aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/exp_aggr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/exp_aggr.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/exp_aggr.adb5675
1 files changed, 5675 insertions, 0 deletions
diff --git a/gcc-4.2.1/gcc/ada/exp_aggr.adb b/gcc-4.2.1/gcc/ada/exp_aggr.adb
new file mode 100644
index 000000000..f4fb029cf
--- /dev/null
+++ b/gcc-4.2.1/gcc/ada/exp_aggr.adb
@@ -0,0 +1,5675 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ A G G R --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Expander; use Expander;
+with Exp_Util; use Exp_Util;
+with Exp_Ch3; use Exp_Ch3;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch9; use Exp_Ch9;
+with Exp_Tss; use Exp_Tss;
+with Freeze; use Freeze;
+with Hostparm; use Hostparm;
+with Itypes; use Itypes;
+with Lib; use Lib;
+with Nmake; use Nmake;
+with Nlists; use Nlists;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Ttypes; use Ttypes;
+with Sem; use Sem;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+
+package body Exp_Aggr is
+
+ type Case_Bounds is record
+ Choice_Lo : Node_Id;
+ Choice_Hi : Node_Id;
+ Choice_Node : Node_Id;
+ end record;
+
+ type Case_Table_Type is array (Nat range <>) of Case_Bounds;
+ -- Table type used by Check_Case_Choices procedure
+
+ function Must_Slide
+ (Obj_Type : Entity_Id;
+ Typ : Entity_Id) return Boolean;
+ -- A static array aggregate in an object declaration can in most cases be
+ -- expanded in place. The one exception is when the aggregate is given
+ -- with component associations that specify different bounds from those of
+ -- the type definition in the object declaration. In this pathological
+ -- case the aggregate must slide, and we must introduce an intermediate
+ -- temporary to hold it.
+ --
+ -- The same holds in an assignment to one-dimensional array of arrays,
+ -- when a component may be given with bounds that differ from those of the
+ -- component type.
+
+ procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
+ -- Sort the Case Table using the Lower Bound of each Choice as the key.
+ -- A simple insertion sort is used since the number of choices in a case
+ -- statement of variant part will usually be small and probably in near
+ -- sorted order.
+
+ function Has_Default_Init_Comps (N : Node_Id) return Boolean;
+ -- N is an aggregate (record or array). Checks the presence of default
+ -- initialization (<>) in any component (Ada 2005: AI-287)
+
+ ------------------------------------------------------
+ -- Local subprograms for Record Aggregate Expansion --
+ ------------------------------------------------------
+
+ procedure Expand_Record_Aggregate
+ (N : Node_Id;
+ Orig_Tag : Node_Id := Empty;
+ Parent_Expr : Node_Id := Empty);
+ -- This is the top level procedure for record aggregate expansion.
+ -- Expansion for record aggregates needs expand aggregates for tagged
+ -- record types. Specifically Expand_Record_Aggregate adds the Tag
+ -- field in front of the Component_Association list that was created
+ -- during resolution by Resolve_Record_Aggregate.
+ --
+ -- N is the record aggregate node.
+ -- Orig_Tag is the value of the Tag that has to be provided for this
+ -- specific aggregate. It carries the tag corresponding to the type
+ -- of the outermost aggregate during the recursive expansion
+ -- Parent_Expr is the ancestor part of the original extension
+ -- aggregate
+
+ procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
+ -- N is an N_Aggregate of a N_Extension_Aggregate. Typ is the type of
+ -- the aggregate. Transform the given aggregate into a sequence of
+ -- assignments component per component.
+
+ function Build_Record_Aggr_Code
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Target : Node_Id;
+ Flist : Node_Id := Empty;
+ Obj : Entity_Id := Empty;
+ Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
+ -- N is an N_Aggregate or a N_Extension_Aggregate. Typ is the type of the
+ -- aggregate. Target is an expression containing the location on which the
+ -- component by component assignments will take place. Returns the list of
+ -- assignments plus all other adjustments needed for tagged and controlled
+ -- types. Flist is an expression representing the finalization list on
+ -- which to attach the controlled components if any. Obj is present in the
+ -- object declaration and dynamic allocation cases, it contains an entity
+ -- that allows to know if the value being created needs to be attached to
+ -- the final list in case of pragma finalize_Storage_Only.
+ --
+ -- Is_Limited_Ancestor_Expansion indicates that the function has been
+ -- called recursively to expand the limited ancestor to avoid copying it.
+
+ function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
+ -- Return true if one of the component is of a discriminated type with
+ -- defaults. An aggregate for a type with mutable components must be
+ -- expanded into individual assignments.
+
+ procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
+ -- If the type of the aggregate is a type extension with renamed discrimi-
+ -- nants, we must initialize the hidden discriminants of the parent.
+ -- Otherwise, the target object must not be initialized. The discriminants
+ -- are initialized by calling the initialization procedure for the type.
+ -- This is incorrect if the initialization of other components has any
+ -- side effects. We restrict this call to the case where the parent type
+ -- has a variant part, because this is the only case where the hidden
+ -- discriminants are accessed, namely when calling discriminant checking
+ -- functions of the parent type, and when applying a stream attribute to
+ -- an object of the derived type.
+
+ -----------------------------------------------------
+ -- Local Subprograms for Array Aggregate Expansion --
+ -----------------------------------------------------
+
+ function Aggr_Size_OK (Typ : Entity_Id) return Boolean;
+ -- Very large static aggregates present problems to the back-end, and
+ -- are transformed into assignments and loops. This function verifies
+ -- that the total number of components of an aggregate is acceptable
+ -- for transformation into a purely positional static form. It is called
+ -- prior to calling Flatten.
+
+ procedure Convert_Array_Aggr_In_Allocator
+ (Decl : Node_Id;
+ Aggr : Node_Id;
+ Target : Node_Id);
+ -- If the aggregate appears within an allocator and can be expanded in
+ -- place, this routine generates the individual assignments to components
+ -- of the designated object. This is an optimization over the general
+ -- case, where a temporary is first created on the stack and then used to
+ -- construct the allocated object on the heap.
+
+ procedure Convert_To_Positional
+ (N : Node_Id;
+ Max_Others_Replicate : Nat := 5;
+ Handle_Bit_Packed : Boolean := False);
+ -- If possible, convert named notation to positional notation. This
+ -- conversion is possible only in some static cases. If the conversion is
+ -- possible, then N is rewritten with the analyzed converted aggregate.
+ -- The parameter Max_Others_Replicate controls the maximum number of
+ -- values corresponding to an others choice that will be converted to
+ -- positional notation (the default of 5 is the normal limit, and reflects
+ -- the fact that normally the loop is better than a lot of separate
+ -- assignments). Note that this limit gets overridden in any case if
+ -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
+ -- set. The parameter Handle_Bit_Packed is usually set False (since we do
+ -- not expect the back end to handle bit packed arrays, so the normal case
+ -- of conversion is pointless), but in the special case of a call from
+ -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
+ -- these are cases we handle in there.
+
+ procedure Expand_Array_Aggregate (N : Node_Id);
+ -- This is the top-level routine to perform array aggregate expansion.
+ -- N is the N_Aggregate node to be expanded.
+
+ function Backend_Processing_Possible (N : Node_Id) return Boolean;
+ -- This function checks if array aggregate N can be processed directly
+ -- by Gigi. If this is the case True is returned.
+
+ function Build_Array_Aggr_Code
+ (N : Node_Id;
+ Ctype : Entity_Id;
+ Index : Node_Id;
+ Into : Node_Id;
+ Scalar_Comp : Boolean;
+ Indices : List_Id := No_List;
+ Flist : Node_Id := Empty) return List_Id;
+ -- This recursive routine returns a list of statements containing the
+ -- loops and assignments that are needed for the expansion of the array
+ -- aggregate N.
+ --
+ -- N is the (sub-)aggregate node to be expanded into code. This node
+ -- has been fully analyzed, and its Etype is properly set.
+ --
+ -- Index is the index node corresponding to the array sub-aggregate N.
+ --
+ -- Into is the target expression into which we are copying the aggregate.
+ -- Note that this node may not have been analyzed yet, and so the Etype
+ -- field may not be set.
+ --
+ -- Scalar_Comp is True if the component type of the aggregate is scalar.
+ --
+ -- Indices is the current list of expressions used to index the
+ -- object we are writing into.
+ --
+ -- Flist is an expression representing the finalization list on which
+ -- to attach the controlled components if any.
+
+ function Number_Of_Choices (N : Node_Id) return Nat;
+ -- Returns the number of discrete choices (not including the others choice
+ -- if present) contained in (sub-)aggregate N.
+
+ function Late_Expansion
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Target : Node_Id;
+ Flist : Node_Id := Empty;
+ Obj : Entity_Id := Empty) return List_Id;
+ -- N is a nested (record or array) aggregate that has been marked with
+ -- 'Delay_Expansion'. Typ is the expected type of the aggregate and Target
+ -- is a (duplicable) expression that will hold the result of the aggregate
+ -- expansion. Flist is the finalization list to be used to attach
+ -- controlled components. 'Obj' when non empty, carries the original
+ -- object being initialized in order to know if it needs to be attached to
+ -- the previous parameter which may not be the case in the case where
+ -- Finalize_Storage_Only is set. Basically this procedure is used to
+ -- implement top-down expansions of nested aggregates. This is necessary
+ -- for avoiding temporaries at each level as well as for propagating the
+ -- right internal finalization list.
+
+ function Make_OK_Assignment_Statement
+ (Sloc : Source_Ptr;
+ Name : Node_Id;
+ Expression : Node_Id) return Node_Id;
+ -- This is like Make_Assignment_Statement, except that Assignment_OK
+ -- is set in the left operand. All assignments built by this unit
+ -- use this routine. This is needed to deal with assignments to
+ -- initialized constants that are done in place.
+
+ function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
+ -- Given an array aggregate, this function handles the case of a packed
+ -- array aggregate with all constant values, where the aggregate can be
+ -- evaluated at compile time. If this is possible, then N is rewritten
+ -- to be its proper compile time value with all the components properly
+ -- assembled. The expression is analyzed and resolved and True is
+ -- returned. If this transformation is not possible, N is unchanged
+ -- and False is returned
+
+ function Safe_Slice_Assignment (N : Node_Id) return Boolean;
+ -- If a slice assignment has an aggregate with a single others_choice,
+ -- the assignment can be done in place even if bounds are not static,
+ -- by converting it into a loop over the discrete range of the slice.
+
+ ------------------
+ -- Aggr_Size_OK --
+ ------------------
+
+ function Aggr_Size_OK (Typ : Entity_Id) return Boolean is
+ Lo : Node_Id;
+ Hi : Node_Id;
+ Indx : Node_Id;
+ Siz : Int;
+ Lov : Uint;
+ Hiv : Uint;
+
+ -- The following constant determines the maximum size of an
+ -- aggregate produced by converting named to positional
+ -- notation (e.g. from others clauses). This avoids running
+ -- away with attempts to convert huge aggregates, which hit
+ -- memory limits in the backend.
+
+ -- The normal limit is 5000, but we increase this limit to
+ -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code)
+ -- or Restrictions (No_Implicit_Loops) is specified, since in
+ -- either case, we are at risk of declaring the program illegal
+ -- because of this limit.
+
+ Max_Aggr_Size : constant Nat :=
+ 5000 + (2 ** 24 - 5000) *
+ Boolean'Pos
+ (Restriction_Active (No_Elaboration_Code)
+ or else
+ Restriction_Active (No_Implicit_Loops));
+
+ function Component_Count (T : Entity_Id) return Int;
+ -- The limit is applied to the total number of components that the
+ -- aggregate will have, which is the number of static expressions
+ -- that will appear in the flattened array. This requires a recursive
+ -- computation of the the number of scalar components of the structure.
+
+ ---------------------
+ -- Component_Count --
+ ---------------------
+
+ function Component_Count (T : Entity_Id) return Int is
+ Res : Int := 0;
+ Comp : Entity_Id;
+
+ begin
+ if Is_Scalar_Type (T) then
+ return 1;
+
+ elsif Is_Record_Type (T) then
+ Comp := First_Component (T);
+ while Present (Comp) loop
+ Res := Res + Component_Count (Etype (Comp));
+ Next_Component (Comp);
+ end loop;
+
+ return Res;
+
+ elsif Is_Array_Type (T) then
+ declare
+ Lo : constant Node_Id :=
+ Type_Low_Bound (Etype (First_Index (T)));
+ Hi : constant Node_Id :=
+ Type_High_Bound (Etype (First_Index (T)));
+
+ Siz : constant Int := Component_Count (Component_Type (T));
+
+ begin
+ if not Compile_Time_Known_Value (Lo)
+ or else not Compile_Time_Known_Value (Hi)
+ then
+ return 0;
+ else
+ return
+ Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
+ end if;
+ end;
+
+ else
+ -- Can only be a null for an access type
+
+ return 1;
+ end if;
+ end Component_Count;
+
+ -- Start of processing for Aggr_Size_OK
+
+ begin
+ Siz := Component_Count (Component_Type (Typ));
+ Indx := First_Index (Typ);
+
+ while Present (Indx) loop
+ Lo := Type_Low_Bound (Etype (Indx));
+ Hi := Type_High_Bound (Etype (Indx));
+
+ -- Bounds need to be known at compile time
+
+ if not Compile_Time_Known_Value (Lo)
+ or else not Compile_Time_Known_Value (Hi)
+ then
+ return False;
+ end if;
+
+ Lov := Expr_Value (Lo);
+ Hiv := Expr_Value (Hi);
+
+ -- A flat array is always safe
+
+ if Hiv < Lov then
+ return True;
+ end if;
+
+ declare
+ Rng : constant Uint := Hiv - Lov + 1;
+
+ begin
+ -- Check if size is too large
+
+ if not UI_Is_In_Int_Range (Rng) then
+ return False;
+ end if;
+
+ Siz := Siz * UI_To_Int (Rng);
+ end;
+
+ if Siz <= 0
+ or else Siz > Max_Aggr_Size
+ then
+ return False;
+ end if;
+
+ -- Bounds must be in integer range, for later array construction
+
+ if not UI_Is_In_Int_Range (Lov)
+ or else
+ not UI_Is_In_Int_Range (Hiv)
+ then
+ return False;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+
+ return True;
+ end Aggr_Size_OK;
+
+ ---------------------------------
+ -- Backend_Processing_Possible --
+ ---------------------------------
+
+ -- Backend processing by Gigi/gcc is possible only if all the following
+ -- conditions are met:
+
+ -- 1. N is fully positional
+
+ -- 2. N is not a bit-packed array aggregate;
+
+ -- 3. The size of N's array type must be known at compile time. Note
+ -- that this implies that the component size is also known
+
+ -- 4. The array type of N does not follow the Fortran layout convention
+ -- or if it does it must be 1 dimensional.
+
+ -- 5. The array component type is tagged, which may necessitate
+ -- reassignment of proper tags.
+
+ -- 6. The array component type might have unaligned bit components
+
+ function Backend_Processing_Possible (N : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (N);
+ -- Typ is the correct constrained array subtype of the aggregate
+
+ function Static_Check (N : Node_Id; Index : Node_Id) return Boolean;
+ -- Recursively checks that N is fully positional, returns true if so
+
+ ------------------
+ -- Static_Check --
+ ------------------
+
+ function Static_Check (N : Node_Id; Index : Node_Id) return Boolean is
+ Expr : Node_Id;
+
+ begin
+ -- Check for component associations
+
+ if Present (Component_Associations (N)) then
+ return False;
+ end if;
+
+ -- Recurse to check subaggregates, which may appear in qualified
+ -- expressions. If delayed, the front-end will have to expand.
+
+ Expr := First (Expressions (N));
+
+ while Present (Expr) loop
+
+ if Is_Delayed_Aggregate (Expr) then
+ return False;
+ end if;
+
+ if Present (Next_Index (Index))
+ and then not Static_Check (Expr, Next_Index (Index))
+ then
+ return False;
+ end if;
+
+ Next (Expr);
+ end loop;
+
+ return True;
+ end Static_Check;
+
+ -- Start of processing for Backend_Processing_Possible
+
+ begin
+ -- Checks 2 (array must not be bit packed)
+
+ if Is_Bit_Packed_Array (Typ) then
+ return False;
+ end if;
+
+ -- Checks 4 (array must not be multi-dimensional Fortran case)
+
+ if Convention (Typ) = Convention_Fortran
+ and then Number_Dimensions (Typ) > 1
+ then
+ return False;
+ end if;
+
+ -- Checks 3 (size of array must be known at compile time)
+
+ if not Size_Known_At_Compile_Time (Typ) then
+ return False;
+ end if;
+
+ -- Checks 1 (aggregate must be fully positional)
+
+ if not Static_Check (N, First_Index (Typ)) then
+ return False;
+ end if;
+
+ -- Checks 5 (if the component type is tagged, then we may need
+ -- to do tag adjustments; perhaps this should be refined to check for
+ -- any component associations that actually need tag adjustment,
+ -- along the lines of the test that is carried out in
+ -- Has_Delayed_Nested_Aggregate_Or_Tagged_Comps for record aggregates
+ -- with tagged components, but not clear whether it's worthwhile ???;
+ -- in the case of the JVM, object tags are handled implicitly)
+
+ if Is_Tagged_Type (Component_Type (Typ)) and then not Java_VM then
+ return False;
+ end if;
+
+ -- Checks 6 (component type must not have bit aligned components)
+
+ if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
+ return False;
+ end if;
+
+ -- Backend processing is possible
+
+ Set_Compile_Time_Known_Aggregate (N, True);
+ Set_Size_Known_At_Compile_Time (Etype (N), True);
+ return True;
+ end Backend_Processing_Possible;
+
+ ---------------------------
+ -- Build_Array_Aggr_Code --
+ ---------------------------
+
+ -- The code that we generate from a one dimensional aggregate is
+
+ -- 1. If the sub-aggregate contains discrete choices we
+
+ -- (a) Sort the discrete choices
+
+ -- (b) Otherwise for each discrete choice that specifies a range we
+ -- emit a loop. If a range specifies a maximum of three values, or
+ -- we are dealing with an expression we emit a sequence of
+ -- assignments instead of a loop.
+
+ -- (c) Generate the remaining loops to cover the others choice if any
+
+ -- 2. If the aggregate contains positional elements we
+
+ -- (a) translate the positional elements in a series of assignments
+
+ -- (b) Generate a final loop to cover the others choice if any.
+ -- Note that this final loop has to be a while loop since the case
+
+ -- L : Integer := Integer'Last;
+ -- H : Integer := Integer'Last;
+ -- A : array (L .. H) := (1, others =>0);
+
+ -- cannot be handled by a for loop. Thus for the following
+
+ -- array (L .. H) := (.. positional elements.., others =>E);
+
+ -- we always generate something like:
+
+ -- J : Index_Type := Index_Of_Last_Positional_Element;
+ -- while J < H loop
+ -- J := Index_Base'Succ (J)
+ -- Tmp (J) := E;
+ -- end loop;
+
+ function Build_Array_Aggr_Code
+ (N : Node_Id;
+ Ctype : Entity_Id;
+ Index : Node_Id;
+ Into : Node_Id;
+ Scalar_Comp : Boolean;
+ Indices : List_Id := No_List;
+ Flist : Node_Id := Empty) return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Index_Base : constant Entity_Id := Base_Type (Etype (Index));
+ Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
+ Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
+
+ function Add (Val : Int; To : Node_Id) return Node_Id;
+ -- Returns an expression where Val is added to expression To, unless
+ -- To+Val is provably out of To's base type range. To must be an
+ -- already analyzed expression.
+
+ function Empty_Range (L, H : Node_Id) return Boolean;
+ -- Returns True if the range defined by L .. H is certainly empty
+
+ function Equal (L, H : Node_Id) return Boolean;
+ -- Returns True if L = H for sure
+
+ function Index_Base_Name return Node_Id;
+ -- Returns a new reference to the index type name
+
+ function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
+ -- Ind must be a side-effect free expression. If the input aggregate
+ -- N to Build_Loop contains no sub-aggregates, then this function
+ -- returns the assignment statement:
+ --
+ -- Into (Indices, Ind) := Expr;
+ --
+ -- Otherwise we call Build_Code recursively
+ --
+ -- Ada 2005 (AI-287): In case of default initialized component, Expr
+ -- is empty and we generate a call to the corresponding IP subprogram.
+
+ function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
+ -- Nodes L and H must be side-effect free expressions.
+ -- If the input aggregate N to Build_Loop contains no sub-aggregates,
+ -- This routine returns the for loop statement
+ --
+ -- for J in Index_Base'(L) .. Index_Base'(H) loop
+ -- Into (Indices, J) := Expr;
+ -- end loop;
+ --
+ -- Otherwise we call Build_Code recursively.
+ -- As an optimization if the loop covers 3 or less scalar elements we
+ -- generate a sequence of assignments.
+
+ function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
+ -- Nodes L and H must be side-effect free expressions.
+ -- If the input aggregate N to Build_Loop contains no sub-aggregates,
+ -- This routine returns the while loop statement
+ --
+ -- J : Index_Base := L;
+ -- while J < H loop
+ -- J := Index_Base'Succ (J);
+ -- Into (Indices, J) := Expr;
+ -- end loop;
+ --
+ -- Otherwise we call Build_Code recursively
+
+ function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
+ function Local_Expr_Value (E : Node_Id) return Uint;
+ -- These two Local routines are used to replace the corresponding ones
+ -- in sem_eval because while processing the bounds of an aggregate with
+ -- discrete choices whose index type is an enumeration, we build static
+ -- expressions not recognized by Compile_Time_Known_Value as such since
+ -- they have not yet been analyzed and resolved. All the expressions in
+ -- question are things like Index_Base_Name'Val (Const) which we can
+ -- easily recognize as being constant.
+
+ ---------
+ -- Add --
+ ---------
+
+ function Add (Val : Int; To : Node_Id) return Node_Id is
+ Expr_Pos : Node_Id;
+ Expr : Node_Id;
+ To_Pos : Node_Id;
+ U_To : Uint;
+ U_Val : constant Uint := UI_From_Int (Val);
+
+ begin
+ -- Note: do not try to optimize the case of Val = 0, because
+ -- we need to build a new node with the proper Sloc value anyway.
+
+ -- First test if we can do constant folding
+
+ if Local_Compile_Time_Known_Value (To) then
+ U_To := Local_Expr_Value (To) + Val;
+
+ -- Determine if our constant is outside the range of the index.
+ -- If so return an Empty node. This empty node will be caught
+ -- by Empty_Range below.
+
+ if Compile_Time_Known_Value (Index_Base_L)
+ and then U_To < Expr_Value (Index_Base_L)
+ then
+ return Empty;
+
+ elsif Compile_Time_Known_Value (Index_Base_H)
+ and then U_To > Expr_Value (Index_Base_H)
+ then
+ return Empty;
+ end if;
+
+ Expr_Pos := Make_Integer_Literal (Loc, U_To);
+ Set_Is_Static_Expression (Expr_Pos);
+
+ if not Is_Enumeration_Type (Index_Base) then
+ Expr := Expr_Pos;
+
+ -- If we are dealing with enumeration return
+ -- Index_Base'Val (Expr_Pos)
+
+ else
+ Expr :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => Index_Base_Name,
+ Attribute_Name => Name_Val,
+ Expressions => New_List (Expr_Pos));
+ end if;
+
+ return Expr;
+ end if;
+
+ -- If we are here no constant folding possible
+
+ if not Is_Enumeration_Type (Index_Base) then
+ Expr :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Duplicate_Subexpr (To),
+ Right_Opnd => Make_Integer_Literal (Loc, U_Val));
+
+ -- If we are dealing with enumeration return
+ -- Index_Base'Val (Index_Base'Pos (To) + Val)
+
+ else
+ To_Pos :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => Index_Base_Name,
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (Duplicate_Subexpr (To)));
+
+ Expr_Pos :=
+ Make_Op_Add (Loc,
+ Left_Opnd => To_Pos,
+ Right_Opnd => Make_Integer_Literal (Loc, U_Val));
+
+ Expr :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => Index_Base_Name,
+ Attribute_Name => Name_Val,
+ Expressions => New_List (Expr_Pos));
+ end if;
+
+ return Expr;
+ end Add;
+
+ -----------------
+ -- Empty_Range --
+ -----------------
+
+ function Empty_Range (L, H : Node_Id) return Boolean is
+ Is_Empty : Boolean := False;
+ Low : Node_Id;
+ High : Node_Id;
+
+ begin
+ -- First check if L or H were already detected as overflowing the
+ -- index base range type by function Add above. If this is so Add
+ -- returns the empty node.
+
+ if No (L) or else No (H) then
+ return True;
+ end if;
+
+ for J in 1 .. 3 loop
+ case J is
+
+ -- L > H range is empty
+
+ when 1 =>
+ Low := L;
+ High := H;
+
+ -- B_L > H range must be empty
+
+ when 2 =>
+ Low := Index_Base_L;
+ High := H;
+
+ -- L > B_H range must be empty
+
+ when 3 =>
+ Low := L;
+ High := Index_Base_H;
+ end case;
+
+ if Local_Compile_Time_Known_Value (Low)
+ and then Local_Compile_Time_Known_Value (High)
+ then
+ Is_Empty :=
+ UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
+ end if;
+
+ exit when Is_Empty;
+ end loop;
+
+ return Is_Empty;
+ end Empty_Range;
+
+ -----------
+ -- Equal --
+ -----------
+
+ function Equal (L, H : Node_Id) return Boolean is
+ begin
+ if L = H then
+ return True;
+
+ elsif Local_Compile_Time_Known_Value (L)
+ and then Local_Compile_Time_Known_Value (H)
+ then
+ return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
+ end if;
+
+ return False;
+ end Equal;
+
+ ----------------
+ -- Gen_Assign --
+ ----------------
+
+ function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
+ L : constant List_Id := New_List;
+ F : Entity_Id;
+ A : Node_Id;
+
+ New_Indices : List_Id;
+ Indexed_Comp : Node_Id;
+ Expr_Q : Node_Id;
+ Comp_Type : Entity_Id := Empty;
+
+ function Add_Loop_Actions (Lis : List_Id) return List_Id;
+ -- Collect insert_actions generated in the construction of a
+ -- loop, and prepend them to the sequence of assignments to
+ -- complete the eventual body of the loop.
+
+ ----------------------
+ -- Add_Loop_Actions --
+ ----------------------
+
+ function Add_Loop_Actions (Lis : List_Id) return List_Id is
+ Res : List_Id;
+
+ begin
+ -- Ada 2005 (AI-287): Do nothing else in case of default
+ -- initialized component.
+
+ if No (Expr) then
+ return Lis;
+
+ elsif Nkind (Parent (Expr)) = N_Component_Association
+ and then Present (Loop_Actions (Parent (Expr)))
+ then
+ Append_List (Lis, Loop_Actions (Parent (Expr)));
+ Res := Loop_Actions (Parent (Expr));
+ Set_Loop_Actions (Parent (Expr), No_List);
+ return Res;
+
+ else
+ return Lis;
+ end if;
+ end Add_Loop_Actions;
+
+ -- Start of processing for Gen_Assign
+
+ begin
+ if No (Indices) then
+ New_Indices := New_List;
+ else
+ New_Indices := New_Copy_List_Tree (Indices);
+ end if;
+
+ Append_To (New_Indices, Ind);
+
+ if Present (Flist) then
+ F := New_Copy_Tree (Flist);
+
+ elsif Present (Etype (N)) and then Controlled_Type (Etype (N)) then
+ if Is_Entity_Name (Into)
+ and then Present (Scope (Entity (Into)))
+ then
+ F := Find_Final_List (Scope (Entity (Into)));
+ else
+ F := Find_Final_List (Current_Scope);
+ end if;
+ else
+ F := Empty;
+ end if;
+
+ if Present (Next_Index (Index)) then
+ return
+ Add_Loop_Actions (
+ Build_Array_Aggr_Code
+ (N => Expr,
+ Ctype => Ctype,
+ Index => Next_Index (Index),
+ Into => Into,
+ Scalar_Comp => Scalar_Comp,
+ Indices => New_Indices,
+ Flist => F));
+ end if;
+
+ -- If we get here then we are at a bottom-level (sub-)aggregate
+
+ Indexed_Comp :=
+ Checks_Off
+ (Make_Indexed_Component (Loc,
+ Prefix => New_Copy_Tree (Into),
+ Expressions => New_Indices));
+
+ Set_Assignment_OK (Indexed_Comp);
+
+ -- Ada 2005 (AI-287): In case of default initialized component, Expr
+ -- is not present (and therefore we also initialize Expr_Q to empty).
+
+ if No (Expr) then
+ Expr_Q := Empty;
+ elsif Nkind (Expr) = N_Qualified_Expression then
+ Expr_Q := Expression (Expr);
+ else
+ Expr_Q := Expr;
+ end if;
+
+ if Present (Etype (N))
+ and then Etype (N) /= Any_Composite
+ then
+ Comp_Type := Component_Type (Etype (N));
+ pragma Assert (Comp_Type = Ctype); -- AI-287
+
+ elsif Present (Next (First (New_Indices))) then
+
+ -- Ada 2005 (AI-287): Do nothing in case of default initialized
+ -- component because we have received the component type in
+ -- the formal parameter Ctype.
+
+ -- ??? Some assert pragmas have been added to check if this new
+ -- formal can be used to replace this code in all cases.
+
+ if Present (Expr) then
+
+ -- This is a multidimensional array. Recover the component
+ -- type from the outermost aggregate, because subaggregates
+ -- do not have an assigned type.
+
+ declare
+ P : Node_Id := Parent (Expr);
+
+ begin
+ while Present (P) loop
+ if Nkind (P) = N_Aggregate
+ and then Present (Etype (P))
+ then
+ Comp_Type := Component_Type (Etype (P));
+ exit;
+
+ else
+ P := Parent (P);
+ end if;
+ end loop;
+
+ pragma Assert (Comp_Type = Ctype); -- AI-287
+ end;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-287): We only analyze the expression in case of non-
+ -- default initialized components (otherwise Expr_Q is not present).
+
+ if Present (Expr_Q)
+ and then (Nkind (Expr_Q) = N_Aggregate
+ or else Nkind (Expr_Q) = N_Extension_Aggregate)
+ then
+ -- At this stage the Expression may not have been
+ -- analyzed yet because the array aggregate code has not
+ -- been updated to use the Expansion_Delayed flag and
+ -- avoid analysis altogether to solve the same problem
+ -- (see Resolve_Aggr_Expr). So let us do the analysis of
+ -- non-array aggregates now in order to get the value of
+ -- Expansion_Delayed flag for the inner aggregate ???
+
+ if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
+ Analyze_And_Resolve (Expr_Q, Comp_Type);
+ end if;
+
+ if Is_Delayed_Aggregate (Expr_Q) then
+
+ -- This is either a subaggregate of a multidimentional array,
+ -- or a component of an array type whose component type is
+ -- also an array. In the latter case, the expression may have
+ -- component associations that provide different bounds from
+ -- those of the component type, and sliding must occur. Instead
+ -- of decomposing the current aggregate assignment, force the
+ -- re-analysis of the assignment, so that a temporary will be
+ -- generated in the usual fashion, and sliding will take place.
+
+ if Nkind (Parent (N)) = N_Assignment_Statement
+ and then Is_Array_Type (Comp_Type)
+ and then Present (Component_Associations (Expr_Q))
+ and then Must_Slide (Comp_Type, Etype (Expr_Q))
+ then
+ Set_Expansion_Delayed (Expr_Q, False);
+ Set_Analyzed (Expr_Q, False);
+
+ else
+ return
+ Add_Loop_Actions (
+ Late_Expansion (
+ Expr_Q, Etype (Expr_Q), Indexed_Comp, F));
+ end if;
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-287): In case of default initialized component, call
+ -- the initialization subprogram associated with the component type.
+
+ if No (Expr) then
+ if Present (Base_Init_Proc (Etype (Ctype)))
+ or else Has_Task (Base_Type (Ctype))
+ then
+ Append_List_To (L,
+ Build_Initialization_Call (Loc,
+ Id_Ref => Indexed_Comp,
+ Typ => Ctype,
+ With_Default_Init => True));
+ end if;
+
+ else
+ -- Now generate the assignment with no associated controlled
+ -- actions since the target of the assignment may not have
+ -- been initialized, it is not possible to Finalize it as
+ -- expected by normal controlled assignment. The rest of the
+ -- controlled actions are done manually with the proper
+ -- finalization list coming from the context.
+
+ A :=
+ Make_OK_Assignment_Statement (Loc,
+ Name => Indexed_Comp,
+ Expression => New_Copy_Tree (Expr));
+
+ if Present (Comp_Type) and then Controlled_Type (Comp_Type) then
+ Set_No_Ctrl_Actions (A);
+
+ -- If this is an aggregate for an array of arrays, each
+ -- subaggregate will be expanded as well, and even with
+ -- No_Ctrl_Actions the assignments of inner components will
+ -- require attachment in their assignments to temporaries.
+ -- These temporaries must be finalized for each subaggregate,
+ -- to prevent multiple attachments of the same temporary
+ -- location to same finalization chain (and consequently
+ -- circular lists). To ensure that finalization takes place
+ -- for each subaggregate we wrap the assignment in a block.
+
+ if Is_Array_Type (Comp_Type)
+ and then Nkind (Expr) = N_Aggregate
+ then
+ A :=
+ Make_Block_Statement (Loc,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (A)));
+ end if;
+ end if;
+
+ Append_To (L, A);
+
+ -- Adjust the tag if tagged (because of possible view
+ -- conversions), unless compiling for the Java VM
+ -- where tags are implicit.
+
+ if Present (Comp_Type)
+ and then Is_Tagged_Type (Comp_Type)
+ and then not Java_VM
+ then
+ A :=
+ Make_OK_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Indexed_Comp),
+ Selector_Name =>
+ New_Reference_To
+ (First_Tag_Component (Comp_Type), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
+ Loc)));
+
+ Append_To (L, A);
+ end if;
+
+ -- Adjust and Attach the component to the proper final list
+ -- which can be the controller of the outer record object or
+ -- the final list associated with the scope
+
+ if Present (Comp_Type) and then Controlled_Type (Comp_Type) then
+ Append_List_To (L,
+ Make_Adjust_Call (
+ Ref => New_Copy_Tree (Indexed_Comp),
+ Typ => Comp_Type,
+ Flist_Ref => F,
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+ end if;
+ end if;
+
+ return Add_Loop_Actions (L);
+ end Gen_Assign;
+
+ --------------
+ -- Gen_Loop --
+ --------------
+
+ function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
+ L_J : Node_Id;
+
+ L_Range : Node_Id;
+ -- Index_Base'(L) .. Index_Base'(H)
+
+ L_Iteration_Scheme : Node_Id;
+ -- L_J in Index_Base'(L) .. Index_Base'(H)
+
+ L_Body : List_Id;
+ -- The statements to execute in the loop
+
+ S : constant List_Id := New_List;
+ -- List of statements
+
+ Tcopy : Node_Id;
+ -- Copy of expression tree, used for checking purposes
+
+ begin
+ -- If loop bounds define an empty range return the null statement
+
+ if Empty_Range (L, H) then
+ Append_To (S, Make_Null_Statement (Loc));
+
+ -- Ada 2005 (AI-287): Nothing else need to be done in case of
+ -- default initialized component.
+
+ if No (Expr) then
+ null;
+
+ else
+ -- The expression must be type-checked even though no component
+ -- of the aggregate will have this value. This is done only for
+ -- actual components of the array, not for subaggregates. Do
+ -- the check on a copy, because the expression may be shared
+ -- among several choices, some of which might be non-null.
+
+ if Present (Etype (N))
+ and then Is_Array_Type (Etype (N))
+ and then No (Next_Index (Index))
+ then
+ Expander_Mode_Save_And_Set (False);
+ Tcopy := New_Copy_Tree (Expr);
+ Set_Parent (Tcopy, N);
+ Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
+ Expander_Mode_Restore;
+ end if;
+ end if;
+
+ return S;
+
+ -- If loop bounds are the same then generate an assignment
+
+ elsif Equal (L, H) then
+ return Gen_Assign (New_Copy_Tree (L), Expr);
+
+ -- If H - L <= 2 then generate a sequence of assignments
+ -- when we are processing the bottom most aggregate and it contains
+ -- scalar components.
+
+ elsif No (Next_Index (Index))
+ and then Scalar_Comp
+ and then Local_Compile_Time_Known_Value (L)
+ and then Local_Compile_Time_Known_Value (H)
+ and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
+ then
+
+ Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
+ Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
+
+ if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
+ Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
+ end if;
+
+ return S;
+ end if;
+
+ -- Otherwise construct the loop, starting with the loop index L_J
+
+ L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
+
+ -- Construct "L .. H"
+
+ L_Range :=
+ Make_Range
+ (Loc,
+ Low_Bound => Make_Qualified_Expression
+ (Loc,
+ Subtype_Mark => Index_Base_Name,
+ Expression => L),
+ High_Bound => Make_Qualified_Expression
+ (Loc,
+ Subtype_Mark => Index_Base_Name,
+ Expression => H));
+
+ -- Construct "for L_J in Index_Base range L .. H"
+
+ L_Iteration_Scheme :=
+ Make_Iteration_Scheme
+ (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification
+ (Loc,
+ Defining_Identifier => L_J,
+ Discrete_Subtype_Definition => L_Range));
+
+ -- Construct the statements to execute in the loop body
+
+ L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
+
+ -- Construct the final loop
+
+ Append_To (S, Make_Implicit_Loop_Statement
+ (Node => N,
+ Identifier => Empty,
+ Iteration_Scheme => L_Iteration_Scheme,
+ Statements => L_Body));
+
+ return S;
+ end Gen_Loop;
+
+ ---------------
+ -- Gen_While --
+ ---------------
+
+ -- The code built is
+
+ -- W_J : Index_Base := L;
+ -- while W_J < H loop
+ -- W_J := Index_Base'Succ (W);
+ -- L_Body;
+ -- end loop;
+
+ function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
+ W_J : Node_Id;
+
+ W_Decl : Node_Id;
+ -- W_J : Base_Type := L;
+
+ W_Iteration_Scheme : Node_Id;
+ -- while W_J < H
+
+ W_Index_Succ : Node_Id;
+ -- Index_Base'Succ (J)
+
+ W_Increment : Node_Id;
+ -- W_J := Index_Base'Succ (W)
+
+ W_Body : constant List_Id := New_List;
+ -- The statements to execute in the loop
+
+ S : constant List_Id := New_List;
+ -- list of statement
+
+ begin
+ -- If loop bounds define an empty range or are equal return null
+
+ if Empty_Range (L, H) or else Equal (L, H) then
+ Append_To (S, Make_Null_Statement (Loc));
+ return S;
+ end if;
+
+ -- Build the decl of W_J
+
+ W_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
+ W_Decl :=
+ Make_Object_Declaration
+ (Loc,
+ Defining_Identifier => W_J,
+ Object_Definition => Index_Base_Name,
+ Expression => L);
+
+ -- Theoretically we should do a New_Copy_Tree (L) here, but we know
+ -- that in this particular case L is a fresh Expr generated by
+ -- Add which we are the only ones to use.
+
+ Append_To (S, W_Decl);
+
+ -- Construct " while W_J < H"
+
+ W_Iteration_Scheme :=
+ Make_Iteration_Scheme
+ (Loc,
+ Condition => Make_Op_Lt
+ (Loc,
+ Left_Opnd => New_Reference_To (W_J, Loc),
+ Right_Opnd => New_Copy_Tree (H)));
+
+ -- Construct the statements to execute in the loop body
+
+ W_Index_Succ :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => Index_Base_Name,
+ Attribute_Name => Name_Succ,
+ Expressions => New_List (New_Reference_To (W_J, Loc)));
+
+ W_Increment :=
+ Make_OK_Assignment_Statement
+ (Loc,
+ Name => New_Reference_To (W_J, Loc),
+ Expression => W_Index_Succ);
+
+ Append_To (W_Body, W_Increment);
+ Append_List_To (W_Body,
+ Gen_Assign (New_Reference_To (W_J, Loc), Expr));
+
+ -- Construct the final loop
+
+ Append_To (S, Make_Implicit_Loop_Statement
+ (Node => N,
+ Identifier => Empty,
+ Iteration_Scheme => W_Iteration_Scheme,
+ Statements => W_Body));
+
+ return S;
+ end Gen_While;
+
+ ---------------------
+ -- Index_Base_Name --
+ ---------------------
+
+ function Index_Base_Name return Node_Id is
+ begin
+ return New_Reference_To (Index_Base, Sloc (N));
+ end Index_Base_Name;
+
+ ------------------------------------
+ -- Local_Compile_Time_Known_Value --
+ ------------------------------------
+
+ function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
+ begin
+ return Compile_Time_Known_Value (E)
+ or else
+ (Nkind (E) = N_Attribute_Reference
+ and then Attribute_Name (E) = Name_Val
+ and then Compile_Time_Known_Value (First (Expressions (E))));
+ end Local_Compile_Time_Known_Value;
+
+ ----------------------
+ -- Local_Expr_Value --
+ ----------------------
+
+ function Local_Expr_Value (E : Node_Id) return Uint is
+ begin
+ if Compile_Time_Known_Value (E) then
+ return Expr_Value (E);
+ else
+ return Expr_Value (First (Expressions (E)));
+ end if;
+ end Local_Expr_Value;
+
+ -- Build_Array_Aggr_Code Variables
+
+ Assoc : Node_Id;
+ Choice : Node_Id;
+ Expr : Node_Id;
+ Typ : Entity_Id;
+
+ Others_Expr : Node_Id := Empty;
+ Others_Box_Present : Boolean := False;
+
+ Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
+ Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
+ -- The aggregate bounds of this specific sub-aggregate. Note that if
+ -- the code generated by Build_Array_Aggr_Code is executed then these
+ -- bounds are OK. Otherwise a Constraint_Error would have been raised.
+
+ Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
+ Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
+ -- After Duplicate_Subexpr these are side-effect free
+
+ Low : Node_Id;
+ High : Node_Id;
+
+ Nb_Choices : Nat := 0;
+ Table : Case_Table_Type (1 .. Number_Of_Choices (N));
+ -- Used to sort all the different choice values
+
+ Nb_Elements : Int;
+ -- Number of elements in the positional aggregate
+
+ New_Code : constant List_Id := New_List;
+
+ -- Start of processing for Build_Array_Aggr_Code
+
+ begin
+ -- First before we start, a special case. if we have a bit packed
+ -- array represented as a modular type, then clear the value to
+ -- zero first, to ensure that unused bits are properly cleared.
+
+ Typ := Etype (N);
+
+ if Present (Typ)
+ and then Is_Bit_Packed_Array (Typ)
+ and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
+ then
+ Append_To (New_Code,
+ Make_Assignment_Statement (Loc,
+ Name => New_Copy_Tree (Into),
+ Expression =>
+ Unchecked_Convert_To (Typ,
+ Make_Integer_Literal (Loc, Uint_0))));
+ end if;
+
+ -- We can skip this
+ -- STEP 1: Process component associations
+ -- For those associations that may generate a loop, initialize
+ -- Loop_Actions to collect inserted actions that may be crated.
+
+ if No (Expressions (N)) then
+
+ -- STEP 1 (a): Sort the discrete choices
+
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+ if Nkind (Choice) = N_Others_Choice then
+ Set_Loop_Actions (Assoc, New_List);
+
+ if Box_Present (Assoc) then
+ Others_Box_Present := True;
+ else
+ Others_Expr := Expression (Assoc);
+ end if;
+ exit;
+ end if;
+
+ Get_Index_Bounds (Choice, Low, High);
+
+ if Low /= High then
+ Set_Loop_Actions (Assoc, New_List);
+ end if;
+
+ Nb_Choices := Nb_Choices + 1;
+ if Box_Present (Assoc) then
+ Table (Nb_Choices) := (Choice_Lo => Low,
+ Choice_Hi => High,
+ Choice_Node => Empty);
+ else
+ Table (Nb_Choices) := (Choice_Lo => Low,
+ Choice_Hi => High,
+ Choice_Node => Expression (Assoc));
+ end if;
+ Next (Choice);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ -- If there is more than one set of choices these must be static
+ -- and we can therefore sort them. Remember that Nb_Choices does not
+ -- account for an others choice.
+
+ if Nb_Choices > 1 then
+ Sort_Case_Table (Table);
+ end if;
+
+ -- STEP 1 (b): take care of the whole set of discrete choices
+
+ for J in 1 .. Nb_Choices loop
+ Low := Table (J).Choice_Lo;
+ High := Table (J).Choice_Hi;
+ Expr := Table (J).Choice_Node;
+ Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
+ end loop;
+
+ -- STEP 1 (c): generate the remaining loops to cover others choice
+ -- We don't need to generate loops over empty gaps, but if there is
+ -- a single empty range we must analyze the expression for semantics
+
+ if Present (Others_Expr) or else Others_Box_Present then
+ declare
+ First : Boolean := True;
+
+ begin
+ for J in 0 .. Nb_Choices loop
+ if J = 0 then
+ Low := Aggr_Low;
+ else
+ Low := Add (1, To => Table (J).Choice_Hi);
+ end if;
+
+ if J = Nb_Choices then
+ High := Aggr_High;
+ else
+ High := Add (-1, To => Table (J + 1).Choice_Lo);
+ end if;
+
+ -- If this is an expansion within an init proc, make
+ -- sure that discriminant references are replaced by
+ -- the corresponding discriminal.
+
+ if Inside_Init_Proc then
+ if Is_Entity_Name (Low)
+ and then Ekind (Entity (Low)) = E_Discriminant
+ then
+ Set_Entity (Low, Discriminal (Entity (Low)));
+ end if;
+
+ if Is_Entity_Name (High)
+ and then Ekind (Entity (High)) = E_Discriminant
+ then
+ Set_Entity (High, Discriminal (Entity (High)));
+ end if;
+ end if;
+
+ if First
+ or else not Empty_Range (Low, High)
+ then
+ First := False;
+ Append_List
+ (Gen_Loop (Low, High, Others_Expr), To => New_Code);
+ end if;
+ end loop;
+ end;
+ end if;
+
+ -- STEP 2: Process positional components
+
+ else
+ -- STEP 2 (a): Generate the assignments for each positional element
+ -- Note that here we have to use Aggr_L rather than Aggr_Low because
+ -- Aggr_L is analyzed and Add wants an analyzed expression.
+
+ Expr := First (Expressions (N));
+ Nb_Elements := -1;
+
+ while Present (Expr) loop
+ Nb_Elements := Nb_Elements + 1;
+ Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
+ To => New_Code);
+ Next (Expr);
+ end loop;
+
+ -- STEP 2 (b): Generate final loop if an others choice is present
+ -- Here Nb_Elements gives the offset of the last positional element.
+
+ if Present (Component_Associations (N)) then
+ Assoc := Last (Component_Associations (N));
+
+ -- Ada 2005 (AI-287)
+
+ if Box_Present (Assoc) then
+ Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
+ Aggr_High,
+ Empty),
+ To => New_Code);
+ else
+ Expr := Expression (Assoc);
+
+ Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
+ Aggr_High,
+ Expr), -- AI-287
+ To => New_Code);
+ end if;
+ end if;
+ end if;
+
+ return New_Code;
+ end Build_Array_Aggr_Code;
+
+ ----------------------------
+ -- Build_Record_Aggr_Code --
+ ----------------------------
+
+ function Build_Record_Aggr_Code
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Target : Node_Id;
+ Flist : Node_Id := Empty;
+ Obj : Entity_Id := Empty;
+ Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ L : constant List_Id := New_List;
+ N_Typ : constant Entity_Id := Etype (N);
+
+ Comp : Node_Id;
+ Instr : Node_Id;
+ Ref : Node_Id;
+ F : Node_Id;
+ Comp_Type : Entity_Id;
+ Selector : Entity_Id;
+ Comp_Expr : Node_Id;
+ Expr_Q : Node_Id;
+
+ Internal_Final_List : Node_Id;
+
+ -- If this is an internal aggregate, the External_Final_List is an
+ -- expression for the controller record of the enclosing type.
+ -- If the current aggregate has several controlled components, this
+ -- expression will appear in several calls to attach to the finali-
+ -- zation list, and it must not be shared.
+
+ External_Final_List : Node_Id;
+ Ancestor_Is_Expression : Boolean := False;
+ Ancestor_Is_Subtype_Mark : Boolean := False;
+
+ Init_Typ : Entity_Id := Empty;
+ Attach : Node_Id;
+ Ctrl_Stuff_Done : Boolean := False;
+
+ function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
+ -- Returns the value that the given discriminant of an ancestor
+ -- type should receive (in the absence of a conflict with the
+ -- value provided by an ancestor part of an extension aggregate).
+
+ procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
+ -- Check that each of the discriminant values defined by the
+ -- ancestor part of an extension aggregate match the corresponding
+ -- values provided by either an association of the aggregate or
+ -- by the constraint imposed by a parent type (RM95-4.3.2(8)).
+
+ function Compatible_Int_Bounds
+ (Agg_Bounds : Node_Id;
+ Typ_Bounds : Node_Id) return Boolean;
+ -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
+ -- assumed that both bounds are integer ranges.
+
+ procedure Gen_Ctrl_Actions_For_Aggr;
+ -- Deal with the various controlled type data structure
+ -- initializations.
+
+ function Get_Constraint_Association (T : Entity_Id) return Node_Id;
+ -- Returns the first discriminant association in the constraint
+ -- associated with T, if any, otherwise returns Empty.
+
+ function Init_Controller
+ (Target : Node_Id;
+ Typ : Entity_Id;
+ F : Node_Id;
+ Attach : Node_Id;
+ Init_Pr : Boolean) return List_Id;
+ -- returns the list of statements necessary to initialize the internal
+ -- controller of the (possible) ancestor typ into target and attach
+ -- it to finalization list F. Init_Pr conditions the call to the
+ -- init proc since it may already be done due to ancestor initialization
+
+ function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
+ -- Check whether Bounds is a range node and its lower and higher bounds
+ -- are integers literals.
+
+ ---------------------------------
+ -- Ancestor_Discriminant_Value --
+ ---------------------------------
+
+ function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
+ Assoc : Node_Id;
+ Assoc_Elmt : Elmt_Id;
+ Aggr_Comp : Entity_Id;
+ Corresp_Disc : Entity_Id;
+ Current_Typ : Entity_Id := Base_Type (Typ);
+ Parent_Typ : Entity_Id;
+ Parent_Disc : Entity_Id;
+ Save_Assoc : Node_Id := Empty;
+
+ begin
+ -- First check any discriminant associations to see if
+ -- any of them provide a value for the discriminant.
+
+ if Present (Discriminant_Specifications (Parent (Current_Typ))) then
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+ Aggr_Comp := Entity (First (Choices (Assoc)));
+
+ if Ekind (Aggr_Comp) = E_Discriminant then
+ Save_Assoc := Expression (Assoc);
+
+ Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
+ while Present (Corresp_Disc) loop
+ -- If found a corresponding discriminant then return
+ -- the value given in the aggregate. (Note: this is
+ -- not correct in the presence of side effects. ???)
+
+ if Disc = Corresp_Disc then
+ return Duplicate_Subexpr (Expression (Assoc));
+ end if;
+
+ Corresp_Disc :=
+ Corresponding_Discriminant (Corresp_Disc);
+ end loop;
+ end if;
+
+ Next (Assoc);
+ end loop;
+ end if;
+
+ -- No match found in aggregate, so chain up parent types to find
+ -- a constraint that defines the value of the discriminant.
+
+ Parent_Typ := Etype (Current_Typ);
+ while Current_Typ /= Parent_Typ loop
+ if Has_Discriminants (Parent_Typ) then
+ Parent_Disc := First_Discriminant (Parent_Typ);
+
+ -- We either get the association from the subtype indication
+ -- of the type definition itself, or from the discriminant
+ -- constraint associated with the type entity (which is
+ -- preferable, but it's not always present ???)
+
+ if Is_Empty_Elmt_List (
+ Discriminant_Constraint (Current_Typ))
+ then
+ Assoc := Get_Constraint_Association (Current_Typ);
+ Assoc_Elmt := No_Elmt;
+ else
+ Assoc_Elmt :=
+ First_Elmt (Discriminant_Constraint (Current_Typ));
+ Assoc := Node (Assoc_Elmt);
+ end if;
+
+ -- Traverse the discriminants of the parent type looking
+ -- for one that corresponds.
+
+ while Present (Parent_Disc) and then Present (Assoc) loop
+ Corresp_Disc := Parent_Disc;
+ while Present (Corresp_Disc)
+ and then Disc /= Corresp_Disc
+ loop
+ Corresp_Disc :=
+ Corresponding_Discriminant (Corresp_Disc);
+ end loop;
+
+ if Disc = Corresp_Disc then
+ if Nkind (Assoc) = N_Discriminant_Association then
+ Assoc := Expression (Assoc);
+ end if;
+
+ -- If the located association directly denotes
+ -- a discriminant, then use the value of a saved
+ -- association of the aggregate. This is a kludge
+ -- to handle certain cases involving multiple
+ -- discriminants mapped to a single discriminant
+ -- of a descendant. It's not clear how to locate the
+ -- appropriate discriminant value for such cases. ???
+
+ if Is_Entity_Name (Assoc)
+ and then Ekind (Entity (Assoc)) = E_Discriminant
+ then
+ Assoc := Save_Assoc;
+ end if;
+
+ return Duplicate_Subexpr (Assoc);
+ end if;
+
+ Next_Discriminant (Parent_Disc);
+
+ if No (Assoc_Elmt) then
+ Next (Assoc);
+ else
+ Next_Elmt (Assoc_Elmt);
+ if Present (Assoc_Elmt) then
+ Assoc := Node (Assoc_Elmt);
+ else
+ Assoc := Empty;
+ end if;
+ end if;
+ end loop;
+ end if;
+
+ Current_Typ := Parent_Typ;
+ Parent_Typ := Etype (Current_Typ);
+ end loop;
+
+ -- In some cases there's no ancestor value to locate (such as
+ -- when an ancestor part given by an expression defines the
+ -- discriminant value).
+
+ return Empty;
+ end Ancestor_Discriminant_Value;
+
+ ----------------------------------
+ -- Check_Ancestor_Discriminants --
+ ----------------------------------
+
+ procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
+ Discr : Entity_Id := First_Discriminant (Base_Type (Anc_Typ));
+ Disc_Value : Node_Id;
+ Cond : Node_Id;
+
+ begin
+ while Present (Discr) loop
+ Disc_Value := Ancestor_Discriminant_Value (Discr);
+
+ if Present (Disc_Value) then
+ Cond := Make_Op_Ne (Loc,
+ Left_Opnd =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name => New_Occurrence_Of (Discr, Loc)),
+ Right_Opnd => Disc_Value);
+
+ Append_To (L,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Cond,
+ Reason => CE_Discriminant_Check_Failed));
+ end if;
+
+ Next_Discriminant (Discr);
+ end loop;
+ end Check_Ancestor_Discriminants;
+
+ ---------------------------
+ -- Compatible_Int_Bounds --
+ ---------------------------
+
+ function Compatible_Int_Bounds
+ (Agg_Bounds : Node_Id;
+ Typ_Bounds : Node_Id) return Boolean
+ is
+ Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
+ Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
+ Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
+ Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
+ begin
+ return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
+ end Compatible_Int_Bounds;
+
+ --------------------------------
+ -- Get_Constraint_Association --
+ --------------------------------
+
+ function Get_Constraint_Association (T : Entity_Id) return Node_Id is
+ Typ_Def : constant Node_Id := Type_Definition (Parent (T));
+ Indic : constant Node_Id := Subtype_Indication (Typ_Def);
+
+ begin
+ -- ??? Also need to cover case of a type mark denoting a subtype
+ -- with constraint.
+
+ if Nkind (Indic) = N_Subtype_Indication
+ and then Present (Constraint (Indic))
+ then
+ return First (Constraints (Constraint (Indic)));
+ end if;
+
+ return Empty;
+ end Get_Constraint_Association;
+
+ ---------------------
+ -- Init_controller --
+ ---------------------
+
+ function Init_Controller
+ (Target : Node_Id;
+ Typ : Entity_Id;
+ F : Node_Id;
+ Attach : Node_Id;
+ Init_Pr : Boolean) return List_Id
+ is
+ L : constant List_Id := New_List;
+ Ref : Node_Id;
+ RC : RE_Id;
+
+ begin
+ -- Generate:
+ -- init-proc (target._controller);
+ -- initialize (target._controller);
+ -- Attach_to_Final_List (target._controller, F);
+
+ Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => Convert_To (Typ, New_Copy_Tree (Target)),
+ Selector_Name => Make_Identifier (Loc, Name_uController));
+ Set_Assignment_OK (Ref);
+
+ -- Ada 2005 (AI-287): Give support to default initialization of
+ -- limited types and components.
+
+ if (Nkind (Target) = N_Identifier
+ and then Present (Etype (Target))
+ and then Is_Limited_Type (Etype (Target)))
+ or else
+ (Nkind (Target) = N_Selected_Component
+ and then Present (Etype (Selector_Name (Target)))
+ and then Is_Limited_Type (Etype (Selector_Name (Target))))
+ or else
+ (Nkind (Target) = N_Unchecked_Type_Conversion
+ and then Present (Etype (Target))
+ and then Is_Limited_Type (Etype (Target)))
+ or else
+ (Nkind (Target) = N_Unchecked_Expression
+ and then Nkind (Expression (Target)) = N_Indexed_Component
+ and then Present (Etype (Prefix (Expression (Target))))
+ and then Is_Limited_Type (Etype (Prefix (Expression (Target)))))
+ then
+ RC := RE_Limited_Record_Controller;
+ else
+ RC := RE_Record_Controller;
+ end if;
+
+ if Init_Pr then
+ Append_List_To (L,
+ Build_Initialization_Call (Loc,
+ Id_Ref => Ref,
+ Typ => RTE (RC),
+ In_Init_Proc => Within_Init_Proc));
+ end if;
+
+ Append_To (L,
+ Make_Procedure_Call_Statement (Loc,
+ Name =>
+ New_Reference_To (
+ Find_Prim_Op (RTE (RC), Name_Initialize), Loc),
+ Parameter_Associations =>
+ New_List (New_Copy_Tree (Ref))));
+
+ Append_To (L,
+ Make_Attach_Call (
+ Obj_Ref => New_Copy_Tree (Ref),
+ Flist_Ref => F,
+ With_Attach => Attach));
+
+ return L;
+ end Init_Controller;
+
+ -------------------------
+ -- Is_Int_Range_Bounds --
+ -------------------------
+
+ function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
+ begin
+ return Nkind (Bounds) = N_Range
+ and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
+ and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
+ end Is_Int_Range_Bounds;
+
+ -------------------------------
+ -- Gen_Ctrl_Actions_For_Aggr --
+ -------------------------------
+
+ procedure Gen_Ctrl_Actions_For_Aggr is
+ begin
+ if Present (Obj)
+ and then Finalize_Storage_Only (Typ)
+ and then (Is_Library_Level_Entity (Obj)
+ or else Entity (Constant_Value (RTE (RE_Garbage_Collected))) =
+ Standard_True)
+ then
+ Attach := Make_Integer_Literal (Loc, 0);
+
+ elsif Nkind (Parent (N)) = N_Qualified_Expression
+ and then Nkind (Parent (Parent (N))) = N_Allocator
+ then
+ Attach := Make_Integer_Literal (Loc, 2);
+
+ else
+ Attach := Make_Integer_Literal (Loc, 1);
+ end if;
+
+ -- Determine the external finalization list. It is either the
+ -- finalization list of the outer-scope or the one coming from
+ -- an outer aggregate. When the target is not a temporary, the
+ -- proper scope is the scope of the target rather than the
+ -- potentially transient current scope.
+
+ if Controlled_Type (Typ) then
+ if Present (Flist) then
+ External_Final_List := New_Copy_Tree (Flist);
+
+ elsif Is_Entity_Name (Target)
+ and then Present (Scope (Entity (Target)))
+ then
+ External_Final_List
+ := Find_Final_List (Scope (Entity (Target)));
+
+ else
+ External_Final_List := Find_Final_List (Current_Scope);
+ end if;
+
+ else
+ External_Final_List := Empty;
+ end if;
+
+ -- Initialize and attach the outer object in the is_controlled case
+
+ if Is_Controlled (Typ) then
+ if Ancestor_Is_Subtype_Mark then
+ Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
+ Set_Assignment_OK (Ref);
+ Append_To (L,
+ Make_Procedure_Call_Statement (Loc,
+ Name =>
+ New_Reference_To
+ (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
+ Parameter_Associations => New_List (New_Copy_Tree (Ref))));
+ end if;
+
+ if not Has_Controlled_Component (Typ) then
+ Ref := New_Copy_Tree (Target);
+ Set_Assignment_OK (Ref);
+ Append_To (L,
+ Make_Attach_Call (
+ Obj_Ref => Ref,
+ Flist_Ref => New_Copy_Tree (External_Final_List),
+ With_Attach => Attach));
+ end if;
+ end if;
+
+ -- In the Has_Controlled component case, all the intermediate
+ -- controllers must be initialized
+
+ if Has_Controlled_Component (Typ)
+ and not Is_Limited_Ancestor_Expansion
+ then
+ declare
+ Inner_Typ : Entity_Id;
+ Outer_Typ : Entity_Id;
+ At_Root : Boolean;
+
+ begin
+
+ Outer_Typ := Base_Type (Typ);
+
+ -- Find outer type with a controller
+
+ while Outer_Typ /= Init_Typ
+ and then not Has_New_Controlled_Component (Outer_Typ)
+ loop
+ Outer_Typ := Etype (Outer_Typ);
+ end loop;
+
+ -- Attach it to the outer record controller to the
+ -- external final list
+
+ if Outer_Typ = Init_Typ then
+ Append_List_To (L,
+ Init_Controller (
+ Target => Target,
+ Typ => Outer_Typ,
+ F => External_Final_List,
+ Attach => Attach,
+ Init_Pr => False));
+
+ At_Root := True;
+ Inner_Typ := Init_Typ;
+
+ else
+ Append_List_To (L,
+ Init_Controller (
+ Target => Target,
+ Typ => Outer_Typ,
+ F => External_Final_List,
+ Attach => Attach,
+ Init_Pr => True));
+
+ Inner_Typ := Etype (Outer_Typ);
+ At_Root :=
+ not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ;
+ end if;
+
+ -- The outer object has to be attached as well
+
+ if Is_Controlled (Typ) then
+ Ref := New_Copy_Tree (Target);
+ Set_Assignment_OK (Ref);
+ Append_To (L,
+ Make_Attach_Call (
+ Obj_Ref => Ref,
+ Flist_Ref => New_Copy_Tree (External_Final_List),
+ With_Attach => New_Copy_Tree (Attach)));
+ end if;
+
+ -- Initialize the internal controllers for tagged types with
+ -- more than one controller.
+
+ while not At_Root and then Inner_Typ /= Init_Typ loop
+ if Has_New_Controlled_Component (Inner_Typ) then
+ F :=
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Convert_To (Outer_Typ, New_Copy_Tree (Target)),
+ Selector_Name =>
+ Make_Identifier (Loc, Name_uController));
+ F :=
+ Make_Selected_Component (Loc,
+ Prefix => F,
+ Selector_Name => Make_Identifier (Loc, Name_F));
+
+ Append_List_To (L,
+ Init_Controller (
+ Target => Target,
+ Typ => Inner_Typ,
+ F => F,
+ Attach => Make_Integer_Literal (Loc, 1),
+ Init_Pr => True));
+ Outer_Typ := Inner_Typ;
+ end if;
+
+ -- Stop at the root
+
+ At_Root := Inner_Typ = Etype (Inner_Typ);
+ Inner_Typ := Etype (Inner_Typ);
+ end loop;
+
+ -- If not done yet attach the controller of the ancestor part
+
+ if Outer_Typ /= Init_Typ
+ and then Inner_Typ = Init_Typ
+ and then Has_Controlled_Component (Init_Typ)
+ then
+ F :=
+ Make_Selected_Component (Loc,
+ Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
+ Selector_Name =>
+ Make_Identifier (Loc, Name_uController));
+ F :=
+ Make_Selected_Component (Loc,
+ Prefix => F,
+ Selector_Name => Make_Identifier (Loc, Name_F));
+
+ Attach := Make_Integer_Literal (Loc, 1);
+ Append_List_To (L,
+ Init_Controller (
+ Target => Target,
+ Typ => Init_Typ,
+ F => F,
+ Attach => Attach,
+ Init_Pr => Ancestor_Is_Expression));
+ end if;
+ end;
+ end if;
+ end Gen_Ctrl_Actions_For_Aggr;
+
+ -- Start of processing for Build_Record_Aggr_Code
+
+ begin
+ -- Deal with the ancestor part of extension aggregates
+ -- or with the discriminants of the root type
+
+ if Nkind (N) = N_Extension_Aggregate then
+ declare
+ A : constant Node_Id := Ancestor_Part (N);
+ Assign : List_Id;
+
+ begin
+ -- If the ancestor part is a subtype mark "T", we generate
+
+ -- init-proc (T(tmp)); if T is constrained and
+ -- init-proc (S(tmp)); where S applies an appropriate
+ -- constraint if T is unconstrained
+
+ if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
+ Ancestor_Is_Subtype_Mark := True;
+
+ if Is_Constrained (Entity (A)) then
+ Init_Typ := Entity (A);
+
+ -- For an ancestor part given by an unconstrained type
+ -- mark, create a subtype constrained by appropriate
+ -- corresponding discriminant values coming from either
+ -- associations of the aggregate or a constraint on
+ -- a parent type. The subtype will be used to generate
+ -- the correct default value for the ancestor part.
+
+ elsif Has_Discriminants (Entity (A)) then
+ declare
+ Anc_Typ : constant Entity_Id := Entity (A);
+ Anc_Constr : constant List_Id := New_List;
+ Discrim : Entity_Id;
+ Disc_Value : Node_Id;
+ New_Indic : Node_Id;
+ Subt_Decl : Node_Id;
+
+ begin
+ Discrim := First_Discriminant (Anc_Typ);
+ while Present (Discrim) loop
+ Disc_Value := Ancestor_Discriminant_Value (Discrim);
+ Append_To (Anc_Constr, Disc_Value);
+ Next_Discriminant (Discrim);
+ end loop;
+
+ New_Indic :=
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Anc_Constr));
+
+ Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
+
+ Subt_Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Init_Typ,
+ Subtype_Indication => New_Indic);
+
+ -- Itypes must be analyzed with checks off
+ -- Declaration must have a parent for proper
+ -- handling of subsidiary actions.
+
+ Set_Parent (Subt_Decl, N);
+ Analyze (Subt_Decl, Suppress => All_Checks);
+ end;
+ end if;
+
+ Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
+ Set_Assignment_OK (Ref);
+
+ if Has_Default_Init_Comps (N)
+ or else Has_Task (Base_Type (Init_Typ))
+ then
+ Append_List_To (L,
+ Build_Initialization_Call (Loc,
+ Id_Ref => Ref,
+ Typ => Init_Typ,
+ In_Init_Proc => Within_Init_Proc,
+ With_Default_Init => True));
+ else
+ Append_List_To (L,
+ Build_Initialization_Call (Loc,
+ Id_Ref => Ref,
+ Typ => Init_Typ,
+ In_Init_Proc => Within_Init_Proc));
+ end if;
+
+ if Is_Constrained (Entity (A))
+ and then Has_Discriminants (Entity (A))
+ then
+ Check_Ancestor_Discriminants (Entity (A));
+ end if;
+
+ -- Ada 2005 (AI-287): If the ancestor part is a limited type,
+ -- a recursive call expands the ancestor.
+
+ elsif Is_Limited_Type (Etype (A)) then
+ Ancestor_Is_Expression := True;
+
+ Append_List_To (L,
+ Build_Record_Aggr_Code (
+ N => Expression (A),
+ Typ => Etype (Expression (A)),
+ Target => Target,
+ Flist => Flist,
+ Obj => Obj,
+ Is_Limited_Ancestor_Expansion => True));
+
+ -- If the ancestor part is an expression "E", we generate
+ -- T(tmp) := E;
+
+ else
+ Ancestor_Is_Expression := True;
+ Init_Typ := Etype (A);
+
+ -- If the ancestor part is an aggregate, force its full
+ -- expansion, which was delayed.
+
+ if Nkind (A) = N_Qualified_Expression
+ and then (Nkind (Expression (A)) = N_Aggregate
+ or else
+ Nkind (Expression (A)) = N_Extension_Aggregate)
+ then
+ Set_Analyzed (A, False);
+ Set_Analyzed (Expression (A), False);
+ end if;
+
+ Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
+ Set_Assignment_OK (Ref);
+
+ -- Make the assignment without usual controlled actions since
+ -- we only want the post adjust but not the pre finalize here
+ -- Add manual adjust when necessary
+
+ Assign := New_List (
+ Make_OK_Assignment_Statement (Loc,
+ Name => Ref,
+ Expression => A));
+ Set_No_Ctrl_Actions (First (Assign));
+
+ -- Assign the tag now to make sure that the dispatching call in
+ -- the subsequent deep_adjust works properly (unless Java_VM,
+ -- where tags are implicit).
+
+ if not Java_VM then
+ Instr :=
+ Make_OK_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name =>
+ New_Reference_To
+ (First_Tag_Component (Base_Type (Typ)), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt
+ (Access_Disp_Table (Base_Type (Typ)))),
+ Loc)));
+
+ Set_Assignment_OK (Name (Instr));
+ Append_To (Assign, Instr);
+ end if;
+
+ -- Call Adjust manually
+
+ if Controlled_Type (Etype (A)) then
+ Append_List_To (Assign,
+ Make_Adjust_Call (
+ Ref => New_Copy_Tree (Ref),
+ Typ => Etype (A),
+ Flist_Ref => New_Reference_To (
+ RTE (RE_Global_Final_List), Loc),
+ With_Attach => Make_Integer_Literal (Loc, 0)));
+ end if;
+
+ Append_To (L,
+ Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
+
+ if Has_Discriminants (Init_Typ) then
+ Check_Ancestor_Discriminants (Init_Typ);
+ end if;
+ end if;
+ end;
+
+ -- Normal case (not an extension aggregate)
+
+ else
+ -- Generate the discriminant expressions, component by component.
+ -- If the base type is an unchecked union, the discriminants are
+ -- unknown to the back-end and absent from a value of the type, so
+ -- assignments for them are not emitted.
+
+ if Has_Discriminants (Typ)
+ and then not Is_Unchecked_Union (Base_Type (Typ))
+ then
+ -- If the type is derived, and constrains discriminants of the
+ -- parent type, these discriminants are not components of the
+ -- aggregate, and must be initialized explicitly. They are not
+ -- visible components of the object, but can become visible with
+ -- a view conversion to the ancestor.
+
+ declare
+ Btype : Entity_Id;
+ Parent_Type : Entity_Id;
+ Disc : Entity_Id;
+ Discr_Val : Elmt_Id;
+
+ begin
+ Btype := Base_Type (Typ);
+
+ while Is_Derived_Type (Btype)
+ and then Present (Stored_Constraint (Btype))
+ loop
+ Parent_Type := Etype (Btype);
+
+ Disc := First_Discriminant (Parent_Type);
+ Discr_Val :=
+ First_Elmt (Stored_Constraint (Base_Type (Typ)));
+ while Present (Discr_Val) loop
+
+ -- Only those discriminants of the parent that are not
+ -- renamed by discriminants of the derived type need to
+ -- be added explicitly.
+
+ if not Is_Entity_Name (Node (Discr_Val))
+ or else
+ Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
+ then
+ Comp_Expr :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name => New_Occurrence_Of (Disc, Loc));
+
+ Instr :=
+ Make_OK_Assignment_Statement (Loc,
+ Name => Comp_Expr,
+ Expression => New_Copy_Tree (Node (Discr_Val)));
+
+ Set_No_Ctrl_Actions (Instr);
+ Append_To (L, Instr);
+ end if;
+
+ Next_Discriminant (Disc);
+ Next_Elmt (Discr_Val);
+ end loop;
+
+ Btype := Base_Type (Parent_Type);
+ end loop;
+ end;
+
+ -- Generate discriminant init values for the visible discriminants
+
+ declare
+ Discriminant : Entity_Id;
+ Discriminant_Value : Node_Id;
+
+ begin
+ Discriminant := First_Stored_Discriminant (Typ);
+
+ while Present (Discriminant) loop
+
+ Comp_Expr :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name => New_Occurrence_Of (Discriminant, Loc));
+
+ Discriminant_Value :=
+ Get_Discriminant_Value (
+ Discriminant,
+ N_Typ,
+ Discriminant_Constraint (N_Typ));
+
+ Instr :=
+ Make_OK_Assignment_Statement (Loc,
+ Name => Comp_Expr,
+ Expression => New_Copy_Tree (Discriminant_Value));
+
+ Set_No_Ctrl_Actions (Instr);
+ Append_To (L, Instr);
+
+ Next_Stored_Discriminant (Discriminant);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ -- Generate the assignments, component by component
+
+ -- tmp.comp1 := Expr1_From_Aggr;
+ -- tmp.comp2 := Expr2_From_Aggr;
+ -- ....
+
+ Comp := First (Component_Associations (N));
+ while Present (Comp) loop
+ Selector := Entity (First (Choices (Comp)));
+
+ -- Ada 2005 (AI-287): For each default-initialized component genarate
+ -- a call to the corresponding IP subprogram if available.
+
+ if Box_Present (Comp)
+ and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
+ then
+ -- Ada 2005 (AI-287): If the component type has tasks then
+ -- generate the activation chain and master entities (except
+ -- in case of an allocator because in that case these entities
+ -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
+
+ declare
+ Ctype : constant Entity_Id := Etype (Selector);
+ Inside_Allocator : Boolean := False;
+ P : Node_Id := Parent (N);
+
+ begin
+ if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
+ while Present (P) loop
+ if Nkind (P) = N_Allocator then
+ Inside_Allocator := True;
+ exit;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ if not Inside_Init_Proc and not Inside_Allocator then
+ Build_Activation_Chain_Entity (N);
+ end if;
+ end if;
+ end;
+
+ Append_List_To (L,
+ Build_Initialization_Call (Loc,
+ Id_Ref => Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name => New_Occurrence_Of (Selector,
+ Loc)),
+ Typ => Etype (Selector),
+ With_Default_Init => True));
+
+ goto Next_Comp;
+ end if;
+
+ -- Prepare for component assignment
+
+ if Ekind (Selector) /= E_Discriminant
+ or else Nkind (N) = N_Extension_Aggregate
+ then
+
+ -- All the discriminants have now been assigned
+ -- This is now a good moment to initialize and attach all the
+ -- controllers. Their position may depend on the discriminants.
+
+ if Ekind (Selector) /= E_Discriminant
+ and then not Ctrl_Stuff_Done
+ then
+ Gen_Ctrl_Actions_For_Aggr;
+ Ctrl_Stuff_Done := True;
+ end if;
+
+ Comp_Type := Etype (Selector);
+ Comp_Expr :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name => New_Occurrence_Of (Selector, Loc));
+
+ if Nkind (Expression (Comp)) = N_Qualified_Expression then
+ Expr_Q := Expression (Expression (Comp));
+ else
+ Expr_Q := Expression (Comp);
+ end if;
+
+ -- The controller is the one of the parent type defining
+ -- the component (in case of inherited components).
+
+ if Controlled_Type (Comp_Type) then
+ Internal_Final_List :=
+ Make_Selected_Component (Loc,
+ Prefix => Convert_To (
+ Scope (Original_Record_Component (Selector)),
+ New_Copy_Tree (Target)),
+ Selector_Name =>
+ Make_Identifier (Loc, Name_uController));
+
+ Internal_Final_List :=
+ Make_Selected_Component (Loc,
+ Prefix => Internal_Final_List,
+ Selector_Name => Make_Identifier (Loc, Name_F));
+
+ -- The internal final list can be part of a constant object
+
+ Set_Assignment_OK (Internal_Final_List);
+
+ else
+ Internal_Final_List := Empty;
+ end if;
+
+ -- Now either create the assignment or generate the code for the
+ -- inner aggregate top-down.
+
+ if Is_Delayed_Aggregate (Expr_Q) then
+
+ -- We have the following case of aggregate nesting inside
+ -- an object declaration:
+
+ -- type Arr_Typ is array (Integer range <>) of ...;
+ --
+ -- type Rec_Typ (...) is record
+ -- Obj_Arr_Typ : Arr_Typ (A .. B);
+ -- end record;
+ --
+ -- Obj_Rec_Typ : Rec_Typ := (...,
+ -- Obj_Arr_Typ => (X => (...), Y => (...)));
+
+ -- The length of the ranges of the aggregate and Obj_Add_Typ
+ -- are equal (B - A = Y - X), but they do not coincide (X /=
+ -- A and B /= Y). This case requires array sliding which is
+ -- performed in the following manner:
+
+ -- subtype Arr_Sub is Arr_Typ (X .. Y);
+ -- Temp : Arr_Sub;
+ -- Temp (X) := (...);
+ -- ...
+ -- Temp (Y) := (...);
+ -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
+
+ if Present (Obj)
+ and then Ekind (Comp_Type) = E_Array_Subtype
+ and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
+ and then Is_Int_Range_Bounds (First_Index (Comp_Type))
+ and then not
+ Compatible_Int_Bounds (
+ Agg_Bounds => Aggregate_Bounds (Expr_Q),
+ Typ_Bounds => First_Index (Comp_Type))
+ then
+ declare
+ -- Create the array subtype with bounds equal to those
+ -- of the corresponding aggregate.
+
+ SubE : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('T'));
+
+ SubD : constant Node_Id :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier =>
+ SubE,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (
+ Etype (Comp_Type), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (
+ Loc, Constraints => New_List (
+ New_Copy_Tree (Aggregate_Bounds (
+ Expr_Q))))));
+
+ -- Create a temporary array of the above subtype which
+ -- will be used to capture the aggregate assignments.
+
+ TmpE : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('A'));
+
+ TmpD : constant Node_Id :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier =>
+ TmpE,
+ Object_Definition =>
+ New_Reference_To (SubE, Loc));
+
+ begin
+ Set_No_Initialization (TmpD);
+ Append_To (L, SubD);
+ Append_To (L, TmpD);
+
+ -- Expand the aggregate into assignments to the temporary
+ -- array.
+
+ Append_List_To (L,
+ Late_Expansion (Expr_Q, Comp_Type,
+ New_Reference_To (TmpE, Loc), Internal_Final_List));
+
+ -- Slide
+
+ Append_To (L,
+ Make_Assignment_Statement (Loc,
+ Name => New_Copy_Tree (Comp_Expr),
+ Expression => New_Reference_To (TmpE, Loc)));
+
+ -- Do not pass the original aggregate to Gigi as is
+ -- since it will potentially clobber the front or the
+ -- end of the array. Setting the expression to empty
+ -- is safe since all aggregates will be expanded into
+ -- assignments.
+
+ Set_Expression (Parent (Obj), Empty);
+ end;
+
+ -- Normal case (sliding not required)
+
+ else
+ Append_List_To (L,
+ Late_Expansion (Expr_Q, Comp_Type, Comp_Expr,
+ Internal_Final_List));
+ end if;
+
+ else
+ Instr :=
+ Make_OK_Assignment_Statement (Loc,
+ Name => Comp_Expr,
+ Expression => Expression (Comp));
+
+ Set_No_Ctrl_Actions (Instr);
+ Append_To (L, Instr);
+
+ -- Adjust the tag if tagged (because of possible view
+ -- conversions), unless compiling for the Java VM
+ -- where tags are implicit.
+
+ -- tmp.comp._tag := comp_typ'tag;
+
+ if Is_Tagged_Type (Comp_Type) and then not Java_VM then
+ Instr :=
+ Make_OK_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Comp_Expr),
+ Selector_Name =>
+ New_Reference_To
+ (First_Tag_Component (Comp_Type), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
+ Loc)));
+
+ Append_To (L, Instr);
+ end if;
+
+ -- Adjust and Attach the component to the proper controller
+ -- Adjust (tmp.comp);
+ -- Attach_To_Final_List (tmp.comp,
+ -- comp_typ (tmp)._record_controller.f)
+
+ if Controlled_Type (Comp_Type) then
+ Append_List_To (L,
+ Make_Adjust_Call (
+ Ref => New_Copy_Tree (Comp_Expr),
+ Typ => Comp_Type,
+ Flist_Ref => Internal_Final_List,
+ With_Attach => Make_Integer_Literal (Loc, 1)));
+ end if;
+ end if;
+
+ -- ???
+
+ elsif Ekind (Selector) = E_Discriminant
+ and then Nkind (N) /= N_Extension_Aggregate
+ and then Nkind (Parent (N)) = N_Component_Association
+ and then Is_Constrained (Typ)
+ then
+ -- We must check that the discriminant value imposed by the
+ -- context is the same as the value given in the subaggregate,
+ -- because after the expansion into assignments there is no
+ -- record on which to perform a regular discriminant check.
+
+ declare
+ D_Val : Elmt_Id;
+ Disc : Entity_Id;
+
+ begin
+ D_Val := First_Elmt (Discriminant_Constraint (Typ));
+ Disc := First_Discriminant (Typ);
+
+ while Chars (Disc) /= Chars (Selector) loop
+ Next_Discriminant (Disc);
+ Next_Elmt (D_Val);
+ end loop;
+
+ pragma Assert (Present (D_Val));
+
+ Append_To (L,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => New_Copy_Tree (Node (D_Val)),
+ Right_Opnd => Expression (Comp)),
+ Reason => CE_Discriminant_Check_Failed));
+ end;
+ end if;
+
+ <<Next_Comp>>
+
+ Next (Comp);
+ end loop;
+
+ -- If the type is tagged, the tag needs to be initialized (unless
+ -- compiling for the Java VM where tags are implicit). It is done
+ -- late in the initialization process because in some cases, we call
+ -- the init proc of an ancestor which will not leave out the right tag
+
+ if Ancestor_Is_Expression then
+ null;
+
+ elsif Is_Tagged_Type (Typ) and then not Java_VM then
+ Instr :=
+ Make_OK_Assignment_Statement (Loc,
+ Name =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Target),
+ Selector_Name =>
+ New_Reference_To
+ (First_Tag_Component (Base_Type (Typ)), Loc)),
+
+ Expression =>
+ Unchecked_Convert_To (RTE (RE_Tag),
+ New_Reference_To
+ (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
+ Loc)));
+
+ Append_To (L, Instr);
+ end if;
+
+ -- If the controllers have not been initialized yet (by lack of non-
+ -- discriminant components), let's do it now.
+
+ if not Ctrl_Stuff_Done then
+ Gen_Ctrl_Actions_For_Aggr;
+ Ctrl_Stuff_Done := True;
+ end if;
+
+ return L;
+ end Build_Record_Aggr_Code;
+
+ -------------------------------
+ -- Convert_Aggr_In_Allocator --
+ -------------------------------
+
+ procedure Convert_Aggr_In_Allocator (Decl, Aggr : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Aggr);
+ Typ : constant Entity_Id := Etype (Aggr);
+ Temp : constant Entity_Id := Defining_Identifier (Decl);
+
+ Occ : constant Node_Id :=
+ Unchecked_Convert_To (Typ,
+ Make_Explicit_Dereference (Loc,
+ New_Reference_To (Temp, Loc)));
+
+ Access_Type : constant Entity_Id := Etype (Temp);
+
+ begin
+ if Is_Array_Type (Typ) then
+ Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
+
+ elsif Has_Default_Init_Comps (Aggr) then
+ declare
+ L : constant List_Id := New_List;
+ Init_Stmts : List_Id;
+
+ begin
+ Init_Stmts := Late_Expansion (Aggr, Typ, Occ,
+ Find_Final_List (Access_Type),
+ Associated_Final_Chain (Base_Type (Access_Type)));
+
+ Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
+ Insert_Actions_After (Decl, L);
+ end;
+
+ else
+ Insert_Actions_After (Decl,
+ Late_Expansion (Aggr, Typ, Occ,
+ Find_Final_List (Access_Type),
+ Associated_Final_Chain (Base_Type (Access_Type))));
+ end if;
+ end Convert_Aggr_In_Allocator;
+
+ --------------------------------
+ -- Convert_Aggr_In_Assignment --
+ --------------------------------
+
+ procedure Convert_Aggr_In_Assignment (N : Node_Id) is
+ Aggr : Node_Id := Expression (N);
+ Typ : constant Entity_Id := Etype (Aggr);
+ Occ : constant Node_Id := New_Copy_Tree (Name (N));
+
+ begin
+ if Nkind (Aggr) = N_Qualified_Expression then
+ Aggr := Expression (Aggr);
+ end if;
+
+ Insert_Actions_After (N,
+ Late_Expansion (Aggr, Typ, Occ,
+ Find_Final_List (Typ, New_Copy_Tree (Occ))));
+ end Convert_Aggr_In_Assignment;
+
+ ---------------------------------
+ -- Convert_Aggr_In_Object_Decl --
+ ---------------------------------
+
+ procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
+ Obj : constant Entity_Id := Defining_Identifier (N);
+ Aggr : Node_Id := Expression (N);
+ Loc : constant Source_Ptr := Sloc (Aggr);
+ Typ : constant Entity_Id := Etype (Aggr);
+ Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
+
+ function Discriminants_Ok return Boolean;
+ -- If the object type is constrained, the discriminants in the
+ -- aggregate must be checked against the discriminants of the subtype.
+ -- This cannot be done using Apply_Discriminant_Checks because after
+ -- expansion there is no aggregate left to check.
+
+ ----------------------
+ -- Discriminants_Ok --
+ ----------------------
+
+ function Discriminants_Ok return Boolean is
+ Cond : Node_Id := Empty;
+ Check : Node_Id;
+ D : Entity_Id;
+ Disc1 : Elmt_Id;
+ Disc2 : Elmt_Id;
+ Val1 : Node_Id;
+ Val2 : Node_Id;
+
+ begin
+ D := First_Discriminant (Typ);
+ Disc1 := First_Elmt (Discriminant_Constraint (Typ));
+ Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
+
+ while Present (Disc1) and then Present (Disc2) loop
+ Val1 := Node (Disc1);
+ Val2 := Node (Disc2);
+
+ if not Is_OK_Static_Expression (Val1)
+ or else not Is_OK_Static_Expression (Val2)
+ then
+ Check := Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr (Val1),
+ Right_Opnd => Duplicate_Subexpr (Val2));
+
+ if No (Cond) then
+ Cond := Check;
+
+ else
+ Cond := Make_Or_Else (Loc,
+ Left_Opnd => Cond,
+ Right_Opnd => Check);
+ end if;
+
+ elsif Expr_Value (Val1) /= Expr_Value (Val2) then
+ Apply_Compile_Time_Constraint_Error (Aggr,
+ Msg => "incorrect value for discriminant&?",
+ Reason => CE_Discriminant_Check_Failed,
+ Ent => D);
+ return False;
+ end if;
+
+ Next_Discriminant (D);
+ Next_Elmt (Disc1);
+ Next_Elmt (Disc2);
+ end loop;
+
+ -- If any discriminant constraint is non-static, emit a check
+
+ if Present (Cond) then
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Cond,
+ Reason => CE_Discriminant_Check_Failed));
+ end if;
+
+ return True;
+ end Discriminants_Ok;
+
+ -- Start of processing for Convert_Aggr_In_Object_Decl
+
+ begin
+ Set_Assignment_OK (Occ);
+
+ if Nkind (Aggr) = N_Qualified_Expression then
+ Aggr := Expression (Aggr);
+ end if;
+
+ if Has_Discriminants (Typ)
+ and then Typ /= Etype (Obj)
+ and then Is_Constrained (Etype (Obj))
+ and then not Discriminants_Ok
+ then
+ return;
+ end if;
+
+ if Requires_Transient_Scope (Typ) then
+ Establish_Transient_Scope (Aggr, Sec_Stack =>
+ Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
+ end if;
+
+ Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj));
+ Set_No_Initialization (N);
+ Initialize_Discriminants (N, Typ);
+ end Convert_Aggr_In_Object_Decl;
+
+ -------------------------------------
+ -- Convert_array_Aggr_In_Allocator --
+ -------------------------------------
+
+ procedure Convert_Array_Aggr_In_Allocator
+ (Decl : Node_Id;
+ Aggr : Node_Id;
+ Target : Node_Id)
+ is
+ Aggr_Code : List_Id;
+ Typ : constant Entity_Id := Etype (Aggr);
+ Ctyp : constant Entity_Id := Component_Type (Typ);
+
+ begin
+ -- The target is an explicit dereference of the allocated object.
+ -- Generate component assignments to it, as for an aggregate that
+ -- appears on the right-hand side of an assignment statement.
+
+ Aggr_Code :=
+ Build_Array_Aggr_Code (Aggr,
+ Ctype => Ctyp,
+ Index => First_Index (Typ),
+ Into => Target,
+ Scalar_Comp => Is_Scalar_Type (Ctyp));
+
+ Insert_Actions_After (Decl, Aggr_Code);
+ end Convert_Array_Aggr_In_Allocator;
+
+ ----------------------------
+ -- Convert_To_Assignments --
+ ----------------------------
+
+ procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Temp : Entity_Id;
+
+ Instr : Node_Id;
+ Target_Expr : Node_Id;
+ Parent_Kind : Node_Kind;
+ Unc_Decl : Boolean := False;
+ Parent_Node : Node_Id;
+
+ begin
+ Parent_Node := Parent (N);
+ Parent_Kind := Nkind (Parent_Node);
+
+ if Parent_Kind = N_Qualified_Expression then
+
+ -- Check if we are in a unconstrained declaration because in this
+ -- case the current delayed expansion mechanism doesn't work when
+ -- the declared object size depend on the initializing expr.
+
+ begin
+ Parent_Node := Parent (Parent_Node);
+ Parent_Kind := Nkind (Parent_Node);
+
+ if Parent_Kind = N_Object_Declaration then
+ Unc_Decl :=
+ not Is_Entity_Name (Object_Definition (Parent_Node))
+ or else Has_Discriminants
+ (Entity (Object_Definition (Parent_Node)))
+ or else Is_Class_Wide_Type
+ (Entity (Object_Definition (Parent_Node)));
+ end if;
+ end;
+ end if;
+
+ -- Just set the Delay flag in the following cases where the
+ -- transformation will be done top down from above
+
+ -- - internal aggregate (transformed when expanding the parent)
+ -- - allocators (see Convert_Aggr_In_Allocator)
+ -- - object decl (see Convert_Aggr_In_Object_Decl)
+ -- - safe assignments (see Convert_Aggr_Assignments)
+ -- so far only the assignments in the init procs are taken
+ -- into account
+
+ if Parent_Kind = N_Aggregate
+ or else Parent_Kind = N_Extension_Aggregate
+ or else Parent_Kind = N_Component_Association
+ or else Parent_Kind = N_Allocator
+ or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
+ or else (Parent_Kind = N_Assignment_Statement
+ and then Inside_Init_Proc)
+ then
+ Set_Expansion_Delayed (N);
+ return;
+ end if;
+
+ if Requires_Transient_Scope (Typ) then
+ Establish_Transient_Scope (N, Sec_Stack =>
+ Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
+ end if;
+
+ -- Create the temporary
+
+ Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+
+ Instr :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Temp,
+ Object_Definition => New_Occurrence_Of (Typ, Loc));
+
+ Set_No_Initialization (Instr);
+ Insert_Action (N, Instr);
+ Initialize_Discriminants (Instr, Typ);
+ Target_Expr := New_Occurrence_Of (Temp, Loc);
+
+ Insert_Actions (N, Build_Record_Aggr_Code (N, Typ, Target_Expr));
+ Rewrite (N, New_Occurrence_Of (Temp, Loc));
+ Analyze_And_Resolve (N, Typ);
+ end Convert_To_Assignments;
+
+ ---------------------------
+ -- Convert_To_Positional --
+ ---------------------------
+
+ procedure Convert_To_Positional
+ (N : Node_Id;
+ Max_Others_Replicate : Nat := 5;
+ Handle_Bit_Packed : Boolean := False)
+ is
+ Typ : constant Entity_Id := Etype (N);
+
+ function Flatten
+ (N : Node_Id;
+ Ix : Node_Id;
+ Ixb : Node_Id) return Boolean;
+ -- Convert the aggregate into a purely positional form if possible.
+ -- On entry the bounds of all dimensions are known to be static,
+ -- and the total number of components is safe enough to expand.
+
+ function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
+ -- Return True iff the array N is flat (which is not rivial
+ -- in the case of multidimensionsl aggregates).
+
+ -------------
+ -- Flatten --
+ -------------
+
+ function Flatten
+ (N : Node_Id;
+ Ix : Node_Id;
+ Ixb : Node_Id) return Boolean
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
+ Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
+ Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
+ Lov : Uint;
+ Hiv : Uint;
+
+ begin
+ if Nkind (Original_Node (N)) = N_String_Literal then
+ return True;
+ end if;
+
+ -- Only handle bounds starting at the base type low bound
+ -- for now since the compiler isn't able to handle different low
+ -- bounds yet. Case such as new String'(3..5 => ' ') will get
+ -- the wrong bounds, though it seems that the aggregate should
+ -- retain the bounds set on its Etype (see C64103E and CC1311B).
+
+ Lov := Expr_Value (Lo);
+ Hiv := Expr_Value (Hi);
+
+ if Hiv < Lov
+ or else not Compile_Time_Known_Value (Blo)
+ or else (Lov /= Expr_Value (Blo))
+ then
+ return False;
+ end if;
+
+ -- Determine if set of alternatives is suitable for conversion
+ -- and build an array containing the values in sequence.
+
+ declare
+ Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
+ of Node_Id := (others => Empty);
+ -- The values in the aggregate sorted appropriately
+
+ Vlist : List_Id;
+ -- Same data as Vals in list form
+
+ Rep_Count : Nat;
+ -- Used to validate Max_Others_Replicate limit
+
+ Elmt : Node_Id;
+ Num : Int := UI_To_Int (Lov);
+ Choice : Node_Id;
+ Lo, Hi : Node_Id;
+
+ begin
+ if Present (Expressions (N)) then
+ Elmt := First (Expressions (N));
+
+ while Present (Elmt) loop
+ if Nkind (Elmt) = N_Aggregate
+ and then Present (Next_Index (Ix))
+ and then
+ not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
+ then
+ return False;
+ end if;
+
+ Vals (Num) := Relocate_Node (Elmt);
+ Num := Num + 1;
+
+ Next (Elmt);
+ end loop;
+ end if;
+
+ if No (Component_Associations (N)) then
+ return True;
+ end if;
+
+ Elmt := First (Component_Associations (N));
+
+ if Nkind (Expression (Elmt)) = N_Aggregate then
+ if Present (Next_Index (Ix))
+ and then
+ not Flatten
+ (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
+ then
+ return False;
+ end if;
+ end if;
+
+ Component_Loop : while Present (Elmt) loop
+ Choice := First (Choices (Elmt));
+ Choice_Loop : while Present (Choice) loop
+
+ -- If we have an others choice, fill in the missing elements
+ -- subject to the limit established by Max_Others_Replicate.
+
+ if Nkind (Choice) = N_Others_Choice then
+ Rep_Count := 0;
+
+ for J in Vals'Range loop
+ if No (Vals (J)) then
+ Vals (J) := New_Copy_Tree (Expression (Elmt));
+ Rep_Count := Rep_Count + 1;
+
+ -- Check for maximum others replication. Note that
+ -- we skip this test if either of the restrictions
+ -- No_Elaboration_Code or No_Implicit_Loops is
+ -- active, or if this is a preelaborable unit.
+
+ declare
+ P : constant Entity_Id :=
+ Cunit_Entity (Current_Sem_Unit);
+
+ begin
+ if Restriction_Active (No_Elaboration_Code)
+ or else Restriction_Active (No_Implicit_Loops)
+ or else Is_Preelaborated (P)
+ or else (Ekind (P) = E_Package_Body
+ and then
+ Is_Preelaborated (Spec_Entity (P)))
+ then
+ null;
+
+ elsif Rep_Count > Max_Others_Replicate then
+ return False;
+ end if;
+ end;
+ end if;
+ end loop;
+
+ exit Component_Loop;
+
+ -- Case of a subtype mark
+
+ elsif Nkind (Choice) = N_Identifier
+ and then Is_Type (Entity (Choice))
+ then
+ Lo := Type_Low_Bound (Etype (Choice));
+ Hi := Type_High_Bound (Etype (Choice));
+
+ -- Case of subtype indication
+
+ elsif Nkind (Choice) = N_Subtype_Indication then
+ Lo := Low_Bound (Range_Expression (Constraint (Choice)));
+ Hi := High_Bound (Range_Expression (Constraint (Choice)));
+
+ -- Case of a range
+
+ elsif Nkind (Choice) = N_Range then
+ Lo := Low_Bound (Choice);
+ Hi := High_Bound (Choice);
+
+ -- Normal subexpression case
+
+ else pragma Assert (Nkind (Choice) in N_Subexpr);
+ if not Compile_Time_Known_Value (Choice) then
+ return False;
+
+ else
+ Vals (UI_To_Int (Expr_Value (Choice))) :=
+ New_Copy_Tree (Expression (Elmt));
+ goto Continue;
+ end if;
+ end if;
+
+ -- Range cases merge with Lo,Hi said
+
+ if not Compile_Time_Known_Value (Lo)
+ or else
+ not Compile_Time_Known_Value (Hi)
+ then
+ return False;
+ else
+ for J in UI_To_Int (Expr_Value (Lo)) ..
+ UI_To_Int (Expr_Value (Hi))
+ loop
+ Vals (J) := New_Copy_Tree (Expression (Elmt));
+ end loop;
+ end if;
+
+ <<Continue>>
+ Next (Choice);
+ end loop Choice_Loop;
+
+ Next (Elmt);
+ end loop Component_Loop;
+
+ -- If we get here the conversion is possible
+
+ Vlist := New_List;
+ for J in Vals'Range loop
+ Append (Vals (J), Vlist);
+ end loop;
+
+ Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
+ Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
+ return True;
+ end;
+ end Flatten;
+
+ -------------
+ -- Is_Flat --
+ -------------
+
+ function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
+ Elmt : Node_Id;
+
+ begin
+ if Dims = 0 then
+ return True;
+
+ elsif Nkind (N) = N_Aggregate then
+ if Present (Component_Associations (N)) then
+ return False;
+
+ else
+ Elmt := First (Expressions (N));
+
+ while Present (Elmt) loop
+ if not Is_Flat (Elmt, Dims - 1) then
+ return False;
+ end if;
+
+ Next (Elmt);
+ end loop;
+
+ return True;
+ end if;
+ else
+ return True;
+ end if;
+ end Is_Flat;
+
+ -- Start of processing for Convert_To_Positional
+
+ begin
+ -- Ada 2005 (AI-287): Do not convert in case of default initialized
+ -- components because in this case will need to call the corresponding
+ -- IP procedure.
+
+ if Has_Default_Init_Comps (N) then
+ return;
+ end if;
+
+ if Is_Flat (N, Number_Dimensions (Typ)) then
+ return;
+ end if;
+
+ if Is_Bit_Packed_Array (Typ)
+ and then not Handle_Bit_Packed
+ then
+ return;
+ end if;
+
+ -- Do not convert to positional if controlled components are
+ -- involved since these require special processing
+
+ if Has_Controlled_Component (Typ) then
+ return;
+ end if;
+
+ if Aggr_Size_OK (Typ)
+ and then
+ Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
+ then
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end Convert_To_Positional;
+
+ ----------------------------
+ -- Expand_Array_Aggregate --
+ ----------------------------
+
+ -- Array aggregate expansion proceeds as follows:
+
+ -- 1. If requested we generate code to perform all the array aggregate
+ -- bound checks, specifically
+
+ -- (a) Check that the index range defined by aggregate bounds is
+ -- compatible with corresponding index subtype.
+
+ -- (b) If an others choice is present check that no aggregate
+ -- index is outside the bounds of the index constraint.
+
+ -- (c) For multidimensional arrays make sure that all subaggregates
+ -- corresponding to the same dimension have the same bounds.
+
+ -- 2. Check for packed array aggregate which can be converted to a
+ -- constant so that the aggregate disappeares completely.
+
+ -- 3. Check case of nested aggregate. Generally nested aggregates are
+ -- handled during the processing of the parent aggregate.
+
+ -- 4. Check if the aggregate can be statically processed. If this is the
+ -- case pass it as is to Gigi. Note that a necessary condition for
+ -- static processing is that the aggregate be fully positional.
+
+ -- 5. If in place aggregate expansion is possible (i.e. no need to create
+ -- a temporary) then mark the aggregate as such and return. Otherwise
+ -- create a new temporary and generate the appropriate initialization
+ -- code.
+
+ procedure Expand_Array_Aggregate (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Typ : constant Entity_Id := Etype (N);
+ Ctyp : constant Entity_Id := Component_Type (Typ);
+ -- Typ is the correct constrained array subtype of the aggregate
+ -- Ctyp is the corresponding component type.
+
+ Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
+ -- Number of aggregate index dimensions
+
+ Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
+ Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
+ -- Low and High bounds of the constraint for each aggregate index
+
+ Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
+ -- The type of each index
+
+ Maybe_In_Place_OK : Boolean;
+ -- If the type is neither controlled nor packed and the aggregate
+ -- is the expression in an assignment, assignment in place may be
+ -- possible, provided other conditions are met on the LHS.
+
+ Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
+ (others => False);
+ -- If Others_Present (J) is True, then there is an others choice
+ -- in one of the sub-aggregates of N at dimension J.
+
+ procedure Build_Constrained_Type (Positional : Boolean);
+ -- If the subtype is not static or unconstrained, build a constrained
+ -- type using the computable sizes of the aggregate and its sub-
+ -- aggregates.
+
+ procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
+ -- Checks that the bounds of Aggr_Bounds are within the bounds defined
+ -- by Index_Bounds.
+
+ procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
+ -- Checks that in a multi-dimensional array aggregate all subaggregates
+ -- corresponding to the same dimension have the same bounds.
+ -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
+ -- corresponding to the sub-aggregate.
+
+ procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
+ -- Computes the values of array Others_Present. Sub_Aggr is the
+ -- array sub-aggregate we start the computation from. Dim is the
+ -- dimension corresponding to the sub-aggregate.
+
+ function Has_Address_Clause (D : Node_Id) return Boolean;
+ -- If the aggregate is the expression in an object declaration, it
+ -- cannot be expanded in place. This function does a lookahead in the
+ -- current declarative part to find an address clause for the object
+ -- being declared.
+
+ function In_Place_Assign_OK return Boolean;
+ -- Simple predicate to determine whether an aggregate assignment can
+ -- be done in place, because none of the new values can depend on the
+ -- components of the target of the assignment.
+
+ procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
+ -- Checks that if an others choice is present in any sub-aggregate no
+ -- aggregate index is outside the bounds of the index constraint.
+ -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
+ -- corresponding to the sub-aggregate.
+
+ ----------------------------
+ -- Build_Constrained_Type --
+ ----------------------------
+
+ procedure Build_Constrained_Type (Positional : Boolean) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Agg_Type : Entity_Id;
+ Comp : Node_Id;
+ Decl : Node_Id;
+ Typ : constant Entity_Id := Etype (N);
+ Indices : constant List_Id := New_List;
+ Num : Int;
+ Sub_Agg : Node_Id;
+
+ begin
+ Agg_Type :=
+ Make_Defining_Identifier (
+ Loc, New_Internal_Name ('A'));
+
+ -- If the aggregate is purely positional, all its subaggregates
+ -- have the same size. We collect the dimensions from the first
+ -- subaggregate at each level.
+
+ if Positional then
+ Sub_Agg := N;
+
+ for D in 1 .. Number_Dimensions (Typ) loop
+ Comp := First (Expressions (Sub_Agg));
+
+ Sub_Agg := Comp;
+ Num := 0;
+
+ while Present (Comp) loop
+ Num := Num + 1;
+ Next (Comp);
+ end loop;
+
+ Append (
+ Make_Range (Loc,
+ Low_Bound => Make_Integer_Literal (Loc, 1),
+ High_Bound =>
+ Make_Integer_Literal (Loc, Num)),
+ Indices);
+ end loop;
+
+ else
+ -- We know the aggregate type is unconstrained and the
+ -- aggregate is not processable by the back end, therefore
+ -- not necessarily positional. Retrieve the bounds of each
+ -- dimension as computed earlier.
+
+ for D in 1 .. Number_Dimensions (Typ) loop
+ Append (
+ Make_Range (Loc,
+ Low_Bound => Aggr_Low (D),
+ High_Bound => Aggr_High (D)),
+ Indices);
+ end loop;
+ end if;
+
+ Decl :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => Agg_Type,
+ Type_Definition =>
+ Make_Constrained_Array_Definition (Loc,
+ Discrete_Subtype_Definitions => Indices,
+ Component_Definition =>
+ Make_Component_Definition (Loc,
+ Aliased_Present => False,
+ Subtype_Indication =>
+ New_Occurrence_Of (Component_Type (Typ), Loc))));
+
+ Insert_Action (N, Decl);
+ Analyze (Decl);
+ Set_Etype (N, Agg_Type);
+ Set_Is_Itype (Agg_Type);
+ Freeze_Itype (Agg_Type, N);
+ end Build_Constrained_Type;
+
+ ------------------
+ -- Check_Bounds --
+ ------------------
+
+ procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
+ Aggr_Lo : Node_Id;
+ Aggr_Hi : Node_Id;
+
+ Ind_Lo : Node_Id;
+ Ind_Hi : Node_Id;
+
+ Cond : Node_Id := Empty;
+
+ begin
+ Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
+ Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
+
+ -- Generate the following test:
+ --
+ -- [constraint_error when
+ -- Aggr_Lo <= Aggr_Hi and then
+ -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
+ --
+ -- As an optimization try to see if some tests are trivially vacuos
+ -- because we are comparing an expression against itself.
+
+ if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
+ Cond := Empty;
+
+ elsif Aggr_Hi = Ind_Hi then
+ Cond :=
+ Make_Op_Lt (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
+
+ elsif Aggr_Lo = Ind_Lo then
+ Cond :=
+ Make_Op_Gt (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
+
+ else
+ Cond :=
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
+
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
+ Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
+ end if;
+
+ if Present (Cond) then
+ Cond :=
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_Op_Le (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
+
+ Right_Opnd => Cond);
+
+ Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
+ Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Cond,
+ Reason => CE_Length_Check_Failed));
+ end if;
+ end Check_Bounds;
+
+ ----------------------------
+ -- Check_Same_Aggr_Bounds --
+ ----------------------------
+
+ procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
+ Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
+ Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
+ -- The bounds of this specific sub-aggregate
+
+ Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
+ Aggr_Hi : constant Node_Id := Aggr_High (Dim);
+ -- The bounds of the aggregate for this dimension
+
+ Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
+ -- The index type for this dimension.xxx
+
+ Cond : Node_Id := Empty;
+
+ Assoc : Node_Id;
+ Expr : Node_Id;
+
+ begin
+ -- If index checks are on generate the test
+ --
+ -- [constraint_error when
+ -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
+ --
+ -- As an optimization try to see if some tests are trivially vacuos
+ -- because we are comparing an expression against itself. Also for
+ -- the first dimension the test is trivially vacuous because there
+ -- is just one aggregate for dimension 1.
+
+ if Index_Checks_Suppressed (Ind_Typ) then
+ Cond := Empty;
+
+ elsif Dim = 1
+ or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
+ then
+ Cond := Empty;
+
+ elsif Aggr_Hi = Sub_Hi then
+ Cond :=
+ Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
+
+ elsif Aggr_Lo = Sub_Lo then
+ Cond :=
+ Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
+
+ else
+ Cond :=
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
+ Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
+
+ Right_Opnd =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
+ Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
+ end if;
+
+ if Present (Cond) then
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Cond,
+ Reason => CE_Length_Check_Failed));
+ end if;
+
+ -- Now look inside the sub-aggregate to see if there is more work
+
+ if Dim < Aggr_Dimension then
+
+ -- Process positional components
+
+ if Present (Expressions (Sub_Aggr)) then
+ Expr := First (Expressions (Sub_Aggr));
+ while Present (Expr) loop
+ Check_Same_Aggr_Bounds (Expr, Dim + 1);
+ Next (Expr);
+ end loop;
+ end if;
+
+ -- Process component associations
+
+ if Present (Component_Associations (Sub_Aggr)) then
+ Assoc := First (Component_Associations (Sub_Aggr));
+ while Present (Assoc) loop
+ Expr := Expression (Assoc);
+ Check_Same_Aggr_Bounds (Expr, Dim + 1);
+ Next (Assoc);
+ end loop;
+ end if;
+ end if;
+ end Check_Same_Aggr_Bounds;
+
+ ----------------------------
+ -- Compute_Others_Present --
+ ----------------------------
+
+ procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
+ Assoc : Node_Id;
+ Expr : Node_Id;
+
+ begin
+ if Present (Component_Associations (Sub_Aggr)) then
+ Assoc := Last (Component_Associations (Sub_Aggr));
+
+ if Nkind (First (Choices (Assoc))) = N_Others_Choice then
+ Others_Present (Dim) := True;
+ end if;
+ end if;
+
+ -- Now look inside the sub-aggregate to see if there is more work
+
+ if Dim < Aggr_Dimension then
+
+ -- Process positional components
+
+ if Present (Expressions (Sub_Aggr)) then
+ Expr := First (Expressions (Sub_Aggr));
+ while Present (Expr) loop
+ Compute_Others_Present (Expr, Dim + 1);
+ Next (Expr);
+ end loop;
+ end if;
+
+ -- Process component associations
+
+ if Present (Component_Associations (Sub_Aggr)) then
+ Assoc := First (Component_Associations (Sub_Aggr));
+ while Present (Assoc) loop
+ Expr := Expression (Assoc);
+ Compute_Others_Present (Expr, Dim + 1);
+ Next (Assoc);
+ end loop;
+ end if;
+ end if;
+ end Compute_Others_Present;
+
+ ------------------------
+ -- Has_Address_Clause --
+ ------------------------
+
+ function Has_Address_Clause (D : Node_Id) return Boolean is
+ Id : constant Entity_Id := Defining_Identifier (D);
+ Decl : Node_Id := Next (D);
+
+ begin
+ while Present (Decl) loop
+ if Nkind (Decl) = N_At_Clause
+ and then Chars (Identifier (Decl)) = Chars (Id)
+ then
+ return True;
+
+ elsif Nkind (Decl) = N_Attribute_Definition_Clause
+ and then Chars (Decl) = Name_Address
+ and then Chars (Name (Decl)) = Chars (Id)
+ then
+ return True;
+ end if;
+
+ Next (Decl);
+ end loop;
+
+ return False;
+ end Has_Address_Clause;
+
+ ------------------------
+ -- In_Place_Assign_OK --
+ ------------------------
+
+ function In_Place_Assign_OK return Boolean is
+ Aggr_In : Node_Id;
+ Aggr_Lo : Node_Id;
+ Aggr_Hi : Node_Id;
+ Obj_In : Node_Id;
+ Obj_Lo : Node_Id;
+ Obj_Hi : Node_Id;
+
+ function Is_Others_Aggregate (Aggr : Node_Id) return Boolean;
+ -- Aggregates that consist of a single Others choice are safe
+ -- if the single expression is.
+
+ function Safe_Aggregate (Aggr : Node_Id) return Boolean;
+ -- Check recursively that each component of a (sub)aggregate does
+ -- not depend on the variable being assigned to.
+
+ function Safe_Component (Expr : Node_Id) return Boolean;
+ -- Verify that an expression cannot depend on the variable being
+ -- assigned to. Room for improvement here (but less than before).
+
+ -------------------------
+ -- Is_Others_Aggregate --
+ -------------------------
+
+ function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
+ begin
+ return No (Expressions (Aggr))
+ and then Nkind
+ (First (Choices (First (Component_Associations (Aggr)))))
+ = N_Others_Choice;
+ end Is_Others_Aggregate;
+
+ --------------------
+ -- Safe_Aggregate --
+ --------------------
+
+ function Safe_Aggregate (Aggr : Node_Id) return Boolean is
+ Expr : Node_Id;
+
+ begin
+ if Present (Expressions (Aggr)) then
+ Expr := First (Expressions (Aggr));
+
+ while Present (Expr) loop
+ if Nkind (Expr) = N_Aggregate then
+ if not Safe_Aggregate (Expr) then
+ return False;
+ end if;
+
+ elsif not Safe_Component (Expr) then
+ return False;
+ end if;
+
+ Next (Expr);
+ end loop;
+ end if;
+
+ if Present (Component_Associations (Aggr)) then
+ Expr := First (Component_Associations (Aggr));
+
+ while Present (Expr) loop
+ if Nkind (Expression (Expr)) = N_Aggregate then
+ if not Safe_Aggregate (Expression (Expr)) then
+ return False;
+ end if;
+
+ elsif not Safe_Component (Expression (Expr)) then
+ return False;
+ end if;
+
+ Next (Expr);
+ end loop;
+ end if;
+
+ return True;
+ end Safe_Aggregate;
+
+ --------------------
+ -- Safe_Component --
+ --------------------
+
+ function Safe_Component (Expr : Node_Id) return Boolean is
+ Comp : Node_Id := Expr;
+
+ function Check_Component (Comp : Node_Id) return Boolean;
+ -- Do the recursive traversal, after copy
+
+ ---------------------
+ -- Check_Component --
+ ---------------------
+
+ function Check_Component (Comp : Node_Id) return Boolean is
+ begin
+ if Is_Overloaded (Comp) then
+ return False;
+ end if;
+
+ return Compile_Time_Known_Value (Comp)
+
+ or else (Is_Entity_Name (Comp)
+ and then Present (Entity (Comp))
+ and then No (Renamed_Object (Entity (Comp))))
+
+ or else (Nkind (Comp) = N_Attribute_Reference
+ and then Check_Component (Prefix (Comp)))
+
+ or else (Nkind (Comp) in N_Binary_Op
+ and then Check_Component (Left_Opnd (Comp))
+ and then Check_Component (Right_Opnd (Comp)))
+
+ or else (Nkind (Comp) in N_Unary_Op
+ and then Check_Component (Right_Opnd (Comp)))
+
+ or else (Nkind (Comp) = N_Selected_Component
+ and then Check_Component (Prefix (Comp)))
+
+ or else (Nkind (Comp) = N_Unchecked_Type_Conversion
+ and then Check_Component (Expression (Comp)));
+ end Check_Component;
+
+ -- Start of processing for Safe_Component
+
+ begin
+ -- If the component appears in an association that may
+ -- correspond to more than one element, it is not analyzed
+ -- before the expansion into assignments, to avoid side effects.
+ -- We analyze, but do not resolve the copy, to obtain sufficient
+ -- entity information for the checks that follow. If component is
+ -- overloaded we assume an unsafe function call.
+
+ if not Analyzed (Comp) then
+ if Is_Overloaded (Expr) then
+ return False;
+
+ elsif Nkind (Expr) = N_Aggregate
+ and then not Is_Others_Aggregate (Expr)
+ then
+ return False;
+
+ elsif Nkind (Expr) = N_Allocator then
+
+ -- For now, too complex to analyze
+
+ return False;
+ end if;
+
+ Comp := New_Copy_Tree (Expr);
+ Set_Parent (Comp, Parent (Expr));
+ Analyze (Comp);
+ end if;
+
+ if Nkind (Comp) = N_Aggregate then
+ return Safe_Aggregate (Comp);
+ else
+ return Check_Component (Comp);
+ end if;
+ end Safe_Component;
+
+ -- Start of processing for In_Place_Assign_OK
+
+ begin
+ if Present (Component_Associations (N)) then
+
+ -- On assignment, sliding can take place, so we cannot do the
+ -- assignment in place unless the bounds of the aggregate are
+ -- statically equal to those of the target.
+
+ -- If the aggregate is given by an others choice, the bounds
+ -- are derived from the left-hand side, and the assignment is
+ -- safe if the expression is.
+
+ if Is_Others_Aggregate (N) then
+ return
+ Safe_Component
+ (Expression (First (Component_Associations (N))));
+ end if;
+
+ Aggr_In := First_Index (Etype (N));
+ if Nkind (Parent (N)) = N_Assignment_Statement then
+ Obj_In := First_Index (Etype (Name (Parent (N))));
+
+ else
+ -- Context is an allocator. Check bounds of aggregate
+ -- against given type in qualified expression.
+
+ pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
+ Obj_In :=
+ First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
+ end if;
+
+ while Present (Aggr_In) loop
+ Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
+ Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
+
+ if not Compile_Time_Known_Value (Aggr_Lo)
+ or else not Compile_Time_Known_Value (Aggr_Hi)
+ or else not Compile_Time_Known_Value (Obj_Lo)
+ or else not Compile_Time_Known_Value (Obj_Hi)
+ or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
+ or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
+ then
+ return False;
+ end if;
+
+ Next_Index (Aggr_In);
+ Next_Index (Obj_In);
+ end loop;
+ end if;
+
+ -- Now check the component values themselves
+
+ return Safe_Aggregate (N);
+ end In_Place_Assign_OK;
+
+ ------------------
+ -- Others_Check --
+ ------------------
+
+ procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
+ Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
+ Aggr_Hi : constant Node_Id := Aggr_High (Dim);
+ -- The bounds of the aggregate for this dimension
+
+ Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
+ -- The index type for this dimension
+
+ Need_To_Check : Boolean := False;
+
+ Choices_Lo : Node_Id := Empty;
+ Choices_Hi : Node_Id := Empty;
+ -- The lowest and highest discrete choices for a named sub-aggregate
+
+ Nb_Choices : Int := -1;
+ -- The number of discrete non-others choices in this sub-aggregate
+
+ Nb_Elements : Uint := Uint_0;
+ -- The number of elements in a positional aggregate
+
+ Cond : Node_Id := Empty;
+
+ Assoc : Node_Id;
+ Choice : Node_Id;
+ Expr : Node_Id;
+
+ begin
+ -- Check if we have an others choice. If we do make sure that this
+ -- sub-aggregate contains at least one element in addition to the
+ -- others choice.
+
+ if Range_Checks_Suppressed (Ind_Typ) then
+ Need_To_Check := False;
+
+ elsif Present (Expressions (Sub_Aggr))
+ and then Present (Component_Associations (Sub_Aggr))
+ then
+ Need_To_Check := True;
+
+ elsif Present (Component_Associations (Sub_Aggr)) then
+ Assoc := Last (Component_Associations (Sub_Aggr));
+
+ if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
+ Need_To_Check := False;
+
+ else
+ -- Count the number of discrete choices. Start with -1
+ -- because the others choice does not count.
+
+ Nb_Choices := -1;
+ Assoc := First (Component_Associations (Sub_Aggr));
+ while Present (Assoc) loop
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+ Nb_Choices := Nb_Choices + 1;
+ Next (Choice);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ -- If there is only an others choice nothing to do
+
+ Need_To_Check := (Nb_Choices > 0);
+ end if;
+
+ else
+ Need_To_Check := False;
+ end if;
+
+ -- If we are dealing with a positional sub-aggregate with an
+ -- others choice then compute the number or positional elements.
+
+ if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
+ Expr := First (Expressions (Sub_Aggr));
+ Nb_Elements := Uint_0;
+ while Present (Expr) loop
+ Nb_Elements := Nb_Elements + 1;
+ Next (Expr);
+ end loop;
+
+ -- If the aggregate contains discrete choices and an others choice
+ -- compute the smallest and largest discrete choice values.
+
+ elsif Need_To_Check then
+ Compute_Choices_Lo_And_Choices_Hi : declare
+
+ Table : Case_Table_Type (1 .. Nb_Choices);
+ -- Used to sort all the different choice values
+
+ J : Pos := 1;
+ Low : Node_Id;
+ High : Node_Id;
+
+ begin
+ Assoc := First (Component_Associations (Sub_Aggr));
+ while Present (Assoc) loop
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+ if Nkind (Choice) = N_Others_Choice then
+ exit;
+ end if;
+
+ Get_Index_Bounds (Choice, Low, High);
+ Table (J).Choice_Lo := Low;
+ Table (J).Choice_Hi := High;
+
+ J := J + 1;
+ Next (Choice);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ -- Sort the discrete choices
+
+ Sort_Case_Table (Table);
+
+ Choices_Lo := Table (1).Choice_Lo;
+ Choices_Hi := Table (Nb_Choices).Choice_Hi;
+ end Compute_Choices_Lo_And_Choices_Hi;
+ end if;
+
+ -- If no others choice in this sub-aggregate, or the aggregate
+ -- comprises only an others choice, nothing to do.
+
+ if not Need_To_Check then
+ Cond := Empty;
+
+ -- If we are dealing with an aggregate containing an others
+ -- choice and positional components, we generate the following test:
+ --
+ -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
+ -- Ind_Typ'Pos (Aggr_Hi)
+ -- then
+ -- raise Constraint_Error;
+ -- end if;
+
+ elsif Nb_Elements > Uint_0 then
+ Cond :=
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions =>
+ New_List
+ (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
+ Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
+
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Ind_Typ, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (
+ Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
+
+ -- If we are dealing with an aggregate containing an others
+ -- choice and discrete choices we generate the following test:
+ --
+ -- [constraint_error when
+ -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
+
+ else
+ Cond :=
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd =>
+ Duplicate_Subexpr_Move_Checks (Choices_Lo),
+ Right_Opnd =>
+ Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
+
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ Duplicate_Subexpr (Choices_Hi),
+ Right_Opnd =>
+ Duplicate_Subexpr (Aggr_Hi)));
+ end if;
+
+ if Present (Cond) then
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Cond,
+ Reason => CE_Length_Check_Failed));
+ end if;
+
+ -- Now look inside the sub-aggregate to see if there is more work
+
+ if Dim < Aggr_Dimension then
+
+ -- Process positional components
+
+ if Present (Expressions (Sub_Aggr)) then
+ Expr := First (Expressions (Sub_Aggr));
+ while Present (Expr) loop
+ Others_Check (Expr, Dim + 1);
+ Next (Expr);
+ end loop;
+ end if;
+
+ -- Process component associations
+
+ if Present (Component_Associations (Sub_Aggr)) then
+ Assoc := First (Component_Associations (Sub_Aggr));
+ while Present (Assoc) loop
+ Expr := Expression (Assoc);
+ Others_Check (Expr, Dim + 1);
+ Next (Assoc);
+ end loop;
+ end if;
+ end if;
+ end Others_Check;
+
+ -- Remaining Expand_Array_Aggregate variables
+
+ Tmp : Entity_Id;
+ -- Holds the temporary aggregate value
+
+ Tmp_Decl : Node_Id;
+ -- Holds the declaration of Tmp
+
+ Aggr_Code : List_Id;
+ Parent_Node : Node_Id;
+ Parent_Kind : Node_Kind;
+
+ -- Start of processing for Expand_Array_Aggregate
+
+ begin
+ -- Do not touch the special aggregates of attributes used for Asm calls
+
+ if Is_RTE (Ctyp, RE_Asm_Input_Operand)
+ or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
+ then
+ return;
+ end if;
+
+ -- If the semantic analyzer has determined that aggregate N will raise
+ -- Constraint_Error at run-time, then the aggregate node has been
+ -- replaced with an N_Raise_Constraint_Error node and we should
+ -- never get here.
+
+ pragma Assert (not Raises_Constraint_Error (N));
+
+ -- STEP 1a
+
+ -- Check that the index range defined by aggregate bounds is
+ -- compatible with corresponding index subtype.
+
+ Index_Compatibility_Check : declare
+ Aggr_Index_Range : Node_Id := First_Index (Typ);
+ -- The current aggregate index range
+
+ Index_Constraint : Node_Id := First_Index (Etype (Typ));
+ -- The corresponding index constraint against which we have to
+ -- check the above aggregate index range.
+
+ begin
+ Compute_Others_Present (N, 1);
+
+ for J in 1 .. Aggr_Dimension loop
+ -- There is no need to emit a check if an others choice is
+ -- present for this array aggregate dimension since in this
+ -- case one of N's sub-aggregates has taken its bounds from the
+ -- context and these bounds must have been checked already. In
+ -- addition all sub-aggregates corresponding to the same
+ -- dimension must all have the same bounds (checked in (c) below).
+
+ if not Range_Checks_Suppressed (Etype (Index_Constraint))
+ and then not Others_Present (J)
+ then
+ -- We don't use Checks.Apply_Range_Check here because it
+ -- emits a spurious check. Namely it checks that the range
+ -- defined by the aggregate bounds is non empty. But we know
+ -- this already if we get here.
+
+ Check_Bounds (Aggr_Index_Range, Index_Constraint);
+ end if;
+
+ -- Save the low and high bounds of the aggregate index as well
+ -- as the index type for later use in checks (b) and (c) below.
+
+ Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
+ Aggr_High (J) := High_Bound (Aggr_Index_Range);
+
+ Aggr_Index_Typ (J) := Etype (Index_Constraint);
+
+ Next_Index (Aggr_Index_Range);
+ Next_Index (Index_Constraint);
+ end loop;
+ end Index_Compatibility_Check;
+
+ -- STEP 1b
+
+ -- If an others choice is present check that no aggregate
+ -- index is outside the bounds of the index constraint.
+
+ Others_Check (N, 1);
+
+ -- STEP 1c
+
+ -- For multidimensional arrays make sure that all subaggregates
+ -- corresponding to the same dimension have the same bounds.
+
+ if Aggr_Dimension > 1 then
+ Check_Same_Aggr_Bounds (N, 1);
+ end if;
+
+ -- STEP 2
+
+ -- Here we test for is packed array aggregate that we can handle
+ -- at compile time. If so, return with transformation done. Note
+ -- that we do this even if the aggregate is nested, because once
+ -- we have done this processing, there is no more nested aggregate!
+
+ if Packed_Array_Aggregate_Handled (N) then
+ return;
+ end if;
+
+ -- At this point we try to convert to positional form
+
+ Convert_To_Positional (N);
+
+ -- if the result is no longer an aggregate (e.g. it may be a string
+ -- literal, or a temporary which has the needed value), then we are
+ -- done, since there is no longer a nested aggregate.
+
+ if Nkind (N) /= N_Aggregate then
+ return;
+
+ -- We are also done if the result is an analyzed aggregate
+ -- This case could use more comments ???
+
+ elsif Analyzed (N)
+ and then N /= Original_Node (N)
+ then
+ return;
+ end if;
+
+ -- Now see if back end processing is possible
+
+ if Backend_Processing_Possible (N) then
+
+ -- If the aggregate is static but the constraints are not, build
+ -- a static subtype for the aggregate, so that Gigi can place it
+ -- in static memory. Perform an unchecked_conversion to the non-
+ -- static type imposed by the context.
+
+ declare
+ Itype : constant Entity_Id := Etype (N);
+ Index : Node_Id;
+ Needs_Type : Boolean := False;
+
+ begin
+ Index := First_Index (Itype);
+
+ while Present (Index) loop
+ if not Is_Static_Subtype (Etype (Index)) then
+ Needs_Type := True;
+ exit;
+ else
+ Next_Index (Index);
+ end if;
+ end loop;
+
+ if Needs_Type then
+ Build_Constrained_Type (Positional => True);
+ Rewrite (N, Unchecked_Convert_To (Itype, N));
+ Analyze (N);
+ end if;
+ end;
+
+ return;
+ end if;
+
+ -- STEP 3
+
+ -- Delay expansion for nested aggregates it will be taken care of
+ -- when the parent aggregate is expanded
+
+ Parent_Node := Parent (N);
+ Parent_Kind := Nkind (Parent_Node);
+
+ if Parent_Kind = N_Qualified_Expression then
+ Parent_Node := Parent (Parent_Node);
+ Parent_Kind := Nkind (Parent_Node);
+ end if;
+
+ if Parent_Kind = N_Aggregate
+ or else Parent_Kind = N_Extension_Aggregate
+ or else Parent_Kind = N_Component_Association
+ or else (Parent_Kind = N_Object_Declaration
+ and then Controlled_Type (Typ))
+ or else (Parent_Kind = N_Assignment_Statement
+ and then Inside_Init_Proc)
+ then
+ Set_Expansion_Delayed (N);
+ return;
+ end if;
+
+ -- STEP 4
+
+ -- Look if in place aggregate expansion is possible
+
+ -- For object declarations we build the aggregate in place, unless
+ -- the array is bit-packed or the component is controlled.
+
+ -- For assignments we do the assignment in place if all the component
+ -- associations have compile-time known values. For other cases we
+ -- create a temporary. The analysis for safety of on-line assignment
+ -- is delicate, i.e. we don't know how to do it fully yet ???
+
+ -- For allocators we assign to the designated object in place if the
+ -- aggregate meets the same conditions as other in-place assignments.
+ -- In this case the aggregate may not come from source but was created
+ -- for default initialization, e.g. with Initialize_Scalars.
+
+ if Requires_Transient_Scope (Typ) then
+ Establish_Transient_Scope
+ (N, Sec_Stack => Has_Controlled_Component (Typ));
+ end if;
+
+ if Has_Default_Init_Comps (N) then
+ Maybe_In_Place_OK := False;
+
+ elsif Is_Bit_Packed_Array (Typ)
+ or else Has_Controlled_Component (Typ)
+ then
+ Maybe_In_Place_OK := False;
+
+ else
+ Maybe_In_Place_OK :=
+ (Nkind (Parent (N)) = N_Assignment_Statement
+ and then Comes_From_Source (N)
+ and then In_Place_Assign_OK)
+
+ or else
+ (Nkind (Parent (Parent (N))) = N_Allocator
+ and then In_Place_Assign_OK);
+ end if;
+
+ if not Has_Default_Init_Comps (N)
+ and then Comes_From_Source (Parent (N))
+ and then Nkind (Parent (N)) = N_Object_Declaration
+ and then not
+ Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
+ and then N = Expression (Parent (N))
+ and then not Is_Bit_Packed_Array (Typ)
+ and then not Has_Controlled_Component (Typ)
+ and then not Has_Address_Clause (Parent (N))
+ then
+ Tmp := Defining_Identifier (Parent (N));
+ Set_No_Initialization (Parent (N));
+ Set_Expression (Parent (N), Empty);
+
+ -- Set the type of the entity, for use in the analysis of the
+ -- subsequent indexed assignments. If the nominal type is not
+ -- constrained, build a subtype from the known bounds of the
+ -- aggregate. If the declaration has a subtype mark, use it,
+ -- otherwise use the itype of the aggregate.
+
+ if not Is_Constrained (Typ) then
+ Build_Constrained_Type (Positional => False);
+ elsif Is_Entity_Name (Object_Definition (Parent (N)))
+ and then Is_Constrained (Entity (Object_Definition (Parent (N))))
+ then
+ Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
+ else
+ Set_Size_Known_At_Compile_Time (Typ, False);
+ Set_Etype (Tmp, Typ);
+ end if;
+
+ elsif Maybe_In_Place_OK
+ and then Nkind (Parent (N)) = N_Qualified_Expression
+ and then Nkind (Parent (Parent (N))) = N_Allocator
+ then
+ Set_Expansion_Delayed (N);
+ return;
+
+ -- In the remaining cases the aggregate is the RHS of an assignment
+
+ elsif Maybe_In_Place_OK
+ and then Is_Entity_Name (Name (Parent (N)))
+ then
+ Tmp := Entity (Name (Parent (N)));
+
+ if Etype (Tmp) /= Etype (N) then
+ Apply_Length_Check (N, Etype (Tmp));
+
+ if Nkind (N) = N_Raise_Constraint_Error then
+
+ -- Static error, nothing further to expand
+
+ return;
+ end if;
+ end if;
+
+ elsif Maybe_In_Place_OK
+ and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
+ and then Is_Entity_Name (Prefix (Name (Parent (N))))
+ then
+ Tmp := Name (Parent (N));
+
+ if Etype (Tmp) /= Etype (N) then
+ Apply_Length_Check (N, Etype (Tmp));
+ end if;
+
+ elsif Maybe_In_Place_OK
+ and then Nkind (Name (Parent (N))) = N_Slice
+ and then Safe_Slice_Assignment (N)
+ then
+ -- Safe_Slice_Assignment rewrites assignment as a loop
+
+ return;
+
+ -- Step 5
+
+ -- In place aggregate expansion is not possible
+
+ else
+ Maybe_In_Place_OK := False;
+ Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
+ Tmp_Decl :=
+ Make_Object_Declaration
+ (Loc,
+ Defining_Identifier => Tmp,
+ Object_Definition => New_Occurrence_Of (Typ, Loc));
+ Set_No_Initialization (Tmp_Decl, True);
+
+ -- If we are within a loop, the temporary will be pushed on the
+ -- stack at each iteration. If the aggregate is the expression for
+ -- an allocator, it will be immediately copied to the heap and can
+ -- be reclaimed at once. We create a transient scope around the
+ -- aggregate for this purpose.
+
+ if Ekind (Current_Scope) = E_Loop
+ and then Nkind (Parent (Parent (N))) = N_Allocator
+ then
+ Establish_Transient_Scope (N, False);
+ end if;
+
+ Insert_Action (N, Tmp_Decl);
+ end if;
+
+ -- Construct and insert the aggregate code. We can safely suppress
+ -- index checks because this code is guaranteed not to raise CE
+ -- on index checks. However we should *not* suppress all checks.
+
+ declare
+ Target : Node_Id;
+
+ begin
+ if Nkind (Tmp) = N_Defining_Identifier then
+ Target := New_Reference_To (Tmp, Loc);
+
+ else
+
+ if Has_Default_Init_Comps (N) then
+
+ -- Ada 2005 (AI-287): This case has not been analyzed???
+
+ raise Program_Error;
+ end if;
+
+ -- Name in assignment is explicit dereference
+
+ Target := New_Copy (Tmp);
+ end if;
+
+ Aggr_Code :=
+ Build_Array_Aggr_Code (N,
+ Ctype => Ctyp,
+ Index => First_Index (Typ),
+ Into => Target,
+ Scalar_Comp => Is_Scalar_Type (Ctyp));
+ end;
+
+ if Comes_From_Source (Tmp) then
+ Insert_Actions_After (Parent (N), Aggr_Code);
+
+ else
+ Insert_Actions (N, Aggr_Code);
+ end if;
+
+ -- If the aggregate has been assigned in place, remove the original
+ -- assignment.
+
+ if Nkind (Parent (N)) = N_Assignment_Statement
+ and then Maybe_In_Place_OK
+ then
+ Rewrite (Parent (N), Make_Null_Statement (Loc));
+
+ elsif Nkind (Parent (N)) /= N_Object_Declaration
+ or else Tmp /= Defining_Identifier (Parent (N))
+ then
+ Rewrite (N, New_Occurrence_Of (Tmp, Loc));
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end Expand_Array_Aggregate;
+
+ ------------------------
+ -- Expand_N_Aggregate --
+ ------------------------
+
+ procedure Expand_N_Aggregate (N : Node_Id) is
+ begin
+ if Is_Record_Type (Etype (N)) then
+ Expand_Record_Aggregate (N);
+ else
+ Expand_Array_Aggregate (N);
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_N_Aggregate;
+
+ ----------------------------------
+ -- Expand_N_Extension_Aggregate --
+ ----------------------------------
+
+ -- If the ancestor part is an expression, add a component association for
+ -- the parent field. If the type of the ancestor part is not the direct
+ -- parent of the expected type, build recursively the needed ancestors.
+ -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
+ -- ration for a temporary of the expected type, followed by individual
+ -- assignments to the given components.
+
+ procedure Expand_N_Extension_Aggregate (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ A : constant Node_Id := Ancestor_Part (N);
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ -- If the ancestor is a subtype mark, an init proc must be called
+ -- on the resulting object which thus has to be materialized in
+ -- the front-end
+
+ if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
+ Convert_To_Assignments (N, Typ);
+
+ -- The extension aggregate is transformed into a record aggregate
+ -- of the following form (c1 and c2 are inherited components)
+
+ -- (Exp with c3 => a, c4 => b)
+ -- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b)
+
+ else
+ Set_Etype (N, Typ);
+
+ -- No tag is needed in the case of Java_VM
+
+ if Java_VM then
+ Expand_Record_Aggregate (N,
+ Parent_Expr => A);
+ else
+ Expand_Record_Aggregate (N,
+ Orig_Tag =>
+ New_Occurrence_Of
+ (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
+ Parent_Expr => A);
+ end if;
+ end if;
+
+ exception
+ when RE_Not_Available =>
+ return;
+ end Expand_N_Extension_Aggregate;
+
+ -----------------------------
+ -- Expand_Record_Aggregate --
+ -----------------------------
+
+ procedure Expand_Record_Aggregate
+ (N : Node_Id;
+ Orig_Tag : Node_Id := Empty;
+ Parent_Expr : Node_Id := Empty)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Comps : constant List_Id := Component_Associations (N);
+ Typ : constant Entity_Id := Etype (N);
+ Base_Typ : constant Entity_Id := Base_Type (Typ);
+
+ function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean;
+ -- Checks the presence of a nested aggregate which needs Late_Expansion
+ -- or the presence of tagged components which may need tag adjustment.
+
+ --------------------------------------------------
+ -- Has_Delayed_Nested_Aggregate_Or_Tagged_Comps --
+ --------------------------------------------------
+
+ function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean is
+ C : Node_Id;
+ Expr_Q : Node_Id;
+
+ begin
+ if No (Comps) then
+ return False;
+ end if;
+
+ C := First (Comps);
+ while Present (C) loop
+ if Nkind (Expression (C)) = N_Qualified_Expression then
+ Expr_Q := Expression (Expression (C));
+ else
+ Expr_Q := Expression (C);
+ end if;
+
+ -- Return true if the aggregate has any associations for
+ -- tagged components that may require tag adjustment.
+ -- These are cases where the source expression may have
+ -- a tag that could differ from the component tag (e.g.,
+ -- can occur for type conversions and formal parameters).
+ -- (Tag adjustment is not needed if Java_VM because object
+ -- tags are implicit in the JVM.)
+
+ if Is_Tagged_Type (Etype (Expr_Q))
+ and then (Nkind (Expr_Q) = N_Type_Conversion
+ or else (Is_Entity_Name (Expr_Q)
+ and then Ekind (Entity (Expr_Q)) in Formal_Kind))
+ and then not Java_VM
+ then
+ return True;
+ end if;
+
+ if Is_Delayed_Aggregate (Expr_Q) then
+ return True;
+ end if;
+
+ Next (C);
+ end loop;
+
+ return False;
+ end Has_Delayed_Nested_Aggregate_Or_Tagged_Comps;
+
+ -- Remaining Expand_Record_Aggregate variables
+
+ Tag_Value : Node_Id;
+ Comp : Entity_Id;
+ New_Comp : Node_Id;
+
+ -- Start of processing for Expand_Record_Aggregate
+
+ begin
+ -- If the aggregate is to be assigned to an atomic variable, we
+ -- have to prevent a piecemeal assignment even if the aggregate
+ -- is to be expanded. We create a temporary for the aggregate, and
+ -- assign the temporary instead, so that the back end can generate
+ -- an atomic move for it.
+
+ if Is_Atomic (Typ)
+ and then (Nkind (Parent (N)) = N_Object_Declaration
+ or else Nkind (Parent (N)) = N_Assignment_Statement)
+ and then Comes_From_Source (Parent (N))
+ then
+ Expand_Atomic_Aggregate (N, Typ);
+ return;
+ end if;
+
+ -- Gigi doesn't handle properly temporaries of variable size
+ -- so we generate it in the front-end
+
+ if not Size_Known_At_Compile_Time (Typ) then
+ Convert_To_Assignments (N, Typ);
+
+ -- Temporaries for controlled aggregates need to be attached to a
+ -- final chain in order to be properly finalized, so it has to
+ -- be created in the front-end
+
+ elsif Is_Controlled (Typ)
+ or else Has_Controlled_Component (Base_Type (Typ))
+ then
+ Convert_To_Assignments (N, Typ);
+
+ -- Ada 2005 (AI-287): In case of default initialized components we
+ -- convert the aggregate into assignments.
+
+ elsif Has_Default_Init_Comps (N) then
+ Convert_To_Assignments (N, Typ);
+
+ elsif Has_Delayed_Nested_Aggregate_Or_Tagged_Comps then
+ Convert_To_Assignments (N, Typ);
+
+ -- If an ancestor is private, some components are not inherited and
+ -- we cannot expand into a record aggregate
+
+ elsif Has_Private_Ancestor (Typ) then
+ Convert_To_Assignments (N, Typ);
+
+ -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
+ -- is not able to handle the aggregate for Late_Request.
+
+ elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
+ Convert_To_Assignments (N, Typ);
+
+ -- If some components are mutable, the size of the aggregate component
+ -- may be disctinct from the default size of the type component, so
+ -- we need to expand to insure that the back-end copies the proper
+ -- size of the data.
+
+ elsif Has_Mutable_Components (Typ) then
+ Convert_To_Assignments (N, Typ);
+
+ -- If the type involved has any non-bit aligned components, then
+ -- we are not sure that the back end can handle this case correctly.
+
+ elsif Type_May_Have_Bit_Aligned_Components (Typ) then
+ Convert_To_Assignments (N, Typ);
+
+ -- In all other cases we generate a proper aggregate that
+ -- can be handled by gigi.
+
+ else
+ -- If no discriminants, nothing special to do
+
+ if not Has_Discriminants (Typ) then
+ null;
+
+ -- Case of discriminants present
+
+ elsif Is_Derived_Type (Typ) then
+
+ -- For untagged types, non-stored discriminants are replaced
+ -- with stored discriminants, which are the ones that gigi uses
+ -- to describe the type and its components.
+
+ Generate_Aggregate_For_Derived_Type : declare
+ Constraints : constant List_Id := New_List;
+ First_Comp : Node_Id;
+ Discriminant : Entity_Id;
+ Decl : Node_Id;
+ Num_Disc : Int := 0;
+ Num_Gird : Int := 0;
+
+ procedure Prepend_Stored_Values (T : Entity_Id);
+ -- Scan the list of stored discriminants of the type, and
+ -- add their values to the aggregate being built.
+
+ ---------------------------
+ -- Prepend_Stored_Values --
+ ---------------------------
+
+ procedure Prepend_Stored_Values (T : Entity_Id) is
+ begin
+ Discriminant := First_Stored_Discriminant (T);
+
+ while Present (Discriminant) loop
+ New_Comp :=
+ Make_Component_Association (Loc,
+ Choices =>
+ New_List (New_Occurrence_Of (Discriminant, Loc)),
+
+ Expression =>
+ New_Copy_Tree (
+ Get_Discriminant_Value (
+ Discriminant,
+ Typ,
+ Discriminant_Constraint (Typ))));
+
+ if No (First_Comp) then
+ Prepend_To (Component_Associations (N), New_Comp);
+ else
+ Insert_After (First_Comp, New_Comp);
+ end if;
+
+ First_Comp := New_Comp;
+ Next_Stored_Discriminant (Discriminant);
+ end loop;
+ end Prepend_Stored_Values;
+
+ -- Start of processing for Generate_Aggregate_For_Derived_Type
+
+ begin
+ -- Remove the associations for the discriminant of
+ -- the derived type.
+
+ First_Comp := First (Component_Associations (N));
+
+ while Present (First_Comp) loop
+ Comp := First_Comp;
+ Next (First_Comp);
+
+ if Ekind (Entity (First (Choices (Comp)))) =
+ E_Discriminant
+ then
+ Remove (Comp);
+ Num_Disc := Num_Disc + 1;
+ end if;
+ end loop;
+
+ -- Insert stored discriminant associations in the correct
+ -- order. If there are more stored discriminants than new
+ -- discriminants, there is at least one new discriminant
+ -- that constrains more than one of the stored discriminants.
+ -- In this case we need to construct a proper subtype of
+ -- the parent type, in order to supply values to all the
+ -- components. Otherwise there is one-one correspondence
+ -- between the constraints and the stored discriminants.
+
+ First_Comp := Empty;
+
+ Discriminant := First_Stored_Discriminant (Base_Type (Typ));
+
+ while Present (Discriminant) loop
+ Num_Gird := Num_Gird + 1;
+ Next_Stored_Discriminant (Discriminant);
+ end loop;
+
+ -- Case of more stored discriminants than new discriminants
+
+ if Num_Gird > Num_Disc then
+
+ -- Create a proper subtype of the parent type, which is
+ -- the proper implementation type for the aggregate, and
+ -- convert it to the intended target type.
+
+ Discriminant := First_Stored_Discriminant (Base_Type (Typ));
+
+ while Present (Discriminant) loop
+ New_Comp :=
+ New_Copy_Tree (
+ Get_Discriminant_Value (
+ Discriminant,
+ Typ,
+ Discriminant_Constraint (Typ)));
+ Append (New_Comp, Constraints);
+ Next_Stored_Discriminant (Discriminant);
+ end loop;
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('T')),
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint
+ (Loc, Constraints)));
+
+ Insert_Action (N, Decl);
+ Prepend_Stored_Values (Base_Type (Typ));
+
+ Set_Etype (N, Defining_Identifier (Decl));
+ Set_Analyzed (N);
+
+ Rewrite (N, Unchecked_Convert_To (Typ, N));
+ Analyze (N);
+
+ -- Case where we do not have fewer new discriminants than
+ -- stored discriminants, so in this case we can simply
+ -- use the stored discriminants of the subtype.
+
+ else
+ Prepend_Stored_Values (Typ);
+ end if;
+ end Generate_Aggregate_For_Derived_Type;
+ end if;
+
+ if Is_Tagged_Type (Typ) then
+
+ -- The tagged case, _parent and _tag component must be created
+
+ -- Reset null_present unconditionally. tagged records always have
+ -- at least one field (the tag or the parent)
+
+ Set_Null_Record_Present (N, False);
+
+ -- When the current aggregate comes from the expansion of an
+ -- extension aggregate, the parent expr is replaced by an
+ -- aggregate formed by selected components of this expr
+
+ if Present (Parent_Expr)
+ and then Is_Empty_List (Comps)
+ then
+ Comp := First_Entity (Typ);
+ while Present (Comp) loop
+
+ -- Skip all entities that aren't discriminants or components
+
+ if Ekind (Comp) /= E_Discriminant
+ and then Ekind (Comp) /= E_Component
+ then
+ null;
+
+ -- Skip all expander-generated components
+
+ elsif
+ not Comes_From_Source (Original_Record_Component (Comp))
+ then
+ null;
+
+ else
+ New_Comp :=
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Unchecked_Convert_To (Typ,
+ Duplicate_Subexpr (Parent_Expr, True)),
+
+ Selector_Name => New_Occurrence_Of (Comp, Loc));
+
+ Append_To (Comps,
+ Make_Component_Association (Loc,
+ Choices =>
+ New_List (New_Occurrence_Of (Comp, Loc)),
+ Expression =>
+ New_Comp));
+
+ Analyze_And_Resolve (New_Comp, Etype (Comp));
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+ end if;
+
+ -- Compute the value for the Tag now, if the type is a root it
+ -- will be included in the aggregate right away, otherwise it will
+ -- be propagated to the parent aggregate
+
+ if Present (Orig_Tag) then
+ Tag_Value := Orig_Tag;
+ elsif Java_VM then
+ Tag_Value := Empty;
+ else
+ Tag_Value :=
+ New_Occurrence_Of
+ (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
+ end if;
+
+ -- For a derived type, an aggregate for the parent is formed with
+ -- all the inherited components.
+
+ if Is_Derived_Type (Typ) then
+
+ declare
+ First_Comp : Node_Id;
+ Parent_Comps : List_Id;
+ Parent_Aggr : Node_Id;
+ Parent_Name : Node_Id;
+
+ begin
+ -- Remove the inherited component association from the
+ -- aggregate and store them in the parent aggregate
+
+ First_Comp := First (Component_Associations (N));
+ Parent_Comps := New_List;
+
+ while Present (First_Comp)
+ and then Scope (Original_Record_Component (
+ Entity (First (Choices (First_Comp))))) /= Base_Typ
+ loop
+ Comp := First_Comp;
+ Next (First_Comp);
+ Remove (Comp);
+ Append (Comp, Parent_Comps);
+ end loop;
+
+ Parent_Aggr := Make_Aggregate (Loc,
+ Component_Associations => Parent_Comps);
+ Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
+
+ -- Find the _parent component
+
+ Comp := First_Component (Typ);
+ while Chars (Comp) /= Name_uParent loop
+ Comp := Next_Component (Comp);
+ end loop;
+
+ Parent_Name := New_Occurrence_Of (Comp, Loc);
+
+ -- Insert the parent aggregate
+
+ Prepend_To (Component_Associations (N),
+ Make_Component_Association (Loc,
+ Choices => New_List (Parent_Name),
+ Expression => Parent_Aggr));
+
+ -- Expand recursively the parent propagating the right Tag
+
+ Expand_Record_Aggregate (
+ Parent_Aggr, Tag_Value, Parent_Expr);
+ end;
+
+ -- For a root type, the tag component is added (unless compiling
+ -- for the Java VM, where tags are implicit).
+
+ elsif not Java_VM then
+ declare
+ Tag_Name : constant Node_Id :=
+ New_Occurrence_Of
+ (First_Tag_Component (Typ), Loc);
+ Typ_Tag : constant Entity_Id := RTE (RE_Tag);
+ Conv_Node : constant Node_Id :=
+ Unchecked_Convert_To (Typ_Tag, Tag_Value);
+
+ begin
+ Set_Etype (Conv_Node, Typ_Tag);
+ Prepend_To (Component_Associations (N),
+ Make_Component_Association (Loc,
+ Choices => New_List (Tag_Name),
+ Expression => Conv_Node));
+ end;
+ end if;
+ end if;
+ end if;
+ end Expand_Record_Aggregate;
+
+ ----------------------------
+ -- Has_Default_Init_Comps --
+ ----------------------------
+
+ function Has_Default_Init_Comps (N : Node_Id) return Boolean is
+ Comps : constant List_Id := Component_Associations (N);
+ C : Node_Id;
+ Expr : Node_Id;
+ begin
+ pragma Assert (Nkind (N) = N_Aggregate
+ or else Nkind (N) = N_Extension_Aggregate);
+
+ if No (Comps) then
+ return False;
+ end if;
+
+ -- Check if any direct component has default initialized components
+
+ C := First (Comps);
+ while Present (C) loop
+ if Box_Present (C) then
+ return True;
+ end if;
+
+ Next (C);
+ end loop;
+
+ -- Recursive call in case of aggregate expression
+
+ C := First (Comps);
+ while Present (C) loop
+ Expr := Expression (C);
+
+ if Present (Expr)
+ and then (Nkind (Expr) = N_Aggregate
+ or else Nkind (Expr) = N_Extension_Aggregate)
+ and then Has_Default_Init_Comps (Expr)
+ then
+ return True;
+ end if;
+
+ Next (C);
+ end loop;
+
+ return False;
+ end Has_Default_Init_Comps;
+
+ --------------------------
+ -- Is_Delayed_Aggregate --
+ --------------------------
+
+ function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
+ Node : Node_Id := N;
+ Kind : Node_Kind := Nkind (Node);
+
+ begin
+ if Kind = N_Qualified_Expression then
+ Node := Expression (Node);
+ Kind := Nkind (Node);
+ end if;
+
+ if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
+ return False;
+ else
+ return Expansion_Delayed (Node);
+ end if;
+ end Is_Delayed_Aggregate;
+
+ --------------------
+ -- Late_Expansion --
+ --------------------
+
+ function Late_Expansion
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Target : Node_Id;
+ Flist : Node_Id := Empty;
+ Obj : Entity_Id := Empty) return List_Id
+ is
+ begin
+ if Is_Record_Type (Etype (N)) then
+ return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj);
+
+ else pragma Assert (Is_Array_Type (Etype (N)));
+ return
+ Build_Array_Aggr_Code
+ (N => N,
+ Ctype => Component_Type (Etype (N)),
+ Index => First_Index (Typ),
+ Into => Target,
+ Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
+ Indices => No_List,
+ Flist => Flist);
+ end if;
+ end Late_Expansion;
+
+ ----------------------------------
+ -- Make_OK_Assignment_Statement --
+ ----------------------------------
+
+ function Make_OK_Assignment_Statement
+ (Sloc : Source_Ptr;
+ Name : Node_Id;
+ Expression : Node_Id) return Node_Id
+ is
+ begin
+ Set_Assignment_OK (Name);
+ return Make_Assignment_Statement (Sloc, Name, Expression);
+ end Make_OK_Assignment_Statement;
+
+ -----------------------
+ -- Number_Of_Choices --
+ -----------------------
+
+ function Number_Of_Choices (N : Node_Id) return Nat is
+ Assoc : Node_Id;
+ Choice : Node_Id;
+
+ Nb_Choices : Nat := 0;
+
+ begin
+ if Present (Expressions (N)) then
+ return 0;
+ end if;
+
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+
+ if Nkind (Choice) /= N_Others_Choice then
+ Nb_Choices := Nb_Choices + 1;
+ end if;
+
+ Next (Choice);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ return Nb_Choices;
+ end Number_Of_Choices;
+
+ ------------------------------------
+ -- Packed_Array_Aggregate_Handled --
+ ------------------------------------
+
+ -- The current version of this procedure will handle at compile time
+ -- any array aggregate that meets these conditions:
+
+ -- One dimensional, bit packed
+ -- Underlying packed type is modular type
+ -- Bounds are within 32-bit Int range
+ -- All bounds and values are static
+
+ function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Ctyp : constant Entity_Id := Component_Type (Typ);
+
+ Not_Handled : exception;
+ -- Exception raised if this aggregate cannot be handled
+
+ begin
+ -- For now, handle only one dimensional bit packed arrays
+
+ if not Is_Bit_Packed_Array (Typ)
+ or else Number_Dimensions (Typ) > 1
+ or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
+ then
+ return False;
+ end if;
+
+ declare
+ Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
+
+ Lo : Node_Id;
+ Hi : Node_Id;
+ -- Bounds of index type
+
+ Lob : Uint;
+ Hib : Uint;
+ -- Values of bounds if compile time known
+
+ function Get_Component_Val (N : Node_Id) return Uint;
+ -- Given a expression value N of the component type Ctyp, returns
+ -- A value of Csiz (component size) bits representing this value.
+ -- If the value is non-static or any other reason exists why the
+ -- value cannot be returned, then Not_Handled is raised.
+
+ -----------------------
+ -- Get_Component_Val --
+ -----------------------
+
+ function Get_Component_Val (N : Node_Id) return Uint is
+ Val : Uint;
+
+ begin
+ -- We have to analyze the expression here before doing any further
+ -- processing here. The analysis of such expressions is deferred
+ -- till expansion to prevent some problems of premature analysis.
+
+ Analyze_And_Resolve (N, Ctyp);
+
+ -- Must have a compile time value. String literals have to
+ -- be converted into temporaries as well, because they cannot
+ -- easily be converted into their bit representation.
+
+ if not Compile_Time_Known_Value (N)
+ or else Nkind (N) = N_String_Literal
+ then
+ raise Not_Handled;
+ end if;
+
+ Val := Expr_Rep_Value (N);
+
+ -- Adjust for bias, and strip proper number of bits
+
+ if Has_Biased_Representation (Ctyp) then
+ Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
+ end if;
+
+ return Val mod Uint_2 ** Csiz;
+ end Get_Component_Val;
+
+ -- Here we know we have a one dimensional bit packed array
+
+ begin
+ Get_Index_Bounds (First_Index (Typ), Lo, Hi);
+
+ -- Cannot do anything if bounds are dynamic
+
+ if not Compile_Time_Known_Value (Lo)
+ or else
+ not Compile_Time_Known_Value (Hi)
+ then
+ return False;
+ end if;
+
+ -- Or are silly out of range of int bounds
+
+ Lob := Expr_Value (Lo);
+ Hib := Expr_Value (Hi);
+
+ if not UI_Is_In_Int_Range (Lob)
+ or else
+ not UI_Is_In_Int_Range (Hib)
+ then
+ return False;
+ end if;
+
+ -- At this stage we have a suitable aggregate for handling
+ -- at compile time (the only remaining checks, are that the
+ -- values of expressions in the aggregate are compile time
+ -- known (check performed by Get_Component_Val), and that
+ -- any subtypes or ranges are statically known.
+
+ -- If the aggregate is not fully positional at this stage,
+ -- then convert it to positional form. Either this will fail,
+ -- in which case we can do nothing, or it will succeed, in
+ -- which case we have succeeded in handling the aggregate,
+ -- or it will stay an aggregate, in which case we have failed
+ -- to handle this case.
+
+ if Present (Component_Associations (N)) then
+ Convert_To_Positional
+ (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
+ return Nkind (N) /= N_Aggregate;
+ end if;
+
+ -- Otherwise we are all positional, so convert to proper value
+
+ declare
+ Lov : constant Int := UI_To_Int (Lob);
+ Hiv : constant Int := UI_To_Int (Hib);
+
+ Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
+ -- The length of the array (number of elements)
+
+ Aggregate_Val : Uint;
+ -- Value of aggregate. The value is set in the low order
+ -- bits of this value. For the little-endian case, the
+ -- values are stored from low-order to high-order and
+ -- for the big-endian case the values are stored from
+ -- high-order to low-order. Note that gigi will take care
+ -- of the conversions to left justify the value in the big
+ -- endian case (because of left justified modular type
+ -- processing), so we do not have to worry about that here.
+
+ Lit : Node_Id;
+ -- Integer literal for resulting constructed value
+
+ Shift : Nat;
+ -- Shift count from low order for next value
+
+ Incr : Int;
+ -- Shift increment for loop
+
+ Expr : Node_Id;
+ -- Next expression from positional parameters of aggregate
+
+ begin
+ -- For little endian, we fill up the low order bits of the
+ -- target value. For big endian we fill up the high order
+ -- bits of the target value (which is a left justified
+ -- modular value).
+
+ if Bytes_Big_Endian xor Debug_Flag_8 then
+ Shift := Csiz * (Len - 1);
+ Incr := -Csiz;
+ else
+ Shift := 0;
+ Incr := +Csiz;
+ end if;
+
+ -- Loop to set the values
+
+ if Len = 0 then
+ Aggregate_Val := Uint_0;
+ else
+ Expr := First (Expressions (N));
+ Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
+
+ for J in 2 .. Len loop
+ Shift := Shift + Incr;
+ Next (Expr);
+ Aggregate_Val :=
+ Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
+ end loop;
+ end if;
+
+ -- Now we can rewrite with the proper value
+
+ Lit :=
+ Make_Integer_Literal (Loc,
+ Intval => Aggregate_Val);
+ Set_Print_In_Hex (Lit);
+
+ -- Construct the expression using this literal. Note that it is
+ -- important to qualify the literal with its proper modular type
+ -- since universal integer does not have the required range and
+ -- also this is a left justified modular type, which is important
+ -- in the big-endian case.
+
+ Rewrite (N,
+ Unchecked_Convert_To (Typ,
+ Make_Qualified_Expression (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
+ Expression => Lit)));
+
+ Analyze_And_Resolve (N, Typ);
+ return True;
+ end;
+ end;
+
+ exception
+ when Not_Handled =>
+ return False;
+ end Packed_Array_Aggregate_Handled;
+
+ ----------------------------
+ -- Has_Mutable_Components --
+ ----------------------------
+
+ function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+
+ begin
+ Comp := First_Component (Typ);
+
+ while Present (Comp) loop
+ if Is_Record_Type (Etype (Comp))
+ and then Has_Discriminants (Etype (Comp))
+ and then not Is_Constrained (Etype (Comp))
+ then
+ return True;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return False;
+ end Has_Mutable_Components;
+
+ ------------------------------
+ -- Initialize_Discriminants --
+ ------------------------------
+
+ procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Bas : constant Entity_Id := Base_Type (Typ);
+ Par : constant Entity_Id := Etype (Bas);
+ Decl : constant Node_Id := Parent (Par);
+ Ref : Node_Id;
+
+ begin
+ if Is_Tagged_Type (Bas)
+ and then Is_Derived_Type (Bas)
+ and then Has_Discriminants (Par)
+ and then Has_Discriminants (Bas)
+ and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
+ and then Nkind (Decl) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Decl)) = N_Record_Definition
+ and then Present
+ (Variant_Part (Component_List (Type_Definition (Decl))))
+ and then Nkind (N) /= N_Extension_Aggregate
+ then
+
+ -- Call init proc to set discriminants.
+ -- There should eventually be a special procedure for this ???
+
+ Ref := New_Reference_To (Defining_Identifier (N), Loc);
+ Insert_Actions_After (N,
+ Build_Initialization_Call (Sloc (N), Ref, Typ));
+ end if;
+ end Initialize_Discriminants;
+
+ ----------------
+ -- Must_Slide --
+ ----------------
+
+ function Must_Slide
+ (Obj_Type : Entity_Id;
+ Typ : Entity_Id) return Boolean
+ is
+ L1, L2, H1, H2 : Node_Id;
+ begin
+ -- No sliding if the type of the object is not established yet, if
+ -- it is an unconstrained type whose actual subtype comes from the
+ -- aggregate, or if the two types are identical.
+
+ if not Is_Array_Type (Obj_Type) then
+ return False;
+
+ elsif not Is_Constrained (Obj_Type) then
+ return False;
+
+ elsif Typ = Obj_Type then
+ return False;
+
+ else
+ -- Sliding can only occur along the first dimension
+
+ Get_Index_Bounds (First_Index (Typ), L1, H1);
+ Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
+
+ if not Is_Static_Expression (L1)
+ or else not Is_Static_Expression (L2)
+ or else not Is_Static_Expression (H1)
+ or else not Is_Static_Expression (H2)
+ then
+ return False;
+ else
+ return Expr_Value (L1) /= Expr_Value (L2)
+ or else Expr_Value (H1) /= Expr_Value (H2);
+ end if;
+ end if;
+ end Must_Slide;
+
+ ---------------------------
+ -- Safe_Slice_Assignment --
+ ---------------------------
+
+ function Safe_Slice_Assignment (N : Node_Id) return Boolean is
+ Loc : constant Source_Ptr := Sloc (Parent (N));
+ Pref : constant Node_Id := Prefix (Name (Parent (N)));
+ Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
+ Expr : Node_Id;
+ L_J : Entity_Id;
+ L_Iter : Node_Id;
+ L_Body : Node_Id;
+ Stat : Node_Id;
+
+ begin
+ -- Generate: for J in Range loop Pref (J) := Expr; end loop;
+
+ if Comes_From_Source (N)
+ and then No (Expressions (N))
+ and then Nkind (First (Choices (First (Component_Associations (N)))))
+ = N_Others_Choice
+ then
+ Expr :=
+ Expression (First (Component_Associations (N)));
+ L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
+
+ L_Iter :=
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification
+ (Loc,
+ Defining_Identifier => L_J,
+ Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
+
+ L_Body :=
+ Make_Assignment_Statement (Loc,
+ Name =>
+ Make_Indexed_Component (Loc,
+ Prefix => Relocate_Node (Pref),
+ Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
+ Expression => Relocate_Node (Expr));
+
+ -- Construct the final loop
+
+ Stat :=
+ Make_Implicit_Loop_Statement
+ (Node => Parent (N),
+ Identifier => Empty,
+ Iteration_Scheme => L_Iter,
+ Statements => New_List (L_Body));
+
+ -- Set type of aggregate to be type of lhs in assignment,
+ -- to suppress redundant length checks.
+
+ Set_Etype (N, Etype (Name (Parent (N))));
+
+ Rewrite (Parent (N), Stat);
+ Analyze (Parent (N));
+ return True;
+
+ else
+ return False;
+ end if;
+ end Safe_Slice_Assignment;
+
+ ---------------------
+ -- Sort_Case_Table --
+ ---------------------
+
+ procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
+ L : constant Int := Case_Table'First;
+ U : constant Int := Case_Table'Last;
+ K : Int;
+ J : Int;
+ T : Case_Bounds;
+
+ begin
+ K := L;
+
+ while K /= U loop
+ T := Case_Table (K + 1);
+ J := K + 1;
+
+ while J /= L
+ and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
+ Expr_Value (T.Choice_Lo)
+ loop
+ Case_Table (J) := Case_Table (J - 1);
+ J := J - 1;
+ end loop;
+
+ Case_Table (J) := T;
+ K := K + 1;
+ end loop;
+ end Sort_Case_Table;
+
+end Exp_Aggr;