aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/exp_ch6.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/exp_ch6.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/exp_ch6.adb4678
1 files changed, 4678 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/exp_ch6.adb b/gcc-4.2.1/gcc/ada/exp_ch6.adb
new file mode 100644
index 000000000..304919fb1
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/exp_ch6.adb
@@ -0,0 +1,4678 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ C H 6 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Elists; use Elists;
+with Exp_Ch2; use Exp_Ch2;
+with Exp_Ch3; use Exp_Ch3;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch9; use Exp_Ch9;
+with Exp_Dbug; use Exp_Dbug;
+with Exp_Disp; use Exp_Disp;
+with Exp_Dist; use Exp_Dist;
+with Exp_Intr; use Exp_Intr;
+with Exp_Pakd; use Exp_Pakd;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Hostparm; use Hostparm;
+with Inline; use Inline;
+with Lib; use Lib;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch12; use Sem_Ch12;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Mech; use Sem_Mech;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Validsw; use Validsw;
+
+package body Exp_Ch6 is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Check_Overriding_Operation (Subp : Entity_Id);
+ -- Subp is a dispatching operation. Check whether it may override an
+ -- inherited private operation, in which case its DT entry is that of
+ -- the hidden operation, not the one it may have received earlier.
+ -- This must be done before emitting the code to set the corresponding
+ -- DT to the address of the subprogram. The actual placement of Subp in
+ -- the proper place in the list of primitive operations is done in
+ -- Declare_Inherited_Private_Subprograms, which also has to deal with
+ -- implicit operations. This duplication is unavoidable for now???
+
+ procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
+ -- This procedure is called only if the subprogram body N, whose spec
+ -- has the given entity Spec, contains a parameterless recursive call.
+ -- It attempts to generate runtime code to detect if this a case of
+ -- infinite recursion.
+ --
+ -- The body is scanned to determine dependencies. If the only external
+ -- dependencies are on a small set of scalar variables, then the values
+ -- of these variables are captured on entry to the subprogram, and if
+ -- the values are not changed for the call, we know immediately that
+ -- we have an infinite recursion.
+
+ procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
+ -- For each actual of an in-out or out parameter which is a numeric
+ -- (view) conversion of the form T (A), where A denotes a variable,
+ -- we insert the declaration:
+ --
+ -- Temp : T[ := T (A)];
+ --
+ -- prior to the call. Then we replace the actual with a reference to Temp,
+ -- and append the assignment:
+ --
+ -- A := TypeA (Temp);
+ --
+ -- after the call. Here TypeA is the actual type of variable A.
+ -- For out parameters, the initial declaration has no expression.
+ -- If A is not an entity name, we generate instead:
+ --
+ -- Var : TypeA renames A;
+ -- Temp : T := Var; -- omitting expression for out parameter.
+ -- ...
+ -- Var := TypeA (Temp);
+ --
+ -- For other in-out parameters, we emit the required constraint checks
+ -- before and/or after the call.
+ --
+ -- For all parameter modes, actuals that denote components and slices
+ -- of packed arrays are expanded into suitable temporaries.
+ --
+ -- For non-scalar objects that are possibly unaligned, add call by copy
+ -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
+
+ procedure Expand_Inlined_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Orig_Subp : Entity_Id);
+ -- If called subprogram can be inlined by the front-end, retrieve the
+ -- analyzed body, replace formals with actuals and expand call in place.
+ -- Generate thunks for actuals that are expressions, and insert the
+ -- corresponding constant declarations before the call. If the original
+ -- call is to a derived operation, the return type is the one of the
+ -- derived operation, but the body is that of the original, so return
+ -- expressions in the body must be converted to the desired type (which
+ -- is simply not noted in the tree without inline expansion).
+
+ function Expand_Protected_Object_Reference
+ (N : Node_Id;
+ Scop : Entity_Id)
+ return Node_Id;
+
+ procedure Expand_Protected_Subprogram_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Scop : Entity_Id);
+ -- A call to a protected subprogram within the protected object may appear
+ -- as a regular call. The list of actuals must be expanded to contain a
+ -- reference to the object itself, and the call becomes a call to the
+ -- corresponding protected subprogram.
+
+ --------------------------------
+ -- Check_Overriding_Operation --
+ --------------------------------
+
+ procedure Check_Overriding_Operation (Subp : Entity_Id) is
+ Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
+ Op_List : constant Elist_Id := Primitive_Operations (Typ);
+ Op_Elmt : Elmt_Id;
+ Prim_Op : Entity_Id;
+ Par_Op : Entity_Id;
+
+ begin
+ if Is_Derived_Type (Typ)
+ and then not Is_Private_Type (Typ)
+ and then In_Open_Scopes (Scope (Etype (Typ)))
+ and then Typ = Base_Type (Typ)
+ then
+ -- Subp overrides an inherited private operation if there is an
+ -- inherited operation with a different name than Subp (see
+ -- Derive_Subprogram) whose Alias is a hidden subprogram with the
+ -- same name as Subp.
+
+ Op_Elmt := First_Elmt (Op_List);
+ while Present (Op_Elmt) loop
+ Prim_Op := Node (Op_Elmt);
+ Par_Op := Alias (Prim_Op);
+
+ if Present (Par_Op)
+ and then not Comes_From_Source (Prim_Op)
+ and then Chars (Prim_Op) /= Chars (Par_Op)
+ and then Chars (Par_Op) = Chars (Subp)
+ and then Is_Hidden (Par_Op)
+ and then Type_Conformant (Prim_Op, Subp)
+ then
+ Set_DT_Position (Subp, DT_Position (Prim_Op));
+ end if;
+
+ Next_Elmt (Op_Elmt);
+ end loop;
+ end if;
+ end Check_Overriding_Operation;
+
+ -------------------------------
+ -- Detect_Infinite_Recursion --
+ -------------------------------
+
+ procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Var_List : constant Elist_Id := New_Elmt_List;
+ -- List of globals referenced by body of procedure
+
+ Call_List : constant Elist_Id := New_Elmt_List;
+ -- List of recursive calls in body of procedure
+
+ Shad_List : constant Elist_Id := New_Elmt_List;
+ -- List of entity id's for entities created to capture the value of
+ -- referenced globals on entry to the procedure.
+
+ Scop : constant Uint := Scope_Depth (Spec);
+ -- This is used to record the scope depth of the current procedure, so
+ -- that we can identify global references.
+
+ Max_Vars : constant := 4;
+ -- Do not test more than four global variables
+
+ Count_Vars : Natural := 0;
+ -- Count variables found so far
+
+ Var : Entity_Id;
+ Elm : Elmt_Id;
+ Ent : Entity_Id;
+ Call : Elmt_Id;
+ Decl : Node_Id;
+ Test : Node_Id;
+ Elm1 : Elmt_Id;
+ Elm2 : Elmt_Id;
+ Last : Node_Id;
+
+ function Process (Nod : Node_Id) return Traverse_Result;
+ -- Function to traverse the subprogram body (using Traverse_Func)
+
+ -------------
+ -- Process --
+ -------------
+
+ function Process (Nod : Node_Id) return Traverse_Result is
+ begin
+ -- Procedure call
+
+ if Nkind (Nod) = N_Procedure_Call_Statement then
+
+ -- Case of one of the detected recursive calls
+
+ if Is_Entity_Name (Name (Nod))
+ and then Has_Recursive_Call (Entity (Name (Nod)))
+ and then Entity (Name (Nod)) = Spec
+ then
+ Append_Elmt (Nod, Call_List);
+ return Skip;
+
+ -- Any other procedure call may have side effects
+
+ else
+ return Abandon;
+ end if;
+
+ -- A call to a pure function can always be ignored
+
+ elsif Nkind (Nod) = N_Function_Call
+ and then Is_Entity_Name (Name (Nod))
+ and then Is_Pure (Entity (Name (Nod)))
+ then
+ return Skip;
+
+ -- Case of an identifier reference
+
+ elsif Nkind (Nod) = N_Identifier then
+ Ent := Entity (Nod);
+
+ -- If no entity, then ignore the reference
+
+ -- Not clear why this can happen. To investigate, remove this
+ -- test and look at the crash that occurs here in 3401-004 ???
+
+ if No (Ent) then
+ return Skip;
+
+ -- Ignore entities with no Scope, again not clear how this
+ -- can happen, to investigate, look at 4108-008 ???
+
+ elsif No (Scope (Ent)) then
+ return Skip;
+
+ -- Ignore the reference if not to a more global object
+
+ elsif Scope_Depth (Scope (Ent)) >= Scop then
+ return Skip;
+
+ -- References to types, exceptions and constants are always OK
+
+ elsif Is_Type (Ent)
+ or else Ekind (Ent) = E_Exception
+ or else Ekind (Ent) = E_Constant
+ then
+ return Skip;
+
+ -- If other than a non-volatile scalar variable, we have some
+ -- kind of global reference (e.g. to a function) that we cannot
+ -- deal with so we forget the attempt.
+
+ elsif Ekind (Ent) /= E_Variable
+ or else not Is_Scalar_Type (Etype (Ent))
+ or else Treat_As_Volatile (Ent)
+ then
+ return Abandon;
+
+ -- Otherwise we have a reference to a global scalar
+
+ else
+ -- Loop through global entities already detected
+
+ Elm := First_Elmt (Var_List);
+ loop
+ -- If not detected before, record this new global reference
+
+ if No (Elm) then
+ Count_Vars := Count_Vars + 1;
+
+ if Count_Vars <= Max_Vars then
+ Append_Elmt (Entity (Nod), Var_List);
+ else
+ return Abandon;
+ end if;
+
+ exit;
+
+ -- If recorded before, ignore
+
+ elsif Node (Elm) = Entity (Nod) then
+ return Skip;
+
+ -- Otherwise keep looking
+
+ else
+ Next_Elmt (Elm);
+ end if;
+ end loop;
+
+ return Skip;
+ end if;
+
+ -- For all other node kinds, recursively visit syntactic children
+
+ else
+ return OK;
+ end if;
+ end Process;
+
+ function Traverse_Body is new Traverse_Func;
+
+ -- Start of processing for Detect_Infinite_Recursion
+
+ begin
+ -- Do not attempt detection in No_Implicit_Conditional mode, since we
+ -- won't be able to generate the code to handle the recursion in any
+ -- case.
+
+ if Restriction_Active (No_Implicit_Conditionals) then
+ return;
+ end if;
+
+ -- Otherwise do traversal and quit if we get abandon signal
+
+ if Traverse_Body (N) = Abandon then
+ return;
+
+ -- We must have a call, since Has_Recursive_Call was set. If not just
+ -- ignore (this is only an error check, so if we have a funny situation,
+ -- due to bugs or errors, we do not want to bomb!)
+
+ elsif Is_Empty_Elmt_List (Call_List) then
+ return;
+ end if;
+
+ -- Here is the case where we detect recursion at compile time
+
+ -- Push our current scope for analyzing the declarations and code that
+ -- we will insert for the checking.
+
+ New_Scope (Spec);
+
+ -- This loop builds temporary variables for each of the referenced
+ -- globals, so that at the end of the loop the list Shad_List contains
+ -- these temporaries in one-to-one correspondence with the elements in
+ -- Var_List.
+
+ Last := Empty;
+ Elm := First_Elmt (Var_List);
+ while Present (Elm) loop
+ Var := Node (Elm);
+ Ent :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('S'));
+ Append_Elmt (Ent, Shad_List);
+
+ -- Insert a declaration for this temporary at the start of the
+ -- declarations for the procedure. The temporaries are declared as
+ -- constant objects initialized to the current values of the
+ -- corresponding temporaries.
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Ent,
+ Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
+ Constant_Present => True,
+ Expression => New_Occurrence_Of (Var, Loc));
+
+ if No (Last) then
+ Prepend (Decl, Declarations (N));
+ else
+ Insert_After (Last, Decl);
+ end if;
+
+ Last := Decl;
+ Analyze (Decl);
+ Next_Elmt (Elm);
+ end loop;
+
+ -- Loop through calls
+
+ Call := First_Elmt (Call_List);
+ while Present (Call) loop
+
+ -- Build a predicate expression of the form
+
+ -- True
+ -- and then global1 = temp1
+ -- and then global2 = temp2
+ -- ...
+
+ -- This predicate determines if any of the global values
+ -- referenced by the procedure have changed since the
+ -- current call, if not an infinite recursion is assured.
+
+ Test := New_Occurrence_Of (Standard_True, Loc);
+
+ Elm1 := First_Elmt (Var_List);
+ Elm2 := First_Elmt (Shad_List);
+ while Present (Elm1) loop
+ Test :=
+ Make_And_Then (Loc,
+ Left_Opnd => Test,
+ Right_Opnd =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
+ Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
+
+ Next_Elmt (Elm1);
+ Next_Elmt (Elm2);
+ end loop;
+
+ -- Now we replace the call with the sequence
+
+ -- if no-changes (see above) then
+ -- raise Storage_Error;
+ -- else
+ -- original-call
+ -- end if;
+
+ Rewrite (Node (Call),
+ Make_If_Statement (Loc,
+ Condition => Test,
+ Then_Statements => New_List (
+ Make_Raise_Storage_Error (Loc,
+ Reason => SE_Infinite_Recursion)),
+
+ Else_Statements => New_List (
+ Relocate_Node (Node (Call)))));
+
+ Analyze (Node (Call));
+
+ Next_Elmt (Call);
+ end loop;
+
+ -- Remove temporary scope stack entry used for analysis
+
+ Pop_Scope;
+ end Detect_Infinite_Recursion;
+
+ --------------------
+ -- Expand_Actuals --
+ --------------------
+
+ procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Actual : Node_Id;
+ Formal : Entity_Id;
+ N_Node : Node_Id;
+ Post_Call : List_Id;
+ E_Formal : Entity_Id;
+
+ procedure Add_Call_By_Copy_Code;
+ -- For cases where the parameter must be passed by copy, this routine
+ -- generates a temporary variable into which the actual is copied and
+ -- then passes this as the parameter. For an OUT or IN OUT parameter,
+ -- an assignment is also generated to copy the result back. The call
+ -- also takes care of any constraint checks required for the type
+ -- conversion case (on both the way in and the way out).
+
+ procedure Add_Simple_Call_By_Copy_Code;
+ -- This is similar to the above, but is used in cases where we know
+ -- that all that is needed is to simply create a temporary and copy
+ -- the value in and out of the temporary.
+
+ procedure Check_Fortran_Logical;
+ -- A value of type Logical that is passed through a formal parameter
+ -- must be normalized because .TRUE. usually does not have the same
+ -- representation as True. We assume that .FALSE. = False = 0.
+ -- What about functions that return a logical type ???
+
+ function Is_Legal_Copy return Boolean;
+ -- Check that an actual can be copied before generating the temporary
+ -- to be used in the call. If the actual is of a by_reference type then
+ -- the program is illegal (this can only happen in the presence of
+ -- rep. clauses that force an incorrect alignment). If the formal is
+ -- a by_reference parameter imposed by a DEC pragma, emit a warning to
+ -- the effect that this might lead to unaligned arguments.
+
+ function Make_Var (Actual : Node_Id) return Entity_Id;
+ -- Returns an entity that refers to the given actual parameter,
+ -- Actual (not including any type conversion). If Actual is an
+ -- entity name, then this entity is returned unchanged, otherwise
+ -- a renaming is created to provide an entity for the actual.
+
+ procedure Reset_Packed_Prefix;
+ -- The expansion of a packed array component reference is delayed in
+ -- the context of a call. Now we need to complete the expansion, so we
+ -- unmark the analyzed bits in all prefixes.
+
+ ---------------------------
+ -- Add_Call_By_Copy_Code --
+ ---------------------------
+
+ procedure Add_Call_By_Copy_Code is
+ Expr : Node_Id;
+ Init : Node_Id;
+ Temp : Entity_Id;
+ Indic : Node_Id;
+ Var : Entity_Id;
+ F_Typ : constant Entity_Id := Etype (Formal);
+ V_Typ : Entity_Id;
+ Crep : Boolean;
+
+ begin
+ if not Is_Legal_Copy then
+ return;
+ end if;
+
+ Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+
+ -- Use formal type for temp, unless formal type is an unconstrained
+ -- array, in which case we don't have to worry about bounds checks,
+ -- and we use the actual type, since that has appropriate bounds.
+
+ if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
+ Indic := New_Occurrence_Of (Etype (Actual), Loc);
+ else
+ Indic := New_Occurrence_Of (Etype (Formal), Loc);
+ end if;
+
+ if Nkind (Actual) = N_Type_Conversion then
+ V_Typ := Etype (Expression (Actual));
+
+ -- If the formal is an (in-)out parameter, capture the name
+ -- of the variable in order to build the post-call assignment.
+
+ Var := Make_Var (Expression (Actual));
+
+ Crep := not Same_Representation
+ (F_Typ, Etype (Expression (Actual)));
+
+ else
+ V_Typ := Etype (Actual);
+ Var := Make_Var (Actual);
+ Crep := False;
+ end if;
+
+ -- Setup initialization for case of in out parameter, or an out
+ -- parameter where the formal is an unconstrained array (in the
+ -- latter case, we have to pass in an object with bounds).
+
+ -- If this is an out parameter, the initial copy is wasteful, so as
+ -- an optimization for the one-dimensional case we extract the
+ -- bounds of the actual and build an uninitialized temporary of the
+ -- right size.
+
+ if Ekind (Formal) = E_In_Out_Parameter
+ or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
+ then
+ if Nkind (Actual) = N_Type_Conversion then
+ if Conversion_OK (Actual) then
+ Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ else
+ Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ end if;
+
+ elsif Ekind (Formal) = E_Out_Parameter
+ and then Is_Array_Type (F_Typ)
+ and then Number_Dimensions (F_Typ) = 1
+ and then not Has_Non_Null_Base_Init_Proc (F_Typ)
+ then
+ -- Actual is a one-dimensional array or slice, and the type
+ -- requires no initialization. Create a temporary of the
+ -- right size, but do not copy actual into it (optimization).
+
+ Init := Empty;
+ Indic :=
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (F_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Var, Loc),
+ Attribute_name => Name_First),
+ High_Bound =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Var, Loc),
+ Attribute_Name => Name_Last)))));
+
+ else
+ Init := New_Occurrence_Of (Var, Loc);
+ end if;
+
+ -- An initialization is created for packed conversions as
+ -- actuals for out parameters to enable Make_Object_Declaration
+ -- to determine the proper subtype for N_Node. Note that this
+ -- is wasteful because the extra copying on the call side is
+ -- not required for such out parameters. ???
+
+ elsif Ekind (Formal) = E_Out_Parameter
+ and then Nkind (Actual) = N_Type_Conversion
+ and then (Is_Bit_Packed_Array (F_Typ)
+ or else
+ Is_Bit_Packed_Array (Etype (Expression (Actual))))
+ then
+ if Conversion_OK (Actual) then
+ Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ else
+ Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
+ end if;
+
+ elsif Ekind (Formal) = E_In_Parameter then
+ Init := New_Occurrence_Of (Var, Loc);
+
+ else
+ Init := Empty;
+ end if;
+
+ N_Node :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => Indic,
+ Expression => Init);
+ Set_Assignment_OK (N_Node);
+ Insert_Action (N, N_Node);
+
+ -- Now, normally the deal here is that we use the defining
+ -- identifier created by that object declaration. There is
+ -- one exception to this. In the change of representation case
+ -- the above declaration will end up looking like:
+
+ -- temp : type := identifier;
+
+ -- And in this case we might as well use the identifier directly
+ -- and eliminate the temporary. Note that the analysis of the
+ -- declaration was not a waste of time in that case, since it is
+ -- what generated the necessary change of representation code. If
+ -- the change of representation introduced additional code, as in
+ -- a fixed-integer conversion, the expression is not an identifier
+ -- and must be kept.
+
+ if Crep
+ and then Present (Expression (N_Node))
+ and then Is_Entity_Name (Expression (N_Node))
+ then
+ Temp := Entity (Expression (N_Node));
+ Rewrite (N_Node, Make_Null_Statement (Loc));
+ end if;
+
+ -- For IN parameter, all we do is to replace the actual
+
+ if Ekind (Formal) = E_In_Parameter then
+ Rewrite (Actual, New_Reference_To (Temp, Loc));
+ Analyze (Actual);
+
+ -- Processing for OUT or IN OUT parameter
+
+ else
+ -- Kill current value indications for the temporary variable we
+ -- created, since we just passed it as an OUT parameter.
+
+ Kill_Current_Values (Temp);
+
+ -- If type conversion, use reverse conversion on exit
+
+ if Nkind (Actual) = N_Type_Conversion then
+ if Conversion_OK (Actual) then
+ Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
+ else
+ Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
+ end if;
+ else
+ Expr := New_Occurrence_Of (Temp, Loc);
+ end if;
+
+ Rewrite (Actual, New_Reference_To (Temp, Loc));
+ Analyze (Actual);
+
+ Append_To (Post_Call,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Var, Loc),
+ Expression => Expr));
+
+ Set_Assignment_OK (Name (Last (Post_Call)));
+ end if;
+ end Add_Call_By_Copy_Code;
+
+ ----------------------------------
+ -- Add_Simple_Call_By_Copy_Code --
+ ----------------------------------
+
+ procedure Add_Simple_Call_By_Copy_Code is
+ Temp : Entity_Id;
+ Decl : Node_Id;
+ Incod : Node_Id;
+ Outcod : Node_Id;
+ Lhs : Node_Id;
+ Rhs : Node_Id;
+ Indic : Node_Id;
+ F_Typ : constant Entity_Id := Etype (Formal);
+
+ begin
+ if not Is_Legal_Copy then
+ return;
+ end if;
+
+ -- Use formal type for temp, unless formal type is an unconstrained
+ -- array, in which case we don't have to worry about bounds checks,
+ -- and we use the actual type, since that has appropriate bounds.
+
+ if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
+ Indic := New_Occurrence_Of (Etype (Actual), Loc);
+ else
+ Indic := New_Occurrence_Of (Etype (Formal), Loc);
+ end if;
+
+ -- Prepare to generate code
+
+ Reset_Packed_Prefix;
+
+ Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+ Incod := Relocate_Node (Actual);
+ Outcod := New_Copy_Tree (Incod);
+
+ -- Generate declaration of temporary variable, initializing it
+ -- with the input parameter unless we have an OUT formal or
+ -- this is an initialization call.
+
+ -- If the formal is an out parameter with discriminants, the
+ -- discriminants must be captured even if the rest of the object
+ -- is in principle uninitialized, because the discriminants may
+ -- be read by the called subprogram.
+
+ if Ekind (Formal) = E_Out_Parameter then
+ Incod := Empty;
+
+ if Has_Discriminants (Etype (Formal)) then
+ Indic := New_Occurrence_Of (Etype (Actual), Loc);
+ end if;
+
+ elsif Inside_Init_Proc then
+
+ -- Could use a comment here to match comment below ???
+
+ if Nkind (Actual) /= N_Selected_Component
+ or else
+ not Has_Discriminant_Dependent_Constraint
+ (Entity (Selector_Name (Actual)))
+ then
+ Incod := Empty;
+
+ -- Otherwise, keep the component in order to generate the proper
+ -- actual subtype, that depends on enclosing discriminants.
+
+ else
+ null;
+ end if;
+ end if;
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => Indic,
+ Expression => Incod);
+
+ if Inside_Init_Proc
+ and then No (Incod)
+ then
+ -- If the call is to initialize a component of a composite type,
+ -- and the component does not depend on discriminants, use the
+ -- actual type of the component. This is required in case the
+ -- component is constrained, because in general the formal of the
+ -- initialization procedure will be unconstrained. Note that if
+ -- the component being initialized is constrained by an enclosing
+ -- discriminant, the presence of the initialization in the
+ -- declaration will generate an expression for the actual subtype.
+
+ Set_No_Initialization (Decl);
+ Set_Object_Definition (Decl,
+ New_Occurrence_Of (Etype (Actual), Loc));
+ end if;
+
+ Insert_Action (N, Decl);
+
+ -- The actual is simply a reference to the temporary
+
+ Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
+
+ -- Generate copy out if OUT or IN OUT parameter
+
+ if Ekind (Formal) /= E_In_Parameter then
+ Lhs := Outcod;
+ Rhs := New_Occurrence_Of (Temp, Loc);
+
+ -- Deal with conversion
+
+ if Nkind (Lhs) = N_Type_Conversion then
+ Lhs := Expression (Lhs);
+ Rhs := Convert_To (Etype (Actual), Rhs);
+ end if;
+
+ Append_To (Post_Call,
+ Make_Assignment_Statement (Loc,
+ Name => Lhs,
+ Expression => Rhs));
+ Set_Assignment_OK (Name (Last (Post_Call)));
+ end if;
+ end Add_Simple_Call_By_Copy_Code;
+
+ ---------------------------
+ -- Check_Fortran_Logical --
+ ---------------------------
+
+ procedure Check_Fortran_Logical is
+ Logical : constant Entity_Id := Etype (Formal);
+ Var : Entity_Id;
+
+ -- Note: this is very incomplete, e.g. it does not handle arrays
+ -- of logical values. This is really not the right approach at all???)
+
+ begin
+ if Convention (Subp) = Convention_Fortran
+ and then Root_Type (Etype (Formal)) = Standard_Boolean
+ and then Ekind (Formal) /= E_In_Parameter
+ then
+ Var := Make_Var (Actual);
+ Append_To (Post_Call,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Var, Loc),
+ Expression =>
+ Unchecked_Convert_To (
+ Logical,
+ Make_Op_Ne (Loc,
+ Left_Opnd => New_Occurrence_Of (Var, Loc),
+ Right_Opnd =>
+ Unchecked_Convert_To (
+ Logical,
+ New_Occurrence_Of (Standard_False, Loc))))));
+ end if;
+ end Check_Fortran_Logical;
+
+ -------------------
+ -- Is_Legal_Copy --
+ -------------------
+
+ function Is_Legal_Copy return Boolean is
+ begin
+ -- An attempt to copy a value of such a type can only occur if
+ -- representation clauses give the actual a misaligned address.
+
+ if Is_By_Reference_Type (Etype (Formal)) then
+ Error_Msg_N
+ ("misaligned actual cannot be passed by reference", Actual);
+ return False;
+
+ -- For users of Starlet, we assume that the specification of by-
+ -- reference mechanism is mandatory. This may lead to unligned
+ -- objects but at least for DEC legacy code it is known to work.
+ -- The warning will alert users of this code that a problem may
+ -- be lurking.
+
+ elsif Mechanism (Formal) = By_Reference
+ and then Is_Valued_Procedure (Scope (Formal))
+ then
+ Error_Msg_N
+ ("by_reference actual may be misaligned?", Actual);
+ return False;
+
+ else
+ return True;
+ end if;
+ end Is_Legal_Copy;
+
+ --------------
+ -- Make_Var --
+ --------------
+
+ function Make_Var (Actual : Node_Id) return Entity_Id is
+ Var : Entity_Id;
+
+ begin
+ if Is_Entity_Name (Actual) then
+ return Entity (Actual);
+
+ else
+ Var := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+
+ N_Node :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Var,
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Actual), Loc),
+ Name => Relocate_Node (Actual));
+
+ Insert_Action (N, N_Node);
+ return Var;
+ end if;
+ end Make_Var;
+
+ -------------------------
+ -- Reset_Packed_Prefix --
+ -------------------------
+
+ procedure Reset_Packed_Prefix is
+ Pfx : Node_Id := Actual;
+ begin
+ loop
+ Set_Analyzed (Pfx, False);
+ exit when Nkind (Pfx) /= N_Selected_Component
+ and then Nkind (Pfx) /= N_Indexed_Component;
+ Pfx := Prefix (Pfx);
+ end loop;
+ end Reset_Packed_Prefix;
+
+ -- Start of processing for Expand_Actuals
+
+ begin
+ Post_Call := New_List;
+
+ Formal := First_Formal (Subp);
+ Actual := First_Actual (N);
+ while Present (Formal) loop
+ E_Formal := Etype (Formal);
+
+ if Is_Scalar_Type (E_Formal)
+ or else Nkind (Actual) = N_Slice
+ then
+ Check_Fortran_Logical;
+
+ -- RM 6.4.1 (11)
+
+ elsif Ekind (Formal) /= E_Out_Parameter then
+
+ -- The unusual case of the current instance of a protected type
+ -- requires special handling. This can only occur in the context
+ -- of a call within the body of a protected operation.
+
+ if Is_Entity_Name (Actual)
+ and then Ekind (Entity (Actual)) = E_Protected_Type
+ and then In_Open_Scopes (Entity (Actual))
+ then
+ if Scope (Subp) /= Entity (Actual) then
+ Error_Msg_N ("operation outside protected type may not "
+ & "call back its protected operations?", Actual);
+ end if;
+
+ Rewrite (Actual,
+ Expand_Protected_Object_Reference (N, Entity (Actual)));
+ end if;
+
+ Apply_Constraint_Check (Actual, E_Formal);
+
+ -- Out parameter case. No constraint checks on access type
+ -- RM 6.4.1 (13)
+
+ elsif Is_Access_Type (E_Formal) then
+ null;
+
+ -- RM 6.4.1 (14)
+
+ elsif Has_Discriminants (Base_Type (E_Formal))
+ or else Has_Non_Null_Base_Init_Proc (E_Formal)
+ then
+ Apply_Constraint_Check (Actual, E_Formal);
+
+ -- RM 6.4.1 (15)
+
+ else
+ Apply_Constraint_Check (Actual, Base_Type (E_Formal));
+ end if;
+
+ -- Processing for IN-OUT and OUT parameters
+
+ if Ekind (Formal) /= E_In_Parameter then
+
+ -- For type conversions of arrays, apply length/range checks
+
+ if Is_Array_Type (E_Formal)
+ and then Nkind (Actual) = N_Type_Conversion
+ then
+ if Is_Constrained (E_Formal) then
+ Apply_Length_Check (Expression (Actual), E_Formal);
+ else
+ Apply_Range_Check (Expression (Actual), E_Formal);
+ end if;
+ end if;
+
+ -- If argument is a type conversion for a type that is passed
+ -- by copy, then we must pass the parameter by copy.
+
+ if Nkind (Actual) = N_Type_Conversion
+ and then
+ (Is_Numeric_Type (E_Formal)
+ or else Is_Access_Type (E_Formal)
+ or else Is_Enumeration_Type (E_Formal)
+ or else Is_Bit_Packed_Array (Etype (Formal))
+ or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
+
+ -- Also pass by copy if change of representation
+
+ or else not Same_Representation
+ (Etype (Formal),
+ Etype (Expression (Actual))))
+ then
+ Add_Call_By_Copy_Code;
+
+ -- References to components of bit packed arrays are expanded
+ -- at this point, rather than at the point of analysis of the
+ -- actuals, to handle the expansion of the assignment to
+ -- [in] out parameters.
+
+ elsif Is_Ref_To_Bit_Packed_Array (Actual) then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- If a non-scalar actual is possibly unaligned, we need a copy
+
+ elsif Is_Possibly_Unaligned_Object (Actual)
+ and then not Represented_As_Scalar (Etype (Formal))
+ then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- References to slices of bit packed arrays are expanded
+
+ elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+
+ -- References to possibly unaligned slices of arrays are expanded
+
+ elsif Is_Possibly_Unaligned_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+
+ -- Deal with access types where the actual subtpe and the
+ -- formal subtype are not the same, requiring a check.
+
+ -- It is necessary to exclude tagged types because of "downward
+ -- conversion" errors and a strange assertion error in namet
+ -- from gnatf in bug 1215-001 ???
+
+ elsif Is_Access_Type (E_Formal)
+ and then not Same_Type (E_Formal, Etype (Actual))
+ and then not Is_Tagged_Type (Designated_Type (E_Formal))
+ then
+ Add_Call_By_Copy_Code;
+
+ -- If the actual is not a scalar and is marked for volatile
+ -- treatment, whereas the formal is not volatile, then pass
+ -- by copy unless it is a by-reference type.
+
+ elsif Is_Entity_Name (Actual)
+ and then Treat_As_Volatile (Entity (Actual))
+ and then not Is_By_Reference_Type (Etype (Actual))
+ and then not Is_Scalar_Type (Etype (Entity (Actual)))
+ and then not Treat_As_Volatile (E_Formal)
+ then
+ Add_Call_By_Copy_Code;
+
+ elsif Nkind (Actual) = N_Indexed_Component
+ and then Is_Entity_Name (Prefix (Actual))
+ and then Has_Volatile_Components (Entity (Prefix (Actual)))
+ then
+ Add_Call_By_Copy_Code;
+ end if;
+
+ -- Processing for IN parameters
+
+ else
+ -- For IN parameters is in the packed array case, we expand an
+ -- indexed component (the circuit in Exp_Ch4 deliberately left
+ -- indexed components appearing as actuals untouched, so that
+ -- the special processing above for the OUT and IN OUT cases
+ -- could be performed. We could make the test in Exp_Ch4 more
+ -- complex and have it detect the parameter mode, but it is
+ -- easier simply to handle all cases here.)
+
+ if Nkind (Actual) = N_Indexed_Component
+ and then Is_Packed (Etype (Prefix (Actual)))
+ then
+ Reset_Packed_Prefix;
+ Expand_Packed_Element_Reference (Actual);
+
+ -- If we have a reference to a bit packed array, we copy it,
+ -- since the actual must be byte aligned.
+
+ -- Is this really necessary in all cases???
+
+ elsif Is_Ref_To_Bit_Packed_Array (Actual) then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- If a non-scalar actual is possibly unaligned, we need a copy
+
+ elsif Is_Possibly_Unaligned_Object (Actual)
+ and then not Represented_As_Scalar (Etype (Formal))
+ then
+ Add_Simple_Call_By_Copy_Code;
+
+ -- Similarly, we have to expand slices of packed arrays here
+ -- because the result must be byte aligned.
+
+ elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+
+ -- Only processing remaining is to pass by copy if this is a
+ -- reference to a possibly unaligned slice, since the caller
+ -- expects an appropriately aligned argument.
+
+ elsif Is_Possibly_Unaligned_Slice (Actual) then
+ Add_Call_By_Copy_Code;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+
+ -- Find right place to put post call stuff if it is present
+
+ if not Is_Empty_List (Post_Call) then
+
+ -- If call is not a list member, it must be the triggering statement
+ -- of a triggering alternative or an entry call alternative, and we
+ -- can add the post call stuff to the corresponding statement list.
+
+ if not Is_List_Member (N) then
+ declare
+ P : constant Node_Id := Parent (N);
+
+ begin
+ pragma Assert (Nkind (P) = N_Triggering_Alternative
+ or else Nkind (P) = N_Entry_Call_Alternative);
+
+ if Is_Non_Empty_List (Statements (P)) then
+ Insert_List_Before_And_Analyze
+ (First (Statements (P)), Post_Call);
+ else
+ Set_Statements (P, Post_Call);
+ end if;
+ end;
+
+ -- Otherwise, normal case where N is in a statement sequence,
+ -- just put the post-call stuff after the call statement.
+
+ else
+ Insert_Actions_After (N, Post_Call);
+ end if;
+ end if;
+
+ -- The call node itself is re-analyzed in Expand_Call
+
+ end Expand_Actuals;
+
+ -----------------
+ -- Expand_Call --
+ -----------------
+
+ -- This procedure handles expansion of function calls and procedure call
+ -- statements (i.e. it serves as the body for Expand_N_Function_Call and
+ -- Expand_N_Procedure_Call_Statement. Processing for calls includes:
+
+ -- Replace call to Raise_Exception by Raise_Exception always if possible
+ -- Provide values of actuals for all formals in Extra_Formals list
+ -- Replace "call" to enumeration literal function by literal itself
+ -- Rewrite call to predefined operator as operator
+ -- Replace actuals to in-out parameters that are numeric conversions,
+ -- with explicit assignment to temporaries before and after the call.
+ -- Remove optional actuals if First_Optional_Parameter specified.
+
+ -- Note that the list of actuals has been filled with default expressions
+ -- during semantic analysis of the call. Only the extra actuals required
+ -- for the 'Constrained attribute and for accessibility checks are added
+ -- at this point.
+
+ procedure Expand_Call (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Remote : constant Boolean := Is_Remote_Call (N);
+ Subp : Entity_Id;
+ Orig_Subp : Entity_Id := Empty;
+ Parent_Subp : Entity_Id;
+ Parent_Formal : Entity_Id;
+ Actual : Node_Id;
+ Formal : Entity_Id;
+ Prev : Node_Id := Empty;
+
+ Prev_Orig : Node_Id;
+ -- Original node for an actual, which may have been rewritten. If the
+ -- actual is a function call that has been transformed from a selected
+ -- component, the original node is unanalyzed. Otherwise, it carries
+ -- semantic information used to generate additional actuals.
+
+ Scop : Entity_Id;
+ Extra_Actuals : List_Id := No_List;
+
+ CW_Interface_Formals_Present : Boolean := False;
+
+ procedure Add_Actual_Parameter (Insert_Param : Node_Id);
+ -- Adds one entry to the end of the actual parameter list. Used for
+ -- default parameters and for extra actuals (for Extra_Formals). The
+ -- argument is an N_Parameter_Association node.
+
+ procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
+ -- Adds an extra actual to the list of extra actuals. Expr is the
+ -- expression for the value of the actual, EF is the entity for the
+ -- extra formal.
+
+ function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
+ -- Within an instance, a type derived from a non-tagged formal derived
+ -- type inherits from the original parent, not from the actual. This is
+ -- tested in 4723-003. The current derivation mechanism has the derived
+ -- type inherit from the actual, which is only correct outside of the
+ -- instance. If the subprogram is inherited, we test for this particular
+ -- case through a convoluted tree traversal before setting the proper
+ -- subprogram to be called.
+
+ --------------------------
+ -- Add_Actual_Parameter --
+ --------------------------
+
+ procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
+ Actual_Expr : constant Node_Id :=
+ Explicit_Actual_Parameter (Insert_Param);
+
+ begin
+ -- Case of insertion is first named actual
+
+ if No (Prev) or else
+ Nkind (Parent (Prev)) /= N_Parameter_Association
+ then
+ Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
+ Set_First_Named_Actual (N, Actual_Expr);
+
+ if No (Prev) then
+ if No (Parameter_Associations (N)) then
+ Set_Parameter_Associations (N, New_List);
+ Append (Insert_Param, Parameter_Associations (N));
+ end if;
+ else
+ Insert_After (Prev, Insert_Param);
+ end if;
+
+ -- Case of insertion is not first named actual
+
+ else
+ Set_Next_Named_Actual
+ (Insert_Param, Next_Named_Actual (Parent (Prev)));
+ Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
+ Append (Insert_Param, Parameter_Associations (N));
+ end if;
+
+ Prev := Actual_Expr;
+ end Add_Actual_Parameter;
+
+ ----------------------
+ -- Add_Extra_Actual --
+ ----------------------
+
+ procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (Expr);
+
+ begin
+ if Extra_Actuals = No_List then
+ Extra_Actuals := New_List;
+ Set_Parent (Extra_Actuals, N);
+ end if;
+
+ Append_To (Extra_Actuals,
+ Make_Parameter_Association (Loc,
+ Explicit_Actual_Parameter => Expr,
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (EF))));
+
+ Analyze_And_Resolve (Expr, Etype (EF));
+ end Add_Extra_Actual;
+
+ ---------------------------
+ -- Inherited_From_Formal --
+ ---------------------------
+
+ function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
+ Par : Entity_Id;
+ Gen_Par : Entity_Id;
+ Gen_Prim : Elist_Id;
+ Elmt : Elmt_Id;
+ Indic : Node_Id;
+
+ begin
+ -- If the operation is inherited, it is attached to the corresponding
+ -- type derivation. If the parent in the derivation is a generic
+ -- actual, it is a subtype of the actual, and we have to recover the
+ -- original derived type declaration to find the proper parent.
+
+ if Nkind (Parent (S)) /= N_Full_Type_Declaration
+ or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
+ or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
+ N_Derived_Type_Definition
+ or else not In_Instance
+ then
+ return Empty;
+
+ else
+ Indic :=
+ (Subtype_Indication
+ (Type_Definition (Original_Node (Parent (S)))));
+
+ if Nkind (Indic) = N_Subtype_Indication then
+ Par := Entity (Subtype_Mark (Indic));
+ else
+ Par := Entity (Indic);
+ end if;
+ end if;
+
+ if not Is_Generic_Actual_Type (Par)
+ or else Is_Tagged_Type (Par)
+ or else Nkind (Parent (Par)) /= N_Subtype_Declaration
+ or else not In_Open_Scopes (Scope (Par))
+ then
+ return Empty;
+
+ else
+ Gen_Par := Generic_Parent_Type (Parent (Par));
+ end if;
+
+ -- If the generic parent type is still the generic type, this is a
+ -- private formal, not a derived formal, and there are no operations
+ -- inherited from the formal.
+
+ if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
+ return Empty;
+ end if;
+
+ Gen_Prim := Collect_Primitive_Operations (Gen_Par);
+
+ Elmt := First_Elmt (Gen_Prim);
+ while Present (Elmt) loop
+ if Chars (Node (Elmt)) = Chars (S) then
+ declare
+ F1 : Entity_Id;
+ F2 : Entity_Id;
+
+ begin
+ F1 := First_Formal (S);
+ F2 := First_Formal (Node (Elmt));
+ while Present (F1)
+ and then Present (F2)
+ loop
+ if Etype (F1) = Etype (F2)
+ or else Etype (F2) = Gen_Par
+ then
+ Next_Formal (F1);
+ Next_Formal (F2);
+ else
+ Next_Elmt (Elmt);
+ exit; -- not the right subprogram
+ end if;
+
+ return Node (Elmt);
+ end loop;
+ end;
+
+ else
+ Next_Elmt (Elmt);
+ end if;
+ end loop;
+
+ raise Program_Error;
+ end Inherited_From_Formal;
+
+ -- Start of processing for Expand_Call
+
+ begin
+ -- Ignore if previous error
+
+ if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
+ return;
+ end if;
+
+ -- Call using access to subprogram with explicit dereference
+
+ if Nkind (Name (N)) = N_Explicit_Dereference then
+ Subp := Etype (Name (N));
+ Parent_Subp := Empty;
+
+ -- Case of call to simple entry, where the Name is a selected component
+ -- whose prefix is the task, and whose selector name is the entry name
+
+ elsif Nkind (Name (N)) = N_Selected_Component then
+ Subp := Entity (Selector_Name (Name (N)));
+ Parent_Subp := Empty;
+
+ -- Case of call to member of entry family, where Name is an indexed
+ -- component, with the prefix being a selected component giving the
+ -- task and entry family name, and the index being the entry index.
+
+ elsif Nkind (Name (N)) = N_Indexed_Component then
+ Subp := Entity (Selector_Name (Prefix (Name (N))));
+ Parent_Subp := Empty;
+
+ -- Normal case
+
+ else
+ Subp := Entity (Name (N));
+ Parent_Subp := Alias (Subp);
+
+ -- Replace call to Raise_Exception by call to Raise_Exception_Always
+ -- if we can tell that the first parameter cannot possibly be null.
+ -- This helps optimization and also generation of warnings.
+
+ if not Restriction_Active (No_Exception_Handlers)
+ and then Is_RTE (Subp, RE_Raise_Exception)
+ then
+ declare
+ FA : constant Node_Id := Original_Node (First_Actual (N));
+
+ begin
+ -- The case we catch is where the first argument is obtained
+ -- using the Identity attribute (which must always be
+ -- non-null).
+
+ if Nkind (FA) = N_Attribute_Reference
+ and then Attribute_Name (FA) = Name_Identity
+ then
+ Subp := RTE (RE_Raise_Exception_Always);
+ Set_Entity (Name (N), Subp);
+ end if;
+ end;
+ end if;
+
+ if Ekind (Subp) = E_Entry then
+ Parent_Subp := Empty;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-345): We have a procedure call as a triggering
+ -- alternative in an asynchronous select or as an entry call in
+ -- a conditional or timed select. Check whether the procedure call
+ -- is a renaming of an entry and rewrite it as an entry call.
+
+ if Ada_Version >= Ada_05
+ and then Nkind (N) = N_Procedure_Call_Statement
+ and then
+ ((Nkind (Parent (N)) = N_Triggering_Alternative
+ and then Triggering_Statement (Parent (N)) = N)
+ or else
+ (Nkind (Parent (N)) = N_Entry_Call_Alternative
+ and then Entry_Call_Statement (Parent (N)) = N))
+ then
+ declare
+ Ren_Decl : Node_Id;
+ Ren_Root : Entity_Id := Subp;
+
+ begin
+ -- This may be a chain of renamings, find the root
+
+ if Present (Alias (Ren_Root)) then
+ Ren_Root := Alias (Ren_Root);
+ end if;
+
+ if Present (Original_Node (Parent (Parent (Ren_Root)))) then
+ Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
+
+ if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
+ Rewrite (N,
+ Make_Entry_Call_Statement (Loc,
+ Name =>
+ New_Copy_Tree (Name (Ren_Decl)),
+ Parameter_Associations =>
+ New_Copy_List_Tree (Parameter_Associations (N))));
+
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- First step, compute extra actuals, corresponding to any
+ -- Extra_Formals present. Note that we do not access Extra_Formals
+ -- directly, instead we simply note the presence of the extra
+ -- formals as we process the regular formals and collect the
+ -- corresponding actuals in Extra_Actuals.
+
+ -- We also generate any required range checks for actuals as we go
+ -- through the loop, since this is a convenient place to do this.
+
+ Formal := First_Formal (Subp);
+ Actual := First_Actual (N);
+ while Present (Formal) loop
+
+ -- Generate range check if required (not activated yet ???)
+
+-- if Do_Range_Check (Actual) then
+-- Set_Do_Range_Check (Actual, False);
+-- Generate_Range_Check
+-- (Actual, Etype (Formal), CE_Range_Check_Failed);
+-- end if;
+
+ -- Prepare to examine current entry
+
+ Prev := Actual;
+ Prev_Orig := Original_Node (Prev);
+
+ if not Analyzed (Prev_Orig)
+ and then Nkind (Actual) = N_Function_Call
+ then
+ Prev_Orig := Prev;
+ end if;
+
+ -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
+ -- to expand it in a further round.
+
+ CW_Interface_Formals_Present :=
+ CW_Interface_Formals_Present
+ or else
+ (Ekind (Etype (Formal)) = E_Class_Wide_Type
+ and then Is_Interface (Etype (Etype (Formal))))
+ or else
+ (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
+ and then Is_Interface (Directly_Designated_Type
+ (Etype (Etype (Formal)))));
+
+ -- Create possible extra actual for constrained case. Usually, the
+ -- extra actual is of the form actual'constrained, but since this
+ -- attribute is only available for unconstrained records, TRUE is
+ -- expanded if the type of the formal happens to be constrained (for
+ -- instance when this procedure is inherited from an unconstrained
+ -- record to a constrained one) or if the actual has no discriminant
+ -- (its type is constrained). An exception to this is the case of a
+ -- private type without discriminants. In this case we pass FALSE
+ -- because the object has underlying discriminants with defaults.
+
+ if Present (Extra_Constrained (Formal)) then
+ if Ekind (Etype (Prev)) in Private_Kind
+ and then not Has_Discriminants (Base_Type (Etype (Prev)))
+ then
+ Add_Extra_Actual (
+ New_Occurrence_Of (Standard_False, Loc),
+ Extra_Constrained (Formal));
+
+ elsif Is_Constrained (Etype (Formal))
+ or else not Has_Discriminants (Etype (Prev))
+ then
+ Add_Extra_Actual (
+ New_Occurrence_Of (Standard_True, Loc),
+ Extra_Constrained (Formal));
+
+ -- Do not produce extra actuals for Unchecked_Union parameters.
+ -- Jump directly to the end of the loop.
+
+ elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
+ goto Skip_Extra_Actual_Generation;
+
+ else
+ -- If the actual is a type conversion, then the constrained
+ -- test applies to the actual, not the target type.
+
+ declare
+ Act_Prev : Node_Id;
+
+ begin
+ -- Test for unchecked conversions as well, which can occur
+ -- as out parameter actuals on calls to stream procedures.
+
+ Act_Prev := Prev;
+ while Nkind (Act_Prev) = N_Type_Conversion
+ or else Nkind (Act_Prev) = N_Unchecked_Type_Conversion
+ loop
+ Act_Prev := Expression (Act_Prev);
+ end loop;
+
+ -- If the expression is a conversion of a dereference,
+ -- this is internally generated code that manipulates
+ -- addresses, e.g. when building interface tables. No
+ -- check should occur in this case, and the discriminated
+ -- object is not directly a hand.
+
+ if not Comes_From_Source (Actual)
+ and then Nkind (Actual) = N_Unchecked_Type_Conversion
+ and then Nkind (Act_Prev) = N_Explicit_Dereference
+ then
+ Add_Extra_Actual
+ (New_Occurrence_Of (Standard_False, Loc),
+ Extra_Constrained (Formal));
+
+ else
+ Add_Extra_Actual
+ (Make_Attribute_Reference (Sloc (Prev),
+ Prefix =>
+ Duplicate_Subexpr_No_Checks
+ (Act_Prev, Name_Req => True),
+ Attribute_Name => Name_Constrained),
+ Extra_Constrained (Formal));
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Create possible extra actual for accessibility level
+
+ if Present (Extra_Accessibility (Formal)) then
+ if Is_Entity_Name (Prev_Orig) then
+
+ -- When passing an access parameter as the actual to another
+ -- access parameter we need to pass along the actual's own
+ -- associated access level parameter. This is done if we are
+ -- in the scope of the formal access parameter (if this is an
+ -- inlined body the extra formal is irrelevant).
+
+ if Ekind (Entity (Prev_Orig)) in Formal_Kind
+ and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
+ and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
+ then
+ declare
+ Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
+
+ begin
+ pragma Assert (Present (Parm_Ent));
+
+ if Present (Extra_Accessibility (Parm_Ent)) then
+ Add_Extra_Actual
+ (New_Occurrence_Of
+ (Extra_Accessibility (Parm_Ent), Loc),
+ Extra_Accessibility (Formal));
+
+ -- If the actual access parameter does not have an
+ -- associated extra formal providing its scope level,
+ -- then treat the actual as having library-level
+ -- accessibility.
+
+ else
+ Add_Extra_Actual
+ (Make_Integer_Literal (Loc,
+ Intval => Scope_Depth (Standard_Standard)),
+ Extra_Accessibility (Formal));
+ end if;
+ end;
+
+ -- The actual is a normal access value, so just pass the
+ -- level of the actual's access type.
+
+ else
+ Add_Extra_Actual
+ (Make_Integer_Literal (Loc,
+ Intval => Type_Access_Level (Etype (Prev_Orig))),
+ Extra_Accessibility (Formal));
+ end if;
+
+ else
+ case Nkind (Prev_Orig) is
+
+ when N_Attribute_Reference =>
+
+ case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
+
+ -- For X'Access, pass on the level of the prefix X
+
+ when Attribute_Access =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Intval =>
+ Object_Access_Level (Prefix (Prev_Orig))),
+ Extra_Accessibility (Formal));
+
+ -- Treat the unchecked attributes as library-level
+
+ when Attribute_Unchecked_Access |
+ Attribute_Unrestricted_Access =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Intval => Scope_Depth (Standard_Standard)),
+ Extra_Accessibility (Formal));
+
+ -- No other cases of attributes returning access
+ -- values that can be passed to access parameters
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ -- For allocators we pass the level of the execution of
+ -- the called subprogram, which is one greater than the
+ -- current scope level.
+
+ when N_Allocator =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Scope_Depth (Current_Scope) + 1),
+ Extra_Accessibility (Formal));
+
+ -- For other cases we simply pass the level of the
+ -- actual's access type.
+
+ when others =>
+ Add_Extra_Actual (
+ Make_Integer_Literal (Loc,
+ Intval => Type_Access_Level (Etype (Prev_Orig))),
+ Extra_Accessibility (Formal));
+
+ end case;
+ end if;
+ end if;
+
+ -- Perform the check of 4.6(49) that prevents a null value from being
+ -- passed as an actual to an access parameter. Note that the check is
+ -- elided in the common cases of passing an access attribute or
+ -- access parameter as an actual. Also, we currently don't enforce
+ -- this check for expander-generated actuals and when -gnatdj is set.
+
+ if Ada_Version >= Ada_05 then
+
+ -- Ada 2005 (AI-231): Check null-excluding access types
+
+ if Is_Access_Type (Etype (Formal))
+ and then Can_Never_Be_Null (Etype (Formal))
+ and then Nkind (Prev) /= N_Raise_Constraint_Error
+ and then (Nkind (Prev) = N_Null
+ or else not Can_Never_Be_Null (Etype (Prev)))
+ then
+ Install_Null_Excluding_Check (Prev);
+ end if;
+
+ -- Ada_Version < Ada_05
+
+ else
+ if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
+ or else Access_Checks_Suppressed (Subp)
+ then
+ null;
+
+ elsif Debug_Flag_J then
+ null;
+
+ elsif not Comes_From_Source (Prev) then
+ null;
+
+ elsif Is_Entity_Name (Prev)
+ and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
+ then
+ null;
+
+ elsif Nkind (Prev) = N_Allocator
+ or else Nkind (Prev) = N_Attribute_Reference
+ then
+ null;
+
+ -- Suppress null checks when passing to access parameters of Java
+ -- subprograms. (Should this be done for other foreign conventions
+ -- as well ???)
+
+ elsif Convention (Subp) = Convention_Java then
+ null;
+
+ else
+ Install_Null_Excluding_Check (Prev);
+ end if;
+ end if;
+
+ -- Perform appropriate validity checks on parameters that
+ -- are entities.
+
+ if Validity_Checks_On then
+ if (Ekind (Formal) = E_In_Parameter
+ and then Validity_Check_In_Params)
+ or else
+ (Ekind (Formal) = E_In_Out_Parameter
+ and then Validity_Check_In_Out_Params)
+ then
+ -- If the actual is an indexed component of a packed
+ -- type, it has not been expanded yet. It will be
+ -- copied in the validity code that follows, and has
+ -- to be expanded appropriately, so reanalyze it.
+
+ if Nkind (Actual) = N_Indexed_Component then
+ Set_Analyzed (Actual, False);
+ end if;
+
+ Ensure_Valid (Actual);
+ end if;
+ end if;
+
+ -- For IN OUT and OUT parameters, ensure that subscripts are valid
+ -- since this is a left side reference. We only do this for calls
+ -- from the source program since we assume that compiler generated
+ -- calls explicitly generate any required checks. We also need it
+ -- only if we are doing standard validity checks, since clearly it
+ -- is not needed if validity checks are off, and in subscript
+ -- validity checking mode, all indexed components are checked with
+ -- a call directly from Expand_N_Indexed_Component.
+
+ if Comes_From_Source (N)
+ and then Ekind (Formal) /= E_In_Parameter
+ and then Validity_Checks_On
+ and then Validity_Check_Default
+ and then not Validity_Check_Subscripts
+ then
+ Check_Valid_Lvalue_Subscripts (Actual);
+ end if;
+
+ -- Mark any scalar OUT parameter that is a simple variable as no
+ -- longer known to be valid (unless the type is always valid). This
+ -- reflects the fact that if an OUT parameter is never set in a
+ -- procedure, then it can become invalid on the procedure return.
+
+ if Ekind (Formal) = E_Out_Parameter
+ and then Is_Entity_Name (Actual)
+ and then Ekind (Entity (Actual)) = E_Variable
+ and then not Is_Known_Valid (Etype (Actual))
+ then
+ Set_Is_Known_Valid (Entity (Actual), False);
+ end if;
+
+ -- For an OUT or IN OUT parameter, if the actual is an entity, then
+ -- clear current values, since they can be clobbered. We are probably
+ -- doing this in more places than we need to, but better safe than
+ -- sorry when it comes to retaining bad current values!
+
+ if Ekind (Formal) /= E_In_Parameter
+ and then Is_Entity_Name (Actual)
+ then
+ Kill_Current_Values (Entity (Actual));
+ end if;
+
+ -- If the formal is class wide and the actual is an aggregate, force
+ -- evaluation so that the back end who does not know about class-wide
+ -- type, does not generate a temporary of the wrong size.
+
+ if not Is_Class_Wide_Type (Etype (Formal)) then
+ null;
+
+ elsif Nkind (Actual) = N_Aggregate
+ or else (Nkind (Actual) = N_Qualified_Expression
+ and then Nkind (Expression (Actual)) = N_Aggregate)
+ then
+ Force_Evaluation (Actual);
+ end if;
+
+ -- In a remote call, if the formal is of a class-wide type, check
+ -- that the actual meets the requirements described in E.4(18).
+
+ if Remote
+ and then Is_Class_Wide_Type (Etype (Formal))
+ then
+ Insert_Action (Actual,
+ Make_Implicit_If_Statement (N,
+ Condition =>
+ Make_Op_Not (Loc,
+ Get_Remotely_Callable
+ (Duplicate_Subexpr_Move_Checks (Actual))),
+ Then_Statements => New_List (
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Illegal_RACW_E_4_18))));
+ end if;
+
+ -- This label is required when skipping extra actual generation for
+ -- Unchecked_Union parameters.
+
+ <<Skip_Extra_Actual_Generation>>
+
+ Next_Actual (Actual);
+ Next_Formal (Formal);
+ end loop;
+
+ -- If we are expanding a rhs of an assignment we need to check if tag
+ -- propagation is needed. You might expect this processing to be in
+ -- Analyze_Assignment but has to be done earlier (bottom-up) because the
+ -- assignment might be transformed to a declaration for an unconstrained
+ -- value if the expression is classwide.
+
+ if Nkind (N) = N_Function_Call
+ and then Is_Tag_Indeterminate (N)
+ and then Is_Entity_Name (Name (N))
+ then
+ declare
+ Ass : Node_Id := Empty;
+
+ begin
+ if Nkind (Parent (N)) = N_Assignment_Statement then
+ Ass := Parent (N);
+
+ elsif Nkind (Parent (N)) = N_Qualified_Expression
+ and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ then
+ Ass := Parent (Parent (N));
+ end if;
+
+ if Present (Ass)
+ and then Is_Class_Wide_Type (Etype (Name (Ass)))
+ then
+ if Etype (N) /= Root_Type (Etype (Name (Ass))) then
+ Error_Msg_NE
+ ("tag-indeterminate expression must have type&"
+ & "('R'M 5.2 (6))", N, Root_Type (Etype (Name (Ass))));
+ else
+ Propagate_Tag (Name (Ass), N);
+ end if;
+
+ -- The call will be rewritten as a dispatching call, and
+ -- expanded as such.
+
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
+ -- it to point to the correct secondary virtual table
+
+ if (Nkind (N) = N_Function_Call
+ or else Nkind (N) = N_Procedure_Call_Statement)
+ and then CW_Interface_Formals_Present
+ then
+ Expand_Interface_Actuals (N);
+ end if;
+
+ -- Deals with Dispatch_Call if we still have a call, before expanding
+ -- extra actuals since this will be done on the re-analysis of the
+ -- dispatching call. Note that we do not try to shorten the actual
+ -- list for a dispatching call, it would not make sense to do so.
+ -- Expansion of dispatching calls is suppressed when Java_VM, because
+ -- the JVM back end directly handles the generation of dispatching
+ -- calls and would have to undo any expansion to an indirect call.
+
+ if (Nkind (N) = N_Function_Call
+ or else Nkind (N) = N_Procedure_Call_Statement)
+ and then Present (Controlling_Argument (N))
+ and then not Java_VM
+ then
+ Expand_Dispatching_Call (N);
+
+ -- The following return is worrisome. Is it really OK to
+ -- skip all remaining processing in this procedure ???
+
+ return;
+
+ -- Similarly, expand calls to RCI subprograms on which pragma
+ -- All_Calls_Remote applies. The rewriting will be reanalyzed
+ -- later. Do this only when the call comes from source since we do
+ -- not want such a rewritting to occur in expanded code.
+
+ elsif Is_All_Remote_Call (N) then
+ Expand_All_Calls_Remote_Subprogram_Call (N);
+
+ -- Similarly, do not add extra actuals for an entry call whose entity
+ -- is a protected procedure, or for an internal protected subprogram
+ -- call, because it will be rewritten as a protected subprogram call
+ -- and reanalyzed (see Expand_Protected_Subprogram_Call).
+
+ elsif Is_Protected_Type (Scope (Subp))
+ and then (Ekind (Subp) = E_Procedure
+ or else Ekind (Subp) = E_Function)
+ then
+ null;
+
+ -- During that loop we gathered the extra actuals (the ones that
+ -- correspond to Extra_Formals), so now they can be appended.
+
+ else
+ while Is_Non_Empty_List (Extra_Actuals) loop
+ Add_Actual_Parameter (Remove_Head (Extra_Actuals));
+ end loop;
+ end if;
+
+ -- At this point we have all the actuals, so this is the point at
+ -- which the various expansion activities for actuals is carried out.
+
+ Expand_Actuals (N, Subp);
+
+ -- If the subprogram is a renaming, or if it is inherited, replace it
+ -- in the call with the name of the actual subprogram being called.
+ -- If this is a dispatching call, the run-time decides what to call.
+ -- The Alias attribute does not apply to entries.
+
+ if Nkind (N) /= N_Entry_Call_Statement
+ and then No (Controlling_Argument (N))
+ and then Present (Parent_Subp)
+ then
+ if Present (Inherited_From_Formal (Subp)) then
+ Parent_Subp := Inherited_From_Formal (Subp);
+ else
+ while Present (Alias (Parent_Subp)) loop
+ Parent_Subp := Alias (Parent_Subp);
+ end loop;
+ end if;
+
+ -- The below setting of Entity is suspect, see F109-018 discussion???
+
+ Set_Entity (Name (N), Parent_Subp);
+
+ if Is_Abstract (Parent_Subp)
+ and then not In_Instance
+ then
+ Error_Msg_NE
+ ("cannot call abstract subprogram &!", Name (N), Parent_Subp);
+ end if;
+
+ -- Add an explicit conversion for parameter of the derived type.
+ -- This is only done for scalar and access in-parameters. Others
+ -- have been expanded in expand_actuals.
+
+ Formal := First_Formal (Subp);
+ Parent_Formal := First_Formal (Parent_Subp);
+ Actual := First_Actual (N);
+
+ -- It is not clear that conversion is needed for intrinsic
+ -- subprograms, but it certainly is for those that are user-
+ -- defined, and that can be inherited on derivation, namely
+ -- unchecked conversion and deallocation.
+ -- General case needs study ???
+
+ if not Is_Intrinsic_Subprogram (Parent_Subp)
+ or else Is_Generic_Instance (Parent_Subp)
+ then
+ while Present (Formal) loop
+ if Etype (Formal) /= Etype (Parent_Formal)
+ and then Is_Scalar_Type (Etype (Formal))
+ and then Ekind (Formal) = E_In_Parameter
+ and then not Raises_Constraint_Error (Actual)
+ then
+ Rewrite (Actual,
+ OK_Convert_To (Etype (Parent_Formal),
+ Relocate_Node (Actual)));
+
+ Analyze (Actual);
+ Resolve (Actual, Etype (Parent_Formal));
+ Enable_Range_Check (Actual);
+
+ elsif Is_Access_Type (Etype (Formal))
+ and then Base_Type (Etype (Parent_Formal)) /=
+ Base_Type (Etype (Actual))
+ then
+ if Ekind (Formal) /= E_In_Parameter then
+ Rewrite (Actual,
+ Convert_To (Etype (Parent_Formal),
+ Relocate_Node (Actual)));
+
+ Analyze (Actual);
+ Resolve (Actual, Etype (Parent_Formal));
+
+ elsif
+ Ekind (Etype (Parent_Formal)) = E_Anonymous_Access_Type
+ and then Designated_Type (Etype (Parent_Formal))
+ /=
+ Designated_Type (Etype (Actual))
+ and then not Is_Controlling_Formal (Formal)
+ then
+ -- This unchecked conversion is not necessary unless
+ -- inlining is enabled, because in that case the type
+ -- mismatch may become visible in the body about to be
+ -- inlined.
+
+ Rewrite (Actual,
+ Unchecked_Convert_To (Etype (Parent_Formal),
+ Relocate_Node (Actual)));
+
+ Analyze (Actual);
+ Resolve (Actual, Etype (Parent_Formal));
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Formal (Parent_Formal);
+ Next_Actual (Actual);
+ end loop;
+ end if;
+
+ Orig_Subp := Subp;
+ Subp := Parent_Subp;
+ end if;
+
+ -- Check for violation of No_Abort_Statements
+
+ if Is_RTE (Subp, RE_Abort_Task) then
+ Check_Restriction (No_Abort_Statements, N);
+
+ -- Check for violation of No_Dynamic_Attachment
+
+ elsif RTU_Loaded (Ada_Interrupts)
+ and then (Is_RTE (Subp, RE_Is_Reserved) or else
+ Is_RTE (Subp, RE_Is_Attached) or else
+ Is_RTE (Subp, RE_Current_Handler) or else
+ Is_RTE (Subp, RE_Attach_Handler) or else
+ Is_RTE (Subp, RE_Exchange_Handler) or else
+ Is_RTE (Subp, RE_Detach_Handler) or else
+ Is_RTE (Subp, RE_Reference))
+ then
+ Check_Restriction (No_Dynamic_Attachment, N);
+ end if;
+
+ -- Deal with case where call is an explicit dereference
+
+ if Nkind (Name (N)) = N_Explicit_Dereference then
+
+ -- Handle case of access to protected subprogram type
+
+ if Ekind (Base_Type (Etype (Prefix (Name (N))))) =
+ E_Access_Protected_Subprogram_Type
+ then
+ -- If this is a call through an access to protected operation,
+ -- the prefix has the form (object'address, operation'access).
+ -- Rewrite as a for other protected calls: the object is the
+ -- first parameter of the list of actuals.
+
+ declare
+ Call : Node_Id;
+ Parm : List_Id;
+ Nam : Node_Id;
+ Obj : Node_Id;
+ Ptr : constant Node_Id := Prefix (Name (N));
+
+ T : constant Entity_Id :=
+ Equivalent_Type (Base_Type (Etype (Ptr)));
+
+ D_T : constant Entity_Id :=
+ Designated_Type (Base_Type (Etype (Ptr)));
+
+ begin
+ Obj :=
+ Make_Selected_Component (Loc,
+ Prefix => Unchecked_Convert_To (T, Ptr),
+ Selector_Name =>
+ New_Occurrence_Of (First_Entity (T), Loc));
+
+ Nam :=
+ Make_Selected_Component (Loc,
+ Prefix => Unchecked_Convert_To (T, Ptr),
+ Selector_Name =>
+ New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
+
+ Nam := Make_Explicit_Dereference (Loc, Nam);
+
+ if Present (Parameter_Associations (N)) then
+ Parm := Parameter_Associations (N);
+ else
+ Parm := New_List;
+ end if;
+
+ Prepend (Obj, Parm);
+
+ if Etype (D_T) = Standard_Void_Type then
+ Call := Make_Procedure_Call_Statement (Loc,
+ Name => Nam,
+ Parameter_Associations => Parm);
+ else
+ Call := Make_Function_Call (Loc,
+ Name => Nam,
+ Parameter_Associations => Parm);
+ end if;
+
+ Set_First_Named_Actual (Call, First_Named_Actual (N));
+ Set_Etype (Call, Etype (D_T));
+
+ -- We do not re-analyze the call to avoid infinite recursion.
+ -- We analyze separately the prefix and the object, and set
+ -- the checks on the prefix that would otherwise be emitted
+ -- when resolving a call.
+
+ Rewrite (N, Call);
+ Analyze (Nam);
+ Apply_Access_Check (Nam);
+ Analyze (Obj);
+ return;
+ end;
+ end if;
+ end if;
+
+ -- If this is a call to an intrinsic subprogram, then perform the
+ -- appropriate expansion to the corresponding tree node and we
+ -- are all done (since after that the call is gone!)
+
+ -- In the case where the intrinsic is to be processed by the back end,
+ -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
+ -- since the idea in this case is to pass the call unchanged.
+
+ if Is_Intrinsic_Subprogram (Subp) then
+ Expand_Intrinsic_Call (N, Subp);
+ return;
+ end if;
+
+ if Ekind (Subp) = E_Function
+ or else Ekind (Subp) = E_Procedure
+ then
+ if Is_Inlined (Subp) then
+
+ Inlined_Subprogram : declare
+ Bod : Node_Id;
+ Must_Inline : Boolean := False;
+ Spec : constant Node_Id := Unit_Declaration_Node (Subp);
+ Scop : constant Entity_Id := Scope (Subp);
+
+ function In_Unfrozen_Instance return Boolean;
+ -- If the subprogram comes from an instance in the same
+ -- unit, and the instance is not yet frozen, inlining might
+ -- trigger order-of-elaboration problems in gigi.
+
+ --------------------------
+ -- In_Unfrozen_Instance --
+ --------------------------
+
+ function In_Unfrozen_Instance return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Scop;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Generic_Instance (S)
+ and then Present (Freeze_Node (S))
+ and then not Analyzed (Freeze_Node (S))
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Unfrozen_Instance;
+
+ -- Start of processing for Inlined_Subprogram
+
+ begin
+ -- Verify that the body to inline has already been seen, and
+ -- that if the body is in the current unit the inlining does
+ -- not occur earlier. This avoids order-of-elaboration problems
+ -- in the back end.
+
+ -- This should be documented in sinfo/einfo ???
+
+ if No (Spec)
+ or else Nkind (Spec) /= N_Subprogram_Declaration
+ or else No (Body_To_Inline (Spec))
+ then
+ Must_Inline := False;
+
+ -- If this an inherited function that returns a private
+ -- type, do not inline if the full view is an unconstrained
+ -- array, because such calls cannot be inlined.
+
+ elsif Present (Orig_Subp)
+ and then Is_Array_Type (Etype (Orig_Subp))
+ and then not Is_Constrained (Etype (Orig_Subp))
+ then
+ Must_Inline := False;
+
+ elsif In_Unfrozen_Instance then
+ Must_Inline := False;
+
+ else
+ Bod := Body_To_Inline (Spec);
+
+ if (In_Extended_Main_Code_Unit (N)
+ or else In_Extended_Main_Code_Unit (Parent (N))
+ or else Is_Always_Inlined (Subp))
+ and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
+ or else
+ Earlier_In_Extended_Unit (Sloc (Bod), Loc))
+ then
+ Must_Inline := True;
+
+ -- If we are compiling a package body that is not the main
+ -- unit, it must be for inlining/instantiation purposes,
+ -- in which case we inline the call to insure that the same
+ -- temporaries are generated when compiling the body by
+ -- itself. Otherwise link errors can occur.
+
+ -- If the function being called is itself in the main unit,
+ -- we cannot inline, because there is a risk of double
+ -- elaboration and/or circularity: the inlining can make
+ -- visible a private entity in the body of the main unit,
+ -- that gigi will see before its sees its proper definition.
+
+ elsif not (In_Extended_Main_Code_Unit (N))
+ and then In_Package_Body
+ then
+ Must_Inline := not In_Extended_Main_Source_Unit (Subp);
+ end if;
+ end if;
+
+ if Must_Inline then
+ Expand_Inlined_Call (N, Subp, Orig_Subp);
+
+ else
+ -- Let the back end handle it
+
+ Add_Inlined_Body (Subp);
+
+ if Front_End_Inlining
+ and then Nkind (Spec) = N_Subprogram_Declaration
+ and then (In_Extended_Main_Code_Unit (N))
+ and then No (Body_To_Inline (Spec))
+ and then not Has_Completion (Subp)
+ and then In_Same_Extended_Unit (Sloc (Spec), Loc)
+ then
+ Cannot_Inline
+ ("cannot inline& (body not seen yet)?",
+ N, Subp);
+ end if;
+ end if;
+ end Inlined_Subprogram;
+ end if;
+ end if;
+
+ -- Check for a protected subprogram. This is either an intra-object
+ -- call, or a protected function call. Protected procedure calls are
+ -- rewritten as entry calls and handled accordingly.
+
+ -- In Ada 2005, this may be an indirect call to an access parameter
+ -- that is an access_to_subprogram. In that case the anonymous type
+ -- has a scope that is a protected operation, but the call is a
+ -- regular one.
+
+ Scop := Scope (Subp);
+
+ if Nkind (N) /= N_Entry_Call_Statement
+ and then Is_Protected_Type (Scop)
+ and then Ekind (Subp) /= E_Subprogram_Type
+ then
+ -- If the call is an internal one, it is rewritten as a call to
+ -- to the corresponding unprotected subprogram.
+
+ Expand_Protected_Subprogram_Call (N, Subp, Scop);
+ end if;
+
+ -- Functions returning controlled objects need special attention
+
+ if Controlled_Type (Etype (Subp))
+ and then not Is_Return_By_Reference_Type (Etype (Subp))
+ then
+ Expand_Ctrl_Function_Call (N);
+ end if;
+
+ -- Test for First_Optional_Parameter, and if so, truncate parameter
+ -- list if there are optional parameters at the trailing end.
+ -- Note we never delete procedures for call via a pointer.
+
+ if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
+ and then Present (First_Optional_Parameter (Subp))
+ then
+ declare
+ Last_Keep_Arg : Node_Id;
+
+ begin
+ -- Last_Keep_Arg will hold the last actual that should be
+ -- retained. If it remains empty at the end, it means that
+ -- all parameters are optional.
+
+ Last_Keep_Arg := Empty;
+
+ -- Find first optional parameter, must be present since we
+ -- checked the validity of the parameter before setting it.
+
+ Formal := First_Formal (Subp);
+ Actual := First_Actual (N);
+ while Formal /= First_Optional_Parameter (Subp) loop
+ Last_Keep_Arg := Actual;
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+
+ -- We have Formal and Actual pointing to the first potentially
+ -- droppable argument. We can drop all the trailing arguments
+ -- whose actual matches the default. Note that we know that all
+ -- remaining formals have defaults, because we checked that this
+ -- requirement was met before setting First_Optional_Parameter.
+
+ -- We use Fully_Conformant_Expressions to check for identity
+ -- between formals and actuals, which may miss some cases, but
+ -- on the other hand, this is only an optimization (if we fail
+ -- to truncate a parameter it does not affect functionality).
+ -- So if the default is 3 and the actual is 1+2, we consider
+ -- them unequal, which hardly seems worrisome.
+
+ while Present (Formal) loop
+ if not Fully_Conformant_Expressions
+ (Actual, Default_Value (Formal))
+ then
+ Last_Keep_Arg := Actual;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+
+ -- If no arguments, delete entire list, this is the easy case
+
+ if No (Last_Keep_Arg) then
+ while Is_Non_Empty_List (Parameter_Associations (N)) loop
+ Delete_Tree (Remove_Head (Parameter_Associations (N)));
+ end loop;
+
+ Set_Parameter_Associations (N, No_List);
+ Set_First_Named_Actual (N, Empty);
+
+ -- Case where at the last retained argument is positional. This
+ -- is also an easy case, since the retained arguments are already
+ -- in the right form, and we don't need to worry about the order
+ -- of arguments that get eliminated.
+
+ elsif Is_List_Member (Last_Keep_Arg) then
+ while Present (Next (Last_Keep_Arg)) loop
+ Delete_Tree (Remove_Next (Last_Keep_Arg));
+ end loop;
+
+ Set_First_Named_Actual (N, Empty);
+
+ -- This is the annoying case where the last retained argument
+ -- is a named parameter. Since the original arguments are not
+ -- in declaration order, we may have to delete some fairly
+ -- random collection of arguments.
+
+ else
+ declare
+ Temp : Node_Id;
+ Passoc : Node_Id;
+
+ Discard : Node_Id;
+ pragma Warnings (Off, Discard);
+
+ begin
+ -- First step, remove all the named parameters from the
+ -- list (they are still chained using First_Named_Actual
+ -- and Next_Named_Actual, so we have not lost them!)
+
+ Temp := First (Parameter_Associations (N));
+
+ -- Case of all parameters named, remove them all
+
+ if Nkind (Temp) = N_Parameter_Association then
+ while Is_Non_Empty_List (Parameter_Associations (N)) loop
+ Temp := Remove_Head (Parameter_Associations (N));
+ end loop;
+
+ -- Case of mixed positional/named, remove named parameters
+
+ else
+ while Nkind (Next (Temp)) /= N_Parameter_Association loop
+ Next (Temp);
+ end loop;
+
+ while Present (Next (Temp)) loop
+ Discard := Remove_Next (Temp);
+ end loop;
+ end if;
+
+ -- Now we loop through the named parameters, till we get
+ -- to the last one to be retained, adding them to the list.
+ -- Note that the Next_Named_Actual list does not need to be
+ -- touched since we are only reordering them on the actual
+ -- parameter association list.
+
+ Passoc := Parent (First_Named_Actual (N));
+ loop
+ Temp := Relocate_Node (Passoc);
+ Append_To
+ (Parameter_Associations (N), Temp);
+ exit when
+ Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
+ Passoc := Parent (Next_Named_Actual (Passoc));
+ end loop;
+
+ Set_Next_Named_Actual (Temp, Empty);
+
+ loop
+ Temp := Next_Named_Actual (Passoc);
+ exit when No (Temp);
+ Set_Next_Named_Actual
+ (Passoc, Next_Named_Actual (Parent (Temp)));
+ Delete_Tree (Temp);
+ end loop;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Special processing for Ada 2005 AI-329, which requires a call to
+ -- Raise_Exception to raise Constraint_Error if the Exception_Id is
+ -- null. Note that we never need to do this in GNAT mode, or if the
+ -- parameter to Raise_Exception is a use of Identity, since in these
+ -- cases we know that the parameter is never null.
+
+ if Ada_Version >= Ada_05
+ and then not GNAT_Mode
+ and then Is_RTE (Subp, RE_Raise_Exception)
+ and then (Nkind (First_Actual (N)) /= N_Attribute_Reference
+ or else Attribute_Name (First_Actual (N)) /= Name_Identity)
+ then
+ declare
+ RCE : constant Node_Id :=
+ Make_Raise_Constraint_Error (Loc,
+ Reason => CE_Null_Exception_Id);
+ begin
+ Insert_After (N, RCE);
+ Analyze (RCE);
+ end;
+ end if;
+ end Expand_Call;
+
+ --------------------------
+ -- Expand_Inlined_Call --
+ --------------------------
+
+ procedure Expand_Inlined_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Orig_Subp : Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Is_Predef : constant Boolean :=
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Subp)));
+ Orig_Bod : constant Node_Id :=
+ Body_To_Inline (Unit_Declaration_Node (Subp));
+
+ Blk : Node_Id;
+ Bod : Node_Id;
+ Decl : Node_Id;
+ Decls : constant List_Id := New_List;
+ Exit_Lab : Entity_Id := Empty;
+ F : Entity_Id;
+ A : Node_Id;
+ Lab_Decl : Node_Id;
+ Lab_Id : Node_Id;
+ New_A : Node_Id;
+ Num_Ret : Int := 0;
+ Ret_Type : Entity_Id;
+ Targ : Node_Id;
+ Targ1 : Node_Id;
+ Temp : Entity_Id;
+ Temp_Typ : Entity_Id;
+
+ Is_Unc : constant Boolean :=
+ Is_Array_Type (Etype (Subp))
+ and then not Is_Constrained (Etype (Subp));
+ -- If the type returned by the function is unconstrained and the
+ -- call can be inlined, special processing is required.
+
+ procedure Find_Result;
+ -- For a function that returns an unconstrained type, retrieve the
+ -- name of the single variable that is the expression of a return
+ -- statement in the body of the function. Build_Body_To_Inline has
+ -- verified that this variable is unique, even in the presence of
+ -- multiple return statements.
+
+ procedure Make_Exit_Label;
+ -- Build declaration for exit label to be used in Return statements
+
+ function Process_Formals (N : Node_Id) return Traverse_Result;
+ -- Replace occurrence of a formal with the corresponding actual, or
+ -- the thunk generated for it.
+
+ function Process_Sloc (Nod : Node_Id) return Traverse_Result;
+ -- If the call being expanded is that of an internal subprogram,
+ -- set the sloc of the generated block to that of the call itself,
+ -- so that the expansion is skipped by the -next- command in gdb.
+ -- Same processing for a subprogram in a predefined file, e.g.
+ -- Ada.Tags. If Debug_Generated_Code is true, suppress this change
+ -- to simplify our own development.
+
+ procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
+ -- If the function body is a single expression, replace call with
+ -- expression, else insert block appropriately.
+
+ procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
+ -- If procedure body has no local variables, inline body without
+ -- creating block, otherwise rewrite call with block.
+
+ function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
+ -- Determine whether a formal parameter is used only once in Orig_Bod
+
+ -----------------
+ -- Find_Result --
+ -----------------
+
+ procedure Find_Result is
+ Decl : Node_Id;
+ Id : Node_Id;
+
+ function Get_Return (N : Node_Id) return Traverse_Result;
+ -- Recursive function to locate return statements in body.
+
+ function Get_Return (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Return_Statement then
+ Id := Expression (N);
+ return Abandon;
+ else
+ return OK;
+ end if;
+ end Get_Return;
+
+ procedure Find_It is new Traverse_Proc (Get_Return);
+
+ -- Start of processing for Find_Result
+
+ begin
+ Find_It (Handled_Statement_Sequence (Orig_Bod));
+
+ -- At this point the body is unanalyzed. Traverse the list of
+ -- declarations to locate the defining_identifier for it.
+
+ Decl := First (Declarations (Blk));
+
+ while Present (Decl) loop
+ if Chars (Defining_Identifier (Decl)) = Chars (Id) then
+ Targ1 := Defining_Identifier (Decl);
+ exit;
+
+ else
+ Next (Decl);
+ end if;
+ end loop;
+ end Find_Result;
+
+ ---------------------
+ -- Make_Exit_Label --
+ ---------------------
+
+ procedure Make_Exit_Label is
+ begin
+ -- Create exit label for subprogram if one does not exist yet
+
+ if No (Exit_Lab) then
+ Lab_Id := Make_Identifier (Loc, New_Internal_Name ('L'));
+ Set_Entity (Lab_Id,
+ Make_Defining_Identifier (Loc, Chars (Lab_Id)));
+ Exit_Lab := Make_Label (Loc, Lab_Id);
+
+ Lab_Decl :=
+ Make_Implicit_Label_Declaration (Loc,
+ Defining_Identifier => Entity (Lab_Id),
+ Label_Construct => Exit_Lab);
+ end if;
+ end Make_Exit_Label;
+
+ ---------------------
+ -- Process_Formals --
+ ---------------------
+
+ function Process_Formals (N : Node_Id) return Traverse_Result is
+ A : Entity_Id;
+ E : Entity_Id;
+ Ret : Node_Id;
+
+ begin
+ if Is_Entity_Name (N)
+ and then Present (Entity (N))
+ then
+ E := Entity (N);
+
+ if Is_Formal (E)
+ and then Scope (E) = Subp
+ then
+ A := Renamed_Object (E);
+
+ if Is_Entity_Name (A) then
+ Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
+
+ elsif Nkind (A) = N_Defining_Identifier then
+ Rewrite (N, New_Occurrence_Of (A, Loc));
+
+ else -- numeric literal
+ Rewrite (N, New_Copy (A));
+ end if;
+ end if;
+
+ return Skip;
+
+ elsif Nkind (N) = N_Return_Statement then
+
+ if No (Expression (N)) then
+ Make_Exit_Label;
+ Rewrite (N, Make_Goto_Statement (Loc,
+ Name => New_Copy (Lab_Id)));
+
+ else
+ if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
+ then
+ -- Function body is a single expression. No need for
+ -- exit label.
+
+ null;
+
+ else
+ Num_Ret := Num_Ret + 1;
+ Make_Exit_Label;
+ end if;
+
+ -- Because of the presence of private types, the views of the
+ -- expression and the context may be different, so place an
+ -- unchecked conversion to the context type to avoid spurious
+ -- errors, eg. when the expression is a numeric literal and
+ -- the context is private. If the expression is an aggregate,
+ -- use a qualified expression, because an aggregate is not a
+ -- legal argument of a conversion.
+
+ if Nkind (Expression (N)) = N_Aggregate
+ or else Nkind (Expression (N)) = N_Null
+ then
+ Ret :=
+ Make_Qualified_Expression (Sloc (N),
+ Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
+ Expression => Relocate_Node (Expression (N)));
+ else
+ Ret :=
+ Unchecked_Convert_To
+ (Ret_Type, Relocate_Node (Expression (N)));
+ end if;
+
+ if Nkind (Targ) = N_Defining_Identifier then
+ Rewrite (N,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Targ, Loc),
+ Expression => Ret));
+ else
+ Rewrite (N,
+ Make_Assignment_Statement (Loc,
+ Name => New_Copy (Targ),
+ Expression => Ret));
+ end if;
+
+ Set_Assignment_OK (Name (N));
+
+ if Present (Exit_Lab) then
+ Insert_After (N,
+ Make_Goto_Statement (Loc,
+ Name => New_Copy (Lab_Id)));
+ end if;
+ end if;
+
+ return OK;
+
+ -- Remove pragma Unreferenced since it may refer to formals that
+ -- are not visible in the inlined body, and in any case we will
+ -- not be posting warnings on the inlined body so it is unneeded.
+
+ elsif Nkind (N) = N_Pragma
+ and then Chars (N) = Name_Unreferenced
+ then
+ Rewrite (N, Make_Null_Statement (Sloc (N)));
+ return OK;
+
+ else
+ return OK;
+ end if;
+ end Process_Formals;
+
+ procedure Replace_Formals is new Traverse_Proc (Process_Formals);
+
+ ------------------
+ -- Process_Sloc --
+ ------------------
+
+ function Process_Sloc (Nod : Node_Id) return Traverse_Result is
+ begin
+ if not Debug_Generated_Code then
+ Set_Sloc (Nod, Sloc (N));
+ Set_Comes_From_Source (Nod, False);
+ end if;
+
+ return OK;
+ end Process_Sloc;
+
+ procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
+
+ ---------------------------
+ -- Rewrite_Function_Call --
+ ---------------------------
+
+ procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
+ HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
+ Fst : constant Node_Id := First (Statements (HSS));
+
+ begin
+ -- Optimize simple case: function body is a single return statement,
+ -- which has been expanded into an assignment.
+
+ if Is_Empty_List (Declarations (Blk))
+ and then Nkind (Fst) = N_Assignment_Statement
+ and then No (Next (Fst))
+ then
+
+ -- The function call may have been rewritten as the temporary
+ -- that holds the result of the call, in which case remove the
+ -- now useless declaration.
+
+ if Nkind (N) = N_Identifier
+ and then Nkind (Parent (Entity (N))) = N_Object_Declaration
+ then
+ Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
+ end if;
+
+ Rewrite (N, Expression (Fst));
+
+ elsif Nkind (N) = N_Identifier
+ and then Nkind (Parent (Entity (N))) = N_Object_Declaration
+ then
+ -- The block assigns the result of the call to the temporary
+
+ Insert_After (Parent (Entity (N)), Blk);
+
+ elsif Nkind (Parent (N)) = N_Assignment_Statement
+ and then
+ (Is_Entity_Name (Name (Parent (N)))
+ or else
+ (Nkind (Name (Parent (N))) = N_Explicit_Dereference
+ and then Is_Entity_Name (Prefix (Name (Parent (N))))))
+ then
+ -- Replace assignment with the block
+
+ declare
+ Original_Assignment : constant Node_Id := Parent (N);
+
+ begin
+ -- Preserve the original assignment node to keep the complete
+ -- assignment subtree consistent enough for Analyze_Assignment
+ -- to proceed (specifically, the original Lhs node must still
+ -- have an assignment statement as its parent).
+
+ -- We cannot rely on Original_Node to go back from the block
+ -- node to the assignment node, because the assignment might
+ -- already be a rewrite substitution.
+
+ Discard_Node (Relocate_Node (Original_Assignment));
+ Rewrite (Original_Assignment, Blk);
+ end;
+
+ elsif Nkind (Parent (N)) = N_Object_Declaration then
+ Set_Expression (Parent (N), Empty);
+ Insert_After (Parent (N), Blk);
+
+ elsif Is_Unc then
+ Insert_Before (Parent (N), Blk);
+ end if;
+ end Rewrite_Function_Call;
+
+ ----------------------------
+ -- Rewrite_Procedure_Call --
+ ----------------------------
+
+ procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
+ HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
+ begin
+ if Is_Empty_List (Declarations (Blk)) then
+ Insert_List_After (N, Statements (HSS));
+ Rewrite (N, Make_Null_Statement (Loc));
+ else
+ Rewrite (N, Blk);
+ end if;
+ end Rewrite_Procedure_Call;
+
+ -------------------------
+ -- Formal_Is_Used_Once --
+ ------------------------
+
+ function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
+ Use_Counter : Int := 0;
+
+ function Count_Uses (N : Node_Id) return Traverse_Result;
+ -- Traverse the tree and count the uses of the formal parameter.
+ -- In this case, for optimization purposes, we do not need to
+ -- continue the traversal once more than one use is encountered.
+
+ ----------------
+ -- Count_Uses --
+ ----------------
+
+ function Count_Uses (N : Node_Id) return Traverse_Result is
+ begin
+ -- The original node is an identifier
+
+ if Nkind (N) = N_Identifier
+ and then Present (Entity (N))
+
+ -- Original node's entity points to the one in the copied body
+
+ and then Nkind (Entity (N)) = N_Identifier
+ and then Present (Entity (Entity (N)))
+
+ -- The entity of the copied node is the formal parameter
+
+ and then Entity (Entity (N)) = Formal
+ then
+ Use_Counter := Use_Counter + 1;
+
+ if Use_Counter > 1 then
+
+ -- Denote more than one use and abandon the traversal
+
+ Use_Counter := 2;
+ return Abandon;
+
+ end if;
+ end if;
+
+ return OK;
+ end Count_Uses;
+
+ procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
+
+ -- Start of processing for Formal_Is_Used_Once
+
+ begin
+ Count_Formal_Uses (Orig_Bod);
+ return Use_Counter = 1;
+ end Formal_Is_Used_Once;
+
+ -- Start of processing for Expand_Inlined_Call
+
+ begin
+ -- Check for special case of To_Address call, and if so, just do an
+ -- unchecked conversion instead of expanding the call. Not only is this
+ -- more efficient, but it also avoids problem with order of elaboration
+ -- when address clauses are inlined (address expression elaborated at
+ -- wrong point).
+
+ if Subp = RTE (RE_To_Address) then
+ Rewrite (N,
+ Unchecked_Convert_To
+ (RTE (RE_Address),
+ Relocate_Node (First_Actual (N))));
+ return;
+ end if;
+
+ -- Check for an illegal attempt to inline a recursive procedure. If the
+ -- subprogram has parameters this is detected when trying to supply a
+ -- binding for parameters that already have one. For parameterless
+ -- subprograms this must be done explicitly.
+
+ if In_Open_Scopes (Subp) then
+ Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
+ Set_Is_Inlined (Subp, False);
+ return;
+ end if;
+
+ if Nkind (Orig_Bod) = N_Defining_Identifier
+ or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
+ then
+ -- Subprogram is a renaming_as_body. Calls appearing after the
+ -- renaming can be replaced with calls to the renamed entity
+ -- directly, because the subprograms are subtype conformant. If
+ -- the renamed subprogram is an inherited operation, we must redo
+ -- the expansion because implicit conversions may be needed.
+
+ Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
+
+ if Present (Alias (Orig_Bod)) then
+ Expand_Call (N);
+ end if;
+
+ return;
+ end if;
+
+ -- Use generic machinery to copy body of inlined subprogram, as if it
+ -- were an instantiation, resetting source locations appropriately, so
+ -- that nested inlined calls appear in the main unit.
+
+ Save_Env (Subp, Empty);
+ Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
+
+ Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
+ Blk :=
+ Make_Block_Statement (Loc,
+ Declarations => Declarations (Bod),
+ Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
+
+ if No (Declarations (Bod)) then
+ Set_Declarations (Blk, New_List);
+ end if;
+
+ -- For the unconstrained case, capture the name of the local
+ -- variable that holds the result.
+
+ if Is_Unc then
+ Find_Result;
+ end if;
+
+ -- If this is a derived function, establish the proper return type
+
+ if Present (Orig_Subp)
+ and then Orig_Subp /= Subp
+ then
+ Ret_Type := Etype (Orig_Subp);
+ else
+ Ret_Type := Etype (Subp);
+ end if;
+
+ -- Create temporaries for the actuals that are expressions, or that
+ -- are scalars and require copying to preserve semantics.
+
+ F := First_Formal (Subp);
+ A := First_Actual (N);
+ while Present (F) loop
+ if Present (Renamed_Object (F)) then
+ Error_Msg_N ("cannot inline call to recursive subprogram", N);
+ return;
+ end if;
+
+ -- If the argument may be a controlling argument in a call within
+ -- the inlined body, we must preserve its classwide nature to insure
+ -- that dynamic dispatching take place subsequently. If the formal
+ -- has a constraint it must be preserved to retain the semantics of
+ -- the body.
+
+ if Is_Class_Wide_Type (Etype (F))
+ or else (Is_Access_Type (Etype (F))
+ and then
+ Is_Class_Wide_Type (Designated_Type (Etype (F))))
+ then
+ Temp_Typ := Etype (F);
+
+ elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
+ and then Etype (F) /= Base_Type (Etype (F))
+ then
+ Temp_Typ := Etype (F);
+
+ else
+ Temp_Typ := Etype (A);
+ end if;
+
+ -- If the actual is a simple name or a literal, no need to
+ -- create a temporary, object can be used directly.
+
+ if (Is_Entity_Name (A)
+ and then
+ (not Is_Scalar_Type (Etype (A))
+ or else Ekind (Entity (A)) = E_Enumeration_Literal))
+
+ -- When the actual is an identifier and the corresponding formal
+ -- is used only once in the original body, the formal can be
+ -- substituted directly with the actual parameter.
+
+ or else (Nkind (A) = N_Identifier
+ and then Formal_Is_Used_Once (F))
+
+ or else Nkind (A) = N_Real_Literal
+ or else Nkind (A) = N_Integer_Literal
+ or else Nkind (A) = N_Character_Literal
+ then
+ if Etype (F) /= Etype (A) then
+ Set_Renamed_Object
+ (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
+ else
+ Set_Renamed_Object (F, A);
+ end if;
+
+ else
+ Temp :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('C'));
+
+ -- If the actual for an in/in-out parameter is a view conversion,
+ -- make it into an unchecked conversion, given that an untagged
+ -- type conversion is not a proper object for a renaming.
+
+ -- In-out conversions that involve real conversions have already
+ -- been transformed in Expand_Actuals.
+
+ if Nkind (A) = N_Type_Conversion
+ and then Ekind (F) /= E_In_Parameter
+ then
+ New_A := Make_Unchecked_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
+ Expression => Relocate_Node (Expression (A)));
+
+ elsif Etype (F) /= Etype (A) then
+ New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
+ Temp_Typ := Etype (F);
+
+ else
+ New_A := Relocate_Node (A);
+ end if;
+
+ Set_Sloc (New_A, Sloc (N));
+
+ if Ekind (F) = E_In_Parameter
+ and then not Is_Limited_Type (Etype (A))
+ then
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Constant_Present => True,
+ Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
+ Expression => New_A);
+ else
+ Decl :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
+ Name => New_A);
+ end if;
+
+ Append (Decl, Decls);
+ Set_Renamed_Object (F, Temp);
+ end if;
+
+ Next_Formal (F);
+ Next_Actual (A);
+ end loop;
+
+ -- Establish target of function call. If context is not assignment or
+ -- declaration, create a temporary as a target. The declaration for
+ -- the temporary may be subsequently optimized away if the body is a
+ -- single expression, or if the left-hand side of the assignment is
+ -- simple enough, i.e. an entity or an explicit dereference of one.
+
+ if Ekind (Subp) = E_Function then
+ if Nkind (Parent (N)) = N_Assignment_Statement
+ and then Is_Entity_Name (Name (Parent (N)))
+ then
+ Targ := Name (Parent (N));
+
+ elsif Nkind (Parent (N)) = N_Assignment_Statement
+ and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
+ and then Is_Entity_Name (Prefix (Name (Parent (N))))
+ then
+ Targ := Name (Parent (N));
+
+ else
+ -- Replace call with temporary and create its declaration
+
+ Temp :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
+ Set_Is_Internal (Temp);
+
+ -- For the unconstrained case. the generated temporary has the
+ -- same constrained declaration as the result variable.
+ -- It may eventually be possible to remove that temporary and
+ -- use the result variable directly.
+
+ if Is_Unc then
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition =>
+ New_Copy_Tree (Object_Definition (Parent (Targ1))));
+
+ Replace_Formals (Decl);
+
+ else
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition =>
+ New_Occurrence_Of (Ret_Type, Loc));
+
+ Set_Etype (Temp, Ret_Type);
+ end if;
+
+ Set_No_Initialization (Decl);
+ Append (Decl, Decls);
+ Rewrite (N, New_Occurrence_Of (Temp, Loc));
+ Targ := Temp;
+ end if;
+ end if;
+
+ Insert_Actions (N, Decls);
+
+ -- Traverse the tree and replace formals with actuals or their thunks.
+ -- Attach block to tree before analysis and rewriting.
+
+ Replace_Formals (Blk);
+ Set_Parent (Blk, N);
+
+ if not Comes_From_Source (Subp)
+ or else Is_Predef
+ then
+ Reset_Slocs (Blk);
+ end if;
+
+ if Present (Exit_Lab) then
+
+ -- If the body was a single expression, the single return statement
+ -- and the corresponding label are useless.
+
+ if Num_Ret = 1
+ and then
+ Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
+ N_Goto_Statement
+ then
+ Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
+ else
+ Append (Lab_Decl, (Declarations (Blk)));
+ Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
+ end if;
+ end if;
+
+ -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
+ -- conflicting private views that Gigi would ignore. If this is
+ -- predefined unit, analyze with checks off, as is done in the non-
+ -- inlined run-time units.
+
+ declare
+ I_Flag : constant Boolean := In_Inlined_Body;
+
+ begin
+ In_Inlined_Body := True;
+
+ if Is_Predef then
+ declare
+ Style : constant Boolean := Style_Check;
+ begin
+ Style_Check := False;
+ Analyze (Blk, Suppress => All_Checks);
+ Style_Check := Style;
+ end;
+
+ else
+ Analyze (Blk);
+ end if;
+
+ In_Inlined_Body := I_Flag;
+ end;
+
+ if Ekind (Subp) = E_Procedure then
+ Rewrite_Procedure_Call (N, Blk);
+ else
+ Rewrite_Function_Call (N, Blk);
+
+ -- For the unconstrained case, the replacement of the call has been
+ -- made prior to the complete analysis of the generated declarations.
+ -- Propagate the proper type now.
+
+ if Is_Unc then
+ if Nkind (N) = N_Identifier then
+ Set_Etype (N, Etype (Entity (N)));
+ else
+ Set_Etype (N, Etype (Targ1));
+ end if;
+ end if;
+ end if;
+
+ Restore_Env;
+
+ -- Cleanup mapping between formals and actuals for other expansions
+
+ F := First_Formal (Subp);
+ while Present (F) loop
+ Set_Renamed_Object (F, Empty);
+ Next_Formal (F);
+ end loop;
+ end Expand_Inlined_Call;
+
+ ----------------------------
+ -- Expand_N_Function_Call --
+ ----------------------------
+
+ procedure Expand_N_Function_Call (N : Node_Id) is
+ Typ : constant Entity_Id := Etype (N);
+
+ function Returned_By_Reference return Boolean;
+ -- If the return type is returned through the secondary stack. that is
+ -- by reference, we don't want to create a temp to force stack checking.
+ -- Shouldn't this function be moved to exp_util???
+
+ function Rhs_Of_Assign_Or_Decl (N : Node_Id) return Boolean;
+ -- If the call is the right side of an assignment or the expression in
+ -- an object declaration, we don't need to create a temp as the left
+ -- side will already trigger stack checking if necessary.
+ --
+ -- If the call is a component in an extension aggregate, it will be
+ -- expanded into assignments as well, so no temporary is needed. This
+ -- also solves the problem of functions returning types with unknown
+ -- discriminants, where it is not possible to declare an object of the
+ -- type altogether.
+
+ ---------------------------
+ -- Returned_By_Reference --
+ ---------------------------
+
+ function Returned_By_Reference return Boolean is
+ S : Entity_Id;
+
+ begin
+ if Is_Return_By_Reference_Type (Typ) then
+ return True;
+
+ elsif Nkind (Parent (N)) /= N_Return_Statement then
+ return False;
+
+ elsif Requires_Transient_Scope (Typ) then
+
+ -- Verify that the return type of the enclosing function has the
+ -- same constrained status as that of the expression.
+
+ S := Current_Scope;
+ while Ekind (S) /= E_Function loop
+ S := Scope (S);
+ end loop;
+
+ return Is_Constrained (Typ) = Is_Constrained (Etype (S));
+ else
+ return False;
+ end if;
+ end Returned_By_Reference;
+
+ ---------------------------
+ -- Rhs_Of_Assign_Or_Decl --
+ ---------------------------
+
+ function Rhs_Of_Assign_Or_Decl (N : Node_Id) return Boolean is
+ begin
+ if (Nkind (Parent (N)) = N_Assignment_Statement
+ and then Expression (Parent (N)) = N)
+ or else
+ (Nkind (Parent (N)) = N_Qualified_Expression
+ and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
+ and then Expression (Parent (Parent (N))) = Parent (N))
+ or else
+ (Nkind (Parent (N)) = N_Object_Declaration
+ and then Expression (Parent (N)) = N)
+ or else
+ (Nkind (Parent (N)) = N_Component_Association
+ and then Expression (Parent (N)) = N
+ and then Nkind (Parent (Parent (N))) = N_Aggregate
+ and then Rhs_Of_Assign_Or_Decl (Parent (Parent (N))))
+ or else
+ (Nkind (Parent (N)) = N_Extension_Aggregate
+ and then Is_Private_Type (Etype (Typ)))
+ then
+ return True;
+ else
+ return False;
+ end if;
+ end Rhs_Of_Assign_Or_Decl;
+
+ -- Start of processing for Expand_N_Function_Call
+
+ begin
+ -- A special check. If stack checking is enabled, and the return type
+ -- might generate a large temporary, and the call is not the right side
+ -- of an assignment, then generate an explicit temporary. We do this
+ -- because otherwise gigi may generate a large temporary on the fly and
+ -- this can cause trouble with stack checking.
+
+ -- This is unecessary if the call is the expression in an object
+ -- declaration, or if it appears outside of any library unit. This can
+ -- only happen if it appears as an actual in a library-level instance,
+ -- in which case a temporary will be generated for it once the instance
+ -- itself is installed.
+
+ if May_Generate_Large_Temp (Typ)
+ and then not Rhs_Of_Assign_Or_Decl (N)
+ and then not Returned_By_Reference
+ and then Current_Scope /= Standard_Standard
+ then
+ if Stack_Checking_Enabled then
+
+ -- Note: it might be thought that it would be OK to use a call to
+ -- Force_Evaluation here, but that's not good enough, because
+ -- that can results in a 'Reference construct that may still need
+ -- a temporary.
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Temp_Obj : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('F'));
+ Temp_Typ : Entity_Id := Typ;
+ Decl : Node_Id;
+ A : Node_Id;
+ F : Entity_Id;
+ Proc : Entity_Id;
+
+ begin
+ if Is_Tagged_Type (Typ)
+ and then Present (Controlling_Argument (N))
+ then
+ if Nkind (Parent (N)) /= N_Procedure_Call_Statement
+ and then Nkind (Parent (N)) /= N_Function_Call
+ then
+ -- If this is a tag-indeterminate call, the object must
+ -- be classwide.
+
+ if Is_Tag_Indeterminate (N) then
+ Temp_Typ := Class_Wide_Type (Typ);
+ end if;
+
+ else
+ -- If this is a dispatching call that is itself the
+ -- controlling argument of an enclosing call, the
+ -- nominal subtype of the object that replaces it must
+ -- be classwide, so that dispatching will take place
+ -- properly. If it is not a controlling argument, the
+ -- object is not classwide.
+
+ Proc := Entity (Name (Parent (N)));
+
+ F := First_Formal (Proc);
+ A := First_Actual (Parent (N));
+ while A /= N loop
+ Next_Formal (F);
+ Next_Actual (A);
+ end loop;
+
+ if Is_Controlling_Formal (F) then
+ Temp_Typ := Class_Wide_Type (Typ);
+ end if;
+ end if;
+ end if;
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp_Obj,
+ Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
+ Constant_Present => True,
+ Expression => Relocate_Node (N));
+ Set_Assignment_OK (Decl);
+
+ Insert_Actions (N, New_List (Decl));
+ Rewrite (N, New_Occurrence_Of (Temp_Obj, Loc));
+ end;
+
+ else
+ -- If stack-checking is not enabled, increment serial number
+ -- for internal names, so that subsequent symbols are consistent
+ -- with and without stack-checking.
+
+ Synchronize_Serial_Number;
+
+ -- Now we can expand the call with consistent symbol names
+
+ Expand_Call (N);
+ end if;
+
+ -- Normal case, expand the call
+
+ else
+ Expand_Call (N);
+ end if;
+ end Expand_N_Function_Call;
+
+ ---------------------------------------
+ -- Expand_N_Procedure_Call_Statement --
+ ---------------------------------------
+
+ procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
+ begin
+ Expand_Call (N);
+ end Expand_N_Procedure_Call_Statement;
+
+ ------------------------------
+ -- Expand_N_Subprogram_Body --
+ ------------------------------
+
+ -- Add poll call if ATC polling is enabled, unless the body will be
+ -- inlined by the back-end.
+
+ -- Add return statement if last statement in body is not a return statement
+ -- (this makes things easier on Gigi which does not want to have to handle
+ -- a missing return).
+
+ -- Add call to Activate_Tasks if body is a task activator
+
+ -- Deal with possible detection of infinite recursion
+
+ -- Eliminate body completely if convention stubbed
+
+ -- Encode entity names within body, since we will not need to reference
+ -- these entities any longer in the front end.
+
+ -- Initialize scalar out parameters if Initialize/Normalize_Scalars
+
+ -- Reset Pure indication if any parameter has root type System.Address
+
+ -- Wrap thread body
+
+ procedure Expand_N_Subprogram_Body (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ H : constant Node_Id := Handled_Statement_Sequence (N);
+ Body_Id : Entity_Id;
+ Spec_Id : Entity_Id;
+ Except_H : Node_Id;
+ Scop : Entity_Id;
+ Dec : Node_Id;
+ Next_Op : Node_Id;
+ L : List_Id;
+
+ procedure Add_Return (S : List_Id);
+ -- Append a return statement to the statement sequence S if the last
+ -- statement is not already a return or a goto statement. Note that
+ -- the latter test is not critical, it does not matter if we add a
+ -- few extra returns, since they get eliminated anyway later on.
+
+ procedure Expand_Thread_Body;
+ -- Perform required expansion of a thread body
+
+ ----------------
+ -- Add_Return --
+ ----------------
+
+ procedure Add_Return (S : List_Id) is
+ begin
+ if not Is_Transfer (Last (S)) then
+
+ -- The source location for the return is the end label
+ -- of the procedure in all cases. This is a bit odd when
+ -- there are exception handlers, but not much else we can do.
+
+ Append_To (S, Make_Return_Statement (Sloc (End_Label (H))));
+ end if;
+ end Add_Return;
+
+ ------------------------
+ -- Expand_Thread_Body --
+ ------------------------
+
+ -- The required expansion of a thread body is as follows
+
+ -- procedure <thread body procedure name> is
+
+ -- _Secondary_Stack : aliased
+ -- Storage_Elements.Storage_Array
+ -- (1 .. Storage_Offset (Sec_Stack_Size));
+ -- for _Secondary_Stack'Alignment use Standard'Maximum_Alignment;
+
+ -- _Process_ATSD : aliased System.Threads.ATSD;
+
+ -- begin
+ -- System.Threads.Thread_Body_Enter;
+ -- (_Secondary_Stack'Address,
+ -- _Secondary_Stack'Length,
+ -- _Process_ATSD'Address);
+
+ -- declare
+ -- <user declarations>
+ -- begin
+ -- <user statements>
+ -- <user exception handlers>
+ -- end;
+
+ -- System.Threads.Thread_Body_Leave;
+
+ -- exception
+ -- when E : others =>
+ -- System.Threads.Thread_Body_Exceptional_Exit (E);
+ -- end;
+
+ -- Note the exception handler is omitted if pragma Restriction
+ -- No_Exception_Handlers is currently active.
+
+ procedure Expand_Thread_Body is
+ User_Decls : constant List_Id := Declarations (N);
+ Sec_Stack_Len : Node_Id;
+
+ TB_Pragma : constant Node_Id :=
+ Get_Rep_Pragma (Spec_Id, Name_Thread_Body);
+
+ Ent_SS : Entity_Id;
+ Ent_ATSD : Entity_Id;
+ Ent_EO : Entity_Id;
+
+ Decl_SS : Node_Id;
+ Decl_ATSD : Node_Id;
+
+ Excep_Handlers : List_Id;
+
+ begin
+ New_Scope (Spec_Id);
+
+ -- Get proper setting for secondary stack size
+
+ if List_Length (Pragma_Argument_Associations (TB_Pragma)) = 2 then
+ Sec_Stack_Len :=
+ Expression (Last (Pragma_Argument_Associations (TB_Pragma)));
+ else
+ Sec_Stack_Len :=
+ New_Occurrence_Of (RTE (RE_Default_Secondary_Stack_Size), Loc);
+ end if;
+
+ Sec_Stack_Len := Convert_To (RTE (RE_Storage_Offset), Sec_Stack_Len);
+
+ -- Build and set declarations for the wrapped thread body
+
+ Ent_SS := Make_Defining_Identifier (Loc, Name_uSecondary_Stack);
+ Ent_ATSD := Make_Defining_Identifier (Loc, Name_uProcess_ATSD);
+
+ Decl_SS :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Ent_SS,
+ Aliased_Present => True,
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound => Sec_Stack_Len)))));
+
+ Decl_ATSD :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Ent_ATSD,
+ Aliased_Present => True,
+ Object_Definition => New_Occurrence_Of (RTE (RE_ATSD), Loc));
+
+ Set_Declarations (N, New_List (Decl_SS, Decl_ATSD));
+ Analyze (Decl_SS);
+ Analyze (Decl_ATSD);
+ Set_Alignment (Ent_SS, UI_From_Int (Maximum_Alignment));
+
+ -- Create new exception handler
+
+ if Restriction_Active (No_Exception_Handlers) then
+ Excep_Handlers := No_List;
+
+ else
+ Check_Restriction (No_Exception_Handlers, N);
+
+ Ent_EO := Make_Defining_Identifier (Loc, Name_uE);
+
+ Excep_Handlers := New_List (
+ Make_Exception_Handler (Loc,
+ Choice_Parameter => Ent_EO,
+ Exception_Choices => New_List (
+ Make_Others_Choice (Loc)),
+ Statements => New_List (
+ Make_Procedure_Call_Statement (Loc,
+ Name =>
+ New_Occurrence_Of
+ (RTE (RE_Thread_Body_Exceptional_Exit), Loc),
+ Parameter_Associations => New_List (
+ New_Occurrence_Of (Ent_EO, Loc))))));
+ end if;
+
+ -- Now build new handled statement sequence and analyze it
+
+ Set_Handled_Statement_Sequence (N,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (RTE (RE_Thread_Body_Enter), Loc),
+ Parameter_Associations => New_List (
+
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Ent_SS, Loc),
+ Attribute_Name => Name_Address),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Ent_SS, Loc),
+ Attribute_Name => Name_Length),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Ent_ATSD, Loc),
+ Attribute_Name => Name_Address))),
+
+ Make_Block_Statement (Loc,
+ Declarations => User_Decls,
+ Handled_Statement_Sequence => H),
+
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (RTE (RE_Thread_Body_Leave), Loc))),
+
+ Exception_Handlers => Excep_Handlers));
+
+ Analyze (Handled_Statement_Sequence (N));
+ End_Scope;
+ end Expand_Thread_Body;
+
+ -- Start of processing for Expand_N_Subprogram_Body
+
+ begin
+ -- Set L to either the list of declarations if present, or
+ -- to the list of statements if no declarations are present.
+ -- This is used to insert new stuff at the start.
+
+ if Is_Non_Empty_List (Declarations (N)) then
+ L := Declarations (N);
+ else
+ L := Statements (Handled_Statement_Sequence (N));
+ end if;
+
+ -- Find entity for subprogram
+
+ Body_Id := Defining_Entity (N);
+
+ if Present (Corresponding_Spec (N)) then
+ Spec_Id := Corresponding_Spec (N);
+ else
+ Spec_Id := Body_Id;
+ end if;
+
+ -- Need poll on entry to subprogram if polling enabled. We only
+ -- do this for non-empty subprograms, since it does not seem
+ -- necessary to poll for a dummy null subprogram. Do not add polling
+ -- point if calls to this subprogram will be inlined by the back-end,
+ -- to avoid repeated polling points in nested inlinings.
+
+ if Is_Non_Empty_List (L) then
+ if Is_Inlined (Spec_Id)
+ and then Front_End_Inlining
+ and then Optimization_Level > 1
+ then
+ null;
+ else
+ Generate_Poll_Call (First (L));
+ end if;
+ end if;
+
+ -- If this is a Pure function which has any parameters whose root
+ -- type is System.Address, reset the Pure indication, since it will
+ -- likely cause incorrect code to be generated as the parameter is
+ -- probably a pointer, and the fact that the same pointer is passed
+ -- does not mean that the same value is being referenced.
+
+ -- Note that if the programmer gave an explicit Pure_Function pragma,
+ -- then we believe the programmer, and leave the subprogram Pure.
+
+ -- This code should probably be at the freeze point, so that it
+ -- happens even on a -gnatc (or more importantly -gnatt) compile
+ -- so that the semantic tree has Is_Pure set properly ???
+
+ if Is_Pure (Spec_Id)
+ and then Is_Subprogram (Spec_Id)
+ and then not Has_Pragma_Pure_Function (Spec_Id)
+ then
+ declare
+ F : Entity_Id;
+
+ begin
+ F := First_Formal (Spec_Id);
+ while Present (F) loop
+ if Is_Descendent_Of_Address (Etype (F)) then
+ Set_Is_Pure (Spec_Id, False);
+
+ if Spec_Id /= Body_Id then
+ Set_Is_Pure (Body_Id, False);
+ end if;
+
+ exit;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end;
+ end if;
+
+ -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
+
+ if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
+ declare
+ F : Entity_Id;
+ V : constant Boolean := Validity_Checks_On;
+
+ begin
+ -- We turn off validity checking, since we do not want any
+ -- check on the initializing value itself (which we know
+ -- may well be invalid!)
+
+ Validity_Checks_On := False;
+
+ -- Loop through formals
+
+ F := First_Formal (Spec_Id);
+ while Present (F) loop
+ if Is_Scalar_Type (Etype (F))
+ and then Ekind (F) = E_Out_Parameter
+ then
+ Insert_Before_And_Analyze (First (L),
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (F, Loc),
+ Expression => Get_Simple_Init_Val (Etype (F), Loc)));
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ Validity_Checks_On := V;
+ end;
+ end if;
+
+ Scop := Scope (Spec_Id);
+
+ -- Add discriminal renamings to protected subprograms. Install new
+ -- discriminals for expansion of the next subprogram of this protected
+ -- type, if any.
+
+ if Is_List_Member (N)
+ and then Present (Parent (List_Containing (N)))
+ and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
+ then
+ Add_Discriminal_Declarations
+ (Declarations (N), Scop, Name_uObject, Loc);
+ Add_Private_Declarations (Declarations (N), Scop, Name_uObject, Loc);
+
+ -- Associate privals and discriminals with the next protected
+ -- operation body to be expanded. These are used to expand references
+ -- to private data objects and discriminants, respectively.
+
+ Next_Op := Next_Protected_Operation (N);
+
+ if Present (Next_Op) then
+ Dec := Parent (Base_Type (Scop));
+ Set_Privals (Dec, Next_Op, Loc);
+ Set_Discriminals (Dec);
+ end if;
+ end if;
+
+ -- Clear out statement list for stubbed procedure
+
+ if Present (Corresponding_Spec (N)) then
+ Set_Elaboration_Flag (N, Spec_Id);
+
+ if Convention (Spec_Id) = Convention_Stubbed
+ or else Is_Eliminated (Spec_Id)
+ then
+ Set_Declarations (N, Empty_List);
+ Set_Handled_Statement_Sequence (N,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Null_Statement (Loc))));
+ return;
+ end if;
+ end if;
+
+ -- Returns_By_Ref flag is normally set when the subprogram is frozen
+ -- but subprograms with no specs are not frozen.
+
+ declare
+ Typ : constant Entity_Id := Etype (Spec_Id);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if not Acts_As_Spec (N)
+ and then Nkind (Parent (Parent (Spec_Id))) /=
+ N_Subprogram_Body_Stub
+ then
+ null;
+
+ elsif Is_Return_By_Reference_Type (Typ) then
+ Set_Returns_By_Ref (Spec_Id);
+
+ elsif Present (Utyp) and then Controlled_Type (Utyp) then
+ Set_Returns_By_Ref (Spec_Id);
+ end if;
+ end;
+
+ -- For a procedure, we add a return for all possible syntactic ends
+ -- of the subprogram. Note that reanalysis is not necessary in this
+ -- case since it would require a lot of work and accomplish nothing.
+
+ if Ekind (Spec_Id) = E_Procedure
+ or else Ekind (Spec_Id) = E_Generic_Procedure
+ then
+ Add_Return (Statements (H));
+
+ if Present (Exception_Handlers (H)) then
+ Except_H := First_Non_Pragma (Exception_Handlers (H));
+ while Present (Except_H) loop
+ Add_Return (Statements (Except_H));
+ Next_Non_Pragma (Except_H);
+ end loop;
+ end if;
+
+ -- For a function, we must deal with the case where there is at least
+ -- one missing return. What we do is to wrap the entire body of the
+ -- function in a block:
+
+ -- begin
+ -- ...
+ -- end;
+
+ -- becomes
+
+ -- begin
+ -- begin
+ -- ...
+ -- end;
+
+ -- raise Program_Error;
+ -- end;
+
+ -- This approach is necessary because the raise must be signalled
+ -- to the caller, not handled by any local handler (RM 6.4(11)).
+
+ -- Note: we do not need to analyze the constructed sequence here,
+ -- since it has no handler, and an attempt to analyze the handled
+ -- statement sequence twice is risky in various ways (e.g. the
+ -- issue of expanding cleanup actions twice).
+
+ elsif Has_Missing_Return (Spec_Id) then
+ declare
+ Hloc : constant Source_Ptr := Sloc (H);
+ Blok : constant Node_Id :=
+ Make_Block_Statement (Hloc,
+ Handled_Statement_Sequence => H);
+ Rais : constant Node_Id :=
+ Make_Raise_Program_Error (Hloc,
+ Reason => PE_Missing_Return);
+
+ begin
+ Set_Handled_Statement_Sequence (N,
+ Make_Handled_Sequence_Of_Statements (Hloc,
+ Statements => New_List (Blok, Rais)));
+
+ New_Scope (Spec_Id);
+ Analyze (Blok);
+ Analyze (Rais);
+ Pop_Scope;
+ end;
+ end if;
+
+ -- If subprogram contains a parameterless recursive call, then we may
+ -- have an infinite recursion, so see if we can generate code to check
+ -- for this possibility if storage checks are not suppressed.
+
+ if Ekind (Spec_Id) = E_Procedure
+ and then Has_Recursive_Call (Spec_Id)
+ and then not Storage_Checks_Suppressed (Spec_Id)
+ then
+ Detect_Infinite_Recursion (N, Spec_Id);
+ end if;
+
+ -- Finally, if we are in Normalize_Scalars mode, then any scalar out
+ -- parameters must be initialized to the appropriate default value.
+
+ if Ekind (Spec_Id) = E_Procedure and then Normalize_Scalars then
+ declare
+ Floc : Source_Ptr;
+ Formal : Entity_Id;
+ Stm : Node_Id;
+
+ begin
+ Formal := First_Formal (Spec_Id);
+ while Present (Formal) loop
+ Floc := Sloc (Formal);
+
+ if Ekind (Formal) = E_Out_Parameter
+ and then Is_Scalar_Type (Etype (Formal))
+ then
+ Stm :=
+ Make_Assignment_Statement (Floc,
+ Name => New_Occurrence_Of (Formal, Floc),
+ Expression =>
+ Get_Simple_Init_Val (Etype (Formal), Floc));
+ Prepend (Stm, Declarations (N));
+ Analyze (Stm);
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end;
+ end if;
+
+ -- Deal with thread body
+
+ if Is_Thread_Body (Spec_Id) then
+ Expand_Thread_Body;
+ end if;
+
+ -- Set to encode entity names in package body before gigi is called
+
+ Qualify_Entity_Names (N);
+ end Expand_N_Subprogram_Body;
+
+ -----------------------------------
+ -- Expand_N_Subprogram_Body_Stub --
+ -----------------------------------
+
+ procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
+ begin
+ if Present (Corresponding_Body (N)) then
+ Expand_N_Subprogram_Body (
+ Unit_Declaration_Node (Corresponding_Body (N)));
+ end if;
+ end Expand_N_Subprogram_Body_Stub;
+
+ -------------------------------------
+ -- Expand_N_Subprogram_Declaration --
+ -------------------------------------
+
+ -- If the declaration appears within a protected body, it is a private
+ -- operation of the protected type. We must create the corresponding
+ -- protected subprogram an associated formals. For a normal protected
+ -- operation, this is done when expanding the protected type declaration.
+
+ -- If the declaration is for a null procedure, emit null body
+
+ procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Subp : constant Entity_Id := Defining_Entity (N);
+ Scop : constant Entity_Id := Scope (Subp);
+ Prot_Decl : Node_Id;
+ Prot_Bod : Node_Id;
+ Prot_Id : Entity_Id;
+
+ begin
+ -- Deal with case of protected subprogram. Do not generate protected
+ -- operation if operation is flagged as eliminated.
+
+ if Is_List_Member (N)
+ and then Present (Parent (List_Containing (N)))
+ and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
+ and then Is_Protected_Type (Scop)
+ then
+ if No (Protected_Body_Subprogram (Subp))
+ and then not Is_Eliminated (Subp)
+ then
+ Prot_Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Build_Protected_Sub_Specification
+ (N, Scop, Unprotected_Mode));
+
+ -- The protected subprogram is declared outside of the protected
+ -- body. Given that the body has frozen all entities so far, we
+ -- analyze the subprogram and perform freezing actions explicitly.
+ -- If the body is a subunit, the insertion point is before the
+ -- stub in the parent.
+
+ Prot_Bod := Parent (List_Containing (N));
+
+ if Nkind (Parent (Prot_Bod)) = N_Subunit then
+ Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
+ end if;
+
+ Insert_Before (Prot_Bod, Prot_Decl);
+ Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
+
+ New_Scope (Scope (Scop));
+ Analyze (Prot_Decl);
+ Create_Extra_Formals (Prot_Id);
+ Set_Protected_Body_Subprogram (Subp, Prot_Id);
+ Pop_Scope;
+ end if;
+
+ elsif Nkind (Specification (N)) = N_Procedure_Specification
+ and then Null_Present (Specification (N))
+ then
+ declare
+ Bod : constant Node_Id :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ New_Copy_Tree (Specification (N)),
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Make_Null_Statement (Loc))));
+ begin
+ Set_Body_To_Inline (N, Bod);
+ Insert_After (N, Bod);
+ Analyze (Bod);
+
+ -- Corresponding_Spec isn't being set by Analyze_Subprogram_Body,
+ -- evidently because Set_Has_Completion is called earlier for null
+ -- procedures in Analyze_Subprogram_Declaration, so we force its
+ -- setting here. If the setting of Has_Completion is not set
+ -- earlier, then it can result in missing body errors if other
+ -- errors were already reported (since expansion is turned off).
+
+ -- Should creation of the empty body be moved to the analyzer???
+
+ Set_Corresponding_Spec (Bod, Defining_Entity (Specification (N)));
+ end;
+ end if;
+ end Expand_N_Subprogram_Declaration;
+
+ ---------------------------------------
+ -- Expand_Protected_Object_Reference --
+ ---------------------------------------
+
+ function Expand_Protected_Object_Reference
+ (N : Node_Id;
+ Scop : Entity_Id)
+ return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Corr : Entity_Id;
+ Rec : Node_Id;
+ Param : Entity_Id;
+ Proc : Entity_Id;
+
+ begin
+ Rec := Make_Identifier (Loc, Name_uObject);
+ Set_Etype (Rec, Corresponding_Record_Type (Scop));
+
+ -- Find enclosing protected operation, and retrieve its first parameter,
+ -- which denotes the enclosing protected object. If the enclosing
+ -- operation is an entry, we are immediately within the protected body,
+ -- and we can retrieve the object from the service entries procedure. A
+ -- barrier function has has the same signature as an entry. A barrier
+ -- function is compiled within the protected object, but unlike
+ -- protected operations its never needs locks, so that its protected
+ -- body subprogram points to itself.
+
+ Proc := Current_Scope;
+ while Present (Proc)
+ and then Scope (Proc) /= Scop
+ loop
+ Proc := Scope (Proc);
+ end loop;
+
+ Corr := Protected_Body_Subprogram (Proc);
+
+ if No (Corr) then
+
+ -- Previous error left expansion incomplete.
+ -- Nothing to do on this call.
+
+ return Empty;
+ end if;
+
+ Param :=
+ Defining_Identifier
+ (First (Parameter_Specifications (Parent (Corr))));
+
+ if Is_Subprogram (Proc)
+ and then Proc /= Corr
+ then
+ -- Protected function or procedure
+
+ Set_Entity (Rec, Param);
+
+ -- Rec is a reference to an entity which will not be in scope when
+ -- the call is reanalyzed, and needs no further analysis.
+
+ Set_Analyzed (Rec);
+
+ else
+ -- Entry or barrier function for entry body. The first parameter of
+ -- the entry body procedure is pointer to the object. We create a
+ -- local variable of the proper type, duplicating what is done to
+ -- define _object later on.
+
+ declare
+ Decls : List_Id;
+ Obj_Ptr : constant Entity_Id := Make_Defining_Identifier (Loc,
+ Chars =>
+ New_Internal_Name ('T'));
+
+ begin
+ Decls := New_List (
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Obj_Ptr,
+ Type_Definition =>
+ Make_Access_To_Object_Definition (Loc,
+ Subtype_Indication =>
+ New_Reference_To
+ (Corresponding_Record_Type (Scop), Loc))));
+
+ Insert_Actions (N, Decls);
+ Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
+
+ Rec :=
+ Make_Explicit_Dereference (Loc,
+ Unchecked_Convert_To (Obj_Ptr,
+ New_Occurrence_Of (Param, Loc)));
+
+ -- Analyze new actual. Other actuals in calls are already analyzed
+ -- and the list of actuals is not renalyzed after rewriting.
+
+ Set_Parent (Rec, N);
+ Analyze (Rec);
+ end;
+ end if;
+
+ return Rec;
+ end Expand_Protected_Object_Reference;
+
+ --------------------------------------
+ -- Expand_Protected_Subprogram_Call --
+ --------------------------------------
+
+ procedure Expand_Protected_Subprogram_Call
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Scop : Entity_Id)
+ is
+ Rec : Node_Id;
+
+ begin
+ -- If the protected object is not an enclosing scope, this is
+ -- an inter-object function call. Inter-object procedure
+ -- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
+ -- The call is intra-object only if the subprogram being
+ -- called is in the protected body being compiled, and if the
+ -- protected object in the call is statically the enclosing type.
+ -- The object may be an component of some other data structure,
+ -- in which case this must be handled as an inter-object call.
+
+ if not In_Open_Scopes (Scop)
+ or else not Is_Entity_Name (Name (N))
+ then
+ if Nkind (Name (N)) = N_Selected_Component then
+ Rec := Prefix (Name (N));
+
+ else
+ pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
+ Rec := Prefix (Prefix (Name (N)));
+ end if;
+
+ Build_Protected_Subprogram_Call (N,
+ Name => New_Occurrence_Of (Subp, Sloc (N)),
+ Rec => Convert_Concurrent (Rec, Etype (Rec)),
+ External => True);
+
+ else
+ Rec := Expand_Protected_Object_Reference (N, Scop);
+
+ if No (Rec) then
+ return;
+ end if;
+
+ Build_Protected_Subprogram_Call (N,
+ Name => Name (N),
+ Rec => Rec,
+ External => False);
+
+ end if;
+
+ Analyze (N);
+
+ -- If it is a function call it can appear in elaboration code and
+ -- the called entity must be frozen here.
+
+ if Ekind (Subp) = E_Function then
+ Freeze_Expression (Name (N));
+ end if;
+ end Expand_Protected_Subprogram_Call;
+
+ -----------------------
+ -- Freeze_Subprogram --
+ -----------------------
+
+ procedure Freeze_Subprogram (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ E : constant Entity_Id := Entity (N);
+
+ procedure Check_Overriding_Inherited_Interfaces (E : Entity_Id);
+ -- (Ada 2005): Check if the primitive E covers some interface already
+ -- implemented by some ancestor of the tagged-type associated with E.
+
+ procedure Register_Interface_DT_Entry
+ (Prim : Entity_Id;
+ Ancestor_Iface_Prim : Entity_Id := Empty);
+ -- (Ada 2005): Register an interface primitive in a secondary dispatch
+ -- table. If Prim overrides an ancestor primitive of its associated
+ -- tagged-type then Ancestor_Iface_Prim indicates the entity of that
+ -- immediate ancestor associated with the interface.
+
+ procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
+ -- (Ada 2005): Register a predefined primitive in all the secondary
+ -- dispatch tables of its primitive type.
+
+ -------------------------------------------
+ -- Check_Overriding_Inherited_Interfaces --
+ -------------------------------------------
+
+ procedure Check_Overriding_Inherited_Interfaces (E : Entity_Id) is
+ Typ : Entity_Id;
+ Elmt : Elmt_Id;
+ Prim_Op : Entity_Id;
+ Overriden_Op : Entity_Id := Empty;
+
+ begin
+ if Ada_Version < Ada_05
+ or else not Is_Overriding_Operation (E)
+ or else Is_Predefined_Dispatching_Operation (E)
+ or else Present (Alias (E))
+ then
+ return;
+ end if;
+
+ -- Get the entity associated with this primitive operation
+
+ Typ := Scope (DTC_Entity (E));
+ loop
+ exit when Etype (Typ) = Typ
+ or else (Present (Full_View (Etype (Typ)))
+ and then Full_View (Etype (Typ)) = Typ);
+
+ -- Climb to the immediate ancestor handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ Typ := Full_View (Etype (Typ));
+ else
+ Typ := Etype (Typ);
+ end if;
+
+ if Present (Abstract_Interfaces (Typ)) then
+
+ -- Look for the overriden subprogram in the primary dispatch
+ -- table of the ancestor.
+
+ Overriden_Op := Empty;
+ Elmt := First_Elmt (Primitive_Operations (Typ));
+ while Present (Elmt) loop
+ Prim_Op := Node (Elmt);
+
+ if Chars (Prim_Op) = Chars (E)
+ and then Type_Conformant
+ (New_Id => Prim_Op,
+ Old_Id => E,
+ Skip_Controlling_Formals => True)
+ and then DT_Position (Prim_Op) = DT_Position (E)
+ and then Etype (DTC_Entity (Prim_Op)) = RTE (RE_Tag)
+ and then No (Abstract_Interface_Alias (Prim_Op))
+ then
+ if Overriden_Op = Empty then
+ Overriden_Op := Prim_Op;
+
+ -- Additional check to ensure that if two candidates have
+ -- been found then they refer to the same subprogram.
+
+ else
+ declare
+ A1 : Entity_Id;
+ A2 : Entity_Id;
+
+ begin
+ A1 := Overriden_Op;
+ while Present (Alias (A1)) loop
+ A1 := Alias (A1);
+ end loop;
+
+ A2 := Prim_Op;
+ while Present (Alias (A2)) loop
+ A2 := Alias (A2);
+ end loop;
+
+ if A1 /= A2 then
+ raise Program_Error;
+ end if;
+ end;
+ end if;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ -- If not found this is the first overriding of some abstract
+ -- interface.
+
+ if Overriden_Op /= Empty then
+
+ -- Find the entries associated with interfaces that are
+ -- alias of this primitive operation in the ancestor.
+
+ Elmt := First_Elmt (Primitive_Operations (Typ));
+ while Present (Elmt) loop
+ Prim_Op := Node (Elmt);
+
+ if Present (Abstract_Interface_Alias (Prim_Op))
+ and then Alias (Prim_Op) = Overriden_Op
+ then
+ Register_Interface_DT_Entry (E, Prim_Op);
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+ end if;
+ end if;
+ end loop;
+ end Check_Overriding_Inherited_Interfaces;
+
+ ---------------------------------
+ -- Register_Interface_DT_Entry --
+ ---------------------------------
+
+ procedure Register_Interface_DT_Entry
+ (Prim : Entity_Id;
+ Ancestor_Iface_Prim : Entity_Id := Empty)
+ is
+ E : Entity_Id;
+ Prim_Typ : Entity_Id;
+ Prim_Op : Entity_Id;
+ Iface_Typ : Entity_Id;
+ Iface_DT_Ptr : Entity_Id;
+ Iface_Tag : Entity_Id;
+ New_Thunk : Node_Id;
+ Thunk_Id : Entity_Id;
+
+ begin
+ -- Nothing to do if the run-time does not give support to abstract
+ -- interfaces.
+
+ if not (RTE_Available (RE_Interface_Tag)) then
+ return;
+ end if;
+
+ if No (Ancestor_Iface_Prim) then
+ Prim_Typ := Scope (DTC_Entity (Alias (Prim)));
+
+ -- Look for the abstract interface subprogram
+
+ E := Abstract_Interface_Alias (Prim);
+ while Present (E)
+ and then Is_Abstract (E)
+ and then not Is_Interface (Scope (DTC_Entity (E)))
+ loop
+ E := Alias (E);
+ end loop;
+
+ Iface_Typ := Scope (DTC_Entity (E));
+
+ -- Generate the code of the thunk only when this primitive
+ -- operation is associated with a secondary dispatch table.
+
+ if Is_Interface (Iface_Typ) then
+ Iface_Tag := Find_Interface_Tag
+ (T => Prim_Typ,
+ Iface => Iface_Typ);
+
+ if Etype (Iface_Tag) = RTE (RE_Interface_Tag) then
+ Thunk_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ New_Thunk :=
+ Expand_Interface_Thunk
+ (N => Prim,
+ Thunk_Alias => Alias (Prim),
+ Thunk_Id => Thunk_Id);
+
+ Insert_After (N, New_Thunk);
+
+ Iface_DT_Ptr :=
+ Find_Interface_ADT
+ (T => Prim_Typ,
+ Iface => Iface_Typ);
+
+ Insert_After (New_Thunk,
+ Fill_Secondary_DT_Entry (Sloc (Prim),
+ Prim => Prim,
+ Iface_DT_Ptr => Iface_DT_Ptr,
+ Thunk_Id => Thunk_Id));
+ end if;
+ end if;
+
+ else
+ Iface_Typ :=
+ Scope (DTC_Entity (Abstract_Interface_Alias
+ (Ancestor_Iface_Prim)));
+
+ Iface_Tag :=
+ Find_Interface_Tag
+ (T => Scope (DTC_Entity (Alias (Ancestor_Iface_Prim))),
+ Iface => Iface_Typ);
+
+ -- Generate the thunk only if the associated tag is an interface
+ -- tag. The case in which the associated tag is the primary tag
+ -- occurs when a tagged type is a direct derivation of an
+ -- interface. For example:
+
+ -- type I is interface;
+ -- ...
+ -- type T is new I with ...
+
+ if Etype (Iface_Tag) = RTE (RE_Interface_Tag) then
+ Thunk_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('T'));
+
+ if Present (Alias (Prim)) then
+ Prim_Op := Alias (Prim);
+ else
+ Prim_Op := Prim;
+ end if;
+
+ New_Thunk :=
+ Expand_Interface_Thunk
+ (N => Ancestor_Iface_Prim,
+ Thunk_Alias => Prim_Op,
+ Thunk_Id => Thunk_Id);
+
+ Insert_After (N, New_Thunk);
+
+ Iface_DT_Ptr :=
+ Find_Interface_ADT
+ (T => Scope (DTC_Entity (Prim_Op)),
+ Iface => Iface_Typ);
+
+ Insert_After (New_Thunk,
+ Fill_Secondary_DT_Entry (Sloc (Prim),
+ Prim => Ancestor_Iface_Prim,
+ Iface_DT_Ptr => Iface_DT_Ptr,
+ Thunk_Id => Thunk_Id));
+ end if;
+ end if;
+ end Register_Interface_DT_Entry;
+
+ ----------------------------------
+ -- Register_Predefined_DT_Entry --
+ ----------------------------------
+
+ procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
+ Iface_DT_Ptr : Elmt_Id;
+ Iface_Tag : Entity_Id;
+ Iface_Typ : Elmt_Id;
+ New_Thunk : Entity_Id;
+ Prim_Typ : Entity_Id;
+ Thunk_Id : Entity_Id;
+
+ begin
+ Prim_Typ := Scope (DTC_Entity (Prim));
+
+ if No (Access_Disp_Table (Prim_Typ))
+ or else No (Abstract_Interfaces (Prim_Typ))
+ or else not RTE_Available (RE_Interface_Tag)
+ then
+ return;
+ end if;
+
+ -- Skip the first acces-to-dispatch-table pointer since it leads
+ -- to the primary dispatch table. We are only concerned with the
+ -- secondary dispatch table pointers. Note that the access-to-
+ -- dispatch-table pointer corresponds to the first implemented
+ -- interface retrieved below.
+
+ Iface_DT_Ptr := Next_Elmt (First_Elmt (Access_Disp_Table (Prim_Typ)));
+ Iface_Typ := First_Elmt (Abstract_Interfaces (Prim_Typ));
+ while Present (Iface_DT_Ptr) and then Present (Iface_Typ) loop
+ Iface_Tag := Find_Interface_Tag (Prim_Typ, Node (Iface_Typ));
+ pragma Assert (Present (Iface_Tag));
+
+ if Etype (Iface_Tag) = RTE (RE_Interface_Tag) then
+ Thunk_Id := Make_Defining_Identifier (Loc,
+ New_Internal_Name ('T'));
+
+ New_Thunk :=
+ Expand_Interface_Thunk
+ (N => Prim,
+ Thunk_Alias => Prim,
+ Thunk_Id => Thunk_Id);
+
+ Insert_After (N, New_Thunk);
+ Insert_After (New_Thunk,
+ Make_DT_Access_Action (Node (Iface_Typ),
+ Action => Set_Predefined_Prim_Op_Address,
+ Args => New_List (
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To (Node (Iface_DT_Ptr), Loc)),
+
+ Make_Integer_Literal (Loc, DT_Position (Prim)),
+
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Thunk_Id, Loc),
+ Attribute_Name => Name_Address))));
+ end if;
+
+ Next_Elmt (Iface_DT_Ptr);
+ Next_Elmt (Iface_Typ);
+ end loop;
+ end Register_Predefined_DT_Entry;
+
+ -- Start of processing for Freeze_Subprogram
+
+ begin
+ -- When a primitive is frozen, enter its name in the corresponding
+ -- dispatch table. If the DTC_Entity field is not set this is an
+ -- overridden primitive that can be ignored. We suppress the
+ -- initialization of the dispatch table entry when Java_VM because
+ -- the dispatching mechanism is handled internally by the JVM.
+
+ if Is_Dispatching_Operation (E)
+ and then not Is_Abstract (E)
+ and then Present (DTC_Entity (E))
+ and then not Java_VM
+ and then not Is_CPP_Class (Scope (DTC_Entity (E)))
+ then
+ Check_Overriding_Operation (E);
+
+ -- Ada 95 case: Register the subprogram in the primary dispatch table
+
+ if Ada_Version < Ada_05 then
+
+ -- Do not register the subprogram in the dispatch table if we
+ -- are compiling with the No_Dispatching_Calls restriction.
+
+ if not Restriction_Active (No_Dispatching_Calls) then
+ Insert_After (N,
+ Fill_DT_Entry (Sloc (N), Prim => E));
+ end if;
+
+ -- Ada 2005 case: Register the subprogram in the secondary dispatch
+ -- tables associated with abstract interfaces.
+
+ else
+ declare
+ Typ : constant Entity_Id := Scope (DTC_Entity (E));
+
+ begin
+ -- There is no dispatch table associated with abstract
+ -- interface types. Each type implementing interfaces will
+ -- fill the associated secondary DT entries.
+
+ if not Is_Interface (Typ)
+ or else Present (Alias (E))
+ then
+ -- Ada 2005 (AI-251): Check if this entry corresponds with
+ -- a subprogram that covers an abstract interface type.
+
+ if Present (Abstract_Interface_Alias (E)) then
+ Register_Interface_DT_Entry (E);
+
+ -- Common case: Primitive subprogram
+
+ else
+ -- Generate thunks for all the predefined operations
+
+ if not Restriction_Active (No_Dispatching_Calls) then
+ if Is_Predefined_Dispatching_Operation (E) then
+ Register_Predefined_DT_Entry (E);
+ end if;
+
+ Insert_After (N,
+ Fill_DT_Entry (Sloc (N), Prim => E));
+ end if;
+
+ Check_Overriding_Inherited_Interfaces (E);
+ end if;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Mark functions that return by reference. Note that it cannot be
+ -- part of the normal semantic analysis of the spec since the
+ -- underlying returned type may not be known yet (for private types).
+
+ declare
+ Typ : constant Entity_Id := Etype (E);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if Is_Return_By_Reference_Type (Typ) then
+ Set_Returns_By_Ref (E);
+
+ elsif Present (Utyp) and then Controlled_Type (Utyp) then
+ Set_Returns_By_Ref (E);
+ end if;
+ end;
+ end Freeze_Subprogram;
+
+end Exp_Ch6;