aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/s-taprop-tru64.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/s-taprop-tru64.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/s-taprop-tru64.adb1275
1 files changed, 1275 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/s-taprop-tru64.adb b/gcc-4.2.1/gcc/ada/s-taprop-tru64.adb
new file mode 100644
index 000000000..120657fc4
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/s-taprop-tru64.adb
@@ -0,0 +1,1275 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
+-- --
+-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNARL is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNARL; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNARL was developed by the GNARL team at Florida State University. --
+-- Extensive contributions were provided by Ada Core Technologies, Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is a DEC Unix 4.0d version of this package
+
+-- This package contains all the GNULL primitives that interface directly
+-- with the underlying OS.
+
+pragma Polling (Off);
+-- Turn off polling, we do not want ATC polling to take place during
+-- tasking operations. It causes infinite loops and other problems.
+
+with System.Tasking.Debug;
+-- used for Known_Tasks
+
+with System.Interrupt_Management;
+-- used for Keep_Unmasked
+-- Abort_Task_Interrupt
+-- Interrupt_ID
+
+with System.OS_Primitives;
+-- used for Delay_Modes
+
+with System.Task_Info;
+-- used for Task_Info_Type
+
+with Interfaces;
+-- used for Shift_Left
+
+with Interfaces.C;
+-- used for int
+-- size_t
+
+with System.Soft_Links;
+-- used for Abort_Defer/Undefer
+
+-- We use System.Soft_Links instead of System.Tasking.Initialization
+-- because the later is a higher level package that we shouldn't depend on.
+-- For example when using the restricted run time, it is replaced by
+-- System.Tasking.Restricted.Stages.
+
+with Unchecked_Deallocation;
+
+package body System.Task_Primitives.Operations is
+
+ package SSL renames System.Soft_Links;
+
+ use System.Tasking.Debug;
+ use System.Tasking;
+ use Interfaces.C;
+ use System.OS_Interface;
+ use System.Parameters;
+ use System.OS_Primitives;
+
+ ----------------
+ -- Local Data --
+ ----------------
+
+ -- The followings are logically constants, but need to be initialized
+ -- at run time.
+
+ Single_RTS_Lock : aliased RTS_Lock;
+ -- This is a lock to allow only one thread of control in the RTS at
+ -- a time; it is used to execute in mutual exclusion from all other tasks.
+ -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+ ATCB_Key : aliased pthread_key_t;
+ -- Key used to find the Ada Task_Id associated with a thread
+
+ Environment_Task_Id : Task_Id;
+ -- A variable to hold Task_Id for the environment task
+
+ Unblocked_Signal_Mask : aliased sigset_t;
+ -- The set of signals that should unblocked in all tasks
+
+ Time_Slice_Val : Integer;
+ pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+ Locking_Policy : Character;
+ pragma Import (C, Locking_Policy, "__gl_locking_policy");
+
+ Dispatching_Policy : Character;
+ pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+ Curpid : pid_t;
+
+ Foreign_Task_Elaborated : aliased Boolean := True;
+ -- Used to identified fake tasks (i.e., non-Ada Threads)
+
+ --------------------
+ -- Local Packages --
+ --------------------
+
+ package Specific is
+
+ procedure Initialize (Environment_Task : Task_Id);
+ pragma Inline (Initialize);
+ -- Initialize various data needed by this package
+
+ function Is_Valid_Task return Boolean;
+ pragma Inline (Is_Valid_Task);
+ -- Does executing thread have a TCB?
+
+ procedure Set (Self_Id : Task_Id);
+ pragma Inline (Set);
+ -- Set the self id for the current task
+
+ function Self return Task_Id;
+ pragma Inline (Self);
+ -- Return a pointer to the Ada Task Control Block of the calling task
+
+ end Specific;
+
+ package body Specific is separate;
+ -- The body of this package is target specific
+
+ ---------------------------------
+ -- Support for foreign threads --
+ ---------------------------------
+
+ function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
+ -- Allocate and initialize a new ATCB for the current Thread
+
+ function Register_Foreign_Thread
+ (Thread : Thread_Id) return Task_Id is separate;
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Abort_Handler (Sig : Signal);
+ -- Signal handler used to implement asynchronous abort
+
+ -------------------
+ -- Abort_Handler --
+ -------------------
+
+ procedure Abort_Handler (Sig : Signal) is
+ pragma Unreferenced (Sig);
+
+ T : constant Task_Id := Self;
+ Result : Interfaces.C.int;
+ Old_Set : aliased sigset_t;
+
+ begin
+ -- It is not safe to raise an exception when using ZCX and the GCC
+ -- exception handling mechanism.
+
+ if ZCX_By_Default and then GCC_ZCX_Support then
+ return;
+ end if;
+
+ if T.Deferral_Level = 0
+ and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
+ not T.Aborting
+ then
+ T.Aborting := True;
+
+ -- Make sure signals used for RTS internal purpose are unmasked
+
+ Result := pthread_sigmask (SIG_UNBLOCK,
+ Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
+ pragma Assert (Result = 0);
+
+ raise Standard'Abort_Signal;
+ end if;
+ end Abort_Handler;
+
+ ------------------
+ -- Stack_Guard --
+ ------------------
+
+ -- The underlying thread system sets a guard page at the
+ -- bottom of a thread stack, so nothing is needed.
+
+ procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+ pragma Unreferenced (T);
+ pragma Unreferenced (On);
+ begin
+ null;
+ end Stack_Guard;
+
+ --------------------
+ -- Get_Thread_Id --
+ --------------------
+
+ function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+ begin
+ return T.Common.LL.Thread;
+ end Get_Thread_Id;
+
+ ----------
+ -- Self --
+ ----------
+
+ function Self return Task_Id renames Specific.Self;
+
+ ---------------------
+ -- Initialize_Lock --
+ ---------------------
+
+ -- Note: mutexes and cond_variables needed per-task basis are
+ -- initialized in Initialize_TCB and the Storage_Error is
+ -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
+ -- used in RTS is initialized before any status change of RTS.
+ -- Therefore rasing Storage_Error in the following routines
+ -- should be able to be handled safely.
+
+ procedure Initialize_Lock
+ (Prio : System.Any_Priority;
+ L : access Lock)
+ is
+ Attributes : aliased pthread_mutexattr_t;
+ Result : Interfaces.C.int;
+
+ begin
+ Result := pthread_mutexattr_init (Attributes'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+
+ if Locking_Policy = 'C' then
+ L.Ceiling := Interfaces.C.int (Prio);
+ end if;
+
+ Result := pthread_mutex_init (L.L'Access, Attributes'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ Result := pthread_mutexattr_destroy (Attributes'Access);
+ raise Storage_Error;
+ end if;
+
+ Result := pthread_mutexattr_destroy (Attributes'Access);
+ pragma Assert (Result = 0);
+ end Initialize_Lock;
+
+ procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
+ pragma Unreferenced (Level);
+
+ Attributes : aliased pthread_mutexattr_t;
+ Result : Interfaces.C.int;
+
+ begin
+ Result := pthread_mutexattr_init (Attributes'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+
+ Result := pthread_mutex_init (L, Attributes'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ Result := pthread_mutexattr_destroy (Attributes'Access);
+ raise Storage_Error;
+ end if;
+
+ Result := pthread_mutexattr_destroy (Attributes'Access);
+ pragma Assert (Result = 0);
+ end Initialize_Lock;
+
+ -------------------
+ -- Finalize_Lock --
+ -------------------
+
+ procedure Finalize_Lock (L : access Lock) is
+ Result : Interfaces.C.int;
+ begin
+ Result := pthread_mutex_destroy (L.L'Access);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ procedure Finalize_Lock (L : access RTS_Lock) is
+ Result : Interfaces.C.int;
+ begin
+ Result := pthread_mutex_destroy (L);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ ----------------
+ -- Write_Lock --
+ ----------------
+
+ procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
+ Result : Interfaces.C.int;
+ Self_ID : Task_Id;
+ All_Tasks_Link : Task_Id;
+ Current_Prio : System.Any_Priority;
+
+ begin
+ -- Perform ceiling checks only when this is the locking policy in use
+
+ if Locking_Policy = 'C' then
+ Self_ID := Self;
+ All_Tasks_Link := Self_ID.Common.All_Tasks_Link;
+ Current_Prio := Get_Priority (Self_ID);
+
+ -- If there is no other task, no need to check priorities
+
+ if All_Tasks_Link /= Null_Task
+ and then L.Ceiling < Interfaces.C.int (Current_Prio)
+ then
+ Ceiling_Violation := True;
+ return;
+ end if;
+ end if;
+
+ Result := pthread_mutex_lock (L.L'Access);
+ pragma Assert (Result = 0);
+
+ Ceiling_Violation := False;
+ end Write_Lock;
+
+ procedure Write_Lock
+ (L : access RTS_Lock; Global_Lock : Boolean := False)
+ is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ Result := pthread_mutex_lock (L);
+ pragma Assert (Result = 0);
+ end if;
+ end Write_Lock;
+
+ procedure Write_Lock (T : Task_Id) is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock then
+ Result := pthread_mutex_lock (T.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Write_Lock;
+
+ ---------------
+ -- Read_Lock --
+ ---------------
+
+ procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
+ begin
+ Write_Lock (L, Ceiling_Violation);
+ end Read_Lock;
+
+ ------------
+ -- Unlock --
+ ------------
+
+ procedure Unlock (L : access Lock) is
+ Result : Interfaces.C.int;
+ begin
+ Result := pthread_mutex_unlock (L.L'Access);
+ pragma Assert (Result = 0);
+ end Unlock;
+
+ procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ Result := pthread_mutex_unlock (L);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ procedure Unlock (T : Task_Id) is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock then
+ Result := pthread_mutex_unlock (T.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ -----------
+ -- Sleep --
+ -----------
+
+ procedure Sleep
+ (Self_ID : Task_Id;
+ Reason : System.Tasking.Task_States)
+ is
+ pragma Unreferenced (Reason);
+
+ Result : Interfaces.C.int;
+
+ begin
+ if Single_Lock then
+ Result := pthread_cond_wait
+ (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
+ else
+ Result := pthread_cond_wait
+ (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
+ end if;
+
+ -- EINTR is not considered a failure
+
+ pragma Assert (Result = 0 or else Result = EINTR);
+ end Sleep;
+
+ -----------------
+ -- Timed_Sleep --
+ -----------------
+
+ -- This is for use within the run-time system, so abort is
+ -- assumed to be already deferred, and the caller should be
+ -- holding its own ATCB lock.
+
+ procedure Timed_Sleep
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes;
+ Reason : System.Tasking.Task_States;
+ Timedout : out Boolean;
+ Yielded : out Boolean)
+ is
+ pragma Unreferenced (Reason);
+
+ Check_Time : constant Duration := Monotonic_Clock;
+ Abs_Time : Duration;
+ Request : aliased timespec;
+ Result : Interfaces.C.int;
+
+ begin
+ Timedout := True;
+ Yielded := False;
+
+ if Mode = Relative then
+ Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
+ else
+ Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
+ end if;
+
+ if Abs_Time > Check_Time then
+ Request := To_Timespec (Abs_Time);
+
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
+ or else Self_ID.Pending_Priority_Change;
+
+ if Single_Lock then
+ Result := pthread_cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Single_RTS_Lock'Access,
+ Request'Access);
+
+ else
+ Result := pthread_cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Self_ID.Common.LL.L'Access,
+ Request'Access);
+ end if;
+
+ exit when Abs_Time <= Monotonic_Clock;
+
+ if Result = 0 or Result = EINTR then
+
+ -- Somebody may have called Wakeup for us
+
+ Timedout := False;
+ exit;
+ end if;
+
+ pragma Assert (Result = ETIMEDOUT);
+ end loop;
+ end if;
+ end Timed_Sleep;
+
+ -----------------
+ -- Timed_Delay --
+ -----------------
+
+ -- This is for use in implementing delay statements, so
+ -- we assume the caller is abort-deferred but is holding
+ -- no locks.
+
+ procedure Timed_Delay
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes)
+ is
+ Check_Time : constant Duration := Monotonic_Clock;
+ Abs_Time : Duration;
+ Request : aliased timespec;
+ Result : Interfaces.C.int;
+
+ begin
+ if Single_Lock then
+ Lock_RTS;
+ end if;
+
+ Write_Lock (Self_ID);
+
+ if Mode = Relative then
+ Abs_Time := Time + Check_Time;
+ else
+ Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
+ end if;
+
+ if Abs_Time > Check_Time then
+ Request := To_Timespec (Abs_Time);
+ Self_ID.Common.State := Delay_Sleep;
+
+ loop
+ if Self_ID.Pending_Priority_Change then
+ Self_ID.Pending_Priority_Change := False;
+ Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
+ Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
+ end if;
+
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ if Single_Lock then
+ Result := pthread_cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Single_RTS_Lock'Access,
+ Request'Access);
+ else
+ Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
+ Self_ID.Common.LL.L'Access, Request'Access);
+ end if;
+
+ exit when Abs_Time <= Monotonic_Clock;
+
+ pragma Assert (Result = 0 or else
+ Result = ETIMEDOUT or else
+ Result = EINTR);
+ end loop;
+
+ Self_ID.Common.State := Runnable;
+ end if;
+
+ Unlock (Self_ID);
+
+ if Single_Lock then
+ Unlock_RTS;
+ end if;
+
+ Yield;
+ end Timed_Delay;
+
+ ---------------------
+ -- Monotonic_Clock --
+ ---------------------
+
+ function Monotonic_Clock return Duration is
+ TS : aliased timespec;
+ Result : Interfaces.C.int;
+ begin
+ Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
+ pragma Assert (Result = 0);
+ return To_Duration (TS);
+ end Monotonic_Clock;
+
+ -------------------
+ -- RT_Resolution --
+ -------------------
+
+ function RT_Resolution return Duration is
+ begin
+ -- Returned value must be an integral multiple of Duration'Small (1 ns)
+ -- The following is the best approximation of 1/1024. The clock on the
+ -- DEC Alpha ticks at 1024 Hz.
+
+ return 0.000_976_563;
+ end RT_Resolution;
+
+ ------------
+ -- Wakeup --
+ ------------
+
+ procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
+ pragma Unreferenced (Reason);
+ Result : Interfaces.C.int;
+ begin
+ Result := pthread_cond_signal (T.Common.LL.CV'Access);
+ pragma Assert (Result = 0);
+ end Wakeup;
+
+ -----------
+ -- Yield --
+ -----------
+
+ procedure Yield (Do_Yield : Boolean := True) is
+ Result : Interfaces.C.int;
+ pragma Unreferenced (Result);
+ begin
+ if Do_Yield then
+ Result := sched_yield;
+ end if;
+ end Yield;
+
+ ------------------
+ -- Set_Priority --
+ ------------------
+
+ procedure Set_Priority
+ (T : Task_Id;
+ Prio : System.Any_Priority;
+ Loss_Of_Inheritance : Boolean := False)
+ is
+ pragma Unreferenced (Loss_Of_Inheritance);
+
+ Result : Interfaces.C.int;
+ Param : aliased struct_sched_param;
+
+ begin
+ T.Common.Current_Priority := Prio;
+ Param.sched_priority := Interfaces.C.int (Underlying_Priorities (Prio));
+
+ if Time_Slice_Val > 0 then
+ Result := pthread_setschedparam
+ (T.Common.LL.Thread, SCHED_RR, Param'Access);
+
+ elsif Dispatching_Policy = 'F' or else Time_Slice_Val = 0 then
+ Result := pthread_setschedparam
+ (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
+
+ else
+ Result := pthread_setschedparam
+ (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
+ end if;
+
+ pragma Assert (Result = 0);
+ end Set_Priority;
+
+ ------------------
+ -- Get_Priority --
+ ------------------
+
+ function Get_Priority (T : Task_Id) return System.Any_Priority is
+ begin
+ return T.Common.Current_Priority;
+ end Get_Priority;
+
+ ----------------
+ -- Enter_Task --
+ ----------------
+
+ procedure Enter_Task (Self_ID : Task_Id) is
+ begin
+ Hide_Yellow_Zone;
+ Self_ID.Common.LL.Thread := pthread_self;
+ Specific.Set (Self_ID);
+
+ Lock_RTS;
+
+ for J in Known_Tasks'Range loop
+ if Known_Tasks (J) = null then
+ Known_Tasks (J) := Self_ID;
+ Self_ID.Known_Tasks_Index := J;
+ exit;
+ end if;
+ end loop;
+
+ Unlock_RTS;
+ end Enter_Task;
+
+ --------------
+ -- New_ATCB --
+ --------------
+
+ function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
+ begin
+ return new Ada_Task_Control_Block (Entry_Num);
+ end New_ATCB;
+
+ -------------------
+ -- Is_Valid_Task --
+ -------------------
+
+ function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+ -----------------------------
+ -- Register_Foreign_Thread --
+ -----------------------------
+
+ function Register_Foreign_Thread return Task_Id is
+ begin
+ if Is_Valid_Task then
+ return Self;
+ else
+ return Register_Foreign_Thread (pthread_self);
+ end if;
+ end Register_Foreign_Thread;
+
+ --------------------
+ -- Initialize_TCB --
+ --------------------
+
+ procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+ Mutex_Attr : aliased pthread_mutexattr_t;
+ Result : Interfaces.C.int;
+ Cond_Attr : aliased pthread_condattr_t;
+
+ begin
+ if not Single_Lock then
+ Result := pthread_mutexattr_init (Mutex_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = 0 then
+ Result := pthread_mutex_init
+ (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+ end if;
+
+ if Result /= 0 then
+ Succeeded := False;
+ return;
+ end if;
+
+ Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Result := pthread_condattr_init (Cond_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = 0 then
+ Result := pthread_cond_init
+ (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+ end if;
+
+ if Result = 0 then
+ Succeeded := True;
+ else
+ if not Single_Lock then
+ Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Succeeded := False;
+ end if;
+
+ Result := pthread_condattr_destroy (Cond_Attr'Access);
+ pragma Assert (Result = 0);
+ end Initialize_TCB;
+
+ -----------------
+ -- Create_Task --
+ -----------------
+
+ procedure Create_Task
+ (T : Task_Id;
+ Wrapper : System.Address;
+ Stack_Size : System.Parameters.Size_Type;
+ Priority : System.Any_Priority;
+ Succeeded : out Boolean)
+ is
+ Attributes : aliased pthread_attr_t;
+ Adjusted_Stack_Size : Interfaces.C.size_t;
+ Result : Interfaces.C.int;
+ Param : aliased System.OS_Interface.struct_sched_param;
+
+ use System.Task_Info;
+
+ begin
+ -- Account for the Yellow Zone (2 pages) and the guard page
+ -- right above. See Hide_Yellow_Zone for the rationale.
+
+ Adjusted_Stack_Size :=
+ Interfaces.C.size_t (Stack_Size) + 3 * Get_Page_Size;
+
+ Result := pthread_attr_init (Attributes'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result /= 0 then
+ Succeeded := False;
+ return;
+ end if;
+
+ Result := pthread_attr_setdetachstate
+ (Attributes'Access, PTHREAD_CREATE_DETACHED);
+ pragma Assert (Result = 0);
+
+ Result := pthread_attr_setstacksize
+ (Attributes'Access, Adjusted_Stack_Size);
+ pragma Assert (Result = 0);
+
+ Param.sched_priority :=
+ Interfaces.C.int (Underlying_Priorities (Priority));
+ Result := pthread_attr_setschedparam
+ (Attributes'Access, Param'Access);
+ pragma Assert (Result = 0);
+
+ if Time_Slice_Val > 0 then
+ Result := pthread_attr_setschedpolicy
+ (Attributes'Access, System.OS_Interface.SCHED_RR);
+
+ elsif Dispatching_Policy = 'F' or else Time_Slice_Val = 0 then
+ Result := pthread_attr_setschedpolicy
+ (Attributes'Access, System.OS_Interface.SCHED_FIFO);
+
+ else
+ Result := pthread_attr_setschedpolicy
+ (Attributes'Access, System.OS_Interface.SCHED_OTHER);
+ end if;
+
+ pragma Assert (Result = 0);
+
+ -- Set the scheduling parameters explicitly, since this is the
+ -- only way to force the OS to take e.g. the sched policy and scope
+ -- attributes into account.
+
+ Result := pthread_attr_setinheritsched
+ (Attributes'Access, PTHREAD_EXPLICIT_SCHED);
+ pragma Assert (Result = 0);
+
+ T.Common.Current_Priority := Priority;
+
+ if T.Common.Task_Info /= null then
+ case T.Common.Task_Info.Contention_Scope is
+ when System.Task_Info.Process_Scope =>
+ Result := pthread_attr_setscope
+ (Attributes'Access, PTHREAD_SCOPE_PROCESS);
+
+ when System.Task_Info.System_Scope =>
+ Result := pthread_attr_setscope
+ (Attributes'Access, PTHREAD_SCOPE_SYSTEM);
+
+ when System.Task_Info.Default_Scope =>
+ Result := 0;
+ end case;
+
+ pragma Assert (Result = 0);
+ end if;
+
+ -- Since the initial signal mask of a thread is inherited from the
+ -- creator, and the Environment task has all its signals masked, we
+ -- do not need to manipulate caller's signal mask at this point.
+ -- All tasks in RTS will have All_Tasks_Mask initially.
+
+ Result := pthread_create
+ (T.Common.LL.Thread'Access,
+ Attributes'Access,
+ Thread_Body_Access (Wrapper),
+ To_Address (T));
+ pragma Assert (Result = 0 or else Result = EAGAIN);
+
+ Succeeded := Result = 0;
+
+ Result := pthread_attr_destroy (Attributes'Access);
+ pragma Assert (Result = 0);
+
+ if T.Common.Task_Info /= null then
+ -- ??? We're using a process-wide function to implement a task
+ -- specific characteristic.
+
+ if T.Common.Task_Info.Bind_To_Cpu_Number = 0 then
+ Result := bind_to_cpu (Curpid, 0);
+ elsif T.Common.Task_Info.Bind_To_Cpu_Number > 0 then
+ Result := bind_to_cpu
+ (Curpid,
+ Interfaces.C.unsigned_long (
+ Interfaces.Shift_Left
+ (Interfaces.Unsigned_64'(1),
+ T.Common.Task_Info.Bind_To_Cpu_Number - 1)));
+ pragma Assert (Result = 0);
+ end if;
+ end if;
+ end Create_Task;
+
+ ------------------
+ -- Finalize_TCB --
+ ------------------
+
+ procedure Finalize_TCB (T : Task_Id) is
+ Result : Interfaces.C.int;
+ Tmp : Task_Id := T;
+ Is_Self : constant Boolean := T = Self;
+
+ procedure Free is new
+ Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
+
+ begin
+ if not Single_Lock then
+ Result := pthread_mutex_destroy (T.Common.LL.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Result := pthread_cond_destroy (T.Common.LL.CV'Access);
+ pragma Assert (Result = 0);
+
+ if T.Known_Tasks_Index /= -1 then
+ Known_Tasks (T.Known_Tasks_Index) := null;
+ end if;
+
+ Free (Tmp);
+
+ if Is_Self then
+ Specific.Set (null);
+ end if;
+ end Finalize_TCB;
+
+ ---------------
+ -- Exit_Task --
+ ---------------
+
+ procedure Exit_Task is
+ begin
+ Specific.Set (null);
+ end Exit_Task;
+
+ ----------------
+ -- Abort_Task --
+ ----------------
+
+ procedure Abort_Task (T : Task_Id) is
+ Result : Interfaces.C.int;
+ begin
+ Result := pthread_kill (T.Common.LL.Thread,
+ Signal (System.Interrupt_Management.Abort_Task_Interrupt));
+ pragma Assert (Result = 0);
+ end Abort_Task;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (S : in out Suspension_Object) is
+ Mutex_Attr : aliased pthread_mutexattr_t;
+ Cond_Attr : aliased pthread_condattr_t;
+ Result : Interfaces.C.int;
+ begin
+ -- Initialize internal state. It is always initialized to False (ARM
+ -- D.10 par. 6).
+
+ S.State := False;
+ S.Waiting := False;
+
+ -- Initialize internal mutex
+
+ Result := pthread_mutexattr_init (Mutex_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+
+ Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
+ raise Storage_Error;
+ end if;
+
+ Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
+ pragma Assert (Result = 0);
+
+ -- Initialize internal condition variable
+
+ Result := pthread_condattr_init (Cond_Attr'Access);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
+
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result /= 0 then
+ Result := pthread_mutex_destroy (S.L'Access);
+ pragma Assert (Result = 0);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+ end if;
+ end Initialize;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+ begin
+ -- Destroy internal mutex
+
+ Result := pthread_mutex_destroy (S.L'Access);
+ pragma Assert (Result = 0);
+
+ -- Destroy internal condition variable
+
+ Result := pthread_cond_destroy (S.CV'Access);
+ pragma Assert (Result = 0);
+ end Finalize;
+
+ -------------------
+ -- Current_State --
+ -------------------
+
+ function Current_State (S : Suspension_Object) return Boolean is
+ begin
+ -- We do not want to use lock on this read operation. State is marked
+ -- as Atomic so that we ensure that the value retrieved is correct.
+
+ return S.State;
+ end Current_State;
+
+ ---------------
+ -- Set_False --
+ ---------------
+
+ procedure Set_False (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := pthread_mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ S.State := False;
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end Set_False;
+
+ --------------
+ -- Set_True --
+ --------------
+
+ procedure Set_True (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := pthread_mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ -- If there is already a task waiting on this suspension object then
+ -- we resume it, leaving the state of the suspension object to False,
+ -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+ -- the state to True.
+
+ if S.Waiting then
+ S.Waiting := False;
+ S.State := False;
+
+ Result := pthread_cond_signal (S.CV'Access);
+ pragma Assert (Result = 0);
+ else
+ S.State := True;
+ end if;
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end Set_True;
+
+ ------------------------
+ -- Suspend_Until_True --
+ ------------------------
+
+ procedure Suspend_Until_True (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := pthread_mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ if S.Waiting then
+ -- Program_Error must be raised upon calling Suspend_Until_True
+ -- if another task is already waiting on that suspension object
+ -- (ARM D.10 par. 10).
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+
+ raise Program_Error;
+ else
+ -- Suspend the task if the state is False. Otherwise, the task
+ -- continues its execution, and the state of the suspension object
+ -- is set to False (ARM D.10 par. 9).
+
+ if S.State then
+ S.State := False;
+ else
+ S.Waiting := True;
+ Result := pthread_cond_wait (S.CV'Access, S.L'Access);
+ end if;
+
+ Result := pthread_mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end if;
+ end Suspend_Until_True;
+
+ ----------------
+ -- Check_Exit --
+ ----------------
+
+ -- Dummy version
+
+ function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_Exit;
+
+ --------------------
+ -- Check_No_Locks --
+ --------------------
+
+ function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_No_Locks;
+
+ ----------------------
+ -- Environment_Task --
+ ----------------------
+
+ function Environment_Task return Task_Id is
+ begin
+ return Environment_Task_Id;
+ end Environment_Task;
+
+ --------------
+ -- Lock_RTS --
+ --------------
+
+ procedure Lock_RTS is
+ begin
+ Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Lock_RTS;
+
+ ----------------
+ -- Unlock_RTS --
+ ----------------
+
+ procedure Unlock_RTS is
+ begin
+ Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Unlock_RTS;
+
+ ------------------
+ -- Suspend_Task --
+ ------------------
+
+ function Suspend_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ pragma Warnings (Off, T);
+ pragma Warnings (Off, Thread_Self);
+ begin
+ return False;
+ end Suspend_Task;
+
+ -----------------
+ -- Resume_Task --
+ -----------------
+
+ function Resume_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ pragma Warnings (Off, T);
+ pragma Warnings (Off, Thread_Self);
+ begin
+ return False;
+ end Resume_Task;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (Environment_Task : Task_Id) is
+ act : aliased struct_sigaction;
+ old_act : aliased struct_sigaction;
+ Tmp_Set : aliased sigset_t;
+ Result : Interfaces.C.int;
+
+ function State
+ (Int : System.Interrupt_Management.Interrupt_ID) return Character;
+ pragma Import (C, State, "__gnat_get_interrupt_state");
+ -- Get interrupt state. Defined in a-init.c. The input argument is
+ -- the interrupt number, and the result is one of the following:
+
+ Default : constant Character := 's';
+ -- 'n' this interrupt not set by any Interrupt_State pragma
+ -- 'u' Interrupt_State pragma set state to User
+ -- 'r' Interrupt_State pragma set state to Runtime
+ -- 's' Interrupt_State pragma set state to System (use "default"
+ -- system handler)
+
+ begin
+ Environment_Task_Id := Environment_Task;
+
+ Interrupt_Management.Initialize;
+
+ -- Prepare the set of signals that should unblocked in all tasks
+
+ Result := sigemptyset (Unblocked_Signal_Mask'Access);
+ pragma Assert (Result = 0);
+
+ for J in Interrupt_Management.Interrupt_ID loop
+ if System.Interrupt_Management.Keep_Unmasked (J) then
+ Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
+ pragma Assert (Result = 0);
+ end if;
+ end loop;
+
+ Curpid := getpid;
+
+ -- Initialize the lock used to synchronize chain of all ATCBs
+
+ Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+ Specific.Initialize (Environment_Task);
+
+ Enter_Task (Environment_Task);
+
+ -- Install the abort-signal handler
+
+ if State (System.Interrupt_Management.Abort_Task_Interrupt)
+ /= Default
+ then
+ act.sa_flags := 0;
+ act.sa_handler := Abort_Handler'Address;
+
+ Result := sigemptyset (Tmp_Set'Access);
+ pragma Assert (Result = 0);
+ act.sa_mask := Tmp_Set;
+
+ Result :=
+ sigaction
+ (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
+ act'Unchecked_Access,
+ old_act'Unchecked_Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Initialize;
+
+end System.Task_Primitives.Operations;