_Literal_String,
- VAXGF_Safe_First'Universal_Literal_String,
- AAMPS_Safe_First'Universal_Literal_String,
- AAMPL_Safe_First'Universal_Literal_String);
-
- ----------------
- -- Safe_Large --
- ----------------
-
- when Attribute_Safe_Large =>
- if Is_Fixed_Point_Type (P_Type) then
- Fold_Ureal
- (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
- else
- Float_Attribute_Universal_Real (
- IEEES_Safe_Large'Universal_Literal_String,
- IEEEL_Safe_Large'Universal_Literal_String,
- IEEEX_Safe_Large'Universal_Literal_String,
- VAXFF_Safe_Large'Universal_Literal_String,
- VAXDF_Safe_Large'Universal_Literal_String,
- VAXGF_Safe_Large'Universal_Literal_String,
- AAMPS_Safe_Large'Universal_Literal_String,
- AAMPL_Safe_Large'Universal_Literal_String);
- end if;
-
- ---------------
- -- Safe_Last --
- ---------------
-
- when Attribute_Safe_Last =>
- Float_Attribute_Universal_Real (
- IEEES_Safe_Last'Universal_Literal_String,
- IEEEL_Safe_Last'Universal_Literal_String,
- IEEEX_Safe_Last'Universal_Literal_String,
- VAXFF_Safe_Last'Universal_Literal_String,
- VAXDF_Safe_Last'Universal_Literal_String,
- VAXGF_Safe_Last'Universal_Literal_String,
- AAMPS_Safe_Last'Universal_Literal_String,
- AAMPL_Safe_Last'Universal_Literal_String);
-
- ----------------
- -- Safe_Small --
- ----------------
-
- when Attribute_Safe_Small =>
-
- -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
- -- for fixed-point, since is the same as Small, but we implement
- -- it for backwards compatibility.
-
- if Is_Fixed_Point_Type (P_Type) then
- Fold_Ureal (N, Small_Value (P_Type), Static);
-
- -- Ada 83 Safe_Small for floating-point cases
-
- else
- Float_Attribute_Universal_Real (
- IEEES_Safe_Small'Universal_Literal_String,
- IEEEL_Safe_Small'Universal_Literal_String,
- IEEEX_Safe_Small'Universal_Literal_String,
- VAXFF_Safe_Small'Universal_Literal_String,
- VAXDF_Safe_Small'Universal_Literal_String,
- VAXGF_Safe_Small'Universal_Literal_String,
- AAMPS_Safe_Small'Universal_Literal_String,
- AAMPL_Safe_Small'Universal_Literal_String);
- end if;
-
- -----------
- -- Scale --
- -----------
-
- when Attribute_Scale =>
- Fold_Uint (N, Scale_Value (P_Type), True);
-
- -------------
- -- Scaling --
- -------------
-
- when Attribute_Scaling =>
- Fold_Ureal (N,
- Eval_Fat.Scaling
- (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
-
- ------------------
- -- Signed_Zeros --
- ------------------
-
- when Attribute_Signed_Zeros =>
- Fold_Uint
- (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)), Static);
-
- ----------
- -- Size --
- ----------
-
- -- Size attribute returns the RM size. All scalar types can be folded,
- -- as well as any types for which the size is known by the front end,
- -- including any type for which a size attribute is specified.
-
- when Attribute_Size | Attribute_VADS_Size => Size : declare
- P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
-
- begin
- if RM_Size (P_TypeA) /= Uint_0 then
-
- -- VADS_Size case
-
- if Id = Attribute_VADS_Size or else Use_VADS_Size then
- declare
- S : constant Node_Id := Size_Clause (P_TypeA);
-
- begin
- -- If a size clause applies, then use the size from it.
- -- This is one of the rare cases where we can use the
- -- Size_Clause field for a subtype when Has_Size_Clause
- -- is False. Consider:
-
- -- type x is range 1 .. 64;
- -- for x'size use 12;
- -- subtype y is x range 0 .. 3;
-
- -- Here y has a size clause inherited from x, but normally
- -- it does not apply, and y'size is 2. However, y'VADS_Size
- -- is indeed 12 and not 2.
-
- if Present (S)
- and then Is_OK_Static_Expression (Expression (S))
- then
- Fold_Uint (N, Expr_Value (Expression (S)), True);
-
- -- If no size is specified, then we simply use the object
- -- size in the VADS_Size case (e.g. Natural'Size is equal
- -- to Integer'Size, not one less).
-
- else
- Fold_Uint (N, Esize (P_TypeA), True);
- end if;
- end;
-
- -- Normal case (Size) in which case we want the RM_Size
-
- else
- Fold_Uint (N,
- RM_Size (P_TypeA),
- Static and then Is_Discrete_Type (P_TypeA));
- end if;
- end if;
- end Size;
-
- -----------
- -- Small --
- -----------
-
- when Attribute_Small =>
-
- -- The floating-point case is present only for Ada 83 compatability.
- -- Note that strictly this is an illegal addition, since we are
- -- extending an Ada 95 defined attribute, but we anticipate an
- -- ARG ruling that will permit this.
-
- if Is_Floating_Point_Type (P_Type) then
-
- -- Ada 83 attribute is defined as (RM83 3.5.8)
-
- -- T'Small = 2.0**(-T'Emax - 1)
-
- -- where
-
- -- T'Emax = 4 * T'Mantissa
-
- Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
-
- -- Normal Ada 95 fixed-point case
-
- else
- Fold_Ureal (N, Small_Value (P_Type), True);
- end if;
-
- -----------------
- -- Stream_Size --
- -----------------
-
- when Attribute_Stream_Size =>
- null;
-
- ----------
- -- Succ --
- ----------
-
- when Attribute_Succ => Succ :
- begin
- -- Floating-point case
-
- if Is_Floating_Point_Type (P_Type) then
- Fold_Ureal (N,
- Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)), Static);
-
- -- Fixed-point case
-
- elsif Is_Fixed_Point_Type (P_Type) then
- Fold_Ureal (N,
- Expr_Value_R (E1) + Small_Value (P_Type), Static);
-
- -- Modular integer case (wraps)
-
- elsif Is_Modular_Integer_Type (P_Type) then
- Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
-
- -- Other scalar cases
-
- else
- pragma Assert (Is_Scalar_Type (P_Type));
-
- if Is_Enumeration_Type (P_Type)
- and then Expr_Value (E1) =
- Expr_Value (Type_High_Bound (P_Base_Type))
- then
- Apply_Compile_Time_Constraint_Error
- (N, "Succ of `&''Last`",
- CE_Overflow_Check_Failed,
- Ent => P_Base_Type,
- Warn => not Static);
-
- Check_Expressions;
- return;
- else
- Fold_Uint (N, Expr_Value (E1) + 1, Static);
- end if;
- end if;
- end Succ;
-
- ----------------
- -- Truncation --
- ----------------
-
- when Attribute_Truncation =>
- Fold_Ureal (N,
- Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)), Static);
-
- ----------------
- -- Type_Class --
- ----------------
-
- when Attribute_Type_Class => Type_Class : declare
- Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
- Id : RE_Id;
-
- begin
- if Is_Descendent_Of_Address (Typ) then
- Id := RE_Type_Class_Address;
-
- elsif Is_Enumeration_Type (Typ) then
- Id := RE_Type_Class_Enumeration;
-
- elsif Is_Integer_Type (Typ) then
- Id := RE_Type_Class_Integer;
-
- elsif Is_Fixed_Point_Type (Typ) then
- Id := RE_Type_Class_Fixed_Point;
-
- elsif Is_Floating_Point_Type (Typ) then
- Id := RE_Type_Class_Floating_Point;
-
- elsif Is_Array_Type (Typ) then
- Id := RE_Type_Class_Array;
-
- elsif Is_Record_Type (Typ) then
- Id := RE_Type_Class_Record;
-
- elsif Is_Access_Type (Typ) then
- Id := RE_Type_Class_Access;
-
- elsif Is_Enumeration_Type (Typ) then
- Id := RE_Type_Class_Enumeration;
-
- elsif Is_Task_Type (Typ) then
- Id := RE_Type_Class_Task;
-
- -- We treat protected types like task types. It would make more
- -- sense to have another enumeration value, but after all the
- -- whole point of this feature is to be exactly DEC compatible,
- -- and changing the type Type_Clas would not meet this requirement.
-
- elsif Is_Protected_Type (Typ) then
- Id := RE_Type_Class_Task;
-
- -- Not clear if there are any other possibilities, but if there
- -- are, then we will treat them as the address case.
-
- else
- Id := RE_Type_Class_Address;
- end if;
-
- Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
- end Type_Class;
-
- -----------------------
- -- Unbiased_Rounding --
- -----------------------
-
- when Attribute_Unbiased_Rounding =>
- Fold_Ureal (N,
- Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)),
- Static);
-
- -------------------------
- -- Unconstrained_Array --
- -------------------------
-
- when Attribute_Unconstrained_Array => Unconstrained_Array : declare
- Typ : constant Entity_Id := Underlying_Type (P_Type);
-
- begin
- Rewrite (N, New_Occurrence_Of (
- Boolean_Literals (
- Is_Array_Type (P_Type)
- and then not Is_Constrained (Typ)), Loc));
-
- -- Analyze and resolve as boolean, note that this attribute is
- -- a static attribute in GNAT.
-
- Analyze_And_Resolve (N, Standard_Boolean);
- Static := True;
- end Unconstrained_Array;
-
- ---------------
- -- VADS_Size --
- ---------------
-
- -- Processing is shared with Size
-
- ---------
- -- Val --
- ---------
-
- when Attribute_Val => Val :
- begin
- if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
- or else
- Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
- then
- Apply_Compile_Time_Constraint_Error
- (N, "Val expression out of range",
- CE_Range_Check_Failed,
- Warn => not Static);
-
- Check_Expressions;
- return;
-
- else
- Fold_Uint (N, Expr_Value (E1), Static);
- end if;
- end Val;
-
- ----------------
- -- Value_Size --
- ----------------
-
- -- The Value_Size attribute for a type returns the RM size of the
- -- type. This an always be folded for scalar types, and can also
- -- be folded for non-scalar types if the size is set.
-
- when Attribute_Value_Size => Value_Size : declare
- P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
-
- begin
- if RM_Size (P_TypeA) /= Uint_0 then
- Fold_Uint (N, RM_Size (P_TypeA), True);
- end if;
-
- end Value_Size;
-
- -------------
- -- Version --
- -------------
-
- -- Version can never be static
-
- when Attribute_Version =>
- null;
-
- ----------------
- -- Wide_Image --
- ----------------
-
- -- Wide_Image is a scalar attribute, but is never static, because it
- -- is not a static function (having a non-scalar argument (RM 4.9(22))
-
- when Attribute_Wide_Image =>
- null;
-
- ---------------------
- -- Wide_Wide_Image --
- ---------------------
-
- -- Wide_Wide_Image is a scalar attribute but is never static, because it
- -- is not a static function (having a non-scalar argument (RM 4.9(22)).
-
- when Attribute_Wide_Wide_Image =>
- null;
-
- ---------------------
- -- Wide_Wide_Width --
- ---------------------
-
- -- Processing for Wide_Wide_Width is combined with Width
-
- ----------------
- -- Wide_Width --
- ----------------
-
- -- Processing for Wide_Width is combined with Width
-
- -----------
- -- Width --
- -----------
-
- -- This processing also handles the case of Wide_[Wide_]Width
-
- when Attribute_Width |
- Attribute_Wide_Width |
- Attribute_Wide_Wide_Width => Width :
- begin
- if Compile_Time_Known_Bounds (P_Type) then
-
- -- Floating-point types
-
- if Is_Floating_Point_Type (P_Type) then
-
- -- Width is zero for a null range (RM 3.5 (38))
-
- if Expr_Value_R (Type_High_Bound (P_Type)) <
- Expr_Value_R (Type_Low_Bound (P_Type))
- then
- Fold_Uint (N, Uint_0, True);
-
- else
- -- For floating-point, we have +N.dddE+nnn where length
- -- of ddd is determined by type'Digits - 1, but is one
- -- if Digits is one (RM 3.5 (33)).
-
- -- nnn is set to 2 for Short_Float and Float (32 bit
- -- floats), and 3 for Long_Float and Long_Long_Float.
- -- For machines where Long_Long_Float is the IEEE
- -- extended precision type, the exponent takes 4 digits.
-
- declare
- Len : Int :=
- Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
-
- begin
- if Esize (P_Type) <= 32 then
- Len := Len + 6;
- elsif Esize (P_Type) = 64 then
- Len := Len + 7;
- else
- Len := Len + 8;
- end if;
-
- Fold_Uint (N, UI_From_Int (Len), True);
- end;
- end if;
-
- -- Fixed-point types
-
- elsif Is_Fixed_Point_Type (P_Type) then
-
- -- Width is zero for a null range (RM 3.5 (38))
-
- if Expr_Value (Type_High_Bound (P_Type)) <
- Expr_Value (Type_Low_Bound (P_Type))
- then
- Fold_Uint (N, Uint_0, True);
-
- -- The non-null case depends on the specific real type
-
- else
- -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
-
- Fold_Uint
- (N, UI_From_Int (Fore_Value + 1 + Aft_Value), True);
- end if;
-
- -- Discrete types
-
- else
- declare
- R : constant Entity_Id := Root_Type (P_Type);
- Lo : constant Uint :=
- Expr_Value (Type_Low_Bound (P_Type));
- Hi : constant Uint :=
- Expr_Value (Type_High_Bound (P_Type));
- W : Nat;
- Wt : Nat;
- T : Uint;
- L : Node_Id;
- C : Character;
-
- begin
- -- Empty ranges
-
- if Lo > Hi then
- W := 0;
-
- -- Width for types derived from Standard.Character
- -- and Standard.Wide_[Wide_]Character.
-
- elsif R = Standard_Character
- or else R = Standard_Wide_Character
- or else R = Standard_Wide_Wide_Character
- then
- W := 0;
-
- -- Set W larger if needed
-
- for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
-
- -- All wide characters look like Hex_hhhhhhhh
-
- if J > 255 then
- W := 12;
-
- else
- C := Character'Val (J);
-
- -- Test for all cases where Character'Image
- -- yields an image that is longer than three
- -- characters. First the cases of Reserved_xxx
- -- names (length = 12).
-
- case C is
- when Reserved_128 | Reserved_129 |
- Reserved_132 | Reserved_153
-
- => Wt := 12;
-
- when BS | HT | LF | VT | FF | CR |
- SO | SI | EM | FS | GS | RS |
- US | RI | MW | ST | PM
-
- => Wt := 2;
-
- when NUL | SOH | STX | ETX | EOT |
- ENQ | ACK | BEL | DLE | DC1 |
- DC2 | DC3 | DC4 | NAK | SYN |
- ETB | CAN | SUB | ESC | DEL |
- BPH | NBH | NEL | SSA | ESA |
- HTS | HTJ | VTS | PLD | PLU |
- SS2 | SS3 | DCS | PU1 | PU2 |
- STS | CCH | SPA | EPA | SOS |
- SCI | CSI | OSC | APC
-
- => Wt := 3;
-
- when Space .. Tilde |
- No_Break_Space .. LC_Y_Diaeresis
-
- => Wt := 3;
- end case;
-
- W := Int'Max (W, Wt);
- end if;
- end loop;
-
- -- Width for types derived from Standard.Boolean
-
- elsif R = Standard_Boolean then
- if Lo = 0 then
- W := 5; -- FALSE
- else
- W := 4; -- TRUE
- end if;
-
- -- Width for integer types
-
- elsif Is_Integer_Type (P_Type) then
- T := UI_Max (abs Lo, abs Hi);
-
- W := 2;
- while T >= 10 loop
- W := W + 1;
- T := T / 10;
- end loop;
-
- -- Only remaining possibility is user declared enum type
-
- else
- pragma Assert (Is_Enumeration_Type (P_Type));
-
- W := 0;
- L := First_Literal (P_Type);
-
- while Present (L) loop
-
- -- Only pay attention to in range characters
-
- if Lo <= Enumeration_Pos (L)
- and then Enumeration_Pos (L) <= Hi
- then
- -- For Width case, use decoded name
-
- if Id = Attribute_Width then
- Get_Decoded_Name_String (Chars (L));
- Wt := Nat (Name_Len);
-
- -- For Wide_[Wide_]Width, use encoded name, and
- -- then adjust for the encoding.
-
- else
- Get_Name_String (Chars (L));
-
- -- Character literals are always of length 3
-
- if Name_Buffer (1) = 'Q' then
- Wt := 3;
-
- -- Otherwise loop to adjust for upper/wide chars
-
- else
- Wt := Nat (Name_Len);
-
- for J in 1 .. Name_Len loop
- if Name_Buffer (J) = 'U' then
- Wt := Wt - 2;
- elsif Name_Buffer (J) = 'W' then
- Wt := Wt - 4;
- end if;
- end loop;
- end if;
- end if;
-
- W := Int'Max (W, Wt);
- end if;
-
- Next_Literal (L);
- end loop;
- end if;
-
- Fold_Uint (N, UI_From_Int (W), True);
- end;
- end if;
- end if;
- end Width;
-
- -- The following attributes can never be folded, and furthermore we
- -- should not even have entered the case statement for any of these.
- -- Note that in some cases, the values have already been folded as
- -- a result of the processing in Analyze_Attribute.
-
- when Attribute_Abort_Signal |
- Attribute_Access |
- Attribute_Address |
- Attribute_Address_Size |
- Attribute_Asm_Input |
- Attribute_Asm_Output |
- Attribute_Base |
- Attribute_Bit_Order |
- Attribute_Bit_Position |
- Attribute_Callable |
- Attribute_Caller |
- Attribute_Class |
- Attribute_Code_Address |
- Attribute_Count |
- Attribute_Default_Bit_Order |
- Attribute_Elaborated |
- Attribute_Elab_Body |
- Attribute_Elab_Spec |
- Attribute_External_Tag |
- Attribute_First_Bit |
- Attribute_Input |
- Attribute_Last_Bit |
- Attribute_Maximum_Alignment |
- Attribute_Output |
- Attribute_Partition_ID |
- Attribute_Pool_Address |
- Attribute_Position |
- Attribute_Read |
- Attribute_Storage_Pool |
- Attribute_Storage_Size |
- Attribute_Storage_Unit |
- Attribute_Tag |
- Attribute_Target_Name |
- Attribute_Terminated |
- Attribute_To_Address |
- Attribute_UET_Address |
- Attribute_Unchecked_Access |
- Attribute_Universal_Literal_String |
- Attribute_Unrestricted_Access |
- Attribute_Valid |
- Attribute_Value |
- Attribute_Wchar_T_Size |
- Attribute_Wide_Value |
- Attribute_Wide_Wide_Value |
- Attribute_Word_Size |
- Attribute_Write =>
-
- raise Program_Error;
- end case;
-
- -- At the end of the case, one more check. If we did a static evaluation
- -- so that the result is now a literal, then set Is_Static_Expression
- -- in the constant only if the prefix type is a static subtype. For
- -- non-static subtypes, the folding is still OK, but not static.
-
- -- An exception is the GNAT attribute Constrained_Array which is
- -- defined to be a static attribute in all cases.
-
- if Nkind (N) = N_Integer_Literal
- or else Nkind (N) = N_Real_Literal
- or else Nkind (N) = N_Character_Literal
- or else Nkind (N) = N_String_Literal
- or else (Is_Entity_Name (N)
- and then Ekind (Entity (N)) = E_Enumeration_Literal)
- then
- Set_Is_Static_Expression (N, Static);
-
- -- If this is still an attribute reference, then it has not been folded
- -- and that means that its expressions are in a non-static context.
-
- elsif Nkind (N) = N_Attribute_Reference then
- Check_Expressions;
-
- -- Note: the else case not covered here are odd cases where the
- -- processing has transformed the attribute into something other
- -- than a constant. Nothing more to do in such cases.
-
- else
- null;
- end if;
-
- end Eval_Attribute;
-
- ------------------------------
- -- Is_Anonymous_Tagged_Base --
- ------------------------------
-
- function Is_Anonymous_Tagged_Base
- (Anon : Entity_Id;
- Typ : Entity_Id)
- return Boolean
- is
- begin
- return
- Anon = Current_Scope
- and then Is_Itype (Anon)
- and then Associated_Node_For_Itype (Anon) = Parent (Typ);
- end Is_Anonymous_Tagged_Base;
-
- -----------------------
- -- Resolve_Attribute --
- -----------------------
-
- procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- P : constant Node_Id := Prefix (N);
- Aname : constant Name_Id := Attribute_Name (N);
- Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
- Btyp : constant Entity_Id := Base_Type (Typ);
- Index : Interp_Index;
- It : Interp;
- Nom_Subt : Entity_Id;
-
- procedure Accessibility_Message;
- -- Error, or warning within an instance, if the static accessibility
- -- rules of 3.10.2 are violated.
-
- ---------------------------
- -- Accessibility_Message --
- ---------------------------
-
- procedure Accessibility_Message is
- Indic : Node_Id := Parent (Parent (N));
-
- begin
- -- In an instance, this is a runtime check, but one we
- -- know will fail, so generate an appropriate warning.
-
- if In_Instance_Body then
- Error_Msg_N
- ("?non-local pointer cannot point to local object", P);
- Error_Msg_N
- ("\?Program_Error will be raised at run time", P);
- Rewrite (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Accessibility_Check_Failed));
- Set_Etype (N, Typ);
- return;
-
- else
- Error_Msg_N
- ("non-local pointer cannot point to local object", P);
-
- -- Check for case where we have a missing access definition
-
- if Is_Record_Type (Current_Scope)
- and then
- (Nkind (Parent (N)) = N_Discriminant_Association
- or else
- Nkind (Parent (N)) = N_Index_Or_Discriminant_Constraint)
- then
- Indic := Parent (Parent (N));
- while Present (Indic)
- and then Nkind (Indic) /= N_Subtype_Indication
- loop
- Indic := Parent (Indic);
- end loop;
-
- if Present (Indic) then
- Error_Msg_NE
- ("\use an access definition for" &
- " the access discriminant of&", N,
- Entity (Subtype_Mark (Indic)));
- end if;
- end if;
- end if;
- end Accessibility_Message;
-
- -- Start of processing for Resolve_Attribute
-
- begin
- -- If error during analysis, no point in continuing, except for
- -- array types, where we get better recovery by using unconstrained
- -- indices than nothing at all (see Check_Array_Type).
-
- if Error_Posted (N)
- and then Attr_Id /= Attribute_First
- and then Attr_Id /= Attribute_Last
- and then Attr_Id /= Attribute_Length
- and then Attr_Id /= Attribute_Range
- then
- return;
- end if;
-
- -- If attribute was universal type, reset to actual type
-
- if Etype (N) = Universal_Integer
- or else Etype (N) = Universal_Real
- then
- Set_Etype (N, Typ);
- end if;
-
- -- Remaining processing depends on attribute
-
- case Attr_Id is
-
- ------------
- -- Access --
- ------------
-
- -- For access attributes, if the prefix denotes an entity, it is
- -- interpreted as a name, never as a call. It may be overloaded,
- -- in which case resolution uses the profile of the context type.
- -- Otherwise prefix must be resolved.
-
- when Attribute_Access
- | Attribute_Unchecked_Access
- | Attribute_Unrestricted_Access =>
-
- if Is_Variable (P) then
- Note_Possible_Modification (P);
- end if;
-
- if Is_Entity_Name (P) then
- if Is_Overloaded (P) then
- Get_First_Interp (P, Index, It);
-
- while Present (It.Nam) loop
-
- if Type_Conformant (Designated_Type (Typ), It.Nam) then
- Set_Entity (P, It.Nam);
-
- -- The prefix is definitely NOT overloaded anymore
- -- at this point, so we reset the Is_Overloaded
- -- flag to avoid any confusion when reanalyzing
- -- the node.
-
- Set_Is_Overloaded (P, False);
- Generate_Reference (Entity (P), P);
- exit;
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
-
- -- If it is a subprogram name or a type, there is nothing
- -- to resolve.
-
- elsif not Is_Overloadable (Entity (P))
- and then not Is_Type (Entity (P))
- then
- Resolve (P);
- end if;
-
- Error_Msg_Name_1 := Aname;
-
- if not Is_Entity_Name (P) then
- null;
-
- elsif Is_Abstract (Entity (P))
- and then Is_Overloadable (Entity (P))
- then
- Error_Msg_N ("prefix of % attribute cannot be abstract", P);
- Set_Etype (N, Any_Type);
-
- elsif Convention (Entity (P)) = Convention_Intrinsic then
- if Ekind (Entity (P)) = E_Enumeration_Literal then
- Error_Msg_N
- ("prefix of % attribute cannot be enumeration literal",
- P);
- else
- Error_Msg_N
- ("prefix of % attribute cannot be intrinsic", P);
- end if;
-
- Set_Etype (N, Any_Type);
-
- elsif Is_Thread_Body (Entity (P)) then
- Error_Msg_N
- ("prefix of % attribute cannot be a thread body", P);
- end if;
-
- -- Assignments, return statements, components of aggregates,
- -- generic instantiations will require convention checks if
- -- the type is an access to subprogram. Given that there will
- -- also be accessibility checks on those, this is where the
- -- checks can eventually be centralized ???
-
- if Ekind (Btyp) = E_Access_Subprogram_Type
- or else
- Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
- or else
- Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
- then
- if Convention (Btyp) /= Convention (Entity (P)) then
- Error_Msg_N
- ("subprogram has invalid convention for context", P);
-
- else
- Check_Subtype_Conformant
- (New_Id => Entity (P),
- Old_Id => Designated_Type (Btyp),
- Err_Loc => P);
- end if;
-
- if Attr_Id = Attribute_Unchecked_Access then
- Error_Msg_Name_1 := Aname;
- Error_Msg_N
- ("attribute% cannot be applied to a subprogram", P);
-
- elsif Aname = Name_Unrestricted_Access then
- null; -- Nothing to check
-
- -- Check the static accessibility rule of 3.10.2(32).
- -- This rule also applies within the private part of an
- -- instantiation. This rule does not apply to anonymous
- -- access-to-subprogram types (Ada 2005).
-
- elsif Attr_Id = Attribute_Access
- and then not In_Instance_Body
- and then Subprogram_Access_Level (Entity (P)) >
- Type_Access_Level (Btyp)
- and then Ekind (Btyp) /=
- E_Anonymous_Access_Subprogram_Type
- and then Ekind (Btyp) /=
- E_Anonymous_Access_Protected_Subprogram_Type
- then
- Error_Msg_N
- ("subprogram must not be deeper than access type", P);
-
- -- Check the restriction of 3.10.2(32) that disallows the
- -- access attribute within a generic body when the ultimate
- -- ancestor of the type of the attribute is declared outside
- -- of the generic unit and the subprogram is declared within
- -- that generic unit. This includes any such attribute that
- -- occurs within the body of a generic unit that is a child
- -- of the generic unit where the subprogram is declared.
- -- The rule also prohibits applying the attibute when the
- -- access type is a generic formal access type (since the
- -- level of the actual type is not known). This restriction
- -- does not apply when the attribute type is an anonymous
- -- access-to-subprogram type. Note that this check was
- -- revised by AI-229, because the originally Ada 95 rule
- -- was too lax. The original rule only applied when the
- -- subprogram was declared within the body of the generic,
- -- which allowed the possibility of dangling references).
- -- The rule was also too strict in some case, in that it
- -- didn't permit the access to be declared in the generic
- -- spec, whereas the revised rule does (as long as it's not
- -- a formal type).
-
- -- There are a couple of subtleties of the test for applying
- -- the check that are worth noting. First, we only apply it
- -- when the levels of the subprogram and access type are the
- -- same (the case where the subprogram is statically deeper
- -- was applied above, and the case where the type is deeper
- -- is always safe). Second, we want the check to apply
- -- within nested generic bodies and generic child unit
- -- bodies, but not to apply to an attribute that appears in
- -- the generic unit's specification. This is done by testing
- -- that the attribute's innermost enclosing generic body is
- -- not the same as the innermost generic body enclosing the
- -- generic unit where the subprogram is declared (we don't
- -- want the check to apply when the access attribute is in
- -- the spec and there's some other generic body enclosing
- -- generic). Finally, there's no point applying the check
- -- when within an instance, because any violations will
- -- have been caught by the compilation of the generic unit.
-
- elsif Attr_Id = Attribute_Access
- and then not In_Instance
- and then Present (Enclosing_Generic_Unit (Entity (P)))
- and then Present (Enclosing_Generic_Body (N))
- and then Enclosing_Generic_Body (N) /=
- Enclosing_Generic_Body
- (Enclosing_Generic_Unit (Entity (P)))
- and then Subprogram_Access_Level (Entity (P)) =
- Type_Access_Level (Btyp)
- and then Ekind (Btyp) /=
- E_Anonymous_Access_Subprogram_Type
- and then Ekind (Btyp) /=
- E_Anonymous_Access_Protected_Subprogram_Type
- then
- -- The attribute type's ultimate ancestor must be
- -- declared within the same generic unit as the
- -- subprogram is declared. The error message is
- -- specialized to say "ancestor" for the case where
- -- the access type is not its own ancestor, since
- -- saying simply "access type" would be very confusing.
-
- if Enclosing_Generic_Unit (Entity (P)) /=
- Enclosing_Generic_Unit (Root_Type (Btyp))
- then
- if Root_Type (Btyp) = Btyp then
- Error_Msg_N
- ("access type must not be outside generic unit",
- N);
- else
- Error_Msg_N
- ("ancestor access type must not be outside " &
- "generic unit", N);
- end if;
-
- -- If the ultimate ancestor of the attribute's type is
- -- a formal type, then the attribute is illegal because
- -- the actual type might be declared at a higher level.
- -- The error message is specialized to say "ancestor"
- -- for the case where the access type is not its own
- -- ancestor, since saying simply "access type" would be
- -- very confusing.
-
- elsif Is_Generic_Type (Root_Type (Btyp)) then
- if Root_Type (Btyp) = Btyp then
- Error_Msg_N
- ("access type must not be a generic formal type",
- N);
- else
- Error_Msg_N
- ("ancestor access type must not be a generic " &
- "formal type", N);
- end if;
- end if;
- end if;
- end if;
-
- -- If this is a renaming, an inherited operation, or a
- -- subprogram instance, use the original entity.
-
- if Is_Entity_Name (P)
- and then Is_Overloadable (Entity (P))
- and then Present (Alias (Entity (P)))
- then
- Rewrite (P,
- New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
- end if;
-
- elsif Nkind (P) = N_Selected_Component
- and then Is_Overloadable (Entity (Selector_Name (P)))
- then
- -- Protected operation. If operation is overloaded, must
- -- disambiguate. Prefix that denotes protected object itself
- -- is resolved with its own type.
-
- if Attr_Id = Attribute_Unchecked_Access then
- Error_Msg_Name_1 := Aname;
- Error_Msg_N
- ("attribute% cannot be applied to protected operation", P);
- end if;
-
- Resolve (Prefix (P));
- Generate_Reference (Entity (Selector_Name (P)), P);
-
- elsif Is_Overloaded (P) then
-
- -- Use the designated type of the context to disambiguate
- -- Note that this was not strictly conformant to Ada 95,
- -- but was the implementation adopted by most Ada 95 compilers.
- -- The use of the context type to resolve an Access attribute
- -- reference is now mandated in AI-235 for Ada 2005.
-
- declare
- Index : Interp_Index;
- It : Interp;
-
- begin
- Get_First_Interp (P, Index, It);
- while Present (It.Typ) loop
- if Covers (Designated_Type (Typ), It.Typ) then
- Resolve (P, It.Typ);
- exit;
- end if;
-
- Get_Next_Interp (Index, It);
- end loop;
- end;
- else
- Resolve (P);
- end if;
-
- -- X'Access is illegal if X denotes a constant and the access
- -- type is access-to-variable. Same for 'Unchecked_Access.
- -- The rule does not apply to 'Unrestricted_Access.
-
- if not (Ekind (Btyp) = E_Access_Subprogram_Type
- or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
- or else (Is_Record_Type (Btyp) and then
- Present (Corresponding_Remote_Type (Btyp)))
- or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
- or else Ekind (Btyp)
- = E_Anonymous_Access_Protected_Subprogram_Type
- or else Is_Access_Constant (Btyp)
- or else Is_Variable (P)
- or else Attr_Id = Attribute_Unrestricted_Access)
- then
- if Comes_From_Source (N) then
- Error_Msg_N ("access-to-variable designates constant", P);
- end if;
- end if;
-
- if (Attr_Id = Attribute_Access
- or else
- Attr_Id = Attribute_Unchecked_Access)
- and then (Ekind (Btyp) = E_General_Access_Type
- or else Ekind (Btyp) = E_Anonymous_Access_Type)
- then
- -- Ada 2005 (AI-230): Check the accessibility of anonymous
- -- access types in record and array components. For a
- -- component definition the level is the same of the
- -- enclosing composite type.
-
- if Ada_Version >= Ada_05
- and then Is_Local_Anonymous_Access (Btyp)
- and then Object_Access_Level (P) > Type_Access_Level (Btyp)
- then
- -- In an instance, this is a runtime check, but one we
- -- know will fail, so generate an appropriate warning.
-
- if In_Instance_Body then
- Error_Msg_N
- ("?non-local pointer cannot point to local object", P);
- Error_Msg_N
- ("\?Program_Error will be raised at run time", P);
- Rewrite (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Accessibility_Check_Failed));
- Set_Etype (N, Typ);
- else
- Error_Msg_N
- ("non-local pointer cannot point to local object", P);
- end if;
- end if;
-
- if Is_Dependent_Component_Of_Mutable_Object (P) then
- Error_Msg_N
- ("illegal attribute for discriminant-dependent component",
- P);
- end if;
-
- -- Check the static matching rule of 3.10.2(27). The
- -- nominal subtype of the prefix must statically
- -- match the designated type.
-
- Nom_Subt := Etype (P);
-
- if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
- Nom_Subt := Etype (Nom_Subt);
- end if;
-
- if Is_Tagged_Type (Designated_Type (Typ)) then
-
- -- If the attribute is in the context of an access
- -- parameter, then the prefix is allowed to be of
- -- the class-wide type (by AI-127).
-
- if Ekind (Typ) = E_Anonymous_Access_Type then
- if not Covers (Designated_Type (Typ), Nom_Subt)
- and then not Covers (Nom_Subt, Designated_Type (Typ))
- then
- declare
- Desig : Entity_Id;
-
- begin
- Desig := Designated_Type (Typ);
-
- if Is_Class_Wide_Type (Desig) then
- Desig := Etype (Desig);
- end if;
-
- if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
- null;
-
- else
- Error_Msg_NE
- ("type of prefix: & not compatible",
- P, Nom_Subt);
- Error_Msg_NE
- ("\with &, the expected designated type",
- P, Designated_Type (Typ));
- end if;
- end;
- end if;
-
- elsif not Covers (Designated_Type (Typ), Nom_Subt)
- or else
- (not Is_Class_Wide_Type (Designated_Type (Typ))
- and then Is_Class_Wide_Type (Nom_Subt))
- then
- Error_Msg_NE
- ("type of prefix: & is not covered", P, Nom_Subt);
- Error_Msg_NE
- ("\by &, the expected designated type" &
- " ('R'M 3.10.2 (27))", P, Designated_Type (Typ));
- end if;
-
- if Is_Class_Wide_Type (Designated_Type (Typ))
- and then Has_Discriminants (Etype (Designated_Type (Typ)))
- and then Is_Constrained (Etype (Designated_Type (Typ)))
- and then Designated_Type (Typ) /= Nom_Subt
- then
- Apply_Discriminant_Check
- (N, Etype (Designated_Type (Typ)));
- end if;
-
- elsif not Subtypes_Statically_Match
- (Designated_Type (Base_Type (Typ)), Nom_Subt)
- and then
- not (Has_Discriminants (Designated_Type (Typ))
- and then
- not Is_Constrained
- (Designated_Type (Base_Type (Typ))))
- then
- Error_Msg_N
- ("object subtype must statically match "
- & "designated subtype", P);
-
- if Is_Entity_Name (P)
- and then Is_Array_Type (Designated_Type (Typ))
- then
-
- declare
- D : constant Node_Id := Declaration_Node (Entity (P));
-
- begin
- Error_Msg_N ("aliased object has explicit bounds?",
- D);
- Error_Msg_N ("\declare without bounds"
- & " (and with explicit initialization)?", D);
- Error_Msg_N ("\for use with unconstrained access?", D);
- end;
- end if;
- end if;
-
- -- Check the static accessibility rule of 3.10.2(28).
- -- Note that this check is not performed for the
- -- case of an anonymous access type, since the access
- -- attribute is always legal in such a context.
-
- if Attr_Id /= Attribute_Unchecked_Access
- and then Object_Access_Level (P) > Type_Access_Level (Btyp)
- and then Ekind (Btyp) = E_General_Access_Type
- then
- Accessibility_Message;
- return;
- end if;
- end if;
-
- if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
- or else
- Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
- then
- if Is_Entity_Name (P)
- and then not Is_Protected_Type (Scope (Entity (P)))
- then
- Error_Msg_N ("context requires a protected subprogram", P);
-
- -- Check accessibility of protected object against that
- -- of the access type, but only on user code, because
- -- the expander creates access references for handlers.
- -- If the context is an anonymous_access_to_protected,
- -- there are no accessibility checks either.
-
- elsif Object_Access_Level (P) > Type_Access_Level (Btyp)
- and then Comes_From_Source (N)
- and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
- and then No (Original_Access_Type (Typ))
- then
- Accessibility_Message;
- return;
- end if;
-
- elsif (Ekind (Btyp) = E_Access_Subprogram_Type
- or else
- Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type)
- and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
- then
- Error_Msg_N ("context requires a non-protected subprogram", P);
- end if;
-
- -- The context cannot be a pool-specific type, but this is a
- -- legality rule, not a resolution rule, so it must be checked
- -- separately, after possibly disambiguation (see AI-245).
-
- if Ekind (Btyp) = E_Access_Type
- and then Attr_Id /= Attribute_Unrestricted_Access
- then
- Wrong_Type (N, Typ);
- end if;
-
- Set_Etype (N, Typ);
-
- -- Check for incorrect atomic/volatile reference (RM C.6(12))
-
- if Attr_Id /= Attribute_Unrestricted_Access then
- if Is_Atomic_Object (P)
- and then not Is_Atomic (Designated_Type (Typ))
- then
- Error_Msg_N
- ("access to atomic object cannot yield access-to-" &
- "non-atomic type", P);
-
- elsif Is_Volatile_Object (P)
- and then not Is_Volatile (Designated_Type (Typ))
- then
- Error_Msg_N
- ("access to volatile object cannot yield access-to-" &
- "non-volatile type", P);
- end if;
- end if;
-
- -------------
- -- Address --
- -------------
-
- -- Deal with resolving the type for Address attribute, overloading
- -- is not permitted here, since there is no context to resolve it.
-
- when Attribute_Address | Attribute_Code_Address =>
-
- -- To be safe, assume that if the address of a variable is taken,
- -- it may be modified via this address, so note modification.
-
- if Is_Variable (P) then
- Note_Possible_Modification (P);
- end if;
-
- if Nkind (P) in N_Subexpr
- and then Is_Overloaded (P)
- then
- Get_First_Interp (P, Index, It);
- Get_Next_Interp (Index, It);
-
- if Present (It.Nam) then
- Error_Msg_Name_1 := Aname;
- Error_Msg_N
- ("prefix of % attribute cannot be overloaded", P);
- return;
- end if;
- end if;
-
- if not Is_Entity_Name (P)
- or else not Is_Overloadable (Entity (P))
- then
- if not Is_Task_Type (Etype (P))
- or else Nkind (P) = N_Explicit_Dereference
- then
- Resolve (P);
- end if;
- end if;
-
- -- If this is the name of a derived subprogram, or that of a
- -- generic actual, the address is that of the original entity.
-
- if Is_Entity_Name (P)
- and then Is_Overloadable (Entity (P))
- and then Present (Alias (Entity (P)))
- then
- Rewrite (P,
- New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
- end if;
-
- ---------------
- -- AST_Entry --
- ---------------
-
- -- Prefix of the AST_Entry attribute is an entry name which must
- -- not be resolved, since this is definitely not an entry call.
-
- when Attribute_AST_Entry =>
- null;
-
- ------------------
- -- Body_Version --
- ------------------
-
- -- Prefix of Body_Version attribute can be a subprogram name which
- -- must not be resolved, since this is not a call.
-
- when Attribute_Body_Version =>
- null;
-
- ------------
- -- Caller --
- ------------
-
- -- Prefix of Caller attribute is an entry name which must not
- -- be resolved, since this is definitely not an entry call.
-
- when Attribute_Caller =>
- null;
-
- ------------------
- -- Code_Address --
- ------------------
-
- -- Shares processing with Address attribute
-
- -----------
- -- Count --
- -----------
-
- -- If the prefix of the Count attribute is an entry name it must not
- -- be resolved, since this is definitely not an entry call. However,
- -- if it is an element of an entry family, the index itself may
- -- have to be resolved because it can be a general expression.
-
- when Attribute_Count =>
- if Nkind (P) = N_Indexed_Component
- and then Is_Entity_Name (Prefix (P))
- then
- declare
- Indx : constant Node_Id := First (Expressions (P));
- Fam : constant Entity_Id := Entity (Prefix (P));
- begin
- Resolve (Indx, Entry_Index_Type (Fam));
- Apply_Range_Check (Indx, Entry_Index_Type (Fam));
- end;
- end if;
-
- ----------------
- -- Elaborated --
- ----------------
-
- -- Prefix of the Elaborated attribute is a subprogram name which
- -- must not be resolved, since this is definitely not a call. Note
- -- that it is a library unit, so it cannot be overloaded here.
-
- when Attribute_Elaborated =>
- null;
-
- --------------------
- -- Mechanism_Code --
- --------------------
-
- -- Prefix of the Mechanism_Code attribute is a function name
- -- which must not be resolved. Should we check for overloaded ???
-
- when Attribute_Mechanism_Code =>
- null;
-
- ------------------
- -- Partition_ID --
- ------------------
-
- -- Most processing is done in sem_dist, after determining the
- -- context type. Node is rewritten as a conversion to a runtime call.
-
- when Attribute_Partition_ID =>
- Process_Partition_Id (N);
- return;
-
- when Attribute_Pool_Address =>
- Resolve (P);
-
- -----------
- -- Range --
- -----------
-
- -- We replace the Range attribute node with a range expression
- -- whose bounds are the 'First and 'Last attributes applied to the
- -- same prefix. The reason that we do this transformation here
- -- instead of in the expander is that it simplifies other parts of
- -- the semantic analysis which assume that the Range has been
- -- replaced; thus it must be done even when in semantic-only mode
- -- (note that the RM specifically mentions this equivalence, we
- -- take care that the prefix is only evaluated once).
-
- when Attribute_Range => Range_Attribute :
- declare
- LB : Node_Id;
- HB : Node_Id;
-
- function Check_Discriminated_Prival
- (N : Node_Id)
- return Node_Id;
- -- The range of a private component constrained by a
- -- discriminant is rewritten to make the discriminant
- -- explicit. This solves some complex visibility problems
- -- related to the use of privals.
-
- --------------------------------
- -- Check_Discriminated_Prival --
- --------------------------------
-
- function Check_Discriminated_Prival
- (N : Node_Id)
- return Node_Id
- is
- begin
- if Is_Entity_Name (N)
- and then Ekind (Entity (N)) = E_In_Parameter
- and then not Within_Init_Proc
- then
- return Make_Identifier (Sloc (N), Chars (Entity (N)));
- else
- return Duplicate_Subexpr (N);
- end if;
- end Check_Discriminated_Prival;
-
- -- Start of processing for Range_Attribute
-
- begin
- if not Is_Entity_Name (P)
- or else not Is_Type (Entity (P))
- then
- Resolve (P);
- end if;
-
- -- Check whether prefix is (renaming of) private component
- -- of protected type.
-
- if Is_Entity_Name (P)
- and then Comes_From_Source (N)
- and then Is_Array_Type (Etype (P))
- and then Number_Dimensions (Etype (P)) = 1
- and then (Ekind (Scope (Entity (P))) = E_Protected_Type
- or else
- Ekind (Scope (Scope (Entity (P)))) =
- E_Protected_Type)
- then
- LB :=
- Check_Discriminated_Prival
- (Type_Low_Bound (Etype (First_Index (Etype (P)))));
-
- HB :=
- Check_Discriminated_Prival
- (Type_High_Bound (Etype (First_Index (Etype (P)))));
-
- else
- HB :=
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr (P),
- Attribute_Name => Name_Last,
- Expressions => Expressions (N));
-
- LB :=
- Make_Attribute_Reference (Loc,
- Prefix => P,
- Attribute_Name => Name_First,
- Expressions => Expressions (N));
- end if;
-
- -- If the original was marked as Must_Not_Freeze (see code
- -- in Sem_Ch3.Make_Index), then make sure the rewriting
- -- does not freeze either.
-
- if Must_Not_Freeze (N) then
- Set_Must_Not_Freeze (HB);
- Set_Must_Not_Freeze (LB);
- Set_Must_Not_Freeze (Prefix (HB));
- Set_Must_Not_Freeze (Prefix (LB));
- end if;
-
- if Raises_Constraint_Error (Prefix (N)) then
-
- -- Preserve Sloc of prefix in the new bounds, so that
- -- the posted warning can be removed if we are within
- -- unreachable code.
-
- Set_Sloc (LB, Sloc (Prefix (N)));
- Set_Sloc (HB, Sloc (Prefix (N)));
- end if;
-
- Rewrite (N, Make_Range (Loc, LB, HB));
- Analyze_And_Resolve (N, Typ);
-
- -- Normally after resolving attribute nodes, Eval_Attribute
- -- is called to do any possible static evaluation of the node.
- -- However, here since the Range attribute has just been
- -- transformed into a range expression it is no longer an
- -- attribute node and therefore the call needs to be avoided
- -- and is accomplished by simply returning from the procedure.
-
- return;
- end Range_Attribute;
-
- -----------------
- -- UET_Address --
- -----------------
-
- -- Prefix must not be resolved in this case, since it is not a
- -- real entity reference. No action of any kind is require!
-
- when Attribute_UET_Address =>
- return;
-
- ----------------------
- -- Unchecked_Access --
- ----------------------
-
- -- Processing is shared with Access
-
- -------------------------
- -- Unrestricted_Access --
- -------------------------
-
- -- Processing is shared with Access
-
- ---------
- -- Val --
- ---------
-
- -- Apply range check. Note that we did not do this during the
- -- analysis phase, since we wanted Eval_Attribute to have a
- -- chance at finding an illegal out of range value.
-
- when Attribute_Val =>
-
- -- Note that we do our own Eval_Attribute call here rather than
- -- use the common one, because we need to do processing after
- -- the call, as per above comment.
-
- Eval_Attribute (N);
-
- -- Eval_Attribute may replace the node with a raise CE, or
- -- fold it to a constant. Obviously we only apply a scalar
- -- range check if this did not happen!
-
- if Nkind (N) = N_Attribute_Reference
- and then Attribute_Name (N) = Name_Val
- then
- Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
- end if;
-
- return;
-
- -------------
- -- Version --
- -------------
-
- -- Prefix of Version attribute can be a subprogram name which
- -- must not be resolved, since this is not a call.
-
- when Attribute_Version =>
- null;
-
- ----------------------
- -- Other Attributes --
- ----------------------
-
- -- For other attributes, resolve prefix unless it is a type. If
- -- the attribute reference itself is a type name ('Base and 'Class)
- -- then this is only legal within a task or protected record.
-
- when others =>
- if not Is_Entity_Name (P)
- or else not Is_Type (Entity (P))
- then
- Resolve (P);
- end if;
-
- -- If the attribute reference itself is a type name ('Base,
- -- 'Class) then this is only legal within a task or protected
- -- record. What is this all about ???
-
- if Is_Entity_Name (N)
- and then Is_Type (Entity (N))
- then
- if Is_Concurrent_Type (Entity (N))
- and then In_Open_Scopes (Entity (P))
- then
- null;
- else
- Error_Msg_N
- ("invalid use of subtype name in expression or call", N);
- end if;
- end if;
-
- -- For attributes whose argument may be a string, complete
- -- resolution of argument now. This avoids premature expansion
- -- (and the creation of transient scopes) before the attribute
- -- reference is resolved.
-
- case Attr_Id is
- when Attribute_Value =>
- Resolve (First (Expressions (N)), Standard_String);
-
- when Attribute_Wide_Value =>
- Resolve (First (Expressions (N)), Standard_Wide_String);
-
- when Attribute_Wide_Wide_Value =>
- Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
-
- when others => null;
- end case;
- end case;
-
- -- Normally the Freezing is done by Resolve but sometimes the Prefix
- -- is not resolved, in which case the freezing must be done now.
-
- Freeze_Expression (P);
-
- -- Finally perform static evaluation on the attribute reference
-
- Eval_Attribute (N);
- end Resolve_Attribute;
-
- --------------------------------
- -- Stream_Attribute_Available --
- --------------------------------
-
- function Stream_Attribute_Available
- (Typ : Entity_Id;
- Nam : TSS_Name_Type;
- Partial_View : Node_Id := Empty) return Boolean
- is
- Etyp : Entity_Id := Typ;
-
- function Has_Specified_Stream_Attribute
- (Typ : Entity_Id;
- Nam : TSS_Name_Type) return Boolean;
- -- True iff there is a visible attribute definition clause specifying
- -- attribute Nam for Typ.
-
- ------------------------------------
- -- Has_Specified_Stream_Attribute --
- ------------------------------------
-
- function Has_Specified_Stream_Attribute
- (Typ : Entity_Id;
- Nam : TSS_Name_Type) return Boolean
- is
- begin
- return False
- or else
- (Nam = TSS_Stream_Input
- and then Has_Specified_Stream_Input (Typ))
- or else
- (Nam = TSS_Stream_Output
- and then Has_Specified_Stream_Output (Typ))
- or else
- (Nam = TSS_Stream_Read
- and then Has_Specified_Stream_Read (Typ))
- or else
- (Nam = TSS_Stream_Write
- and then Has_Specified_Stream_Write (Typ));
- end Has_Specified_Stream_Attribute;
-
- -- Start of processing for Stream_Attribute_Available
-
- begin
- -- We need some comments in this body ???
-
- if Has_Specified_Stream_Attribute (Typ, Nam) then
- return True;
- end if;
-
- if Is_Class_Wide_Type (Typ) then
- return not Is_Limited_Type (Typ)
- or else Stream_Attribute_Available (Etype (Typ), Nam);
- end if;
-
- if Nam = TSS_Stream_Input
- and then Is_Abstract (Typ)
- and then not Is_Class_Wide_Type (Typ)
- then
- return False;
- end if;
-
- if not (Is_Limited_Type (Typ)
- or else (Present (Partial_View)
- and then Is_Limited_Type (Partial_View)))
- then
- return True;
- end if;
-
- -- In Ada 2005, Input can invoke Read, and Output can invoke Write
-
- if Nam = TSS_Stream_Input
- and then Ada_Version >= Ada_05
- and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
- then
- return True;
-
- elsif Nam = TSS_Stream_Output
- and then Ada_Version >= Ada_05
- and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
- then
- return True;
- end if;
-
- -- Case of Read and Write: check for attribute definition clause that
- -- applies to an ancestor type.
-
- while Etype (Etyp) /= Etyp loop
- Etyp := Etype (Etyp);
-
- if Has_Specified_Stream_Attribute (Etyp, Nam) then
- return True;
- end if;
- end loop;
-
- if Ada_Version < Ada_05 then
-
- -- In Ada 95 mode, also consider a non-visible definition
-
- declare
- Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
- begin
- return Btyp /= Typ
- and then Stream_Attribute_Available
- (Btyp, Nam, Partial_View => Typ);
- end;
- end if;
-
- return False;
- end Stream_Attribute_Available;
-
-end Sem_Attr;