aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/s-taprop-vxworks.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/s-taprop-vxworks.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/s-taprop-vxworks.adb1267
1 files changed, 1267 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/s-taprop-vxworks.adb b/gcc-4.2.1/gcc/ada/s-taprop-vxworks.adb
new file mode 100644
index 000000000..186e8c28f
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/s-taprop-vxworks.adb
@@ -0,0 +1,1267 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
+-- --
+-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNARL is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNARL; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNARL was developed by the GNARL team at Florida State University. --
+-- Extensive contributions were provided by Ada Core Technologies, Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is the VxWorks version of this package
+
+-- This package contains all the GNULL primitives that interface directly
+-- with the underlying OS.
+
+pragma Polling (Off);
+-- Turn off polling, we do not want ATC polling to take place during
+-- tasking operations. It causes infinite loops and other problems.
+
+with System.Tasking.Debug;
+-- used for Known_Tasks
+
+with System.Interrupt_Management;
+-- used for Keep_Unmasked
+-- Abort_Task_Signal
+-- Signal_ID
+-- Initialize_Interrupts
+
+with Interfaces.C;
+
+with System.Soft_Links;
+-- used for Abort_Defer/Undefer
+
+-- We use System.Soft_Links instead of System.Tasking.Initialization
+-- because the later is a higher level package that we shouldn't depend on.
+-- For example when using the restricted run time, it is replaced by
+-- System.Tasking.Restricted.Stages.
+
+with Unchecked_Conversion;
+with Unchecked_Deallocation;
+
+package body System.Task_Primitives.Operations is
+
+ package SSL renames System.Soft_Links;
+
+ use System.Tasking.Debug;
+ use System.Tasking;
+ use System.OS_Interface;
+ use System.Parameters;
+ use type Interfaces.C.int;
+
+ subtype int is System.OS_Interface.int;
+
+ Relative : constant := 0;
+
+ ----------------
+ -- Local Data --
+ ----------------
+
+ -- The followings are logically constants, but need to be initialized at
+ -- run time.
+
+ Single_RTS_Lock : aliased RTS_Lock;
+ -- This is a lock to allow only one thread of control in the RTS at a
+ -- time; it is used to execute in mutual exclusion from all other tasks.
+ -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+ Environment_Task_Id : Task_Id;
+ -- A variable to hold Task_Id for the environment task
+
+ Unblocked_Signal_Mask : aliased sigset_t;
+ -- The set of signals that should unblocked in all tasks
+
+ -- The followings are internal configuration constants needed
+
+ Time_Slice_Val : Integer;
+ pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+ Locking_Policy : Character;
+ pragma Import (C, Locking_Policy, "__gl_locking_policy");
+
+ Dispatching_Policy : Character;
+ pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+ Mutex_Protocol : Priority_Type;
+
+ Foreign_Task_Elaborated : aliased Boolean := True;
+ -- Used to identified fake tasks (i.e., non-Ada Threads)
+
+ --------------------
+ -- Local Packages --
+ --------------------
+
+ package Specific is
+
+ procedure Initialize;
+ pragma Inline (Initialize);
+ -- Initialize task specific data
+
+ function Is_Valid_Task return Boolean;
+ pragma Inline (Is_Valid_Task);
+ -- Does executing thread have a TCB?
+
+ procedure Set (Self_Id : Task_Id);
+ pragma Inline (Set);
+ -- Set the self id for the current task
+
+ procedure Delete;
+ pragma Inline (Delete);
+ -- Delete the task specific data associated with the current task
+
+ function Self return Task_Id;
+ pragma Inline (Self);
+ -- Return a pointer to the Ada Task Control Block of the calling task
+
+ end Specific;
+
+ package body Specific is separate;
+ -- The body of this package is target specific
+
+ ---------------------------------
+ -- Support for foreign threads --
+ ---------------------------------
+
+ function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
+ -- Allocate and Initialize a new ATCB for the current Thread
+
+ function Register_Foreign_Thread
+ (Thread : Thread_Id) return Task_Id is separate;
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Abort_Handler (signo : Signal);
+ -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
+
+ procedure Install_Signal_Handlers;
+ -- Install the default signal handlers for the current task
+
+ function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
+
+ -------------------
+ -- Abort_Handler --
+ -------------------
+
+ procedure Abort_Handler (signo : Signal) is
+ pragma Unreferenced (signo);
+
+ Self_ID : constant Task_Id := Self;
+ Result : int;
+ Old_Set : aliased sigset_t;
+
+ begin
+ -- It is not safe to raise an exception when using ZCX and the GCC
+ -- exception handling mechanism.
+
+ if ZCX_By_Default and then GCC_ZCX_Support then
+ return;
+ end if;
+
+ if Self_ID.Deferral_Level = 0
+ and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
+ and then not Self_ID.Aborting
+ then
+ Self_ID.Aborting := True;
+
+ -- Make sure signals used for RTS internal purpose are unmasked
+
+ Result := pthread_sigmask (SIG_UNBLOCK,
+ Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
+ pragma Assert (Result = 0);
+
+ raise Standard'Abort_Signal;
+ end if;
+ end Abort_Handler;
+
+ -----------------
+ -- Stack_Guard --
+ -----------------
+
+ procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+ pragma Unreferenced (T);
+ pragma Unreferenced (On);
+
+ begin
+ -- Nothing needed (why not???)
+
+ null;
+ end Stack_Guard;
+
+ -------------------
+ -- Get_Thread_Id --
+ -------------------
+
+ function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+ begin
+ return T.Common.LL.Thread;
+ end Get_Thread_Id;
+
+ ----------
+ -- Self --
+ ----------
+
+ function Self return Task_Id renames Specific.Self;
+
+ -----------------------------
+ -- Install_Signal_Handlers --
+ -----------------------------
+
+ procedure Install_Signal_Handlers is
+ act : aliased struct_sigaction;
+ old_act : aliased struct_sigaction;
+ Tmp_Set : aliased sigset_t;
+ Result : int;
+
+ begin
+ act.sa_flags := 0;
+ act.sa_handler := Abort_Handler'Address;
+
+ Result := sigemptyset (Tmp_Set'Access);
+ pragma Assert (Result = 0);
+ act.sa_mask := Tmp_Set;
+
+ Result :=
+ sigaction
+ (Signal (Interrupt_Management.Abort_Task_Signal),
+ act'Unchecked_Access,
+ old_act'Unchecked_Access);
+ pragma Assert (Result = 0);
+
+ Interrupt_Management.Initialize_Interrupts;
+ end Install_Signal_Handlers;
+
+ ---------------------
+ -- Initialize_Lock --
+ ---------------------
+
+ procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is
+ begin
+ L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
+ L.Prio_Ceiling := int (Prio);
+ L.Protocol := Mutex_Protocol;
+ pragma Assert (L.Mutex /= 0);
+ end Initialize_Lock;
+
+ procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
+ pragma Unreferenced (Level);
+
+ begin
+ L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
+ L.Prio_Ceiling := int (System.Any_Priority'Last);
+ L.Protocol := Mutex_Protocol;
+ pragma Assert (L.Mutex /= 0);
+ end Initialize_Lock;
+
+ -------------------
+ -- Finalize_Lock --
+ -------------------
+
+ procedure Finalize_Lock (L : access Lock) is
+ Result : int;
+ begin
+ Result := semDelete (L.Mutex);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ procedure Finalize_Lock (L : access RTS_Lock) is
+ Result : int;
+ begin
+ Result := semDelete (L.Mutex);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ ----------------
+ -- Write_Lock --
+ ----------------
+
+ procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
+ Result : int;
+ begin
+ if L.Protocol = Prio_Protect
+ and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
+ then
+ Ceiling_Violation := True;
+ return;
+ else
+ Ceiling_Violation := False;
+ end if;
+
+ Result := semTake (L.Mutex, WAIT_FOREVER);
+ pragma Assert (Result = 0);
+ end Write_Lock;
+
+ procedure Write_Lock
+ (L : access RTS_Lock;
+ Global_Lock : Boolean := False)
+ is
+ Result : int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ Result := semTake (L.Mutex, WAIT_FOREVER);
+ pragma Assert (Result = 0);
+ end if;
+ end Write_Lock;
+
+ procedure Write_Lock (T : Task_Id) is
+ Result : int;
+ begin
+ if not Single_Lock then
+ Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
+ pragma Assert (Result = 0);
+ end if;
+ end Write_Lock;
+
+ ---------------
+ -- Read_Lock --
+ ---------------
+
+ procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
+ begin
+ Write_Lock (L, Ceiling_Violation);
+ end Read_Lock;
+
+ ------------
+ -- Unlock --
+ ------------
+
+ procedure Unlock (L : access Lock) is
+ Result : int;
+ begin
+ Result := semGive (L.Mutex);
+ pragma Assert (Result = 0);
+ end Unlock;
+
+ procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
+ Result : int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ Result := semGive (L.Mutex);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ procedure Unlock (T : Task_Id) is
+ Result : int;
+ begin
+ if not Single_Lock then
+ Result := semGive (T.Common.LL.L.Mutex);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ -----------
+ -- Sleep --
+ -----------
+
+ procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
+ pragma Unreferenced (Reason);
+
+ Result : int;
+
+ begin
+ pragma Assert (Self_ID = Self);
+
+ -- Release the mutex before sleeping
+
+ if Single_Lock then
+ Result := semGive (Single_RTS_Lock.Mutex);
+ else
+ Result := semGive (Self_ID.Common.LL.L.Mutex);
+ end if;
+
+ pragma Assert (Result = 0);
+
+ -- Perform a blocking operation to take the CV semaphore. Note that a
+ -- blocking operation in VxWorks will reenable task scheduling. When we
+ -- are no longer blocked and control is returned, task scheduling will
+ -- again be disabled.
+
+ Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
+ pragma Assert (Result = 0);
+
+ -- Take the mutex back
+
+ if Single_Lock then
+ Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
+ else
+ Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
+ end if;
+
+ pragma Assert (Result = 0);
+ end Sleep;
+
+ -----------------
+ -- Timed_Sleep --
+ -----------------
+
+ -- This is for use within the run-time system, so abort is assumed to be
+ -- already deferred, and the caller should be holding its own ATCB lock.
+
+ procedure Timed_Sleep
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes;
+ Reason : System.Tasking.Task_States;
+ Timedout : out Boolean;
+ Yielded : out Boolean)
+ is
+ pragma Unreferenced (Reason);
+
+ Orig : constant Duration := Monotonic_Clock;
+ Absolute : Duration;
+ Ticks : int;
+ Result : int;
+ Wakeup : Boolean := False;
+
+ begin
+ Timedout := False;
+ Yielded := True;
+
+ if Mode = Relative then
+ Absolute := Orig + Time;
+
+ -- Systematically add one since the first tick will delay *at most*
+ -- 1 / Rate_Duration seconds, so we need to add one to be on the
+ -- safe side.
+
+ Ticks := To_Clock_Ticks (Time);
+
+ if Ticks > 0 and then Ticks < int'Last then
+ Ticks := Ticks + 1;
+ end if;
+
+ else
+ Absolute := Time;
+ Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
+ end if;
+
+ if Ticks > 0 then
+ loop
+ -- Release the mutex before sleeping
+
+ if Single_Lock then
+ Result := semGive (Single_RTS_Lock.Mutex);
+ else
+ Result := semGive (Self_ID.Common.LL.L.Mutex);
+ end if;
+
+ pragma Assert (Result = 0);
+
+ -- Perform a blocking operation to take the CV semaphore. Note
+ -- that a blocking operation in VxWorks will reenable task
+ -- scheduling. When we are no longer blocked and control is
+ -- returned, task scheduling will again be disabled.
+
+ Result := semTake (Self_ID.Common.LL.CV, Ticks);
+
+ if Result = 0 then
+
+ -- Somebody may have called Wakeup for us
+
+ Wakeup := True;
+
+ else
+ if errno /= S_objLib_OBJ_TIMEOUT then
+ Wakeup := True;
+
+ else
+ -- If Ticks = int'last, it was most probably truncated so
+ -- let's make another round after recomputing Ticks from
+ -- the the absolute time.
+
+ if Ticks /= int'Last then
+ Timedout := True;
+ else
+ Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
+
+ if Ticks < 0 then
+ Timedout := True;
+ end if;
+ end if;
+ end if;
+ end if;
+
+ -- Take the mutex back
+
+ if Single_Lock then
+ Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
+ else
+ Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
+ end if;
+
+ pragma Assert (Result = 0);
+
+ exit when Timedout or Wakeup;
+ end loop;
+
+ else
+ Timedout := True;
+
+ -- Should never hold a lock while yielding
+
+ if Single_Lock then
+ Result := semGive (Single_RTS_Lock.Mutex);
+ taskDelay (0);
+ Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
+
+ else
+ Result := semGive (Self_ID.Common.LL.L.Mutex);
+ taskDelay (0);
+ Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
+ end if;
+ end if;
+ end Timed_Sleep;
+
+ -----------------
+ -- Timed_Delay --
+ -----------------
+
+ -- This is for use in implementing delay statements, so we assume the
+ -- caller is holding no locks.
+
+ procedure Timed_Delay
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes)
+ is
+ Orig : constant Duration := Monotonic_Clock;
+ Absolute : Duration;
+ Ticks : int;
+ Timedout : Boolean;
+ Result : int;
+ Aborted : Boolean := False;
+
+ begin
+ if Mode = Relative then
+ Absolute := Orig + Time;
+ Ticks := To_Clock_Ticks (Time);
+
+ if Ticks > 0 and then Ticks < int'Last then
+
+ -- First tick will delay anytime between 0 and 1 / sysClkRateGet
+ -- seconds, so we need to add one to be on the safe side.
+
+ Ticks := Ticks + 1;
+ end if;
+
+ else
+ Absolute := Time;
+ Ticks := To_Clock_Ticks (Time - Orig);
+ end if;
+
+ if Ticks > 0 then
+
+ -- Modifying State and Pending_Priority_Change, locking the TCB
+
+ if Single_Lock then
+ Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
+ else
+ Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
+ end if;
+
+ pragma Assert (Result = 0);
+
+ Self_ID.Common.State := Delay_Sleep;
+ Timedout := False;
+
+ loop
+ if Self_ID.Pending_Priority_Change then
+ Self_ID.Pending_Priority_Change := False;
+ Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
+ Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
+ end if;
+
+ Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ -- Release the TCB before sleeping
+
+ if Single_Lock then
+ Result := semGive (Single_RTS_Lock.Mutex);
+ else
+ Result := semGive (Self_ID.Common.LL.L.Mutex);
+ end if;
+ pragma Assert (Result = 0);
+
+ exit when Aborted;
+
+ Result := semTake (Self_ID.Common.LL.CV, Ticks);
+
+ if Result /= 0 then
+
+ -- If Ticks = int'last, it was most probably truncated
+ -- so let's make another round after recomputing Ticks
+ -- from the the absolute time.
+
+ if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
+ Timedout := True;
+ else
+ Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
+
+ if Ticks < 0 then
+ Timedout := True;
+ end if;
+ end if;
+ end if;
+
+ -- Take back the lock after having slept, to protect further
+ -- access to Self_ID.
+
+ if Single_Lock then
+ Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
+ else
+ Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
+ end if;
+
+ pragma Assert (Result = 0);
+
+ exit when Timedout;
+ end loop;
+
+ Self_ID.Common.State := Runnable;
+
+ if Single_Lock then
+ Result := semGive (Single_RTS_Lock.Mutex);
+ else
+ Result := semGive (Self_ID.Common.LL.L.Mutex);
+ end if;
+
+ else
+ taskDelay (0);
+ end if;
+ end Timed_Delay;
+
+ ---------------------
+ -- Monotonic_Clock --
+ ---------------------
+
+ function Monotonic_Clock return Duration is
+ TS : aliased timespec;
+ Result : int;
+ begin
+ Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
+ pragma Assert (Result = 0);
+ return To_Duration (TS);
+ end Monotonic_Clock;
+
+ -------------------
+ -- RT_Resolution --
+ -------------------
+
+ function RT_Resolution return Duration is
+ begin
+ return 1.0 / Duration (sysClkRateGet);
+ end RT_Resolution;
+
+ ------------
+ -- Wakeup --
+ ------------
+
+ procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
+ pragma Unreferenced (Reason);
+ Result : int;
+ begin
+ Result := semGive (T.Common.LL.CV);
+ pragma Assert (Result = 0);
+ end Wakeup;
+
+ -----------
+ -- Yield --
+ -----------
+
+ procedure Yield (Do_Yield : Boolean := True) is
+ pragma Unreferenced (Do_Yield);
+ Result : int;
+ pragma Unreferenced (Result);
+ begin
+ Result := taskDelay (0);
+ end Yield;
+
+ ------------------
+ -- Set_Priority --
+ ------------------
+
+ type Prio_Array_Type is array (System.Any_Priority) of Integer;
+ pragma Atomic_Components (Prio_Array_Type);
+
+ Prio_Array : Prio_Array_Type;
+ -- Global array containing the id of the currently running task for
+ -- each priority. Note that we assume that we are on a single processor
+ -- with run-till-blocked scheduling.
+
+ procedure Set_Priority
+ (T : Task_Id;
+ Prio : System.Any_Priority;
+ Loss_Of_Inheritance : Boolean := False)
+ is
+ Array_Item : Integer;
+ Result : int;
+
+ begin
+ Result :=
+ taskPrioritySet
+ (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
+ pragma Assert (Result = 0);
+
+ if Dispatching_Policy = 'F' then
+
+ -- Annex D requirement [RM D.2.2 par. 9]:
+
+ -- If the task drops its priority due to the loss of inherited
+ -- priority, it is added at the head of the ready queue for its
+ -- new active priority.
+
+ if Loss_Of_Inheritance
+ and then Prio < T.Common.Current_Priority
+ then
+ Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
+ Prio_Array (T.Common.Base_Priority) := Array_Item;
+
+ loop
+ -- Give some processes a chance to arrive
+
+ taskDelay (0);
+
+ -- Then wait for our turn to proceed
+
+ exit when Array_Item = Prio_Array (T.Common.Base_Priority)
+ or else Prio_Array (T.Common.Base_Priority) = 1;
+ end loop;
+
+ Prio_Array (T.Common.Base_Priority) :=
+ Prio_Array (T.Common.Base_Priority) - 1;
+ end if;
+ end if;
+
+ T.Common.Current_Priority := Prio;
+ end Set_Priority;
+
+ ------------------
+ -- Get_Priority --
+ ------------------
+
+ function Get_Priority (T : Task_Id) return System.Any_Priority is
+ begin
+ return T.Common.Current_Priority;
+ end Get_Priority;
+
+ ----------------
+ -- Enter_Task --
+ ----------------
+
+ procedure Enter_Task (Self_ID : Task_Id) is
+ procedure Init_Float;
+ pragma Import (C, Init_Float, "__gnat_init_float");
+ -- Properly initializes the FPU for PPC/MIPS systems
+
+ begin
+ Self_ID.Common.LL.Thread := taskIdSelf;
+ Specific.Set (Self_ID);
+
+ Init_Float;
+
+ -- Install the signal handlers
+
+ -- This is called for each task since there is no signal inheritance
+ -- between VxWorks tasks.
+
+ Install_Signal_Handlers;
+
+ Lock_RTS;
+
+ for J in Known_Tasks'Range loop
+ if Known_Tasks (J) = null then
+ Known_Tasks (J) := Self_ID;
+ Self_ID.Known_Tasks_Index := J;
+ exit;
+ end if;
+ end loop;
+
+ Unlock_RTS;
+ end Enter_Task;
+
+ --------------
+ -- New_ATCB --
+ --------------
+
+ function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
+ begin
+ return new Ada_Task_Control_Block (Entry_Num);
+ end New_ATCB;
+
+ -------------------
+ -- Is_Valid_Task --
+ -------------------
+
+ function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+ -----------------------------
+ -- Register_Foreign_Thread --
+ -----------------------------
+
+ function Register_Foreign_Thread return Task_Id is
+ begin
+ if Is_Valid_Task then
+ return Self;
+ else
+ return Register_Foreign_Thread (taskIdSelf);
+ end if;
+ end Register_Foreign_Thread;
+
+ --------------------
+ -- Initialize_TCB --
+ --------------------
+
+ procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+ begin
+ Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
+ Self_ID.Common.LL.Thread := 0;
+
+ if Self_ID.Common.LL.CV = 0 then
+ Succeeded := False;
+ else
+ Succeeded := True;
+
+ if not Single_Lock then
+ Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
+ end if;
+ end if;
+ end Initialize_TCB;
+
+ -----------------
+ -- Create_Task --
+ -----------------
+
+ procedure Create_Task
+ (T : Task_Id;
+ Wrapper : System.Address;
+ Stack_Size : System.Parameters.Size_Type;
+ Priority : System.Any_Priority;
+ Succeeded : out Boolean)
+ is
+ Adjusted_Stack_Size : size_t;
+ begin
+ -- Ask for four extra bytes of stack space so that the ATCB pointer can
+ -- be stored below the stack limit, plus extra space for the frame of
+ -- Task_Wrapper. This is so the user gets the amount of stack requested
+ -- exclusive of the needs.
+
+ -- We also have to allocate n more bytes for the task name storage and
+ -- enough space for the Wind Task Control Block which is around 0x778
+ -- bytes. VxWorks also seems to carve out additional space, so use 2048
+ -- as a nice round number. We might want to increment to the nearest
+ -- page size in case we ever support VxVMI.
+
+ -- ??? - we should come back and visit this so we can set the task name
+ -- to something appropriate.
+
+ Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
+
+ -- Since the initial signal mask of a thread is inherited from the
+ -- creator, and the Environment task has all its signals masked, we do
+ -- not need to manipulate caller's signal mask at this point. All tasks
+ -- in RTS will have All_Tasks_Mask initially.
+
+ if T.Common.Task_Image_Len = 0 then
+ T.Common.LL.Thread := taskSpawn
+ (System.Null_Address,
+ To_VxWorks_Priority (int (Priority)),
+ VX_FP_TASK,
+ Adjusted_Stack_Size,
+ Wrapper,
+ To_Address (T));
+ else
+ declare
+ Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
+
+ begin
+ Name (1 .. Name'Last - 1) :=
+ T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
+ Name (Name'Last) := ASCII.NUL;
+
+ T.Common.LL.Thread := taskSpawn
+ (Name'Address,
+ To_VxWorks_Priority (int (Priority)),
+ VX_FP_TASK,
+ Adjusted_Stack_Size,
+ Wrapper,
+ To_Address (T));
+ end;
+ end if;
+
+ if T.Common.LL.Thread = -1 then
+ Succeeded := False;
+ else
+ Succeeded := True;
+ end if;
+
+ Task_Creation_Hook (T.Common.LL.Thread);
+ Set_Priority (T, Priority);
+ end Create_Task;
+
+ ------------------
+ -- Finalize_TCB --
+ ------------------
+
+ procedure Finalize_TCB (T : Task_Id) is
+ Result : int;
+ Tmp : Task_Id := T;
+ Is_Self : constant Boolean := (T = Self);
+
+ procedure Free is new
+ Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
+
+ begin
+ if not Single_Lock then
+ Result := semDelete (T.Common.LL.L.Mutex);
+ pragma Assert (Result = 0);
+ end if;
+
+ T.Common.LL.Thread := 0;
+
+ Result := semDelete (T.Common.LL.CV);
+ pragma Assert (Result = 0);
+
+ if T.Known_Tasks_Index /= -1 then
+ Known_Tasks (T.Known_Tasks_Index) := null;
+ end if;
+
+ Free (Tmp);
+
+ if Is_Self then
+ Specific.Delete;
+ end if;
+ end Finalize_TCB;
+
+ ---------------
+ -- Exit_Task --
+ ---------------
+
+ procedure Exit_Task is
+ begin
+ Specific.Set (null);
+ end Exit_Task;
+
+ ----------------
+ -- Abort_Task --
+ ----------------
+
+ procedure Abort_Task (T : Task_Id) is
+ Result : int;
+ begin
+ Result := kill (T.Common.LL.Thread,
+ Signal (Interrupt_Management.Abort_Task_Signal));
+ pragma Assert (Result = 0);
+ end Abort_Task;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (S : in out Suspension_Object) is
+ begin
+ -- Initialize internal state. It is always initialized to False (ARM
+ -- D.10 par. 6).
+
+ S.State := False;
+ S.Waiting := False;
+
+ -- Initialize internal mutex
+
+ -- Use simpler binary semaphore instead of VxWorks
+ -- mutual exclusion semaphore, because we don't need
+ -- the fancier semantics and their overhead.
+
+ S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
+
+ -- Initialize internal condition variable
+
+ S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
+ end Initialize;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize (S : in out Suspension_Object) is
+ Result : STATUS;
+ begin
+ -- Destroy internal mutex
+
+ Result := semDelete (S.L);
+ pragma Assert (Result = OK);
+
+ -- Destroy internal condition variable
+
+ Result := semDelete (S.CV);
+ pragma Assert (Result = OK);
+ end Finalize;
+
+ -------------------
+ -- Current_State --
+ -------------------
+
+ function Current_State (S : Suspension_Object) return Boolean is
+ begin
+ -- We do not want to use lock on this read operation. State is marked
+ -- as Atomic so that we ensure that the value retrieved is correct.
+
+ return S.State;
+ end Current_State;
+
+ ---------------
+ -- Set_False --
+ ---------------
+
+ procedure Set_False (S : in out Suspension_Object) is
+ Result : STATUS;
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := semTake (S.L, WAIT_FOREVER);
+ pragma Assert (Result = OK);
+
+ S.State := False;
+
+ Result := semGive (S.L);
+ pragma Assert (Result = OK);
+
+ SSL.Abort_Undefer.all;
+ end Set_False;
+
+ --------------
+ -- Set_True --
+ --------------
+
+ procedure Set_True (S : in out Suspension_Object) is
+ Result : STATUS;
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := semTake (S.L, WAIT_FOREVER);
+ pragma Assert (Result = OK);
+
+ -- If there is already a task waiting on this suspension object then
+ -- we resume it, leaving the state of the suspension object to False,
+ -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+ -- the state to True.
+
+ if S.Waiting then
+ S.Waiting := False;
+ S.State := False;
+
+ Result := semGive (S.CV);
+ pragma Assert (Result = OK);
+ else
+ S.State := True;
+ end if;
+
+ Result := semGive (S.L);
+ pragma Assert (Result = OK);
+
+ SSL.Abort_Undefer.all;
+ end Set_True;
+
+ ------------------------
+ -- Suspend_Until_True --
+ ------------------------
+
+ procedure Suspend_Until_True (S : in out Suspension_Object) is
+ Result : STATUS;
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := semTake (S.L, WAIT_FOREVER);
+
+ if S.Waiting then
+ -- Program_Error must be raised upon calling Suspend_Until_True
+ -- if another task is already waiting on that suspension object
+ -- (ARM D.10 par. 10).
+
+ Result := semGive (S.L);
+ pragma Assert (Result = OK);
+
+ SSL.Abort_Undefer.all;
+
+ raise Program_Error;
+ else
+ -- Suspend the task if the state is False. Otherwise, the task
+ -- continues its execution, and the state of the suspension object
+ -- is set to False (ARM D.10 par. 9).
+
+ if S.State then
+ S.State := False;
+
+ Result := semGive (S.L);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ else
+ S.Waiting := True;
+
+ -- Release the mutex before sleeping
+
+ Result := semGive (S.L);
+ pragma Assert (Result = OK);
+
+ SSL.Abort_Undefer.all;
+
+ Result := semTake (S.CV, WAIT_FOREVER);
+ pragma Assert (Result = 0);
+ end if;
+ end if;
+ end Suspend_Until_True;
+
+ ----------------
+ -- Check_Exit --
+ ----------------
+
+ -- Dummy version
+
+ function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_Exit;
+
+ --------------------
+ -- Check_No_Locks --
+ --------------------
+
+ function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_No_Locks;
+
+ ----------------------
+ -- Environment_Task --
+ ----------------------
+
+ function Environment_Task return Task_Id is
+ begin
+ return Environment_Task_Id;
+ end Environment_Task;
+
+ --------------
+ -- Lock_RTS --
+ --------------
+
+ procedure Lock_RTS is
+ begin
+ Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Lock_RTS;
+
+ ----------------
+ -- Unlock_RTS --
+ ----------------
+
+ procedure Unlock_RTS is
+ begin
+ Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Unlock_RTS;
+
+ ------------------
+ -- Suspend_Task --
+ ------------------
+
+ function Suspend_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= 0
+ and then T.Common.LL.Thread /= Thread_Self
+ then
+ return taskSuspend (T.Common.LL.Thread) = 0;
+ else
+ return True;
+ end if;
+ end Suspend_Task;
+
+ -----------------
+ -- Resume_Task --
+ -----------------
+
+ function Resume_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= 0
+ and then T.Common.LL.Thread /= Thread_Self
+ then
+ return taskResume (T.Common.LL.Thread) = 0;
+ else
+ return True;
+ end if;
+ end Resume_Task;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (Environment_Task : Task_Id) is
+ Result : int;
+ begin
+ Environment_Task_Id := Environment_Task;
+
+ Interrupt_Management.Initialize;
+ Specific.Initialize;
+
+ if Locking_Policy = 'C' then
+ Mutex_Protocol := Prio_Protect;
+ elsif Locking_Policy = 'I' then
+ Mutex_Protocol := Prio_Inherit;
+ else
+ Mutex_Protocol := Prio_None;
+ end if;
+
+ if Time_Slice_Val > 0 then
+ Result := Set_Time_Slice
+ (To_Clock_Ticks
+ (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
+ end if;
+
+ Result := sigemptyset (Unblocked_Signal_Mask'Access);
+ pragma Assert (Result = 0);
+
+ for J in Interrupt_Management.Signal_ID loop
+ if System.Interrupt_Management.Keep_Unmasked (J) then
+ Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
+ pragma Assert (Result = 0);
+ end if;
+ end loop;
+
+ -- Initialize the lock used to synchronize chain of all ATCBs
+
+ Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+ Enter_Task (Environment_Task);
+ end Initialize;
+
+end System.Task_Primitives.Operations;