aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/exp_ch3.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/exp_ch3.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/exp_ch3.adb7063
1 files changed, 7063 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/exp_ch3.adb b/gcc-4.2.1/gcc/ada/exp_ch3.adb
new file mode 100644
index 000000000..62cfb4ed4
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/exp_ch3.adb
@@ -0,0 +1,7063 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ C H 3 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Exp_Aggr; use Exp_Aggr;
+with Exp_Ch4; use Exp_Ch4;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch9; use Exp_Ch9;
+with Exp_Ch11; use Exp_Ch11;
+with Exp_Disp; use Exp_Disp;
+with Exp_Dist; use Exp_Dist;
+with Exp_Smem; use Exp_Smem;
+with Exp_Strm; use Exp_Strm;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Freeze; use Freeze;
+with Hostparm; use Hostparm;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Attr; use Sem_Attr;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Disp; use Sem_Disp;
+with Sem_Eval; use Sem_Eval;
+with Sem_Mech; use Sem_Mech;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Stand; use Stand;
+with Snames; use Snames;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Validsw; use Validsw;
+
+package body Exp_Ch3 is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Adjust_Discriminants (Rtype : Entity_Id);
+ -- This is used when freezing a record type. It attempts to construct
+ -- more restrictive subtypes for discriminants so that the max size of
+ -- the record can be calculated more accurately. See the body of this
+ -- procedure for details.
+
+ procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
+ -- Build initialization procedure for given array type. Nod is a node
+ -- used for attachment of any actions required in its construction.
+ -- It also supplies the source location used for the procedure.
+
+ function Build_Discriminant_Formals
+ (Rec_Id : Entity_Id;
+ Use_Dl : Boolean) return List_Id;
+ -- This function uses the discriminants of a type to build a list of
+ -- formal parameters, used in the following function. If the flag Use_Dl
+ -- is set, the list is built using the already defined discriminals
+ -- of the type. Otherwise new identifiers are created, with the source
+ -- names of the discriminants.
+
+ procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
+ -- If the designated type of an access type is a task type or contains
+ -- tasks, we make sure that a _Master variable is declared in the current
+ -- scope, and then declare a renaming for it:
+ --
+ -- atypeM : Master_Id renames _Master;
+ --
+ -- where atyp is the name of the access type. This declaration is
+ -- used when an allocator for the access type is expanded. The node N
+ -- is the full declaration of the designated type that contains tasks.
+ -- The renaming declaration is inserted before N, and after the Master
+ -- declaration.
+
+ procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
+ -- Build record initialization procedure. N is the type declaration
+ -- node, and Pe is the corresponding entity for the record type.
+
+ procedure Build_Slice_Assignment (Typ : Entity_Id);
+ -- Build assignment procedure for one-dimensional arrays of controlled
+ -- types. Other array and slice assignments are expanded in-line, but
+ -- the code expansion for controlled components (when control actions
+ -- are active) can lead to very large blocks that GCC3 handles poorly.
+
+ procedure Build_Variant_Record_Equality (Typ : Entity_Id);
+ -- Create An Equality function for the non-tagged variant record 'Typ'
+ -- and attach it to the TSS list
+
+ procedure Check_Stream_Attributes (Typ : Entity_Id);
+ -- Check that if a limited extension has a parent with user-defined
+ -- stream attributes, and does not itself have user-definer
+ -- stream-attributes, then any limited component of the extension also
+ -- has the corresponding user-defined stream attributes.
+
+ procedure Expand_Tagged_Root (T : Entity_Id);
+ -- Add a field _Tag at the beginning of the record. This field carries
+ -- the value of the access to the Dispatch table. This procedure is only
+ -- called on root (non CPP_Class) types, the _Tag field being inherited
+ -- by the descendants.
+
+ procedure Expand_Record_Controller (T : Entity_Id);
+ -- T must be a record type that Has_Controlled_Component. Add a field
+ -- _controller of type Record_Controller or Limited_Record_Controller
+ -- in the record T.
+
+ procedure Freeze_Array_Type (N : Node_Id);
+ -- Freeze an array type. Deals with building the initialization procedure,
+ -- creating the packed array type for a packed array and also with the
+ -- creation of the controlling procedures for the controlled case. The
+ -- argument N is the N_Freeze_Entity node for the type.
+
+ procedure Freeze_Enumeration_Type (N : Node_Id);
+ -- Freeze enumeration type with non-standard representation. Builds the
+ -- array and function needed to convert between enumeration pos and
+ -- enumeration representation values. N is the N_Freeze_Entity node
+ -- for the type.
+
+ procedure Freeze_Record_Type (N : Node_Id);
+ -- Freeze record type. Builds all necessary discriminant checking
+ -- and other ancillary functions, and builds dispatch tables where
+ -- needed. The argument N is the N_Freeze_Entity node. This processing
+ -- applies only to E_Record_Type entities, not to class wide types,
+ -- record subtypes, or private types.
+
+ procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
+ -- Treat user-defined stream operations as renaming_as_body if the
+ -- subprogram they rename is not frozen when the type is frozen.
+
+ function Init_Formals (Typ : Entity_Id) return List_Id;
+ -- This function builds the list of formals for an initialization routine.
+ -- The first formal is always _Init with the given type. For task value
+ -- record types and types containing tasks, three additional formals are
+ -- added:
+ --
+ -- _Master : Master_Id
+ -- _Chain : in out Activation_Chain
+ -- _Task_Name : String
+ --
+ -- The caller must append additional entries for discriminants if required.
+
+ function In_Runtime (E : Entity_Id) return Boolean;
+ -- Check if E is defined in the RTL (in a child of Ada or System). Used
+ -- to avoid to bring in the overhead of _Input, _Output for tagged types.
+
+ function Make_Eq_Case
+ (E : Entity_Id;
+ CL : Node_Id;
+ Discr : Entity_Id := Empty) return List_Id;
+ -- Building block for variant record equality. Defined to share the
+ -- code between the tagged and non-tagged case. Given a Component_List
+ -- node CL, it generates an 'if' followed by a 'case' statement that
+ -- compares all components of local temporaries named X and Y (that
+ -- are declared as formals at some upper level). E provides the Sloc to be
+ -- used for the generated code. Discr is used as the case statement switch
+ -- in the case of Unchecked_Union equality.
+
+ function Make_Eq_If
+ (E : Entity_Id;
+ L : List_Id) return Node_Id;
+ -- Building block for variant record equality. Defined to share the
+ -- code between the tagged and non-tagged case. Given the list of
+ -- components (or discriminants) L, it generates a return statement
+ -- that compares all components of local temporaries named X and Y
+ -- (that are declared as formals at some upper level). E provides the Sloc
+ -- to be used for the generated code.
+
+ procedure Make_Predefined_Primitive_Specs
+ (Tag_Typ : Entity_Id;
+ Predef_List : out List_Id;
+ Renamed_Eq : out Node_Id);
+ -- Create a list with the specs of the predefined primitive operations.
+ -- The following entries are present for all tagged types, and provide
+ -- the results of the corresponding attribute applied to the object.
+ -- Dispatching is required in general, since the result of the attribute
+ -- will vary with the actual object subtype.
+ --
+ -- _alignment provides result of 'Alignment attribute
+ -- _size provides result of 'Size attribute
+ -- typSR provides result of 'Read attribute
+ -- typSW provides result of 'Write attribute
+ -- typSI provides result of 'Input attribute
+ -- typSO provides result of 'Output attribute
+ --
+ -- The following entries are additionally present for non-limited
+ -- tagged types, and implement additional dispatching operations
+ -- for predefined operations:
+ --
+ -- _equality implements "=" operator
+ -- _assign implements assignment operation
+ -- typDF implements deep finalization
+ -- typDA implements deep adust
+ --
+ -- The latter two are empty procedures unless the type contains some
+ -- controlled components that require finalization actions (the deep
+ -- in the name refers to the fact that the action applies to components).
+ --
+ -- The list is returned in Predef_List. The Parameter Renamed_Eq
+ -- either returns the value Empty, or else the defining unit name
+ -- for the predefined equality function in the case where the type
+ -- has a primitive operation that is a renaming of predefined equality
+ -- (but only if there is also an overriding user-defined equality
+ -- function). The returned Renamed_Eq will be passed to the
+ -- corresponding parameter of Predefined_Primitive_Bodies.
+
+ function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
+ -- returns True if there are representation clauses for type T that
+ -- are not inherited. If the result is false, the init_proc and the
+ -- discriminant_checking functions of the parent can be reused by
+ -- a derived type.
+
+ procedure Make_Controlling_Function_Wrappers
+ (Tag_Typ : Entity_Id;
+ Decl_List : out List_Id;
+ Body_List : out List_Id);
+ -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
+ -- associated with inherited functions with controlling results which
+ -- are not overridden. The body of each wrapper function consists solely
+ -- of a return statement whose expression is an extension aggregate
+ -- invoking the inherited subprogram's parent subprogram and extended
+ -- with a null association list.
+
+ function Predef_Spec_Or_Body
+ (Loc : Source_Ptr;
+ Tag_Typ : Entity_Id;
+ Name : Name_Id;
+ Profile : List_Id;
+ Ret_Type : Entity_Id := Empty;
+ For_Body : Boolean := False) return Node_Id;
+ -- This function generates the appropriate expansion for a predefined
+ -- primitive operation specified by its name, parameter profile and
+ -- return type (Empty means this is a procedure). If For_Body is false,
+ -- then the returned node is a subprogram declaration. If For_Body is
+ -- true, then the returned node is a empty subprogram body containing
+ -- no declarations and no statements.
+
+ function Predef_Stream_Attr_Spec
+ (Loc : Source_Ptr;
+ Tag_Typ : Entity_Id;
+ Name : TSS_Name_Type;
+ For_Body : Boolean := False) return Node_Id;
+ -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
+ -- input and output attribute whose specs are constructed in Exp_Strm.
+
+ function Predef_Deep_Spec
+ (Loc : Source_Ptr;
+ Tag_Typ : Entity_Id;
+ Name : TSS_Name_Type;
+ For_Body : Boolean := False) return Node_Id;
+ -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
+ -- and _deep_finalize
+
+ function Predefined_Primitive_Bodies
+ (Tag_Typ : Entity_Id;
+ Renamed_Eq : Node_Id) return List_Id;
+ -- Create the bodies of the predefined primitives that are described in
+ -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
+ -- the defining unit name of the type's predefined equality as returned
+ -- by Make_Predefined_Primitive_Specs.
+
+ function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
+ -- Freeze entities of all predefined primitive operations. This is needed
+ -- because the bodies of these operations do not normally do any freezeing.
+
+ function Stream_Operation_OK
+ (Typ : Entity_Id;
+ Operation : TSS_Name_Type) return Boolean;
+ -- Check whether the named stream operation must be emitted for a given
+ -- type. The rules for inheritance of stream attributes by type extensions
+ -- are enforced by this function. Furthermore, various restrictions prevent
+ -- the generation of these operations, as a useful optimization or for
+ -- certification purposes.
+
+ --------------------------
+ -- Adjust_Discriminants --
+ --------------------------
+
+ -- This procedure attempts to define subtypes for discriminants that
+ -- are more restrictive than those declared. Such a replacement is
+ -- possible if we can demonstrate that values outside the restricted
+ -- range would cause constraint errors in any case. The advantage of
+ -- restricting the discriminant types in this way is tha the maximum
+ -- size of the variant record can be calculated more conservatively.
+
+ -- An example of a situation in which we can perform this type of
+ -- restriction is the following:
+
+ -- subtype B is range 1 .. 10;
+ -- type Q is array (B range <>) of Integer;
+
+ -- type V (N : Natural) is record
+ -- C : Q (1 .. N);
+ -- end record;
+
+ -- In this situation, we can restrict the upper bound of N to 10, since
+ -- any larger value would cause a constraint error in any case.
+
+ -- There are many situations in which such restriction is possible, but
+ -- for now, we just look for cases like the above, where the component
+ -- in question is a one dimensional array whose upper bound is one of
+ -- the record discriminants. Also the component must not be part of
+ -- any variant part, since then the component does not always exist.
+
+ procedure Adjust_Discriminants (Rtype : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (Rtype);
+ Comp : Entity_Id;
+ Ctyp : Entity_Id;
+ Ityp : Entity_Id;
+ Lo : Node_Id;
+ Hi : Node_Id;
+ P : Node_Id;
+ Loval : Uint;
+ Discr : Entity_Id;
+ Dtyp : Entity_Id;
+ Dhi : Node_Id;
+ Dhiv : Uint;
+ Ahi : Node_Id;
+ Ahiv : Uint;
+ Tnn : Entity_Id;
+
+ begin
+ Comp := First_Component (Rtype);
+ while Present (Comp) loop
+
+ -- If our parent is a variant, quit, we do not look at components
+ -- that are in variant parts, because they may not always exist.
+
+ P := Parent (Comp); -- component declaration
+ P := Parent (P); -- component list
+
+ exit when Nkind (Parent (P)) = N_Variant;
+
+ -- We are looking for a one dimensional array type
+
+ Ctyp := Etype (Comp);
+
+ if not Is_Array_Type (Ctyp)
+ or else Number_Dimensions (Ctyp) > 1
+ then
+ goto Continue;
+ end if;
+
+ -- The lower bound must be constant, and the upper bound is a
+ -- discriminant (which is a discriminant of the current record).
+
+ Ityp := Etype (First_Index (Ctyp));
+ Lo := Type_Low_Bound (Ityp);
+ Hi := Type_High_Bound (Ityp);
+
+ if not Compile_Time_Known_Value (Lo)
+ or else Nkind (Hi) /= N_Identifier
+ or else No (Entity (Hi))
+ or else Ekind (Entity (Hi)) /= E_Discriminant
+ then
+ goto Continue;
+ end if;
+
+ -- We have an array with appropriate bounds
+
+ Loval := Expr_Value (Lo);
+ Discr := Entity (Hi);
+ Dtyp := Etype (Discr);
+
+ -- See if the discriminant has a known upper bound
+
+ Dhi := Type_High_Bound (Dtyp);
+
+ if not Compile_Time_Known_Value (Dhi) then
+ goto Continue;
+ end if;
+
+ Dhiv := Expr_Value (Dhi);
+
+ -- See if base type of component array has known upper bound
+
+ Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
+
+ if not Compile_Time_Known_Value (Ahi) then
+ goto Continue;
+ end if;
+
+ Ahiv := Expr_Value (Ahi);
+
+ -- The condition for doing the restriction is that the high bound
+ -- of the discriminant is greater than the low bound of the array,
+ -- and is also greater than the high bound of the base type index.
+
+ if Dhiv > Loval and then Dhiv > Ahiv then
+
+ -- We can reset the upper bound of the discriminant type to
+ -- whichever is larger, the low bound of the component, or
+ -- the high bound of the base type array index.
+
+ -- We build a subtype that is declared as
+
+ -- subtype Tnn is discr_type range discr_type'First .. max;
+
+ -- And insert this declaration into the tree. The type of the
+ -- discriminant is then reset to this more restricted subtype.
+
+ Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
+
+ Insert_Action (Declaration_Node (Rtype),
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Tnn,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
+ Constraint =>
+ Make_Range_Constraint (Loc,
+ Range_Expression =>
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix => New_Occurrence_Of (Dtyp, Loc)),
+ High_Bound =>
+ Make_Integer_Literal (Loc,
+ Intval => UI_Max (Loval, Ahiv)))))));
+
+ Set_Etype (Discr, Tnn);
+ end if;
+
+ <<Continue>>
+ Next_Component (Comp);
+ end loop;
+ end Adjust_Discriminants;
+
+ ---------------------------
+ -- Build_Array_Init_Proc --
+ ---------------------------
+
+ procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Nod);
+ Comp_Type : constant Entity_Id := Component_Type (A_Type);
+ Index_List : List_Id;
+ Proc_Id : Entity_Id;
+ Body_Stmts : List_Id;
+
+ function Init_Component return List_Id;
+ -- Create one statement to initialize one array component, designated
+ -- by a full set of indices.
+
+ function Init_One_Dimension (N : Int) return List_Id;
+ -- Create loop to initialize one dimension of the array. The single
+ -- statement in the loop body initializes the inner dimensions if any,
+ -- or else the single component. Note that this procedure is called
+ -- recursively, with N being the dimension to be initialized. A call
+ -- with N greater than the number of dimensions simply generates the
+ -- component initialization, terminating the recursion.
+
+ --------------------
+ -- Init_Component --
+ --------------------
+
+ function Init_Component return List_Id is
+ Comp : Node_Id;
+
+ begin
+ Comp :=
+ Make_Indexed_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Expressions => Index_List);
+
+ if Needs_Simple_Initialization (Comp_Type) then
+ Set_Assignment_OK (Comp);
+ return New_List (
+ Make_Assignment_Statement (Loc,
+ Name => Comp,
+ Expression =>
+ Get_Simple_Init_Val
+ (Comp_Type, Loc, Component_Size (A_Type))));
+
+ else
+ return
+ Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
+ end if;
+ end Init_Component;
+
+ ------------------------
+ -- Init_One_Dimension --
+ ------------------------
+
+ function Init_One_Dimension (N : Int) return List_Id is
+ Index : Entity_Id;
+
+ begin
+ -- If the component does not need initializing, then there is nothing
+ -- to do here, so we return a null body. This occurs when generating
+ -- the dummy Init_Proc needed for Initialize_Scalars processing.
+
+ if not Has_Non_Null_Base_Init_Proc (Comp_Type)
+ and then not Needs_Simple_Initialization (Comp_Type)
+ and then not Has_Task (Comp_Type)
+ then
+ return New_List (Make_Null_Statement (Loc));
+
+ -- If all dimensions dealt with, we simply initialize the component
+
+ elsif N > Number_Dimensions (A_Type) then
+ return Init_Component;
+
+ -- Here we generate the required loop
+
+ else
+ Index :=
+ Make_Defining_Identifier (Loc, New_External_Name ('J', N));
+
+ Append (New_Reference_To (Index, Loc), Index_List);
+
+ return New_List (
+ Make_Implicit_Loop_Statement (Nod,
+ Identifier => Empty,
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier => Index,
+ Discrete_Subtype_Definition =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Attribute_Name => Name_Range,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, N))))),
+ Statements => Init_One_Dimension (N + 1)));
+ end if;
+ end Init_One_Dimension;
+
+ -- Start of processing for Build_Array_Init_Proc
+
+ begin
+ if Suppress_Init_Proc (A_Type) then
+ return;
+ end if;
+
+ Index_List := New_List;
+
+ -- We need an initialization procedure if any of the following is true:
+
+ -- 1. The component type has an initialization procedure
+ -- 2. The component type needs simple initialization
+ -- 3. Tasks are present
+ -- 4. The type is marked as a publc entity
+
+ -- The reason for the public entity test is to deal properly with the
+ -- Initialize_Scalars pragma. This pragma can be set in the client and
+ -- not in the declaring package, this means the client will make a call
+ -- to the initialization procedure (because one of conditions 1-3 must
+ -- apply in this case), and we must generate a procedure (even if it is
+ -- null) to satisfy the call in this case.
+
+ -- Exception: do not build an array init_proc for a type whose root
+ -- type is Standard.String or Standard.Wide_[Wide_]String, since there
+ -- is no place to put the code, and in any case we handle initialization
+ -- of such types (in the Initialize_Scalars case, that's the only time
+ -- the issue arises) in a special manner anyway which does not need an
+ -- init_proc.
+
+ if Has_Non_Null_Base_Init_Proc (Comp_Type)
+ or else Needs_Simple_Initialization (Comp_Type)
+ or else Has_Task (Comp_Type)
+ or else (not Restriction_Active (No_Initialize_Scalars)
+ and then Is_Public (A_Type)
+ and then Root_Type (A_Type) /= Standard_String
+ and then Root_Type (A_Type) /= Standard_Wide_String
+ and then Root_Type (A_Type) /= Standard_Wide_Wide_String)
+ then
+ Proc_Id :=
+ Make_Defining_Identifier (Loc, Make_Init_Proc_Name (A_Type));
+
+ Body_Stmts := Init_One_Dimension (1);
+
+ Discard_Node (
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Proc_Id,
+ Parameter_Specifications => Init_Formals (A_Type)),
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Body_Stmts)));
+
+ Set_Ekind (Proc_Id, E_Procedure);
+ Set_Is_Public (Proc_Id, Is_Public (A_Type));
+ Set_Is_Internal (Proc_Id);
+ Set_Has_Completion (Proc_Id);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Proc_Id);
+ end if;
+
+ -- Set inlined unless controlled stuff or tasks around, in which
+ -- case we do not want to inline, because nested stuff may cause
+ -- difficulties in interunit inlining, and furthermore there is
+ -- in any case no point in inlining such complex init procs.
+
+ if not Has_Task (Proc_Id)
+ and then not Controlled_Type (Proc_Id)
+ then
+ Set_Is_Inlined (Proc_Id);
+ end if;
+
+ -- Associate Init_Proc with type, and determine if the procedure
+ -- is null (happens because of the Initialize_Scalars pragma case,
+ -- where we have to generate a null procedure in case it is called
+ -- by a client with Initialize_Scalars set). Such procedures have
+ -- to be generated, but do not have to be called, so we mark them
+ -- as null to suppress the call.
+
+ Set_Init_Proc (A_Type, Proc_Id);
+
+ if List_Length (Body_Stmts) = 1
+ and then Nkind (First (Body_Stmts)) = N_Null_Statement
+ then
+ Set_Is_Null_Init_Proc (Proc_Id);
+ end if;
+ end if;
+ end Build_Array_Init_Proc;
+
+ -----------------------------
+ -- Build_Class_Wide_Master --
+ -----------------------------
+
+ procedure Build_Class_Wide_Master (T : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (T);
+ M_Id : Entity_Id;
+ Decl : Node_Id;
+ P : Node_Id;
+ Par : Node_Id;
+
+ begin
+ -- Nothing to do if there is no task hierarchy
+
+ if Restriction_Active (No_Task_Hierarchy) then
+ return;
+ end if;
+
+ -- Find declaration that created the access type: either a
+ -- type declaration, or an object declaration with an
+ -- access definition, in which case the type is anonymous.
+
+ if Is_Itype (T) then
+ P := Associated_Node_For_Itype (T);
+ else
+ P := Parent (T);
+ end if;
+
+ -- Nothing to do if we already built a master entity for this scope
+
+ if not Has_Master_Entity (Scope (T)) then
+
+ -- first build the master entity
+ -- _Master : constant Master_Id := Current_Master.all;
+ -- and insert it just before the current declaration
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uMaster),
+ Constant_Present => True,
+ Object_Definition => New_Reference_To (Standard_Integer, Loc),
+ Expression =>
+ Make_Explicit_Dereference (Loc,
+ New_Reference_To (RTE (RE_Current_Master), Loc)));
+
+ Insert_Before (P, Decl);
+ Analyze (Decl);
+ Set_Has_Master_Entity (Scope (T));
+
+ -- Now mark the containing scope as a task master
+
+ Par := P;
+ while Nkind (Par) /= N_Compilation_Unit loop
+ Par := Parent (Par);
+
+ -- If we fall off the top, we are at the outer level, and the
+ -- environment task is our effective master, so nothing to mark.
+
+ if Nkind (Par) = N_Task_Body
+ or else Nkind (Par) = N_Block_Statement
+ or else Nkind (Par) = N_Subprogram_Body
+ then
+ Set_Is_Task_Master (Par, True);
+ exit;
+ end if;
+ end loop;
+ end if;
+
+ -- Now define the renaming of the master_id
+
+ M_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (T), 'M'));
+
+ Decl :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => M_Id,
+ Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
+ Name => Make_Identifier (Loc, Name_uMaster));
+ Insert_Before (P, Decl);
+ Analyze (Decl);
+
+ Set_Master_Id (T, M_Id);
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Build_Class_Wide_Master;
+
+ --------------------------------
+ -- Build_Discr_Checking_Funcs --
+ --------------------------------
+
+ procedure Build_Discr_Checking_Funcs (N : Node_Id) is
+ Rec_Id : Entity_Id;
+ Loc : Source_Ptr;
+ Enclosing_Func_Id : Entity_Id;
+ Sequence : Nat := 1;
+ Type_Def : Node_Id;
+ V : Node_Id;
+
+ function Build_Case_Statement
+ (Case_Id : Entity_Id;
+ Variant : Node_Id) return Node_Id;
+ -- Build a case statement containing only two alternatives. The
+ -- first alternative corresponds exactly to the discrete choices
+ -- given on the variant with contains the components that we are
+ -- generating the checks for. If the discriminant is one of these
+ -- return False. The second alternative is an OTHERS choice that
+ -- will return True indicating the discriminant did not match.
+
+ function Build_Dcheck_Function
+ (Case_Id : Entity_Id;
+ Variant : Node_Id) return Entity_Id;
+ -- Build the discriminant checking function for a given variant
+
+ procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
+ -- Builds the discriminant checking function for each variant of the
+ -- given variant part of the record type.
+
+ --------------------------
+ -- Build_Case_Statement --
+ --------------------------
+
+ function Build_Case_Statement
+ (Case_Id : Entity_Id;
+ Variant : Node_Id) return Node_Id
+ is
+ Alt_List : constant List_Id := New_List;
+ Actuals_List : List_Id;
+ Case_Node : Node_Id;
+ Case_Alt_Node : Node_Id;
+ Choice : Node_Id;
+ Choice_List : List_Id;
+ D : Entity_Id;
+ Return_Node : Node_Id;
+
+ begin
+ Case_Node := New_Node (N_Case_Statement, Loc);
+
+ -- Replace the discriminant which controls the variant, with the
+ -- name of the formal of the checking function.
+
+ Set_Expression (Case_Node,
+ Make_Identifier (Loc, Chars (Case_Id)));
+
+ Choice := First (Discrete_Choices (Variant));
+
+ if Nkind (Choice) = N_Others_Choice then
+ Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
+ else
+ Choice_List := New_Copy_List (Discrete_Choices (Variant));
+ end if;
+
+ if not Is_Empty_List (Choice_List) then
+ Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
+ Set_Discrete_Choices (Case_Alt_Node, Choice_List);
+
+ -- In case this is a nested variant, we need to return the result
+ -- of the discriminant checking function for the immediately
+ -- enclosing variant.
+
+ if Present (Enclosing_Func_Id) then
+ Actuals_List := New_List;
+
+ D := First_Discriminant (Rec_Id);
+ while Present (D) loop
+ Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
+ Next_Discriminant (D);
+ end loop;
+
+ Return_Node :=
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Function_Call (Loc,
+ Name =>
+ New_Reference_To (Enclosing_Func_Id, Loc),
+ Parameter_Associations =>
+ Actuals_List));
+
+ else
+ Return_Node :=
+ Make_Return_Statement (Loc,
+ Expression =>
+ New_Reference_To (Standard_False, Loc));
+ end if;
+
+ Set_Statements (Case_Alt_Node, New_List (Return_Node));
+ Append (Case_Alt_Node, Alt_List);
+ end if;
+
+ Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
+ Choice_List := New_List (New_Node (N_Others_Choice, Loc));
+ Set_Discrete_Choices (Case_Alt_Node, Choice_List);
+
+ Return_Node :=
+ Make_Return_Statement (Loc,
+ Expression =>
+ New_Reference_To (Standard_True, Loc));
+
+ Set_Statements (Case_Alt_Node, New_List (Return_Node));
+ Append (Case_Alt_Node, Alt_List);
+
+ Set_Alternatives (Case_Node, Alt_List);
+ return Case_Node;
+ end Build_Case_Statement;
+
+ ---------------------------
+ -- Build_Dcheck_Function --
+ ---------------------------
+
+ function Build_Dcheck_Function
+ (Case_Id : Entity_Id;
+ Variant : Node_Id) return Entity_Id
+ is
+ Body_Node : Node_Id;
+ Func_Id : Entity_Id;
+ Parameter_List : List_Id;
+ Spec_Node : Node_Id;
+
+ begin
+ Body_Node := New_Node (N_Subprogram_Body, Loc);
+ Sequence := Sequence + 1;
+
+ Func_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
+
+ Spec_Node := New_Node (N_Function_Specification, Loc);
+ Set_Defining_Unit_Name (Spec_Node, Func_Id);
+
+ Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
+
+ Set_Parameter_Specifications (Spec_Node, Parameter_List);
+ Set_Result_Definition (Spec_Node,
+ New_Reference_To (Standard_Boolean, Loc));
+ Set_Specification (Body_Node, Spec_Node);
+ Set_Declarations (Body_Node, New_List);
+
+ Set_Handled_Statement_Sequence (Body_Node,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Build_Case_Statement (Case_Id, Variant))));
+
+ Set_Ekind (Func_Id, E_Function);
+ Set_Mechanism (Func_Id, Default_Mechanism);
+ Set_Is_Inlined (Func_Id, True);
+ Set_Is_Pure (Func_Id, True);
+ Set_Is_Public (Func_Id, Is_Public (Rec_Id));
+ Set_Is_Internal (Func_Id, True);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Func_Id);
+ end if;
+
+ Analyze (Body_Node);
+
+ Append_Freeze_Action (Rec_Id, Body_Node);
+ Set_Dcheck_Function (Variant, Func_Id);
+ return Func_Id;
+ end Build_Dcheck_Function;
+
+ ----------------------------
+ -- Build_Dcheck_Functions --
+ ----------------------------
+
+ procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
+ Component_List_Node : Node_Id;
+ Decl : Entity_Id;
+ Discr_Name : Entity_Id;
+ Func_Id : Entity_Id;
+ Variant : Node_Id;
+ Saved_Enclosing_Func_Id : Entity_Id;
+
+ begin
+ -- Build the discriminant checking function for each variant, label
+ -- all components of that variant with the function's name.
+
+ Discr_Name := Entity (Name (Variant_Part_Node));
+ Variant := First_Non_Pragma (Variants (Variant_Part_Node));
+
+ while Present (Variant) loop
+ Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
+ Component_List_Node := Component_List (Variant);
+
+ if not Null_Present (Component_List_Node) then
+ Decl :=
+ First_Non_Pragma (Component_Items (Component_List_Node));
+
+ while Present (Decl) loop
+ Set_Discriminant_Checking_Func
+ (Defining_Identifier (Decl), Func_Id);
+
+ Next_Non_Pragma (Decl);
+ end loop;
+
+ if Present (Variant_Part (Component_List_Node)) then
+ Saved_Enclosing_Func_Id := Enclosing_Func_Id;
+ Enclosing_Func_Id := Func_Id;
+ Build_Dcheck_Functions (Variant_Part (Component_List_Node));
+ Enclosing_Func_Id := Saved_Enclosing_Func_Id;
+ end if;
+ end if;
+
+ Next_Non_Pragma (Variant);
+ end loop;
+ end Build_Dcheck_Functions;
+
+ -- Start of processing for Build_Discr_Checking_Funcs
+
+ begin
+ -- Only build if not done already
+
+ if not Discr_Check_Funcs_Built (N) then
+ Type_Def := Type_Definition (N);
+
+ if Nkind (Type_Def) = N_Record_Definition then
+ if No (Component_List (Type_Def)) then -- null record.
+ return;
+ else
+ V := Variant_Part (Component_List (Type_Def));
+ end if;
+
+ else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
+ if No (Component_List (Record_Extension_Part (Type_Def))) then
+ return;
+ else
+ V := Variant_Part
+ (Component_List (Record_Extension_Part (Type_Def)));
+ end if;
+ end if;
+
+ Rec_Id := Defining_Identifier (N);
+
+ if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
+ Loc := Sloc (N);
+ Enclosing_Func_Id := Empty;
+ Build_Dcheck_Functions (V);
+ end if;
+
+ Set_Discr_Check_Funcs_Built (N);
+ end if;
+ end Build_Discr_Checking_Funcs;
+
+ --------------------------------
+ -- Build_Discriminant_Formals --
+ --------------------------------
+
+ function Build_Discriminant_Formals
+ (Rec_Id : Entity_Id;
+ Use_Dl : Boolean) return List_Id
+ is
+ Loc : Source_Ptr := Sloc (Rec_Id);
+ Parameter_List : constant List_Id := New_List;
+ D : Entity_Id;
+ Formal : Entity_Id;
+ Param_Spec_Node : Node_Id;
+
+ begin
+ if Has_Discriminants (Rec_Id) then
+ D := First_Discriminant (Rec_Id);
+ while Present (D) loop
+ Loc := Sloc (D);
+
+ if Use_Dl then
+ Formal := Discriminal (D);
+ else
+ Formal := Make_Defining_Identifier (Loc, Chars (D));
+ end if;
+
+ Param_Spec_Node :=
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Formal,
+ Parameter_Type =>
+ New_Reference_To (Etype (D), Loc));
+ Append (Param_Spec_Node, Parameter_List);
+ Next_Discriminant (D);
+ end loop;
+ end if;
+
+ return Parameter_List;
+ end Build_Discriminant_Formals;
+
+ -------------------------------
+ -- Build_Initialization_Call --
+ -------------------------------
+
+ -- References to a discriminant inside the record type declaration
+ -- can appear either in the subtype_indication to constrain a
+ -- record or an array, or as part of a larger expression given for
+ -- the initial value of a component. In both of these cases N appears
+ -- in the record initialization procedure and needs to be replaced by
+ -- the formal parameter of the initialization procedure which
+ -- corresponds to that discriminant.
+
+ -- In the example below, references to discriminants D1 and D2 in proc_1
+ -- are replaced by references to formals with the same name
+ -- (discriminals)
+
+ -- A similar replacement is done for calls to any record
+ -- initialization procedure for any components that are themselves
+ -- of a record type.
+
+ -- type R (D1, D2 : Integer) is record
+ -- X : Integer := F * D1;
+ -- Y : Integer := F * D2;
+ -- end record;
+
+ -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
+ -- begin
+ -- Out_2.D1 := D1;
+ -- Out_2.D2 := D2;
+ -- Out_2.X := F * D1;
+ -- Out_2.Y := F * D2;
+ -- end;
+
+ function Build_Initialization_Call
+ (Loc : Source_Ptr;
+ Id_Ref : Node_Id;
+ Typ : Entity_Id;
+ In_Init_Proc : Boolean := False;
+ Enclos_Type : Entity_Id := Empty;
+ Discr_Map : Elist_Id := New_Elmt_List;
+ With_Default_Init : Boolean := False) return List_Id
+ is
+ First_Arg : Node_Id;
+ Args : List_Id;
+ Decls : List_Id;
+ Decl : Node_Id;
+ Discr : Entity_Id;
+ Arg : Node_Id;
+ Proc : constant Entity_Id := Base_Init_Proc (Typ);
+ Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
+ Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
+ Res : constant List_Id := New_List;
+ Full_Type : Entity_Id := Typ;
+ Controller_Typ : Entity_Id;
+
+ begin
+ -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
+ -- is active (in which case we make the call anyway, since in the
+ -- actual compiled client it may be non null).
+
+ if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
+ return Empty_List;
+ end if;
+
+ -- Go to full view if private type. In the case of successive
+ -- private derivations, this can require more than one step.
+
+ while Is_Private_Type (Full_Type)
+ and then Present (Full_View (Full_Type))
+ loop
+ Full_Type := Full_View (Full_Type);
+ end loop;
+
+ -- If Typ is derived, the procedure is the initialization procedure for
+ -- the root type. Wrap the argument in an conversion to make it type
+ -- honest. Actually it isn't quite type honest, because there can be
+ -- conflicts of views in the private type case. That is why we set
+ -- Conversion_OK in the conversion node.
+
+ if (Is_Record_Type (Typ)
+ or else Is_Array_Type (Typ)
+ or else Is_Private_Type (Typ))
+ and then Init_Type /= Base_Type (Typ)
+ then
+ First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
+ Set_Etype (First_Arg, Init_Type);
+
+ else
+ First_Arg := Id_Ref;
+ end if;
+
+ Args := New_List (Convert_Concurrent (First_Arg, Typ));
+
+ -- In the tasks case, add _Master as the value of the _Master parameter
+ -- and _Chain as the value of the _Chain parameter. At the outer level,
+ -- these will be variables holding the corresponding values obtained
+ -- from GNARL. At inner levels, they will be the parameters passed down
+ -- through the outer routines.
+
+ if Has_Task (Full_Type) then
+ if Restriction_Active (No_Task_Hierarchy) then
+
+ -- See comments in System.Tasking.Initialization.Init_RTS
+ -- for the value 3 (should be rtsfindable constant ???)
+
+ Append_To (Args, Make_Integer_Literal (Loc, 3));
+ else
+ Append_To (Args, Make_Identifier (Loc, Name_uMaster));
+ end if;
+
+ Append_To (Args, Make_Identifier (Loc, Name_uChain));
+
+ -- Ada 2005 (AI-287): In case of default initialized components
+ -- with tasks, we generate a null string actual parameter.
+ -- This is just a workaround that must be improved later???
+
+ if With_Default_Init then
+ Append_To (Args,
+ Make_String_Literal (Loc,
+ Strval => ""));
+
+ else
+ Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
+ Decl := Last (Decls);
+
+ Append_To (Args,
+ New_Occurrence_Of (Defining_Identifier (Decl), Loc));
+ Append_List (Decls, Res);
+ end if;
+
+ else
+ Decls := No_List;
+ Decl := Empty;
+ end if;
+
+ -- Add discriminant values if discriminants are present
+
+ if Has_Discriminants (Full_Init_Type) then
+ Discr := First_Discriminant (Full_Init_Type);
+
+ while Present (Discr) loop
+
+ -- If this is a discriminated concurrent type, the init_proc
+ -- for the corresponding record is being called. Use that
+ -- type directly to find the discriminant value, to handle
+ -- properly intervening renamed discriminants.
+
+ declare
+ T : Entity_Id := Full_Type;
+
+ begin
+ if Is_Protected_Type (T) then
+ T := Corresponding_Record_Type (T);
+
+ elsif Is_Private_Type (T)
+ and then Present (Underlying_Full_View (T))
+ and then Is_Protected_Type (Underlying_Full_View (T))
+ then
+ T := Corresponding_Record_Type (Underlying_Full_View (T));
+ end if;
+
+ Arg :=
+ Get_Discriminant_Value (
+ Discr,
+ T,
+ Discriminant_Constraint (Full_Type));
+ end;
+
+ if In_Init_Proc then
+
+ -- Replace any possible references to the discriminant in the
+ -- call to the record initialization procedure with references
+ -- to the appropriate formal parameter.
+
+ if Nkind (Arg) = N_Identifier
+ and then Ekind (Entity (Arg)) = E_Discriminant
+ then
+ Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
+
+ -- Case of access discriminants. We replace the reference
+ -- to the type by a reference to the actual object
+
+ elsif Nkind (Arg) = N_Attribute_Reference
+ and then Is_Access_Type (Etype (Arg))
+ and then Is_Entity_Name (Prefix (Arg))
+ and then Is_Type (Entity (Prefix (Arg)))
+ then
+ Arg :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Copy (Prefix (Id_Ref)),
+ Attribute_Name => Name_Unrestricted_Access);
+
+ -- Otherwise make a copy of the default expression. Note
+ -- that we use the current Sloc for this, because we do not
+ -- want the call to appear to be at the declaration point.
+ -- Within the expression, replace discriminants with their
+ -- discriminals.
+
+ else
+ Arg :=
+ New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
+ end if;
+
+ else
+ if Is_Constrained (Full_Type) then
+ Arg := Duplicate_Subexpr_No_Checks (Arg);
+ else
+ -- The constraints come from the discriminant default
+ -- exps, they must be reevaluated, so we use New_Copy_Tree
+ -- but we ensure the proper Sloc (for any embedded calls).
+
+ Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-287) In case of default initialized components,
+ -- we need to generate the corresponding selected component node
+ -- to access the discriminant value. In other cases this is not
+ -- required because we are inside the init proc and we use the
+ -- corresponding formal.
+
+ if With_Default_Init
+ and then Nkind (Id_Ref) = N_Selected_Component
+ and then Nkind (Arg) = N_Identifier
+ then
+ Append_To (Args,
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Prefix (Id_Ref)),
+ Selector_Name => Arg));
+ else
+ Append_To (Args, Arg);
+ end if;
+
+ Next_Discriminant (Discr);
+ end loop;
+ end if;
+
+ -- If this is a call to initialize the parent component of a derived
+ -- tagged type, indicate that the tag should not be set in the parent.
+
+ if Is_Tagged_Type (Full_Init_Type)
+ and then not Is_CPP_Class (Full_Init_Type)
+ and then Nkind (Id_Ref) = N_Selected_Component
+ and then Chars (Selector_Name (Id_Ref)) = Name_uParent
+ then
+ Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
+ end if;
+
+ Append_To (Res,
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Proc, Loc),
+ Parameter_Associations => Args));
+
+ if Controlled_Type (Typ)
+ and then Nkind (Id_Ref) = N_Selected_Component
+ then
+ if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
+ Append_List_To (Res,
+ Make_Init_Call (
+ Ref => New_Copy_Tree (First_Arg),
+ Typ => Typ,
+ Flist_Ref =>
+ Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+
+ -- If the enclosing type is an extension with new controlled
+ -- components, it has his own record controller. If the parent
+ -- also had a record controller, attach it to the new one.
+ -- Build_Init_Statements relies on the fact that in this specific
+ -- case the last statement of the result is the attach call to
+ -- the controller. If this is changed, it must be synchronized.
+
+ elsif Present (Enclos_Type)
+ and then Has_New_Controlled_Component (Enclos_Type)
+ and then Has_Controlled_Component (Typ)
+ then
+ if Is_Return_By_Reference_Type (Typ) then
+ Controller_Typ := RTE (RE_Limited_Record_Controller);
+ else
+ Controller_Typ := RTE (RE_Record_Controller);
+ end if;
+
+ Append_List_To (Res,
+ Make_Init_Call (
+ Ref =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (First_Arg),
+ Selector_Name => Make_Identifier (Loc, Name_uController)),
+ Typ => Controller_Typ,
+ Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+ end if;
+ end if;
+
+ return Res;
+
+ exception
+ when RE_Not_Available =>
+ return Empty_List;
+ end Build_Initialization_Call;
+
+ ---------------------------
+ -- Build_Master_Renaming --
+ ---------------------------
+
+ procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ M_Id : Entity_Id;
+ Decl : Node_Id;
+
+ begin
+ -- Nothing to do if there is no task hierarchy
+
+ if Restriction_Active (No_Task_Hierarchy) then
+ return;
+ end if;
+
+ M_Id :=
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (T), 'M'));
+
+ Decl :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => M_Id,
+ Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
+ Name => Make_Identifier (Loc, Name_uMaster));
+ Insert_Before (N, Decl);
+ Analyze (Decl);
+
+ Set_Master_Id (T, M_Id);
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Build_Master_Renaming;
+
+ ----------------------------
+ -- Build_Record_Init_Proc --
+ ----------------------------
+
+ procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
+ Loc : Source_Ptr := Sloc (N);
+ Discr_Map : constant Elist_Id := New_Elmt_List;
+ Proc_Id : Entity_Id;
+ Rec_Type : Entity_Id;
+ Set_Tag : Entity_Id := Empty;
+
+ function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
+ -- Build a assignment statement node which assigns to record
+ -- component its default expression if defined. The left hand side
+ -- of the assignment is marked Assignment_OK so that initialization
+ -- of limited private records works correctly, Return also the
+ -- adjustment call for controlled objects
+
+ procedure Build_Discriminant_Assignments (Statement_List : List_Id);
+ -- If the record has discriminants, adds assignment statements to
+ -- statement list to initialize the discriminant values from the
+ -- arguments of the initialization procedure.
+
+ function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
+ -- Build a list representing a sequence of statements which initialize
+ -- components of the given component list. This may involve building
+ -- case statements for the variant parts.
+
+ function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
+ -- Given a non-tagged type-derivation that declares discriminants,
+ -- such as
+ --
+ -- type R (R1, R2 : Integer) is record ... end record;
+ --
+ -- type D (D1 : Integer) is new R (1, D1);
+ --
+ -- we make the _init_proc of D be
+ --
+ -- procedure _init_proc(X : D; D1 : Integer) is
+ -- begin
+ -- _init_proc( R(X), 1, D1);
+ -- end _init_proc;
+ --
+ -- This function builds the call statement in this _init_proc.
+
+ procedure Build_Init_Procedure;
+ -- Build the tree corresponding to the procedure specification and body
+ -- of the initialization procedure (by calling all the preceding
+ -- auxiliary routines), and install it as the _init TSS.
+
+ procedure Build_Offset_To_Top_Functions;
+ -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
+ -- and body of the Offset_To_Top function that is generated when the
+ -- parent of a type with discriminants has secondary dispatch tables.
+
+ procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
+ -- Add range checks to components of disciminated records. S is a
+ -- subtype indication of a record component. Check_List is a list
+ -- to which the check actions are appended.
+
+ function Component_Needs_Simple_Initialization
+ (T : Entity_Id) return Boolean;
+ -- Determines if a component needs simple initialization, given its type
+ -- T. This is the same as Needs_Simple_Initialization except for the
+ -- following difference: the types Tag, Interface_Tag, and Vtable_Ptr
+ -- which are access types which would normally require simple
+ -- initialization to null, do not require initialization as components,
+ -- since they are explicitly initialized by other means.
+
+ procedure Constrain_Array
+ (SI : Node_Id;
+ Check_List : List_Id);
+ -- Called from Build_Record_Checks.
+ -- Apply a list of index constraints to an unconstrained array type.
+ -- The first parameter is the entity for the resulting subtype.
+ -- Check_List is a list to which the check actions are appended.
+
+ procedure Constrain_Index
+ (Index : Node_Id;
+ S : Node_Id;
+ Check_List : List_Id);
+ -- Called from Build_Record_Checks.
+ -- Process an index constraint in a constrained array declaration.
+ -- The constraint can be a subtype name, or a range with or without
+ -- an explicit subtype mark. The index is the corresponding index of the
+ -- unconstrained array. S is the range expression. Check_List is a list
+ -- to which the check actions are appended.
+
+ function Parent_Subtype_Renaming_Discrims return Boolean;
+ -- Returns True for base types N that rename discriminants, else False
+
+ function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
+ -- Determines whether a record initialization procedure needs to be
+ -- generated for the given record type.
+
+ ----------------------
+ -- Build_Assignment --
+ ----------------------
+
+ function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
+ Exp : Node_Id := N;
+ Lhs : Node_Id;
+ Typ : constant Entity_Id := Underlying_Type (Etype (Id));
+ Kind : Node_Kind := Nkind (N);
+ Res : List_Id;
+
+ begin
+ Loc := Sloc (N);
+ Lhs :=
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name => New_Occurrence_Of (Id, Loc));
+ Set_Assignment_OK (Lhs);
+
+ -- Case of an access attribute applied to the current instance.
+ -- Replace the reference to the type by a reference to the actual
+ -- object. (Note that this handles the case of the top level of
+ -- the expression being given by such an attribute, but does not
+ -- cover uses nested within an initial value expression. Nested
+ -- uses are unlikely to occur in practice, but are theoretically
+ -- possible. It is not clear how to handle them without fully
+ -- traversing the expression. ???
+
+ if Kind = N_Attribute_Reference
+ and then (Attribute_Name (N) = Name_Unchecked_Access
+ or else
+ Attribute_Name (N) = Name_Unrestricted_Access)
+ and then Is_Entity_Name (Prefix (N))
+ and then Is_Type (Entity (Prefix (N)))
+ and then Entity (Prefix (N)) = Rec_Type
+ then
+ Exp :=
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Attribute_Name => Name_Unrestricted_Access);
+ end if;
+
+ -- Ada 2005 (AI-231): Add the run-time check if required
+
+ if Ada_Version >= Ada_05
+ and then Can_Never_Be_Null (Etype (Id)) -- Lhs
+ then
+ if Nkind (Exp) = N_Null then
+ return New_List (
+ Make_Raise_Constraint_Error (Sloc (Exp),
+ Reason => CE_Null_Not_Allowed));
+
+ elsif Present (Etype (Exp))
+ and then not Can_Never_Be_Null (Etype (Exp))
+ then
+ Install_Null_Excluding_Check (Exp);
+ end if;
+ end if;
+
+ -- Take a copy of Exp to ensure that later copies of this
+ -- component_declaration in derived types see the original tree,
+ -- not a node rewritten during expansion of the init_proc.
+
+ Exp := New_Copy_Tree (Exp);
+
+ Res := New_List (
+ Make_Assignment_Statement (Loc,
+ Name => Lhs,
+ Expression => Exp));
+
+ Set_No_Ctrl_Actions (First (Res));
+
+ -- Adjust the tag if tagged (because of possible view conversions).
+ -- Suppress the tag adjustment when Java_VM because JVM tags are
+ -- represented implicitly in objects.
+
+ if Is_Tagged_Type (Typ) and then not Java_VM then
+ Append_To (Res,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Lhs),
+ Selector_Name =>
+ New_Reference_To (First_Tag_Component (Typ), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt (Access_Disp_Table (Typ))), Loc))));
+ end if;
+
+ -- Adjust the component if controlled except if it is an
+ -- aggregate that will be expanded inline
+
+ if Kind = N_Qualified_Expression then
+ Kind := Nkind (Expression (N));
+ end if;
+
+ if Controlled_Type (Typ)
+ and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
+ then
+ Append_List_To (Res,
+ Make_Adjust_Call (
+ Ref => New_Copy_Tree (Lhs),
+ Typ => Etype (Id),
+ Flist_Ref =>
+ Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+ end if;
+
+ return Res;
+
+ exception
+ when RE_Not_Available =>
+ return Empty_List;
+ end Build_Assignment;
+
+ ------------------------------------
+ -- Build_Discriminant_Assignments --
+ ------------------------------------
+
+ procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
+ D : Entity_Id;
+ Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
+
+ begin
+ if Has_Discriminants (Rec_Type)
+ and then not Is_Unchecked_Union (Rec_Type)
+ then
+ D := First_Discriminant (Rec_Type);
+
+ while Present (D) loop
+ -- Don't generate the assignment for discriminants in derived
+ -- tagged types if the discriminant is a renaming of some
+ -- ancestor discriminant. This initialization will be done
+ -- when initializing the _parent field of the derived record.
+
+ if Is_Tagged and then
+ Present (Corresponding_Discriminant (D))
+ then
+ null;
+
+ else
+ Loc := Sloc (D);
+ Append_List_To (Statement_List,
+ Build_Assignment (D,
+ New_Reference_To (Discriminal (D), Loc)));
+ end if;
+
+ Next_Discriminant (D);
+ end loop;
+ end if;
+ end Build_Discriminant_Assignments;
+
+ --------------------------
+ -- Build_Init_Call_Thru --
+ --------------------------
+
+ function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
+ Parent_Proc : constant Entity_Id :=
+ Base_Init_Proc (Etype (Rec_Type));
+
+ Parent_Type : constant Entity_Id :=
+ Etype (First_Formal (Parent_Proc));
+
+ Uparent_Type : constant Entity_Id :=
+ Underlying_Type (Parent_Type);
+
+ First_Discr_Param : Node_Id;
+
+ Parent_Discr : Entity_Id;
+ First_Arg : Node_Id;
+ Args : List_Id;
+ Arg : Node_Id;
+ Res : List_Id;
+
+ begin
+ -- First argument (_Init) is the object to be initialized.
+ -- ??? not sure where to get a reasonable Loc for First_Arg
+
+ First_Arg :=
+ OK_Convert_To (Parent_Type,
+ New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
+
+ Set_Etype (First_Arg, Parent_Type);
+
+ Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
+
+ -- In the tasks case,
+ -- add _Master as the value of the _Master parameter
+ -- add _Chain as the value of the _Chain parameter.
+ -- add _Task_Name as the value of the _Task_Name parameter.
+ -- At the outer level, these will be variables holding the
+ -- corresponding values obtained from GNARL or the expander.
+ --
+ -- At inner levels, they will be the parameters passed down through
+ -- the outer routines.
+
+ First_Discr_Param := Next (First (Parameters));
+
+ if Has_Task (Rec_Type) then
+ if Restriction_Active (No_Task_Hierarchy) then
+
+ -- See comments in System.Tasking.Initialization.Init_RTS
+ -- for the value 3.
+
+ Append_To (Args, Make_Integer_Literal (Loc, 3));
+ else
+ Append_To (Args, Make_Identifier (Loc, Name_uMaster));
+ end if;
+
+ Append_To (Args, Make_Identifier (Loc, Name_uChain));
+ Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
+ First_Discr_Param := Next (Next (Next (First_Discr_Param)));
+ end if;
+
+ -- Append discriminant values
+
+ if Has_Discriminants (Uparent_Type) then
+ pragma Assert (not Is_Tagged_Type (Uparent_Type));
+
+ Parent_Discr := First_Discriminant (Uparent_Type);
+ while Present (Parent_Discr) loop
+
+ -- Get the initial value for this discriminant
+ -- ??? needs to be cleaned up to use parent_Discr_Constr
+ -- directly.
+
+ declare
+ Discr_Value : Elmt_Id :=
+ First_Elmt
+ (Stored_Constraint (Rec_Type));
+
+ Discr : Entity_Id :=
+ First_Stored_Discriminant (Uparent_Type);
+ begin
+ while Original_Record_Component (Parent_Discr) /= Discr loop
+ Next_Stored_Discriminant (Discr);
+ Next_Elmt (Discr_Value);
+ end loop;
+
+ Arg := Node (Discr_Value);
+ end;
+
+ -- Append it to the list
+
+ if Nkind (Arg) = N_Identifier
+ and then Ekind (Entity (Arg)) = E_Discriminant
+ then
+ Append_To (Args,
+ New_Reference_To (Discriminal (Entity (Arg)), Loc));
+
+ -- Case of access discriminants. We replace the reference
+ -- to the type by a reference to the actual object
+
+-- ??? why is this code deleted without comment
+
+-- elsif Nkind (Arg) = N_Attribute_Reference
+-- and then Is_Entity_Name (Prefix (Arg))
+-- and then Is_Type (Entity (Prefix (Arg)))
+-- then
+-- Append_To (Args,
+-- Make_Attribute_Reference (Loc,
+-- Prefix => New_Copy (Prefix (Id_Ref)),
+-- Attribute_Name => Name_Unrestricted_Access));
+
+ else
+ Append_To (Args, New_Copy (Arg));
+ end if;
+
+ Next_Discriminant (Parent_Discr);
+ end loop;
+ end if;
+
+ Res :=
+ New_List (
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Parent_Proc, Loc),
+ Parameter_Associations => Args));
+
+ return Res;
+ end Build_Init_Call_Thru;
+
+ -----------------------------------
+ -- Build_Offset_To_Top_Functions --
+ -----------------------------------
+
+ procedure Build_Offset_To_Top_Functions is
+ ADT : Elmt_Id;
+ Body_Node : Node_Id;
+ Func_Id : Entity_Id;
+ Spec_Node : Node_Id;
+ E : Entity_Id;
+
+ procedure Build_Offset_To_Top_Internal (Typ : Entity_Id);
+ -- Internal subprogram used to recursively traverse all the ancestors
+
+ ----------------------------------
+ -- Build_Offset_To_Top_Internal --
+ ----------------------------------
+
+ procedure Build_Offset_To_Top_Internal (Typ : Entity_Id) is
+ begin
+ -- Climb to the ancestor (if any) handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ if Full_View (Etype (Typ)) /= Typ then
+ Build_Offset_To_Top_Internal (Full_View (Etype (Typ)));
+ end if;
+
+ elsif Etype (Typ) /= Typ then
+ Build_Offset_To_Top_Internal (Etype (Typ));
+ end if;
+
+ if Present (Abstract_Interfaces (Typ))
+ and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
+ then
+ E := First_Entity (Typ);
+ while Present (E) loop
+ if Is_Tag (E)
+ and then Chars (E) /= Name_uTag
+ then
+ if Typ = Rec_Type then
+ Body_Node := New_Node (N_Subprogram_Body, Loc);
+
+ Func_Id := Make_Defining_Identifier (Loc,
+ New_Internal_Name ('F'));
+
+ Set_DT_Offset_To_Top_Func (E, Func_Id);
+
+ Spec_Node := New_Node (N_Function_Specification, Loc);
+ Set_Defining_Unit_Name (Spec_Node, Func_Id);
+ Set_Parameter_Specifications (Spec_Node, New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uO),
+ In_Present => True,
+ Parameter_Type => New_Reference_To (Typ, Loc))));
+ Set_Result_Definition (Spec_Node,
+ New_Reference_To (RTE (RE_Storage_Offset), Loc));
+
+ Set_Specification (Body_Node, Spec_Node);
+ Set_Declarations (Body_Node, New_List);
+ Set_Handled_Statement_Sequence (Body_Node,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc,
+ Name_uO),
+ Selector_Name => New_Reference_To
+ (E, Loc)),
+ Attribute_Name => Name_Position)))));
+
+ Set_Ekind (Func_Id, E_Function);
+ Set_Mechanism (Func_Id, Default_Mechanism);
+ Set_Is_Internal (Func_Id, True);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Func_Id);
+ end if;
+
+ Analyze (Body_Node);
+
+ Append_Freeze_Action (Rec_Type, Body_Node);
+ end if;
+
+ Next_Elmt (ADT);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end if;
+ end Build_Offset_To_Top_Internal;
+
+ -- Start of processing for Build_Offset_To_Top_Functions
+
+ begin
+ if Etype (Rec_Type) = Rec_Type
+ or else not Has_Discriminants (Etype (Rec_Type))
+ or else No (Abstract_Interfaces (Rec_Type))
+ or else Is_Empty_Elmt_List (Abstract_Interfaces (Rec_Type))
+ then
+ return;
+ end if;
+
+ -- Skip the first _Tag, which is the main tag of the
+ -- tagged type. Following tags correspond with abstract
+ -- interfaces.
+
+ ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Rec_Type)));
+
+ -- Handle private types
+
+ if Present (Full_View (Rec_Type)) then
+ Build_Offset_To_Top_Internal (Full_View (Rec_Type));
+ else
+ Build_Offset_To_Top_Internal (Rec_Type);
+ end if;
+ end Build_Offset_To_Top_Functions;
+
+ --------------------------
+ -- Build_Init_Procedure --
+ --------------------------
+
+ procedure Build_Init_Procedure is
+ Body_Node : Node_Id;
+ Handled_Stmt_Node : Node_Id;
+ Parameters : List_Id;
+ Proc_Spec_Node : Node_Id;
+ Body_Stmts : List_Id;
+ Record_Extension_Node : Node_Id;
+ Init_Tag : Node_Id;
+
+ procedure Init_Secondary_Tags (Typ : Entity_Id);
+ -- Ada 2005 (AI-251): Initialize the tags of all the secondary
+ -- tables associated with abstract interface types
+
+ -------------------------
+ -- Init_Secondary_Tags --
+ -------------------------
+
+ procedure Init_Secondary_Tags (Typ : Entity_Id) is
+ ADT : Elmt_Id;
+
+ procedure Init_Secondary_Tags_Internal (Typ : Entity_Id);
+ -- Internal subprogram used to recursively climb to the root type
+
+ ----------------------------------
+ -- Init_Secondary_Tags_Internal --
+ ----------------------------------
+
+ procedure Init_Secondary_Tags_Internal (Typ : Entity_Id) is
+ Aux_N : Node_Id;
+ E : Entity_Id;
+ Iface : Entity_Id;
+ Prev_E : Entity_Id;
+
+ begin
+ -- Climb to the ancestor (if any) handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ if Full_View (Etype (Typ)) /= Typ then
+ Init_Secondary_Tags_Internal (Full_View (Etype (Typ)));
+ end if;
+
+ elsif Etype (Typ) /= Typ then
+ Init_Secondary_Tags_Internal (Etype (Typ));
+ end if;
+
+ if Present (Abstract_Interfaces (Typ))
+ and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
+ then
+ E := First_Entity (Typ);
+ while Present (E) loop
+ if Is_Tag (E)
+ and then Chars (E) /= Name_uTag
+ then
+ Aux_N := Node (ADT);
+ pragma Assert (Present (Aux_N));
+
+ Iface := Find_Interface (Typ, E);
+
+ -- Initialize the pointer to the secondary DT
+ -- associated with the interface
+
+ Append_To (Body_Stmts,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name =>
+ New_Reference_To (E, Loc)),
+ Expression =>
+ New_Reference_To (Aux_N, Loc)));
+
+ -- Issue error if Set_Offset_To_Top is not available
+ -- in a configurable run-time environment.
+
+ if not RTE_Available (RE_Set_Offset_To_Top) then
+ Error_Msg_CRT ("abstract interface types", Typ);
+ return;
+ end if;
+
+ -- We generate a different call to Set_Offset_To_Top
+ -- when the parent of the type has discriminants
+
+ if Typ /= Etype (Typ)
+ and then Has_Discriminants (Etype (Typ))
+ then
+ pragma Assert (Present (DT_Offset_To_Top_Func (E)));
+
+ -- Generate:
+ -- Set_Offset_To_Top
+ -- (This => Init,
+ -- Interface_T => Iface'Tag,
+ -- Is_Constant => False,
+ -- Offset_Value => n,
+ -- Offset_Func => Fn'Address)
+
+ Append_To (Body_Stmts,
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To
+ (RTE (RE_Set_Offset_To_Top), Loc),
+ Parameter_Associations => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc,
+ Name_uInit),
+ Attribute_Name => Name_Address),
+
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt
+ (Access_Disp_Table (Iface))),
+ Loc)),
+
+ New_Occurrence_Of (Standard_False, Loc),
+
+ Unchecked_Convert_To (RTE (RE_Storage_Offset),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc,
+ Name_uInit),
+ Selector_Name => New_Reference_To
+ (E, Loc)),
+ Attribute_Name => Name_Position)),
+
+ Unchecked_Convert_To (RTE (RE_Address),
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To
+ (DT_Offset_To_Top_Func (E),
+ Loc),
+ Attribute_Name =>
+ Name_Address)))));
+
+ -- In this case the next component stores the value
+ -- of the offset to the top
+
+ Prev_E := E;
+ Next_Entity (E);
+ pragma Assert (Present (E));
+
+ Append_To (Body_Stmts,
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc,
+ Name_uInit),
+ Selector_Name =>
+ New_Reference_To (E, Loc)),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc,
+ Name_uInit),
+ Selector_Name => New_Reference_To
+ (Prev_E, Loc)),
+ Attribute_Name => Name_Position)));
+
+ -- Normal case: No discriminants in the parent type
+
+ else
+ -- Generate:
+ -- Set_Offset_To_Top
+ -- (This => Init,
+ -- Interface_T => Iface'Tag,
+ -- Is_Constant => True,
+ -- Offset_Value => n,
+ -- Offset_Func => null);
+
+ Append_To (Body_Stmts,
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To
+ (RTE (RE_Set_Offset_To_Top), Loc),
+ Parameter_Associations => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Attribute_Name => Name_Address),
+
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt
+ (Access_Disp_Table (Iface))),
+ Loc)),
+
+ New_Occurrence_Of (Standard_True, Loc),
+
+ Unchecked_Convert_To (RTE (RE_Storage_Offset),
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc,
+ Name_uInit),
+ Selector_Name => New_Reference_To
+ (E, Loc)),
+ Attribute_Name => Name_Position)),
+
+ New_Reference_To
+ (RTE (RE_Null_Address), Loc))));
+ end if;
+
+ Next_Elmt (ADT);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end if;
+ end Init_Secondary_Tags_Internal;
+
+ -- Start of processing for Init_Secondary_Tags
+
+ begin
+ -- Skip the first _Tag, which is the main tag of the
+ -- tagged type. Following tags correspond with abstract
+ -- interfaces.
+
+ ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Typ)));
+
+ -- Handle private types
+
+ if Present (Full_View (Typ)) then
+ Init_Secondary_Tags_Internal (Full_View (Typ));
+ else
+ Init_Secondary_Tags_Internal (Typ);
+ end if;
+ end Init_Secondary_Tags;
+
+ -- Start of processing for Build_Init_Procedure
+
+ begin
+ Body_Stmts := New_List;
+ Body_Node := New_Node (N_Subprogram_Body, Loc);
+
+ Proc_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_Init_Proc_Name (Rec_Type));
+ Set_Ekind (Proc_Id, E_Procedure);
+
+ Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
+ Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
+
+ Parameters := Init_Formals (Rec_Type);
+ Append_List_To (Parameters,
+ Build_Discriminant_Formals (Rec_Type, True));
+
+ -- For tagged types, we add a flag to indicate whether the routine
+ -- is called to initialize a parent component in the init_proc of
+ -- a type extension. If the flag is false, we do not set the tag
+ -- because it has been set already in the extension.
+
+ if Is_Tagged_Type (Rec_Type)
+ and then not Is_CPP_Class (Rec_Type)
+ then
+ Set_Tag :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
+
+ Append_To (Parameters,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Set_Tag,
+ Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
+ Expression => New_Occurrence_Of (Standard_True, Loc)));
+ end if;
+
+ Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
+ Set_Specification (Body_Node, Proc_Spec_Node);
+ Set_Declarations (Body_Node, New_List);
+
+ if Parent_Subtype_Renaming_Discrims then
+
+ -- N is a Derived_Type_Definition that renames the parameters
+ -- of the ancestor type. We initialize it by expanding our
+ -- discriminants and call the ancestor _init_proc with a
+ -- type-converted object
+
+ Append_List_To (Body_Stmts,
+ Build_Init_Call_Thru (Parameters));
+
+ elsif Nkind (Type_Definition (N)) = N_Record_Definition then
+ Build_Discriminant_Assignments (Body_Stmts);
+
+ if not Null_Present (Type_Definition (N)) then
+ Append_List_To (Body_Stmts,
+ Build_Init_Statements (
+ Component_List (Type_Definition (N))));
+ end if;
+
+ else
+ -- N is a Derived_Type_Definition with a possible non-empty
+ -- extension. The initialization of a type extension consists
+ -- in the initialization of the components in the extension.
+
+ Build_Discriminant_Assignments (Body_Stmts);
+
+ Record_Extension_Node :=
+ Record_Extension_Part (Type_Definition (N));
+
+ if not Null_Present (Record_Extension_Node) then
+ declare
+ Stmts : constant List_Id :=
+ Build_Init_Statements (
+ Component_List (Record_Extension_Node));
+
+ begin
+ -- The parent field must be initialized first because
+ -- the offset of the new discriminants may depend on it
+
+ Prepend_To (Body_Stmts, Remove_Head (Stmts));
+ Append_List_To (Body_Stmts, Stmts);
+ end;
+ end if;
+ end if;
+
+ -- Add here the assignment to instantiate the Tag
+
+ -- The assignement corresponds to the code:
+
+ -- _Init._Tag := Typ'Tag;
+
+ -- Suppress the tag assignment when Java_VM because JVM tags are
+ -- represented implicitly in objects. It is also suppressed in
+ -- case of CPP_Class types because in this case the tag is
+ -- initialized in the C++ side.
+
+ if Is_Tagged_Type (Rec_Type)
+ and then not Is_CPP_Class (Rec_Type)
+ and then not Java_VM
+ then
+ Init_Tag :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name =>
+ New_Reference_To (First_Tag_Component (Rec_Type), Loc)),
+
+ Expression =>
+ New_Reference_To
+ (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc));
+
+ -- The tag must be inserted before the assignments to other
+ -- components, because the initial value of the component may
+ -- depend ot the tag (eg. through a dispatching operation on
+ -- an access to the current type). The tag assignment is not done
+ -- when initializing the parent component of a type extension,
+ -- because in that case the tag is set in the extension.
+ -- Extensions of imported C++ classes add a final complication,
+ -- because we cannot inhibit tag setting in the constructor for
+ -- the parent. In that case we insert the tag initialization
+ -- after the calls to initialize the parent.
+
+ Init_Tag :=
+ Make_If_Statement (Loc,
+ Condition => New_Occurrence_Of (Set_Tag, Loc),
+ Then_Statements => New_List (Init_Tag));
+
+ if not Is_CPP_Class (Etype (Rec_Type)) then
+ Prepend_To (Body_Stmts, Init_Tag);
+
+ -- Ada 2005 (AI-251): Initialization of all the tags
+ -- corresponding with abstract interfaces
+
+ if Ada_Version >= Ada_05
+ and then not Is_Interface (Rec_Type)
+ then
+ Init_Secondary_Tags (Rec_Type);
+ end if;
+
+ else
+ declare
+ Nod : Node_Id := First (Body_Stmts);
+
+ begin
+ -- We assume the first init_proc call is for the parent
+
+ while Present (Next (Nod))
+ and then (Nkind (Nod) /= N_Procedure_Call_Statement
+ or else not Is_Init_Proc (Name (Nod)))
+ loop
+ Nod := Next (Nod);
+ end loop;
+
+ Insert_After (Nod, Init_Tag);
+ end;
+ end if;
+ end if;
+
+ Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
+ Set_Statements (Handled_Stmt_Node, Body_Stmts);
+ Set_Exception_Handlers (Handled_Stmt_Node, No_List);
+ Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Proc_Id);
+ end if;
+
+ -- Associate Init_Proc with type, and determine if the procedure
+ -- is null (happens because of the Initialize_Scalars pragma case,
+ -- where we have to generate a null procedure in case it is called
+ -- by a client with Initialize_Scalars set). Such procedures have
+ -- to be generated, but do not have to be called, so we mark them
+ -- as null to suppress the call.
+
+ Set_Init_Proc (Rec_Type, Proc_Id);
+
+ if List_Length (Body_Stmts) = 1
+ and then Nkind (First (Body_Stmts)) = N_Null_Statement
+ then
+ Set_Is_Null_Init_Proc (Proc_Id);
+ end if;
+ end Build_Init_Procedure;
+
+ ---------------------------
+ -- Build_Init_Statements --
+ ---------------------------
+
+ function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
+ Check_List : constant List_Id := New_List;
+ Alt_List : List_Id;
+ Statement_List : List_Id;
+ Stmts : List_Id;
+
+ Per_Object_Constraint_Components : Boolean;
+
+ Decl : Node_Id;
+ Variant : Node_Id;
+
+ Id : Entity_Id;
+ Typ : Entity_Id;
+
+ function Has_Access_Constraint (E : Entity_Id) return Boolean;
+ -- Components with access discriminants that depend on the current
+ -- instance must be initialized after all other components.
+
+ ---------------------------
+ -- Has_Access_Constraint --
+ ---------------------------
+
+ function Has_Access_Constraint (E : Entity_Id) return Boolean is
+ Disc : Entity_Id;
+ T : constant Entity_Id := Etype (E);
+
+ begin
+ if Has_Per_Object_Constraint (E)
+ and then Has_Discriminants (T)
+ then
+ Disc := First_Discriminant (T);
+ while Present (Disc) loop
+ if Is_Access_Type (Etype (Disc)) then
+ return True;
+ end if;
+
+ Next_Discriminant (Disc);
+ end loop;
+
+ return False;
+ else
+ return False;
+ end if;
+ end Has_Access_Constraint;
+
+ -- Start of processing for Build_Init_Statements
+
+ begin
+ if Null_Present (Comp_List) then
+ return New_List (Make_Null_Statement (Loc));
+ end if;
+
+ Statement_List := New_List;
+
+ -- Loop through components, skipping pragmas, in 2 steps. The first
+ -- step deals with regular components. The second step deals with
+ -- components have per object constraints, and no explicit initia-
+ -- lization.
+
+ Per_Object_Constraint_Components := False;
+
+ -- First step : regular components
+
+ Decl := First_Non_Pragma (Component_Items (Comp_List));
+ while Present (Decl) loop
+ Loc := Sloc (Decl);
+ Build_Record_Checks
+ (Subtype_Indication (Component_Definition (Decl)), Check_List);
+
+ Id := Defining_Identifier (Decl);
+ Typ := Etype (Id);
+
+ if Has_Access_Constraint (Id)
+ and then No (Expression (Decl))
+ then
+ -- Skip processing for now and ask for a second pass
+
+ Per_Object_Constraint_Components := True;
+
+ else
+ -- Case of explicit initialization
+
+ if Present (Expression (Decl)) then
+ Stmts := Build_Assignment (Id, Expression (Decl));
+
+ -- Case of composite component with its own Init_Proc
+
+ elsif not Is_Interface (Typ)
+ and then Has_Non_Null_Base_Init_Proc (Typ)
+ then
+ Stmts :=
+ Build_Initialization_Call
+ (Loc,
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name => New_Occurrence_Of (Id, Loc)),
+ Typ,
+ True,
+ Rec_Type,
+ Discr_Map => Discr_Map);
+
+ -- Case of component needing simple initialization
+
+ elsif Component_Needs_Simple_Initialization (Typ) then
+ Stmts :=
+ Build_Assignment
+ (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id)));
+
+ -- Nothing needed for this case
+
+ else
+ Stmts := No_List;
+ end if;
+
+ if Present (Check_List) then
+ Append_List_To (Statement_List, Check_List);
+ end if;
+
+ if Present (Stmts) then
+
+ -- Add the initialization of the record controller before
+ -- the _Parent field is attached to it when the attachment
+ -- can occur. It does not work to simply initialize the
+ -- controller first: it must be initialized after the parent
+ -- if the parent holds discriminants that can be used
+ -- to compute the offset of the controller. We assume here
+ -- that the last statement of the initialization call is the
+ -- attachement of the parent (see Build_Initialization_Call)
+
+ if Chars (Id) = Name_uController
+ and then Rec_Type /= Etype (Rec_Type)
+ and then Has_Controlled_Component (Etype (Rec_Type))
+ and then Has_New_Controlled_Component (Rec_Type)
+ then
+ Insert_List_Before (Last (Statement_List), Stmts);
+ else
+ Append_List_To (Statement_List, Stmts);
+ end if;
+ end if;
+ end if;
+
+ Next_Non_Pragma (Decl);
+ end loop;
+
+ if Per_Object_Constraint_Components then
+
+ -- Second pass: components with per-object constraints
+
+ Decl := First_Non_Pragma (Component_Items (Comp_List));
+
+ while Present (Decl) loop
+ Loc := Sloc (Decl);
+ Id := Defining_Identifier (Decl);
+ Typ := Etype (Id);
+
+ if Has_Access_Constraint (Id)
+ and then No (Expression (Decl))
+ then
+ if Has_Non_Null_Base_Init_Proc (Typ) then
+ Append_List_To (Statement_List,
+ Build_Initialization_Call (Loc,
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name => New_Occurrence_Of (Id, Loc)),
+ Typ, True, Rec_Type, Discr_Map => Discr_Map));
+
+ elsif Component_Needs_Simple_Initialization (Typ) then
+ Append_List_To (Statement_List,
+ Build_Assignment
+ (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id))));
+ end if;
+ end if;
+
+ Next_Non_Pragma (Decl);
+ end loop;
+ end if;
+
+ -- Process the variant part
+
+ if Present (Variant_Part (Comp_List)) then
+ Alt_List := New_List;
+ Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
+
+ while Present (Variant) loop
+ Loc := Sloc (Variant);
+ Append_To (Alt_List,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices =>
+ New_Copy_List (Discrete_Choices (Variant)),
+ Statements =>
+ Build_Init_Statements (Component_List (Variant))));
+
+ Next_Non_Pragma (Variant);
+ end loop;
+
+ -- The expression of the case statement which is a reference
+ -- to one of the discriminants is replaced by the appropriate
+ -- formal parameter of the initialization procedure.
+
+ Append_To (Statement_List,
+ Make_Case_Statement (Loc,
+ Expression =>
+ New_Reference_To (Discriminal (
+ Entity (Name (Variant_Part (Comp_List)))), Loc),
+ Alternatives => Alt_List));
+ end if;
+
+ -- For a task record type, add the task create call and calls
+ -- to bind any interrupt (signal) entries.
+
+ if Is_Task_Record_Type (Rec_Type) then
+
+ -- In the case of the restricted run time the ATCB has already
+ -- been preallocated.
+
+ if Restricted_Profile then
+ Append_To (Statement_List,
+ Make_Assignment_Statement (Loc,
+ Name => Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
+ Expression => Make_Attribute_Reference (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_uInit),
+ Selector_Name =>
+ Make_Identifier (Loc, Name_uATCB)),
+ Attribute_Name => Name_Unchecked_Access)));
+ end if;
+
+ Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
+
+ declare
+ Task_Type : constant Entity_Id :=
+ Corresponding_Concurrent_Type (Rec_Type);
+ Task_Decl : constant Node_Id := Parent (Task_Type);
+ Task_Def : constant Node_Id := Task_Definition (Task_Decl);
+ Vis_Decl : Node_Id;
+ Ent : Entity_Id;
+
+ begin
+ if Present (Task_Def) then
+ Vis_Decl := First (Visible_Declarations (Task_Def));
+ while Present (Vis_Decl) loop
+ Loc := Sloc (Vis_Decl);
+
+ if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
+ if Get_Attribute_Id (Chars (Vis_Decl)) =
+ Attribute_Address
+ then
+ Ent := Entity (Name (Vis_Decl));
+
+ if Ekind (Ent) = E_Entry then
+ Append_To (Statement_List,
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Reference_To (
+ RTE (RE_Bind_Interrupt_To_Entry), Loc),
+ Parameter_Associations => New_List (
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Make_Identifier (Loc, Name_uInit),
+ Selector_Name =>
+ Make_Identifier (Loc, Name_uTask_Id)),
+ Entry_Index_Expression (
+ Loc, Ent, Empty, Task_Type),
+ Expression (Vis_Decl))));
+ end if;
+ end if;
+ end if;
+
+ Next (Vis_Decl);
+ end loop;
+ end if;
+ end;
+ end if;
+
+ -- For a protected type, add statements generated by
+ -- Make_Initialize_Protection.
+
+ if Is_Protected_Record_Type (Rec_Type) then
+ Append_List_To (Statement_List,
+ Make_Initialize_Protection (Rec_Type));
+ end if;
+
+ -- If no initializations when generated for component declarations
+ -- corresponding to this Statement_List, append a null statement
+ -- to the Statement_List to make it a valid Ada tree.
+
+ if Is_Empty_List (Statement_List) then
+ Append (New_Node (N_Null_Statement, Loc), Statement_List);
+ end if;
+
+ return Statement_List;
+
+ exception
+ when RE_Not_Available =>
+ return Empty_List;
+ end Build_Init_Statements;
+
+ -------------------------
+ -- Build_Record_Checks --
+ -------------------------
+
+ procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
+ Subtype_Mark_Id : Entity_Id;
+
+ begin
+ if Nkind (S) = N_Subtype_Indication then
+ Find_Type (Subtype_Mark (S));
+ Subtype_Mark_Id := Entity (Subtype_Mark (S));
+
+ -- Remaining processing depends on type
+
+ case Ekind (Subtype_Mark_Id) is
+
+ when Array_Kind =>
+ Constrain_Array (S, Check_List);
+
+ when others =>
+ null;
+ end case;
+ end if;
+ end Build_Record_Checks;
+
+ -------------------------------------------
+ -- Component_Needs_Simple_Initialization --
+ -------------------------------------------
+
+ function Component_Needs_Simple_Initialization
+ (T : Entity_Id) return Boolean
+ is
+ begin
+ return
+ Needs_Simple_Initialization (T)
+ and then not Is_RTE (T, RE_Tag)
+ and then not Is_RTE (T, RE_Vtable_Ptr)
+
+ -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
+
+ and then not Is_RTE (T, RE_Interface_Tag);
+ end Component_Needs_Simple_Initialization;
+
+ ---------------------
+ -- Constrain_Array --
+ ---------------------
+
+ procedure Constrain_Array
+ (SI : Node_Id;
+ Check_List : List_Id)
+ is
+ C : constant Node_Id := Constraint (SI);
+ Number_Of_Constraints : Nat := 0;
+ Index : Node_Id;
+ S, T : Entity_Id;
+
+ begin
+ T := Entity (Subtype_Mark (SI));
+
+ if Ekind (T) in Access_Kind then
+ T := Designated_Type (T);
+ end if;
+
+ S := First (Constraints (C));
+
+ while Present (S) loop
+ Number_Of_Constraints := Number_Of_Constraints + 1;
+ Next (S);
+ end loop;
+
+ -- In either case, the index constraint must provide a discrete
+ -- range for each index of the array type and the type of each
+ -- discrete range must be the same as that of the corresponding
+ -- index. (RM 3.6.1)
+
+ S := First (Constraints (C));
+ Index := First_Index (T);
+ Analyze (Index);
+
+ -- Apply constraints to each index type
+
+ for J in 1 .. Number_Of_Constraints loop
+ Constrain_Index (Index, S, Check_List);
+ Next (Index);
+ Next (S);
+ end loop;
+
+ end Constrain_Array;
+
+ ---------------------
+ -- Constrain_Index --
+ ---------------------
+
+ procedure Constrain_Index
+ (Index : Node_Id;
+ S : Node_Id;
+ Check_List : List_Id)
+ is
+ T : constant Entity_Id := Etype (Index);
+
+ begin
+ if Nkind (S) = N_Range then
+ Process_Range_Expr_In_Decl (S, T, Check_List);
+ end if;
+ end Constrain_Index;
+
+ --------------------------------------
+ -- Parent_Subtype_Renaming_Discrims --
+ --------------------------------------
+
+ function Parent_Subtype_Renaming_Discrims return Boolean is
+ De : Entity_Id;
+ Dp : Entity_Id;
+
+ begin
+ if Base_Type (Pe) /= Pe then
+ return False;
+ end if;
+
+ if Etype (Pe) = Pe
+ or else not Has_Discriminants (Pe)
+ or else Is_Constrained (Pe)
+ or else Is_Tagged_Type (Pe)
+ then
+ return False;
+ end if;
+
+ -- If there are no explicit stored discriminants we have inherited
+ -- the root type discriminants so far, so no renamings occurred.
+
+ if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
+ return False;
+ end if;
+
+ -- Check if we have done some trivial renaming of the parent
+ -- discriminants, i.e. someting like
+ --
+ -- type DT (X1,X2: int) is new PT (X1,X2);
+
+ De := First_Discriminant (Pe);
+ Dp := First_Discriminant (Etype (Pe));
+
+ while Present (De) loop
+ pragma Assert (Present (Dp));
+
+ if Corresponding_Discriminant (De) /= Dp then
+ return True;
+ end if;
+
+ Next_Discriminant (De);
+ Next_Discriminant (Dp);
+ end loop;
+
+ return Present (Dp);
+ end Parent_Subtype_Renaming_Discrims;
+
+ ------------------------
+ -- Requires_Init_Proc --
+ ------------------------
+
+ function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
+ Comp_Decl : Node_Id;
+ Id : Entity_Id;
+ Typ : Entity_Id;
+
+ begin
+ -- Definitely do not need one if specifically suppressed
+
+ if Suppress_Init_Proc (Rec_Id) then
+ return False;
+ end if;
+
+ -- If it is a type derived from a type with unknown discriminants,
+ -- we cannot build an initialization procedure for it.
+
+ if Has_Unknown_Discriminants (Rec_Id) then
+ return False;
+ end if;
+
+ -- Otherwise we need to generate an initialization procedure if
+ -- Is_CPP_Class is False and at least one of the following applies:
+
+ -- 1. Discriminants are present, since they need to be initialized
+ -- with the appropriate discriminant constraint expressions.
+ -- However, the discriminant of an unchecked union does not
+ -- count, since the discriminant is not present.
+
+ -- 2. The type is a tagged type, since the implicit Tag component
+ -- needs to be initialized with a pointer to the dispatch table.
+
+ -- 3. The type contains tasks
+
+ -- 4. One or more components has an initial value
+
+ -- 5. One or more components is for a type which itself requires
+ -- an initialization procedure.
+
+ -- 6. One or more components is a type that requires simple
+ -- initialization (see Needs_Simple_Initialization), except
+ -- that types Tag and Interface_Tag are excluded, since fields
+ -- of these types are initialized by other means.
+
+ -- 7. The type is the record type built for a task type (since at
+ -- the very least, Create_Task must be called)
+
+ -- 8. The type is the record type built for a protected type (since
+ -- at least Initialize_Protection must be called)
+
+ -- 9. The type is marked as a public entity. The reason we add this
+ -- case (even if none of the above apply) is to properly handle
+ -- Initialize_Scalars. If a package is compiled without an IS
+ -- pragma, and the client is compiled with an IS pragma, then
+ -- the client will think an initialization procedure is present
+ -- and call it, when in fact no such procedure is required, but
+ -- since the call is generated, there had better be a routine
+ -- at the other end of the call, even if it does nothing!)
+
+ -- Note: the reason we exclude the CPP_Class case is because in this
+ -- case the initialization is performed in the C++ side.
+
+ if Is_CPP_Class (Rec_Id) then
+ return False;
+
+ elsif not Restriction_Active (No_Initialize_Scalars)
+ and then Is_Public (Rec_Id)
+ then
+ return True;
+
+ elsif (Has_Discriminants (Rec_Id)
+ and then not Is_Unchecked_Union (Rec_Id))
+ or else Is_Tagged_Type (Rec_Id)
+ or else Is_Concurrent_Record_Type (Rec_Id)
+ or else Has_Task (Rec_Id)
+ then
+ return True;
+ end if;
+
+ Id := First_Component (Rec_Id);
+
+ while Present (Id) loop
+ Comp_Decl := Parent (Id);
+ Typ := Etype (Id);
+
+ if Present (Expression (Comp_Decl))
+ or else Has_Non_Null_Base_Init_Proc (Typ)
+ or else Component_Needs_Simple_Initialization (Typ)
+ then
+ return True;
+ end if;
+
+ Next_Component (Id);
+ end loop;
+
+ return False;
+ end Requires_Init_Proc;
+
+ -- Start of processing for Build_Record_Init_Proc
+
+ begin
+ Rec_Type := Defining_Identifier (N);
+
+ -- This may be full declaration of a private type, in which case
+ -- the visible entity is a record, and the private entity has been
+ -- exchanged with it in the private part of the current package.
+ -- The initialization procedure is built for the record type, which
+ -- is retrievable from the private entity.
+
+ if Is_Incomplete_Or_Private_Type (Rec_Type) then
+ Rec_Type := Underlying_Type (Rec_Type);
+ end if;
+
+ -- If there are discriminants, build the discriminant map to replace
+ -- discriminants by their discriminals in complex bound expressions.
+ -- These only arise for the corresponding records of protected types.
+
+ if Is_Concurrent_Record_Type (Rec_Type)
+ and then Has_Discriminants (Rec_Type)
+ then
+ declare
+ Disc : Entity_Id;
+
+ begin
+ Disc := First_Discriminant (Rec_Type);
+
+ while Present (Disc) loop
+ Append_Elmt (Disc, Discr_Map);
+ Append_Elmt (Discriminal (Disc), Discr_Map);
+ Next_Discriminant (Disc);
+ end loop;
+ end;
+ end if;
+
+ -- Derived types that have no type extension can use the initialization
+ -- procedure of their parent and do not need a procedure of their own.
+ -- This is only correct if there are no representation clauses for the
+ -- type or its parent, and if the parent has in fact been frozen so
+ -- that its initialization procedure exists.
+
+ if Is_Derived_Type (Rec_Type)
+ and then not Is_Tagged_Type (Rec_Type)
+ and then not Is_Unchecked_Union (Rec_Type)
+ and then not Has_New_Non_Standard_Rep (Rec_Type)
+ and then not Parent_Subtype_Renaming_Discrims
+ and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
+ then
+ Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
+
+ -- Otherwise if we need an initialization procedure, then build one,
+ -- mark it as public and inlinable and as having a completion.
+
+ elsif Requires_Init_Proc (Rec_Type)
+ or else Is_Unchecked_Union (Rec_Type)
+ then
+ Build_Offset_To_Top_Functions;
+ Build_Init_Procedure;
+ Set_Is_Public (Proc_Id, Is_Public (Pe));
+
+ -- The initialization of protected records is not worth inlining.
+ -- In addition, when compiled for another unit for inlining purposes,
+ -- it may make reference to entities that have not been elaborated
+ -- yet. The initialization of controlled records contains a nested
+ -- clean-up procedure that makes it impractical to inline as well,
+ -- and leads to undefined symbols if inlined in a different unit.
+ -- Similar considerations apply to task types.
+
+ if not Is_Concurrent_Type (Rec_Type)
+ and then not Has_Task (Rec_Type)
+ and then not Controlled_Type (Rec_Type)
+ then
+ Set_Is_Inlined (Proc_Id);
+ end if;
+
+ Set_Is_Internal (Proc_Id);
+ Set_Has_Completion (Proc_Id);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Proc_Id);
+ end if;
+ end if;
+ end Build_Record_Init_Proc;
+
+ ----------------------------
+ -- Build_Slice_Assignment --
+ ----------------------------
+
+ -- Generates the following subprogram:
+
+ -- procedure Assign
+ -- (Source, Target : Array_Type,
+ -- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
+ -- Rev : Boolean)
+ -- is
+ -- Li1 : Index;
+ -- Ri1 : Index;
+
+ -- begin
+ -- if Rev then
+ -- Li1 := Left_Hi;
+ -- Ri1 := Right_Hi;
+ -- else
+ -- Li1 := Left_Lo;
+ -- Ri1 := Right_Lo;
+ -- end if;
+
+ -- loop
+ -- if Rev then
+ -- exit when Li1 < Left_Lo;
+ -- else
+ -- exit when Li1 > Left_Hi;
+ -- end if;
+
+ -- Target (Li1) := Source (Ri1);
+
+ -- if Rev then
+ -- Li1 := Index'pred (Li1);
+ -- Ri1 := Index'pred (Ri1);
+ -- else
+ -- Li1 := Index'succ (Li1);
+ -- Ri1 := Index'succ (Ri1);
+ -- end if;
+ -- end loop;
+ -- end Assign;
+
+ procedure Build_Slice_Assignment (Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
+
+ -- Build formal parameters of procedure
+
+ Larray : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('A'));
+ Rarray : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('R'));
+ Left_Lo : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('L'));
+ Left_Hi : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('L'));
+ Right_Lo : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('R'));
+ Right_Hi : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('R'));
+ Rev : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, Chars => New_Internal_Name ('D'));
+ Proc_Name : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
+
+ Lnn : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
+ Rnn : constant Entity_Id :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+ -- Subscripts for left and right sides
+
+ Decls : List_Id;
+ Loops : Node_Id;
+ Stats : List_Id;
+
+ begin
+ -- Build declarations for indices
+
+ Decls := New_List;
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Lnn,
+ Object_Definition =>
+ New_Occurrence_Of (Index, Loc)));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Rnn,
+ Object_Definition =>
+ New_Occurrence_Of (Index, Loc)));
+
+ Stats := New_List;
+
+ -- Build initializations for indices
+
+ declare
+ F_Init : constant List_Id := New_List;
+ B_Init : constant List_Id := New_List;
+
+ begin
+ Append_To (F_Init,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Lnn, Loc),
+ Expression => New_Occurrence_Of (Left_Lo, Loc)));
+
+ Append_To (F_Init,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Rnn, Loc),
+ Expression => New_Occurrence_Of (Right_Lo, Loc)));
+
+ Append_To (B_Init,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Lnn, Loc),
+ Expression => New_Occurrence_Of (Left_Hi, Loc)));
+
+ Append_To (B_Init,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Rnn, Loc),
+ Expression => New_Occurrence_Of (Right_Hi, Loc)));
+
+ Append_To (Stats,
+ Make_If_Statement (Loc,
+ Condition => New_Occurrence_Of (Rev, Loc),
+ Then_Statements => B_Init,
+ Else_Statements => F_Init));
+ end;
+
+ -- Now construct the assignment statement
+
+ Loops :=
+ Make_Loop_Statement (Loc,
+ Statements => New_List (
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Larray, Loc),
+ Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
+ Expression =>
+ Make_Indexed_Component (Loc,
+ Prefix => New_Occurrence_Of (Rarray, Loc),
+ Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
+ End_Label => Empty);
+
+ -- Build exit condition
+
+ declare
+ F_Ass : constant List_Id := New_List;
+ B_Ass : constant List_Id := New_List;
+
+ begin
+ Append_To (F_Ass,
+ Make_Exit_Statement (Loc,
+ Condition =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => New_Occurrence_Of (Lnn, Loc),
+ Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
+
+ Append_To (B_Ass,
+ Make_Exit_Statement (Loc,
+ Condition =>
+ Make_Op_Lt (Loc,
+ Left_Opnd => New_Occurrence_Of (Lnn, Loc),
+ Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
+
+ Prepend_To (Statements (Loops),
+ Make_If_Statement (Loc,
+ Condition => New_Occurrence_Of (Rev, Loc),
+ Then_Statements => B_Ass,
+ Else_Statements => F_Ass));
+ end;
+
+ -- Build the increment/decrement statements
+
+ declare
+ F_Ass : constant List_Id := New_List;
+ B_Ass : constant List_Id := New_List;
+
+ begin
+ Append_To (F_Ass,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Lnn, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Index, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (
+ New_Occurrence_Of (Lnn, Loc)))));
+
+ Append_To (F_Ass,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Rnn, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Index, Loc),
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (
+ New_Occurrence_Of (Rnn, Loc)))));
+
+ Append_To (B_Ass,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Lnn, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Index, Loc),
+ Attribute_Name => Name_Pred,
+ Expressions => New_List (
+ New_Occurrence_Of (Lnn, Loc)))));
+
+ Append_To (B_Ass,
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Rnn, Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Index, Loc),
+ Attribute_Name => Name_Pred,
+ Expressions => New_List (
+ New_Occurrence_Of (Rnn, Loc)))));
+
+ Append_To (Statements (Loops),
+ Make_If_Statement (Loc,
+ Condition => New_Occurrence_Of (Rev, Loc),
+ Then_Statements => B_Ass,
+ Else_Statements => F_Ass));
+ end;
+
+ Append_To (Stats, Loops);
+
+ declare
+ Spec : Node_Id;
+ Formals : List_Id := New_List;
+
+ begin
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Larray,
+ Out_Present => True,
+ Parameter_Type =>
+ New_Reference_To (Base_Type (Typ), Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Rarray,
+ Parameter_Type =>
+ New_Reference_To (Base_Type (Typ), Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Left_Lo,
+ Parameter_Type =>
+ New_Reference_To (Index, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Left_Hi,
+ Parameter_Type =>
+ New_Reference_To (Index, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Right_Lo,
+ Parameter_Type =>
+ New_Reference_To (Index, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Right_Hi,
+ Parameter_Type =>
+ New_Reference_To (Index, Loc)));
+
+ Append_To (Formals,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Rev,
+ Parameter_Type =>
+ New_Reference_To (Standard_Boolean, Loc)));
+
+ Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Proc_Name,
+ Parameter_Specifications => Formals);
+
+ Discard_Node (
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stats)));
+ end;
+
+ Set_TSS (Typ, Proc_Name);
+ Set_Is_Pure (Proc_Name);
+ end Build_Slice_Assignment;
+
+ ------------------------------------
+ -- Build_Variant_Record_Equality --
+ ------------------------------------
+
+ -- Generates:
+
+ -- function _Equality (X, Y : T) return Boolean is
+ -- begin
+ -- -- Compare discriminants
+
+ -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
+ -- return False;
+ -- end if;
+
+ -- -- Compare components
+
+ -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
+ -- return False;
+ -- end if;
+
+ -- -- Compare variant part
+
+ -- case X.D1 is
+ -- when V1 =>
+ -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
+ -- return False;
+ -- end if;
+ -- ...
+ -- when Vn =>
+ -- if False or else X.Cn /= Y.Cn then
+ -- return False;
+ -- end if;
+ -- end case;
+ -- return True;
+ -- end _Equality;
+
+ procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (Typ);
+
+ F : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
+
+ X : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Name_X);
+
+ Y : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Name_Y);
+
+ Def : constant Node_Id := Parent (Typ);
+ Comps : constant Node_Id := Component_List (Type_Definition (Def));
+ Stmts : constant List_Id := New_List;
+ Pspecs : constant List_Id := New_List;
+
+ begin
+ -- Derived Unchecked_Union types no longer inherit the equality function
+ -- of their parent.
+
+ if Is_Derived_Type (Typ)
+ and then not Is_Unchecked_Union (Typ)
+ and then not Has_New_Non_Standard_Rep (Typ)
+ then
+ declare
+ Parent_Eq : constant Entity_Id :=
+ TSS (Root_Type (Typ), TSS_Composite_Equality);
+
+ begin
+ if Present (Parent_Eq) then
+ Copy_TSS (Parent_Eq, Typ);
+ return;
+ end if;
+ end;
+ end if;
+
+ Discard_Node (
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => F,
+ Parameter_Specifications => Pspecs,
+ Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stmts)));
+
+ Append_To (Pspecs,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => X,
+ Parameter_Type => New_Reference_To (Typ, Loc)));
+
+ Append_To (Pspecs,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Y,
+ Parameter_Type => New_Reference_To (Typ, Loc)));
+
+ -- Unchecked_Unions require additional machinery to support equality.
+ -- Two extra parameters (A and B) are added to the equality function
+ -- parameter list in order to capture the inferred values of the
+ -- discriminants in later calls.
+
+ if Is_Unchecked_Union (Typ) then
+ declare
+ Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));
+
+ A : constant Node_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Name_A);
+
+ B : constant Node_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => Name_B);
+
+ begin
+ -- Add A and B to the parameter list
+
+ Append_To (Pspecs,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type => New_Reference_To (Discr_Type, Loc)));
+
+ Append_To (Pspecs,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => B,
+ Parameter_Type => New_Reference_To (Discr_Type, Loc)));
+
+ -- Generate the following header code to compare the inferred
+ -- discriminants:
+
+ -- if a /= b then
+ -- return False;
+ -- end if;
+
+ Append_To (Stmts,
+ Make_If_Statement (Loc,
+ Condition =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => New_Reference_To (A, Loc),
+ Right_Opnd => New_Reference_To (B, Loc)),
+ Then_Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Standard_False, Loc)))));
+
+ -- Generate component-by-component comparison. Note that we must
+ -- propagate one of the inferred discriminant formals to act as
+ -- the case statement switch.
+
+ Append_List_To (Stmts,
+ Make_Eq_Case (Typ, Comps, A));
+
+ end;
+
+ -- Normal case (not unchecked union)
+
+ else
+ Append_To (Stmts,
+ Make_Eq_If (Typ,
+ Discriminant_Specifications (Def)));
+
+ Append_List_To (Stmts,
+ Make_Eq_Case (Typ, Comps));
+ end if;
+
+ Append_To (Stmts,
+ Make_Return_Statement (Loc,
+ Expression => New_Reference_To (Standard_True, Loc)));
+
+ Set_TSS (Typ, F);
+ Set_Is_Pure (F);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (F);
+ end if;
+ end Build_Variant_Record_Equality;
+
+ -----------------------------
+ -- Check_Stream_Attributes --
+ -----------------------------
+
+ procedure Check_Stream_Attributes (Typ : Entity_Id) is
+ Comp : Entity_Id;
+ Par_Read : constant Boolean :=
+ Stream_Attribute_Available (Typ, TSS_Stream_Read)
+ and then not Has_Specified_Stream_Read (Typ);
+ Par_Write : constant Boolean :=
+ Stream_Attribute_Available (Typ, TSS_Stream_Write)
+ and then not Has_Specified_Stream_Write (Typ);
+
+ procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
+ -- Check that Comp has a user-specified Nam stream attribute
+
+ ----------------
+ -- Check_Attr --
+ ----------------
+
+ procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
+ begin
+ if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
+ Error_Msg_Name_1 := Nam;
+ Error_Msg_N
+ ("|component& in limited extension must have% attribute", Comp);
+ end if;
+ end Check_Attr;
+
+ -- Start of processing for Check_Stream_Attributes
+
+ begin
+ if Par_Read or else Par_Write then
+ Comp := First_Component (Typ);
+ while Present (Comp) loop
+ if Comes_From_Source (Comp)
+ and then Original_Record_Component (Comp) = Comp
+ and then Is_Limited_Type (Etype (Comp))
+ then
+ if Par_Read then
+ Check_Attr (Name_Read, TSS_Stream_Read);
+ end if;
+
+ if Par_Write then
+ Check_Attr (Name_Write, TSS_Stream_Write);
+ end if;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+ end Check_Stream_Attributes;
+
+ -----------------------------
+ -- Expand_Record_Extension --
+ -----------------------------
+
+ -- Add a field _parent at the beginning of the record extension. This is
+ -- used to implement inheritance. Here are some examples of expansion:
+
+ -- 1. no discriminants
+ -- type T2 is new T1 with null record;
+ -- gives
+ -- type T2 is new T1 with record
+ -- _Parent : T1;
+ -- end record;
+
+ -- 2. renamed discriminants
+ -- type T2 (B, C : Int) is new T1 (A => B) with record
+ -- _Parent : T1 (A => B);
+ -- D : Int;
+ -- end;
+
+ -- 3. inherited discriminants
+ -- type T2 is new T1 with record -- discriminant A inherited
+ -- _Parent : T1 (A);
+ -- D : Int;
+ -- end;
+
+ procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
+ Indic : constant Node_Id := Subtype_Indication (Def);
+ Loc : constant Source_Ptr := Sloc (Def);
+ Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
+ Par_Subtype : Entity_Id;
+ Comp_List : Node_Id;
+ Comp_Decl : Node_Id;
+ Parent_N : Node_Id;
+ D : Entity_Id;
+ List_Constr : constant List_Id := New_List;
+
+ begin
+ -- Expand_Record_Extension is called directly from the semantics, so
+ -- we must check to see whether expansion is active before proceeding
+
+ if not Expander_Active then
+ return;
+ end if;
+
+ -- This may be a derivation of an untagged private type whose full
+ -- view is tagged, in which case the Derived_Type_Definition has no
+ -- extension part. Build an empty one now.
+
+ if No (Rec_Ext_Part) then
+ Rec_Ext_Part :=
+ Make_Record_Definition (Loc,
+ End_Label => Empty,
+ Component_List => Empty,
+ Null_Present => True);
+
+ Set_Record_Extension_Part (Def, Rec_Ext_Part);
+ Mark_Rewrite_Insertion (Rec_Ext_Part);
+ end if;
+
+ Comp_List := Component_List (Rec_Ext_Part);
+
+ Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
+
+ -- If the derived type inherits its discriminants the type of the
+ -- _parent field must be constrained by the inherited discriminants
+
+ if Has_Discriminants (T)
+ and then Nkind (Indic) /= N_Subtype_Indication
+ and then not Is_Constrained (Entity (Indic))
+ then
+ D := First_Discriminant (T);
+ while Present (D) loop
+ Append_To (List_Constr, New_Occurrence_Of (D, Loc));
+ Next_Discriminant (D);
+ end loop;
+
+ Par_Subtype :=
+ Process_Subtype (
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => List_Constr)),
+ Def);
+
+ -- Otherwise the original subtype_indication is just what is needed
+
+ else
+ Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
+ end if;
+
+ Set_Parent_Subtype (T, Par_Subtype);
+
+ Comp_Decl :=
+ Make_Component_Declaration (Loc,
+ Defining_Identifier => Parent_N,
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));
+
+ if Null_Present (Rec_Ext_Part) then
+ Set_Component_List (Rec_Ext_Part,
+ Make_Component_List (Loc,
+ Component_Items => New_List (Comp_Decl),
+ Variant_Part => Empty,
+ Null_Present => False));
+ Set_Null_Present (Rec_Ext_Part, False);
+
+ elsif Null_Present (Comp_List)
+ or else Is_Empty_List (Component_Items (Comp_List))
+ then
+ Set_Component_Items (Comp_List, New_List (Comp_Decl));
+ Set_Null_Present (Comp_List, False);
+
+ else
+ Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
+ end if;
+
+ Analyze (Comp_Decl);
+ end Expand_Record_Extension;
+
+ ------------------------------------
+ -- Expand_N_Full_Type_Declaration --
+ ------------------------------------
+
+ procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
+ Def_Id : constant Entity_Id := Defining_Identifier (N);
+ B_Id : constant Entity_Id := Base_Type (Def_Id);
+ Par_Id : Entity_Id;
+ FN : Node_Id;
+
+ begin
+ if Is_Access_Type (Def_Id) then
+
+ -- Anonymous access types are created for the components of the
+ -- record parameter for an entry declaration. No master is created
+ -- for such a type.
+
+ if Has_Task (Designated_Type (Def_Id))
+ and then Comes_From_Source (N)
+ then
+ Build_Master_Entity (Def_Id);
+ Build_Master_Renaming (Parent (Def_Id), Def_Id);
+
+ -- Create a class-wide master because a Master_Id must be generated
+ -- for access-to-limited-class-wide types whose root may be extended
+ -- with task components, and for access-to-limited-interfaces because
+ -- they can be used to reference tasks implementing such interface.
+
+ elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
+ and then (Is_Limited_Type (Designated_Type (Def_Id))
+ or else
+ (Is_Interface (Designated_Type (Def_Id))
+ and then
+ Is_Limited_Interface (Designated_Type (Def_Id))))
+ and then Tasking_Allowed
+
+ -- Do not create a class-wide master for types whose convention is
+ -- Java since these types cannot embed Ada tasks anyway. Note that
+ -- the following test cannot catch the following case:
+
+ -- package java.lang.Object is
+ -- type Typ is tagged limited private;
+ -- type Ref is access all Typ'Class;
+ -- private
+ -- type Typ is tagged limited ...;
+ -- pragma Convention (Typ, Java)
+ -- end;
+
+ -- Because the convention appears after we have done the
+ -- processing for type Ref.
+
+ and then Convention (Designated_Type (Def_Id)) /= Convention_Java
+ then
+ Build_Class_Wide_Master (Def_Id);
+
+ elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
+ Expand_Access_Protected_Subprogram_Type (N);
+ end if;
+
+ elsif Has_Task (Def_Id) then
+ Expand_Previous_Access_Type (Def_Id);
+ end if;
+
+ Par_Id := Etype (B_Id);
+
+ -- The parent type is private then we need to inherit
+ -- any TSS operations from the full view.
+
+ if Ekind (Par_Id) in Private_Kind
+ and then Present (Full_View (Par_Id))
+ then
+ Par_Id := Base_Type (Full_View (Par_Id));
+ end if;
+
+ if Nkind (Type_Definition (Original_Node (N)))
+ = N_Derived_Type_Definition
+ and then not Is_Tagged_Type (Def_Id)
+ and then Present (Freeze_Node (Par_Id))
+ and then Present (TSS_Elist (Freeze_Node (Par_Id)))
+ then
+ Ensure_Freeze_Node (B_Id);
+ FN := Freeze_Node (B_Id);
+
+ if No (TSS_Elist (FN)) then
+ Set_TSS_Elist (FN, New_Elmt_List);
+ end if;
+
+ declare
+ T_E : constant Elist_Id := TSS_Elist (FN);
+ Elmt : Elmt_Id;
+
+ begin
+ Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
+
+ while Present (Elmt) loop
+ if Chars (Node (Elmt)) /= Name_uInit then
+ Append_Elmt (Node (Elmt), T_E);
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ -- If the derived type itself is private with a full view, then
+ -- associate the full view with the inherited TSS_Elist as well.
+
+ if Ekind (B_Id) in Private_Kind
+ and then Present (Full_View (B_Id))
+ then
+ Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
+ Set_TSS_Elist
+ (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
+ end if;
+ end;
+ end if;
+ end Expand_N_Full_Type_Declaration;
+
+ ---------------------------------
+ -- Expand_N_Object_Declaration --
+ ---------------------------------
+
+ -- First we do special processing for objects of a tagged type where this
+ -- is the point at which the type is frozen. The creation of the dispatch
+ -- table and the initialization procedure have to be deferred to this
+ -- point, since we reference previously declared primitive subprograms.
+
+ -- For all types, we call an initialization procedure if there is one
+
+ procedure Expand_N_Object_Declaration (N : Node_Id) is
+ Def_Id : constant Entity_Id := Defining_Identifier (N);
+ Typ : constant Entity_Id := Etype (Def_Id);
+ Loc : constant Source_Ptr := Sloc (N);
+ Expr : constant Node_Id := Expression (N);
+ New_Ref : Node_Id;
+ Id_Ref : Node_Id;
+ Expr_Q : Node_Id;
+
+ begin
+ -- Don't do anything for deferred constants. All proper actions will
+ -- be expanded during the full declaration.
+
+ if No (Expr) and Constant_Present (N) then
+ return;
+ end if;
+
+ -- Make shared memory routines for shared passive variable
+
+ if Is_Shared_Passive (Def_Id) then
+ Make_Shared_Var_Procs (N);
+ end if;
+
+ -- If tasks being declared, make sure we have an activation chain
+ -- defined for the tasks (has no effect if we already have one), and
+ -- also that a Master variable is established and that the appropriate
+ -- enclosing construct is established as a task master.
+
+ if Has_Task (Typ) then
+ Build_Activation_Chain_Entity (N);
+ Build_Master_Entity (Def_Id);
+ end if;
+
+ -- Default initialization required, and no expression present
+
+ if No (Expr) then
+
+ -- Expand Initialize call for controlled objects. One may wonder why
+ -- the Initialize Call is not done in the regular Init procedure
+ -- attached to the record type. That's because the init procedure is
+ -- recursively called on each component, including _Parent, thus the
+ -- Init call for a controlled object would generate not only one
+ -- Initialize call as it is required but one for each ancestor of
+ -- its type. This processing is suppressed if No_Initialization set.
+
+ if not Controlled_Type (Typ)
+ or else No_Initialization (N)
+ then
+ null;
+
+ elsif not Abort_Allowed
+ or else not Comes_From_Source (N)
+ then
+ Insert_Actions_After (N,
+ Make_Init_Call (
+ Ref => New_Occurrence_Of (Def_Id, Loc),
+ Typ => Base_Type (Typ),
+ Flist_Ref => Find_Final_List (Def_Id),
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+
+ -- Abort allowed
+
+ else
+ -- We need to protect the initialize call
+
+ -- begin
+ -- Defer_Abort.all;
+ -- Initialize (...);
+ -- at end
+ -- Undefer_Abort.all;
+ -- end;
+
+ -- ??? this won't protect the initialize call for controlled
+ -- components which are part of the init proc, so this block
+ -- should probably also contain the call to _init_proc but this
+ -- requires some code reorganization...
+
+ declare
+ L : constant List_Id :=
+ Make_Init_Call (
+ Ref => New_Occurrence_Of (Def_Id, Loc),
+ Typ => Base_Type (Typ),
+ Flist_Ref => Find_Final_List (Def_Id),
+ With_Attach => Make_Integer_Literal (Loc, 1));
+
+ Blk : constant Node_Id :=
+ Make_Block_Statement (Loc,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, L));
+
+ begin
+ Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
+ Set_At_End_Proc (Handled_Statement_Sequence (Blk),
+ New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
+ Insert_Actions_After (N, New_List (Blk));
+ Expand_At_End_Handler
+ (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
+ end;
+ end if;
+
+ -- Call type initialization procedure if there is one. We build the
+ -- call and put it immediately after the object declaration, so that
+ -- it will be expanded in the usual manner. Note that this will
+ -- result in proper handling of defaulted discriminants. The call
+ -- to the Init_Proc is suppressed if No_Initialization is set.
+
+ if Has_Non_Null_Base_Init_Proc (Typ)
+ and then not No_Initialization (N)
+ then
+ -- The call to the initialization procedure does NOT freeze
+ -- the object being initialized. This is because the call is
+ -- not a source level call. This works fine, because the only
+ -- possible statements depending on freeze status that can
+ -- appear after the _Init call are rep clauses which can
+ -- safely appear after actual references to the object.
+
+ Id_Ref := New_Reference_To (Def_Id, Loc);
+ Set_Must_Not_Freeze (Id_Ref);
+ Set_Assignment_OK (Id_Ref);
+
+ Insert_Actions_After (N,
+ Build_Initialization_Call (Loc, Id_Ref, Typ));
+
+ -- If simple initialization is required, then set an appropriate
+ -- simple initialization expression in place. This special
+ -- initialization is required even though No_Init_Flag is present.
+
+ -- An internally generated temporary needs no initialization because
+ -- it will be assigned subsequently. In particular, there is no
+ -- point in applying Initialize_Scalars to such a temporary.
+
+ elsif Needs_Simple_Initialization (Typ)
+ and then not Is_Internal (Def_Id)
+ then
+ Set_No_Initialization (N, False);
+ Set_Expression (N, Get_Simple_Init_Val (Typ, Loc, Esize (Def_Id)));
+ Analyze_And_Resolve (Expression (N), Typ);
+ end if;
+
+ -- Generate attribute for Persistent_BSS if needed
+
+ if Persistent_BSS_Mode
+ and then Comes_From_Source (N)
+ and then Is_Potentially_Persistent_Type (Typ)
+ and then Is_Library_Level_Entity (Def_Id)
+ then
+ declare
+ Prag : Node_Id;
+ begin
+ Prag :=
+ Make_Linker_Section_Pragma
+ (Def_Id, Sloc (N), ".persistent.bss");
+ Insert_After (N, Prag);
+ Analyze (Prag);
+ end;
+ end if;
+
+ -- If access type, then we know it is null if not initialized
+
+ if Is_Access_Type (Typ) then
+ Set_Is_Known_Null (Def_Id);
+ end if;
+
+ -- Explicit initialization present
+
+ else
+ -- Obtain actual expression from qualified expression
+
+ if Nkind (Expr) = N_Qualified_Expression then
+ Expr_Q := Expression (Expr);
+ else
+ Expr_Q := Expr;
+ end if;
+
+ -- When we have the appropriate type of aggregate in the expression
+ -- (it has been determined during analysis of the aggregate by
+ -- setting the delay flag), let's perform in place assignment and
+ -- thus avoid creating a temporary.
+
+ if Is_Delayed_Aggregate (Expr_Q) then
+ Convert_Aggr_In_Object_Decl (N);
+
+ else
+ -- In most cases, we must check that the initial value meets any
+ -- constraint imposed by the declared type. However, there is one
+ -- very important exception to this rule. If the entity has an
+ -- unconstrained nominal subtype, then it acquired its constraints
+ -- from the expression in the first place, and not only does this
+ -- mean that the constraint check is not needed, but an attempt to
+ -- perform the constraint check can cause order order of
+ -- elaboration problems.
+
+ if not Is_Constr_Subt_For_U_Nominal (Typ) then
+
+ -- If this is an allocator for an aggregate that has been
+ -- allocated in place, delay checks until assignments are
+ -- made, because the discriminants are not initialized.
+
+ if Nkind (Expr) = N_Allocator
+ and then No_Initialization (Expr)
+ then
+ null;
+ else
+ Apply_Constraint_Check (Expr, Typ);
+ end if;
+ end if;
+
+ -- If the type is controlled we attach the object to the final
+ -- list and adjust the target after the copy. This
+ -- ??? incomplete sentence
+
+ if Controlled_Type (Typ) then
+ declare
+ Flist : Node_Id;
+ F : Entity_Id;
+
+ begin
+ -- Attach the result to a dummy final list which will never
+ -- be finalized if Delay_Finalize_Attachis set. It is
+ -- important to attach to a dummy final list rather than not
+ -- attaching at all in order to reset the pointers coming
+ -- from the initial value. Equivalent code exists in the
+ -- sec-stack case in Exp_Ch4.Expand_N_Allocator.
+
+ if Delay_Finalize_Attach (N) then
+ F :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
+ Insert_Action (N,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => F,
+ Object_Definition =>
+ New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
+
+ Flist := New_Reference_To (F, Loc);
+
+ else
+ Flist := Find_Final_List (Def_Id);
+ end if;
+
+ Insert_Actions_After (N,
+ Make_Adjust_Call (
+ Ref => New_Reference_To (Def_Id, Loc),
+ Typ => Base_Type (Typ),
+ Flist_Ref => Flist,
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+ end;
+ end if;
+
+ -- For tagged types, when an init value is given, the tag has to
+ -- be re-initialized separately in order to avoid the propagation
+ -- of a wrong tag coming from a view conversion unless the type
+ -- is class wide (in this case the tag comes from the init value).
+ -- Suppress the tag assignment when Java_VM because JVM tags are
+ -- represented implicitly in objects. Ditto for types that are
+ -- CPP_CLASS, and for initializations that are aggregates, because
+ -- they have to have the right tag.
+
+ if Is_Tagged_Type (Typ)
+ and then not Is_Class_Wide_Type (Typ)
+ and then not Is_CPP_Class (Typ)
+ and then not Java_VM
+ and then Nkind (Expr) /= N_Aggregate
+ then
+ -- The re-assignment of the tag has to be done even if the
+ -- object is a constant.
+
+ New_Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Reference_To (Def_Id, Loc),
+ Selector_Name =>
+ New_Reference_To (First_Tag_Component (Typ), Loc));
+
+ Set_Assignment_OK (New_Ref);
+
+ Insert_After (N,
+ Make_Assignment_Statement (Loc,
+ Name => New_Ref,
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node
+ (First_Elmt
+ (Access_Disp_Table (Base_Type (Typ)))),
+ Loc))));
+
+ -- For discrete types, set the Is_Known_Valid flag if the
+ -- initializing value is known to be valid.
+
+ elsif Is_Discrete_Type (Typ) and then Expr_Known_Valid (Expr) then
+ Set_Is_Known_Valid (Def_Id);
+
+ elsif Is_Access_Type (Typ) then
+
+ -- For access types set the Is_Known_Non_Null flag if the
+ -- initializing value is known to be non-null. We can also set
+ -- Can_Never_Be_Null if this is a constant.
+
+ if Known_Non_Null (Expr) then
+ Set_Is_Known_Non_Null (Def_Id, True);
+
+ if Constant_Present (N) then
+ Set_Can_Never_Be_Null (Def_Id);
+ end if;
+ end if;
+ end if;
+
+ -- If validity checking on copies, validate initial expression
+
+ if Validity_Checks_On
+ and then Validity_Check_Copies
+ then
+ Ensure_Valid (Expr);
+ Set_Is_Known_Valid (Def_Id);
+ end if;
+ end if;
+
+ -- Cases where the back end cannot handle the initialization directly
+ -- In such cases, we expand an assignment that will be appropriately
+ -- handled by Expand_N_Assignment_Statement.
+
+ -- The exclusion of the unconstrained case is wrong, but for now it
+ -- is too much trouble ???
+
+ if (Is_Possibly_Unaligned_Slice (Expr)
+ or else (Is_Possibly_Unaligned_Object (Expr)
+ and then not Represented_As_Scalar (Etype (Expr))))
+
+ -- The exclusion of the unconstrained case is wrong, but for now
+ -- it is too much trouble ???
+
+ and then not (Is_Array_Type (Etype (Expr))
+ and then not Is_Constrained (Etype (Expr)))
+ then
+ declare
+ Stat : constant Node_Id :=
+ Make_Assignment_Statement (Loc,
+ Name => New_Reference_To (Def_Id, Loc),
+ Expression => Relocate_Node (Expr));
+ begin
+ Set_Expression (N, Empty);
+ Set_No_Initialization (N);
+ Set_Assignment_OK (Name (Stat));
+ Set_No_Ctrl_Actions (Stat);
+ Insert_After (N, Stat);
+ Analyze (Stat);
+ end;
+ end if;
+ end if;
+
+ -- For array type, check for size too large
+ -- We really need this for record types too???
+
+ if Is_Array_Type (Typ) then
+ Apply_Array_Size_Check (N, Typ);
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_N_Object_Declaration;
+
+ ---------------------------------
+ -- Expand_N_Subtype_Indication --
+ ---------------------------------
+
+ -- Add a check on the range of the subtype. The static case is partially
+ -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
+ -- to check here for the static case in order to avoid generating
+ -- extraneous expanded code.
+
+ procedure Expand_N_Subtype_Indication (N : Node_Id) is
+ Ran : constant Node_Id := Range_Expression (Constraint (N));
+ Typ : constant Entity_Id := Entity (Subtype_Mark (N));
+
+ begin
+ if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
+ Nkind (Parent (N)) = N_Slice
+ then
+ Resolve (Ran, Typ);
+ Apply_Range_Check (Ran, Typ);
+ end if;
+ end Expand_N_Subtype_Indication;
+
+ ---------------------------
+ -- Expand_N_Variant_Part --
+ ---------------------------
+
+ -- If the last variant does not contain the Others choice, replace it with
+ -- an N_Others_Choice node since Gigi always wants an Others. Note that we
+ -- do not bother to call Analyze on the modified variant part, since it's
+ -- only effect would be to compute the contents of the
+ -- Others_Discrete_Choices node laboriously, and of course we already know
+ -- the list of choices that corresponds to the others choice (it's the
+ -- list we are replacing!)
+
+ procedure Expand_N_Variant_Part (N : Node_Id) is
+ Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
+ Others_Node : Node_Id;
+ begin
+ if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
+ Others_Node := Make_Others_Choice (Sloc (Last_Var));
+ Set_Others_Discrete_Choices
+ (Others_Node, Discrete_Choices (Last_Var));
+ Set_Discrete_Choices (Last_Var, New_List (Others_Node));
+ end if;
+ end Expand_N_Variant_Part;
+
+ ---------------------------------
+ -- Expand_Previous_Access_Type --
+ ---------------------------------
+
+ procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
+ T : Entity_Id := First_Entity (Current_Scope);
+
+ begin
+ -- Find all access types declared in the current scope, whose
+ -- designated type is Def_Id.
+
+ while Present (T) loop
+ if Is_Access_Type (T)
+ and then Designated_Type (T) = Def_Id
+ then
+ Build_Master_Entity (Def_Id);
+ Build_Master_Renaming (Parent (Def_Id), T);
+ end if;
+
+ Next_Entity (T);
+ end loop;
+ end Expand_Previous_Access_Type;
+
+ ------------------------------
+ -- Expand_Record_Controller --
+ ------------------------------
+
+ procedure Expand_Record_Controller (T : Entity_Id) is
+ Def : Node_Id := Type_Definition (Parent (T));
+ Comp_List : Node_Id;
+ Comp_Decl : Node_Id;
+ Loc : Source_Ptr;
+ First_Comp : Node_Id;
+ Controller_Type : Entity_Id;
+ Ent : Entity_Id;
+
+ begin
+ if Nkind (Def) = N_Derived_Type_Definition then
+ Def := Record_Extension_Part (Def);
+ end if;
+
+ if Null_Present (Def) then
+ Set_Component_List (Def,
+ Make_Component_List (Sloc (Def),
+ Component_Items => Empty_List,
+ Variant_Part => Empty,
+ Null_Present => True));
+ end if;
+
+ Comp_List := Component_List (Def);
+
+ if Null_Present (Comp_List)
+ or else Is_Empty_List (Component_Items (Comp_List))
+ then
+ Loc := Sloc (Comp_List);
+ else
+ Loc := Sloc (First (Component_Items (Comp_List)));
+ end if;
+
+ if Is_Return_By_Reference_Type (T) then
+ Controller_Type := RTE (RE_Limited_Record_Controller);
+ else
+ Controller_Type := RTE (RE_Record_Controller);
+ end if;
+
+ Ent := Make_Defining_Identifier (Loc, Name_uController);
+
+ Comp_Decl :=
+ Make_Component_Declaration (Loc,
+ Defining_Identifier => Ent,
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Reference_To (Controller_Type, Loc)));
+
+ if Null_Present (Comp_List)
+ or else Is_Empty_List (Component_Items (Comp_List))
+ then
+ Set_Component_Items (Comp_List, New_List (Comp_Decl));
+ Set_Null_Present (Comp_List, False);
+
+ else
+ -- The controller cannot be placed before the _Parent field since
+ -- gigi lays out field in order and _parent must be first to
+ -- preserve the polymorphism of tagged types.
+
+ First_Comp := First (Component_Items (Comp_List));
+
+ if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
+ and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
+ then
+ Insert_Before (First_Comp, Comp_Decl);
+ else
+ Insert_After (First_Comp, Comp_Decl);
+ end if;
+ end if;
+
+ New_Scope (T);
+ Analyze (Comp_Decl);
+ Set_Ekind (Ent, E_Component);
+ Init_Component_Location (Ent);
+
+ -- Move the _controller entity ahead in the list of internal entities
+ -- of the enclosing record so that it is selected instead of a
+ -- potentially inherited one.
+
+ declare
+ E : constant Entity_Id := Last_Entity (T);
+ Comp : Entity_Id;
+
+ begin
+ pragma Assert (Chars (E) = Name_uController);
+
+ Set_Next_Entity (E, First_Entity (T));
+ Set_First_Entity (T, E);
+
+ Comp := Next_Entity (E);
+ while Next_Entity (Comp) /= E loop
+ Next_Entity (Comp);
+ end loop;
+
+ Set_Next_Entity (Comp, Empty);
+ Set_Last_Entity (T, Comp);
+ end;
+
+ End_Scope;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_Record_Controller;
+
+ ------------------------
+ -- Expand_Tagged_Root --
+ ------------------------
+
+ procedure Expand_Tagged_Root (T : Entity_Id) is
+ Def : constant Node_Id := Type_Definition (Parent (T));
+ Comp_List : Node_Id;
+ Comp_Decl : Node_Id;
+ Sloc_N : Source_Ptr;
+
+ begin
+ if Null_Present (Def) then
+ Set_Component_List (Def,
+ Make_Component_List (Sloc (Def),
+ Component_Items => Empty_List,
+ Variant_Part => Empty,
+ Null_Present => True));
+ end if;
+
+ Comp_List := Component_List (Def);
+
+ if Null_Present (Comp_List)
+ or else Is_Empty_List (Component_Items (Comp_List))
+ then
+ Sloc_N := Sloc (Comp_List);
+ else
+ Sloc_N := Sloc (First (Component_Items (Comp_List)));
+ end if;
+
+ Comp_Decl :=
+ Make_Component_Declaration (Sloc_N,
+ Defining_Identifier => First_Tag_Component (T),
+ Component_Definition =>
+ Make_Component_Definition (Sloc_N,
+ Aliased_Present => False,
+ Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));
+
+ if Null_Present (Comp_List)
+ or else Is_Empty_List (Component_Items (Comp_List))
+ then
+ Set_Component_Items (Comp_List, New_List (Comp_Decl));
+ Set_Null_Present (Comp_List, False);
+
+ else
+ Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
+ end if;
+
+ -- We don't Analyze the whole expansion because the tag component has
+ -- already been analyzed previously. Here we just insure that the tree
+ -- is coherent with the semantic decoration
+
+ Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_Tagged_Root;
+
+ -----------------------
+ -- Freeze_Array_Type --
+ -----------------------
+
+ procedure Freeze_Array_Type (N : Node_Id) is
+ Typ : constant Entity_Id := Entity (N);
+ Base : constant Entity_Id := Base_Type (Typ);
+
+ begin
+ if not Is_Bit_Packed_Array (Typ) then
+
+ -- If the component contains tasks, so does the array type. This may
+ -- not be indicated in the array type because the component may have
+ -- been a private type at the point of definition. Same if component
+ -- type is controlled.
+
+ Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
+ Set_Has_Controlled_Component (Base,
+ Has_Controlled_Component (Component_Type (Typ))
+ or else Is_Controlled (Component_Type (Typ)));
+
+ if No (Init_Proc (Base)) then
+
+ -- If this is an anonymous array created for a declaration with
+ -- an initial value, its init_proc will never be called. The
+ -- initial value itself may have been expanded into assign-
+ -- ments, in which case the object declaration is carries the
+ -- No_Initialization flag.
+
+ if Is_Itype (Base)
+ and then Nkind (Associated_Node_For_Itype (Base)) =
+ N_Object_Declaration
+ and then (Present (Expression (Associated_Node_For_Itype (Base)))
+ or else
+ No_Initialization (Associated_Node_For_Itype (Base)))
+ then
+ null;
+
+ -- We do not need an init proc for string or wide [wide] string,
+ -- since the only time these need initialization in normalize or
+ -- initialize scalars mode, and these types are treated specially
+ -- and do not need initialization procedures.
+
+ elsif Root_Type (Base) = Standard_String
+ or else Root_Type (Base) = Standard_Wide_String
+ or else Root_Type (Base) = Standard_Wide_Wide_String
+ then
+ null;
+
+ -- Otherwise we have to build an init proc for the subtype
+
+ else
+ Build_Array_Init_Proc (Base, N);
+ end if;
+ end if;
+
+ if Typ = Base and then Has_Controlled_Component (Base) then
+ Build_Controlling_Procs (Base);
+
+ if not Is_Limited_Type (Component_Type (Typ))
+ and then Number_Dimensions (Typ) = 1
+ then
+ Build_Slice_Assignment (Typ);
+ end if;
+ end if;
+
+ -- For packed case, there is a default initialization, except if the
+ -- component type is itself a packed structure with an initialization
+ -- procedure.
+
+ elsif Present (Init_Proc (Component_Type (Base)))
+ and then No (Base_Init_Proc (Base))
+ then
+ Build_Array_Init_Proc (Base, N);
+ end if;
+ end Freeze_Array_Type;
+
+ -----------------------------
+ -- Freeze_Enumeration_Type --
+ -----------------------------
+
+ procedure Freeze_Enumeration_Type (N : Node_Id) is
+ Typ : constant Entity_Id := Entity (N);
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Ent : Entity_Id;
+ Lst : List_Id;
+ Num : Nat;
+ Arr : Entity_Id;
+ Fent : Entity_Id;
+ Ityp : Entity_Id;
+ Is_Contiguous : Boolean;
+ Pos_Expr : Node_Id;
+ Last_Repval : Uint;
+
+ Func : Entity_Id;
+ pragma Warnings (Off, Func);
+
+ begin
+ -- Various optimization are possible if the given representation is
+ -- contiguous.
+
+ Is_Contiguous := True;
+ Ent := First_Literal (Typ);
+ Last_Repval := Enumeration_Rep (Ent);
+ Next_Literal (Ent);
+
+ while Present (Ent) loop
+ if Enumeration_Rep (Ent) - Last_Repval /= 1 then
+ Is_Contiguous := False;
+ exit;
+ else
+ Last_Repval := Enumeration_Rep (Ent);
+ end if;
+
+ Next_Literal (Ent);
+ end loop;
+
+ if Is_Contiguous then
+ Set_Has_Contiguous_Rep (Typ);
+ Ent := First_Literal (Typ);
+ Num := 1;
+ Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));
+
+ else
+ -- Build list of literal references
+
+ Lst := New_List;
+ Num := 0;
+
+ Ent := First_Literal (Typ);
+ while Present (Ent) loop
+ Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
+ Num := Num + 1;
+ Next_Literal (Ent);
+ end loop;
+ end if;
+
+ -- Now build an array declaration
+
+ -- typA : array (Natural range 0 .. num - 1) of ctype :=
+ -- (v, v, v, v, v, ....)
+
+ -- where ctype is the corresponding integer type. If the representation
+ -- is contiguous, we only keep the first literal, which provides the
+ -- offset for Pos_To_Rep computations.
+
+ Arr :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Typ), 'A'));
+
+ Append_Freeze_Action (Typ,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Arr,
+ Constant_Present => True,
+
+ Object_Definition =>
+ Make_Constrained_Array_Definition (Loc,
+ Discrete_Subtype_Definitions => New_List (
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
+ Constraint =>
+ Make_Range_Constraint (Loc,
+ Range_Expression =>
+ Make_Range (Loc,
+ Low_Bound =>
+ Make_Integer_Literal (Loc, 0),
+ High_Bound =>
+ Make_Integer_Literal (Loc, Num - 1))))),
+
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication => New_Reference_To (Typ, Loc))),
+
+ Expression =>
+ Make_Aggregate (Loc,
+ Expressions => Lst)));
+
+ Set_Enum_Pos_To_Rep (Typ, Arr);
+
+ -- Now we build the function that converts representation values to
+ -- position values. This function has the form:
+
+ -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
+ -- begin
+ -- case ityp!(A) is
+ -- when enum-lit'Enum_Rep => return posval;
+ -- when enum-lit'Enum_Rep => return posval;
+ -- ...
+ -- when others =>
+ -- [raise Constraint_Error when F "invalid data"]
+ -- return -1;
+ -- end case;
+ -- end;
+
+ -- Note: the F parameter determines whether the others case (no valid
+ -- representation) raises Constraint_Error or returns a unique value
+ -- of minus one. The latter case is used, e.g. in 'Valid code.
+
+ -- Note: the reason we use Enum_Rep values in the case here is to avoid
+ -- the code generator making inappropriate assumptions about the range
+ -- of the values in the case where the value is invalid. ityp is a
+ -- signed or unsigned integer type of appropriate width.
+
+ -- Note: if exceptions are not supported, then we suppress the raise
+ -- and return -1 unconditionally (this is an erroneous program in any
+ -- case and there is no obligation to raise Constraint_Error here!) We
+ -- also do this if pragma Restrictions (No_Exceptions) is active.
+
+ -- Representations are signed
+
+ if Enumeration_Rep (First_Literal (Typ)) < 0 then
+
+ -- The underlying type is signed. Reset the Is_Unsigned_Type
+ -- explicitly, because it might have been inherited from
+ -- parent type.
+
+ Set_Is_Unsigned_Type (Typ, False);
+
+ if Esize (Typ) <= Standard_Integer_Size then
+ Ityp := Standard_Integer;
+ else
+ Ityp := Universal_Integer;
+ end if;
+
+ -- Representations are unsigned
+
+ else
+ if Esize (Typ) <= Standard_Integer_Size then
+ Ityp := RTE (RE_Unsigned);
+ else
+ Ityp := RTE (RE_Long_Long_Unsigned);
+ end if;
+ end if;
+
+ -- The body of the function is a case statement. First collect case
+ -- alternatives, or optimize the contiguous case.
+
+ Lst := New_List;
+
+ -- If representation is contiguous, Pos is computed by subtracting
+ -- the representation of the first literal.
+
+ if Is_Contiguous then
+ Ent := First_Literal (Typ);
+
+ if Enumeration_Rep (Ent) = Last_Repval then
+
+ -- Another special case: for a single literal, Pos is zero
+
+ Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
+
+ else
+ Pos_Expr :=
+ Convert_To (Standard_Integer,
+ Make_Op_Subtract (Loc,
+ Left_Opnd =>
+ Unchecked_Convert_To (Ityp,
+ Make_Identifier (Loc, Name_uA)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval =>
+ Enumeration_Rep (First_Literal (Typ)))));
+ end if;
+
+ Append_To (Lst,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => New_List (
+ Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
+ Low_Bound =>
+ Make_Integer_Literal (Loc,
+ Intval => Enumeration_Rep (Ent)),
+ High_Bound =>
+ Make_Integer_Literal (Loc, Intval => Last_Repval))),
+
+ Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression => Pos_Expr))));
+
+ else
+ Ent := First_Literal (Typ);
+
+ while Present (Ent) loop
+ Append_To (Lst,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => New_List (
+ Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
+ Intval => Enumeration_Rep (Ent))),
+
+ Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Integer_Literal (Loc,
+ Intval => Enumeration_Pos (Ent))))));
+
+ Next_Literal (Ent);
+ end loop;
+ end if;
+
+ -- In normal mode, add the others clause with the test
+
+ if not Restriction_Active (No_Exception_Handlers) then
+ Append_To (Lst,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => New_List (Make_Others_Choice (Loc)),
+ Statements => New_List (
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Make_Identifier (Loc, Name_uF),
+ Reason => CE_Invalid_Data),
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Integer_Literal (Loc, -1)))));
+
+ -- If Restriction (No_Exceptions_Handlers) is active then we always
+ -- return -1 (since we cannot usefully raise Constraint_Error in
+ -- this case). See description above for further details.
+
+ else
+ Append_To (Lst,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => New_List (Make_Others_Choice (Loc)),
+ Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Integer_Literal (Loc, -1)))));
+ end if;
+
+ -- Now we can build the function body
+
+ Fent :=
+ Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
+
+ Func :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Fent,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uA),
+ Parameter_Type => New_Reference_To (Typ, Loc)),
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uF),
+ Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
+
+ Result_Definition => New_Reference_To (Standard_Integer, Loc)),
+
+ Declarations => Empty_List,
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Case_Statement (Loc,
+ Expression =>
+ Unchecked_Convert_To (Ityp,
+ Make_Identifier (Loc, Name_uA)),
+ Alternatives => Lst))));
+
+ Set_TSS (Typ, Fent);
+ Set_Is_Pure (Fent);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Fent);
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Freeze_Enumeration_Type;
+
+ ------------------------
+ -- Freeze_Record_Type --
+ ------------------------
+
+ procedure Freeze_Record_Type (N : Node_Id) is
+ Comp : Entity_Id;
+ Def_Id : constant Node_Id := Entity (N);
+ Predef_List : List_Id;
+ Type_Decl : constant Node_Id := Parent (Def_Id);
+
+ Renamed_Eq : Node_Id := Empty;
+ -- Could use some comments ???
+
+ Wrapper_Decl_List : List_Id := No_List;
+ Wrapper_Body_List : List_Id := No_List;
+
+ begin
+ -- Build discriminant checking functions if not a derived type (for
+ -- derived types that are not tagged types, we always use the
+ -- discriminant checking functions of the parent type). However, for
+ -- untagged types the derivation may have taken place before the
+ -- parent was frozen, so we copy explicitly the discriminant checking
+ -- functions from the parent into the components of the derived type.
+
+ if not Is_Derived_Type (Def_Id)
+ or else Has_New_Non_Standard_Rep (Def_Id)
+ or else Is_Tagged_Type (Def_Id)
+ then
+ Build_Discr_Checking_Funcs (Type_Decl);
+
+ elsif Is_Derived_Type (Def_Id)
+ and then not Is_Tagged_Type (Def_Id)
+
+ -- If we have a derived Unchecked_Union, we do not inherit the
+ -- discriminant checking functions from the parent type since the
+ -- discriminants are non existent.
+
+ and then not Is_Unchecked_Union (Def_Id)
+ and then Has_Discriminants (Def_Id)
+ then
+ declare
+ Old_Comp : Entity_Id;
+
+ begin
+ Old_Comp :=
+ First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
+ Comp := First_Component (Def_Id);
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ and then Chars (Comp) = Chars (Old_Comp)
+ then
+ Set_Discriminant_Checking_Func (Comp,
+ Discriminant_Checking_Func (Old_Comp));
+ end if;
+
+ Next_Component (Old_Comp);
+ Next_Component (Comp);
+ end loop;
+ end;
+ end if;
+
+ if Is_Derived_Type (Def_Id)
+ and then Is_Limited_Type (Def_Id)
+ and then Is_Tagged_Type (Def_Id)
+ then
+ Check_Stream_Attributes (Def_Id);
+ end if;
+
+ -- Update task and controlled component flags, because some of the
+ -- component types may have been private at the point of the record
+ -- declaration.
+
+ Comp := First_Component (Def_Id);
+
+ while Present (Comp) loop
+ if Has_Task (Etype (Comp)) then
+ Set_Has_Task (Def_Id);
+
+ elsif Has_Controlled_Component (Etype (Comp))
+ or else (Chars (Comp) /= Name_uParent
+ and then Is_Controlled (Etype (Comp)))
+ then
+ Set_Has_Controlled_Component (Def_Id);
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ -- Creation of the Dispatch Table. Note that a Dispatch Table is
+ -- created for regular tagged types as well as for Ada types deriving
+ -- from a C++ Class, but not for tagged types directly corresponding to
+ -- the C++ classes. In the later case we assume that the Vtable is
+ -- created in the C++ side and we just use it.
+
+ if Is_Tagged_Type (Def_Id) then
+
+ if Is_CPP_Class (Def_Id) then
+
+ -- Because of the new C++ ABI compatibility we now allow the
+ -- programer to use the Ada tag (and in this case we must do
+ -- the normal expansion of the tag)
+
+ if Etype (First_Component (Def_Id)) = RTE (RE_Tag)
+ and then Underlying_Type (Etype (Def_Id)) = Def_Id
+ then
+ Expand_Tagged_Root (Def_Id);
+ end if;
+
+ Set_All_DT_Position (Def_Id);
+ Set_Default_Constructor (Def_Id);
+
+ else
+ -- Usually inherited primitives are not delayed but the first Ada
+ -- extension of a CPP_Class is an exception since the address of
+ -- the inherited subprogram has to be inserted in the new Ada
+ -- Dispatch Table and this is a freezing action (usually the
+ -- inherited primitive address is inserted in the DT by
+ -- Inherit_DT)
+
+ -- Similarly, if this is an inherited operation whose parent is
+ -- not frozen yet, it is not in the DT of the parent, and we
+ -- generate an explicit freeze node for the inherited operation,
+ -- so that it is properly inserted in the DT of the current type.
+
+ declare
+ Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
+ Subp : Entity_Id;
+
+ begin
+ while Present (Elmt) loop
+ Subp := Node (Elmt);
+
+ if Present (Alias (Subp)) then
+ if Is_CPP_Class (Etype (Def_Id)) then
+ Set_Has_Delayed_Freeze (Subp);
+
+ elsif Has_Delayed_Freeze (Alias (Subp))
+ and then not Is_Frozen (Alias (Subp))
+ then
+ Set_Is_Frozen (Subp, False);
+ Set_Has_Delayed_Freeze (Subp);
+ end if;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+
+ if Underlying_Type (Etype (Def_Id)) = Def_Id then
+ Expand_Tagged_Root (Def_Id);
+ end if;
+
+ -- Unfreeze momentarily the type to add the predefined primitives
+ -- operations. The reason we unfreeze is so that these predefined
+ -- operations will indeed end up as primitive operations (which
+ -- must be before the freeze point).
+
+ Set_Is_Frozen (Def_Id, False);
+ Make_Predefined_Primitive_Specs
+ (Def_Id, Predef_List, Renamed_Eq);
+ Insert_List_Before_And_Analyze (N, Predef_List);
+
+ -- Ada 2005 (AI-391): For a nonabstract null extension, create
+ -- wrapper functions for each nonoverridden inherited function
+ -- with a controlling result of the type. The wrapper for such
+ -- a function returns an extension aggregate that invokes the
+ -- the parent function.
+
+ if Ada_Version >= Ada_05
+ and then not Is_Abstract (Def_Id)
+ and then Is_Null_Extension (Def_Id)
+ then
+ Make_Controlling_Function_Wrappers
+ (Def_Id, Wrapper_Decl_List, Wrapper_Body_List);
+ Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
+ end if;
+
+ Set_Is_Frozen (Def_Id, True);
+ Set_All_DT_Position (Def_Id);
+
+ -- Add the controlled component before the freezing actions
+ -- referenced in those actions.
+
+ if Has_New_Controlled_Component (Def_Id) then
+ Expand_Record_Controller (Def_Id);
+ end if;
+
+ -- Suppress creation of a dispatch table when Java_VM because the
+ -- dispatching mechanism is handled internally by the JVM.
+
+ if not Java_VM then
+
+ -- Ada 2005 (AI-251): Build the secondary dispatch tables
+
+ declare
+ ADT : Elist_Id := Access_Disp_Table (Def_Id);
+
+ procedure Add_Secondary_Tables (Typ : Entity_Id);
+ -- Internal subprogram, recursively climb to the ancestors
+
+ --------------------------
+ -- Add_Secondary_Tables --
+ --------------------------
+
+ procedure Add_Secondary_Tables (Typ : Entity_Id) is
+ E : Entity_Id;
+ Iface : Elmt_Id;
+ Result : List_Id;
+ Suffix_Index : Int;
+
+ begin
+ -- Climb to the ancestor (if any) handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ if Full_View (Etype (Typ)) /= Typ then
+ Add_Secondary_Tables (Full_View (Etype (Typ)));
+ end if;
+
+ elsif Etype (Typ) /= Typ then
+ Add_Secondary_Tables (Etype (Typ));
+ end if;
+
+ if Present (Abstract_Interfaces (Typ))
+ and then
+ not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
+ then
+ Iface := First_Elmt (Abstract_Interfaces (Typ));
+ Suffix_Index := 0;
+
+ E := First_Entity (Typ);
+ while Present (E) loop
+ if Is_Tag (E) and then Chars (E) /= Name_uTag then
+ Make_Secondary_DT
+ (Typ => Def_Id,
+ Ancestor_Typ => Typ,
+ Suffix_Index => Suffix_Index,
+ Iface => Node (Iface),
+ AI_Tag => E,
+ Acc_Disp_Tables => ADT,
+ Result => Result);
+
+ Append_Freeze_Actions (Def_Id, Result);
+ Suffix_Index := Suffix_Index + 1;
+ Next_Elmt (Iface);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end if;
+ end Add_Secondary_Tables;
+
+ -- Start of processing to build secondary dispatch tables
+
+ begin
+ -- Handle private types
+
+ if Present (Full_View (Def_Id)) then
+ Add_Secondary_Tables (Full_View (Def_Id));
+ else
+ Add_Secondary_Tables (Def_Id);
+ end if;
+
+ Set_Access_Disp_Table (Def_Id, ADT);
+ Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
+ end;
+ end if;
+
+ -- Make sure that the primitives Initialize, Adjust and Finalize
+ -- are Frozen before other TSS subprograms. We don't want them
+ -- Frozen inside.
+
+ if Is_Controlled (Def_Id) then
+ if not Is_Limited_Type (Def_Id) then
+ Append_Freeze_Actions (Def_Id,
+ Freeze_Entity
+ (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
+ end if;
+
+ Append_Freeze_Actions (Def_Id,
+ Freeze_Entity
+ (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
+
+ Append_Freeze_Actions (Def_Id,
+ Freeze_Entity
+ (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
+ end if;
+
+ -- Freeze rest of primitive operations
+
+ Append_Freeze_Actions
+ (Def_Id, Predefined_Primitive_Freeze (Def_Id));
+ Append_Freeze_Actions
+ (Def_Id, Init_Predefined_Interface_Primitives (Def_Id));
+ end if;
+
+ -- In the non-tagged case, an equality function is provided only for
+ -- variant records (that are not unchecked unions).
+
+ elsif Has_Discriminants (Def_Id)
+ and then not Is_Limited_Type (Def_Id)
+ then
+ declare
+ Comps : constant Node_Id :=
+ Component_List (Type_Definition (Type_Decl));
+
+ begin
+ if Present (Comps)
+ and then Present (Variant_Part (Comps))
+ then
+ Build_Variant_Record_Equality (Def_Id);
+ end if;
+ end;
+ end if;
+
+ -- Before building the record initialization procedure, if we are
+ -- dealing with a concurrent record value type, then we must go through
+ -- the discriminants, exchanging discriminals between the concurrent
+ -- type and the concurrent record value type. See the section "Handling
+ -- of Discriminants" in the Einfo spec for details.
+
+ if Is_Concurrent_Record_Type (Def_Id)
+ and then Has_Discriminants (Def_Id)
+ then
+ declare
+ Ctyp : constant Entity_Id :=
+ Corresponding_Concurrent_Type (Def_Id);
+ Conc_Discr : Entity_Id;
+ Rec_Discr : Entity_Id;
+ Temp : Entity_Id;
+
+ begin
+ Conc_Discr := First_Discriminant (Ctyp);
+ Rec_Discr := First_Discriminant (Def_Id);
+
+ while Present (Conc_Discr) loop
+ Temp := Discriminal (Conc_Discr);
+ Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
+ Set_Discriminal (Rec_Discr, Temp);
+
+ Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
+ Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
+
+ Next_Discriminant (Conc_Discr);
+ Next_Discriminant (Rec_Discr);
+ end loop;
+ end;
+ end if;
+
+ if Has_Controlled_Component (Def_Id) then
+ if No (Controller_Component (Def_Id)) then
+ Expand_Record_Controller (Def_Id);
+ end if;
+
+ Build_Controlling_Procs (Def_Id);
+ end if;
+
+ Adjust_Discriminants (Def_Id);
+ Build_Record_Init_Proc (Type_Decl, Def_Id);
+
+ -- For tagged type, build bodies of primitive operations. Note that we
+ -- do this after building the record initialization experiment, since
+ -- the primitive operations may need the initialization routine
+
+ if Is_Tagged_Type (Def_Id) then
+ Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
+ Append_Freeze_Actions (Def_Id, Predef_List);
+
+ -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
+ -- inherited functions, then add their bodies to the freeze actions.
+
+ if Present (Wrapper_Body_List) then
+ Append_Freeze_Actions (Def_Id, Wrapper_Body_List);
+ end if;
+
+ -- Populate the two auxiliary tables used for dispatching
+ -- asynchronous, conditional and timed selects for synchronized
+ -- types that implement a limited interface.
+
+ if Ada_Version >= Ada_05
+ and then not Restriction_Active (No_Dispatching_Calls)
+ and then Is_Concurrent_Record_Type (Def_Id)
+ and then Implements_Interface (
+ Typ => Def_Id,
+ Kind => Any_Limited_Interface,
+ Check_Parent => True)
+ then
+ Append_Freeze_Actions (Def_Id,
+ Make_Select_Specific_Data_Table (Def_Id));
+ end if;
+ end if;
+ end Freeze_Record_Type;
+
+ ------------------------------
+ -- Freeze_Stream_Operations --
+ ------------------------------
+
+ procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
+ Names : constant array (1 .. 4) of TSS_Name_Type :=
+ (TSS_Stream_Input,
+ TSS_Stream_Output,
+ TSS_Stream_Read,
+ TSS_Stream_Write);
+ Stream_Op : Entity_Id;
+
+ begin
+ -- Primitive operations of tagged types are frozen when the dispatch
+ -- table is constructed.
+
+ if not Comes_From_Source (Typ)
+ or else Is_Tagged_Type (Typ)
+ then
+ return;
+ end if;
+
+ for J in Names'Range loop
+ Stream_Op := TSS (Typ, Names (J));
+
+ if Present (Stream_Op)
+ and then Is_Subprogram (Stream_Op)
+ and then Nkind (Unit_Declaration_Node (Stream_Op)) =
+ N_Subprogram_Declaration
+ and then not Is_Frozen (Stream_Op)
+ then
+ Append_Freeze_Actions
+ (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
+ end if;
+ end loop;
+ end Freeze_Stream_Operations;
+
+ -----------------
+ -- Freeze_Type --
+ -----------------
+
+ -- Full type declarations are expanded at the point at which the type is
+ -- frozen. The formal N is the Freeze_Node for the type. Any statements or
+ -- declarations generated by the freezing (e.g. the procedure generated
+ -- for initialization) are chained in the Actions field list of the freeze
+ -- node using Append_Freeze_Actions.
+
+ function Freeze_Type (N : Node_Id) return Boolean is
+ Def_Id : constant Entity_Id := Entity (N);
+ RACW_Seen : Boolean := False;
+ Result : Boolean := False;
+
+ begin
+ -- Process associated access types needing special processing
+
+ if Present (Access_Types_To_Process (N)) then
+ declare
+ E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
+ begin
+ while Present (E) loop
+
+ if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
+ RACW_Seen := True;
+ end if;
+
+ E := Next_Elmt (E);
+ end loop;
+ end;
+
+ if RACW_Seen then
+
+ -- If there are RACWs designating this type, make stubs now
+
+ Remote_Types_Tagged_Full_View_Encountered (Def_Id);
+ end if;
+ end if;
+
+ -- Freeze processing for record types
+
+ if Is_Record_Type (Def_Id) then
+ if Ekind (Def_Id) = E_Record_Type then
+ Freeze_Record_Type (N);
+
+ -- The subtype may have been declared before the type was frozen. If
+ -- the type has controlled components it is necessary to create the
+ -- entity for the controller explicitly because it did not exist at
+ -- the point of the subtype declaration. Only the entity is needed,
+ -- the back-end will obtain the layout from the type. This is only
+ -- necessary if this is constrained subtype whose component list is
+ -- not shared with the base type.
+
+ elsif Ekind (Def_Id) = E_Record_Subtype
+ and then Has_Discriminants (Def_Id)
+ and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
+ and then Present (Controller_Component (Def_Id))
+ then
+ declare
+ Old_C : constant Entity_Id := Controller_Component (Def_Id);
+ New_C : Entity_Id;
+
+ begin
+ if Scope (Old_C) = Base_Type (Def_Id) then
+
+ -- The entity is the one in the parent. Create new one
+
+ New_C := New_Copy (Old_C);
+ Set_Parent (New_C, Parent (Old_C));
+ New_Scope (Def_Id);
+ Enter_Name (New_C);
+ End_Scope;
+ end if;
+ end;
+
+ if Is_Itype (Def_Id)
+ and then Is_Record_Type (Underlying_Type (Scope (Def_Id)))
+ then
+ -- The freeze node is only used to introduce the controller,
+ -- the back-end has no use for it for a discriminated
+ -- component.
+
+ Set_Freeze_Node (Def_Id, Empty);
+ Set_Has_Delayed_Freeze (Def_Id, False);
+ Result := True;
+ end if;
+
+ -- Similar process if the controller of the subtype is not present
+ -- but the parent has it. This can happen with constrained
+ -- record components where the subtype is an itype.
+
+ elsif Ekind (Def_Id) = E_Record_Subtype
+ and then Is_Itype (Def_Id)
+ and then No (Controller_Component (Def_Id))
+ and then Present (Controller_Component (Etype (Def_Id)))
+ then
+ declare
+ Old_C : constant Entity_Id :=
+ Controller_Component (Etype (Def_Id));
+ New_C : constant Entity_Id := New_Copy (Old_C);
+
+ begin
+ Set_Next_Entity (New_C, First_Entity (Def_Id));
+ Set_First_Entity (Def_Id, New_C);
+
+ -- The freeze node is only used to introduce the controller,
+ -- the back-end has no use for it for a discriminated
+ -- component.
+
+ Set_Freeze_Node (Def_Id, Empty);
+ Set_Has_Delayed_Freeze (Def_Id, False);
+ Result := True;
+ end;
+ end if;
+
+ -- Freeze processing for array types
+
+ elsif Is_Array_Type (Def_Id) then
+ Freeze_Array_Type (N);
+
+ -- Freeze processing for access types
+
+ -- For pool-specific access types, find out the pool object used for
+ -- this type, needs actual expansion of it in some cases. Here are the
+ -- different cases :
+
+ -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
+ -- ---> don't use any storage pool
+
+ -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
+ -- Expand:
+ -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
+
+ -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
+ -- ---> Storage Pool is the specified one
+
+ -- See GNAT Pool packages in the Run-Time for more details
+
+ elsif Ekind (Def_Id) = E_Access_Type
+ or else Ekind (Def_Id) = E_General_Access_Type
+ then
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
+ Pool_Object : Entity_Id;
+ Siz_Exp : Node_Id;
+
+ Freeze_Action_Typ : Entity_Id;
+
+ begin
+ if Has_Storage_Size_Clause (Def_Id) then
+ Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
+ else
+ Siz_Exp := Empty;
+ end if;
+
+ -- Case 1
+
+ -- Rep Clause "for Def_Id'Storage_Size use 0;"
+ -- ---> don't use any storage pool
+
+ if Has_Storage_Size_Clause (Def_Id)
+ and then Compile_Time_Known_Value (Siz_Exp)
+ and then Expr_Value (Siz_Exp) = 0
+ then
+ null;
+
+ -- Case 2
+
+ -- Rep Clause : for Def_Id'Storage_Size use Expr.
+ -- ---> Expand:
+ -- Def_Id__Pool : Stack_Bounded_Pool
+ -- (Expr, DT'Size, DT'Alignment);
+
+ elsif Has_Storage_Size_Clause (Def_Id) then
+ declare
+ DT_Size : Node_Id;
+ DT_Align : Node_Id;
+
+ begin
+ -- For unconstrained composite types we give a size of zero
+ -- so that the pool knows that it needs a special algorithm
+ -- for variable size object allocation.
+
+ if Is_Composite_Type (Desig_Type)
+ and then not Is_Constrained (Desig_Type)
+ then
+ DT_Size :=
+ Make_Integer_Literal (Loc, 0);
+
+ DT_Align :=
+ Make_Integer_Literal (Loc, Maximum_Alignment);
+
+ else
+ DT_Size :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Desig_Type, Loc),
+ Attribute_Name => Name_Max_Size_In_Storage_Elements);
+
+ DT_Align :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Desig_Type, Loc),
+ Attribute_Name => Name_Alignment);
+ end if;
+
+ Pool_Object :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name (Chars (Def_Id), 'P'));
+
+ -- We put the code associated with the pools in the entity
+ -- that has the later freeze node, usually the acces type
+ -- but it can also be the designated_type; because the pool
+ -- code requires both those types to be frozen
+
+ if Is_Frozen (Desig_Type)
+ and then (No (Freeze_Node (Desig_Type))
+ or else Analyzed (Freeze_Node (Desig_Type)))
+ then
+ Freeze_Action_Typ := Def_Id;
+
+ -- A Taft amendment type cannot get the freeze actions
+ -- since the full view is not there.
+
+ elsif Is_Incomplete_Or_Private_Type (Desig_Type)
+ and then No (Full_View (Desig_Type))
+ then
+ Freeze_Action_Typ := Def_Id;
+
+ else
+ Freeze_Action_Typ := Desig_Type;
+ end if;
+
+ Append_Freeze_Action (Freeze_Action_Typ,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Pool_Object,
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark =>
+ New_Reference_To
+ (RTE (RE_Stack_Bounded_Pool), Loc),
+
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => New_List (
+
+ -- First discriminant is the Pool Size
+
+ New_Reference_To (
+ Storage_Size_Variable (Def_Id), Loc),
+
+ -- Second discriminant is the element size
+
+ DT_Size,
+
+ -- Third discriminant is the alignment
+
+ DT_Align)))));
+ end;
+
+ Set_Associated_Storage_Pool (Def_Id, Pool_Object);
+
+ -- Case 3
+
+ -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
+ -- ---> Storage Pool is the specified one
+
+ elsif Present (Associated_Storage_Pool (Def_Id)) then
+
+ -- Nothing to do the associated storage pool has been attached
+ -- when analyzing the rep. clause
+
+ null;
+ end if;
+
+ -- For access-to-controlled types (including class-wide types and
+ -- Taft-amendment types which potentially have controlled
+ -- components), expand the list controller object that will store
+ -- the dynamically allocated objects. Do not do this
+ -- transformation for expander-generated access types, but do it
+ -- for types that are the full view of types derived from other
+ -- private types. Also suppress the list controller in the case
+ -- of a designated type with convention Java, since this is used
+ -- when binding to Java API specs, where there's no equivalent of
+ -- a finalization list and we don't want to pull in the
+ -- finalization support if not needed.
+
+ if not Comes_From_Source (Def_Id)
+ and then not Has_Private_Declaration (Def_Id)
+ then
+ null;
+
+ elsif (Controlled_Type (Desig_Type)
+ and then Convention (Desig_Type) /= Convention_Java)
+ or else
+ (Is_Incomplete_Or_Private_Type (Desig_Type)
+ and then No (Full_View (Desig_Type))
+
+ -- An exception is made for types defined in the run-time
+ -- because Ada.Tags.Tag itself is such a type and cannot
+ -- afford this unnecessary overhead that would generates a
+ -- loop in the expansion scheme...
+
+ and then not In_Runtime (Def_Id)
+
+ -- Another exception is if Restrictions (No_Finalization)
+ -- is active, since then we know nothing is controlled.
+
+ and then not Restriction_Active (No_Finalization))
+
+ -- If the designated type is not frozen yet, its controlled
+ -- status must be retrieved explicitly.
+
+ or else (Is_Array_Type (Desig_Type)
+ and then not Is_Frozen (Desig_Type)
+ and then Controlled_Type (Component_Type (Desig_Type)))
+ then
+ Set_Associated_Final_Chain (Def_Id,
+ Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Def_Id), 'L')));
+
+ Append_Freeze_Action (Def_Id,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Associated_Final_Chain (Def_Id),
+ Object_Definition =>
+ New_Reference_To (RTE (RE_List_Controller), Loc)));
+ end if;
+ end;
+
+ -- Freeze processing for enumeration types
+
+ elsif Ekind (Def_Id) = E_Enumeration_Type then
+
+ -- We only have something to do if we have a non-standard
+ -- representation (i.e. at least one literal whose pos value
+ -- is not the same as its representation)
+
+ if Has_Non_Standard_Rep (Def_Id) then
+ Freeze_Enumeration_Type (N);
+ end if;
+
+ -- Private types that are completed by a derivation from a private
+ -- type have an internally generated full view, that needs to be
+ -- frozen. This must be done explicitly because the two views share
+ -- the freeze node, and the underlying full view is not visible when
+ -- the freeze node is analyzed.
+
+ elsif Is_Private_Type (Def_Id)
+ and then Is_Derived_Type (Def_Id)
+ and then Present (Full_View (Def_Id))
+ and then Is_Itype (Full_View (Def_Id))
+ and then Has_Private_Declaration (Full_View (Def_Id))
+ and then Freeze_Node (Full_View (Def_Id)) = N
+ then
+ Set_Entity (N, Full_View (Def_Id));
+ Result := Freeze_Type (N);
+ Set_Entity (N, Def_Id);
+
+ -- All other types require no expander action. There are such cases
+ -- (e.g. task types and protected types). In such cases, the freeze
+ -- nodes are there for use by Gigi.
+
+ end if;
+
+ Freeze_Stream_Operations (N, Def_Id);
+ return Result;
+
+ exception
+ when RE_Not_Available =>
+ return False;
+ end Freeze_Type;
+
+ -------------------------
+ -- Get_Simple_Init_Val --
+ -------------------------
+
+ function Get_Simple_Init_Val
+ (T : Entity_Id;
+ Loc : Source_Ptr;
+ Size : Uint := No_Uint) return Node_Id
+ is
+ Val : Node_Id;
+ Result : Node_Id;
+ Val_RE : RE_Id;
+
+ Size_To_Use : Uint;
+ -- This is the size to be used for computation of the appropriate
+ -- initial value for the Normalize_Scalars and Initialize_Scalars case.
+
+ Lo_Bound : Uint;
+ Hi_Bound : Uint;
+ -- These are the values computed by the procedure Check_Subtype_Bounds
+
+ procedure Check_Subtype_Bounds;
+ -- This procedure examines the subtype T, and its ancestor subtypes and
+ -- derived types to determine the best known information about the
+ -- bounds of the subtype. After the call Lo_Bound is set either to
+ -- No_Uint if no information can be determined, or to a value which
+ -- represents a known low bound, i.e. a valid value of the subtype can
+ -- not be less than this value. Hi_Bound is similarly set to a known
+ -- high bound (valid value cannot be greater than this).
+
+ --------------------------
+ -- Check_Subtype_Bounds --
+ --------------------------
+
+ procedure Check_Subtype_Bounds is
+ ST1 : Entity_Id;
+ ST2 : Entity_Id;
+ Lo : Node_Id;
+ Hi : Node_Id;
+ Loval : Uint;
+ Hival : Uint;
+
+ begin
+ Lo_Bound := No_Uint;
+ Hi_Bound := No_Uint;
+
+ -- Loop to climb ancestor subtypes and derived types
+
+ ST1 := T;
+ loop
+ if not Is_Discrete_Type (ST1) then
+ return;
+ end if;
+
+ Lo := Type_Low_Bound (ST1);
+ Hi := Type_High_Bound (ST1);
+
+ if Compile_Time_Known_Value (Lo) then
+ Loval := Expr_Value (Lo);
+
+ if Lo_Bound = No_Uint or else Lo_Bound < Loval then
+ Lo_Bound := Loval;
+ end if;
+ end if;
+
+ if Compile_Time_Known_Value (Hi) then
+ Hival := Expr_Value (Hi);
+
+ if Hi_Bound = No_Uint or else Hi_Bound > Hival then
+ Hi_Bound := Hival;
+ end if;
+ end if;
+
+ ST2 := Ancestor_Subtype (ST1);
+
+ if No (ST2) then
+ ST2 := Etype (ST1);
+ end if;
+
+ exit when ST1 = ST2;
+ ST1 := ST2;
+ end loop;
+ end Check_Subtype_Bounds;
+
+ -- Start of processing for Get_Simple_Init_Val
+
+ begin
+ -- For a private type, we should always have an underlying type
+ -- (because this was already checked in Needs_Simple_Initialization).
+ -- What we do is to get the value for the underlying type and then do
+ -- an Unchecked_Convert to the private type.
+
+ if Is_Private_Type (T) then
+ Val := Get_Simple_Init_Val (Underlying_Type (T), Loc, Size);
+
+ -- A special case, if the underlying value is null, then qualify it
+ -- with the underlying type, so that the null is properly typed
+ -- Similarly, if it is an aggregate it must be qualified, because an
+ -- unchecked conversion does not provide a context for it.
+
+ if Nkind (Val) = N_Null
+ or else Nkind (Val) = N_Aggregate
+ then
+ Val :=
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Underlying_Type (T), Loc),
+ Expression => Val);
+ end if;
+
+ Result := Unchecked_Convert_To (T, Val);
+
+ -- Don't truncate result (important for Initialize/Normalize_Scalars)
+
+ if Nkind (Result) = N_Unchecked_Type_Conversion
+ and then Is_Scalar_Type (Underlying_Type (T))
+ then
+ Set_No_Truncation (Result);
+ end if;
+
+ return Result;
+
+ -- For scalars, we must have normalize/initialize scalars case
+
+ elsif Is_Scalar_Type (T) then
+ pragma Assert (Init_Or_Norm_Scalars);
+
+ -- Compute size of object. If it is given by the caller, we can use
+ -- it directly, otherwise we use Esize (T) as an estimate. As far as
+ -- we know this covers all cases correctly.
+
+ if Size = No_Uint or else Size <= Uint_0 then
+ Size_To_Use := UI_Max (Uint_1, Esize (T));
+ else
+ Size_To_Use := Size;
+ end if;
+
+ -- Maximum size to use is 64 bits, since we will create values
+ -- of type Unsigned_64 and the range must fit this type.
+
+ if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
+ Size_To_Use := Uint_64;
+ end if;
+
+ -- Check known bounds of subtype
+
+ Check_Subtype_Bounds;
+
+ -- Processing for Normalize_Scalars case
+
+ if Normalize_Scalars then
+
+ -- If zero is invalid, it is a convenient value to use that is
+ -- for sure an appropriate invalid value in all situations.
+
+ if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
+ Val := Make_Integer_Literal (Loc, 0);
+
+ -- Cases where all one bits is the appropriate invalid value
+
+ -- For modular types, all 1 bits is either invalid or valid. If
+ -- it is valid, then there is nothing that can be done since there
+ -- are no invalid values (we ruled out zero already).
+
+ -- For signed integer types that have no negative values, either
+ -- there is room for negative values, or there is not. If there
+ -- is, then all 1 bits may be interpretecd as minus one, which is
+ -- certainly invalid. Alternatively it is treated as the largest
+ -- positive value, in which case the observation for modular types
+ -- still applies.
+
+ -- For float types, all 1-bits is a NaN (not a number), which is
+ -- certainly an appropriately invalid value.
+
+ elsif Is_Unsigned_Type (T)
+ or else Is_Floating_Point_Type (T)
+ or else Is_Enumeration_Type (T)
+ then
+ Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
+
+ -- Resolve as Unsigned_64, because the largest number we
+ -- can generate is out of range of universal integer.
+
+ Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
+
+ -- Case of signed types
+
+ else
+ declare
+ Signed_Size : constant Uint :=
+ UI_Min (Uint_63, Size_To_Use - 1);
+
+ begin
+ -- Normally we like to use the most negative number. The
+ -- one exception is when this number is in the known
+ -- subtype range and the largest positive number is not in
+ -- the known subtype range.
+
+ -- For this exceptional case, use largest positive value
+
+ if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
+ and then Lo_Bound <= (-(2 ** Signed_Size))
+ and then Hi_Bound < 2 ** Signed_Size
+ then
+ Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
+
+ -- Normal case of largest negative value
+
+ else
+ Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
+ end if;
+ end;
+ end if;
+
+ -- Here for Initialize_Scalars case
+
+ else
+ -- For float types, use float values from System.Scalar_Values
+
+ if Is_Floating_Point_Type (T) then
+ if Root_Type (T) = Standard_Short_Float then
+ Val_RE := RE_IS_Isf;
+ elsif Root_Type (T) = Standard_Float then
+ Val_RE := RE_IS_Ifl;
+ elsif Root_Type (T) = Standard_Long_Float then
+ Val_RE := RE_IS_Ilf;
+ else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
+ Val_RE := RE_IS_Ill;
+ end if;
+
+ -- If zero is invalid, use zero values from System.Scalar_Values
+
+ elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
+ if Size_To_Use <= 8 then
+ Val_RE := RE_IS_Iz1;
+ elsif Size_To_Use <= 16 then
+ Val_RE := RE_IS_Iz2;
+ elsif Size_To_Use <= 32 then
+ Val_RE := RE_IS_Iz4;
+ else
+ Val_RE := RE_IS_Iz8;
+ end if;
+
+ -- For unsigned, use unsigned values from System.Scalar_Values
+
+ elsif Is_Unsigned_Type (T) then
+ if Size_To_Use <= 8 then
+ Val_RE := RE_IS_Iu1;
+ elsif Size_To_Use <= 16 then
+ Val_RE := RE_IS_Iu2;
+ elsif Size_To_Use <= 32 then
+ Val_RE := RE_IS_Iu4;
+ else
+ Val_RE := RE_IS_Iu8;
+ end if;
+
+ -- For signed, use signed values from System.Scalar_Values
+
+ else
+ if Size_To_Use <= 8 then
+ Val_RE := RE_IS_Is1;
+ elsif Size_To_Use <= 16 then
+ Val_RE := RE_IS_Is2;
+ elsif Size_To_Use <= 32 then
+ Val_RE := RE_IS_Is4;
+ else
+ Val_RE := RE_IS_Is8;
+ end if;
+ end if;
+
+ Val := New_Occurrence_Of (RTE (Val_RE), Loc);
+ end if;
+
+ -- The final expression is obtained by doing an unchecked conversion
+ -- of this result to the base type of the required subtype. We use
+ -- the base type to avoid the unchecked conversion from chopping
+ -- bits, and then we set Kill_Range_Check to preserve the "bad"
+ -- value.
+
+ Result := Unchecked_Convert_To (Base_Type (T), Val);
+
+ -- Ensure result is not truncated, since we want the "bad" bits
+ -- and also kill range check on result.
+
+ if Nkind (Result) = N_Unchecked_Type_Conversion then
+ Set_No_Truncation (Result);
+ Set_Kill_Range_Check (Result, True);
+ end if;
+
+ return Result;
+
+ -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
+
+ elsif Root_Type (T) = Standard_String
+ or else
+ Root_Type (T) = Standard_Wide_String
+ or else
+ Root_Type (T) = Standard_Wide_Wide_String
+ then
+ pragma Assert (Init_Or_Norm_Scalars);
+
+ return
+ Make_Aggregate (Loc,
+ Component_Associations => New_List (
+ Make_Component_Association (Loc,
+ Choices => New_List (
+ Make_Others_Choice (Loc)),
+ Expression =>
+ Get_Simple_Init_Val
+ (Component_Type (T), Loc, Esize (Root_Type (T))))));
+
+ -- Access type is initialized to null
+
+ elsif Is_Access_Type (T) then
+ return
+ Make_Null (Loc);
+
+ -- No other possibilities should arise, since we should only be
+ -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
+ -- returned True, indicating one of the above cases held.
+
+ else
+ raise Program_Error;
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return Empty;
+ end Get_Simple_Init_Val;
+
+ ------------------------------
+ -- Has_New_Non_Standard_Rep --
+ ------------------------------
+
+ function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
+ begin
+ if not Is_Derived_Type (T) then
+ return Has_Non_Standard_Rep (T)
+ or else Has_Non_Standard_Rep (Root_Type (T));
+
+ -- If Has_Non_Standard_Rep is not set on the derived type, the
+ -- representation is fully inherited.
+
+ elsif not Has_Non_Standard_Rep (T) then
+ return False;
+
+ else
+ return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
+
+ -- May need a more precise check here: the First_Rep_Item may
+ -- be a stream attribute, which does not affect the representation
+ -- of the type ???
+ end if;
+ end Has_New_Non_Standard_Rep;
+
+ ----------------
+ -- In_Runtime --
+ ----------------
+
+ function In_Runtime (E : Entity_Id) return Boolean is
+ S1 : Entity_Id := Scope (E);
+
+ begin
+ while Scope (S1) /= Standard_Standard loop
+ S1 := Scope (S1);
+ end loop;
+
+ return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
+ end In_Runtime;
+
+ ------------------
+ -- Init_Formals --
+ ------------------
+
+ function Init_Formals (Typ : Entity_Id) return List_Id is
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Formals : List_Id;
+
+ begin
+ -- First parameter is always _Init : in out typ. Note that we need
+ -- this to be in/out because in the case of the task record value,
+ -- there are default record fields (_Priority, _Size, -Task_Info)
+ -- that may be referenced in the generated initialization routine.
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uInit),
+ In_Present => True,
+ Out_Present => True,
+ Parameter_Type => New_Reference_To (Typ, Loc)));
+
+ -- For task record value, or type that contains tasks, add two more
+ -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
+ -- We also add these parameters for the task record type case.
+
+ if Has_Task (Typ)
+ or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
+ then
+ Append_To (Formals,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uMaster),
+ Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
+
+ Append_To (Formals,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uChain),
+ In_Present => True,
+ Out_Present => True,
+ Parameter_Type =>
+ New_Reference_To (RTE (RE_Activation_Chain), Loc)));
+
+ Append_To (Formals,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_uTask_Name),
+ In_Present => True,
+ Parameter_Type =>
+ New_Reference_To (Standard_String, Loc)));
+ end if;
+
+ return Formals;
+
+ exception
+ when RE_Not_Available =>
+ return Empty_List;
+ end Init_Formals;
+
+ -------------------------------------
+ -- Make_Predefined_Primitive_Specs --
+ -------------------------------------
+
+ procedure Make_Controlling_Function_Wrappers
+ (Tag_Typ : Entity_Id;
+ Decl_List : out List_Id;
+ Body_List : out List_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Tag_Typ);
+ Prim_Elmt : Elmt_Id;
+ Subp : Entity_Id;
+ Actual_List : List_Id;
+ Formal_List : List_Id;
+ Formal : Entity_Id;
+ Par_Formal : Entity_Id;
+ Formal_Node : Node_Id;
+ Func_Spec : Node_Id;
+ Func_Decl : Node_Id;
+ Func_Body : Node_Id;
+ Return_Stmt : Node_Id;
+
+ begin
+ Decl_List := New_List;
+ Body_List := New_List;
+
+ Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
+
+ while Present (Prim_Elmt) loop
+ Subp := Node (Prim_Elmt);
+
+ -- If a primitive function with a controlling result of the type has
+ -- not been overridden by the user, then we must create a wrapper
+ -- function here that effectively overrides it and invokes the
+ -- abstract inherited function's nonabstract parent. This can only
+ -- occur for a null extension. Note that functions with anonymous
+ -- controlling access results don't qualify and must be overridden.
+ -- We also exclude Input attributes, since each type will have its
+ -- own version of Input constructed by the expander. The test for
+ -- Comes_From_Source is needed to distinguish inherited operations
+ -- from renamings (which also have Alias set).
+
+ if Is_Abstract (Subp)
+ and then Present (Alias (Subp))
+ and then not Comes_From_Source (Subp)
+ and then Ekind (Subp) = E_Function
+ and then Has_Controlling_Result (Subp)
+ and then not Is_Access_Type (Etype (Subp))
+ and then not Is_TSS (Subp, TSS_Stream_Input)
+ then
+ Formal_List := No_List;
+ Formal := First_Formal (Subp);
+
+ if Present (Formal) then
+ Formal_List := New_List;
+
+ while Present (Formal) loop
+ Append
+ (Make_Parameter_Specification
+ (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => Chars (Formal)),
+ In_Present => In_Present (Parent (Formal)),
+ Out_Present => Out_Present (Parent (Formal)),
+ Parameter_Type =>
+ New_Reference_To (Etype (Formal), Loc),
+ Expression =>
+ New_Copy_Tree (Expression (Parent (Formal)))),
+ Formal_List);
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ Func_Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Subp)),
+ Parameter_Specifications =>
+ Formal_List,
+ Result_Definition =>
+ New_Reference_To (Etype (Subp), Loc));
+
+ Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
+ Append_To (Decl_List, Func_Decl);
+
+ -- Build a wrapper body that calls the parent function. The body
+ -- contains a single return statement that returns an extension
+ -- aggregate whose ancestor part is a call to the parent function,
+ -- passing the formals as actuals (with any controlling arguments
+ -- converted to the types of the corresponding formals of the
+ -- parent function, which might be anonymous access types), and
+ -- having a null extension.
+
+ Formal := First_Formal (Subp);
+ Par_Formal := First_Formal (Alias (Subp));
+ Formal_Node := First (Formal_List);
+
+ if Present (Formal) then
+ Actual_List := New_List;
+ else
+ Actual_List := No_List;
+ end if;
+
+ while Present (Formal) loop
+ if Is_Controlling_Formal (Formal) then
+ Append_To (Actual_List,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Par_Formal), Loc),
+ Expression =>
+ New_Reference_To
+ (Defining_Identifier (Formal_Node), Loc)));
+ else
+ Append_To
+ (Actual_List,
+ New_Reference_To
+ (Defining_Identifier (Formal_Node), Loc));
+ end if;
+
+ Next_Formal (Formal);
+ Next_Formal (Par_Formal);
+ Next (Formal_Node);
+ end loop;
+
+ Return_Stmt :=
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Extension_Aggregate (Loc,
+ Ancestor_Part =>
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (Alias (Subp), Loc),
+ Parameter_Associations => Actual_List),
+ Null_Record_Present => True));
+
+ Func_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification => New_Copy_Tree (Func_Spec),
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Return_Stmt)));
+
+ Set_Defining_Unit_Name
+ (Specification (Func_Body),
+ Make_Defining_Identifier (Loc, Chars (Subp)));
+
+ Append_To (Body_List, Func_Body);
+
+ -- Replace the inherited function with the wrapper function
+ -- in the primitive operations list.
+
+ Override_Dispatching_Operation
+ (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec));
+ end if;
+
+ Next_Elmt (Prim_Elmt);
+ end loop;
+ end Make_Controlling_Function_Wrappers;
+
+ ------------------
+ -- Make_Eq_Case --
+ ------------------
+
+ -- <Make_Eq_if shared components>
+ -- case X.D1 is
+ -- when V1 => <Make_Eq_Case> on subcomponents
+ -- ...
+ -- when Vn => <Make_Eq_Case> on subcomponents
+ -- end case;
+
+ function Make_Eq_Case
+ (E : Entity_Id;
+ CL : Node_Id;
+ Discr : Entity_Id := Empty) return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ Result : constant List_Id := New_List;
+ Variant : Node_Id;
+ Alt_List : List_Id;
+
+ begin
+ Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
+
+ if No (Variant_Part (CL)) then
+ return Result;
+ end if;
+
+ Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
+
+ if No (Variant) then
+ return Result;
+ end if;
+
+ Alt_List := New_List;
+
+ while Present (Variant) loop
+ Append_To (Alt_List,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
+ Statements => Make_Eq_Case (E, Component_List (Variant))));
+
+ Next_Non_Pragma (Variant);
+ end loop;
+
+ -- If we have an Unchecked_Union, use one of the parameters that
+ -- captures the discriminants.
+
+ if Is_Unchecked_Union (E) then
+ Append_To (Result,
+ Make_Case_Statement (Loc,
+ Expression => New_Reference_To (Discr, Loc),
+ Alternatives => Alt_List));
+
+ else
+ Append_To (Result,
+ Make_Case_Statement (Loc,
+ Expression =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_X),
+ Selector_Name => New_Copy (Name (Variant_Part (CL)))),
+ Alternatives => Alt_List));
+ end if;
+
+ return Result;
+ end Make_Eq_Case;
+
+ ----------------
+ -- Make_Eq_If --
+ ----------------
+
+ -- Generates:
+
+ -- if
+ -- X.C1 /= Y.C1
+ -- or else
+ -- X.C2 /= Y.C2
+ -- ...
+ -- then
+ -- return False;
+ -- end if;
+
+ -- or a null statement if the list L is empty
+
+ function Make_Eq_If
+ (E : Entity_Id;
+ L : List_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ C : Node_Id;
+ Field_Name : Name_Id;
+ Cond : Node_Id;
+
+ begin
+ if No (L) then
+ return Make_Null_Statement (Loc);
+
+ else
+ Cond := Empty;
+
+ C := First_Non_Pragma (L);
+ while Present (C) loop
+ Field_Name := Chars (Defining_Identifier (C));
+
+ -- The tags must not be compared they are not part of the value.
+ -- Note also that in the following, we use Make_Identifier for
+ -- the component names. Use of New_Reference_To to identify the
+ -- components would be incorrect because the wrong entities for
+ -- discriminants could be picked up in the private type case.
+
+ if Field_Name /= Name_uTag then
+ Evolve_Or_Else (Cond,
+ Make_Op_Ne (Loc,
+ Left_Opnd =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_X),
+ Selector_Name =>
+ Make_Identifier (Loc, Field_Name)),
+
+ Right_Opnd =>
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_Y),
+ Selector_Name =>
+ Make_Identifier (Loc, Field_Name))));
+ end if;
+
+ Next_Non_Pragma (C);
+ end loop;
+
+ if No (Cond) then
+ return Make_Null_Statement (Loc);
+
+ else
+ return
+ Make_Implicit_If_Statement (E,
+ Condition => Cond,
+ Then_Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Standard_False, Loc))));
+ end if;
+ end if;
+ end Make_Eq_If;
+
+ -------------------------------------
+ -- Make_Predefined_Primitive_Specs --
+ -------------------------------------
+
+ procedure Make_Predefined_Primitive_Specs
+ (Tag_Typ : Entity_Id;
+ Predef_List : out List_Id;
+ Renamed_Eq : out Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Tag_Typ);
+ Res : constant List_Id := New_List;
+ Prim : Elmt_Id;
+ Eq_Needed : Boolean;
+ Eq_Spec : Node_Id;
+ Eq_Name : Name_Id := Name_Op_Eq;
+
+ function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
+ -- Returns true if Prim is a renaming of an unresolved predefined
+ -- equality operation.
+
+ -------------------------------
+ -- Is_Predefined_Eq_Renaming --
+ -------------------------------
+
+ function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
+ begin
+ return Chars (Prim) /= Name_Op_Eq
+ and then Present (Alias (Prim))
+ and then Comes_From_Source (Prim)
+ and then Is_Intrinsic_Subprogram (Alias (Prim))
+ and then Chars (Alias (Prim)) = Name_Op_Eq;
+ end Is_Predefined_Eq_Renaming;
+
+ -- Start of processing for Make_Predefined_Primitive_Specs
+
+ begin
+ Renamed_Eq := Empty;
+
+ -- Spec of _Size
+
+ Append_To (Res, Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Name_uSize,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+
+ Ret_Type => Standard_Long_Long_Integer));
+
+ -- Spec of _Alignment
+
+ Append_To (Res, Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Name_uAlignment,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+
+ Ret_Type => Standard_Integer));
+
+ -- Specs for dispatching stream attributes
+
+ declare
+ Stream_Op_TSS_Names :
+ constant array (Integer range <>) of TSS_Name_Type :=
+ (TSS_Stream_Read,
+ TSS_Stream_Write,
+ TSS_Stream_Input,
+ TSS_Stream_Output);
+ begin
+ for Op in Stream_Op_TSS_Names'Range loop
+ if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
+ Append_To (Res,
+ Predef_Stream_Attr_Spec (Loc, Tag_Typ,
+ Stream_Op_TSS_Names (Op)));
+ end if;
+ end loop;
+ end;
+
+ -- Spec of "=" if expanded if the type is not limited and if a
+ -- user defined "=" was not already declared for the non-full
+ -- view of a private extension
+
+ if not Is_Limited_Type (Tag_Typ) then
+ Eq_Needed := True;
+
+ Prim := First_Elmt (Primitive_Operations (Tag_Typ));
+ while Present (Prim) loop
+
+ -- If a primitive is encountered that renames the predefined
+ -- equality operator before reaching any explicit equality
+ -- primitive, then we still need to create a predefined
+ -- equality function, because calls to it can occur via
+ -- the renaming. A new name is created for the equality
+ -- to avoid conflicting with any user-defined equality.
+ -- (Note that this doesn't account for renamings of
+ -- equality nested within subpackages???)
+
+ if Is_Predefined_Eq_Renaming (Node (Prim)) then
+ Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
+
+ elsif Chars (Node (Prim)) = Name_Op_Eq
+ and then (No (Alias (Node (Prim)))
+ or else Nkind (Unit_Declaration_Node (Node (Prim))) =
+ N_Subprogram_Renaming_Declaration)
+ and then Etype (First_Formal (Node (Prim))) =
+ Etype (Next_Formal (First_Formal (Node (Prim))))
+ and then Base_Type (Etype (Node (Prim))) = Standard_Boolean
+
+ then
+ Eq_Needed := False;
+ exit;
+
+ -- If the parent equality is abstract, the inherited equality is
+ -- abstract as well, and no body can be created for for it.
+
+ elsif Chars (Node (Prim)) = Name_Op_Eq
+ and then Present (Alias (Node (Prim)))
+ and then Is_Abstract (Alias (Node (Prim)))
+ then
+ Eq_Needed := False;
+ exit;
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+
+ -- If a renaming of predefined equality was found
+ -- but there was no user-defined equality (so Eq_Needed
+ -- is still true), then set the name back to Name_Op_Eq.
+ -- But in the case where a user-defined equality was
+ -- located after such a renaming, then the predefined
+ -- equality function is still needed, so Eq_Needed must
+ -- be set back to True.
+
+ if Eq_Name /= Name_Op_Eq then
+ if Eq_Needed then
+ Eq_Name := Name_Op_Eq;
+ else
+ Eq_Needed := True;
+ end if;
+ end if;
+
+ if Eq_Needed then
+ Eq_Spec := Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Eq_Name,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_X),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_Y),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+ Ret_Type => Standard_Boolean);
+ Append_To (Res, Eq_Spec);
+
+ if Eq_Name /= Name_Op_Eq then
+ Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
+
+ Prim := First_Elmt (Primitive_Operations (Tag_Typ));
+ while Present (Prim) loop
+
+ -- Any renamings of equality that appeared before an
+ -- overriding equality must be updated to refer to
+ -- the entity for the predefined equality, otherwise
+ -- calls via the renaming would get incorrectly
+ -- resolved to call the user-defined equality function.
+
+ if Is_Predefined_Eq_Renaming (Node (Prim)) then
+ Set_Alias (Node (Prim), Renamed_Eq);
+
+ -- Exit upon encountering a user-defined equality
+
+ elsif Chars (Node (Prim)) = Name_Op_Eq
+ and then No (Alias (Node (Prim)))
+ then
+ exit;
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+ end if;
+ end if;
+
+ -- Spec for dispatching assignment
+
+ Append_To (Res, Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Name_uAssign,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
+ Out_Present => True,
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
+ end if;
+
+ -- Generate the declarations for the following primitive operations:
+
+ -- disp_asynchronous_select
+ -- disp_conditional_select
+ -- disp_get_prim_op_kind
+ -- disp_get_task_id
+ -- disp_timed_select
+
+ -- for limited interfaces and synchronized types that implement a
+ -- limited interface.
+
+ if Ada_Version >= Ada_05
+ and then
+ ((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
+ or else
+ (Is_Concurrent_Record_Type (Tag_Typ)
+ and then Implements_Interface (
+ Typ => Tag_Typ,
+ Kind => Any_Limited_Interface,
+ Check_Parent => True)))
+ then
+ Append_To (Res,
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
+
+ Append_To (Res,
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Disp_Conditional_Select_Spec (Tag_Typ)));
+
+ Append_To (Res,
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
+
+ Append_To (Res,
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
+
+ Append_To (Res,
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Disp_Timed_Select_Spec (Tag_Typ)));
+ end if;
+
+ -- Specs for finalization actions that may be required in case a
+ -- future extension contain a controlled element. We generate those
+ -- only for root tagged types where they will get dummy bodies or
+ -- when the type has controlled components and their body must be
+ -- generated. It is also impossible to provide those for tagged
+ -- types defined within s-finimp since it would involve circularity
+ -- problems
+
+ if In_Finalization_Root (Tag_Typ) then
+ null;
+
+ -- We also skip these if finalization is not available
+
+ elsif Restriction_Active (No_Finalization) then
+ null;
+
+ elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
+ if not Is_Limited_Type (Tag_Typ) then
+ Append_To (Res,
+ Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
+ end if;
+
+ Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
+ end if;
+
+ Predef_List := Res;
+ end Make_Predefined_Primitive_Specs;
+
+ ---------------------------------
+ -- Needs_Simple_Initialization --
+ ---------------------------------
+
+ function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
+ begin
+ -- Check for private type, in which case test applies to the
+ -- underlying type of the private type.
+
+ if Is_Private_Type (T) then
+ declare
+ RT : constant Entity_Id := Underlying_Type (T);
+
+ begin
+ if Present (RT) then
+ return Needs_Simple_Initialization (RT);
+ else
+ return False;
+ end if;
+ end;
+
+ -- Cases needing simple initialization are access types, and, if pragma
+ -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
+ -- types.
+
+ elsif Is_Access_Type (T)
+ or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
+ then
+ return True;
+
+ -- If Initialize/Normalize_Scalars is in effect, string objects also
+ -- need initialization, unless they are created in the course of
+ -- expanding an aggregate (since in the latter case they will be
+ -- filled with appropriate initializing values before they are used).
+
+ elsif Init_Or_Norm_Scalars
+ and then
+ (Root_Type (T) = Standard_String
+ or else Root_Type (T) = Standard_Wide_String
+ or else Root_Type (T) = Standard_Wide_Wide_String)
+ and then
+ (not Is_Itype (T)
+ or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
+ then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Needs_Simple_Initialization;
+
+ ----------------------
+ -- Predef_Deep_Spec --
+ ----------------------
+
+ function Predef_Deep_Spec
+ (Loc : Source_Ptr;
+ Tag_Typ : Entity_Id;
+ Name : TSS_Name_Type;
+ For_Body : Boolean := False) return Node_Id
+ is
+ Prof : List_Id;
+ Type_B : Entity_Id;
+
+ begin
+ if Name = TSS_Deep_Finalize then
+ Prof := New_List;
+ Type_B := Standard_Boolean;
+
+ else
+ Prof := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
+ In_Present => True,
+ Out_Present => True,
+ Parameter_Type =>
+ New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
+ Type_B := Standard_Short_Short_Integer;
+ end if;
+
+ Append_To (Prof,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ In_Present => True,
+ Out_Present => True,
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
+
+ Append_To (Prof,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
+ Parameter_Type => New_Reference_To (Type_B, Loc)));
+
+ return Predef_Spec_Or_Body (Loc,
+ Name => Make_TSS_Name (Tag_Typ, Name),
+ Tag_Typ => Tag_Typ,
+ Profile => Prof,
+ For_Body => For_Body);
+
+ exception
+ when RE_Not_Available =>
+ return Empty;
+ end Predef_Deep_Spec;
+
+ -------------------------
+ -- Predef_Spec_Or_Body --
+ -------------------------
+
+ function Predef_Spec_Or_Body
+ (Loc : Source_Ptr;
+ Tag_Typ : Entity_Id;
+ Name : Name_Id;
+ Profile : List_Id;
+ Ret_Type : Entity_Id := Empty;
+ For_Body : Boolean := False) return Node_Id
+ is
+ Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
+ Spec : Node_Id;
+
+ begin
+ Set_Is_Public (Id, Is_Public (Tag_Typ));
+
+ -- The internal flag is set to mark these declarations because
+ -- they have specific properties. First they are primitives even
+ -- if they are not defined in the type scope (the freezing point
+ -- is not necessarily in the same scope), furthermore the
+ -- predefined equality can be overridden by a user-defined
+ -- equality, no body will be generated in this case.
+
+ Set_Is_Internal (Id);
+
+ if not Debug_Generated_Code then
+ Set_Debug_Info_Off (Id);
+ end if;
+
+ if No (Ret_Type) then
+ Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Id,
+ Parameter_Specifications => Profile);
+ else
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Id,
+ Parameter_Specifications => Profile,
+ Result_Definition =>
+ New_Reference_To (Ret_Type, Loc));
+ end if;
+
+ -- If body case, return empty subprogram body. Note that this is
+ -- ill-formed, because there is not even a null statement, and
+ -- certainly not a return in the function case. The caller is
+ -- expected to do surgery on the body to add the appropriate stuff.
+
+ if For_Body then
+ return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
+
+ -- For the case of Input/Output attributes applied to an abstract type,
+ -- generate abstract specifications. These will never be called,
+ -- but we need the slots allocated in the dispatching table so
+ -- that typ'Class'Input and typ'Class'Output will work properly.
+
+ elsif (Is_TSS (Name, TSS_Stream_Input)
+ or else
+ Is_TSS (Name, TSS_Stream_Output))
+ and then Is_Abstract (Tag_Typ)
+ then
+ return Make_Abstract_Subprogram_Declaration (Loc, Spec);
+
+ -- Normal spec case, where we return a subprogram declaration
+
+ else
+ return Make_Subprogram_Declaration (Loc, Spec);
+ end if;
+ end Predef_Spec_Or_Body;
+
+ -----------------------------
+ -- Predef_Stream_Attr_Spec --
+ -----------------------------
+
+ function Predef_Stream_Attr_Spec
+ (Loc : Source_Ptr;
+ Tag_Typ : Entity_Id;
+ Name : TSS_Name_Type;
+ For_Body : Boolean := False) return Node_Id
+ is
+ Ret_Type : Entity_Id;
+
+ begin
+ if Name = TSS_Stream_Input then
+ Ret_Type := Tag_Typ;
+ else
+ Ret_Type := Empty;
+ end if;
+
+ return Predef_Spec_Or_Body (Loc,
+ Name => Make_TSS_Name (Tag_Typ, Name),
+ Tag_Typ => Tag_Typ,
+ Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
+ Ret_Type => Ret_Type,
+ For_Body => For_Body);
+ end Predef_Stream_Attr_Spec;
+
+ ---------------------------------
+ -- Predefined_Primitive_Bodies --
+ ---------------------------------
+
+ function Predefined_Primitive_Bodies
+ (Tag_Typ : Entity_Id;
+ Renamed_Eq : Node_Id) return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Tag_Typ);
+ Res : constant List_Id := New_List;
+ Decl : Node_Id;
+ Prim : Elmt_Id;
+ Eq_Needed : Boolean;
+ Eq_Name : Name_Id;
+ Ent : Entity_Id;
+
+ begin
+ -- See if we have a predefined "=" operator
+
+ if Present (Renamed_Eq) then
+ Eq_Needed := True;
+ Eq_Name := Chars (Renamed_Eq);
+
+ else
+ Eq_Needed := False;
+ Eq_Name := No_Name;
+
+ Prim := First_Elmt (Primitive_Operations (Tag_Typ));
+ while Present (Prim) loop
+ if Chars (Node (Prim)) = Name_Op_Eq
+ and then Is_Internal (Node (Prim))
+ then
+ Eq_Needed := True;
+ Eq_Name := Name_Op_Eq;
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+ end if;
+
+ -- Body of _Alignment
+
+ Decl := Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Name_uAlignment,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+
+ Ret_Type => Standard_Integer,
+ For_Body => True);
+
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc, New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_X),
+ Attribute_Name => Name_Alignment)))));
+
+ Append_To (Res, Decl);
+
+ -- Body of _Size
+
+ Decl := Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Name_uSize,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+
+ Ret_Type => Standard_Long_Long_Integer,
+ For_Body => True);
+
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc, New_List (
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_X),
+ Attribute_Name => Name_Size)))));
+
+ Append_To (Res, Decl);
+
+ -- Bodies for Dispatching stream IO routines. We need these only for
+ -- non-limited types (in the limited case there is no dispatching).
+ -- We also skip them if dispatching or finalization are not available.
+
+ if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
+ and then No (TSS (Tag_Typ, TSS_Stream_Read))
+ then
+ Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
+ Append_To (Res, Decl);
+ end if;
+
+ if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
+ and then No (TSS (Tag_Typ, TSS_Stream_Write))
+ then
+ Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
+ Append_To (Res, Decl);
+ end if;
+
+ -- Skip bodies of _Input and _Output for the abstract case, since
+ -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
+
+ if not Is_Abstract (Tag_Typ) then
+ if Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
+ and then No (TSS (Tag_Typ, TSS_Stream_Input))
+ then
+ Build_Record_Or_Elementary_Input_Function
+ (Loc, Tag_Typ, Decl, Ent);
+ Append_To (Res, Decl);
+ end if;
+
+ if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
+ and then No (TSS (Tag_Typ, TSS_Stream_Output))
+ then
+ Build_Record_Or_Elementary_Output_Procedure
+ (Loc, Tag_Typ, Decl, Ent);
+ Append_To (Res, Decl);
+ end if;
+ end if;
+
+ -- Generate the bodies for the following primitive operations:
+
+ -- disp_asynchronous_select
+ -- disp_conditional_select
+ -- disp_get_prim_op_kind
+ -- disp_get_task_id
+ -- disp_timed_select
+
+ -- for limited interfaces and synchronized types that implement a
+ -- limited interface. The interface versions will have null bodies.
+
+ if Ada_Version >= Ada_05
+ and then
+ not Restriction_Active (No_Dispatching_Calls)
+ and then
+ ((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
+ or else
+ (Is_Concurrent_Record_Type (Tag_Typ)
+ and then Implements_Interface (
+ Typ => Tag_Typ,
+ Kind => Any_Limited_Interface,
+ Check_Parent => True)))
+ then
+ Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
+ Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
+ Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
+ Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
+ Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
+ end if;
+
+ if not Is_Limited_Type (Tag_Typ) then
+
+ -- Body for equality
+
+ if Eq_Needed then
+ Decl :=
+ Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Eq_Name,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_X),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Name_Y),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+
+ Ret_Type => Standard_Boolean,
+ For_Body => True);
+
+ declare
+ Def : constant Node_Id := Parent (Tag_Typ);
+ Stmts : constant List_Id := New_List;
+ Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
+ Comps : Node_Id := Empty;
+ Typ_Def : Node_Id := Type_Definition (Def);
+
+ begin
+ if Variant_Case then
+ if Nkind (Typ_Def) = N_Derived_Type_Definition then
+ Typ_Def := Record_Extension_Part (Typ_Def);
+ end if;
+
+ if Present (Typ_Def) then
+ Comps := Component_List (Typ_Def);
+ end if;
+
+ Variant_Case := Present (Comps)
+ and then Present (Variant_Part (Comps));
+ end if;
+
+ if Variant_Case then
+ Append_To (Stmts,
+ Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
+ Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
+ Append_To (Stmts,
+ Make_Return_Statement (Loc,
+ Expression => New_Reference_To (Standard_True, Loc)));
+
+ else
+ Append_To (Stmts,
+ Make_Return_Statement (Loc,
+ Expression =>
+ Expand_Record_Equality (Tag_Typ,
+ Typ => Tag_Typ,
+ Lhs => Make_Identifier (Loc, Name_X),
+ Rhs => Make_Identifier (Loc, Name_Y),
+ Bodies => Declarations (Decl))));
+ end if;
+
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc, Stmts));
+ end;
+ Append_To (Res, Decl);
+ end if;
+
+ -- Body for dispatching assignment
+
+ Decl :=
+ Predef_Spec_Or_Body (Loc,
+ Tag_Typ => Tag_Typ,
+ Name => Name_uAssign,
+ Profile => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
+ Out_Present => True,
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
+ Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
+ For_Body => True);
+
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc, New_List (
+ Make_Assignment_Statement (Loc,
+ Name => Make_Identifier (Loc, Name_X),
+ Expression => Make_Identifier (Loc, Name_Y)))));
+
+ Append_To (Res, Decl);
+ end if;
+
+ -- Generate dummy bodies for finalization actions of types that have
+ -- no controlled components.
+
+ -- Skip this processing if we are in the finalization routine in the
+ -- runtime itself, otherwise we get hopelessly circularly confused!
+
+ if In_Finalization_Root (Tag_Typ) then
+ null;
+
+ -- Skip this if finalization is not available
+
+ elsif Restriction_Active (No_Finalization) then
+ null;
+
+ elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
+ and then not Has_Controlled_Component (Tag_Typ)
+ then
+ if not Is_Limited_Type (Tag_Typ) then
+ Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
+
+ if Is_Controlled (Tag_Typ) then
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Make_Adjust_Call (
+ Ref => Make_Identifier (Loc, Name_V),
+ Typ => Tag_Typ,
+ Flist_Ref => Make_Identifier (Loc, Name_L),
+ With_Attach => Make_Identifier (Loc, Name_B))));
+
+ else
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc, New_List (
+ Make_Null_Statement (Loc))));
+ end if;
+
+ Append_To (Res, Decl);
+ end if;
+
+ Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
+
+ if Is_Controlled (Tag_Typ) then
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Make_Final_Call (
+ Ref => Make_Identifier (Loc, Name_V),
+ Typ => Tag_Typ,
+ With_Detach => Make_Identifier (Loc, Name_B))));
+
+ else
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc, New_List (
+ Make_Null_Statement (Loc))));
+ end if;
+
+ Append_To (Res, Decl);
+ end if;
+
+ return Res;
+ end Predefined_Primitive_Bodies;
+
+ ---------------------------------
+ -- Predefined_Primitive_Freeze --
+ ---------------------------------
+
+ function Predefined_Primitive_Freeze
+ (Tag_Typ : Entity_Id) return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Tag_Typ);
+ Res : constant List_Id := New_List;
+ Prim : Elmt_Id;
+ Frnodes : List_Id;
+
+ begin
+ Prim := First_Elmt (Primitive_Operations (Tag_Typ));
+ while Present (Prim) loop
+ if Is_Internal (Node (Prim)) then
+ Frnodes := Freeze_Entity (Node (Prim), Loc);
+
+ if Present (Frnodes) then
+ Append_List_To (Res, Frnodes);
+ end if;
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+
+ return Res;
+ end Predefined_Primitive_Freeze;
+
+ -------------------------
+ -- Stream_Operation_OK --
+ -------------------------
+
+ function Stream_Operation_OK
+ (Typ : Entity_Id;
+ Operation : TSS_Name_Type) return Boolean
+ is
+ Has_Inheritable_Stream_Attribute : Boolean := False;
+
+ begin
+ if Is_Limited_Type (Typ)
+ and then Is_Tagged_Type (Typ)
+ and then Is_Derived_Type (Typ)
+ then
+ -- Special case of a limited type extension: a default implementation
+ -- of the stream attributes Read and Write exists if the attribute
+ -- has been specified for an ancestor type.
+
+ Has_Inheritable_Stream_Attribute :=
+ Present (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
+ end if;
+
+ return
+ not (Is_Limited_Type (Typ)
+ and then not Has_Inheritable_Stream_Attribute)
+ and then not Has_Unknown_Discriminants (Typ)
+ and then RTE_Available (RE_Tag)
+ and then RTE_Available (RE_Root_Stream_Type)
+ and then not Restriction_Active (No_Dispatch)
+ and then not Restriction_Active (No_Streams);
+ end Stream_Operation_OK;
+end Exp_Ch3;