aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/sem_attr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/sem_attr.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/sem_attr.adb7898
1 files changed, 7898 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/sem_attr.adb b/gcc-4.2.1/gcc/ada/sem_attr.adb
new file mode 100644
index 000000000..1a7288367
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/sem_attr.adb
@@ -0,0 +1,7898 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ A T T R --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Eval_Fat;
+with Exp_Util; use Exp_Util;
+with Expander; use Expander;
+with Freeze; use Freeze;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sdefault; use Sdefault;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Dist; use Sem_Dist;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Sinput; use Sinput;
+with Stringt; use Stringt;
+with Targparm; use Targparm;
+with Ttypes; use Ttypes;
+with Ttypef; use Ttypef;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Sem_Attr is
+
+ True_Value : constant Uint := Uint_1;
+ False_Value : constant Uint := Uint_0;
+ -- Synonyms to be used when these constants are used as Boolean values
+
+ Bad_Attribute : exception;
+ -- Exception raised if an error is detected during attribute processing,
+ -- used so that we can abandon the processing so we don't run into
+ -- trouble with cascaded errors.
+
+ -- The following array is the list of attributes defined in the Ada 83 RM
+
+ Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
+ Attribute_Address |
+ Attribute_Aft |
+ Attribute_Alignment |
+ Attribute_Base |
+ Attribute_Callable |
+ Attribute_Constrained |
+ Attribute_Count |
+ Attribute_Delta |
+ Attribute_Digits |
+ Attribute_Emax |
+ Attribute_Epsilon |
+ Attribute_First |
+ Attribute_First_Bit |
+ Attribute_Fore |
+ Attribute_Image |
+ Attribute_Large |
+ Attribute_Last |
+ Attribute_Last_Bit |
+ Attribute_Leading_Part |
+ Attribute_Length |
+ Attribute_Machine_Emax |
+ Attribute_Machine_Emin |
+ Attribute_Machine_Mantissa |
+ Attribute_Machine_Overflows |
+ Attribute_Machine_Radix |
+ Attribute_Machine_Rounds |
+ Attribute_Mantissa |
+ Attribute_Pos |
+ Attribute_Position |
+ Attribute_Pred |
+ Attribute_Range |
+ Attribute_Safe_Emax |
+ Attribute_Safe_Large |
+ Attribute_Safe_Small |
+ Attribute_Size |
+ Attribute_Small |
+ Attribute_Storage_Size |
+ Attribute_Succ |
+ Attribute_Terminated |
+ Attribute_Val |
+ Attribute_Value |
+ Attribute_Width => True,
+ others => False);
+
+ -----------------------
+ -- Local_Subprograms --
+ -----------------------
+
+ procedure Eval_Attribute (N : Node_Id);
+ -- Performs compile time evaluation of attributes where possible, leaving
+ -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
+ -- set, and replacing the node with a literal node if the value can be
+ -- computed at compile time. All static attribute references are folded,
+ -- as well as a number of cases of non-static attributes that can always
+ -- be computed at compile time (e.g. floating-point model attributes that
+ -- are applied to non-static subtypes). Of course in such cases, the
+ -- Is_Static_Expression flag will not be set on the resulting literal.
+ -- Note that the only required action of this procedure is to catch the
+ -- static expression cases as described in the RM. Folding of other cases
+ -- is done where convenient, but some additional non-static folding is in
+ -- N_Expand_Attribute_Reference in cases where this is more convenient.
+
+ function Is_Anonymous_Tagged_Base
+ (Anon : Entity_Id;
+ Typ : Entity_Id)
+ return Boolean;
+ -- For derived tagged types that constrain parent discriminants we build
+ -- an anonymous unconstrained base type. We need to recognize the relation
+ -- between the two when analyzing an access attribute for a constrained
+ -- component, before the full declaration for Typ has been analyzed, and
+ -- where therefore the prefix of the attribute does not match the enclosing
+ -- scope.
+
+ -----------------------
+ -- Analyze_Attribute --
+ -----------------------
+
+ procedure Analyze_Attribute (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Aname : constant Name_Id := Attribute_Name (N);
+ P : constant Node_Id := Prefix (N);
+ Exprs : constant List_Id := Expressions (N);
+ Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
+ E1 : Node_Id;
+ E2 : Node_Id;
+
+ P_Type : Entity_Id;
+ -- Type of prefix after analysis
+
+ P_Base_Type : Entity_Id;
+ -- Base type of prefix after analysis
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Analyze_Access_Attribute;
+ -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
+ -- Internally, Id distinguishes which of the three cases is involved.
+
+ procedure Check_Array_Or_Scalar_Type;
+ -- Common procedure used by First, Last, Range attribute to check
+ -- that the prefix is a constrained array or scalar type, or a name
+ -- of an array object, and that an argument appears only if appropriate
+ -- (i.e. only in the array case).
+
+ procedure Check_Array_Type;
+ -- Common semantic checks for all array attributes. Checks that the
+ -- prefix is a constrained array type or the name of an array object.
+ -- The error message for non-arrays is specialized appropriately.
+
+ procedure Check_Asm_Attribute;
+ -- Common semantic checks for Asm_Input and Asm_Output attributes
+
+ procedure Check_Component;
+ -- Common processing for Bit_Position, First_Bit, Last_Bit, and
+ -- Position. Checks prefix is an appropriate selected component.
+
+ procedure Check_Decimal_Fixed_Point_Type;
+ -- Check that prefix of attribute N is a decimal fixed-point type
+
+ procedure Check_Dereference;
+ -- If the prefix of attribute is an object of an access type, then
+ -- introduce an explicit deference, and adjust P_Type accordingly.
+
+ procedure Check_Discrete_Type;
+ -- Verify that prefix of attribute N is a discrete type
+
+ procedure Check_E0;
+ -- Check that no attribute arguments are present
+
+ procedure Check_Either_E0_Or_E1;
+ -- Check that there are zero or one attribute arguments present
+
+ procedure Check_E1;
+ -- Check that exactly one attribute argument is present
+
+ procedure Check_E2;
+ -- Check that two attribute arguments are present
+
+ procedure Check_Enum_Image;
+ -- If the prefix type is an enumeration type, set all its literals
+ -- as referenced, since the image function could possibly end up
+ -- referencing any of the literals indirectly.
+
+ procedure Check_Fixed_Point_Type;
+ -- Verify that prefix of attribute N is a fixed type
+
+ procedure Check_Fixed_Point_Type_0;
+ -- Verify that prefix of attribute N is a fixed type and that
+ -- no attribute expressions are present
+
+ procedure Check_Floating_Point_Type;
+ -- Verify that prefix of attribute N is a float type
+
+ procedure Check_Floating_Point_Type_0;
+ -- Verify that prefix of attribute N is a float type and that
+ -- no attribute expressions are present
+
+ procedure Check_Floating_Point_Type_1;
+ -- Verify that prefix of attribute N is a float type and that
+ -- exactly one attribute expression is present
+
+ procedure Check_Floating_Point_Type_2;
+ -- Verify that prefix of attribute N is a float type and that
+ -- two attribute expressions are present
+
+ procedure Legal_Formal_Attribute;
+ -- Common processing for attributes Definite, Has_Access_Values,
+ -- and Has_Discriminants
+
+ procedure Check_Integer_Type;
+ -- Verify that prefix of attribute N is an integer type
+
+ procedure Check_Library_Unit;
+ -- Verify that prefix of attribute N is a library unit
+
+ procedure Check_Modular_Integer_Type;
+ -- Verify that prefix of attribute N is a modular integer type
+
+ procedure Check_Not_Incomplete_Type;
+ -- Check that P (the prefix of the attribute) is not an incomplete
+ -- type or a private type for which no full view has been given.
+
+ procedure Check_Object_Reference (P : Node_Id);
+ -- Check that P (the prefix of the attribute) is an object reference
+
+ procedure Check_Program_Unit;
+ -- Verify that prefix of attribute N is a program unit
+
+ procedure Check_Real_Type;
+ -- Verify that prefix of attribute N is fixed or float type
+
+ procedure Check_Scalar_Type;
+ -- Verify that prefix of attribute N is a scalar type
+
+ procedure Check_Standard_Prefix;
+ -- Verify that prefix of attribute N is package Standard
+
+ procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
+ -- Validity checking for stream attribute. Nam is the TSS name of the
+ -- corresponding possible defined attribute function (e.g. for the
+ -- Read attribute, Nam will be TSS_Stream_Read).
+
+ procedure Check_Task_Prefix;
+ -- Verify that prefix of attribute N is a task or task type
+
+ procedure Check_Type;
+ -- Verify that the prefix of attribute N is a type
+
+ procedure Check_Unit_Name (Nod : Node_Id);
+ -- Check that Nod is of the form of a library unit name, i.e that
+ -- it is an identifier, or a selected component whose prefix is
+ -- itself of the form of a library unit name. Note that this is
+ -- quite different from Check_Program_Unit, since it only checks
+ -- the syntactic form of the name, not the semantic identity. This
+ -- is because it is used with attributes (Elab_Body, Elab_Spec, and
+ -- UET_Address) which can refer to non-visible unit.
+
+ procedure Error_Attr (Msg : String; Error_Node : Node_Id);
+ pragma No_Return (Error_Attr);
+ procedure Error_Attr;
+ pragma No_Return (Error_Attr);
+ -- Posts error using Error_Msg_N at given node, sets type of attribute
+ -- node to Any_Type, and then raises Bad_Attribute to avoid any further
+ -- semantic processing. The message typically contains a % insertion
+ -- character which is replaced by the attribute name. The call with
+ -- no arguments is used when the caller has already generated the
+ -- required error messages.
+
+ procedure Standard_Attribute (Val : Int);
+ -- Used to process attributes whose prefix is package Standard which
+ -- yield values of type Universal_Integer. The attribute reference
+ -- node is rewritten with an integer literal of the given value.
+
+ procedure Unexpected_Argument (En : Node_Id);
+ -- Signal unexpected attribute argument (En is the argument)
+
+ procedure Validate_Non_Static_Attribute_Function_Call;
+ -- Called when processing an attribute that is a function call to a
+ -- non-static function, i.e. an attribute function that either takes
+ -- non-scalar arguments or returns a non-scalar result. Verifies that
+ -- such a call does not appear in a preelaborable context.
+
+ ------------------------------
+ -- Analyze_Access_Attribute --
+ ------------------------------
+
+ procedure Analyze_Access_Attribute is
+ Acc_Type : Entity_Id;
+
+ Scop : Entity_Id;
+ Typ : Entity_Id;
+
+ function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
+ -- Build an access-to-object type whose designated type is DT,
+ -- and whose Ekind is appropriate to the attribute type. The
+ -- type that is constructed is returned as the result.
+
+ procedure Build_Access_Subprogram_Type (P : Node_Id);
+ -- Build an access to subprogram whose designated type is
+ -- the type of the prefix. If prefix is overloaded, so it the
+ -- node itself. The result is stored in Acc_Type.
+
+ ------------------------------
+ -- Build_Access_Object_Type --
+ ------------------------------
+
+ function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
+ Typ : Entity_Id;
+
+ begin
+ if Aname = Name_Unrestricted_Access then
+ Typ :=
+ New_Internal_Entity
+ (E_Allocator_Type, Current_Scope, Loc, 'A');
+ else
+ Typ :=
+ New_Internal_Entity
+ (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
+ end if;
+
+ Set_Etype (Typ, Typ);
+ Init_Size_Align (Typ);
+ Set_Is_Itype (Typ);
+ Set_Associated_Node_For_Itype (Typ, N);
+ Set_Directly_Designated_Type (Typ, DT);
+ return Typ;
+ end Build_Access_Object_Type;
+
+ ----------------------------------
+ -- Build_Access_Subprogram_Type --
+ ----------------------------------
+
+ procedure Build_Access_Subprogram_Type (P : Node_Id) is
+ Index : Interp_Index;
+ It : Interp;
+
+ function Get_Kind (E : Entity_Id) return Entity_Kind;
+ -- Distinguish between access to regular/protected subprograms
+
+ --------------
+ -- Get_Kind --
+ --------------
+
+ function Get_Kind (E : Entity_Id) return Entity_Kind is
+ begin
+ if Convention (E) = Convention_Protected then
+ return E_Access_Protected_Subprogram_Type;
+ else
+ return E_Access_Subprogram_Type;
+ end if;
+ end Get_Kind;
+
+ -- Start of processing for Build_Access_Subprogram_Type
+
+ begin
+ -- In the case of an access to subprogram, use the name of the
+ -- subprogram itself as the designated type. Type-checking in
+ -- this case compares the signatures of the designated types.
+
+ Set_Etype (N, Any_Type);
+
+ if not Is_Overloaded (P) then
+ if not Is_Intrinsic_Subprogram (Entity (P)) then
+ Acc_Type :=
+ New_Internal_Entity
+ (Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
+ Set_Etype (Acc_Type, Acc_Type);
+ Set_Directly_Designated_Type (Acc_Type, Entity (P));
+ Set_Etype (N, Acc_Type);
+ end if;
+
+ else
+ Get_First_Interp (P, Index, It);
+ while Present (It.Nam) loop
+ if not Is_Intrinsic_Subprogram (It.Nam) then
+ Acc_Type :=
+ New_Internal_Entity
+ (Get_Kind (It.Nam), Current_Scope, Loc, 'A');
+ Set_Etype (Acc_Type, Acc_Type);
+ Set_Directly_Designated_Type (Acc_Type, It.Nam);
+ Add_One_Interp (N, Acc_Type, Acc_Type);
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end if;
+
+ if Etype (N) = Any_Type then
+ Error_Attr ("prefix of % attribute cannot be intrinsic", P);
+ end if;
+ end Build_Access_Subprogram_Type;
+
+ -- Start of processing for Analyze_Access_Attribute
+
+ begin
+ Check_E0;
+
+ if Nkind (P) = N_Character_Literal then
+ Error_Attr
+ ("prefix of % attribute cannot be enumeration literal", P);
+ end if;
+
+ -- Case of access to subprogram
+
+ if Is_Entity_Name (P)
+ and then Is_Overloadable (Entity (P))
+ then
+ -- Not allowed for nested subprograms if No_Implicit_Dynamic_Code
+ -- restriction set (since in general a trampoline is required).
+
+ if not Is_Library_Level_Entity (Entity (P)) then
+ Check_Restriction (No_Implicit_Dynamic_Code, P);
+ end if;
+
+ if Is_Always_Inlined (Entity (P)) then
+ Error_Attr
+ ("prefix of % attribute cannot be Inline_Always subprogram",
+ P);
+ end if;
+
+ -- Build the appropriate subprogram type
+
+ Build_Access_Subprogram_Type (P);
+
+ -- For unrestricted access, kill current values, since this
+ -- attribute allows a reference to a local subprogram that
+ -- could modify local variables to be passed out of scope
+
+ if Aname = Name_Unrestricted_Access then
+ Kill_Current_Values;
+ end if;
+
+ return;
+
+ -- Component is an operation of a protected type
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Is_Overloadable (Entity (Selector_Name (P)))
+ then
+ if Ekind (Entity (Selector_Name (P))) = E_Entry then
+ Error_Attr ("prefix of % attribute must be subprogram", P);
+ end if;
+
+ Build_Access_Subprogram_Type (Selector_Name (P));
+ return;
+ end if;
+
+ -- Deal with incorrect reference to a type, but note that some
+ -- accesses are allowed (references to the current type instance).
+
+ if Is_Entity_Name (P) then
+ Typ := Entity (P);
+
+ -- The reference may appear in an aggregate that has been expanded
+ -- into a loop. Locate scope of type definition, if any.
+
+ Scop := Current_Scope;
+ while Ekind (Scop) = E_Loop loop
+ Scop := Scope (Scop);
+ end loop;
+
+ if Is_Type (Typ) then
+
+ -- OK if we are within the scope of a limited type
+ -- let's mark the component as having per object constraint
+
+ if Is_Anonymous_Tagged_Base (Scop, Typ) then
+ Typ := Scop;
+ Set_Entity (P, Typ);
+ Set_Etype (P, Typ);
+ end if;
+
+ if Typ = Scop then
+ declare
+ Q : Node_Id := Parent (N);
+
+ begin
+ while Present (Q)
+ and then Nkind (Q) /= N_Component_Declaration
+ loop
+ Q := Parent (Q);
+ end loop;
+
+ if Present (Q) then
+ Set_Has_Per_Object_Constraint (
+ Defining_Identifier (Q), True);
+ end if;
+ end;
+
+ if Nkind (P) = N_Expanded_Name then
+ Error_Msg_N
+ ("current instance prefix must be a direct name", P);
+ end if;
+
+ -- If a current instance attribute appears within a
+ -- a component constraint it must appear alone; other
+ -- contexts (default expressions, within a task body)
+ -- are not subject to this restriction.
+
+ if not In_Default_Expression
+ and then not Has_Completion (Scop)
+ and then
+ Nkind (Parent (N)) /= N_Discriminant_Association
+ and then
+ Nkind (Parent (N)) /= N_Index_Or_Discriminant_Constraint
+ then
+ Error_Msg_N
+ ("current instance attribute must appear alone", N);
+ end if;
+
+ -- OK if we are in initialization procedure for the type
+ -- in question, in which case the reference to the type
+ -- is rewritten as a reference to the current object.
+
+ elsif Ekind (Scop) = E_Procedure
+ and then Is_Init_Proc (Scop)
+ and then Etype (First_Formal (Scop)) = Typ
+ then
+ Rewrite (N,
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Attribute_Name => Name_Unrestricted_Access));
+ Analyze (N);
+ return;
+
+ -- OK if a task type, this test needs sharpening up ???
+
+ elsif Is_Task_Type (Typ) then
+ null;
+
+ -- Otherwise we have an error case
+
+ else
+ Error_Attr ("% attribute cannot be applied to type", P);
+ return;
+ end if;
+ end if;
+ end if;
+
+ -- If we fall through, we have a normal access to object case.
+ -- Unrestricted_Access is legal wherever an allocator would be
+ -- legal, so its Etype is set to E_Allocator. The expected type
+ -- of the other attributes is a general access type, and therefore
+ -- we label them with E_Access_Attribute_Type.
+
+ if not Is_Overloaded (P) then
+ Acc_Type := Build_Access_Object_Type (P_Type);
+ Set_Etype (N, Acc_Type);
+ else
+ declare
+ Index : Interp_Index;
+ It : Interp;
+ begin
+ Set_Etype (N, Any_Type);
+ Get_First_Interp (P, Index, It);
+ while Present (It.Typ) loop
+ Acc_Type := Build_Access_Object_Type (It.Typ);
+ Add_One_Interp (N, Acc_Type, Acc_Type);
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+ end if;
+
+ -- If we have an access to an object, and the attribute comes
+ -- from source, then set the object as potentially source modified.
+ -- We do this because the resulting access pointer can be used to
+ -- modify the variable, and we might not detect this, leading to
+ -- some junk warnings.
+
+ if Is_Entity_Name (P) then
+ Set_Never_Set_In_Source (Entity (P), False);
+ end if;
+
+ -- Check for aliased view unless unrestricted case. We allow
+ -- a nonaliased prefix when within an instance because the
+ -- prefix may have been a tagged formal object, which is
+ -- defined to be aliased even when the actual might not be
+ -- (other instance cases will have been caught in the generic).
+ -- Similarly, within an inlined body we know that the attribute
+ -- is legal in the original subprogram, and therefore legal in
+ -- the expansion.
+
+ if Aname /= Name_Unrestricted_Access
+ and then not Is_Aliased_View (P)
+ and then not In_Instance
+ and then not In_Inlined_Body
+ then
+ Error_Attr ("prefix of % attribute must be aliased", P);
+ end if;
+ end Analyze_Access_Attribute;
+
+ --------------------------------
+ -- Check_Array_Or_Scalar_Type --
+ --------------------------------
+
+ procedure Check_Array_Or_Scalar_Type is
+ Index : Entity_Id;
+
+ D : Int;
+ -- Dimension number for array attributes
+
+ begin
+ -- Case of string literal or string literal subtype. These cases
+ -- cannot arise from legal Ada code, but the expander is allowed
+ -- to generate them. They require special handling because string
+ -- literal subtypes do not have standard bounds (the whole idea
+ -- of these subtypes is to avoid having to generate the bounds)
+
+ if Ekind (P_Type) = E_String_Literal_Subtype then
+ Set_Etype (N, Etype (First_Index (P_Base_Type)));
+ return;
+
+ -- Scalar types
+
+ elsif Is_Scalar_Type (P_Type) then
+ Check_Type;
+
+ if Present (E1) then
+ Error_Attr ("invalid argument in % attribute", E1);
+ else
+ Set_Etype (N, P_Base_Type);
+ return;
+ end if;
+
+ -- The following is a special test to allow 'First to apply to
+ -- private scalar types if the attribute comes from generated
+ -- code. This occurs in the case of Normalize_Scalars code.
+
+ elsif Is_Private_Type (P_Type)
+ and then Present (Full_View (P_Type))
+ and then Is_Scalar_Type (Full_View (P_Type))
+ and then not Comes_From_Source (N)
+ then
+ Set_Etype (N, Implementation_Base_Type (P_Type));
+
+ -- Array types other than string literal subtypes handled above
+
+ else
+ Check_Array_Type;
+
+ -- We know prefix is an array type, or the name of an array
+ -- object, and that the expression, if present, is static
+ -- and within the range of the dimensions of the type.
+
+ pragma Assert (Is_Array_Type (P_Type));
+ Index := First_Index (P_Base_Type);
+
+ if No (E1) then
+
+ -- First dimension assumed
+
+ Set_Etype (N, Base_Type (Etype (Index)));
+
+ else
+ D := UI_To_Int (Intval (E1));
+
+ for J in 1 .. D - 1 loop
+ Next_Index (Index);
+ end loop;
+
+ Set_Etype (N, Base_Type (Etype (Index)));
+ Set_Etype (E1, Standard_Integer);
+ end if;
+ end if;
+ end Check_Array_Or_Scalar_Type;
+
+ ----------------------
+ -- Check_Array_Type --
+ ----------------------
+
+ procedure Check_Array_Type is
+ D : Int;
+ -- Dimension number for array attributes
+
+ begin
+ -- If the type is a string literal type, then this must be generated
+ -- internally, and no further check is required on its legality.
+
+ if Ekind (P_Type) = E_String_Literal_Subtype then
+ return;
+
+ -- If the type is a composite, it is an illegal aggregate, no point
+ -- in going on.
+
+ elsif P_Type = Any_Composite then
+ raise Bad_Attribute;
+ end if;
+
+ -- Normal case of array type or subtype
+
+ Check_Either_E0_Or_E1;
+ Check_Dereference;
+
+ if Is_Array_Type (P_Type) then
+ if not Is_Constrained (P_Type)
+ and then Is_Entity_Name (P)
+ and then Is_Type (Entity (P))
+ then
+ -- Note: we do not call Error_Attr here, since we prefer to
+ -- continue, using the relevant index type of the array,
+ -- even though it is unconstrained. This gives better error
+ -- recovery behavior.
+
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N
+ ("prefix for % attribute must be constrained array", P);
+ end if;
+
+ D := Number_Dimensions (P_Type);
+
+ else
+ if Is_Private_Type (P_Type) then
+ Error_Attr
+ ("prefix for % attribute may not be private type", P);
+
+ elsif Is_Access_Type (P_Type)
+ and then Is_Array_Type (Designated_Type (P_Type))
+ and then Is_Entity_Name (P)
+ and then Is_Type (Entity (P))
+ then
+ Error_Attr ("prefix of % attribute cannot be access type", P);
+
+ elsif Attr_Id = Attribute_First
+ or else
+ Attr_Id = Attribute_Last
+ then
+ Error_Attr ("invalid prefix for % attribute", P);
+
+ else
+ Error_Attr ("prefix for % attribute must be array", P);
+ end if;
+ end if;
+
+ if Present (E1) then
+ Resolve (E1, Any_Integer);
+ Set_Etype (E1, Standard_Integer);
+
+ if not Is_Static_Expression (E1)
+ or else Raises_Constraint_Error (E1)
+ then
+ Flag_Non_Static_Expr
+ ("expression for dimension must be static!", E1);
+ Error_Attr;
+
+ elsif UI_To_Int (Expr_Value (E1)) > D
+ or else UI_To_Int (Expr_Value (E1)) < 1
+ then
+ Error_Attr ("invalid dimension number for array type", E1);
+ end if;
+ end if;
+ end Check_Array_Type;
+
+ -------------------------
+ -- Check_Asm_Attribute --
+ -------------------------
+
+ procedure Check_Asm_Attribute is
+ begin
+ Check_Type;
+ Check_E2;
+
+ -- Check first argument is static string expression
+
+ Analyze_And_Resolve (E1, Standard_String);
+
+ if Etype (E1) = Any_Type then
+ return;
+
+ elsif not Is_OK_Static_Expression (E1) then
+ Flag_Non_Static_Expr
+ ("constraint argument must be static string expression!", E1);
+ Error_Attr;
+ end if;
+
+ -- Check second argument is right type
+
+ Analyze_And_Resolve (E2, Entity (P));
+
+ -- Note: that is all we need to do, we don't need to check
+ -- that it appears in a correct context. The Ada type system
+ -- will do that for us.
+
+ end Check_Asm_Attribute;
+
+ ---------------------
+ -- Check_Component --
+ ---------------------
+
+ procedure Check_Component is
+ begin
+ Check_E0;
+
+ if Nkind (P) /= N_Selected_Component
+ or else
+ (Ekind (Entity (Selector_Name (P))) /= E_Component
+ and then
+ Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
+ then
+ Error_Attr
+ ("prefix for % attribute must be selected component", P);
+ end if;
+ end Check_Component;
+
+ ------------------------------------
+ -- Check_Decimal_Fixed_Point_Type --
+ ------------------------------------
+
+ procedure Check_Decimal_Fixed_Point_Type is
+ begin
+ Check_Type;
+
+ if not Is_Decimal_Fixed_Point_Type (P_Type) then
+ Error_Attr
+ ("prefix of % attribute must be decimal type", P);
+ end if;
+ end Check_Decimal_Fixed_Point_Type;
+
+ -----------------------
+ -- Check_Dereference --
+ -----------------------
+
+ procedure Check_Dereference is
+ begin
+
+ -- Case of a subtype mark
+
+ if Is_Entity_Name (P)
+ and then Is_Type (Entity (P))
+ then
+ return;
+ end if;
+
+ -- Case of an expression
+
+ Resolve (P);
+
+ if Is_Access_Type (P_Type) then
+
+ -- If there is an implicit dereference, then we must freeze
+ -- the designated type of the access type, since the type of
+ -- the referenced array is this type (see AI95-00106).
+
+ Freeze_Before (N, Designated_Type (P_Type));
+
+ Rewrite (P,
+ Make_Explicit_Dereference (Sloc (P),
+ Prefix => Relocate_Node (P)));
+
+ Analyze_And_Resolve (P);
+ P_Type := Etype (P);
+
+ if P_Type = Any_Type then
+ raise Bad_Attribute;
+ end if;
+
+ P_Base_Type := Base_Type (P_Type);
+ end if;
+ end Check_Dereference;
+
+ -------------------------
+ -- Check_Discrete_Type --
+ -------------------------
+
+ procedure Check_Discrete_Type is
+ begin
+ Check_Type;
+
+ if not Is_Discrete_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be discrete type", P);
+ end if;
+ end Check_Discrete_Type;
+
+ --------------
+ -- Check_E0 --
+ --------------
+
+ procedure Check_E0 is
+ begin
+ if Present (E1) then
+ Unexpected_Argument (E1);
+ end if;
+ end Check_E0;
+
+ --------------
+ -- Check_E1 --
+ --------------
+
+ procedure Check_E1 is
+ begin
+ Check_Either_E0_Or_E1;
+
+ if No (E1) then
+
+ -- Special-case attributes that are functions and that appear as
+ -- the prefix of another attribute. Error is posted on parent.
+
+ if Nkind (Parent (N)) = N_Attribute_Reference
+ and then (Attribute_Name (Parent (N)) = Name_Address
+ or else
+ Attribute_Name (Parent (N)) = Name_Code_Address
+ or else
+ Attribute_Name (Parent (N)) = Name_Access)
+ then
+ Error_Msg_Name_1 := Attribute_Name (Parent (N));
+ Error_Msg_N ("illegal prefix for % attribute", Parent (N));
+ Set_Etype (Parent (N), Any_Type);
+ Set_Entity (Parent (N), Any_Type);
+ raise Bad_Attribute;
+
+ else
+ Error_Attr ("missing argument for % attribute", N);
+ end if;
+ end if;
+ end Check_E1;
+
+ --------------
+ -- Check_E2 --
+ --------------
+
+ procedure Check_E2 is
+ begin
+ if No (E1) then
+ Error_Attr ("missing arguments for % attribute (2 required)", N);
+ elsif No (E2) then
+ Error_Attr ("missing argument for % attribute (2 required)", N);
+ end if;
+ end Check_E2;
+
+ ---------------------------
+ -- Check_Either_E0_Or_E1 --
+ ---------------------------
+
+ procedure Check_Either_E0_Or_E1 is
+ begin
+ if Present (E2) then
+ Unexpected_Argument (E2);
+ end if;
+ end Check_Either_E0_Or_E1;
+
+ ----------------------
+ -- Check_Enum_Image --
+ ----------------------
+
+ procedure Check_Enum_Image is
+ Lit : Entity_Id;
+
+ begin
+ if Is_Enumeration_Type (P_Base_Type) then
+ Lit := First_Literal (P_Base_Type);
+ while Present (Lit) loop
+ Set_Referenced (Lit);
+ Next_Literal (Lit);
+ end loop;
+ end if;
+ end Check_Enum_Image;
+
+ ----------------------------
+ -- Check_Fixed_Point_Type --
+ ----------------------------
+
+ procedure Check_Fixed_Point_Type is
+ begin
+ Check_Type;
+
+ if not Is_Fixed_Point_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be fixed point type", P);
+ end if;
+ end Check_Fixed_Point_Type;
+
+ ------------------------------
+ -- Check_Fixed_Point_Type_0 --
+ ------------------------------
+
+ procedure Check_Fixed_Point_Type_0 is
+ begin
+ Check_Fixed_Point_Type;
+ Check_E0;
+ end Check_Fixed_Point_Type_0;
+
+ -------------------------------
+ -- Check_Floating_Point_Type --
+ -------------------------------
+
+ procedure Check_Floating_Point_Type is
+ begin
+ Check_Type;
+
+ if not Is_Floating_Point_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be float type", P);
+ end if;
+ end Check_Floating_Point_Type;
+
+ ---------------------------------
+ -- Check_Floating_Point_Type_0 --
+ ---------------------------------
+
+ procedure Check_Floating_Point_Type_0 is
+ begin
+ Check_Floating_Point_Type;
+ Check_E0;
+ end Check_Floating_Point_Type_0;
+
+ ---------------------------------
+ -- Check_Floating_Point_Type_1 --
+ ---------------------------------
+
+ procedure Check_Floating_Point_Type_1 is
+ begin
+ Check_Floating_Point_Type;
+ Check_E1;
+ end Check_Floating_Point_Type_1;
+
+ ---------------------------------
+ -- Check_Floating_Point_Type_2 --
+ ---------------------------------
+
+ procedure Check_Floating_Point_Type_2 is
+ begin
+ Check_Floating_Point_Type;
+ Check_E2;
+ end Check_Floating_Point_Type_2;
+
+ ------------------------
+ -- Check_Integer_Type --
+ ------------------------
+
+ procedure Check_Integer_Type is
+ begin
+ Check_Type;
+
+ if not Is_Integer_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be integer type", P);
+ end if;
+ end Check_Integer_Type;
+
+ ------------------------
+ -- Check_Library_Unit --
+ ------------------------
+
+ procedure Check_Library_Unit is
+ begin
+ if not Is_Compilation_Unit (Entity (P)) then
+ Error_Attr ("prefix of % attribute must be library unit", P);
+ end if;
+ end Check_Library_Unit;
+
+ --------------------------------
+ -- Check_Modular_Integer_Type --
+ --------------------------------
+
+ procedure Check_Modular_Integer_Type is
+ begin
+ Check_Type;
+
+ if not Is_Modular_Integer_Type (P_Type) then
+ Error_Attr
+ ("prefix of % attribute must be modular integer type", P);
+ end if;
+ end Check_Modular_Integer_Type;
+
+ -------------------------------
+ -- Check_Not_Incomplete_Type --
+ -------------------------------
+
+ procedure Check_Not_Incomplete_Type is
+ E : Entity_Id;
+ Typ : Entity_Id;
+
+ begin
+ -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
+ -- dereference we have to check wrong uses of incomplete types
+ -- (other wrong uses are checked at their freezing point).
+
+ -- Example 1: Limited-with
+
+ -- limited with Pkg;
+ -- package P is
+ -- type Acc is access Pkg.T;
+ -- X : Acc;
+ -- S : Integer := X.all'Size; -- ERROR
+ -- end P;
+
+ -- Example 2: Tagged incomplete
+
+ -- type T is tagged;
+ -- type Acc is access all T;
+ -- X : Acc;
+ -- S : constant Integer := X.all'Size; -- ERROR
+ -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
+
+ if Ada_Version >= Ada_05
+ and then Nkind (P) = N_Explicit_Dereference
+ then
+ E := P;
+ while Nkind (E) = N_Explicit_Dereference loop
+ E := Prefix (E);
+ end loop;
+
+ if From_With_Type (Etype (E)) then
+ Error_Attr
+ ("prefix of % attribute cannot be an incomplete type", P);
+
+ else
+ if Is_Access_Type (Etype (E)) then
+ Typ := Directly_Designated_Type (Etype (E));
+ else
+ Typ := Etype (E);
+ end if;
+
+ if Ekind (Typ) = E_Incomplete_Type
+ and then No (Full_View (Typ))
+ then
+ Error_Attr
+ ("prefix of % attribute cannot be an incomplete type", P);
+ end if;
+ end if;
+ end if;
+
+ if not Is_Entity_Name (P)
+ or else not Is_Type (Entity (P))
+ or else In_Default_Expression
+ then
+ return;
+ else
+ Check_Fully_Declared (P_Type, P);
+ end if;
+ end Check_Not_Incomplete_Type;
+
+ ----------------------------
+ -- Check_Object_Reference --
+ ----------------------------
+
+ procedure Check_Object_Reference (P : Node_Id) is
+ Rtyp : Entity_Id;
+
+ begin
+ -- If we need an object, and we have a prefix that is the name of
+ -- a function entity, convert it into a function call.
+
+ if Is_Entity_Name (P)
+ and then Ekind (Entity (P)) = E_Function
+ then
+ Rtyp := Etype (Entity (P));
+
+ Rewrite (P,
+ Make_Function_Call (Sloc (P),
+ Name => Relocate_Node (P)));
+
+ Analyze_And_Resolve (P, Rtyp);
+
+ -- Otherwise we must have an object reference
+
+ elsif not Is_Object_Reference (P) then
+ Error_Attr ("prefix of % attribute must be object", P);
+ end if;
+ end Check_Object_Reference;
+
+ ------------------------
+ -- Check_Program_Unit --
+ ------------------------
+
+ procedure Check_Program_Unit is
+ begin
+ if Is_Entity_Name (P) then
+ declare
+ K : constant Entity_Kind := Ekind (Entity (P));
+ T : constant Entity_Id := Etype (Entity (P));
+
+ begin
+ if K in Subprogram_Kind
+ or else K in Task_Kind
+ or else K in Protected_Kind
+ or else K = E_Package
+ or else K in Generic_Unit_Kind
+ or else (K = E_Variable
+ and then
+ (Is_Task_Type (T)
+ or else
+ Is_Protected_Type (T)))
+ then
+ return;
+ end if;
+ end;
+ end if;
+
+ Error_Attr ("prefix of % attribute must be program unit", P);
+ end Check_Program_Unit;
+
+ ---------------------
+ -- Check_Real_Type --
+ ---------------------
+
+ procedure Check_Real_Type is
+ begin
+ Check_Type;
+
+ if not Is_Real_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be real type", P);
+ end if;
+ end Check_Real_Type;
+
+ -----------------------
+ -- Check_Scalar_Type --
+ -----------------------
+
+ procedure Check_Scalar_Type is
+ begin
+ Check_Type;
+
+ if not Is_Scalar_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be scalar type", P);
+ end if;
+ end Check_Scalar_Type;
+
+ ---------------------------
+ -- Check_Standard_Prefix --
+ ---------------------------
+
+ procedure Check_Standard_Prefix is
+ begin
+ Check_E0;
+
+ if Nkind (P) /= N_Identifier
+ or else Chars (P) /= Name_Standard
+ then
+ Error_Attr ("only allowed prefix for % attribute is Standard", P);
+ end if;
+
+ end Check_Standard_Prefix;
+
+ ----------------------------
+ -- Check_Stream_Attribute --
+ ----------------------------
+
+ procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
+ Etyp : Entity_Id;
+ Btyp : Entity_Id;
+ begin
+ Validate_Non_Static_Attribute_Function_Call;
+
+ -- With the exception of 'Input, Stream attributes are procedures,
+ -- and can only appear at the position of procedure calls. We check
+ -- for this here, before they are rewritten, to give a more precise
+ -- diagnostic.
+
+ if Nam = TSS_Stream_Input then
+ null;
+
+ elsif Is_List_Member (N)
+ and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
+ and then Nkind (Parent (N)) /= N_Aggregate
+ then
+ null;
+
+ else
+ Error_Attr
+ ("invalid context for attribute%, which is a procedure", N);
+ end if;
+
+ Check_Type;
+ Btyp := Implementation_Base_Type (P_Type);
+
+ -- Stream attributes not allowed on limited types unless the
+ -- attribute reference was generated by the expander (in which
+ -- case the underlying type will be used, as described in Sinfo),
+ -- or the attribute was specified explicitly for the type itself
+ -- or one of its ancestors (taking visibility rules into account if
+ -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
+ -- (with no visibility restriction).
+
+ if Comes_From_Source (N)
+ and then not Stream_Attribute_Available (P_Type, Nam)
+ and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
+ then
+ Error_Msg_Name_1 := Aname;
+
+ if Is_Limited_Type (P_Type) then
+ Error_Msg_NE
+ ("limited type& has no% attribute", P, P_Type);
+ Explain_Limited_Type (P_Type, P);
+ else
+ Error_Msg_NE
+ ("attribute% for type& is not available", P, P_Type);
+ end if;
+ end if;
+
+ -- Check for violation of restriction No_Stream_Attributes
+
+ if Is_RTE (P_Type, RE_Exception_Id)
+ or else
+ Is_RTE (P_Type, RE_Exception_Occurrence)
+ then
+ Check_Restriction (No_Exception_Registration, P);
+ end if;
+
+ -- Here we must check that the first argument is an access type
+ -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
+
+ Analyze_And_Resolve (E1);
+ Etyp := Etype (E1);
+
+ -- Note: the double call to Root_Type here is needed because the
+ -- root type of a class-wide type is the corresponding type (e.g.
+ -- X for X'Class, and we really want to go to the root.
+
+ if not Is_Access_Type (Etyp)
+ or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
+ RTE (RE_Root_Stream_Type)
+ then
+ Error_Attr
+ ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
+ end if;
+
+ -- Check that the second argument is of the right type if there is
+ -- one (the Input attribute has only one argument so this is skipped)
+
+ if Present (E2) then
+ Analyze (E2);
+
+ if Nam = TSS_Stream_Read
+ and then not Is_OK_Variable_For_Out_Formal (E2)
+ then
+ Error_Attr
+ ("second argument of % attribute must be a variable", E2);
+ end if;
+
+ Resolve (E2, P_Type);
+ end if;
+ end Check_Stream_Attribute;
+
+ -----------------------
+ -- Check_Task_Prefix --
+ -----------------------
+
+ procedure Check_Task_Prefix is
+ begin
+ Analyze (P);
+
+ -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
+ -- task interface class-wide types.
+
+ if Is_Task_Type (Etype (P))
+ or else (Is_Access_Type (Etype (P))
+ and then Is_Task_Type (Designated_Type (Etype (P))))
+ or else (Ada_Version >= Ada_05
+ and then Ekind (Etype (P)) = E_Class_Wide_Type
+ and then Is_Interface (Etype (P))
+ and then Is_Task_Interface (Etype (P)))
+ then
+ Resolve (P);
+
+ else
+ if Ada_Version >= Ada_05 then
+ Error_Attr ("prefix of % attribute must be a task or a task "
+ & "interface class-wide object", P);
+
+ else
+ Error_Attr ("prefix of % attribute must be a task", P);
+ end if;
+ end if;
+ end Check_Task_Prefix;
+
+ ----------------
+ -- Check_Type --
+ ----------------
+
+ -- The possibilities are an entity name denoting a type, or an
+ -- attribute reference that denotes a type (Base or Class). If
+ -- the type is incomplete, replace it with its full view.
+
+ procedure Check_Type is
+ begin
+ if not Is_Entity_Name (P)
+ or else not Is_Type (Entity (P))
+ then
+ Error_Attr ("prefix of % attribute must be a type", P);
+
+ elsif Ekind (Entity (P)) = E_Incomplete_Type
+ and then Present (Full_View (Entity (P)))
+ then
+ P_Type := Full_View (Entity (P));
+ Set_Entity (P, P_Type);
+ end if;
+ end Check_Type;
+
+ ---------------------
+ -- Check_Unit_Name --
+ ---------------------
+
+ procedure Check_Unit_Name (Nod : Node_Id) is
+ begin
+ if Nkind (Nod) = N_Identifier then
+ return;
+
+ elsif Nkind (Nod) = N_Selected_Component then
+ Check_Unit_Name (Prefix (Nod));
+
+ if Nkind (Selector_Name (Nod)) = N_Identifier then
+ return;
+ end if;
+ end if;
+
+ Error_Attr ("argument for % attribute must be unit name", P);
+ end Check_Unit_Name;
+
+ ----------------
+ -- Error_Attr --
+ ----------------
+
+ procedure Error_Attr is
+ begin
+ Set_Etype (N, Any_Type);
+ Set_Entity (N, Any_Type);
+ raise Bad_Attribute;
+ end Error_Attr;
+
+ procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
+ begin
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N (Msg, Error_Node);
+ Error_Attr;
+ end Error_Attr;
+
+ ----------------------------
+ -- Legal_Formal_Attribute --
+ ----------------------------
+
+ procedure Legal_Formal_Attribute is
+ begin
+ Check_E0;
+
+ if not Is_Entity_Name (P)
+ or else not Is_Type (Entity (P))
+ then
+ Error_Attr ("prefix of % attribute must be generic type", N);
+
+ elsif Is_Generic_Actual_Type (Entity (P))
+ or else In_Instance
+ or else In_Inlined_Body
+ then
+ null;
+
+ elsif Is_Generic_Type (Entity (P)) then
+ if not Is_Indefinite_Subtype (Entity (P)) then
+ Error_Attr
+ ("prefix of % attribute must be indefinite generic type", N);
+ end if;
+
+ else
+ Error_Attr
+ ("prefix of % attribute must be indefinite generic type", N);
+ end if;
+
+ Set_Etype (N, Standard_Boolean);
+ end Legal_Formal_Attribute;
+
+ ------------------------
+ -- Standard_Attribute --
+ ------------------------
+
+ procedure Standard_Attribute (Val : Int) is
+ begin
+ Check_Standard_Prefix;
+
+ -- First a special check (more like a kludge really). For GNAT5
+ -- on Windows, the alignments in GCC are severely mixed up. In
+ -- particular, we have a situation where the maximum alignment
+ -- that GCC thinks is possible is greater than the guaranteed
+ -- alignment at run-time. That causes many problems. As a partial
+ -- cure for this situation, we force a value of 4 for the maximum
+ -- alignment attribute on this target. This still does not solve
+ -- all problems, but it helps.
+
+ -- A further (even more horrible) dimension to this kludge is now
+ -- installed. There are two uses for Maximum_Alignment, one is to
+ -- determine the maximum guaranteed alignment, that's the one we
+ -- want the kludge to yield as 4. The other use is to maximally
+ -- align objects, we can't use 4 here, since for example, long
+ -- long integer has an alignment of 8, so we will get errors.
+
+ -- It is of course impossible to determine which use the programmer
+ -- has in mind, but an approximation for now is to disconnect the
+ -- kludge if the attribute appears in an alignment clause.
+
+ -- To be removed if GCC ever gets its act together here ???
+
+ Alignment_Kludge : declare
+ P : Node_Id;
+
+ function On_X86 return Boolean;
+ -- Determine if target is x86 (ia32), return True if so
+
+ ------------
+ -- On_X86 --
+ ------------
+
+ function On_X86 return Boolean is
+ T : constant String := Sdefault.Target_Name.all;
+
+ begin
+ -- There is no clean way to check this. That's not surprising,
+ -- the front end should not be doing this kind of test ???. The
+ -- way we do it is test for either "86" or "pentium" being in
+ -- the string for the target name. However, we need to exclude
+ -- x86_64 for this check.
+
+ for J in T'First .. T'Last - 1 loop
+ if (T (J .. J + 1) = "86"
+ and then
+ (J + 4 > T'Last
+ or else T (J + 2 .. J + 4) /= "_64"))
+ or else (J <= T'Last - 6
+ and then T (J .. J + 6) = "pentium")
+ then
+ return True;
+ end if;
+ end loop;
+
+ return False;
+ end On_X86;
+
+ begin
+ if Aname = Name_Maximum_Alignment and then On_X86 then
+ P := Parent (N);
+
+ while Nkind (P) in N_Subexpr loop
+ P := Parent (P);
+ end loop;
+
+ if Nkind (P) /= N_Attribute_Definition_Clause
+ or else Chars (P) /= Name_Alignment
+ then
+ Rewrite (N, Make_Integer_Literal (Loc, 4));
+ Analyze (N);
+ return;
+ end if;
+ end if;
+ end Alignment_Kludge;
+
+ -- Normally we get the value from gcc ???
+
+ Rewrite (N, Make_Integer_Literal (Loc, Val));
+ Analyze (N);
+ end Standard_Attribute;
+
+ -------------------------
+ -- Unexpected Argument --
+ -------------------------
+
+ procedure Unexpected_Argument (En : Node_Id) is
+ begin
+ Error_Attr ("unexpected argument for % attribute", En);
+ end Unexpected_Argument;
+
+ -------------------------------------------------
+ -- Validate_Non_Static_Attribute_Function_Call --
+ -------------------------------------------------
+
+ -- This function should be moved to Sem_Dist ???
+
+ procedure Validate_Non_Static_Attribute_Function_Call is
+ begin
+ if In_Preelaborated_Unit
+ and then not In_Subprogram_Or_Concurrent_Unit
+ then
+ Flag_Non_Static_Expr
+ ("non-static function call in preelaborated unit!", N);
+ end if;
+ end Validate_Non_Static_Attribute_Function_Call;
+
+ -----------------------------------------------
+ -- Start of Processing for Analyze_Attribute --
+ -----------------------------------------------
+
+ begin
+ -- Immediate return if unrecognized attribute (already diagnosed
+ -- by parser, so there is nothing more that we need to do)
+
+ if not Is_Attribute_Name (Aname) then
+ raise Bad_Attribute;
+ end if;
+
+ -- Deal with Ada 83 and Features issues
+
+ if Comes_From_Source (N) then
+ if not Attribute_83 (Attr_Id) then
+ if Ada_Version = Ada_83 and then Comes_From_Source (N) then
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
+ end if;
+
+ if Attribute_Impl_Def (Attr_Id) then
+ Check_Restriction (No_Implementation_Attributes, N);
+ end if;
+ end if;
+ end if;
+
+ -- Remote access to subprogram type access attribute reference needs
+ -- unanalyzed copy for tree transformation. The analyzed copy is used
+ -- for its semantic information (whether prefix is a remote subprogram
+ -- name), the unanalyzed copy is used to construct new subtree rooted
+ -- with N_Aggregate which represents a fat pointer aggregate.
+
+ if Aname = Name_Access then
+ Discard_Node (Copy_Separate_Tree (N));
+ end if;
+
+ -- Analyze prefix and exit if error in analysis. If the prefix is an
+ -- incomplete type, use full view if available. A special case is
+ -- that we never analyze the prefix of an Elab_Body or Elab_Spec
+ -- or UET_Address attribute.
+
+ if Aname /= Name_Elab_Body
+ and then
+ Aname /= Name_Elab_Spec
+ and then
+ Aname /= Name_UET_Address
+ then
+ Analyze (P);
+ P_Type := Etype (P);
+
+ if Is_Entity_Name (P)
+ and then Present (Entity (P))
+ and then Is_Type (Entity (P))
+ then
+ if Ekind (Entity (P)) = E_Incomplete_Type then
+ P_Type := Get_Full_View (P_Type);
+ Set_Entity (P, P_Type);
+ Set_Etype (P, P_Type);
+
+ elsif Entity (P) = Current_Scope
+ and then Is_Record_Type (Entity (P))
+ then
+
+ -- Use of current instance within the type. Verify that if the
+ -- attribute appears within a constraint, it yields an access
+ -- type, other uses are illegal.
+
+ declare
+ Par : Node_Id;
+
+ begin
+ Par := Parent (N);
+ while Present (Par)
+ and then Nkind (Parent (Par)) /= N_Component_Definition
+ loop
+ Par := Parent (Par);
+ end loop;
+
+ if Present (Par)
+ and then Nkind (Par) = N_Subtype_Indication
+ then
+ if Attr_Id /= Attribute_Access
+ and then Attr_Id /= Attribute_Unchecked_Access
+ and then Attr_Id /= Attribute_Unrestricted_Access
+ then
+ Error_Msg_N
+ ("in a constraint the current instance can only"
+ & " be used with an access attribute", N);
+ end if;
+ end if;
+ end;
+ end if;
+ end if;
+
+ if P_Type = Any_Type then
+ raise Bad_Attribute;
+ end if;
+
+ P_Base_Type := Base_Type (P_Type);
+ end if;
+
+ -- Analyze expressions that may be present, exiting if an error occurs
+
+ if No (Exprs) then
+ E1 := Empty;
+ E2 := Empty;
+
+ else
+ E1 := First (Exprs);
+ Analyze (E1);
+
+ -- Check for missing or bad expression (result of previous error)
+
+ if No (E1) or else Etype (E1) = Any_Type then
+ raise Bad_Attribute;
+ end if;
+
+ E2 := Next (E1);
+
+ if Present (E2) then
+ Analyze (E2);
+
+ if Etype (E2) = Any_Type then
+ raise Bad_Attribute;
+ end if;
+
+ if Present (Next (E2)) then
+ Unexpected_Argument (Next (E2));
+ end if;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-345): Ensure that the compiler gives exactly the current
+ -- output compiling in Ada 95 mode
+
+ if Ada_Version < Ada_05
+ and then Is_Overloaded (P)
+ and then Aname /= Name_Access
+ and then Aname /= Name_Address
+ and then Aname /= Name_Code_Address
+ and then Aname /= Name_Count
+ and then Aname /= Name_Unchecked_Access
+ then
+ Error_Attr ("ambiguous prefix for % attribute", P);
+
+ elsif Ada_Version >= Ada_05
+ and then Is_Overloaded (P)
+ and then Aname /= Name_Access
+ and then Aname /= Name_Address
+ and then Aname /= Name_Code_Address
+ and then Aname /= Name_Unchecked_Access
+ then
+ -- Ada 2005 (AI-345): Since protected and task types have primitive
+ -- entry wrappers, the attributes Count, Caller and AST_Entry require
+ -- a context check
+
+ if Ada_Version >= Ada_05
+ and then (Aname = Name_Count
+ or else Aname = Name_Caller
+ or else Aname = Name_AST_Entry)
+ then
+ declare
+ Count : Natural := 0;
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (P, I, It);
+
+ while Present (It.Nam) loop
+ if Comes_From_Source (It.Nam) then
+ Count := Count + 1;
+ else
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if Count > 1 then
+ Error_Attr ("ambiguous prefix for % attribute", P);
+ else
+ Set_Is_Overloaded (P, False);
+ end if;
+ end;
+
+ else
+ Error_Attr ("ambiguous prefix for % attribute", P);
+ end if;
+ end if;
+
+ -- Remaining processing depends on attribute
+
+ case Attr_Id is
+
+ ------------------
+ -- Abort_Signal --
+ ------------------
+
+ when Attribute_Abort_Signal =>
+ Check_Standard_Prefix;
+ Rewrite (N,
+ New_Reference_To (Stand.Abort_Signal, Loc));
+ Analyze (N);
+
+ ------------
+ -- Access --
+ ------------
+
+ when Attribute_Access =>
+ Analyze_Access_Attribute;
+
+ -------------
+ -- Address --
+ -------------
+
+ when Attribute_Address =>
+ Check_E0;
+
+ -- Check for some junk cases, where we have to allow the address
+ -- attribute but it does not make much sense, so at least for now
+ -- just replace with Null_Address.
+
+ -- We also do this if the prefix is a reference to the AST_Entry
+ -- attribute. If expansion is active, the attribute will be
+ -- replaced by a function call, and address will work fine and
+ -- get the proper value, but if expansion is not active, then
+ -- the check here allows proper semantic analysis of the reference.
+
+ -- An Address attribute created by expansion is legal even when it
+ -- applies to other entity-denoting expressions.
+
+ if Is_Entity_Name (P) then
+ declare
+ Ent : constant Entity_Id := Entity (P);
+
+ begin
+ if Is_Subprogram (Ent) then
+ if not Is_Library_Level_Entity (Ent) then
+ Check_Restriction (No_Implicit_Dynamic_Code, P);
+ end if;
+
+ Set_Address_Taken (Ent);
+
+ -- An Address attribute is accepted when generated by
+ -- the compiler for dispatching operation, and an error
+ -- is issued once the subprogram is frozen (to avoid
+ -- confusing errors about implicit uses of Address in
+ -- the dispatch table initialization).
+
+ if Is_Always_Inlined (Entity (P))
+ and then Comes_From_Source (P)
+ then
+ Error_Attr
+ ("prefix of % attribute cannot be Inline_Always" &
+ " subprogram", P);
+ end if;
+
+ elsif Is_Object (Ent)
+ or else Ekind (Ent) = E_Label
+ then
+ Set_Address_Taken (Ent);
+
+ -- If we have an address of an object, and the attribute
+ -- comes from source, then set the object as potentially
+ -- source modified. We do this because the resulting address
+ -- can potentially be used to modify the variable and we
+ -- might not detect this, leading to some junk warnings.
+
+ Set_Never_Set_In_Source (Ent, False);
+
+ elsif (Is_Concurrent_Type (Etype (Ent))
+ and then Etype (Ent) = Base_Type (Ent))
+ or else Ekind (Ent) = E_Package
+ or else Is_Generic_Unit (Ent)
+ then
+ Rewrite (N,
+ New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
+
+ else
+ Error_Attr ("invalid prefix for % attribute", P);
+ end if;
+ end;
+
+ elsif Nkind (P) = N_Attribute_Reference
+ and then Attribute_Name (P) = Name_AST_Entry
+ then
+ Rewrite (N,
+ New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
+
+ elsif Is_Object_Reference (P) then
+ null;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Is_Subprogram (Entity (Selector_Name (P)))
+ then
+ null;
+
+ -- What exactly are we allowing here ??? and is this properly
+ -- documented in the sinfo documentation for this node ???
+
+ elsif not Comes_From_Source (N) then
+ null;
+
+ else
+ Error_Attr ("invalid prefix for % attribute", P);
+ end if;
+
+ Set_Etype (N, RTE (RE_Address));
+
+ ------------------
+ -- Address_Size --
+ ------------------
+
+ when Attribute_Address_Size =>
+ Standard_Attribute (System_Address_Size);
+
+ --------------
+ -- Adjacent --
+ --------------
+
+ when Attribute_Adjacent =>
+ Check_Floating_Point_Type_2;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, P_Base_Type);
+
+ ---------
+ -- Aft --
+ ---------
+
+ when Attribute_Aft =>
+ Check_Fixed_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ ---------------
+ -- Alignment --
+ ---------------
+
+ when Attribute_Alignment =>
+
+ -- Don't we need more checking here, cf Size ???
+
+ Check_E0;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ ---------------
+ -- Asm_Input --
+ ---------------
+
+ when Attribute_Asm_Input =>
+ Check_Asm_Attribute;
+ Set_Etype (N, RTE (RE_Asm_Input_Operand));
+
+ ----------------
+ -- Asm_Output --
+ ----------------
+
+ when Attribute_Asm_Output =>
+ Check_Asm_Attribute;
+
+ if Etype (E2) = Any_Type then
+ return;
+
+ elsif Aname = Name_Asm_Output then
+ if not Is_Variable (E2) then
+ Error_Attr
+ ("second argument for Asm_Output is not variable", E2);
+ end if;
+ end if;
+
+ Note_Possible_Modification (E2);
+ Set_Etype (N, RTE (RE_Asm_Output_Operand));
+
+ ---------------
+ -- AST_Entry --
+ ---------------
+
+ when Attribute_AST_Entry => AST_Entry : declare
+ Ent : Entity_Id;
+ Pref : Node_Id;
+ Ptyp : Entity_Id;
+
+ Indexed : Boolean;
+ -- Indicates if entry family index is present. Note the coding
+ -- here handles the entry family case, but in fact it cannot be
+ -- executed currently, because pragma AST_Entry does not permit
+ -- the specification of an entry family.
+
+ procedure Bad_AST_Entry;
+ -- Signal a bad AST_Entry pragma
+
+ function OK_Entry (E : Entity_Id) return Boolean;
+ -- Checks that E is of an appropriate entity kind for an entry
+ -- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
+ -- is set True for the entry family case). In the True case,
+ -- makes sure that Is_AST_Entry is set on the entry.
+
+ procedure Bad_AST_Entry is
+ begin
+ Error_Attr ("prefix for % attribute must be task entry", P);
+ end Bad_AST_Entry;
+
+ function OK_Entry (E : Entity_Id) return Boolean is
+ Result : Boolean;
+
+ begin
+ if Indexed then
+ Result := (Ekind (E) = E_Entry_Family);
+ else
+ Result := (Ekind (E) = E_Entry);
+ end if;
+
+ if Result then
+ if not Is_AST_Entry (E) then
+ Error_Msg_Name_2 := Aname;
+ Error_Attr
+ ("% attribute requires previous % pragma", P);
+ end if;
+ end if;
+
+ return Result;
+ end OK_Entry;
+
+ -- Start of processing for AST_Entry
+
+ begin
+ Check_VMS (N);
+ Check_E0;
+
+ -- Deal with entry family case
+
+ if Nkind (P) = N_Indexed_Component then
+ Pref := Prefix (P);
+ Indexed := True;
+ else
+ Pref := P;
+ Indexed := False;
+ end if;
+
+ Ptyp := Etype (Pref);
+
+ if Ptyp = Any_Type or else Error_Posted (Pref) then
+ return;
+ end if;
+
+ -- If the prefix is a selected component whose prefix is of an
+ -- access type, then introduce an explicit dereference.
+ -- ??? Could we reuse Check_Dereference here?
+
+ if Nkind (Pref) = N_Selected_Component
+ and then Is_Access_Type (Ptyp)
+ then
+ Rewrite (Pref,
+ Make_Explicit_Dereference (Sloc (Pref),
+ Relocate_Node (Pref)));
+ Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
+ end if;
+
+ -- Prefix can be of the form a.b, where a is a task object
+ -- and b is one of the entries of the corresponding task type.
+
+ if Nkind (Pref) = N_Selected_Component
+ and then OK_Entry (Entity (Selector_Name (Pref)))
+ and then Is_Object_Reference (Prefix (Pref))
+ and then Is_Task_Type (Etype (Prefix (Pref)))
+ then
+ null;
+
+ -- Otherwise the prefix must be an entry of a containing task,
+ -- or of a variable of the enclosing task type.
+
+ else
+ if Nkind (Pref) = N_Identifier
+ or else Nkind (Pref) = N_Expanded_Name
+ then
+ Ent := Entity (Pref);
+
+ if not OK_Entry (Ent)
+ or else not In_Open_Scopes (Scope (Ent))
+ then
+ Bad_AST_Entry;
+ end if;
+
+ else
+ Bad_AST_Entry;
+ end if;
+ end if;
+
+ Set_Etype (N, RTE (RE_AST_Handler));
+ end AST_Entry;
+
+ ----------
+ -- Base --
+ ----------
+
+ -- Note: when the base attribute appears in the context of a subtype
+ -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
+ -- the following circuit.
+
+ when Attribute_Base => Base : declare
+ Typ : Entity_Id;
+
+ begin
+ Check_Either_E0_Or_E1;
+ Find_Type (P);
+ Typ := Entity (P);
+
+ if Ada_Version >= Ada_95
+ and then not Is_Scalar_Type (Typ)
+ and then not Is_Generic_Type (Typ)
+ then
+ Error_Msg_N ("prefix of Base attribute must be scalar type", N);
+
+ elsif Sloc (Typ) = Standard_Location
+ and then Base_Type (Typ) = Typ
+ and then Warn_On_Redundant_Constructs
+ then
+ Error_Msg_NE
+ ("?redudant attribute, & is its own base type", N, Typ);
+ end if;
+
+ Set_Etype (N, Base_Type (Entity (P)));
+
+ -- If we have an expression present, then really this is a conversion
+ -- and the tree must be reformed. Note that this is one of the cases
+ -- in which we do a replace rather than a rewrite, because the
+ -- original tree is junk.
+
+ if Present (E1) then
+ Replace (N,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Prefix (N),
+ Attribute_Name => Name_Base),
+ Expression => Relocate_Node (E1)));
+
+ -- E1 may be overloaded, and its interpretations preserved
+
+ Save_Interps (E1, Expression (N));
+ Analyze (N);
+
+ -- For other cases, set the proper type as the entity of the
+ -- attribute reference, and then rewrite the node to be an
+ -- occurrence of the referenced base type. This way, no one
+ -- else in the compiler has to worry about the base attribute.
+
+ else
+ Set_Entity (N, Base_Type (Entity (P)));
+ Rewrite (N,
+ New_Reference_To (Entity (N), Loc));
+ Analyze (N);
+ end if;
+ end Base;
+
+ ---------
+ -- Bit --
+ ---------
+
+ when Attribute_Bit => Bit :
+ begin
+ Check_E0;
+
+ if not Is_Object_Reference (P) then
+ Error_Attr ("prefix for % attribute must be object", P);
+
+ -- What about the access object cases ???
+
+ else
+ null;
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+ end Bit;
+
+ ---------------
+ -- Bit_Order --
+ ---------------
+
+ when Attribute_Bit_Order => Bit_Order :
+ begin
+ Check_E0;
+ Check_Type;
+
+ if not Is_Record_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be record type", P);
+ end if;
+
+ if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
+ Rewrite (N,
+ New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
+ else
+ Rewrite (N,
+ New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
+ end if;
+
+ Set_Etype (N, RTE (RE_Bit_Order));
+ Resolve (N);
+
+ -- Reset incorrect indication of staticness
+
+ Set_Is_Static_Expression (N, False);
+ end Bit_Order;
+
+ ------------------
+ -- Bit_Position --
+ ------------------
+
+ -- Note: in generated code, we can have a Bit_Position attribute
+ -- applied to a (naked) record component (i.e. the prefix is an
+ -- identifier that references an E_Component or E_Discriminant
+ -- entity directly, and this is interpreted as expected by Gigi.
+ -- The following code will not tolerate such usage, but when the
+ -- expander creates this special case, it marks it as analyzed
+ -- immediately and sets an appropriate type.
+
+ when Attribute_Bit_Position =>
+
+ if Comes_From_Source (N) then
+ Check_Component;
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+
+ ------------------
+ -- Body_Version --
+ ------------------
+
+ when Attribute_Body_Version =>
+ Check_E0;
+ Check_Program_Unit;
+ Set_Etype (N, RTE (RE_Version_String));
+
+ --------------
+ -- Callable --
+ --------------
+
+ when Attribute_Callable =>
+ Check_E0;
+ Set_Etype (N, Standard_Boolean);
+ Check_Task_Prefix;
+
+ ------------
+ -- Caller --
+ ------------
+
+ when Attribute_Caller => Caller : declare
+ Ent : Entity_Id;
+ S : Entity_Id;
+
+ begin
+ Check_E0;
+
+ if Nkind (P) = N_Identifier
+ or else Nkind (P) = N_Expanded_Name
+ then
+ Ent := Entity (P);
+
+ if not Is_Entry (Ent) then
+ Error_Attr ("invalid entry name", N);
+ end if;
+
+ else
+ Error_Attr ("invalid entry name", N);
+ return;
+ end if;
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ S := Scope_Stack.Table (J).Entity;
+
+ if S = Scope (Ent) then
+ Error_Attr ("Caller must appear in matching accept or body", N);
+ elsif S = Ent then
+ exit;
+ end if;
+ end loop;
+
+ Set_Etype (N, RTE (RO_AT_Task_Id));
+ end Caller;
+
+ -------------
+ -- Ceiling --
+ -------------
+
+ when Attribute_Ceiling =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ -----------
+ -- Class --
+ -----------
+
+ when Attribute_Class => Class : declare
+ P : constant Entity_Id := Prefix (N);
+
+ begin
+ Check_Restriction (No_Dispatch, N);
+ Check_Either_E0_Or_E1;
+
+ -- If we have an expression present, then really this is a conversion
+ -- and the tree must be reformed into a proper conversion. This is a
+ -- Replace rather than a Rewrite, because the original tree is junk.
+ -- If expression is overloaded, propagate interpretations to new one.
+
+ if Present (E1) then
+ Replace (N,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark =>
+ Make_Attribute_Reference (Loc,
+ Prefix => P,
+ Attribute_Name => Name_Class),
+ Expression => Relocate_Node (E1)));
+
+ Save_Interps (E1, Expression (N));
+
+ if not Is_Interface (Etype (P)) then
+ Analyze (N);
+
+ -- Ada 2005 (AI-251): In case of abstract interfaces we have to
+ -- analyze and resolve the type conversion to generate the code
+ -- that displaces the reference to the base of the object.
+
+ else
+ Analyze_And_Resolve (N, Etype (P));
+ end if;
+
+ -- Otherwise we just need to find the proper type
+
+ else
+ Find_Type (N);
+ end if;
+
+ end Class;
+
+ ------------------
+ -- Code_Address --
+ ------------------
+
+ when Attribute_Code_Address =>
+ Check_E0;
+
+ if Nkind (P) = N_Attribute_Reference
+ and then (Attribute_Name (P) = Name_Elab_Body
+ or else
+ Attribute_Name (P) = Name_Elab_Spec)
+ then
+ null;
+
+ elsif not Is_Entity_Name (P)
+ or else (Ekind (Entity (P)) /= E_Function
+ and then
+ Ekind (Entity (P)) /= E_Procedure)
+ then
+ Error_Attr ("invalid prefix for % attribute", P);
+ Set_Address_Taken (Entity (P));
+ end if;
+
+ Set_Etype (N, RTE (RE_Address));
+
+ --------------------
+ -- Component_Size --
+ --------------------
+
+ when Attribute_Component_Size =>
+ Check_E0;
+ Set_Etype (N, Universal_Integer);
+
+ -- Note: unlike other array attributes, unconstrained arrays are OK
+
+ if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
+ null;
+ else
+ Check_Array_Type;
+ end if;
+
+ -------------
+ -- Compose --
+ -------------
+
+ when Attribute_Compose =>
+ Check_Floating_Point_Type_2;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, Any_Integer);
+
+ -----------------
+ -- Constrained --
+ -----------------
+
+ when Attribute_Constrained =>
+ Check_E0;
+ Set_Etype (N, Standard_Boolean);
+
+ -- Case from RM J.4(2) of constrained applied to private type
+
+ if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
+ Check_Restriction (No_Obsolescent_Features, N);
+
+ if Warn_On_Obsolescent_Feature then
+ Error_Msg_N
+ ("constrained for private type is an " &
+ "obsolescent feature ('R'M 'J.4)?", N);
+ end if;
+
+ -- If we are within an instance, the attribute must be legal
+ -- because it was valid in the generic unit. Ditto if this is
+ -- an inlining of a function declared in an instance.
+
+ if In_Instance
+ or else In_Inlined_Body
+ then
+ return;
+
+ -- For sure OK if we have a real private type itself, but must
+ -- be completed, cannot apply Constrained to incomplete type.
+
+ elsif Is_Private_Type (Entity (P)) then
+
+ -- Note: this is one of the Annex J features that does not
+ -- generate a warning from -gnatwj, since in fact it seems
+ -- very useful, and is used in the GNAT runtime.
+
+ Check_Not_Incomplete_Type;
+ return;
+ end if;
+
+ -- Normal (non-obsolescent case) of application to object of
+ -- a discriminated type.
+
+ else
+ Check_Object_Reference (P);
+
+ -- If N does not come from source, then we allow the
+ -- the attribute prefix to be of a private type whose
+ -- full type has discriminants. This occurs in cases
+ -- involving expanded calls to stream attributes.
+
+ if not Comes_From_Source (N) then
+ P_Type := Underlying_Type (P_Type);
+ end if;
+
+ -- Must have discriminants or be an access type designating
+ -- a type with discriminants. If it is a classwide type is
+ -- has unknown discriminants.
+
+ if Has_Discriminants (P_Type)
+ or else Has_Unknown_Discriminants (P_Type)
+ or else
+ (Is_Access_Type (P_Type)
+ and then Has_Discriminants (Designated_Type (P_Type)))
+ then
+ return;
+
+ -- Also allow an object of a generic type if extensions allowed
+ -- and allow this for any type at all.
+
+ elsif (Is_Generic_Type (P_Type)
+ or else Is_Generic_Actual_Type (P_Type))
+ and then Extensions_Allowed
+ then
+ return;
+ end if;
+ end if;
+
+ -- Fall through if bad prefix
+
+ Error_Attr
+ ("prefix of % attribute must be object of discriminated type", P);
+
+ ---------------
+ -- Copy_Sign --
+ ---------------
+
+ when Attribute_Copy_Sign =>
+ Check_Floating_Point_Type_2;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, P_Base_Type);
+
+ -----------
+ -- Count --
+ -----------
+
+ when Attribute_Count => Count :
+ declare
+ Ent : Entity_Id;
+ S : Entity_Id;
+ Tsk : Entity_Id;
+
+ begin
+ Check_E0;
+
+ if Nkind (P) = N_Identifier
+ or else Nkind (P) = N_Expanded_Name
+ then
+ Ent := Entity (P);
+
+ if Ekind (Ent) /= E_Entry then
+ Error_Attr ("invalid entry name", N);
+ end if;
+
+ elsif Nkind (P) = N_Indexed_Component then
+ if not Is_Entity_Name (Prefix (P))
+ or else No (Entity (Prefix (P)))
+ or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
+ then
+ if Nkind (Prefix (P)) = N_Selected_Component
+ and then Present (Entity (Selector_Name (Prefix (P))))
+ and then Ekind (Entity (Selector_Name (Prefix (P)))) =
+ E_Entry_Family
+ then
+ Error_Attr
+ ("attribute % must apply to entry of current task", P);
+
+ else
+ Error_Attr ("invalid entry family name", P);
+ end if;
+ return;
+
+ else
+ Ent := Entity (Prefix (P));
+ end if;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Present (Entity (Selector_Name (P)))
+ and then Ekind (Entity (Selector_Name (P))) = E_Entry
+ then
+ Error_Attr
+ ("attribute % must apply to entry of current task", P);
+
+ else
+ Error_Attr ("invalid entry name", N);
+ return;
+ end if;
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ S := Scope_Stack.Table (J).Entity;
+
+ if S = Scope (Ent) then
+ if Nkind (P) = N_Expanded_Name then
+ Tsk := Entity (Prefix (P));
+
+ -- The prefix denotes either the task type, or else a
+ -- single task whose task type is being analyzed.
+
+ if (Is_Type (Tsk)
+ and then Tsk = S)
+
+ or else (not Is_Type (Tsk)
+ and then Etype (Tsk) = S
+ and then not (Comes_From_Source (S)))
+ then
+ null;
+ else
+ Error_Attr
+ ("Attribute % must apply to entry of current task", N);
+ end if;
+ end if;
+
+ exit;
+
+ elsif Ekind (Scope (Ent)) in Task_Kind
+ and then Ekind (S) /= E_Loop
+ and then Ekind (S) /= E_Block
+ and then Ekind (S) /= E_Entry
+ and then Ekind (S) /= E_Entry_Family
+ then
+ Error_Attr ("Attribute % cannot appear in inner unit", N);
+
+ elsif Ekind (Scope (Ent)) = E_Protected_Type
+ and then not Has_Completion (Scope (Ent))
+ then
+ Error_Attr ("attribute % can only be used inside body", N);
+ end if;
+ end loop;
+
+ if Is_Overloaded (P) then
+ declare
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (P, Index, It);
+
+ while Present (It.Nam) loop
+ if It.Nam = Ent then
+ null;
+
+ -- Ada 2005 (AI-345): Do not consider primitive entry
+ -- wrappers generated for task or protected types.
+
+ elsif Ada_Version >= Ada_05
+ and then not Comes_From_Source (It.Nam)
+ then
+ null;
+
+ else
+ Error_Attr ("ambiguous entry name", N);
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+ end Count;
+
+ -----------------------
+ -- Default_Bit_Order --
+ -----------------------
+
+ when Attribute_Default_Bit_Order => Default_Bit_Order :
+ begin
+ Check_Standard_Prefix;
+ Check_E0;
+
+ if Bytes_Big_Endian then
+ Rewrite (N,
+ Make_Integer_Literal (Loc, False_Value));
+ else
+ Rewrite (N,
+ Make_Integer_Literal (Loc, True_Value));
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+ Set_Is_Static_Expression (N);
+ end Default_Bit_Order;
+
+ --------------
+ -- Definite --
+ --------------
+
+ when Attribute_Definite =>
+ Legal_Formal_Attribute;
+
+ -----------
+ -- Delta --
+ -----------
+
+ when Attribute_Delta =>
+ Check_Fixed_Point_Type_0;
+ Set_Etype (N, Universal_Real);
+
+ ------------
+ -- Denorm --
+ ------------
+
+ when Attribute_Denorm =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Standard_Boolean);
+
+ ------------
+ -- Digits --
+ ------------
+
+ when Attribute_Digits =>
+ Check_E0;
+ Check_Type;
+
+ if not Is_Floating_Point_Type (P_Type)
+ and then not Is_Decimal_Fixed_Point_Type (P_Type)
+ then
+ Error_Attr
+ ("prefix of % attribute must be float or decimal type", P);
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+
+ ---------------
+ -- Elab_Body --
+ ---------------
+
+ -- Also handles processing for Elab_Spec
+
+ when Attribute_Elab_Body | Attribute_Elab_Spec =>
+ Check_E0;
+ Check_Unit_Name (P);
+ Set_Etype (N, Standard_Void_Type);
+
+ -- We have to manually call the expander in this case to get
+ -- the necessary expansion (normally attributes that return
+ -- entities are not expanded).
+
+ Expand (N);
+
+ ---------------
+ -- Elab_Spec --
+ ---------------
+
+ -- Shares processing with Elab_Body
+
+ ----------------
+ -- Elaborated --
+ ----------------
+
+ when Attribute_Elaborated =>
+ Check_E0;
+ Check_Library_Unit;
+ Set_Etype (N, Standard_Boolean);
+
+ ----------
+ -- Emax --
+ ----------
+
+ when Attribute_Emax =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ --------------
+ -- Enum_Rep --
+ --------------
+
+ when Attribute_Enum_Rep => Enum_Rep : declare
+ begin
+ if Present (E1) then
+ Check_E1;
+ Check_Discrete_Type;
+ Resolve (E1, P_Base_Type);
+
+ else
+ if not Is_Entity_Name (P)
+ or else (not Is_Object (Entity (P))
+ and then
+ Ekind (Entity (P)) /= E_Enumeration_Literal)
+ then
+ Error_Attr
+ ("prefix of %attribute must be " &
+ "discrete type/object or enum literal", P);
+ end if;
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+ end Enum_Rep;
+
+ -------------
+ -- Epsilon --
+ -------------
+
+ when Attribute_Epsilon =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Real);
+
+ --------------
+ -- Exponent --
+ --------------
+
+ when Attribute_Exponent =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, Universal_Integer);
+ Resolve (E1, P_Base_Type);
+
+ ------------------
+ -- External_Tag --
+ ------------------
+
+ when Attribute_External_Tag =>
+ Check_E0;
+ Check_Type;
+
+ Set_Etype (N, Standard_String);
+
+ if not Is_Tagged_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be tagged", P);
+ end if;
+
+ -----------
+ -- First --
+ -----------
+
+ when Attribute_First =>
+ Check_Array_Or_Scalar_Type;
+
+ ---------------
+ -- First_Bit --
+ ---------------
+
+ when Attribute_First_Bit =>
+ Check_Component;
+ Set_Etype (N, Universal_Integer);
+
+ -----------------
+ -- Fixed_Value --
+ -----------------
+
+ when Attribute_Fixed_Value =>
+ Check_E1;
+ Check_Fixed_Point_Type;
+ Resolve (E1, Any_Integer);
+ Set_Etype (N, P_Base_Type);
+
+ -----------
+ -- Floor --
+ -----------
+
+ when Attribute_Floor =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ ----------
+ -- Fore --
+ ----------
+
+ when Attribute_Fore =>
+ Check_Fixed_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ --------------
+ -- Fraction --
+ --------------
+
+ when Attribute_Fraction =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ -----------------------
+ -- Has_Access_Values --
+ -----------------------
+
+ when Attribute_Has_Access_Values =>
+ Check_Type;
+ Check_E0;
+ Set_Etype (N, Standard_Boolean);
+
+ -----------------------
+ -- Has_Discriminants --
+ -----------------------
+
+ when Attribute_Has_Discriminants =>
+ Legal_Formal_Attribute;
+
+ --------------
+ -- Identity --
+ --------------
+
+ when Attribute_Identity =>
+ Check_E0;
+ Analyze (P);
+
+ if Etype (P) = Standard_Exception_Type then
+ Set_Etype (N, RTE (RE_Exception_Id));
+
+ -- Ada 2005 (AI-345): Attribute 'Identity may be applied to
+ -- task interface class-wide types.
+
+ elsif Is_Task_Type (Etype (P))
+ or else (Is_Access_Type (Etype (P))
+ and then Is_Task_Type (Designated_Type (Etype (P))))
+ or else (Ada_Version >= Ada_05
+ and then Ekind (Etype (P)) = E_Class_Wide_Type
+ and then Is_Interface (Etype (P))
+ and then Is_Task_Interface (Etype (P)))
+ then
+ Resolve (P);
+ Set_Etype (N, RTE (RO_AT_Task_Id));
+
+ else
+ if Ada_Version >= Ada_05 then
+ Error_Attr ("prefix of % attribute must be an exception, a "
+ & "task or a task interface class-wide object", P);
+ else
+ Error_Attr ("prefix of % attribute must be a task or an "
+ & "exception", P);
+ end if;
+ end if;
+
+ -----------
+ -- Image --
+ -----------
+
+ when Attribute_Image => Image :
+ begin
+ Set_Etype (N, Standard_String);
+ Check_Scalar_Type;
+
+ if Is_Real_Type (P_Type) then
+ if Ada_Version = Ada_83 and then Comes_From_Source (N) then
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N
+ ("(Ada 83) % attribute not allowed for real types", N);
+ end if;
+ end if;
+
+ if Is_Enumeration_Type (P_Type) then
+ Check_Restriction (No_Enumeration_Maps, N);
+ end if;
+
+ Check_E1;
+ Resolve (E1, P_Base_Type);
+ Check_Enum_Image;
+ Validate_Non_Static_Attribute_Function_Call;
+ end Image;
+
+ ---------
+ -- Img --
+ ---------
+
+ when Attribute_Img => Img :
+ begin
+ Set_Etype (N, Standard_String);
+
+ if not Is_Scalar_Type (P_Type)
+ or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
+ then
+ Error_Attr
+ ("prefix of % attribute must be scalar object name", N);
+ end if;
+
+ Check_Enum_Image;
+ end Img;
+
+ -----------
+ -- Input --
+ -----------
+
+ when Attribute_Input =>
+ Check_E1;
+ Check_Stream_Attribute (TSS_Stream_Input);
+ Set_Etype (N, P_Base_Type);
+
+ -------------------
+ -- Integer_Value --
+ -------------------
+
+ when Attribute_Integer_Value =>
+ Check_E1;
+ Check_Integer_Type;
+ Resolve (E1, Any_Fixed);
+ Set_Etype (N, P_Base_Type);
+
+ -----------
+ -- Large --
+ -----------
+
+ when Attribute_Large =>
+ Check_E0;
+ Check_Real_Type;
+ Set_Etype (N, Universal_Real);
+
+ ----------
+ -- Last --
+ ----------
+
+ when Attribute_Last =>
+ Check_Array_Or_Scalar_Type;
+
+ --------------
+ -- Last_Bit --
+ --------------
+
+ when Attribute_Last_Bit =>
+ Check_Component;
+ Set_Etype (N, Universal_Integer);
+
+ ------------------
+ -- Leading_Part --
+ ------------------
+
+ when Attribute_Leading_Part =>
+ Check_Floating_Point_Type_2;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, Any_Integer);
+
+ ------------
+ -- Length --
+ ------------
+
+ when Attribute_Length =>
+ Check_Array_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -------------
+ -- Machine --
+ -------------
+
+ when Attribute_Machine =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ ------------------
+ -- Machine_Emax --
+ ------------------
+
+ when Attribute_Machine_Emax =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ ------------------
+ -- Machine_Emin --
+ ------------------
+
+ when Attribute_Machine_Emin =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ ----------------------
+ -- Machine_Mantissa --
+ ----------------------
+
+ when Attribute_Machine_Mantissa =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ -----------------------
+ -- Machine_Overflows --
+ -----------------------
+
+ when Attribute_Machine_Overflows =>
+ Check_Real_Type;
+ Check_E0;
+ Set_Etype (N, Standard_Boolean);
+
+ -------------------
+ -- Machine_Radix --
+ -------------------
+
+ when Attribute_Machine_Radix =>
+ Check_Real_Type;
+ Check_E0;
+ Set_Etype (N, Universal_Integer);
+
+ ----------------------
+ -- Machine_Rounding --
+ ----------------------
+
+ when Attribute_Machine_Rounding =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ --------------------
+ -- Machine_Rounds --
+ --------------------
+
+ when Attribute_Machine_Rounds =>
+ Check_Real_Type;
+ Check_E0;
+ Set_Etype (N, Standard_Boolean);
+
+ ------------------
+ -- Machine_Size --
+ ------------------
+
+ when Attribute_Machine_Size =>
+ Check_E0;
+ Check_Type;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ --------------
+ -- Mantissa --
+ --------------
+
+ when Attribute_Mantissa =>
+ Check_E0;
+ Check_Real_Type;
+ Set_Etype (N, Universal_Integer);
+
+ ---------
+ -- Max --
+ ---------
+
+ when Attribute_Max =>
+ Check_E2;
+ Check_Scalar_Type;
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, P_Base_Type);
+ Set_Etype (N, P_Base_Type);
+
+ ----------------------------------
+ -- Max_Size_In_Storage_Elements --
+ ----------------------------------
+
+ when Attribute_Max_Size_In_Storage_Elements =>
+ Check_E0;
+ Check_Type;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -----------------------
+ -- Maximum_Alignment --
+ -----------------------
+
+ when Attribute_Maximum_Alignment =>
+ Standard_Attribute (Ttypes.Maximum_Alignment);
+
+ --------------------
+ -- Mechanism_Code --
+ --------------------
+
+ when Attribute_Mechanism_Code =>
+ if not Is_Entity_Name (P)
+ or else not Is_Subprogram (Entity (P))
+ then
+ Error_Attr ("prefix of % attribute must be subprogram", P);
+ end if;
+
+ Check_Either_E0_Or_E1;
+
+ if Present (E1) then
+ Resolve (E1, Any_Integer);
+ Set_Etype (E1, Standard_Integer);
+
+ if not Is_Static_Expression (E1) then
+ Flag_Non_Static_Expr
+ ("expression for parameter number must be static!", E1);
+ Error_Attr;
+
+ elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
+ or else UI_To_Int (Intval (E1)) < 0
+ then
+ Error_Attr ("invalid parameter number for %attribute", E1);
+ end if;
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+
+ ---------
+ -- Min --
+ ---------
+
+ when Attribute_Min =>
+ Check_E2;
+ Check_Scalar_Type;
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, P_Base_Type);
+ Set_Etype (N, P_Base_Type);
+
+ ---------
+ -- Mod --
+ ---------
+
+ when Attribute_Mod =>
+
+ -- Note: this attribute is only allowed in Ada 2005 mode, but
+ -- we do not need to test that here, since Mod is only recognized
+ -- as an attribute name in Ada 2005 mode during the parse.
+
+ Check_E1;
+ Check_Modular_Integer_Type;
+ Resolve (E1, Any_Integer);
+ Set_Etype (N, P_Base_Type);
+
+ -----------
+ -- Model --
+ -----------
+
+ when Attribute_Model =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ ----------------
+ -- Model_Emin --
+ ----------------
+
+ when Attribute_Model_Emin =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ -------------------
+ -- Model_Epsilon --
+ -------------------
+
+ when Attribute_Model_Epsilon =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Real);
+
+ --------------------
+ -- Model_Mantissa --
+ --------------------
+
+ when Attribute_Model_Mantissa =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ -----------------
+ -- Model_Small --
+ -----------------
+
+ when Attribute_Model_Small =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Real);
+
+ -------------
+ -- Modulus --
+ -------------
+
+ when Attribute_Modulus =>
+ Check_E0;
+ Check_Modular_Integer_Type;
+ Set_Etype (N, Universal_Integer);
+
+ --------------------
+ -- Null_Parameter --
+ --------------------
+
+ when Attribute_Null_Parameter => Null_Parameter : declare
+ Parnt : constant Node_Id := Parent (N);
+ GParnt : constant Node_Id := Parent (Parnt);
+
+ procedure Bad_Null_Parameter (Msg : String);
+ -- Used if bad Null parameter attribute node is found. Issues
+ -- given error message, and also sets the type to Any_Type to
+ -- avoid blowups later on from dealing with a junk node.
+
+ procedure Must_Be_Imported (Proc_Ent : Entity_Id);
+ -- Called to check that Proc_Ent is imported subprogram
+
+ ------------------------
+ -- Bad_Null_Parameter --
+ ------------------------
+
+ procedure Bad_Null_Parameter (Msg : String) is
+ begin
+ Error_Msg_N (Msg, N);
+ Set_Etype (N, Any_Type);
+ end Bad_Null_Parameter;
+
+ ----------------------
+ -- Must_Be_Imported --
+ ----------------------
+
+ procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
+ Pent : Entity_Id := Proc_Ent;
+
+ begin
+ while Present (Alias (Pent)) loop
+ Pent := Alias (Pent);
+ end loop;
+
+ -- Ignore check if procedure not frozen yet (we will get
+ -- another chance when the default parameter is reanalyzed)
+
+ if not Is_Frozen (Pent) then
+ return;
+
+ elsif not Is_Imported (Pent) then
+ Bad_Null_Parameter
+ ("Null_Parameter can only be used with imported subprogram");
+
+ else
+ return;
+ end if;
+ end Must_Be_Imported;
+
+ -- Start of processing for Null_Parameter
+
+ begin
+ Check_Type;
+ Check_E0;
+ Set_Etype (N, P_Type);
+
+ -- Case of attribute used as default expression
+
+ if Nkind (Parnt) = N_Parameter_Specification then
+ Must_Be_Imported (Defining_Entity (GParnt));
+
+ -- Case of attribute used as actual for subprogram (positional)
+
+ elsif (Nkind (Parnt) = N_Procedure_Call_Statement
+ or else
+ Nkind (Parnt) = N_Function_Call)
+ and then Is_Entity_Name (Name (Parnt))
+ then
+ Must_Be_Imported (Entity (Name (Parnt)));
+
+ -- Case of attribute used as actual for subprogram (named)
+
+ elsif Nkind (Parnt) = N_Parameter_Association
+ and then (Nkind (GParnt) = N_Procedure_Call_Statement
+ or else
+ Nkind (GParnt) = N_Function_Call)
+ and then Is_Entity_Name (Name (GParnt))
+ then
+ Must_Be_Imported (Entity (Name (GParnt)));
+
+ -- Not an allowed case
+
+ else
+ Bad_Null_Parameter
+ ("Null_Parameter must be actual or default parameter");
+ end if;
+
+ end Null_Parameter;
+
+ -----------------
+ -- Object_Size --
+ -----------------
+
+ when Attribute_Object_Size =>
+ Check_E0;
+ Check_Type;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ ------------
+ -- Output --
+ ------------
+
+ when Attribute_Output =>
+ Check_E2;
+ Check_Stream_Attribute (TSS_Stream_Output);
+ Set_Etype (N, Standard_Void_Type);
+ Resolve (N, Standard_Void_Type);
+
+ ------------------
+ -- Partition_ID --
+ ------------------
+
+ when Attribute_Partition_ID =>
+ Check_E0;
+
+ if P_Type /= Any_Type then
+ if not Is_Library_Level_Entity (Entity (P)) then
+ Error_Attr
+ ("prefix of % attribute must be library-level entity", P);
+
+ -- The defining entity of prefix should not be declared inside
+ -- a Pure unit. RM E.1(8).
+ -- The Is_Pure flag has been set during declaration.
+
+ elsif Is_Entity_Name (P)
+ and then Is_Pure (Entity (P))
+ then
+ Error_Attr
+ ("prefix of % attribute must not be declared pure", P);
+ end if;
+ end if;
+
+ Set_Etype (N, Universal_Integer);
+
+ -------------------------
+ -- Passed_By_Reference --
+ -------------------------
+
+ when Attribute_Passed_By_Reference =>
+ Check_E0;
+ Check_Type;
+ Set_Etype (N, Standard_Boolean);
+
+ ------------------
+ -- Pool_Address --
+ ------------------
+
+ when Attribute_Pool_Address =>
+ Check_E0;
+ Set_Etype (N, RTE (RE_Address));
+
+ ---------
+ -- Pos --
+ ---------
+
+ when Attribute_Pos =>
+ Check_Discrete_Type;
+ Check_E1;
+ Resolve (E1, P_Base_Type);
+ Set_Etype (N, Universal_Integer);
+
+ --------------
+ -- Position --
+ --------------
+
+ when Attribute_Position =>
+ Check_Component;
+ Set_Etype (N, Universal_Integer);
+
+ ----------
+ -- Pred --
+ ----------
+
+ when Attribute_Pred =>
+ Check_Scalar_Type;
+ Check_E1;
+ Resolve (E1, P_Base_Type);
+ Set_Etype (N, P_Base_Type);
+
+ -- Nothing to do for real type case
+
+ if Is_Real_Type (P_Type) then
+ null;
+
+ -- If not modular type, test for overflow check required
+
+ else
+ if not Is_Modular_Integer_Type (P_Type)
+ and then not Range_Checks_Suppressed (P_Base_Type)
+ then
+ Enable_Range_Check (E1);
+ end if;
+ end if;
+
+ -----------
+ -- Range --
+ -----------
+
+ when Attribute_Range =>
+ Check_Array_Or_Scalar_Type;
+
+ if Ada_Version = Ada_83
+ and then Is_Scalar_Type (P_Type)
+ and then Comes_From_Source (N)
+ then
+ Error_Attr
+ ("(Ada 83) % attribute not allowed for scalar type", P);
+ end if;
+
+ ------------------
+ -- Range_Length --
+ ------------------
+
+ when Attribute_Range_Length =>
+ Check_Discrete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ ----------
+ -- Read --
+ ----------
+
+ when Attribute_Read =>
+ Check_E2;
+ Check_Stream_Attribute (TSS_Stream_Read);
+ Set_Etype (N, Standard_Void_Type);
+ Resolve (N, Standard_Void_Type);
+ Note_Possible_Modification (E2);
+
+ ---------------
+ -- Remainder --
+ ---------------
+
+ when Attribute_Remainder =>
+ Check_Floating_Point_Type_2;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+ Resolve (E2, P_Base_Type);
+
+ -----------
+ -- Round --
+ -----------
+
+ when Attribute_Round =>
+ Check_E1;
+ Check_Decimal_Fixed_Point_Type;
+ Set_Etype (N, P_Base_Type);
+
+ -- Because the context is universal_real (3.5.10(12)) it is a legal
+ -- context for a universal fixed expression. This is the only
+ -- attribute whose functional description involves U_R.
+
+ if Etype (E1) = Universal_Fixed then
+ declare
+ Conv : constant Node_Id := Make_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
+ Expression => Relocate_Node (E1));
+
+ begin
+ Rewrite (E1, Conv);
+ Analyze (E1);
+ end;
+ end if;
+
+ Resolve (E1, Any_Real);
+
+ --------------
+ -- Rounding --
+ --------------
+
+ when Attribute_Rounding =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ ---------------
+ -- Safe_Emax --
+ ---------------
+
+ when Attribute_Safe_Emax =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Integer);
+
+ ----------------
+ -- Safe_First --
+ ----------------
+
+ when Attribute_Safe_First =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Real);
+
+ ----------------
+ -- Safe_Large --
+ ----------------
+
+ when Attribute_Safe_Large =>
+ Check_E0;
+ Check_Real_Type;
+ Set_Etype (N, Universal_Real);
+
+ ---------------
+ -- Safe_Last --
+ ---------------
+
+ when Attribute_Safe_Last =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Universal_Real);
+
+ ----------------
+ -- Safe_Small --
+ ----------------
+
+ when Attribute_Safe_Small =>
+ Check_E0;
+ Check_Real_Type;
+ Set_Etype (N, Universal_Real);
+
+ -----------
+ -- Scale --
+ -----------
+
+ when Attribute_Scale =>
+ Check_E0;
+ Check_Decimal_Fixed_Point_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -------------
+ -- Scaling --
+ -------------
+
+ when Attribute_Scaling =>
+ Check_Floating_Point_Type_2;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ ------------------
+ -- Signed_Zeros --
+ ------------------
+
+ when Attribute_Signed_Zeros =>
+ Check_Floating_Point_Type_0;
+ Set_Etype (N, Standard_Boolean);
+
+ ----------
+ -- Size --
+ ----------
+
+ when Attribute_Size | Attribute_VADS_Size =>
+ Check_E0;
+
+ -- If prefix is parameterless function call, rewrite and resolve
+ -- as such.
+
+ if Is_Entity_Name (P)
+ and then Ekind (Entity (P)) = E_Function
+ then
+ Resolve (P);
+
+ -- Similar processing for a protected function call
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (P))) = E_Function
+ then
+ Resolve (P);
+ end if;
+
+ if Is_Object_Reference (P) then
+ Check_Object_Reference (P);
+
+ elsif Is_Entity_Name (P)
+ and then (Is_Type (Entity (P))
+ or else Ekind (Entity (P)) = E_Enumeration_Literal)
+ then
+ null;
+
+ elsif Nkind (P) = N_Type_Conversion
+ and then not Comes_From_Source (P)
+ then
+ null;
+
+ else
+ Error_Attr ("invalid prefix for % attribute", P);
+ end if;
+
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -----------
+ -- Small --
+ -----------
+
+ when Attribute_Small =>
+ Check_E0;
+ Check_Real_Type;
+ Set_Etype (N, Universal_Real);
+
+ ------------------
+ -- Storage_Pool --
+ ------------------
+
+ when Attribute_Storage_Pool =>
+ if Is_Access_Type (P_Type) then
+ Check_E0;
+
+ -- Set appropriate entity
+
+ if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
+ Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
+ else
+ Set_Entity (N, RTE (RE_Global_Pool_Object));
+ end if;
+
+ Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
+
+ -- Validate_Remote_Access_To_Class_Wide_Type for attribute
+ -- Storage_Pool since this attribute is not defined for such
+ -- types (RM E.2.3(22)).
+
+ Validate_Remote_Access_To_Class_Wide_Type (N);
+
+ else
+ Error_Attr ("prefix of % attribute must be access type", P);
+ end if;
+
+ ------------------
+ -- Storage_Size --
+ ------------------
+
+ when Attribute_Storage_Size =>
+
+ if Is_Task_Type (P_Type) then
+ Check_E0;
+ Set_Etype (N, Universal_Integer);
+
+ elsif Is_Access_Type (P_Type) then
+ if Is_Entity_Name (P)
+ and then Is_Type (Entity (P))
+ then
+ Check_E0;
+ Check_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -- Validate_Remote_Access_To_Class_Wide_Type for attribute
+ -- Storage_Size since this attribute is not defined for
+ -- such types (RM E.2.3(22)).
+
+ Validate_Remote_Access_To_Class_Wide_Type (N);
+
+ -- The prefix is allowed to be an implicit dereference
+ -- of an access value designating a task.
+
+ else
+ Check_E0;
+ Check_Task_Prefix;
+ Set_Etype (N, Universal_Integer);
+ end if;
+
+ else
+ Error_Attr
+ ("prefix of % attribute must be access or task type", P);
+ end if;
+
+ ------------------
+ -- Storage_Unit --
+ ------------------
+
+ when Attribute_Storage_Unit =>
+ Standard_Attribute (Ttypes.System_Storage_Unit);
+
+ -----------------
+ -- Stream_Size --
+ -----------------
+
+ when Attribute_Stream_Size =>
+ Check_E0;
+ Check_Type;
+
+ if Is_Entity_Name (P)
+ and then Is_Elementary_Type (Entity (P))
+ then
+ Set_Etype (N, Universal_Integer);
+ else
+ Error_Attr ("invalid prefix for % attribute", P);
+ end if;
+
+ ----------
+ -- Succ --
+ ----------
+
+ when Attribute_Succ =>
+ Check_Scalar_Type;
+ Check_E1;
+ Resolve (E1, P_Base_Type);
+ Set_Etype (N, P_Base_Type);
+
+ -- Nothing to do for real type case
+
+ if Is_Real_Type (P_Type) then
+ null;
+
+ -- If not modular type, test for overflow check required
+
+ else
+ if not Is_Modular_Integer_Type (P_Type)
+ and then not Range_Checks_Suppressed (P_Base_Type)
+ then
+ Enable_Range_Check (E1);
+ end if;
+ end if;
+
+ ---------
+ -- Tag --
+ ---------
+
+ when Attribute_Tag =>
+ Check_E0;
+ Check_Dereference;
+
+ if not Is_Tagged_Type (P_Type) then
+ Error_Attr ("prefix of % attribute must be tagged", P);
+
+ -- Next test does not apply to generated code
+ -- why not, and what does the illegal reference mean???
+
+ elsif Is_Object_Reference (P)
+ and then not Is_Class_Wide_Type (P_Type)
+ and then Comes_From_Source (N)
+ then
+ Error_Attr
+ ("% attribute can only be applied to objects of class-wide type",
+ P);
+ end if;
+
+ Set_Etype (N, RTE (RE_Tag));
+
+ -----------------
+ -- Target_Name --
+ -----------------
+
+ when Attribute_Target_Name => Target_Name : declare
+ TN : constant String := Sdefault.Target_Name.all;
+ TL : Natural;
+
+ begin
+ Check_Standard_Prefix;
+ Check_E0;
+
+ TL := TN'Last;
+
+ if TN (TL) = '/' or else TN (TL) = '\' then
+ TL := TL - 1;
+ end if;
+
+ Rewrite (N,
+ Make_String_Literal (Loc,
+ Strval => TN (TN'First .. TL)));
+ Analyze_And_Resolve (N, Standard_String);
+ end Target_Name;
+
+ ----------------
+ -- Terminated --
+ ----------------
+
+ when Attribute_Terminated =>
+ Check_E0;
+ Set_Etype (N, Standard_Boolean);
+ Check_Task_Prefix;
+
+ ----------------
+ -- To_Address --
+ ----------------
+
+ when Attribute_To_Address =>
+ Check_E1;
+ Analyze (P);
+
+ if Nkind (P) /= N_Identifier
+ or else Chars (P) /= Name_System
+ then
+ Error_Attr ("prefix of %attribute must be System", P);
+ end if;
+
+ Generate_Reference (RTE (RE_Address), P);
+ Analyze_And_Resolve (E1, Any_Integer);
+ Set_Etype (N, RTE (RE_Address));
+
+ ----------------
+ -- Truncation --
+ ----------------
+
+ when Attribute_Truncation =>
+ Check_Floating_Point_Type_1;
+ Resolve (E1, P_Base_Type);
+ Set_Etype (N, P_Base_Type);
+
+ ----------------
+ -- Type_Class --
+ ----------------
+
+ when Attribute_Type_Class =>
+ Check_E0;
+ Check_Type;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, RTE (RE_Type_Class));
+
+ -----------------
+ -- UET_Address --
+ -----------------
+
+ when Attribute_UET_Address =>
+ Check_E0;
+ Check_Unit_Name (P);
+ Set_Etype (N, RTE (RE_Address));
+
+ -----------------------
+ -- Unbiased_Rounding --
+ -----------------------
+
+ when Attribute_Unbiased_Rounding =>
+ Check_Floating_Point_Type_1;
+ Set_Etype (N, P_Base_Type);
+ Resolve (E1, P_Base_Type);
+
+ ----------------------
+ -- Unchecked_Access --
+ ----------------------
+
+ when Attribute_Unchecked_Access =>
+ if Comes_From_Source (N) then
+ Check_Restriction (No_Unchecked_Access, N);
+ end if;
+
+ Analyze_Access_Attribute;
+
+ -------------------------
+ -- Unconstrained_Array --
+ -------------------------
+
+ when Attribute_Unconstrained_Array =>
+ Check_E0;
+ Check_Type;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Standard_Boolean);
+
+ ------------------------------
+ -- Universal_Literal_String --
+ ------------------------------
+
+ -- This is a GNAT specific attribute whose prefix must be a named
+ -- number where the expression is either a single numeric literal,
+ -- or a numeric literal immediately preceded by a minus sign. The
+ -- result is equivalent to a string literal containing the text of
+ -- the literal as it appeared in the source program with a possible
+ -- leading minus sign.
+
+ when Attribute_Universal_Literal_String => Universal_Literal_String :
+ begin
+ Check_E0;
+
+ if not Is_Entity_Name (P)
+ or else Ekind (Entity (P)) not in Named_Kind
+ then
+ Error_Attr ("prefix for % attribute must be named number", P);
+
+ else
+ declare
+ Expr : Node_Id;
+ Negative : Boolean;
+ S : Source_Ptr;
+ Src : Source_Buffer_Ptr;
+
+ begin
+ Expr := Original_Node (Expression (Parent (Entity (P))));
+
+ if Nkind (Expr) = N_Op_Minus then
+ Negative := True;
+ Expr := Original_Node (Right_Opnd (Expr));
+ else
+ Negative := False;
+ end if;
+
+ if Nkind (Expr) /= N_Integer_Literal
+ and then Nkind (Expr) /= N_Real_Literal
+ then
+ Error_Attr
+ ("named number for % attribute must be simple literal", N);
+ end if;
+
+ -- Build string literal corresponding to source literal text
+
+ Start_String;
+
+ if Negative then
+ Store_String_Char (Get_Char_Code ('-'));
+ end if;
+
+ S := Sloc (Expr);
+ Src := Source_Text (Get_Source_File_Index (S));
+
+ while Src (S) /= ';' and then Src (S) /= ' ' loop
+ Store_String_Char (Get_Char_Code (Src (S)));
+ S := S + 1;
+ end loop;
+
+ -- Now we rewrite the attribute with the string literal
+
+ Rewrite (N,
+ Make_String_Literal (Loc, End_String));
+ Analyze (N);
+ end;
+ end if;
+ end Universal_Literal_String;
+
+ -------------------------
+ -- Unrestricted_Access --
+ -------------------------
+
+ -- This is a GNAT specific attribute which is like Access except that
+ -- all scope checks and checks for aliased views are omitted.
+
+ when Attribute_Unrestricted_Access =>
+ if Comes_From_Source (N) then
+ Check_Restriction (No_Unchecked_Access, N);
+ end if;
+
+ if Is_Entity_Name (P) then
+ Set_Address_Taken (Entity (P));
+ end if;
+
+ Analyze_Access_Attribute;
+
+ ---------
+ -- Val --
+ ---------
+
+ when Attribute_Val => Val : declare
+ begin
+ Check_E1;
+ Check_Discrete_Type;
+ Resolve (E1, Any_Integer);
+ Set_Etype (N, P_Base_Type);
+
+ -- Note, we need a range check in general, but we wait for the
+ -- Resolve call to do this, since we want to let Eval_Attribute
+ -- have a chance to find an static illegality first!
+ end Val;
+
+ -----------
+ -- Valid --
+ -----------
+
+ when Attribute_Valid =>
+ Check_E0;
+
+ -- Ignore check for object if we have a 'Valid reference generated
+ -- by the expanded code, since in some cases valid checks can occur
+ -- on items that are names, but are not objects (e.g. attributes).
+
+ if Comes_From_Source (N) then
+ Check_Object_Reference (P);
+ end if;
+
+ if not Is_Scalar_Type (P_Type) then
+ Error_Attr ("object for % attribute must be of scalar type", P);
+ end if;
+
+ Set_Etype (N, Standard_Boolean);
+
+ -----------
+ -- Value --
+ -----------
+
+ when Attribute_Value => Value :
+ begin
+ Check_E1;
+ Check_Scalar_Type;
+
+ if Is_Enumeration_Type (P_Type) then
+ Check_Restriction (No_Enumeration_Maps, N);
+ end if;
+
+ -- Set Etype before resolving expression because expansion of
+ -- expression may require enclosing type. Note that the type
+ -- returned by 'Value is the base type of the prefix type.
+
+ Set_Etype (N, P_Base_Type);
+ Validate_Non_Static_Attribute_Function_Call;
+ end Value;
+
+ ----------------
+ -- Value_Size --
+ ----------------
+
+ when Attribute_Value_Size =>
+ Check_E0;
+ Check_Type;
+ Check_Not_Incomplete_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -------------
+ -- Version --
+ -------------
+
+ when Attribute_Version =>
+ Check_E0;
+ Check_Program_Unit;
+ Set_Etype (N, RTE (RE_Version_String));
+
+ ------------------
+ -- Wchar_T_Size --
+ ------------------
+
+ when Attribute_Wchar_T_Size =>
+ Standard_Attribute (Interfaces_Wchar_T_Size);
+
+ ----------------
+ -- Wide_Image --
+ ----------------
+
+ when Attribute_Wide_Image => Wide_Image :
+ begin
+ Check_Scalar_Type;
+ Set_Etype (N, Standard_Wide_String);
+ Check_E1;
+ Resolve (E1, P_Base_Type);
+ Validate_Non_Static_Attribute_Function_Call;
+ end Wide_Image;
+
+ ---------------------
+ -- Wide_Wide_Image --
+ ---------------------
+
+ when Attribute_Wide_Wide_Image => Wide_Wide_Image :
+ begin
+ Check_Scalar_Type;
+ Set_Etype (N, Standard_Wide_Wide_String);
+ Check_E1;
+ Resolve (E1, P_Base_Type);
+ Validate_Non_Static_Attribute_Function_Call;
+ end Wide_Wide_Image;
+
+ ----------------
+ -- Wide_Value --
+ ----------------
+
+ when Attribute_Wide_Value => Wide_Value :
+ begin
+ Check_E1;
+ Check_Scalar_Type;
+
+ -- Set Etype before resolving expression because expansion
+ -- of expression may require enclosing type.
+
+ Set_Etype (N, P_Type);
+ Validate_Non_Static_Attribute_Function_Call;
+ end Wide_Value;
+
+ ---------------------
+ -- Wide_Wide_Value --
+ ---------------------
+
+ when Attribute_Wide_Wide_Value => Wide_Wide_Value :
+ begin
+ Check_E1;
+ Check_Scalar_Type;
+
+ -- Set Etype before resolving expression because expansion
+ -- of expression may require enclosing type.
+
+ Set_Etype (N, P_Type);
+ Validate_Non_Static_Attribute_Function_Call;
+ end Wide_Wide_Value;
+
+ ---------------------
+ -- Wide_Wide_Width --
+ ---------------------
+
+ when Attribute_Wide_Wide_Width =>
+ Check_E0;
+ Check_Scalar_Type;
+ Set_Etype (N, Universal_Integer);
+
+ ----------------
+ -- Wide_Width --
+ ----------------
+
+ when Attribute_Wide_Width =>
+ Check_E0;
+ Check_Scalar_Type;
+ Set_Etype (N, Universal_Integer);
+
+ -----------
+ -- Width --
+ -----------
+
+ when Attribute_Width =>
+ Check_E0;
+ Check_Scalar_Type;
+ Set_Etype (N, Universal_Integer);
+
+ ---------------
+ -- Word_Size --
+ ---------------
+
+ when Attribute_Word_Size =>
+ Standard_Attribute (System_Word_Size);
+
+ -----------
+ -- Write --
+ -----------
+
+ when Attribute_Write =>
+ Check_E2;
+ Check_Stream_Attribute (TSS_Stream_Write);
+ Set_Etype (N, Standard_Void_Type);
+ Resolve (N, Standard_Void_Type);
+
+ end case;
+
+ -- All errors raise Bad_Attribute, so that we get out before any further
+ -- damage occurs when an error is detected (for example, if we check for
+ -- one attribute expression, and the check succeeds, we want to be able
+ -- to proceed securely assuming that an expression is in fact present.
+
+ -- Note: we set the attribute analyzed in this case to prevent any
+ -- attempt at reanalysis which could generate spurious error msgs.
+
+ exception
+ when Bad_Attribute =>
+ Set_Analyzed (N);
+ Set_Etype (N, Any_Type);
+ return;
+ end Analyze_Attribute;
+
+ --------------------
+ -- Eval_Attribute --
+ --------------------
+
+ procedure Eval_Attribute (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Aname : constant Name_Id := Attribute_Name (N);
+ Id : constant Attribute_Id := Get_Attribute_Id (Aname);
+ P : constant Node_Id := Prefix (N);
+
+ C_Type : constant Entity_Id := Etype (N);
+ -- The type imposed by the context
+
+ E1 : Node_Id;
+ -- First expression, or Empty if none
+
+ E2 : Node_Id;
+ -- Second expression, or Empty if none
+
+ P_Entity : Entity_Id;
+ -- Entity denoted by prefix
+
+ P_Type : Entity_Id;
+ -- The type of the prefix
+
+ P_Base_Type : Entity_Id;
+ -- The base type of the prefix type
+
+ P_Root_Type : Entity_Id;
+ -- The root type of the prefix type
+
+ Static : Boolean;
+ -- True if the result is Static. This is set by the general processing
+ -- to true if the prefix is static, and all expressions are static. It
+ -- can be reset as processing continues for particular attributes
+
+ Lo_Bound, Hi_Bound : Node_Id;
+ -- Expressions for low and high bounds of type or array index referenced
+ -- by First, Last, or Length attribute for array, set by Set_Bounds.
+
+ CE_Node : Node_Id;
+ -- Constraint error node used if we have an attribute reference has
+ -- an argument that raises a constraint error. In this case we replace
+ -- the attribute with a raise constraint_error node. This is important
+ -- processing, since otherwise gigi might see an attribute which it is
+ -- unprepared to deal with.
+
+ function Aft_Value return Nat;
+ -- Computes Aft value for current attribute prefix (used by Aft itself
+ -- and also by Width for computing the Width of a fixed point type).
+
+ procedure Check_Expressions;
+ -- In case where the attribute is not foldable, the expressions, if
+ -- any, of the attribute, are in a non-static context. This procedure
+ -- performs the required additional checks.
+
+ function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
+ -- Determines if the given type has compile time known bounds. Note
+ -- that we enter the case statement even in cases where the prefix
+ -- type does NOT have known bounds, so it is important to guard any
+ -- attempt to evaluate both bounds with a call to this function.
+
+ procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
+ -- This procedure is called when the attribute N has a non-static
+ -- but compile time known value given by Val. It includes the
+ -- necessary checks for out of range values.
+
+ procedure Float_Attribute_Universal_Integer
+ (IEEES_Val : Int;
+ IEEEL_Val : Int;
+ IEEEX_Val : Int;
+ VAXFF_Val : Int;
+ VAXDF_Val : Int;
+ VAXGF_Val : Int;
+ AAMPS_Val : Int;
+ AAMPL_Val : Int);
+ -- This procedure evaluates a float attribute with no arguments that
+ -- returns a universal integer result. The parameters give the values
+ -- for the possible floating-point root types. See ttypef for details.
+ -- The prefix type is a float type (and is thus not a generic type).
+
+ procedure Float_Attribute_Universal_Real
+ (IEEES_Val : String;
+ IEEEL_Val : String;
+ IEEEX_Val : String;
+ VAXFF_Val : String;
+ VAXDF_Val : String;
+ VAXGF_Val : String;
+ AAMPS_Val : String;
+ AAMPL_Val : String);
+ -- This procedure evaluates a float attribute with no arguments that
+ -- returns a universal real result. The parameters give the values
+ -- required for the possible floating-point root types in string
+ -- format as real literals with a possible leading minus sign.
+ -- The prefix type is a float type (and is thus not a generic type).
+
+ function Fore_Value return Nat;
+ -- Computes the Fore value for the current attribute prefix, which is
+ -- known to be a static fixed-point type. Used by Fore and Width.
+
+ function Mantissa return Uint;
+ -- Returns the Mantissa value for the prefix type
+
+ procedure Set_Bounds;
+ -- Used for First, Last and Length attributes applied to an array or
+ -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
+ -- and high bound expressions for the index referenced by the attribute
+ -- designator (i.e. the first index if no expression is present, and
+ -- the N'th index if the value N is present as an expression). Also
+ -- used for First and Last of scalar types. Static is reset to False
+ -- if the type or index type is not statically constrained.
+
+ function Statically_Denotes_Entity (N : Node_Id) return Boolean;
+ -- Verify that the prefix of a potentially static array attribute
+ -- satisfies the conditions of 4.9 (14).
+
+ ---------------
+ -- Aft_Value --
+ ---------------
+
+ function Aft_Value return Nat is
+ Result : Nat;
+ Delta_Val : Ureal;
+
+ begin
+ Result := 1;
+ Delta_Val := Delta_Value (P_Type);
+
+ while Delta_Val < Ureal_Tenth loop
+ Delta_Val := Delta_Val * Ureal_10;
+ Result := Result + 1;
+ end loop;
+
+ return Result;
+ end Aft_Value;
+
+ -----------------------
+ -- Check_Expressions --
+ -----------------------
+
+ procedure Check_Expressions is
+ E : Node_Id := E1;
+
+ begin
+ while Present (E) loop
+ Check_Non_Static_Context (E);
+ Next (E);
+ end loop;
+ end Check_Expressions;
+
+ ----------------------------------
+ -- Compile_Time_Known_Attribute --
+ ----------------------------------
+
+ procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
+ T : constant Entity_Id := Etype (N);
+
+ begin
+ Fold_Uint (N, Val, False);
+
+ -- Check that result is in bounds of the type if it is static
+
+ if Is_In_Range (N, T) then
+ null;
+
+ elsif Is_Out_Of_Range (N, T) then
+ Apply_Compile_Time_Constraint_Error
+ (N, "value not in range of}?", CE_Range_Check_Failed);
+
+ elsif not Range_Checks_Suppressed (T) then
+ Enable_Range_Check (N);
+
+ else
+ Set_Do_Range_Check (N, False);
+ end if;
+ end Compile_Time_Known_Attribute;
+
+ -------------------------------
+ -- Compile_Time_Known_Bounds --
+ -------------------------------
+
+ function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
+ begin
+ return
+ Compile_Time_Known_Value (Type_Low_Bound (Typ))
+ and then
+ Compile_Time_Known_Value (Type_High_Bound (Typ));
+ end Compile_Time_Known_Bounds;
+
+ ---------------------------------------
+ -- Float_Attribute_Universal_Integer --
+ ---------------------------------------
+
+ procedure Float_Attribute_Universal_Integer
+ (IEEES_Val : Int;
+ IEEEL_Val : Int;
+ IEEEX_Val : Int;
+ VAXFF_Val : Int;
+ VAXDF_Val : Int;
+ VAXGF_Val : Int;
+ AAMPS_Val : Int;
+ AAMPL_Val : Int)
+ is
+ Val : Int;
+ Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
+
+ begin
+ if Vax_Float (P_Base_Type) then
+ if Digs = VAXFF_Digits then
+ Val := VAXFF_Val;
+ elsif Digs = VAXDF_Digits then
+ Val := VAXDF_Val;
+ else pragma Assert (Digs = VAXGF_Digits);
+ Val := VAXGF_Val;
+ end if;
+
+ elsif Is_AAMP_Float (P_Base_Type) then
+ if Digs = AAMPS_Digits then
+ Val := AAMPS_Val;
+ else pragma Assert (Digs = AAMPL_Digits);
+ Val := AAMPL_Val;
+ end if;
+
+ else
+ if Digs = IEEES_Digits then
+ Val := IEEES_Val;
+ elsif Digs = IEEEL_Digits then
+ Val := IEEEL_Val;
+ else pragma Assert (Digs = IEEEX_Digits);
+ Val := IEEEX_Val;
+ end if;
+ end if;
+
+ Fold_Uint (N, UI_From_Int (Val), True);
+ end Float_Attribute_Universal_Integer;
+
+ ------------------------------------
+ -- Float_Attribute_Universal_Real --
+ ------------------------------------
+
+ procedure Float_Attribute_Universal_Real
+ (IEEES_Val : String;
+ IEEEL_Val : String;
+ IEEEX_Val : String;
+ VAXFF_Val : String;
+ VAXDF_Val : String;
+ VAXGF_Val : String;
+ AAMPS_Val : String;
+ AAMPL_Val : String)
+ is
+ Val : Node_Id;
+ Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
+
+ begin
+ if Vax_Float (P_Base_Type) then
+ if Digs = VAXFF_Digits then
+ Val := Real_Convert (VAXFF_Val);
+ elsif Digs = VAXDF_Digits then
+ Val := Real_Convert (VAXDF_Val);
+ else pragma Assert (Digs = VAXGF_Digits);
+ Val := Real_Convert (VAXGF_Val);
+ end if;
+
+ elsif Is_AAMP_Float (P_Base_Type) then
+ if Digs = AAMPS_Digits then
+ Val := Real_Convert (AAMPS_Val);
+ else pragma Assert (Digs = AAMPL_Digits);
+ Val := Real_Convert (AAMPL_Val);
+ end if;
+
+ else
+ if Digs = IEEES_Digits then
+ Val := Real_Convert (IEEES_Val);
+ elsif Digs = IEEEL_Digits then
+ Val := Real_Convert (IEEEL_Val);
+ else pragma Assert (Digs = IEEEX_Digits);
+ Val := Real_Convert (IEEEX_Val);
+ end if;
+ end if;
+
+ Set_Sloc (Val, Loc);
+ Rewrite (N, Val);
+ Set_Is_Static_Expression (N, Static);
+ Analyze_And_Resolve (N, C_Type);
+ end Float_Attribute_Universal_Real;
+
+ ----------------
+ -- Fore_Value --
+ ----------------
+
+ -- Note that the Fore calculation is based on the actual values
+ -- of the bounds, and does not take into account possible rounding.
+
+ function Fore_Value return Nat is
+ Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
+ Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
+ Small : constant Ureal := Small_Value (P_Type);
+ Lo_Real : constant Ureal := Lo * Small;
+ Hi_Real : constant Ureal := Hi * Small;
+ T : Ureal;
+ R : Nat;
+
+ begin
+ -- Bounds are given in terms of small units, so first compute
+ -- proper values as reals.
+
+ T := UR_Max (abs Lo_Real, abs Hi_Real);
+ R := 2;
+
+ -- Loop to compute proper value if more than one digit required
+
+ while T >= Ureal_10 loop
+ R := R + 1;
+ T := T / Ureal_10;
+ end loop;
+
+ return R;
+ end Fore_Value;
+
+ --------------
+ -- Mantissa --
+ --------------
+
+ -- Table of mantissa values accessed by function Computed using
+ -- the relation:
+
+ -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
+
+ -- where D is T'Digits (RM83 3.5.7)
+
+ Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
+ 1 => 5,
+ 2 => 8,
+ 3 => 11,
+ 4 => 15,
+ 5 => 18,
+ 6 => 21,
+ 7 => 25,
+ 8 => 28,
+ 9 => 31,
+ 10 => 35,
+ 11 => 38,
+ 12 => 41,
+ 13 => 45,
+ 14 => 48,
+ 15 => 51,
+ 16 => 55,
+ 17 => 58,
+ 18 => 61,
+ 19 => 65,
+ 20 => 68,
+ 21 => 71,
+ 22 => 75,
+ 23 => 78,
+ 24 => 81,
+ 25 => 85,
+ 26 => 88,
+ 27 => 91,
+ 28 => 95,
+ 29 => 98,
+ 30 => 101,
+ 31 => 104,
+ 32 => 108,
+ 33 => 111,
+ 34 => 114,
+ 35 => 118,
+ 36 => 121,
+ 37 => 124,
+ 38 => 128,
+ 39 => 131,
+ 40 => 134);
+
+ function Mantissa return Uint is
+ begin
+ return
+ UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
+ end Mantissa;
+
+ ----------------
+ -- Set_Bounds --
+ ----------------
+
+ procedure Set_Bounds is
+ Ndim : Nat;
+ Indx : Node_Id;
+ Ityp : Entity_Id;
+
+ begin
+ -- For a string literal subtype, we have to construct the bounds.
+ -- Valid Ada code never applies attributes to string literals, but
+ -- it is convenient to allow the expander to generate attribute
+ -- references of this type (e.g. First and Last applied to a string
+ -- literal).
+
+ -- Note that the whole point of the E_String_Literal_Subtype is to
+ -- avoid this construction of bounds, but the cases in which we
+ -- have to materialize them are rare enough that we don't worry!
+
+ -- The low bound is simply the low bound of the base type. The
+ -- high bound is computed from the length of the string and this
+ -- low bound.
+
+ if Ekind (P_Type) = E_String_Literal_Subtype then
+ Ityp := Etype (First_Index (Base_Type (P_Type)));
+ Lo_Bound := Type_Low_Bound (Ityp);
+
+ Hi_Bound :=
+ Make_Integer_Literal (Sloc (P),
+ Intval =>
+ Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
+
+ Set_Parent (Hi_Bound, P);
+ Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
+ return;
+
+ -- For non-array case, just get bounds of scalar type
+
+ elsif Is_Scalar_Type (P_Type) then
+ Ityp := P_Type;
+
+ -- For a fixed-point type, we must freeze to get the attributes
+ -- of the fixed-point type set now so we can reference them.
+
+ if Is_Fixed_Point_Type (P_Type)
+ and then not Is_Frozen (Base_Type (P_Type))
+ and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
+ and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
+ then
+ Freeze_Fixed_Point_Type (Base_Type (P_Type));
+ end if;
+
+ -- For array case, get type of proper index
+
+ else
+ if No (E1) then
+ Ndim := 1;
+ else
+ Ndim := UI_To_Int (Expr_Value (E1));
+ end if;
+
+ Indx := First_Index (P_Type);
+ for J in 1 .. Ndim - 1 loop
+ Next_Index (Indx);
+ end loop;
+
+ -- If no index type, get out (some other error occurred, and
+ -- we don't have enough information to complete the job!)
+
+ if No (Indx) then
+ Lo_Bound := Error;
+ Hi_Bound := Error;
+ return;
+ end if;
+
+ Ityp := Etype (Indx);
+ end if;
+
+ -- A discrete range in an index constraint is allowed to be a
+ -- subtype indication. This is syntactically a pain, but should
+ -- not propagate to the entity for the corresponding index subtype.
+ -- After checking that the subtype indication is legal, the range
+ -- of the subtype indication should be transfered to the entity.
+ -- The attributes for the bounds should remain the simple retrievals
+ -- that they are now.
+
+ Lo_Bound := Type_Low_Bound (Ityp);
+ Hi_Bound := Type_High_Bound (Ityp);
+
+ if not Is_Static_Subtype (Ityp) then
+ Static := False;
+ end if;
+ end Set_Bounds;
+
+ -------------------------------
+ -- Statically_Denotes_Entity --
+ -------------------------------
+
+ function Statically_Denotes_Entity (N : Node_Id) return Boolean is
+ E : Entity_Id;
+
+ begin
+ if not Is_Entity_Name (N) then
+ return False;
+ else
+ E := Entity (N);
+ end if;
+
+ return
+ Nkind (Parent (E)) /= N_Object_Renaming_Declaration
+ or else Statically_Denotes_Entity (Renamed_Object (E));
+ end Statically_Denotes_Entity;
+
+ -- Start of processing for Eval_Attribute
+
+ begin
+ -- Acquire first two expressions (at the moment, no attributes
+ -- take more than two expressions in any case).
+
+ if Present (Expressions (N)) then
+ E1 := First (Expressions (N));
+ E2 := Next (E1);
+ else
+ E1 := Empty;
+ E2 := Empty;
+ end if;
+
+ -- Special processing for cases where the prefix is an object. For
+ -- this purpose, a string literal counts as an object (attributes
+ -- of string literals can only appear in generated code).
+
+ if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
+
+ -- For Component_Size, the prefix is an array object, and we apply
+ -- the attribute to the type of the object. This is allowed for
+ -- both unconstrained and constrained arrays, since the bounds
+ -- have no influence on the value of this attribute.
+
+ if Id = Attribute_Component_Size then
+ P_Entity := Etype (P);
+
+ -- For First and Last, the prefix is an array object, and we apply
+ -- the attribute to the type of the array, but we need a constrained
+ -- type for this, so we use the actual subtype if available.
+
+ elsif Id = Attribute_First
+ or else
+ Id = Attribute_Last
+ or else
+ Id = Attribute_Length
+ then
+ declare
+ AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
+
+ begin
+ if Present (AS) and then Is_Constrained (AS) then
+ P_Entity := AS;
+
+ -- If we have an unconstrained type, cannot fold
+
+ else
+ Check_Expressions;
+ return;
+ end if;
+ end;
+
+ -- For Size, give size of object if available, otherwise we
+ -- cannot fold Size.
+
+ elsif Id = Attribute_Size then
+ if Is_Entity_Name (P)
+ and then Known_Esize (Entity (P))
+ then
+ Compile_Time_Known_Attribute (N, Esize (Entity (P)));
+ return;
+
+ else
+ Check_Expressions;
+ return;
+ end if;
+
+ -- For Alignment, give size of object if available, otherwise we
+ -- cannot fold Alignment.
+
+ elsif Id = Attribute_Alignment then
+ if Is_Entity_Name (P)
+ and then Known_Alignment (Entity (P))
+ then
+ Fold_Uint (N, Alignment (Entity (P)), False);
+ return;
+
+ else
+ Check_Expressions;
+ return;
+ end if;
+
+ -- No other attributes for objects are folded
+
+ else
+ Check_Expressions;
+ return;
+ end if;
+
+ -- Cases where P is not an object. Cannot do anything if P is
+ -- not the name of an entity.
+
+ elsif not Is_Entity_Name (P) then
+ Check_Expressions;
+ return;
+
+ -- Otherwise get prefix entity
+
+ else
+ P_Entity := Entity (P);
+ end if;
+
+ -- At this stage P_Entity is the entity to which the attribute
+ -- is to be applied. This is usually simply the entity of the
+ -- prefix, except in some cases of attributes for objects, where
+ -- as described above, we apply the attribute to the object type.
+
+ -- First foldable possibility is a scalar or array type (RM 4.9(7))
+ -- that is not generic (generic types are eliminated by RM 4.9(25)).
+ -- Note we allow non-static non-generic types at this stage as further
+ -- described below.
+
+ if Is_Type (P_Entity)
+ and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
+ and then (not Is_Generic_Type (P_Entity))
+ then
+ P_Type := P_Entity;
+
+ -- Second foldable possibility is an array object (RM 4.9(8))
+
+ elsif (Ekind (P_Entity) = E_Variable
+ or else
+ Ekind (P_Entity) = E_Constant)
+ and then Is_Array_Type (Etype (P_Entity))
+ and then (not Is_Generic_Type (Etype (P_Entity)))
+ then
+ P_Type := Etype (P_Entity);
+
+ -- If the entity is an array constant with an unconstrained nominal
+ -- subtype then get the type from the initial value. If the value has
+ -- been expanded into assignments, there is no expression and the
+ -- attribute reference remains dynamic.
+ -- We could do better here and retrieve the type ???
+
+ if Ekind (P_Entity) = E_Constant
+ and then not Is_Constrained (P_Type)
+ then
+ if No (Constant_Value (P_Entity)) then
+ return;
+ else
+ P_Type := Etype (Constant_Value (P_Entity));
+ end if;
+ end if;
+
+ -- Definite must be folded if the prefix is not a generic type,
+ -- that is to say if we are within an instantiation. Same processing
+ -- applies to the GNAT attributes Has_Discriminants, Type_Class,
+ -- and Unconstrained_Array.
+
+ elsif (Id = Attribute_Definite
+ or else
+ Id = Attribute_Has_Access_Values
+ or else
+ Id = Attribute_Has_Discriminants
+ or else
+ Id = Attribute_Type_Class
+ or else
+ Id = Attribute_Unconstrained_Array)
+ and then not Is_Generic_Type (P_Entity)
+ then
+ P_Type := P_Entity;
+
+ -- We can fold 'Size applied to a type if the size is known
+ -- (as happens for a size from an attribute definition clause).
+ -- At this stage, this can happen only for types (e.g. record
+ -- types) for which the size is always non-static. We exclude
+ -- generic types from consideration (since they have bogus
+ -- sizes set within templates).
+
+ elsif Id = Attribute_Size
+ and then Is_Type (P_Entity)
+ and then (not Is_Generic_Type (P_Entity))
+ and then Known_Static_RM_Size (P_Entity)
+ then
+ Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
+ return;
+
+ -- We can fold 'Alignment applied to a type if the alignment is known
+ -- (as happens for an alignment from an attribute definition clause).
+ -- At this stage, this can happen only for types (e.g. record
+ -- types) for which the size is always non-static. We exclude
+ -- generic types from consideration (since they have bogus
+ -- sizes set within templates).
+
+ elsif Id = Attribute_Alignment
+ and then Is_Type (P_Entity)
+ and then (not Is_Generic_Type (P_Entity))
+ and then Known_Alignment (P_Entity)
+ then
+ Compile_Time_Known_Attribute (N, Alignment (P_Entity));
+ return;
+
+ -- If this is an access attribute that is known to fail accessibility
+ -- check, rewrite accordingly.
+
+ elsif Attribute_Name (N) = Name_Access
+ and then Raises_Constraint_Error (N)
+ then
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, C_Type);
+ return;
+
+ -- No other cases are foldable (they certainly aren't static, and at
+ -- the moment we don't try to fold any cases other than these three).
+
+ else
+ Check_Expressions;
+ return;
+ end if;
+
+ -- If either attribute or the prefix is Any_Type, then propagate
+ -- Any_Type to the result and don't do anything else at all.
+
+ if P_Type = Any_Type
+ or else (Present (E1) and then Etype (E1) = Any_Type)
+ or else (Present (E2) and then Etype (E2) = Any_Type)
+ then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Scalar subtype case. We have not yet enforced the static requirement
+ -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
+ -- of non-static attribute references (e.g. S'Digits for a non-static
+ -- floating-point type, which we can compute at compile time).
+
+ -- Note: this folding of non-static attributes is not simply a case of
+ -- optimization. For many of the attributes affected, Gigi cannot handle
+ -- the attribute and depends on the front end having folded them away.
+
+ -- Note: although we don't require staticness at this stage, we do set
+ -- the Static variable to record the staticness, for easy reference by
+ -- those attributes where it matters (e.g. Succ and Pred), and also to
+ -- be used to ensure that non-static folded things are not marked as
+ -- being static (a check that is done right at the end).
+
+ P_Root_Type := Root_Type (P_Type);
+ P_Base_Type := Base_Type (P_Type);
+
+ -- If the root type or base type is generic, then we cannot fold. This
+ -- test is needed because subtypes of generic types are not always
+ -- marked as being generic themselves (which seems odd???)
+
+ if Is_Generic_Type (P_Root_Type)
+ or else Is_Generic_Type (P_Base_Type)
+ then
+ return;
+ end if;
+
+ if Is_Scalar_Type (P_Type) then
+ Static := Is_OK_Static_Subtype (P_Type);
+
+ -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
+ -- since we can't do anything with unconstrained arrays. In addition,
+ -- only the First, Last and Length attributes are possibly static.
+
+ -- Definite, Has_Access_Values, Has_Discriminants, Type_Class, and
+ -- Unconstrained_Array are again exceptions, because they apply as
+ -- well to unconstrained types.
+
+ -- In addition Component_Size is an exception since it is possibly
+ -- foldable, even though it is never static, and it does apply to
+ -- unconstrained arrays. Furthermore, it is essential to fold this
+ -- in the packed case, since otherwise the value will be incorrect.
+
+ elsif Id = Attribute_Definite
+ or else
+ Id = Attribute_Has_Access_Values
+ or else
+ Id = Attribute_Has_Discriminants
+ or else
+ Id = Attribute_Type_Class
+ or else
+ Id = Attribute_Unconstrained_Array
+ or else
+ Id = Attribute_Component_Size
+ then
+ Static := False;
+
+ else
+ if not Is_Constrained (P_Type)
+ or else (Id /= Attribute_First and then
+ Id /= Attribute_Last and then
+ Id /= Attribute_Length)
+ then
+ Check_Expressions;
+ return;
+ end if;
+
+ -- The rules in (RM 4.9(7,8)) require a static array, but as in the
+ -- scalar case, we hold off on enforcing staticness, since there are
+ -- cases which we can fold at compile time even though they are not
+ -- static (e.g. 'Length applied to a static index, even though other
+ -- non-static indexes make the array type non-static). This is only
+ -- an optimization, but it falls out essentially free, so why not.
+ -- Again we compute the variable Static for easy reference later
+ -- (note that no array attributes are static in Ada 83).
+
+ Static := Ada_Version >= Ada_95
+ and then Statically_Denotes_Entity (P);
+
+ declare
+ N : Node_Id;
+
+ begin
+ N := First_Index (P_Type);
+ while Present (N) loop
+ Static := Static and then Is_Static_Subtype (Etype (N));
+
+ -- If however the index type is generic, attributes cannot
+ -- be folded.
+
+ if Is_Generic_Type (Etype (N))
+ and then Id /= Attribute_Component_Size
+ then
+ return;
+ end if;
+
+ Next_Index (N);
+ end loop;
+ end;
+ end if;
+
+ -- Check any expressions that are present. Note that these expressions,
+ -- depending on the particular attribute type, are either part of the
+ -- attribute designator, or they are arguments in a case where the
+ -- attribute reference returns a function. In the latter case, the
+ -- rule in (RM 4.9(22)) applies and in particular requires the type
+ -- of the expressions to be scalar in order for the attribute to be
+ -- considered to be static.
+
+ declare
+ E : Node_Id;
+
+ begin
+ E := E1;
+ while Present (E) loop
+
+ -- If expression is not static, then the attribute reference
+ -- result certainly cannot be static.
+
+ if not Is_Static_Expression (E) then
+ Static := False;
+ end if;
+
+ -- If the result is not known at compile time, or is not of
+ -- a scalar type, then the result is definitely not static,
+ -- so we can quit now.
+
+ if not Compile_Time_Known_Value (E)
+ or else not Is_Scalar_Type (Etype (E))
+ then
+ -- An odd special case, if this is a Pos attribute, this
+ -- is where we need to apply a range check since it does
+ -- not get done anywhere else.
+
+ if Id = Attribute_Pos then
+ if Is_Integer_Type (Etype (E)) then
+ Apply_Range_Check (E, Etype (N));
+ end if;
+ end if;
+
+ Check_Expressions;
+ return;
+
+ -- If the expression raises a constraint error, then so does
+ -- the attribute reference. We keep going in this case because
+ -- we are still interested in whether the attribute reference
+ -- is static even if it is not static.
+
+ elsif Raises_Constraint_Error (E) then
+ Set_Raises_Constraint_Error (N);
+ end if;
+
+ Next (E);
+ end loop;
+
+ if Raises_Constraint_Error (Prefix (N)) then
+ return;
+ end if;
+ end;
+
+ -- Deal with the case of a static attribute reference that raises
+ -- constraint error. The Raises_Constraint_Error flag will already
+ -- have been set, and the Static flag shows whether the attribute
+ -- reference is static. In any case we certainly can't fold such an
+ -- attribute reference.
+
+ -- Note that the rewriting of the attribute node with the constraint
+ -- error node is essential in this case, because otherwise Gigi might
+ -- blow up on one of the attributes it never expects to see.
+
+ -- The constraint_error node must have the type imposed by the context,
+ -- to avoid spurious errors in the enclosing expression.
+
+ if Raises_Constraint_Error (N) then
+ CE_Node :=
+ Make_Raise_Constraint_Error (Sloc (N),
+ Reason => CE_Range_Check_Failed);
+ Set_Etype (CE_Node, Etype (N));
+ Set_Raises_Constraint_Error (CE_Node);
+ Check_Expressions;
+ Rewrite (N, Relocate_Node (CE_Node));
+ Set_Is_Static_Expression (N, Static);
+ return;
+ end if;
+
+ -- At this point we have a potentially foldable attribute reference.
+ -- If Static is set, then the attribute reference definitely obeys
+ -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
+ -- folded. If Static is not set, then the attribute may or may not
+ -- be foldable, and the individual attribute processing routines
+ -- test Static as required in cases where it makes a difference.
+
+ -- In the case where Static is not set, we do know that all the
+ -- expressions present are at least known at compile time (we
+ -- assumed above that if this was not the case, then there was
+ -- no hope of static evaluation). However, we did not require
+ -- that the bounds of the prefix type be compile time known,
+ -- let alone static). That's because there are many attributes
+ -- that can be computed at compile time on non-static subtypes,
+ -- even though such references are not static expressions.
+
+ case Id is
+
+ --------------
+ -- Adjacent --
+ --------------
+
+ when Attribute_Adjacent =>
+ Fold_Ureal (N,
+ Eval_Fat.Adjacent
+ (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
+
+ ---------
+ -- Aft --
+ ---------
+
+ when Attribute_Aft =>
+ Fold_Uint (N, UI_From_Int (Aft_Value), True);
+
+ ---------------
+ -- Alignment --
+ ---------------
+
+ when Attribute_Alignment => Alignment_Block : declare
+ P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
+
+ begin
+ -- Fold if alignment is set and not otherwise
+
+ if Known_Alignment (P_TypeA) then
+ Fold_Uint (N, Alignment (P_TypeA), Is_Discrete_Type (P_TypeA));
+ end if;
+ end Alignment_Block;
+
+ ---------------
+ -- AST_Entry --
+ ---------------
+
+ -- Can only be folded in No_Ast_Handler case
+
+ when Attribute_AST_Entry =>
+ if not Is_AST_Entry (P_Entity) then
+ Rewrite (N,
+ New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
+ else
+ null;
+ end if;
+
+ ---------
+ -- Bit --
+ ---------
+
+ -- Bit can never be folded
+
+ when Attribute_Bit =>
+ null;
+
+ ------------------
+ -- Body_Version --
+ ------------------
+
+ -- Body_version can never be static
+
+ when Attribute_Body_Version =>
+ null;
+
+ -------------
+ -- Ceiling --
+ -------------
+
+ when Attribute_Ceiling =>
+ Fold_Ureal (N,
+ Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ --------------------
+ -- Component_Size --
+ --------------------
+
+ when Attribute_Component_Size =>
+ if Known_Static_Component_Size (P_Type) then
+ Fold_Uint (N, Component_Size (P_Type), False);
+ end if;
+
+ -------------
+ -- Compose --
+ -------------
+
+ when Attribute_Compose =>
+ Fold_Ureal (N,
+ Eval_Fat.Compose
+ (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)),
+ Static);
+
+ -----------------
+ -- Constrained --
+ -----------------
+
+ -- Constrained is never folded for now, there may be cases that
+ -- could be handled at compile time. to be looked at later.
+
+ when Attribute_Constrained =>
+ null;
+
+ ---------------
+ -- Copy_Sign --
+ ---------------
+
+ when Attribute_Copy_Sign =>
+ Fold_Ureal (N,
+ Eval_Fat.Copy_Sign
+ (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
+
+ -----------
+ -- Delta --
+ -----------
+
+ when Attribute_Delta =>
+ Fold_Ureal (N, Delta_Value (P_Type), True);
+
+ --------------
+ -- Definite --
+ --------------
+
+ when Attribute_Definite =>
+ Rewrite (N, New_Occurrence_Of (
+ Boolean_Literals (not Is_Indefinite_Subtype (P_Entity)), Loc));
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ ------------
+ -- Denorm --
+ ------------
+
+ when Attribute_Denorm =>
+ Fold_Uint
+ (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)), True);
+
+ ------------
+ -- Digits --
+ ------------
+
+ when Attribute_Digits =>
+ Fold_Uint (N, Digits_Value (P_Type), True);
+
+ ----------
+ -- Emax --
+ ----------
+
+ when Attribute_Emax =>
+
+ -- Ada 83 attribute is defined as (RM83 3.5.8)
+
+ -- T'Emax = 4 * T'Mantissa
+
+ Fold_Uint (N, 4 * Mantissa, True);
+
+ --------------
+ -- Enum_Rep --
+ --------------
+
+ when Attribute_Enum_Rep =>
+
+ -- For an enumeration type with a non-standard representation use
+ -- the Enumeration_Rep field of the proper constant. Note that this
+ -- will not work for types Character/Wide_[Wide-]Character, since no
+ -- real entities are created for the enumeration literals, but that
+ -- does not matter since these two types do not have non-standard
+ -- representations anyway.
+
+ if Is_Enumeration_Type (P_Type)
+ and then Has_Non_Standard_Rep (P_Type)
+ then
+ Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)), Static);
+
+ -- For enumeration types with standard representations and all
+ -- other cases (i.e. all integer and modular types), Enum_Rep
+ -- is equivalent to Pos.
+
+ else
+ Fold_Uint (N, Expr_Value (E1), Static);
+ end if;
+
+ -------------
+ -- Epsilon --
+ -------------
+
+ when Attribute_Epsilon =>
+
+ -- Ada 83 attribute is defined as (RM83 3.5.8)
+
+ -- T'Epsilon = 2.0**(1 - T'Mantissa)
+
+ Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
+
+ --------------
+ -- Exponent --
+ --------------
+
+ when Attribute_Exponent =>
+ Fold_Uint (N,
+ Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ -----------
+ -- First --
+ -----------
+
+ when Attribute_First => First_Attr :
+ begin
+ Set_Bounds;
+
+ if Compile_Time_Known_Value (Lo_Bound) then
+ if Is_Real_Type (P_Type) then
+ Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
+ else
+ Fold_Uint (N, Expr_Value (Lo_Bound), Static);
+ end if;
+ end if;
+ end First_Attr;
+
+ -----------------
+ -- Fixed_Value --
+ -----------------
+
+ when Attribute_Fixed_Value =>
+ null;
+
+ -----------
+ -- Floor --
+ -----------
+
+ when Attribute_Floor =>
+ Fold_Ureal (N,
+ Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ ----------
+ -- Fore --
+ ----------
+
+ when Attribute_Fore =>
+ if Compile_Time_Known_Bounds (P_Type) then
+ Fold_Uint (N, UI_From_Int (Fore_Value), Static);
+ end if;
+
+ --------------
+ -- Fraction --
+ --------------
+
+ when Attribute_Fraction =>
+ Fold_Ureal (N,
+ Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ -----------------------
+ -- Has_Access_Values --
+ -----------------------
+
+ when Attribute_Has_Access_Values =>
+ Rewrite (N, New_Occurrence_Of
+ (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ -----------------------
+ -- Has_Discriminants --
+ -----------------------
+
+ when Attribute_Has_Discriminants =>
+ Rewrite (N, New_Occurrence_Of (
+ Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ --------------
+ -- Identity --
+ --------------
+
+ when Attribute_Identity =>
+ null;
+
+ -----------
+ -- Image --
+ -----------
+
+ -- Image is a scalar attribute, but is never static, because it is
+ -- not a static function (having a non-scalar argument (RM 4.9(22))
+
+ when Attribute_Image =>
+ null;
+
+ ---------
+ -- Img --
+ ---------
+
+ -- Img is a scalar attribute, but is never static, because it is
+ -- not a static function (having a non-scalar argument (RM 4.9(22))
+
+ when Attribute_Img =>
+ null;
+
+ -------------------
+ -- Integer_Value --
+ -------------------
+
+ when Attribute_Integer_Value =>
+ null;
+
+ -----------
+ -- Large --
+ -----------
+
+ when Attribute_Large =>
+
+ -- For fixed-point, we use the identity:
+
+ -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
+
+ if Is_Fixed_Point_Type (P_Type) then
+ Rewrite (N,
+ Make_Op_Multiply (Loc,
+ Left_Opnd =>
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Make_Op_Expon (Loc,
+ Left_Opnd =>
+ Make_Real_Literal (Loc, Ureal_2),
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => P,
+ Attribute_Name => Name_Mantissa)),
+ Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
+
+ Right_Opnd =>
+ Make_Real_Literal (Loc, Small_Value (Entity (P)))));
+
+ Analyze_And_Resolve (N, C_Type);
+
+ -- Floating-point (Ada 83 compatibility)
+
+ else
+ -- Ada 83 attribute is defined as (RM83 3.5.8)
+
+ -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
+
+ -- where
+
+ -- T'Emax = 4 * T'Mantissa
+
+ Fold_Ureal (N,
+ Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
+ True);
+ end if;
+
+ ----------
+ -- Last --
+ ----------
+
+ when Attribute_Last => Last :
+ begin
+ Set_Bounds;
+
+ if Compile_Time_Known_Value (Hi_Bound) then
+ if Is_Real_Type (P_Type) then
+ Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
+ else
+ Fold_Uint (N, Expr_Value (Hi_Bound), Static);
+ end if;
+ end if;
+ end Last;
+
+ ------------------
+ -- Leading_Part --
+ ------------------
+
+ when Attribute_Leading_Part =>
+ Fold_Ureal (N,
+ Eval_Fat.Leading_Part
+ (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
+
+ ------------
+ -- Length --
+ ------------
+
+ when Attribute_Length => Length : declare
+ Ind : Node_Id;
+
+ begin
+ -- In the case of a generic index type, the bounds may
+ -- appear static but the computation is not meaningful,
+ -- and may generate a spurious warning.
+
+ Ind := First_Index (P_Type);
+
+ while Present (Ind) loop
+ if Is_Generic_Type (Etype (Ind)) then
+ return;
+ end if;
+
+ Next_Index (Ind);
+ end loop;
+
+ Set_Bounds;
+
+ if Compile_Time_Known_Value (Lo_Bound)
+ and then Compile_Time_Known_Value (Hi_Bound)
+ then
+ Fold_Uint (N,
+ UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
+ True);
+ end if;
+ end Length;
+
+ -------------
+ -- Machine --
+ -------------
+
+ when Attribute_Machine =>
+ Fold_Ureal (N,
+ Eval_Fat.Machine
+ (P_Root_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
+ Static);
+
+ ------------------
+ -- Machine_Emax --
+ ------------------
+
+ when Attribute_Machine_Emax =>
+ Float_Attribute_Universal_Integer (
+ IEEES_Machine_Emax,
+ IEEEL_Machine_Emax,
+ IEEEX_Machine_Emax,
+ VAXFF_Machine_Emax,
+ VAXDF_Machine_Emax,
+ VAXGF_Machine_Emax,
+ AAMPS_Machine_Emax,
+ AAMPL_Machine_Emax);
+
+ ------------------
+ -- Machine_Emin --
+ ------------------
+
+ when Attribute_Machine_Emin =>
+ Float_Attribute_Universal_Integer (
+ IEEES_Machine_Emin,
+ IEEEL_Machine_Emin,
+ IEEEX_Machine_Emin,
+ VAXFF_Machine_Emin,
+ VAXDF_Machine_Emin,
+ VAXGF_Machine_Emin,
+ AAMPS_Machine_Emin,
+ AAMPL_Machine_Emin);
+
+ ----------------------
+ -- Machine_Mantissa --
+ ----------------------
+
+ when Attribute_Machine_Mantissa =>
+ Float_Attribute_Universal_Integer (
+ IEEES_Machine_Mantissa,
+ IEEEL_Machine_Mantissa,
+ IEEEX_Machine_Mantissa,
+ VAXFF_Machine_Mantissa,
+ VAXDF_Machine_Mantissa,
+ VAXGF_Machine_Mantissa,
+ AAMPS_Machine_Mantissa,
+ AAMPL_Machine_Mantissa);
+
+ -----------------------
+ -- Machine_Overflows --
+ -----------------------
+
+ when Attribute_Machine_Overflows =>
+
+ -- Always true for fixed-point
+
+ if Is_Fixed_Point_Type (P_Type) then
+ Fold_Uint (N, True_Value, True);
+
+ -- Floating point case
+
+ else
+ Fold_Uint (N,
+ UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
+ True);
+ end if;
+
+ -------------------
+ -- Machine_Radix --
+ -------------------
+
+ when Attribute_Machine_Radix =>
+ if Is_Fixed_Point_Type (P_Type) then
+ if Is_Decimal_Fixed_Point_Type (P_Type)
+ and then Machine_Radix_10 (P_Type)
+ then
+ Fold_Uint (N, Uint_10, True);
+ else
+ Fold_Uint (N, Uint_2, True);
+ end if;
+
+ -- All floating-point type always have radix 2
+
+ else
+ Fold_Uint (N, Uint_2, True);
+ end if;
+
+ ----------------------
+ -- Machine_Rounding --
+ ----------------------
+
+ -- Note: for the folding case, it is fine to treat Machine_Rounding
+ -- exactly the same way as Rounding, since this is one of the allowed
+ -- behaviors, and performance is not an issue here. It might be a bit
+ -- better to give the same result as it would give at run-time, even
+ -- though the non-determinism is certainly permitted.
+
+ when Attribute_Machine_Rounding =>
+ Fold_Ureal (N,
+ Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ --------------------
+ -- Machine_Rounds --
+ --------------------
+
+ when Attribute_Machine_Rounds =>
+
+ -- Always False for fixed-point
+
+ if Is_Fixed_Point_Type (P_Type) then
+ Fold_Uint (N, False_Value, True);
+
+ -- Else yield proper floating-point result
+
+ else
+ Fold_Uint
+ (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)), True);
+ end if;
+
+ ------------------
+ -- Machine_Size --
+ ------------------
+
+ -- Note: Machine_Size is identical to Object_Size
+
+ when Attribute_Machine_Size => Machine_Size : declare
+ P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
+
+ begin
+ if Known_Esize (P_TypeA) then
+ Fold_Uint (N, Esize (P_TypeA), True);
+ end if;
+ end Machine_Size;
+
+ --------------
+ -- Mantissa --
+ --------------
+
+ when Attribute_Mantissa =>
+
+ -- Fixed-point mantissa
+
+ if Is_Fixed_Point_Type (P_Type) then
+
+ -- Compile time foldable case
+
+ if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
+ and then
+ Compile_Time_Known_Value (Type_High_Bound (P_Type))
+ then
+ -- The calculation of the obsolete Ada 83 attribute Mantissa
+ -- is annoying, because of AI00143, quoted here:
+
+ -- !question 84-01-10
+
+ -- Consider the model numbers for F:
+
+ -- type F is delta 1.0 range -7.0 .. 8.0;
+
+ -- The wording requires that F'MANTISSA be the SMALLEST
+ -- integer number for which each bound of the specified
+ -- range is either a model number or lies at most small
+ -- distant from a model number. This means F'MANTISSA
+ -- is required to be 3 since the range -7.0 .. 7.0 fits
+ -- in 3 signed bits, and 8 is "at most" 1.0 from a model
+ -- number, namely, 7. Is this analysis correct? Note that
+ -- this implies the upper bound of the range is not
+ -- represented as a model number.
+
+ -- !response 84-03-17
+
+ -- The analysis is correct. The upper and lower bounds for
+ -- a fixed point type can lie outside the range of model
+ -- numbers.
+
+ declare
+ Siz : Uint;
+ LBound : Ureal;
+ UBound : Ureal;
+ Bound : Ureal;
+ Max_Man : Uint;
+
+ begin
+ LBound := Expr_Value_R (Type_Low_Bound (P_Type));
+ UBound := Expr_Value_R (Type_High_Bound (P_Type));
+ Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
+ Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
+
+ -- If the Bound is exactly a model number, i.e. a multiple
+ -- of Small, then we back it off by one to get the integer
+ -- value that must be representable.
+
+ if Small_Value (P_Type) * Max_Man = Bound then
+ Max_Man := Max_Man - 1;
+ end if;
+
+ -- Now find corresponding size = Mantissa value
+
+ Siz := Uint_0;
+ while 2 ** Siz < Max_Man loop
+ Siz := Siz + 1;
+ end loop;
+
+ Fold_Uint (N, Siz, True);
+ end;
+
+ else
+ -- The case of dynamic bounds cannot be evaluated at compile
+ -- time. Instead we use a runtime routine (see Exp_Attr).
+
+ null;
+ end if;
+
+ -- Floating-point Mantissa
+
+ else
+ Fold_Uint (N, Mantissa, True);
+ end if;
+
+ ---------
+ -- Max --
+ ---------
+
+ when Attribute_Max => Max :
+ begin
+ if Is_Real_Type (P_Type) then
+ Fold_Ureal
+ (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
+ else
+ Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
+ end if;
+ end Max;
+
+ ----------------------------------
+ -- Max_Size_In_Storage_Elements --
+ ----------------------------------
+
+ -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
+ -- Storage_Unit boundary. We can fold any cases for which the size
+ -- is known by the front end.
+
+ when Attribute_Max_Size_In_Storage_Elements =>
+ if Known_Esize (P_Type) then
+ Fold_Uint (N,
+ (Esize (P_Type) + System_Storage_Unit - 1) /
+ System_Storage_Unit,
+ Static);
+ end if;
+
+ --------------------
+ -- Mechanism_Code --
+ --------------------
+
+ when Attribute_Mechanism_Code =>
+ declare
+ Val : Int;
+ Formal : Entity_Id;
+ Mech : Mechanism_Type;
+
+ begin
+ if No (E1) then
+ Mech := Mechanism (P_Entity);
+
+ else
+ Val := UI_To_Int (Expr_Value (E1));
+
+ Formal := First_Formal (P_Entity);
+ for J in 1 .. Val - 1 loop
+ Next_Formal (Formal);
+ end loop;
+ Mech := Mechanism (Formal);
+ end if;
+
+ if Mech < 0 then
+ Fold_Uint (N, UI_From_Int (Int (-Mech)), True);
+ end if;
+ end;
+
+ ---------
+ -- Min --
+ ---------
+
+ when Attribute_Min => Min :
+ begin
+ if Is_Real_Type (P_Type) then
+ Fold_Ureal
+ (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
+ else
+ Fold_Uint
+ (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
+ end if;
+ end Min;
+
+ ---------
+ -- Mod --
+ ---------
+
+ when Attribute_Mod =>
+ Fold_Uint
+ (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
+
+ -----------
+ -- Model --
+ -----------
+
+ when Attribute_Model =>
+ Fold_Ureal (N,
+ Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ ----------------
+ -- Model_Emin --
+ ----------------
+
+ when Attribute_Model_Emin =>
+ Float_Attribute_Universal_Integer (
+ IEEES_Model_Emin,
+ IEEEL_Model_Emin,
+ IEEEX_Model_Emin,
+ VAXFF_Model_Emin,
+ VAXDF_Model_Emin,
+ VAXGF_Model_Emin,
+ AAMPS_Model_Emin,
+ AAMPL_Model_Emin);
+
+ -------------------
+ -- Model_Epsilon --
+ -------------------
+
+ when Attribute_Model_Epsilon =>
+ Float_Attribute_Universal_Real (
+ IEEES_Model_Epsilon'Universal_Literal_String,
+ IEEEL_Model_Epsilon'Universal_Literal_String,
+ IEEEX_Model_Epsilon'Universal_Literal_String,
+ VAXFF_Model_Epsilon'Universal_Literal_String,
+ VAXDF_Model_Epsilon'Universal_Literal_String,
+ VAXGF_Model_Epsilon'Universal_Literal_String,
+ AAMPS_Model_Epsilon'Universal_Literal_String,
+ AAMPL_Model_Epsilon'Universal_Literal_String);
+
+ --------------------
+ -- Model_Mantissa --
+ --------------------
+
+ when Attribute_Model_Mantissa =>
+ Float_Attribute_Universal_Integer (
+ IEEES_Model_Mantissa,
+ IEEEL_Model_Mantissa,
+ IEEEX_Model_Mantissa,
+ VAXFF_Model_Mantissa,
+ VAXDF_Model_Mantissa,
+ VAXGF_Model_Mantissa,
+ AAMPS_Model_Mantissa,
+ AAMPL_Model_Mantissa);
+
+ -----------------
+ -- Model_Small --
+ -----------------
+
+ when Attribute_Model_Small =>
+ Float_Attribute_Universal_Real (
+ IEEES_Model_Small'Universal_Literal_String,
+ IEEEL_Model_Small'Universal_Literal_String,
+ IEEEX_Model_Small'Universal_Literal_String,
+ VAXFF_Model_Small'Universal_Literal_String,
+ VAXDF_Model_Small'Universal_Literal_String,
+ VAXGF_Model_Small'Universal_Literal_String,
+ AAMPS_Model_Small'Universal_Literal_String,
+ AAMPL_Model_Small'Universal_Literal_String);
+
+ -------------
+ -- Modulus --
+ -------------
+
+ when Attribute_Modulus =>
+ Fold_Uint (N, Modulus (P_Type), True);
+
+ --------------------
+ -- Null_Parameter --
+ --------------------
+
+ -- Cannot fold, we know the value sort of, but the whole point is
+ -- that there is no way to talk about this imaginary value except
+ -- by using the attribute, so we leave it the way it is.
+
+ when Attribute_Null_Parameter =>
+ null;
+
+ -----------------
+ -- Object_Size --
+ -----------------
+
+ -- The Object_Size attribute for a type returns the Esize of the
+ -- type and can be folded if this value is known.
+
+ when Attribute_Object_Size => Object_Size : declare
+ P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
+
+ begin
+ if Known_Esize (P_TypeA) then
+ Fold_Uint (N, Esize (P_TypeA), True);
+ end if;
+ end Object_Size;
+
+ -------------------------
+ -- Passed_By_Reference --
+ -------------------------
+
+ -- Scalar types are never passed by reference
+
+ when Attribute_Passed_By_Reference =>
+ Fold_Uint (N, False_Value, True);
+
+ ---------
+ -- Pos --
+ ---------
+
+ when Attribute_Pos =>
+ Fold_Uint (N, Expr_Value (E1), True);
+
+ ----------
+ -- Pred --
+ ----------
+
+ when Attribute_Pred => Pred :
+ begin
+ -- Floating-point case
+
+ if Is_Floating_Point_Type (P_Type) then
+ Fold_Ureal (N,
+ Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ -- Fixed-point case
+
+ elsif Is_Fixed_Point_Type (P_Type) then
+ Fold_Ureal (N,
+ Expr_Value_R (E1) - Small_Value (P_Type), True);
+
+ -- Modular integer case (wraps)
+
+ elsif Is_Modular_Integer_Type (P_Type) then
+ Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
+
+ -- Other scalar cases
+
+ else
+ pragma Assert (Is_Scalar_Type (P_Type));
+
+ if Is_Enumeration_Type (P_Type)
+ and then Expr_Value (E1) =
+ Expr_Value (Type_Low_Bound (P_Base_Type))
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N, "Pred of `&''First`",
+ CE_Overflow_Check_Failed,
+ Ent => P_Base_Type,
+ Warn => not Static);
+
+ Check_Expressions;
+ return;
+ end if;
+
+ Fold_Uint (N, Expr_Value (E1) - 1, Static);
+ end if;
+ end Pred;
+
+ -----------
+ -- Range --
+ -----------
+
+ -- No processing required, because by this stage, Range has been
+ -- replaced by First .. Last, so this branch can never be taken.
+
+ when Attribute_Range =>
+ raise Program_Error;
+
+ ------------------
+ -- Range_Length --
+ ------------------
+
+ when Attribute_Range_Length =>
+ Set_Bounds;
+
+ if Compile_Time_Known_Value (Hi_Bound)
+ and then Compile_Time_Known_Value (Lo_Bound)
+ then
+ Fold_Uint (N,
+ UI_Max
+ (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
+ Static);
+ end if;
+
+ ---------------
+ -- Remainder --
+ ---------------
+
+ when Attribute_Remainder => Remainder : declare
+ X : constant Ureal := Expr_Value_R (E1);
+ Y : constant Ureal := Expr_Value_R (E2);
+
+ begin
+ if UR_Is_Zero (Y) then
+ Apply_Compile_Time_Constraint_Error
+ (N, "division by zero in Remainder",
+ CE_Overflow_Check_Failed,
+ Warn => not Static);
+
+ Check_Expressions;
+ return;
+ end if;
+
+ Fold_Ureal (N, Eval_Fat.Remainder (P_Root_Type, X, Y), Static);
+ end Remainder;
+
+ -----------
+ -- Round --
+ -----------
+
+ when Attribute_Round => Round :
+ declare
+ Sr : Ureal;
+ Si : Uint;
+
+ begin
+ -- First we get the (exact result) in units of small
+
+ Sr := Expr_Value_R (E1) / Small_Value (C_Type);
+
+ -- Now round that exactly to an integer
+
+ Si := UR_To_Uint (Sr);
+
+ -- Finally the result is obtained by converting back to real
+
+ Fold_Ureal (N, Si * Small_Value (C_Type), Static);
+ end Round;
+
+ --------------
+ -- Rounding --
+ --------------
+
+ when Attribute_Rounding =>
+ Fold_Ureal (N,
+ Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ ---------------
+ -- Safe_Emax --
+ ---------------
+
+ when Attribute_Safe_Emax =>
+ Float_Attribute_Universal_Integer (
+ IEEES_Safe_Emax,
+ IEEEL_Safe_Emax,
+ IEEEX_Safe_Emax,
+ VAXFF_Safe_Emax,
+ VAXDF_Safe_Emax,
+ VAXGF_Safe_Emax,
+ AAMPS_Safe_Emax,
+ AAMPL_Safe_Emax);
+
+ ----------------
+ -- Safe_First --
+ ----------------
+
+ when Attribute_Safe_First =>
+ Float_Attribute_Universal_Real (
+ IEEES_Safe_First'Universal_Literal_String,
+ IEEEL_Safe_First'Universal_Literal_String,
+ IEEEX_Safe_First'Universal_Literal_String,
+ VAXFF_Safe_First'Universal_Literal_String,
+ VAXDF_Safe_First'Universal_Literal_String,
+ VAXGF_Safe_First'Universal_Literal_String,
+ AAMPS_Safe_First'Universal_Literal_String,
+ AAMPL_Safe_First'Universal_Literal_String);
+
+ ----------------
+ -- Safe_Large --
+ ----------------
+
+ when Attribute_Safe_Large =>
+ if Is_Fixed_Point_Type (P_Type) then
+ Fold_Ureal
+ (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
+ else
+ Float_Attribute_Universal_Real (
+ IEEES_Safe_Large'Universal_Literal_String,
+ IEEEL_Safe_Large'Universal_Literal_String,
+ IEEEX_Safe_Large'Universal_Literal_String,
+ VAXFF_Safe_Large'Universal_Literal_String,
+ VAXDF_Safe_Large'Universal_Literal_String,
+ VAXGF_Safe_Large'Universal_Literal_String,
+ AAMPS_Safe_Large'Universal_Literal_String,
+ AAMPL_Safe_Large'Universal_Literal_String);
+ end if;
+
+ ---------------
+ -- Safe_Last --
+ ---------------
+
+ when Attribute_Safe_Last =>
+ Float_Attribute_Universal_Real (
+ IEEES_Safe_Last'Universal_Literal_String,
+ IEEEL_Safe_Last'Universal_Literal_String,
+ IEEEX_Safe_Last'Universal_Literal_String,
+ VAXFF_Safe_Last'Universal_Literal_String,
+ VAXDF_Safe_Last'Universal_Literal_String,
+ VAXGF_Safe_Last'Universal_Literal_String,
+ AAMPS_Safe_Last'Universal_Literal_String,
+ AAMPL_Safe_Last'Universal_Literal_String);
+
+ ----------------
+ -- Safe_Small --
+ ----------------
+
+ when Attribute_Safe_Small =>
+
+ -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
+ -- for fixed-point, since is the same as Small, but we implement
+ -- it for backwards compatibility.
+
+ if Is_Fixed_Point_Type (P_Type) then
+ Fold_Ureal (N, Small_Value (P_Type), Static);
+
+ -- Ada 83 Safe_Small for floating-point cases
+
+ else
+ Float_Attribute_Universal_Real (
+ IEEES_Safe_Small'Universal_Literal_String,
+ IEEEL_Safe_Small'Universal_Literal_String,
+ IEEEX_Safe_Small'Universal_Literal_String,
+ VAXFF_Safe_Small'Universal_Literal_String,
+ VAXDF_Safe_Small'Universal_Literal_String,
+ VAXGF_Safe_Small'Universal_Literal_String,
+ AAMPS_Safe_Small'Universal_Literal_String,
+ AAMPL_Safe_Small'Universal_Literal_String);
+ end if;
+
+ -----------
+ -- Scale --
+ -----------
+
+ when Attribute_Scale =>
+ Fold_Uint (N, Scale_Value (P_Type), True);
+
+ -------------
+ -- Scaling --
+ -------------
+
+ when Attribute_Scaling =>
+ Fold_Ureal (N,
+ Eval_Fat.Scaling
+ (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
+
+ ------------------
+ -- Signed_Zeros --
+ ------------------
+
+ when Attribute_Signed_Zeros =>
+ Fold_Uint
+ (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)), Static);
+
+ ----------
+ -- Size --
+ ----------
+
+ -- Size attribute returns the RM size. All scalar types can be folded,
+ -- as well as any types for which the size is known by the front end,
+ -- including any type for which a size attribute is specified.
+
+ when Attribute_Size | Attribute_VADS_Size => Size : declare
+ P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
+
+ begin
+ if RM_Size (P_TypeA) /= Uint_0 then
+
+ -- VADS_Size case
+
+ if Id = Attribute_VADS_Size or else Use_VADS_Size then
+ declare
+ S : constant Node_Id := Size_Clause (P_TypeA);
+
+ begin
+ -- If a size clause applies, then use the size from it.
+ -- This is one of the rare cases where we can use the
+ -- Size_Clause field for a subtype when Has_Size_Clause
+ -- is False. Consider:
+
+ -- type x is range 1 .. 64;
+ -- for x'size use 12;
+ -- subtype y is x range 0 .. 3;
+
+ -- Here y has a size clause inherited from x, but normally
+ -- it does not apply, and y'size is 2. However, y'VADS_Size
+ -- is indeed 12 and not 2.
+
+ if Present (S)
+ and then Is_OK_Static_Expression (Expression (S))
+ then
+ Fold_Uint (N, Expr_Value (Expression (S)), True);
+
+ -- If no size is specified, then we simply use the object
+ -- size in the VADS_Size case (e.g. Natural'Size is equal
+ -- to Integer'Size, not one less).
+
+ else
+ Fold_Uint (N, Esize (P_TypeA), True);
+ end if;
+ end;
+
+ -- Normal case (Size) in which case we want the RM_Size
+
+ else
+ Fold_Uint (N,
+ RM_Size (P_TypeA),
+ Static and then Is_Discrete_Type (P_TypeA));
+ end if;
+ end if;
+ end Size;
+
+ -----------
+ -- Small --
+ -----------
+
+ when Attribute_Small =>
+
+ -- The floating-point case is present only for Ada 83 compatability.
+ -- Note that strictly this is an illegal addition, since we are
+ -- extending an Ada 95 defined attribute, but we anticipate an
+ -- ARG ruling that will permit this.
+
+ if Is_Floating_Point_Type (P_Type) then
+
+ -- Ada 83 attribute is defined as (RM83 3.5.8)
+
+ -- T'Small = 2.0**(-T'Emax - 1)
+
+ -- where
+
+ -- T'Emax = 4 * T'Mantissa
+
+ Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
+
+ -- Normal Ada 95 fixed-point case
+
+ else
+ Fold_Ureal (N, Small_Value (P_Type), True);
+ end if;
+
+ -----------------
+ -- Stream_Size --
+ -----------------
+
+ when Attribute_Stream_Size =>
+ null;
+
+ ----------
+ -- Succ --
+ ----------
+
+ when Attribute_Succ => Succ :
+ begin
+ -- Floating-point case
+
+ if Is_Floating_Point_Type (P_Type) then
+ Fold_Ureal (N,
+ Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ -- Fixed-point case
+
+ elsif Is_Fixed_Point_Type (P_Type) then
+ Fold_Ureal (N,
+ Expr_Value_R (E1) + Small_Value (P_Type), Static);
+
+ -- Modular integer case (wraps)
+
+ elsif Is_Modular_Integer_Type (P_Type) then
+ Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
+
+ -- Other scalar cases
+
+ else
+ pragma Assert (Is_Scalar_Type (P_Type));
+
+ if Is_Enumeration_Type (P_Type)
+ and then Expr_Value (E1) =
+ Expr_Value (Type_High_Bound (P_Base_Type))
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N, "Succ of `&''Last`",
+ CE_Overflow_Check_Failed,
+ Ent => P_Base_Type,
+ Warn => not Static);
+
+ Check_Expressions;
+ return;
+ else
+ Fold_Uint (N, Expr_Value (E1) + 1, Static);
+ end if;
+ end if;
+ end Succ;
+
+ ----------------
+ -- Truncation --
+ ----------------
+
+ when Attribute_Truncation =>
+ Fold_Ureal (N,
+ Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)), Static);
+
+ ----------------
+ -- Type_Class --
+ ----------------
+
+ when Attribute_Type_Class => Type_Class : declare
+ Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
+ Id : RE_Id;
+
+ begin
+ if Is_Descendent_Of_Address (Typ) then
+ Id := RE_Type_Class_Address;
+
+ elsif Is_Enumeration_Type (Typ) then
+ Id := RE_Type_Class_Enumeration;
+
+ elsif Is_Integer_Type (Typ) then
+ Id := RE_Type_Class_Integer;
+
+ elsif Is_Fixed_Point_Type (Typ) then
+ Id := RE_Type_Class_Fixed_Point;
+
+ elsif Is_Floating_Point_Type (Typ) then
+ Id := RE_Type_Class_Floating_Point;
+
+ elsif Is_Array_Type (Typ) then
+ Id := RE_Type_Class_Array;
+
+ elsif Is_Record_Type (Typ) then
+ Id := RE_Type_Class_Record;
+
+ elsif Is_Access_Type (Typ) then
+ Id := RE_Type_Class_Access;
+
+ elsif Is_Enumeration_Type (Typ) then
+ Id := RE_Type_Class_Enumeration;
+
+ elsif Is_Task_Type (Typ) then
+ Id := RE_Type_Class_Task;
+
+ -- We treat protected types like task types. It would make more
+ -- sense to have another enumeration value, but after all the
+ -- whole point of this feature is to be exactly DEC compatible,
+ -- and changing the type Type_Clas would not meet this requirement.
+
+ elsif Is_Protected_Type (Typ) then
+ Id := RE_Type_Class_Task;
+
+ -- Not clear if there are any other possibilities, but if there
+ -- are, then we will treat them as the address case.
+
+ else
+ Id := RE_Type_Class_Address;
+ end if;
+
+ Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
+ end Type_Class;
+
+ -----------------------
+ -- Unbiased_Rounding --
+ -----------------------
+
+ when Attribute_Unbiased_Rounding =>
+ Fold_Ureal (N,
+ Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)),
+ Static);
+
+ -------------------------
+ -- Unconstrained_Array --
+ -------------------------
+
+ when Attribute_Unconstrained_Array => Unconstrained_Array : declare
+ Typ : constant Entity_Id := Underlying_Type (P_Type);
+
+ begin
+ Rewrite (N, New_Occurrence_Of (
+ Boolean_Literals (
+ Is_Array_Type (P_Type)
+ and then not Is_Constrained (Typ)), Loc));
+
+ -- Analyze and resolve as boolean, note that this attribute is
+ -- a static attribute in GNAT.
+
+ Analyze_And_Resolve (N, Standard_Boolean);
+ Static := True;
+ end Unconstrained_Array;
+
+ ---------------
+ -- VADS_Size --
+ ---------------
+
+ -- Processing is shared with Size
+
+ ---------
+ -- Val --
+ ---------
+
+ when Attribute_Val => Val :
+ begin
+ if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
+ or else
+ Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
+ then
+ Apply_Compile_Time_Constraint_Error
+ (N, "Val expression out of range",
+ CE_Range_Check_Failed,
+ Warn => not Static);
+
+ Check_Expressions;
+ return;
+
+ else
+ Fold_Uint (N, Expr_Value (E1), Static);
+ end if;
+ end Val;
+
+ ----------------
+ -- Value_Size --
+ ----------------
+
+ -- The Value_Size attribute for a type returns the RM size of the
+ -- type. This an always be folded for scalar types, and can also
+ -- be folded for non-scalar types if the size is set.
+
+ when Attribute_Value_Size => Value_Size : declare
+ P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
+
+ begin
+ if RM_Size (P_TypeA) /= Uint_0 then
+ Fold_Uint (N, RM_Size (P_TypeA), True);
+ end if;
+
+ end Value_Size;
+
+ -------------
+ -- Version --
+ -------------
+
+ -- Version can never be static
+
+ when Attribute_Version =>
+ null;
+
+ ----------------
+ -- Wide_Image --
+ ----------------
+
+ -- Wide_Image is a scalar attribute, but is never static, because it
+ -- is not a static function (having a non-scalar argument (RM 4.9(22))
+
+ when Attribute_Wide_Image =>
+ null;
+
+ ---------------------
+ -- Wide_Wide_Image --
+ ---------------------
+
+ -- Wide_Wide_Image is a scalar attribute but is never static, because it
+ -- is not a static function (having a non-scalar argument (RM 4.9(22)).
+
+ when Attribute_Wide_Wide_Image =>
+ null;
+
+ ---------------------
+ -- Wide_Wide_Width --
+ ---------------------
+
+ -- Processing for Wide_Wide_Width is combined with Width
+
+ ----------------
+ -- Wide_Width --
+ ----------------
+
+ -- Processing for Wide_Width is combined with Width
+
+ -----------
+ -- Width --
+ -----------
+
+ -- This processing also handles the case of Wide_[Wide_]Width
+
+ when Attribute_Width |
+ Attribute_Wide_Width |
+ Attribute_Wide_Wide_Width => Width :
+ begin
+ if Compile_Time_Known_Bounds (P_Type) then
+
+ -- Floating-point types
+
+ if Is_Floating_Point_Type (P_Type) then
+
+ -- Width is zero for a null range (RM 3.5 (38))
+
+ if Expr_Value_R (Type_High_Bound (P_Type)) <
+ Expr_Value_R (Type_Low_Bound (P_Type))
+ then
+ Fold_Uint (N, Uint_0, True);
+
+ else
+ -- For floating-point, we have +N.dddE+nnn where length
+ -- of ddd is determined by type'Digits - 1, but is one
+ -- if Digits is one (RM 3.5 (33)).
+
+ -- nnn is set to 2 for Short_Float and Float (32 bit
+ -- floats), and 3 for Long_Float and Long_Long_Float.
+ -- For machines where Long_Long_Float is the IEEE
+ -- extended precision type, the exponent takes 4 digits.
+
+ declare
+ Len : Int :=
+ Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
+
+ begin
+ if Esize (P_Type) <= 32 then
+ Len := Len + 6;
+ elsif Esize (P_Type) = 64 then
+ Len := Len + 7;
+ else
+ Len := Len + 8;
+ end if;
+
+ Fold_Uint (N, UI_From_Int (Len), True);
+ end;
+ end if;
+
+ -- Fixed-point types
+
+ elsif Is_Fixed_Point_Type (P_Type) then
+
+ -- Width is zero for a null range (RM 3.5 (38))
+
+ if Expr_Value (Type_High_Bound (P_Type)) <
+ Expr_Value (Type_Low_Bound (P_Type))
+ then
+ Fold_Uint (N, Uint_0, True);
+
+ -- The non-null case depends on the specific real type
+
+ else
+ -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
+
+ Fold_Uint
+ (N, UI_From_Int (Fore_Value + 1 + Aft_Value), True);
+ end if;
+
+ -- Discrete types
+
+ else
+ declare
+ R : constant Entity_Id := Root_Type (P_Type);
+ Lo : constant Uint :=
+ Expr_Value (Type_Low_Bound (P_Type));
+ Hi : constant Uint :=
+ Expr_Value (Type_High_Bound (P_Type));
+ W : Nat;
+ Wt : Nat;
+ T : Uint;
+ L : Node_Id;
+ C : Character;
+
+ begin
+ -- Empty ranges
+
+ if Lo > Hi then
+ W := 0;
+
+ -- Width for types derived from Standard.Character
+ -- and Standard.Wide_[Wide_]Character.
+
+ elsif R = Standard_Character
+ or else R = Standard_Wide_Character
+ or else R = Standard_Wide_Wide_Character
+ then
+ W := 0;
+
+ -- Set W larger if needed
+
+ for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
+
+ -- All wide characters look like Hex_hhhhhhhh
+
+ if J > 255 then
+ W := 12;
+
+ else
+ C := Character'Val (J);
+
+ -- Test for all cases where Character'Image
+ -- yields an image that is longer than three
+ -- characters. First the cases of Reserved_xxx
+ -- names (length = 12).
+
+ case C is
+ when Reserved_128 | Reserved_129 |
+ Reserved_132 | Reserved_153
+
+ => Wt := 12;
+
+ when BS | HT | LF | VT | FF | CR |
+ SO | SI | EM | FS | GS | RS |
+ US | RI | MW | ST | PM
+
+ => Wt := 2;
+
+ when NUL | SOH | STX | ETX | EOT |
+ ENQ | ACK | BEL | DLE | DC1 |
+ DC2 | DC3 | DC4 | NAK | SYN |
+ ETB | CAN | SUB | ESC | DEL |
+ BPH | NBH | NEL | SSA | ESA |
+ HTS | HTJ | VTS | PLD | PLU |
+ SS2 | SS3 | DCS | PU1 | PU2 |
+ STS | CCH | SPA | EPA | SOS |
+ SCI | CSI | OSC | APC
+
+ => Wt := 3;
+
+ when Space .. Tilde |
+ No_Break_Space .. LC_Y_Diaeresis
+
+ => Wt := 3;
+ end case;
+
+ W := Int'Max (W, Wt);
+ end if;
+ end loop;
+
+ -- Width for types derived from Standard.Boolean
+
+ elsif R = Standard_Boolean then
+ if Lo = 0 then
+ W := 5; -- FALSE
+ else
+ W := 4; -- TRUE
+ end if;
+
+ -- Width for integer types
+
+ elsif Is_Integer_Type (P_Type) then
+ T := UI_Max (abs Lo, abs Hi);
+
+ W := 2;
+ while T >= 10 loop
+ W := W + 1;
+ T := T / 10;
+ end loop;
+
+ -- Only remaining possibility is user declared enum type
+
+ else
+ pragma Assert (Is_Enumeration_Type (P_Type));
+
+ W := 0;
+ L := First_Literal (P_Type);
+
+ while Present (L) loop
+
+ -- Only pay attention to in range characters
+
+ if Lo <= Enumeration_Pos (L)
+ and then Enumeration_Pos (L) <= Hi
+ then
+ -- For Width case, use decoded name
+
+ if Id = Attribute_Width then
+ Get_Decoded_Name_String (Chars (L));
+ Wt := Nat (Name_Len);
+
+ -- For Wide_[Wide_]Width, use encoded name, and
+ -- then adjust for the encoding.
+
+ else
+ Get_Name_String (Chars (L));
+
+ -- Character literals are always of length 3
+
+ if Name_Buffer (1) = 'Q' then
+ Wt := 3;
+
+ -- Otherwise loop to adjust for upper/wide chars
+
+ else
+ Wt := Nat (Name_Len);
+
+ for J in 1 .. Name_Len loop
+ if Name_Buffer (J) = 'U' then
+ Wt := Wt - 2;
+ elsif Name_Buffer (J) = 'W' then
+ Wt := Wt - 4;
+ end if;
+ end loop;
+ end if;
+ end if;
+
+ W := Int'Max (W, Wt);
+ end if;
+
+ Next_Literal (L);
+ end loop;
+ end if;
+
+ Fold_Uint (N, UI_From_Int (W), True);
+ end;
+ end if;
+ end if;
+ end Width;
+
+ -- The following attributes can never be folded, and furthermore we
+ -- should not even have entered the case statement for any of these.
+ -- Note that in some cases, the values have already been folded as
+ -- a result of the processing in Analyze_Attribute.
+
+ when Attribute_Abort_Signal |
+ Attribute_Access |
+ Attribute_Address |
+ Attribute_Address_Size |
+ Attribute_Asm_Input |
+ Attribute_Asm_Output |
+ Attribute_Base |
+ Attribute_Bit_Order |
+ Attribute_Bit_Position |
+ Attribute_Callable |
+ Attribute_Caller |
+ Attribute_Class |
+ Attribute_Code_Address |
+ Attribute_Count |
+ Attribute_Default_Bit_Order |
+ Attribute_Elaborated |
+ Attribute_Elab_Body |
+ Attribute_Elab_Spec |
+ Attribute_External_Tag |
+ Attribute_First_Bit |
+ Attribute_Input |
+ Attribute_Last_Bit |
+ Attribute_Maximum_Alignment |
+ Attribute_Output |
+ Attribute_Partition_ID |
+ Attribute_Pool_Address |
+ Attribute_Position |
+ Attribute_Read |
+ Attribute_Storage_Pool |
+ Attribute_Storage_Size |
+ Attribute_Storage_Unit |
+ Attribute_Tag |
+ Attribute_Target_Name |
+ Attribute_Terminated |
+ Attribute_To_Address |
+ Attribute_UET_Address |
+ Attribute_Unchecked_Access |
+ Attribute_Universal_Literal_String |
+ Attribute_Unrestricted_Access |
+ Attribute_Valid |
+ Attribute_Value |
+ Attribute_Wchar_T_Size |
+ Attribute_Wide_Value |
+ Attribute_Wide_Wide_Value |
+ Attribute_Word_Size |
+ Attribute_Write =>
+
+ raise Program_Error;
+ end case;
+
+ -- At the end of the case, one more check. If we did a static evaluation
+ -- so that the result is now a literal, then set Is_Static_Expression
+ -- in the constant only if the prefix type is a static subtype. For
+ -- non-static subtypes, the folding is still OK, but not static.
+
+ -- An exception is the GNAT attribute Constrained_Array which is
+ -- defined to be a static attribute in all cases.
+
+ if Nkind (N) = N_Integer_Literal
+ or else Nkind (N) = N_Real_Literal
+ or else Nkind (N) = N_Character_Literal
+ or else Nkind (N) = N_String_Literal
+ or else (Is_Entity_Name (N)
+ and then Ekind (Entity (N)) = E_Enumeration_Literal)
+ then
+ Set_Is_Static_Expression (N, Static);
+
+ -- If this is still an attribute reference, then it has not been folded
+ -- and that means that its expressions are in a non-static context.
+
+ elsif Nkind (N) = N_Attribute_Reference then
+ Check_Expressions;
+
+ -- Note: the else case not covered here are odd cases where the
+ -- processing has transformed the attribute into something other
+ -- than a constant. Nothing more to do in such cases.
+
+ else
+ null;
+ end if;
+
+ end Eval_Attribute;
+
+ ------------------------------
+ -- Is_Anonymous_Tagged_Base --
+ ------------------------------
+
+ function Is_Anonymous_Tagged_Base
+ (Anon : Entity_Id;
+ Typ : Entity_Id)
+ return Boolean
+ is
+ begin
+ return
+ Anon = Current_Scope
+ and then Is_Itype (Anon)
+ and then Associated_Node_For_Itype (Anon) = Parent (Typ);
+ end Is_Anonymous_Tagged_Base;
+
+ -----------------------
+ -- Resolve_Attribute --
+ -----------------------
+
+ procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Prefix (N);
+ Aname : constant Name_Id := Attribute_Name (N);
+ Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Index : Interp_Index;
+ It : Interp;
+ Nom_Subt : Entity_Id;
+
+ procedure Accessibility_Message;
+ -- Error, or warning within an instance, if the static accessibility
+ -- rules of 3.10.2 are violated.
+
+ ---------------------------
+ -- Accessibility_Message --
+ ---------------------------
+
+ procedure Accessibility_Message is
+ Indic : Node_Id := Parent (Parent (N));
+
+ begin
+ -- In an instance, this is a runtime check, but one we
+ -- know will fail, so generate an appropriate warning.
+
+ if In_Instance_Body then
+ Error_Msg_N
+ ("?non-local pointer cannot point to local object", P);
+ Error_Msg_N
+ ("\?Program_Error will be raised at run time", P);
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Typ);
+ return;
+
+ else
+ Error_Msg_N
+ ("non-local pointer cannot point to local object", P);
+
+ -- Check for case where we have a missing access definition
+
+ if Is_Record_Type (Current_Scope)
+ and then
+ (Nkind (Parent (N)) = N_Discriminant_Association
+ or else
+ Nkind (Parent (N)) = N_Index_Or_Discriminant_Constraint)
+ then
+ Indic := Parent (Parent (N));
+ while Present (Indic)
+ and then Nkind (Indic) /= N_Subtype_Indication
+ loop
+ Indic := Parent (Indic);
+ end loop;
+
+ if Present (Indic) then
+ Error_Msg_NE
+ ("\use an access definition for" &
+ " the access discriminant of&", N,
+ Entity (Subtype_Mark (Indic)));
+ end if;
+ end if;
+ end if;
+ end Accessibility_Message;
+
+ -- Start of processing for Resolve_Attribute
+
+ begin
+ -- If error during analysis, no point in continuing, except for
+ -- array types, where we get better recovery by using unconstrained
+ -- indices than nothing at all (see Check_Array_Type).
+
+ if Error_Posted (N)
+ and then Attr_Id /= Attribute_First
+ and then Attr_Id /= Attribute_Last
+ and then Attr_Id /= Attribute_Length
+ and then Attr_Id /= Attribute_Range
+ then
+ return;
+ end if;
+
+ -- If attribute was universal type, reset to actual type
+
+ if Etype (N) = Universal_Integer
+ or else Etype (N) = Universal_Real
+ then
+ Set_Etype (N, Typ);
+ end if;
+
+ -- Remaining processing depends on attribute
+
+ case Attr_Id is
+
+ ------------
+ -- Access --
+ ------------
+
+ -- For access attributes, if the prefix denotes an entity, it is
+ -- interpreted as a name, never as a call. It may be overloaded,
+ -- in which case resolution uses the profile of the context type.
+ -- Otherwise prefix must be resolved.
+
+ when Attribute_Access
+ | Attribute_Unchecked_Access
+ | Attribute_Unrestricted_Access =>
+
+ if Is_Variable (P) then
+ Note_Possible_Modification (P);
+ end if;
+
+ if Is_Entity_Name (P) then
+ if Is_Overloaded (P) then
+ Get_First_Interp (P, Index, It);
+
+ while Present (It.Nam) loop
+
+ if Type_Conformant (Designated_Type (Typ), It.Nam) then
+ Set_Entity (P, It.Nam);
+
+ -- The prefix is definitely NOT overloaded anymore
+ -- at this point, so we reset the Is_Overloaded
+ -- flag to avoid any confusion when reanalyzing
+ -- the node.
+
+ Set_Is_Overloaded (P, False);
+ Generate_Reference (Entity (P), P);
+ exit;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+
+ -- If it is a subprogram name or a type, there is nothing
+ -- to resolve.
+
+ elsif not Is_Overloadable (Entity (P))
+ and then not Is_Type (Entity (P))
+ then
+ Resolve (P);
+ end if;
+
+ Error_Msg_Name_1 := Aname;
+
+ if not Is_Entity_Name (P) then
+ null;
+
+ elsif Is_Abstract (Entity (P))
+ and then Is_Overloadable (Entity (P))
+ then
+ Error_Msg_N ("prefix of % attribute cannot be abstract", P);
+ Set_Etype (N, Any_Type);
+
+ elsif Convention (Entity (P)) = Convention_Intrinsic then
+ if Ekind (Entity (P)) = E_Enumeration_Literal then
+ Error_Msg_N
+ ("prefix of % attribute cannot be enumeration literal",
+ P);
+ else
+ Error_Msg_N
+ ("prefix of % attribute cannot be intrinsic", P);
+ end if;
+
+ Set_Etype (N, Any_Type);
+
+ elsif Is_Thread_Body (Entity (P)) then
+ Error_Msg_N
+ ("prefix of % attribute cannot be a thread body", P);
+ end if;
+
+ -- Assignments, return statements, components of aggregates,
+ -- generic instantiations will require convention checks if
+ -- the type is an access to subprogram. Given that there will
+ -- also be accessibility checks on those, this is where the
+ -- checks can eventually be centralized ???
+
+ if Ekind (Btyp) = E_Access_Subprogram_Type
+ or else
+ Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
+ or else
+ Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
+ then
+ if Convention (Btyp) /= Convention (Entity (P)) then
+ Error_Msg_N
+ ("subprogram has invalid convention for context", P);
+
+ else
+ Check_Subtype_Conformant
+ (New_Id => Entity (P),
+ Old_Id => Designated_Type (Btyp),
+ Err_Loc => P);
+ end if;
+
+ if Attr_Id = Attribute_Unchecked_Access then
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N
+ ("attribute% cannot be applied to a subprogram", P);
+
+ elsif Aname = Name_Unrestricted_Access then
+ null; -- Nothing to check
+
+ -- Check the static accessibility rule of 3.10.2(32).
+ -- This rule also applies within the private part of an
+ -- instantiation. This rule does not apply to anonymous
+ -- access-to-subprogram types (Ada 2005).
+
+ elsif Attr_Id = Attribute_Access
+ and then not In_Instance_Body
+ and then Subprogram_Access_Level (Entity (P)) >
+ Type_Access_Level (Btyp)
+ and then Ekind (Btyp) /=
+ E_Anonymous_Access_Subprogram_Type
+ and then Ekind (Btyp) /=
+ E_Anonymous_Access_Protected_Subprogram_Type
+ then
+ Error_Msg_N
+ ("subprogram must not be deeper than access type", P);
+
+ -- Check the restriction of 3.10.2(32) that disallows the
+ -- access attribute within a generic body when the ultimate
+ -- ancestor of the type of the attribute is declared outside
+ -- of the generic unit and the subprogram is declared within
+ -- that generic unit. This includes any such attribute that
+ -- occurs within the body of a generic unit that is a child
+ -- of the generic unit where the subprogram is declared.
+ -- The rule also prohibits applying the attibute when the
+ -- access type is a generic formal access type (since the
+ -- level of the actual type is not known). This restriction
+ -- does not apply when the attribute type is an anonymous
+ -- access-to-subprogram type. Note that this check was
+ -- revised by AI-229, because the originally Ada 95 rule
+ -- was too lax. The original rule only applied when the
+ -- subprogram was declared within the body of the generic,
+ -- which allowed the possibility of dangling references).
+ -- The rule was also too strict in some case, in that it
+ -- didn't permit the access to be declared in the generic
+ -- spec, whereas the revised rule does (as long as it's not
+ -- a formal type).
+
+ -- There are a couple of subtleties of the test for applying
+ -- the check that are worth noting. First, we only apply it
+ -- when the levels of the subprogram and access type are the
+ -- same (the case where the subprogram is statically deeper
+ -- was applied above, and the case where the type is deeper
+ -- is always safe). Second, we want the check to apply
+ -- within nested generic bodies and generic child unit
+ -- bodies, but not to apply to an attribute that appears in
+ -- the generic unit's specification. This is done by testing
+ -- that the attribute's innermost enclosing generic body is
+ -- not the same as the innermost generic body enclosing the
+ -- generic unit where the subprogram is declared (we don't
+ -- want the check to apply when the access attribute is in
+ -- the spec and there's some other generic body enclosing
+ -- generic). Finally, there's no point applying the check
+ -- when within an instance, because any violations will
+ -- have been caught by the compilation of the generic unit.
+
+ elsif Attr_Id = Attribute_Access
+ and then not In_Instance
+ and then Present (Enclosing_Generic_Unit (Entity (P)))
+ and then Present (Enclosing_Generic_Body (N))
+ and then Enclosing_Generic_Body (N) /=
+ Enclosing_Generic_Body
+ (Enclosing_Generic_Unit (Entity (P)))
+ and then Subprogram_Access_Level (Entity (P)) =
+ Type_Access_Level (Btyp)
+ and then Ekind (Btyp) /=
+ E_Anonymous_Access_Subprogram_Type
+ and then Ekind (Btyp) /=
+ E_Anonymous_Access_Protected_Subprogram_Type
+ then
+ -- The attribute type's ultimate ancestor must be
+ -- declared within the same generic unit as the
+ -- subprogram is declared. The error message is
+ -- specialized to say "ancestor" for the case where
+ -- the access type is not its own ancestor, since
+ -- saying simply "access type" would be very confusing.
+
+ if Enclosing_Generic_Unit (Entity (P)) /=
+ Enclosing_Generic_Unit (Root_Type (Btyp))
+ then
+ if Root_Type (Btyp) = Btyp then
+ Error_Msg_N
+ ("access type must not be outside generic unit",
+ N);
+ else
+ Error_Msg_N
+ ("ancestor access type must not be outside " &
+ "generic unit", N);
+ end if;
+
+ -- If the ultimate ancestor of the attribute's type is
+ -- a formal type, then the attribute is illegal because
+ -- the actual type might be declared at a higher level.
+ -- The error message is specialized to say "ancestor"
+ -- for the case where the access type is not its own
+ -- ancestor, since saying simply "access type" would be
+ -- very confusing.
+
+ elsif Is_Generic_Type (Root_Type (Btyp)) then
+ if Root_Type (Btyp) = Btyp then
+ Error_Msg_N
+ ("access type must not be a generic formal type",
+ N);
+ else
+ Error_Msg_N
+ ("ancestor access type must not be a generic " &
+ "formal type", N);
+ end if;
+ end if;
+ end if;
+ end if;
+
+ -- If this is a renaming, an inherited operation, or a
+ -- subprogram instance, use the original entity.
+
+ if Is_Entity_Name (P)
+ and then Is_Overloadable (Entity (P))
+ and then Present (Alias (Entity (P)))
+ then
+ Rewrite (P,
+ New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
+ end if;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Is_Overloadable (Entity (Selector_Name (P)))
+ then
+ -- Protected operation. If operation is overloaded, must
+ -- disambiguate. Prefix that denotes protected object itself
+ -- is resolved with its own type.
+
+ if Attr_Id = Attribute_Unchecked_Access then
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N
+ ("attribute% cannot be applied to protected operation", P);
+ end if;
+
+ Resolve (Prefix (P));
+ Generate_Reference (Entity (Selector_Name (P)), P);
+
+ elsif Is_Overloaded (P) then
+
+ -- Use the designated type of the context to disambiguate
+ -- Note that this was not strictly conformant to Ada 95,
+ -- but was the implementation adopted by most Ada 95 compilers.
+ -- The use of the context type to resolve an Access attribute
+ -- reference is now mandated in AI-235 for Ada 2005.
+
+ declare
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (P, Index, It);
+ while Present (It.Typ) loop
+ if Covers (Designated_Type (Typ), It.Typ) then
+ Resolve (P, It.Typ);
+ exit;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+ end;
+ else
+ Resolve (P);
+ end if;
+
+ -- X'Access is illegal if X denotes a constant and the access
+ -- type is access-to-variable. Same for 'Unchecked_Access.
+ -- The rule does not apply to 'Unrestricted_Access.
+
+ if not (Ekind (Btyp) = E_Access_Subprogram_Type
+ or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
+ or else (Is_Record_Type (Btyp) and then
+ Present (Corresponding_Remote_Type (Btyp)))
+ or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
+ or else Ekind (Btyp)
+ = E_Anonymous_Access_Protected_Subprogram_Type
+ or else Is_Access_Constant (Btyp)
+ or else Is_Variable (P)
+ or else Attr_Id = Attribute_Unrestricted_Access)
+ then
+ if Comes_From_Source (N) then
+ Error_Msg_N ("access-to-variable designates constant", P);
+ end if;
+ end if;
+
+ if (Attr_Id = Attribute_Access
+ or else
+ Attr_Id = Attribute_Unchecked_Access)
+ and then (Ekind (Btyp) = E_General_Access_Type
+ or else Ekind (Btyp) = E_Anonymous_Access_Type)
+ then
+ -- Ada 2005 (AI-230): Check the accessibility of anonymous
+ -- access types in record and array components. For a
+ -- component definition the level is the same of the
+ -- enclosing composite type.
+
+ if Ada_Version >= Ada_05
+ and then Is_Local_Anonymous_Access (Btyp)
+ and then Object_Access_Level (P) > Type_Access_Level (Btyp)
+ then
+ -- In an instance, this is a runtime check, but one we
+ -- know will fail, so generate an appropriate warning.
+
+ if In_Instance_Body then
+ Error_Msg_N
+ ("?non-local pointer cannot point to local object", P);
+ Error_Msg_N
+ ("\?Program_Error will be raised at run time", P);
+ Rewrite (N,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Accessibility_Check_Failed));
+ Set_Etype (N, Typ);
+ else
+ Error_Msg_N
+ ("non-local pointer cannot point to local object", P);
+ end if;
+ end if;
+
+ if Is_Dependent_Component_Of_Mutable_Object (P) then
+ Error_Msg_N
+ ("illegal attribute for discriminant-dependent component",
+ P);
+ end if;
+
+ -- Check the static matching rule of 3.10.2(27). The
+ -- nominal subtype of the prefix must statically
+ -- match the designated type.
+
+ Nom_Subt := Etype (P);
+
+ if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
+ Nom_Subt := Etype (Nom_Subt);
+ end if;
+
+ if Is_Tagged_Type (Designated_Type (Typ)) then
+
+ -- If the attribute is in the context of an access
+ -- parameter, then the prefix is allowed to be of
+ -- the class-wide type (by AI-127).
+
+ if Ekind (Typ) = E_Anonymous_Access_Type then
+ if not Covers (Designated_Type (Typ), Nom_Subt)
+ and then not Covers (Nom_Subt, Designated_Type (Typ))
+ then
+ declare
+ Desig : Entity_Id;
+
+ begin
+ Desig := Designated_Type (Typ);
+
+ if Is_Class_Wide_Type (Desig) then
+ Desig := Etype (Desig);
+ end if;
+
+ if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
+ null;
+
+ else
+ Error_Msg_NE
+ ("type of prefix: & not compatible",
+ P, Nom_Subt);
+ Error_Msg_NE
+ ("\with &, the expected designated type",
+ P, Designated_Type (Typ));
+ end if;
+ end;
+ end if;
+
+ elsif not Covers (Designated_Type (Typ), Nom_Subt)
+ or else
+ (not Is_Class_Wide_Type (Designated_Type (Typ))
+ and then Is_Class_Wide_Type (Nom_Subt))
+ then
+ Error_Msg_NE
+ ("type of prefix: & is not covered", P, Nom_Subt);
+ Error_Msg_NE
+ ("\by &, the expected designated type" &
+ " ('R'M 3.10.2 (27))", P, Designated_Type (Typ));
+ end if;
+
+ if Is_Class_Wide_Type (Designated_Type (Typ))
+ and then Has_Discriminants (Etype (Designated_Type (Typ)))
+ and then Is_Constrained (Etype (Designated_Type (Typ)))
+ and then Designated_Type (Typ) /= Nom_Subt
+ then
+ Apply_Discriminant_Check
+ (N, Etype (Designated_Type (Typ)));
+ end if;
+
+ elsif not Subtypes_Statically_Match
+ (Designated_Type (Base_Type (Typ)), Nom_Subt)
+ and then
+ not (Has_Discriminants (Designated_Type (Typ))
+ and then
+ not Is_Constrained
+ (Designated_Type (Base_Type (Typ))))
+ then
+ Error_Msg_N
+ ("object subtype must statically match "
+ & "designated subtype", P);
+
+ if Is_Entity_Name (P)
+ and then Is_Array_Type (Designated_Type (Typ))
+ then
+
+ declare
+ D : constant Node_Id := Declaration_Node (Entity (P));
+
+ begin
+ Error_Msg_N ("aliased object has explicit bounds?",
+ D);
+ Error_Msg_N ("\declare without bounds"
+ & " (and with explicit initialization)?", D);
+ Error_Msg_N ("\for use with unconstrained access?", D);
+ end;
+ end if;
+ end if;
+
+ -- Check the static accessibility rule of 3.10.2(28).
+ -- Note that this check is not performed for the
+ -- case of an anonymous access type, since the access
+ -- attribute is always legal in such a context.
+
+ if Attr_Id /= Attribute_Unchecked_Access
+ and then Object_Access_Level (P) > Type_Access_Level (Btyp)
+ and then Ekind (Btyp) = E_General_Access_Type
+ then
+ Accessibility_Message;
+ return;
+ end if;
+ end if;
+
+ if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
+ or else
+ Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
+ then
+ if Is_Entity_Name (P)
+ and then not Is_Protected_Type (Scope (Entity (P)))
+ then
+ Error_Msg_N ("context requires a protected subprogram", P);
+
+ -- Check accessibility of protected object against that
+ -- of the access type, but only on user code, because
+ -- the expander creates access references for handlers.
+ -- If the context is an anonymous_access_to_protected,
+ -- there are no accessibility checks either.
+
+ elsif Object_Access_Level (P) > Type_Access_Level (Btyp)
+ and then Comes_From_Source (N)
+ and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
+ and then No (Original_Access_Type (Typ))
+ then
+ Accessibility_Message;
+ return;
+ end if;
+
+ elsif (Ekind (Btyp) = E_Access_Subprogram_Type
+ or else
+ Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type)
+ and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
+ then
+ Error_Msg_N ("context requires a non-protected subprogram", P);
+ end if;
+
+ -- The context cannot be a pool-specific type, but this is a
+ -- legality rule, not a resolution rule, so it must be checked
+ -- separately, after possibly disambiguation (see AI-245).
+
+ if Ekind (Btyp) = E_Access_Type
+ and then Attr_Id /= Attribute_Unrestricted_Access
+ then
+ Wrong_Type (N, Typ);
+ end if;
+
+ Set_Etype (N, Typ);
+
+ -- Check for incorrect atomic/volatile reference (RM C.6(12))
+
+ if Attr_Id /= Attribute_Unrestricted_Access then
+ if Is_Atomic_Object (P)
+ and then not Is_Atomic (Designated_Type (Typ))
+ then
+ Error_Msg_N
+ ("access to atomic object cannot yield access-to-" &
+ "non-atomic type", P);
+
+ elsif Is_Volatile_Object (P)
+ and then not Is_Volatile (Designated_Type (Typ))
+ then
+ Error_Msg_N
+ ("access to volatile object cannot yield access-to-" &
+ "non-volatile type", P);
+ end if;
+ end if;
+
+ -------------
+ -- Address --
+ -------------
+
+ -- Deal with resolving the type for Address attribute, overloading
+ -- is not permitted here, since there is no context to resolve it.
+
+ when Attribute_Address | Attribute_Code_Address =>
+
+ -- To be safe, assume that if the address of a variable is taken,
+ -- it may be modified via this address, so note modification.
+
+ if Is_Variable (P) then
+ Note_Possible_Modification (P);
+ end if;
+
+ if Nkind (P) in N_Subexpr
+ and then Is_Overloaded (P)
+ then
+ Get_First_Interp (P, Index, It);
+ Get_Next_Interp (Index, It);
+
+ if Present (It.Nam) then
+ Error_Msg_Name_1 := Aname;
+ Error_Msg_N
+ ("prefix of % attribute cannot be overloaded", P);
+ return;
+ end if;
+ end if;
+
+ if not Is_Entity_Name (P)
+ or else not Is_Overloadable (Entity (P))
+ then
+ if not Is_Task_Type (Etype (P))
+ or else Nkind (P) = N_Explicit_Dereference
+ then
+ Resolve (P);
+ end if;
+ end if;
+
+ -- If this is the name of a derived subprogram, or that of a
+ -- generic actual, the address is that of the original entity.
+
+ if Is_Entity_Name (P)
+ and then Is_Overloadable (Entity (P))
+ and then Present (Alias (Entity (P)))
+ then
+ Rewrite (P,
+ New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
+ end if;
+
+ ---------------
+ -- AST_Entry --
+ ---------------
+
+ -- Prefix of the AST_Entry attribute is an entry name which must
+ -- not be resolved, since this is definitely not an entry call.
+
+ when Attribute_AST_Entry =>
+ null;
+
+ ------------------
+ -- Body_Version --
+ ------------------
+
+ -- Prefix of Body_Version attribute can be a subprogram name which
+ -- must not be resolved, since this is not a call.
+
+ when Attribute_Body_Version =>
+ null;
+
+ ------------
+ -- Caller --
+ ------------
+
+ -- Prefix of Caller attribute is an entry name which must not
+ -- be resolved, since this is definitely not an entry call.
+
+ when Attribute_Caller =>
+ null;
+
+ ------------------
+ -- Code_Address --
+ ------------------
+
+ -- Shares processing with Address attribute
+
+ -----------
+ -- Count --
+ -----------
+
+ -- If the prefix of the Count attribute is an entry name it must not
+ -- be resolved, since this is definitely not an entry call. However,
+ -- if it is an element of an entry family, the index itself may
+ -- have to be resolved because it can be a general expression.
+
+ when Attribute_Count =>
+ if Nkind (P) = N_Indexed_Component
+ and then Is_Entity_Name (Prefix (P))
+ then
+ declare
+ Indx : constant Node_Id := First (Expressions (P));
+ Fam : constant Entity_Id := Entity (Prefix (P));
+ begin
+ Resolve (Indx, Entry_Index_Type (Fam));
+ Apply_Range_Check (Indx, Entry_Index_Type (Fam));
+ end;
+ end if;
+
+ ----------------
+ -- Elaborated --
+ ----------------
+
+ -- Prefix of the Elaborated attribute is a subprogram name which
+ -- must not be resolved, since this is definitely not a call. Note
+ -- that it is a library unit, so it cannot be overloaded here.
+
+ when Attribute_Elaborated =>
+ null;
+
+ --------------------
+ -- Mechanism_Code --
+ --------------------
+
+ -- Prefix of the Mechanism_Code attribute is a function name
+ -- which must not be resolved. Should we check for overloaded ???
+
+ when Attribute_Mechanism_Code =>
+ null;
+
+ ------------------
+ -- Partition_ID --
+ ------------------
+
+ -- Most processing is done in sem_dist, after determining the
+ -- context type. Node is rewritten as a conversion to a runtime call.
+
+ when Attribute_Partition_ID =>
+ Process_Partition_Id (N);
+ return;
+
+ when Attribute_Pool_Address =>
+ Resolve (P);
+
+ -----------
+ -- Range --
+ -----------
+
+ -- We replace the Range attribute node with a range expression
+ -- whose bounds are the 'First and 'Last attributes applied to the
+ -- same prefix. The reason that we do this transformation here
+ -- instead of in the expander is that it simplifies other parts of
+ -- the semantic analysis which assume that the Range has been
+ -- replaced; thus it must be done even when in semantic-only mode
+ -- (note that the RM specifically mentions this equivalence, we
+ -- take care that the prefix is only evaluated once).
+
+ when Attribute_Range => Range_Attribute :
+ declare
+ LB : Node_Id;
+ HB : Node_Id;
+
+ function Check_Discriminated_Prival
+ (N : Node_Id)
+ return Node_Id;
+ -- The range of a private component constrained by a
+ -- discriminant is rewritten to make the discriminant
+ -- explicit. This solves some complex visibility problems
+ -- related to the use of privals.
+
+ --------------------------------
+ -- Check_Discriminated_Prival --
+ --------------------------------
+
+ function Check_Discriminated_Prival
+ (N : Node_Id)
+ return Node_Id
+ is
+ begin
+ if Is_Entity_Name (N)
+ and then Ekind (Entity (N)) = E_In_Parameter
+ and then not Within_Init_Proc
+ then
+ return Make_Identifier (Sloc (N), Chars (Entity (N)));
+ else
+ return Duplicate_Subexpr (N);
+ end if;
+ end Check_Discriminated_Prival;
+
+ -- Start of processing for Range_Attribute
+
+ begin
+ if not Is_Entity_Name (P)
+ or else not Is_Type (Entity (P))
+ then
+ Resolve (P);
+ end if;
+
+ -- Check whether prefix is (renaming of) private component
+ -- of protected type.
+
+ if Is_Entity_Name (P)
+ and then Comes_From_Source (N)
+ and then Is_Array_Type (Etype (P))
+ and then Number_Dimensions (Etype (P)) = 1
+ and then (Ekind (Scope (Entity (P))) = E_Protected_Type
+ or else
+ Ekind (Scope (Scope (Entity (P)))) =
+ E_Protected_Type)
+ then
+ LB :=
+ Check_Discriminated_Prival
+ (Type_Low_Bound (Etype (First_Index (Etype (P)))));
+
+ HB :=
+ Check_Discriminated_Prival
+ (Type_High_Bound (Etype (First_Index (Etype (P)))));
+
+ else
+ HB :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Duplicate_Subexpr (P),
+ Attribute_Name => Name_Last,
+ Expressions => Expressions (N));
+
+ LB :=
+ Make_Attribute_Reference (Loc,
+ Prefix => P,
+ Attribute_Name => Name_First,
+ Expressions => Expressions (N));
+ end if;
+
+ -- If the original was marked as Must_Not_Freeze (see code
+ -- in Sem_Ch3.Make_Index), then make sure the rewriting
+ -- does not freeze either.
+
+ if Must_Not_Freeze (N) then
+ Set_Must_Not_Freeze (HB);
+ Set_Must_Not_Freeze (LB);
+ Set_Must_Not_Freeze (Prefix (HB));
+ Set_Must_Not_Freeze (Prefix (LB));
+ end if;
+
+ if Raises_Constraint_Error (Prefix (N)) then
+
+ -- Preserve Sloc of prefix in the new bounds, so that
+ -- the posted warning can be removed if we are within
+ -- unreachable code.
+
+ Set_Sloc (LB, Sloc (Prefix (N)));
+ Set_Sloc (HB, Sloc (Prefix (N)));
+ end if;
+
+ Rewrite (N, Make_Range (Loc, LB, HB));
+ Analyze_And_Resolve (N, Typ);
+
+ -- Normally after resolving attribute nodes, Eval_Attribute
+ -- is called to do any possible static evaluation of the node.
+ -- However, here since the Range attribute has just been
+ -- transformed into a range expression it is no longer an
+ -- attribute node and therefore the call needs to be avoided
+ -- and is accomplished by simply returning from the procedure.
+
+ return;
+ end Range_Attribute;
+
+ -----------------
+ -- UET_Address --
+ -----------------
+
+ -- Prefix must not be resolved in this case, since it is not a
+ -- real entity reference. No action of any kind is require!
+
+ when Attribute_UET_Address =>
+ return;
+
+ ----------------------
+ -- Unchecked_Access --
+ ----------------------
+
+ -- Processing is shared with Access
+
+ -------------------------
+ -- Unrestricted_Access --
+ -------------------------
+
+ -- Processing is shared with Access
+
+ ---------
+ -- Val --
+ ---------
+
+ -- Apply range check. Note that we did not do this during the
+ -- analysis phase, since we wanted Eval_Attribute to have a
+ -- chance at finding an illegal out of range value.
+
+ when Attribute_Val =>
+
+ -- Note that we do our own Eval_Attribute call here rather than
+ -- use the common one, because we need to do processing after
+ -- the call, as per above comment.
+
+ Eval_Attribute (N);
+
+ -- Eval_Attribute may replace the node with a raise CE, or
+ -- fold it to a constant. Obviously we only apply a scalar
+ -- range check if this did not happen!
+
+ if Nkind (N) = N_Attribute_Reference
+ and then Attribute_Name (N) = Name_Val
+ then
+ Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
+ end if;
+
+ return;
+
+ -------------
+ -- Version --
+ -------------
+
+ -- Prefix of Version attribute can be a subprogram name which
+ -- must not be resolved, since this is not a call.
+
+ when Attribute_Version =>
+ null;
+
+ ----------------------
+ -- Other Attributes --
+ ----------------------
+
+ -- For other attributes, resolve prefix unless it is a type. If
+ -- the attribute reference itself is a type name ('Base and 'Class)
+ -- then this is only legal within a task or protected record.
+
+ when others =>
+ if not Is_Entity_Name (P)
+ or else not Is_Type (Entity (P))
+ then
+ Resolve (P);
+ end if;
+
+ -- If the attribute reference itself is a type name ('Base,
+ -- 'Class) then this is only legal within a task or protected
+ -- record. What is this all about ???
+
+ if Is_Entity_Name (N)
+ and then Is_Type (Entity (N))
+ then
+ if Is_Concurrent_Type (Entity (N))
+ and then In_Open_Scopes (Entity (P))
+ then
+ null;
+ else
+ Error_Msg_N
+ ("invalid use of subtype name in expression or call", N);
+ end if;
+ end if;
+
+ -- For attributes whose argument may be a string, complete
+ -- resolution of argument now. This avoids premature expansion
+ -- (and the creation of transient scopes) before the attribute
+ -- reference is resolved.
+
+ case Attr_Id is
+ when Attribute_Value =>
+ Resolve (First (Expressions (N)), Standard_String);
+
+ when Attribute_Wide_Value =>
+ Resolve (First (Expressions (N)), Standard_Wide_String);
+
+ when Attribute_Wide_Wide_Value =>
+ Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
+
+ when others => null;
+ end case;
+ end case;
+
+ -- Normally the Freezing is done by Resolve but sometimes the Prefix
+ -- is not resolved, in which case the freezing must be done now.
+
+ Freeze_Expression (P);
+
+ -- Finally perform static evaluation on the attribute reference
+
+ Eval_Attribute (N);
+ end Resolve_Attribute;
+
+ --------------------------------
+ -- Stream_Attribute_Available --
+ --------------------------------
+
+ function Stream_Attribute_Available
+ (Typ : Entity_Id;
+ Nam : TSS_Name_Type;
+ Partial_View : Node_Id := Empty) return Boolean
+ is
+ Etyp : Entity_Id := Typ;
+
+ function Has_Specified_Stream_Attribute
+ (Typ : Entity_Id;
+ Nam : TSS_Name_Type) return Boolean;
+ -- True iff there is a visible attribute definition clause specifying
+ -- attribute Nam for Typ.
+
+ ------------------------------------
+ -- Has_Specified_Stream_Attribute --
+ ------------------------------------
+
+ function Has_Specified_Stream_Attribute
+ (Typ : Entity_Id;
+ Nam : TSS_Name_Type) return Boolean
+ is
+ begin
+ return False
+ or else
+ (Nam = TSS_Stream_Input
+ and then Has_Specified_Stream_Input (Typ))
+ or else
+ (Nam = TSS_Stream_Output
+ and then Has_Specified_Stream_Output (Typ))
+ or else
+ (Nam = TSS_Stream_Read
+ and then Has_Specified_Stream_Read (Typ))
+ or else
+ (Nam = TSS_Stream_Write
+ and then Has_Specified_Stream_Write (Typ));
+ end Has_Specified_Stream_Attribute;
+
+ -- Start of processing for Stream_Attribute_Available
+
+ begin
+ -- We need some comments in this body ???
+
+ if Has_Specified_Stream_Attribute (Typ, Nam) then
+ return True;
+ end if;
+
+ if Is_Class_Wide_Type (Typ) then
+ return not Is_Limited_Type (Typ)
+ or else Stream_Attribute_Available (Etype (Typ), Nam);
+ end if;
+
+ if Nam = TSS_Stream_Input
+ and then Is_Abstract (Typ)
+ and then not Is_Class_Wide_Type (Typ)
+ then
+ return False;
+ end if;
+
+ if not (Is_Limited_Type (Typ)
+ or else (Present (Partial_View)
+ and then Is_Limited_Type (Partial_View)))
+ then
+ return True;
+ end if;
+
+ -- In Ada 2005, Input can invoke Read, and Output can invoke Write
+
+ if Nam = TSS_Stream_Input
+ and then Ada_Version >= Ada_05
+ and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
+ then
+ return True;
+
+ elsif Nam = TSS_Stream_Output
+ and then Ada_Version >= Ada_05
+ and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
+ then
+ return True;
+ end if;
+
+ -- Case of Read and Write: check for attribute definition clause that
+ -- applies to an ancestor type.
+
+ while Etype (Etyp) /= Etyp loop
+ Etyp := Etype (Etyp);
+
+ if Has_Specified_Stream_Attribute (Etyp, Nam) then
+ return True;
+ end if;
+ end loop;
+
+ if Ada_Version < Ada_05 then
+
+ -- In Ada 95 mode, also consider a non-visible definition
+
+ declare
+ Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
+ begin
+ return Btyp /= Typ
+ and then Stream_Attribute_Available
+ (Btyp, Nam, Partial_View => Typ);
+ end;
+ end if;
+
+ return False;
+ end Stream_Attribute_Available;
+
+end Sem_Attr;