aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/libdecnumber/decNumber.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/libdecnumber/decNumber.c')
-rw-r--r--gcc-4.2.1-5666.3/libdecnumber/decNumber.c5963
1 files changed, 0 insertions, 5963 deletions
diff --git a/gcc-4.2.1-5666.3/libdecnumber/decNumber.c b/gcc-4.2.1-5666.3/libdecnumber/decNumber.c
deleted file mode 100644
index dbc421489..000000000
--- a/gcc-4.2.1-5666.3/libdecnumber/decNumber.c
+++ /dev/null
@@ -1,5963 +0,0 @@
-/* Decimal Number module for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
- Contributed by IBM Corporation. Author Mike Cowlishaw.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 2, or (at your option) any later
- version.
-
- In addition to the permissions in the GNU General Public License,
- the Free Software Foundation gives you unlimited permission to link
- the compiled version of this file into combinations with other
- programs, and to distribute those combinations without any
- restriction coming from the use of this file. (The General Public
- License restrictions do apply in other respects; for example, they
- cover modification of the file, and distribution when not linked
- into a combine executable.)
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING. If not, write to the Free
- Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301, USA. */
-
-/* ------------------------------------------------------------------ */
-/* This module comprises the routines for Standard Decimal Arithmetic */
-/* as defined in the specification which may be found on the */
-/* http://www2.hursley.ibm.com/decimal web pages. It implements both */
-/* the full ('extended') arithmetic and the simpler ('subset') */
-/* arithmetic. */
-/* */
-/* Usage notes: */
-/* */
-/* 1. This code is ANSI C89 except: */
-/* */
-/* a) Line comments (double forward slash) are used. (Most C */
-/* compilers accept these. If yours does not, a simple script */
-/* can be used to convert them to ANSI C comments.) */
-/* */
-/* b) Types from C99 stdint.h are used. If you do not have this */
-/* header file, see the User's Guide section of the decNumber */
-/* documentation; this lists the necessary definitions. */
-/* */
-/* c) If DECDPUN>4, non-ANSI 64-bit 'long long' types are used. */
-/* To avoid these, set DECDPUN <= 4 (see documentation). */
-/* */
-/* 2. The decNumber format which this library uses is optimized for */
-/* efficient processing of relatively short numbers; in particular */
-/* it allows the use of fixed sized structures and minimizes copy */
-/* and move operations. It does, however, support arbitrary */
-/* precision (up to 999,999,999 digits) and arbitrary exponent */
-/* range (Emax in the range 0 through 999,999,999 and Emin in the */
-/* range -999,999,999 through 0). */
-/* */
-/* 3. Operands to operator functions are never modified unless they */
-/* are also specified to be the result number (which is always */
-/* permitted). Other than that case, operands may not overlap. */
-/* */
-/* 4. Error handling: the type of the error is ORed into the status */
-/* flags in the current context (decContext structure). The */
-/* SIGFPE signal is then raised if the corresponding trap-enabler */
-/* flag in the decContext is set (is 1). */
-/* */
-/* It is the responsibility of the caller to clear the status */
-/* flags as required. */
-/* */
-/* The result of any routine which returns a number will always */
-/* be a valid number (which may be a special value, such as an */
-/* Infinity or NaN). */
-/* */
-/* 5. The decNumber format is not an exchangeable concrete */
-/* representation as it comprises fields which may be machine- */
-/* dependent (big-endian or little-endian, for example). */
-/* Canonical conversions to and from strings are provided; other */
-/* conversions are available in separate modules. */
-/* */
-/* 6. Normally, input operands are assumed to be valid. Set DECCHECK */
-/* to 1 for extended operand checking (including NULL operands). */
-/* Results are undefined if a badly-formed structure (or a NULL */
-/* NULL pointer to a structure) is provided, though with DECCHECK */
-/* enabled the operator routines are protected against exceptions. */
-/* (Except if the result pointer is NULL, which is unrecoverable.) */
-/* */
-/* However, the routines will never cause exceptions if they are */
-/* given well-formed operands, even if the value of the operands */
-/* is inappropriate for the operation and DECCHECK is not set. */
-/* */
-/* 7. Subset arithmetic is available only if DECSUBSET is set to 1. */
-/* ------------------------------------------------------------------ */
-/* Implementation notes for maintenance of this module: */
-/* */
-/* 1. Storage leak protection: Routines which use malloc are not */
-/* permitted to use return for fastpath or error exits (i.e., */
-/* they follow strict structured programming conventions). */
-/* Instead they have a do{}while(0); construct surrounding the */
-/* code which is protected -- break may be used from this. */
-/* Other routines are allowed to use the return statement inline. */
-/* */
-/* Storage leak accounting can be enabled using DECALLOC. */
-/* */
-/* 2. All loops use the for(;;) construct. Any do construct is for */
-/* protection as just described. */
-/* */
-/* 3. Setting status in the context must always be the very last */
-/* action in a routine, as non-0 status may raise a trap and hence */
-/* the call to set status may not return (if the handler uses long */
-/* jump). Therefore all cleanup must be done first. In general, */
-/* to achieve this we accumulate status and only finally apply it */
-/* by calling decContextSetStatus (via decStatus). */
-/* */
-/* Routines which allocate storage cannot, therefore, use the */
-/* 'top level' routines which could cause a non-returning */
-/* transfer of control. The decXxxxOp routines are safe (do not */
-/* call decStatus even if traps are set in the context) and should */
-/* be used instead (they are also a little faster). */
-/* */
-/* 4. Exponent checking is minimized by allowing the exponent to */
-/* grow outside its limits during calculations, provided that */
-/* the decFinalize function is called later. Multiplication and */
-/* division, and intermediate calculations in exponentiation, */
-/* require more careful checks because of the risk of 31-bit */
-/* overflow (the most negative valid exponent is -1999999997, for */
-/* a 999999999-digit number with adjusted exponent of -999999999). */
-/* */
-/* 5. Rounding is deferred until finalization of results, with any */
-/* 'off to the right' data being represented as a single digit */
-/* residue (in the range -1 through 9). This avoids any double- */
-/* rounding when more than one shortening takes place (for */
-/* example, when a result is subnormal). */
-/* */
-/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
-/* during many operations, so whole Units are handled and exact */
-/* accounting of digits is not needed. The correct digits value */
-/* is found by decGetDigits, which accounts for leading zeros. */
-/* This must be called before any rounding if the number of digits */
-/* is not known exactly. */
-/* */
-/* 7. We use the multiply-by-reciprocal 'trick' for partitioning */
-/* numbers up to four digits, using appropriate constants. This */
-/* is not useful for longer numbers because overflow of 32 bits */
-/* would lead to 4 multiplies, which is almost as expensive as */
-/* a divide (unless we assumed floating-point multiply available). */
-/* */
-/* 8. Unusual abbreviations possibly used in the commentary: */
-/* lhs -- left hand side (operand, of an operation) */
-/* lsd -- least significant digit (of coefficient) */
-/* lsu -- least significant Unit (of coefficient) */
-/* msd -- most significant digit (of coefficient) */
-/* msu -- most significant Unit (of coefficient) */
-/* rhs -- right hand side (operand, of an operation) */
-/* +ve -- positive */
-/* -ve -- negative */
-/* ------------------------------------------------------------------ */
-
-/* Some of glibc's string inlines cause warnings. Plus we'd rather
- rely on (and therefore test) GCC's string builtins. */
-#define __NO_STRING_INLINES
-
-#include <stdlib.h> /* for malloc, free, etc. */
-#include <stdio.h> /* for printf [if needed] */
-#include <string.h> /* for strcpy */
-#include <ctype.h> /* for lower */
-#include "config.h"
-#include "decNumber.h" /* base number library */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
-
-/* Constants */
-/* Public constant array: powers of ten (powers[n]==10**n) */
-const uInt powers[] = { 1, 10, 100, 1000, 10000, 100000, 1000000,
- 10000000, 100000000, 1000000000
-};
-
-/* Local constants */
-#define DIVIDE 0x80 /* Divide operators */
-#define REMAINDER 0x40 /* .. */
-#define DIVIDEINT 0x20 /* .. */
-#define REMNEAR 0x10 /* .. */
-#define COMPARE 0x01 /* Compare operators */
-#define COMPMAX 0x02 /* .. */
-#define COMPMIN 0x03 /* .. */
-#define COMPNAN 0x04 /* .. [NaN processing] */
-
-#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
-#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
-
-static Unit one[] = { 1 }; /* Unit array of 1, used for incrementing */
-
-/* Granularity-dependent code */
-#if DECDPUN<=4
-#define eInt Int /* extended integer */
-#define ueInt uInt /* unsigned extended integer */
- /* Constant multipliers for divide-by-power-of five using reciprocal */
- /* multiply, after removing powers of 2 by shifting, and final shift */
- /* of 17 [we only need up to **4] */
-static const uInt multies[] = { 131073, 26215, 5243, 1049, 210 };
-
- /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
-#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
-#else
- /* For DECDPUN>4 we currently use non-ANSI 64-bit types. These could */
- /* be replaced by subroutine calls later. */
-#ifdef long
-#undef long
-#endif
-typedef signed long long Long;
-typedef unsigned long long uLong;
-#define eInt Long /* extended integer */
-#define ueInt uLong /* unsigned extended integer */
-#endif
-
-/* Local routines */
-static decNumber *decAddOp (decNumber *, const decNumber *,
- const decNumber *, decContext *,
- uByte, uInt *);
-static void decApplyRound (decNumber *, decContext *, Int, uInt *);
-static Int decCompare (const decNumber * lhs, const decNumber * rhs);
-static decNumber *decCompareOp (decNumber *, const decNumber *, const decNumber *,
- decContext *, Flag, uInt *);
-static void decCopyFit (decNumber *, const decNumber *, decContext *,
- Int *, uInt *);
-static decNumber *decDivideOp (decNumber *, const decNumber *, const decNumber *,
- decContext *, Flag, uInt *);
-static void decFinalize (decNumber *, decContext *, Int *, uInt *);
-static Int decGetDigits (const Unit *, Int);
-#if DECSUBSET
-static Int decGetInt (const decNumber *, decContext *);
-#else
-static Int decGetInt (const decNumber *);
-#endif
-static decNumber *decMultiplyOp (decNumber *, const decNumber *,
- const decNumber *, decContext *, uInt *);
-static decNumber *decNaNs (decNumber *, const decNumber *, const decNumber *, uInt *);
-static decNumber *decQuantizeOp (decNumber *, const decNumber *,
- const decNumber *, decContext *, Flag, uInt *);
-static void decSetCoeff (decNumber *, decContext *, const Unit *,
- Int, Int *, uInt *);
-static void decSetOverflow (decNumber *, decContext *, uInt *);
-static void decSetSubnormal (decNumber *, decContext *, Int *, uInt *);
-static Int decShiftToLeast (Unit *, Int, Int);
-static Int decShiftToMost (Unit *, Int, Int);
-static void decStatus (decNumber *, uInt, decContext *);
-static Flag decStrEq (const char *, const char *);
-static void decToString (const decNumber *, char[], Flag);
-static decNumber *decTrim (decNumber *, Flag, Int *);
-static Int decUnitAddSub (const Unit *, Int, const Unit *, Int, Int, Unit *, Int);
-static Int decUnitCompare (const Unit *, Int, const Unit *, Int, Int);
-
-#if !DECSUBSET
-/* decFinish == decFinalize when no subset arithmetic needed */
-#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
-#else
-static void decFinish (decNumber *, decContext *, Int *, uInt *);
-static decNumber *decRoundOperand (const decNumber *, decContext *, uInt *);
-#endif
-
-/* Diagnostic macros, etc. */
-#if DECALLOC
-/* Handle malloc/free accounting. If enabled, our accountable routines */
-/* are used; otherwise the code just goes straight to the system malloc */
-/* and free routines. */
-#define malloc(a) decMalloc(a)
-#define free(a) decFree(a)
-#define DECFENCE 0x5a /* corruption detector */
-/* 'Our' malloc and free: */
-static void *decMalloc (size_t);
-static void decFree (void *);
-uInt decAllocBytes = 0; /* count of bytes allocated */
-/* Note that DECALLOC code only checks for storage buffer overflow. */
-/* To check for memory leaks, the decAllocBytes variable should be */
-/* checked to be 0 at appropriate times (e.g., after the test */
-/* harness completes a set of tests). This checking may be unreliable */
-/* if the testing is done in a multi-thread environment. */
-#endif
-
-#if DECCHECK
-/* Optional operand checking routines. Enabling these means that */
-/* decNumber and decContext operands to operator routines are checked */
-/* for correctness. This roughly doubles the execution time of the */
-/* fastest routines (and adds 600+ bytes), so should not normally be */
-/* used in 'production'. */
-#define DECUNUSED (void *)(0xffffffff)
-static Flag decCheckOperands (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-static Flag decCheckNumber (const decNumber *, decContext *);
-#endif
-
-#if DECTRACE || DECCHECK
-/* Optional trace/debugging routines. */
-void decNumberShow (const decNumber *); /* displays the components of a number */
-static void decDumpAr (char, const Unit *, Int);
-#endif
-
-/* ================================================================== */
-/* Conversions */
-/* ================================================================== */
-
-/* ------------------------------------------------------------------ */
-/* to-scientific-string -- conversion to numeric string */
-/* to-engineering-string -- conversion to numeric string */
-/* */
-/* decNumberToString(dn, string); */
-/* decNumberToEngString(dn, string); */
-/* */
-/* dn is the decNumber to convert */
-/* string is the string where the result will be laid out */
-/* */
-/* string must be at least dn->digits+14 characters long */
-/* */
-/* No error is possible, and no status can be set. */
-/* ------------------------------------------------------------------ */
-char *
-decNumberToString (const decNumber * dn, char *string)
-{
- decToString (dn, string, 0);
- return string;
-}
-
-char *
-decNumberToEngString (const decNumber * dn, char *string)
-{
- decToString (dn, string, 1);
- return string;
-}
-
-/* ------------------------------------------------------------------ */
-/* to-number -- conversion from numeric string */
-/* */
-/* decNumberFromString -- convert string to decNumber */
-/* dn -- the number structure to fill */
-/* chars[] -- the string to convert ('\0' terminated) */
-/* set -- the context used for processing any error, */
-/* determining the maximum precision available */
-/* (set.digits), determining the maximum and minimum */
-/* exponent (set.emax and set.emin), determining if */
-/* extended values are allowed, and checking the */
-/* rounding mode if overflow occurs or rounding is */
-/* needed. */
-/* */
-/* The length of the coefficient and the size of the exponent are */
-/* checked by this routine, so the correct error (Underflow or */
-/* Overflow) can be reported or rounding applied, as necessary. */
-/* */
-/* If bad syntax is detected, the result will be a quiet NaN. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberFromString (decNumber * dn, const char chars[], decContext * set)
-{
- Int exponent = 0; /* working exponent [assume 0] */
- uByte bits = 0; /* working flags [assume +ve] */
- Unit *res; /* where result will be built */
- Unit resbuff[D2U (DECBUFFER + 1)]; /* local buffer in case need temporary */
- Unit *allocres = NULL; /* -> allocated result, iff allocated */
- Int need; /* units needed for result */
- Int d = 0; /* count of digits found in decimal part */
- const char *dotchar = NULL; /* where dot was found */
- const char *cfirst; /* -> first character of decimal part */
- const char *last = NULL; /* -> last digit of decimal part */
- const char *firstexp; /* -> first significant exponent digit */
- const char *c; /* work */
- Unit *up; /* .. */
-#if DECDPUN>1
- Int i; /* .. */
-#endif
- Int residue = 0; /* rounding residue */
- uInt status = 0; /* error code */
-
-#if DECCHECK
- if (decCheckOperands (DECUNUSED, DECUNUSED, DECUNUSED, set))
- return decNumberZero (dn);
-#endif
-
- do
- { /* status & malloc protection */
- c = chars; /* -> input character */
- if (*c == '-')
- { /* handle leading '-' */
- bits = DECNEG;
- c++;
- }
- else if (*c == '+')
- c++; /* step over leading '+' */
- /* We're at the start of the number [we think] */
- cfirst = c; /* save */
- for (;; c++)
- {
- if (*c >= '0' && *c <= '9')
- { /* test for Arabic digit */
- last = c;
- d++; /* count of real digits */
- continue; /* still in decimal part */
- }
- if (*c != '.')
- break; /* done with decimal part */
- /* dot: record, check, and ignore */
- if (dotchar != NULL)
- { /* two dots */
- last = NULL; /* indicate bad */
- break;
- } /* .. and go report */
- dotchar = c; /* offset into decimal part */
- } /* c */
-
- if (last == NULL)
- { /* no decimal digits, or >1 . */
-#if DECSUBSET
- /* If subset then infinities and NaNs are not allowed */
- if (!set->extended)
- {
- status = DEC_Conversion_syntax;
- break; /* all done */
- }
- else
- {
-#endif
- /* Infinities and NaNs are possible, here */
- decNumberZero (dn); /* be optimistic */
- if (decStrEq (c, "Infinity") || decStrEq (c, "Inf"))
- {
- dn->bits = bits | DECINF;
- break; /* all done */
- }
- else
- { /* a NaN expected */
- /* 2003.09.10 NaNs are now permitted to have a sign */
- status = DEC_Conversion_syntax; /* assume the worst */
- dn->bits = bits | DECNAN; /* assume simple NaN */
- if (*c == 's' || *c == 'S')
- { /* looks like an` sNaN */
- c++;
- dn->bits = bits | DECSNAN;
- }
- if (*c != 'n' && *c != 'N')
- break; /* check caseless "NaN" */
- c++;
- if (*c != 'a' && *c != 'A')
- break; /* .. */
- c++;
- if (*c != 'n' && *c != 'N')
- break; /* .. */
- c++;
- /* now nothing, or nnnn, expected */
- /* -> start of integer and skip leading 0s [including plain 0] */
- for (cfirst = c; *cfirst == '0';)
- cfirst++;
- if (*cfirst == '\0')
- { /* "NaN" or "sNaN", maybe with all 0s */
- status = 0; /* it's good */
- break; /* .. */
- }
- /* something other than 0s; setup last and d as usual [no dots] */
- for (c = cfirst;; c++, d++)
- {
- if (*c < '0' || *c > '9')
- break; /* test for Arabic digit */
- last = c;
- }
- if (*c != '\0')
- break; /* not all digits */
- if (d > set->digits)
- break; /* too many digits */
- /* good; drop through and convert the integer */
- status = 0;
- bits = dn->bits; /* for copy-back */
- } /* NaN expected */
-#if DECSUBSET
- }
-#endif
- } /* last==NULL */
-
- if (*c != '\0')
- { /* more there; exponent expected... */
- Flag nege = 0; /* 1=negative exponent */
- if (*c != 'e' && *c != 'E')
- {
- status = DEC_Conversion_syntax;
- break;
- }
-
- /* Found 'e' or 'E' -- now process explicit exponent */
- /* 1998.07.11: sign no longer required */
- c++; /* to (expected) sign */
- if (*c == '-')
- {
- nege = 1;
- c++;
- }
- else if (*c == '+')
- c++;
- if (*c == '\0')
- {
- status = DEC_Conversion_syntax;
- break;
- }
-
- for (; *c == '0' && *(c + 1) != '\0';)
- c++; /* strip insignificant zeros */
- firstexp = c; /* save exponent digit place */
- for (;; c++)
- {
- if (*c < '0' || *c > '9')
- break; /* not a digit */
- exponent = X10 (exponent) + (Int) * c - (Int) '0';
- } /* c */
- /* if we didn't end on '\0' must not be a digit */
- if (*c != '\0')
- {
- status = DEC_Conversion_syntax;
- break;
- }
-
- /* (this next test must be after the syntax check) */
- /* if it was too long the exponent may have wrapped, so check */
- /* carefully and set it to a certain overflow if wrap possible */
- if (c >= firstexp + 9 + 1)
- {
- if (c > firstexp + 9 + 1 || *firstexp > '1')
- exponent = DECNUMMAXE * 2;
- /* [up to 1999999999 is OK, for example 1E-1000000998] */
- }
- if (nege)
- exponent = -exponent; /* was negative */
- } /* had exponent */
- /* Here when all inspected; syntax is good */
-
- /* Handle decimal point... */
- if (dotchar != NULL && dotchar < last) /* embedded . found, so */
- exponent = exponent - (last - dotchar); /* .. adjust exponent */
- /* [we can now ignore the .] */
-
- /* strip leading zeros/dot (leave final if all 0's) */
- for (c = cfirst; c < last; c++)
- {
- if (*c == '0')
- d--; /* 0 stripped */
- else if (*c != '.')
- break;
- cfirst++; /* step past leader */
- } /* c */
-
-#if DECSUBSET
- /* We can now make a rapid exit for zeros if !extended */
- if (*cfirst == '0' && !set->extended)
- {
- decNumberZero (dn); /* clean result */
- break; /* [could be return] */
- }
-#endif
-
- /* OK, the digits string is good. Copy to the decNumber, or to
- a temporary decNumber if rounding is needed */
- if (d <= set->digits)
- res = dn->lsu; /* fits into given decNumber */
- else
- { /* rounding needed */
- need = D2U (d); /* units needed */
- res = resbuff; /* assume use local buffer */
- if (need * sizeof (Unit) > sizeof (resbuff))
- { /* too big for local */
- allocres = (Unit *) malloc (need * sizeof (Unit));
- if (allocres == NULL)
- {
- status |= DEC_Insufficient_storage;
- break;
- }
- res = allocres;
- }
- }
- /* res now -> number lsu, buffer, or allocated storage for Unit array */
-
- /* Place the coefficient into the selected Unit array */
-#if DECDPUN>1
- i = d % DECDPUN; /* digits in top unit */
- if (i == 0)
- i = DECDPUN;
- up = res + D2U (d) - 1; /* -> msu */
- *up = 0;
- for (c = cfirst;; c++)
- { /* along the digits */
- if (*c == '.')
- { /* ignore . [don't decrement i] */
- if (c != last)
- continue;
- break;
- }
- *up = (Unit) (X10 (*up) + (Int) * c - (Int) '0');
- i--;
- if (i > 0)
- continue; /* more for this unit */
- if (up == res)
- break; /* just filled the last unit */
- i = DECDPUN;
- up--;
- *up = 0;
- } /* c */
-#else
- /* DECDPUN==1 */
- up = res; /* -> lsu */
- for (c = last; c >= cfirst; c--)
- { /* over each character, from least */
- if (*c == '.')
- continue; /* ignore . [don't step b] */
- *up = (Unit) ((Int) * c - (Int) '0');
- up++;
- } /* c */
-#endif
-
- dn->bits = bits;
- dn->exponent = exponent;
- dn->digits = d;
-
- /* if not in number (too long) shorten into the number */
- if (d > set->digits)
- decSetCoeff (dn, set, res, d, &residue, &status);
-
- /* Finally check for overflow or subnormal and round as needed */
- decFinalize (dn, set, &residue, &status);
- /* decNumberShow(dn); */
- }
- while (0); /* [for break] */
-
- if (allocres != NULL)
- free (allocres); /* drop any storage we used */
- if (status != 0)
- decStatus (dn, status, set);
- return dn;
-}
-
-/* ================================================================== */
-/* Operators */
-/* ================================================================== */
-
-/* ------------------------------------------------------------------ */
-/* decNumberAbs -- absolute value operator */
-/* */
-/* This computes C = abs(A) */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* This has the same effect as decNumberPlus unless A is negative, */
-/* in which case it has the same effect as decNumberMinus. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberAbs (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber dzero; /* for 0 */
- uInt status = 0; /* accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- decNumberZero (&dzero); /* set 0 */
- dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
- decAddOp (res, &dzero, rhs, set, (uByte) (rhs->bits & DECNEG), &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberAdd -- add two Numbers */
-/* */
-/* This computes C = A + B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* This just calls the routine shared with Subtract */
-decNumber *
-decNumberAdd (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decAddOp (res, lhs, rhs, set, 0, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberCompare -- compare two Numbers */
-/* */
-/* This computes C = A ? B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for one digit. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberCompare (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decCompareOp (res, lhs, rhs, set, COMPARE, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberDivide -- divide one number by another */
-/* */
-/* This computes C = A / B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberDivide (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, DIVIDE, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberDivideInteger -- divide and return integer quotient */
-/* */
-/* This computes C = A # B, where # is the integer divide operator */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberDivideInteger (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, DIVIDEINT, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMax -- compare two Numbers and return the maximum */
-/* */
-/* This computes C = A ? B, returning the maximum or A if equal */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMax (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decCompareOp (res, lhs, rhs, set, COMPMAX, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMin -- compare two Numbers and return the minimum */
-/* */
-/* This computes C = A ? B, returning the minimum or A if equal */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMin (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decCompareOp (res, lhs, rhs, set, COMPMIN, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMinus -- prefix minus operator */
-/* */
-/* This computes C = 0 - A */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* We simply use AddOp for the subtract, which will do the necessary. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMinus (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber dzero;
- uInt status = 0; /* accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- decNumberZero (&dzero); /* make 0 */
- dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
- decAddOp (res, &dzero, rhs, set, DECNEG, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberPlus -- prefix plus operator */
-/* */
-/* This computes C = 0 + A */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* We simply use AddOp; Add will take fast path after preparing A. */
-/* Performance is a concern here, as this routine is often used to */
-/* check operands and apply rounding and overflow/underflow testing. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberPlus (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber dzero;
- uInt status = 0; /* accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- decNumberZero (&dzero); /* make 0 */
- dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
- decAddOp (res, &dzero, rhs, set, 0, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMultiply -- multiply two Numbers */
-/* */
-/* This computes C = A x B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMultiply (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decMultiplyOp (res, lhs, rhs, set, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberNormalize -- remove trailing zeros */
-/* */
-/* This computes C = 0 + A, and normalizes the result */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberNormalize (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
- uInt status = 0; /* as usual */
- Int residue = 0; /* as usual */
- Int dropped; /* work */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, &status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* specials copy through, except NaNs need care */
- if (decNumberIsNaN (rhs))
- {
- decNaNs (res, rhs, NULL, &status);
- break;
- }
-
- /* reduce result to the requested length and copy to result */
- decCopyFit (res, rhs, set, &residue, &status); /* copy & round */
- decFinish (res, set, &residue, &status); /* cleanup/set flags */
- decTrim (res, 1, &dropped); /* normalize in place */
- }
- while (0); /* end protected */
-
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (status != 0)
- decStatus (res, status, set); /* then report status */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberPower -- raise a number to an integer power */
-/* */
-/* This computes C = A ** B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* Specification restriction: abs(n) must be <=999999999 */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberPower (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- decNumber *allocdac = NULL; /* -> allocated acc buffer, iff used */
- const decNumber *inrhs = rhs; /* save original rhs */
- Int reqdigits = set->digits; /* requested DIGITS */
- Int n; /* RHS in binary */
- Int i; /* work */
-#if DECSUBSET
- Int dropped; /* .. */
-#endif
- uInt needbytes; /* buffer size needed */
- Flag seenbit; /* seen a bit while powering */
- Int residue = 0; /* rounding residue */
- uInt status = 0; /* accumulator */
- uByte bits = 0; /* result sign if errors */
- decContext workset; /* working context */
- decNumber dnOne; /* work value 1... */
- /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
- uByte dacbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
- /* same again for possible 1/lhs calculation */
- uByte lhsbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
- decNumber *dac = (decNumber *) dacbuff; /* -> result accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, &status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- /* rounding won't affect the result, but we might signal lostDigits */
- /* as well as the error for non-integer [x**y would need this too] */
- if (rhs->digits > reqdigits)
- {
- allocrhs = decRoundOperand (rhs, set, &status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* handle rhs Infinity */
- if (decNumberIsInfinite (rhs))
- {
- status |= DEC_Invalid_operation; /* bad */
- break;
- }
- /* handle NaNs */
- if ((lhs->bits | rhs->bits) & (DECNAN | DECSNAN))
- {
- decNaNs (res, lhs, rhs, &status);
- break;
- }
-
- /* Original rhs must be an integer that fits and is in range */
-#if DECSUBSET
- n = decGetInt (inrhs, set);
-#else
- n = decGetInt (inrhs);
-#endif
- if (n == BADINT || n > 999999999 || n < -999999999)
- {
- status |= DEC_Invalid_operation;
- break;
- }
- if (n < 0)
- { /* negative */
- n = -n; /* use the absolute value */
- }
- if (decNumberIsNegative (lhs) /* -x .. */
- && (n & 0x00000001))
- bits = DECNEG; /* .. to an odd power */
-
- /* handle LHS infinity */
- if (decNumberIsInfinite (lhs))
- { /* [NaNs already handled] */
- uByte rbits = rhs->bits; /* save */
- decNumberZero (res);
- if (n == 0)
- *res->lsu = 1; /* [-]Inf**0 => 1 */
- else
- {
- if (!(rbits & DECNEG))
- bits |= DECINF; /* was not a **-n */
- /* [otherwise will be 0 or -0] */
- res->bits = bits;
- }
- break;
- }
-
- /* clone the context */
- workset = *set; /* copy all fields */
- /* calculate the working DIGITS */
- workset.digits = reqdigits + (inrhs->digits + inrhs->exponent) + 1;
- /* it's an error if this is more than we can handle */
- if (workset.digits > DECNUMMAXP)
- {
- status |= DEC_Invalid_operation;
- break;
- }
-
- /* workset.digits is the count of digits for the accumulator we need */
- /* if accumulator is too long for local storage, then allocate */
- needbytes =
- sizeof (decNumber) + (D2U (workset.digits) - 1) * sizeof (Unit);
- /* [needbytes also used below if 1/lhs needed] */
- if (needbytes > sizeof (dacbuff))
- {
- allocdac = (decNumber *) malloc (needbytes);
- if (allocdac == NULL)
- { /* hopeless -- abandon */
- status |= DEC_Insufficient_storage;
- break;
- }
- dac = allocdac; /* use the allocated space */
- }
- decNumberZero (dac); /* acc=1 */
- *dac->lsu = 1; /* .. */
-
- if (n == 0)
- { /* x**0 is usually 1 */
- /* 0**0 is bad unless subset, when it becomes 1 */
- if (ISZERO (lhs)
-#if DECSUBSET
- && set->extended
-#endif
- )
- status |= DEC_Invalid_operation;
- else
- decNumberCopy (res, dac); /* copy the 1 */
- break;
- }
-
- /* if a negative power we'll need the constant 1, and if not subset */
- /* we'll invert the lhs now rather than inverting the result later */
- if (decNumberIsNegative (rhs))
- { /* was a **-n [hence digits>0] */
- decNumber * newlhs;
- decNumberCopy (&dnOne, dac); /* dnOne=1; [needed now or later] */
-#if DECSUBSET
- if (set->extended)
- { /* need to calculate 1/lhs */
-#endif
- /* divide lhs into 1, putting result in dac [dac=1/dac] */
- decDivideOp (dac, &dnOne, lhs, &workset, DIVIDE, &status);
- if (alloclhs != NULL)
- {
- free (alloclhs); /* done with intermediate */
- alloclhs = NULL; /* indicate freed */
- }
- /* now locate or allocate space for the inverted lhs */
- if (needbytes > sizeof (lhsbuff))
- {
- alloclhs = (decNumber *) malloc (needbytes);
- if (alloclhs == NULL)
- { /* hopeless -- abandon */
- status |= DEC_Insufficient_storage;
- break;
- }
- newlhs = alloclhs; /* use the allocated space */
- }
- else
- newlhs = (decNumber *) lhsbuff; /* use stack storage */
- /* [lhs now points to buffer or allocated storage] */
- decNumberCopy (newlhs, dac); /* copy the 1/lhs */
- decNumberCopy (dac, &dnOne); /* restore acc=1 */
- lhs = newlhs;
-#if DECSUBSET
- }
-#endif
- }
-
- /* Raise-to-the-power loop... */
- seenbit = 0; /* set once we've seen a 1-bit */
- for (i = 1;; i++)
- { /* for each bit [top bit ignored] */
- /* abandon if we have had overflow or terminal underflow */
- if (status & (DEC_Overflow | DEC_Underflow))
- { /* interesting? */
- if (status & DEC_Overflow || ISZERO (dac))
- break;
- }
- /* [the following two lines revealed an optimizer bug in a C++ */
- /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
- n = n << 1; /* move next bit to testable position */
- if (n < 0)
- { /* top bit is set */
- seenbit = 1; /* OK, we're off */
- decMultiplyOp (dac, dac, lhs, &workset, &status); /* dac=dac*x */
- }
- if (i == 31)
- break; /* that was the last bit */
- if (!seenbit)
- continue; /* we don't have to square 1 */
- decMultiplyOp (dac, dac, dac, &workset, &status); /* dac=dac*dac [square] */
- } /*i *//* 32 bits */
-
- /* complete internal overflow or underflow processing */
- if (status & (DEC_Overflow | DEC_Subnormal))
- {
-#if DECSUBSET
- /* If subset, and power was negative, reverse the kind of -erflow */
- /* [1/x not yet done] */
- if (!set->extended && decNumberIsNegative (rhs))
- {
- if (status & DEC_Overflow)
- status ^= DEC_Overflow | DEC_Underflow | DEC_Subnormal;
- else
- { /* trickier -- Underflow may or may not be set */
- status &= ~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
- status |= DEC_Overflow;
- }
- }
-#endif
- dac->bits = (dac->bits & ~DECNEG) | bits; /* force correct sign */
- /* round subnormals [to set.digits rather than workset.digits] */
- /* or set overflow result similarly as required */
- decFinalize (dac, set, &residue, &status);
- decNumberCopy (res, dac); /* copy to result (is now OK length) */
- break;
- }
-
-#if DECSUBSET
- if (!set->extended && /* subset math */
- decNumberIsNegative (rhs))
- { /* was a **-n [hence digits>0] */
- /* so divide result into 1 [dac=1/dac] */
- decDivideOp (dac, &dnOne, dac, &workset, DIVIDE, &status);
- }
-#endif
-
- /* reduce result to the requested length and copy to result */
- decCopyFit (res, dac, set, &residue, &status);
- decFinish (res, set, &residue, &status); /* final cleanup */
-#if DECSUBSET
- if (!set->extended)
- decTrim (res, 0, &dropped); /* trailing zeros */
-#endif
- }
- while (0); /* end protected */
-
- if (allocdac != NULL)
- free (allocdac); /* drop any storage we used */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberQuantize -- force exponent to requested value */
-/* */
-/* This computes C = op(A, B), where op adjusts the coefficient */
-/* of C (by rounding or shifting) such that the exponent (-scale) */
-/* of C has exponent of B. The numerical value of C will equal A, */
-/* except for the effects of any rounding that occurred. */
-/* */
-/* res is C, the result. C may be A or B */
-/* lhs is A, the number to adjust */
-/* rhs is B, the number with exponent to match */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* Unless there is an error or the result is infinite, the exponent */
-/* after the operation is guaranteed to be equal to that of B. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberQuantize (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decQuantizeOp (res, lhs, rhs, set, 1, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberRescale -- force exponent to requested value */
-/* */
-/* This computes C = op(A, B), where op adjusts the coefficient */
-/* of C (by rounding or shifting) such that the exponent (-scale) */
-/* of C has the value B. The numerical value of C will equal A, */
-/* except for the effects of any rounding that occurred. */
-/* */
-/* res is C, the result. C may be A or B */
-/* lhs is A, the number to adjust */
-/* rhs is B, the requested exponent */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* Unless there is an error or the result is infinite, the exponent */
-/* after the operation is guaranteed to be equal to B. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberRescale (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decQuantizeOp (res, lhs, rhs, set, 0, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberRemainder -- divide and return remainder */
-/* */
-/* This computes C = A % B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberRemainder (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, REMAINDER, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberRemainderNear -- divide and return remainder from nearest */
-/* */
-/* This computes C = A % B, where % is the IEEE remainder operator */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberRemainderNear (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, REMNEAR, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberSameQuantum -- test for equal exponents */
-/* */
-/* res is the result number, which will contain either 0 or 1 */
-/* lhs is a number to test */
-/* rhs is the second (usually a pattern) */
-/* */
-/* No errors are possible and no context is needed. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberSameQuantum (decNumber * res, const decNumber * lhs, const decNumber * rhs)
-{
- uByte merged; /* merged flags */
- Unit ret = 0; /* return value */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, DECUNUSED))
- return res;
-#endif
-
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- {
- if (decNumberIsNaN (lhs) && decNumberIsNaN (rhs))
- ret = 1;
- else if (decNumberIsInfinite (lhs) && decNumberIsInfinite (rhs))
- ret = 1;
- /* [anything else with a special gives 0] */
- }
- else if (lhs->exponent == rhs->exponent)
- ret = 1;
-
- decNumberZero (res); /* OK to overwrite an operand */
- *res->lsu = ret;
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberSquareRoot -- square root operator */
-/* */
-/* This computes C = squareroot(A) */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context; note that rounding mode has no effect */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* This uses the following varying-precision algorithm in: */
-/* */
-/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
-/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
-/* pp229-237, ACM, September 1985. */
-/* */
-/* % [Reformatted original Numerical Turing source code follows.] */
-/* function sqrt(x : real) : real */
-/* % sqrt(x) returns the properly rounded approximation to the square */
-/* % root of x, in the precision of the calling environment, or it */
-/* % fails if x < 0. */
-/* % t e hull and a abrham, august, 1984 */
-/* if x <= 0 then */
-/* if x < 0 then */
-/* assert false */
-/* else */
-/* result 0 */
-/* end if */
-/* end if */
-/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
-/* var e := getexp(x) % exponent part of x */
-/* var approx : real */
-/* if e mod 2 = 0 then */
-/* approx := .259 + .819 * f % approx to root of f */
-/* else */
-/* f := f/l0 % adjustments */
-/* e := e + 1 % for odd */
-/* approx := .0819 + 2.59 * f % exponent */
-/* end if */
-/* */
-/* var p:= 3 */
-/* const maxp := currentprecision + 2 */
-/* loop */
-/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
-/* precision p */
-/* approx := .5 * (approx + f/approx) */
-/* exit when p = maxp */
-/* end loop */
-/* */
-/* % approx is now within 1 ulp of the properly rounded square root */
-/* % of f; to ensure proper rounding, compare squares of (approx - */
-/* % l/2 ulp) and (approx + l/2 ulp) with f. */
-/* p := currentprecision */
-/* begin */
-/* precision p + 2 */
-/* const approxsubhalf := approx - setexp(.5, -p) */
-/* if mulru(approxsubhalf, approxsubhalf) > f then */
-/* approx := approx - setexp(.l, -p + 1) */
-/* else */
-/* const approxaddhalf := approx + setexp(.5, -p) */
-/* if mulrd(approxaddhalf, approxaddhalf) < f then */
-/* approx := approx + setexp(.l, -p + 1) */
-/* end if */
-/* end if */
-/* end */
-/* result setexp(approx, e div 2) % fix exponent */
-/* end sqrt */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberSquareRoot (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decContext workset, approxset; /* work contexts */
- decNumber dzero; /* used for constant zero */
- Int maxp = set->digits + 2; /* largest working precision */
- Int residue = 0; /* rounding residue */
- uInt status = 0, ignore = 0; /* status accumulators */
- Int exp; /* working exponent */
- Int ideal; /* ideal (preferred) exponent */
- uInt needbytes; /* work */
- Int dropped; /* .. */
-
- decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
- /* buffer for f [needs +1 in case DECBUFFER 0] */
- uByte buff[sizeof (decNumber) + (D2U (DECBUFFER + 1) - 1) * sizeof (Unit)];
- /* buffer for a [needs +2 to match maxp] */
- uByte bufa[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
- /* buffer for temporary, b [must be same size as a] */
- uByte bufb[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
- decNumber *allocbuff = NULL; /* -> allocated buff, iff allocated */
- decNumber *allocbufa = NULL; /* -> allocated bufa, iff allocated */
- decNumber *allocbufb = NULL; /* -> allocated bufb, iff allocated */
- decNumber *f = (decNumber *) buff; /* reduced fraction */
- decNumber *a = (decNumber *) bufa; /* approximation to result */
- decNumber *b = (decNumber *) bufb; /* intermediate result */
- /* buffer for temporary variable, up to 3 digits */
- uByte buft[sizeof (decNumber) + (D2U (3) - 1) * sizeof (Unit)];
- decNumber *t = (decNumber *) buft; /* up-to-3-digit constant or work */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, &status);
- if (allocrhs == NULL)
- break;
- /* [Note: 'f' allocation below could reuse this buffer if */
- /* used, but as this is rare we keep them separate for clarity.] */
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* handle infinities and NaNs */
- if (rhs->bits & DECSPECIAL)
- {
- if (decNumberIsInfinite (rhs))
- { /* an infinity */
- if (decNumberIsNegative (rhs))
- status |= DEC_Invalid_operation;
- else
- decNumberCopy (res, rhs); /* +Infinity */
- }
- else
- decNaNs (res, rhs, NULL, &status); /* a NaN */
- break;
- }
-
- /* calculate the ideal (preferred) exponent [floor(exp/2)] */
- /* [We would like to write: ideal=rhs->exponent>>1, but this */
- /* generates a compiler warning. Generated code is the same.] */
- ideal = (rhs->exponent & ~1) / 2; /* target */
-
- /* handle zeros */
- if (ISZERO (rhs))
- {
- decNumberCopy (res, rhs); /* could be 0 or -0 */
- res->exponent = ideal; /* use the ideal [safe] */
- break;
- }
-
- /* any other -x is an oops */
- if (decNumberIsNegative (rhs))
- {
- status |= DEC_Invalid_operation;
- break;
- }
-
- /* we need space for three working variables */
- /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
- /* a -- Hull's approx -- precision, when assigned, is */
- /* currentprecision (we allow +2 for use as temporary) */
- /* b -- intermediate temporary result */
- /* if any is too long for local storage, then allocate */
- needbytes =
- sizeof (decNumber) + (D2U (rhs->digits) - 1) * sizeof (Unit);
- if (needbytes > sizeof (buff))
- {
- allocbuff = (decNumber *) malloc (needbytes);
- if (allocbuff == NULL)
- { /* hopeless -- abandon */
- status |= DEC_Insufficient_storage;
- break;
- }
- f = allocbuff; /* use the allocated space */
- }
- /* a and b both need to be able to hold a maxp-length number */
- needbytes = sizeof (decNumber) + (D2U (maxp) - 1) * sizeof (Unit);
- if (needbytes > sizeof (bufa))
- { /* [same applies to b] */
- allocbufa = (decNumber *) malloc (needbytes);
- allocbufb = (decNumber *) malloc (needbytes);
- if (allocbufa == NULL || allocbufb == NULL)
- { /* hopeless */
- status |= DEC_Insufficient_storage;
- break;
- }
- a = allocbufa; /* use the allocated space */
- b = allocbufb; /* .. */
- }
-
- /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
- decNumberCopy (f, rhs);
- exp = f->exponent + f->digits; /* adjusted to Hull rules */
- f->exponent = -(f->digits); /* to range */
-
- /* set up working contexts (the second is used for Numerical */
- /* Turing assignment) */
- decContextDefault (&workset, DEC_INIT_DECIMAL64);
- decContextDefault (&approxset, DEC_INIT_DECIMAL64);
- approxset.digits = set->digits; /* approx's length */
-
- /* [Until further notice, no error is possible and status bits */
- /* (Rounded, etc.) should be ignored, not accumulated.] */
-
- /* Calculate initial approximation, and allow for odd exponent */
- workset.digits = set->digits; /* p for initial calculation */
- t->bits = 0;
- t->digits = 3;
- a->bits = 0;
- a->digits = 3;
- if ((exp & 1) == 0)
- { /* even exponent */
- /* Set t=0.259, a=0.819 */
- t->exponent = -3;
- a->exponent = -3;
-#if DECDPUN>=3
- t->lsu[0] = 259;
- a->lsu[0] = 819;
-#elif DECDPUN==2
- t->lsu[0] = 59;
- t->lsu[1] = 2;
- a->lsu[0] = 19;
- a->lsu[1] = 8;
-#else
- t->lsu[0] = 9;
- t->lsu[1] = 5;
- t->lsu[2] = 2;
- a->lsu[0] = 9;
- a->lsu[1] = 1;
- a->lsu[2] = 8;
-#endif
- }
- else
- { /* odd exponent */
- /* Set t=0.0819, a=2.59 */
- f->exponent--; /* f=f/10 */
- exp++; /* e=e+1 */
- t->exponent = -4;
- a->exponent = -2;
-#if DECDPUN>=3
- t->lsu[0] = 819;
- a->lsu[0] = 259;
-#elif DECDPUN==2
- t->lsu[0] = 19;
- t->lsu[1] = 8;
- a->lsu[0] = 59;
- a->lsu[1] = 2;
-#else
- t->lsu[0] = 9;
- t->lsu[1] = 1;
- t->lsu[2] = 8;
- a->lsu[0] = 9;
- a->lsu[1] = 5;
- a->lsu[2] = 2;
-#endif
- }
- decMultiplyOp (a, a, f, &workset, &ignore); /* a=a*f */
- decAddOp (a, a, t, &workset, 0, &ignore); /* ..+t */
- /* [a is now the initial approximation for sqrt(f), calculated with */
- /* currentprecision, which is also a's precision.] */
-
- /* the main calculation loop */
- decNumberZero (&dzero); /* make 0 */
- decNumberZero (t); /* set t = 0.5 */
- t->lsu[0] = 5; /* .. */
- t->exponent = -1; /* .. */
- workset.digits = 3; /* initial p */
- for (;;)
- {
- /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
- workset.digits = workset.digits * 2 - 2;
- if (workset.digits > maxp)
- workset.digits = maxp;
- /* a = 0.5 * (a + f/a) */
- /* [calculated at p then rounded to currentprecision] */
- decDivideOp (b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
- decAddOp (b, b, a, &workset, 0, &ignore); /* b=b+a */
- decMultiplyOp (a, b, t, &workset, &ignore); /* a=b*0.5 */
- /* assign to approx [round to length] */
- decAddOp (a, &dzero, a, &approxset, 0, &ignore);
- if (workset.digits == maxp)
- break; /* just did final */
- } /* loop */
-
- /* a is now at currentprecision and within 1 ulp of the properly */
- /* rounded square root of f; to ensure proper rounding, compare */
- /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
- /* Here workset.digits=maxp and t=0.5 */
- workset.digits--; /* maxp-1 is OK now */
- t->exponent = -set->digits - 1; /* make 0.5 ulp */
- decNumberCopy (b, a);
- decAddOp (b, b, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
- workset.round = DEC_ROUND_UP;
- decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulru(b, b) */
- decCompareOp (b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
- if (decNumberIsNegative (b))
- { /* f < b [i.e., b > f] */
- /* this is the more common adjustment, though both are rare */
- t->exponent++; /* make 1.0 ulp */
- t->lsu[0] = 1; /* .. */
- decAddOp (a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
- /* assign to approx [round to length] */
- decAddOp (a, &dzero, a, &approxset, 0, &ignore);
- }
- else
- {
- decNumberCopy (b, a);
- decAddOp (b, b, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
- workset.round = DEC_ROUND_DOWN;
- decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
- decCompareOp (b, b, f, &workset, COMPARE, &ignore); /* b ? f */
- if (decNumberIsNegative (b))
- { /* b < f */
- t->exponent++; /* make 1.0 ulp */
- t->lsu[0] = 1; /* .. */
- decAddOp (a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
- /* assign to approx [round to length] */
- decAddOp (a, &dzero, a, &approxset, 0, &ignore);
- }
- }
- /* [no errors are possible in the above, and rounding/inexact during */
- /* estimation are irrelevant, so status was not accumulated] */
-
- /* Here, 0.1 <= a < 1 [Hull] */
- a->exponent += exp / 2; /* set correct exponent */
-
- /* Process Subnormals */
- decFinalize (a, set, &residue, &status);
-
- /* count dropable zeros [after any subnormal rounding] */
- decNumberCopy (b, a);
- decTrim (b, 1, &dropped); /* [drops trailing zeros] */
-
- /* Finally set Inexact and Rounded. The answer can only be exact if */
- /* it is short enough so that squaring it could fit in set->digits, */
- /* so this is the only (relatively rare) time we have to check */
- /* carefully */
- if (b->digits * 2 - 1 > set->digits)
- { /* cannot fit */
- status |= DEC_Inexact | DEC_Rounded;
- }
- else
- { /* could be exact/unrounded */
- uInt mstatus = 0; /* local status */
- decMultiplyOp (b, b, b, &workset, &mstatus); /* try the multiply */
- if (mstatus != 0)
- { /* result won't fit */
- status |= DEC_Inexact | DEC_Rounded;
- }
- else
- { /* plausible */
- decCompareOp (t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
- if (!ISZERO (t))
- {
- status |= DEC_Inexact | DEC_Rounded;
- }
- else
- { /* is Exact */
- /* here, dropped is the count of trailing zeros in 'a' */
- /* use closest exponent to ideal... */
- Int todrop = ideal - a->exponent; /* most we can drop */
-
- if (todrop < 0)
- { /* ideally would add 0s */
- status |= DEC_Rounded;
- }
- else
- { /* unrounded */
- if (dropped < todrop)
- todrop = dropped; /* clamp to those available */
- if (todrop > 0)
- { /* OK, some to drop */
- decShiftToLeast (a->lsu, D2U (a->digits), todrop);
- a->exponent += todrop; /* maintain numerical value */
- a->digits -= todrop; /* new length */
- }
- }
- }
- }
- }
- decNumberCopy (res, a); /* assume this is the result */
- }
- while (0); /* end protected */
-
- if (allocbuff != NULL)
- free (allocbuff); /* drop any storage we used */
- if (allocbufa != NULL)
- free (allocbufa); /* .. */
- if (allocbufb != NULL)
- free (allocbufb); /* .. */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (status != 0)
- decStatus (res, status, set); /* then report status */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberSubtract -- subtract two Numbers */
-/* */
-/* This computes C = A - B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberSubtract (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
-
- decAddOp (res, lhs, rhs, set, DECNEG, &status);
- if (status != 0)
- decStatus (res, status, set);
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberToIntegralValue -- round-to-integral-value */
-/* */
-/* res is the result */
-/* rhs is input number */
-/* set is the context */
-/* */
-/* res must have space for any value of rhs. */
-/* */
-/* This implements the IEEE special operator and therefore treats */
-/* special values as valid, and also never sets Inexact. For finite */
-/* numbers it returns rescale(rhs, 0) if rhs->exponent is <0. */
-/* Otherwise the result is rhs (so no error is possible). */
-/* */
-/* The context is used for rounding mode and status after sNaN, but */
-/* the digits setting is ignored. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberToIntegralValue (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber dn;
- decContext workset; /* working context */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- /* handle infinities and NaNs */
- if (rhs->bits & DECSPECIAL)
- {
- uInt status = 0;
- if (decNumberIsInfinite (rhs))
- decNumberCopy (res, rhs); /* an Infinity */
- else
- decNaNs (res, rhs, NULL, &status); /* a NaN */
- if (status != 0)
- decStatus (res, status, set);
- return res;
- }
-
- /* we have a finite number; no error possible */
- if (rhs->exponent >= 0)
- return decNumberCopy (res, rhs);
- /* that was easy, but if negative exponent we have work to do... */
- workset = *set; /* clone rounding, etc. */
- workset.digits = rhs->digits; /* no length rounding */
- workset.traps = 0; /* no traps */
- decNumberZero (&dn); /* make a number with exponent 0 */
- return decNumberQuantize (res, rhs, &dn, &workset);
-}
-
-/* ================================================================== */
-/* Utility routines */
-/* ================================================================== */
-
-/* ------------------------------------------------------------------ */
-/* decNumberCopy -- copy a number */
-/* */
-/* dest is the target decNumber */
-/* src is the source decNumber */
-/* returns dest */
-/* */
-/* (dest==src is allowed and is a no-op) */
-/* All fields are updated as required. This is a utility operation, */
-/* so special values are unchanged and no error is possible. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberCopy (decNumber * dest, const decNumber * src)
-{
-
-#if DECCHECK
- if (src == NULL)
- return decNumberZero (dest);
-#endif
-
- if (dest == src)
- return dest; /* no copy required */
-
- /* We use explicit assignments here as structure assignment can copy */
- /* more than just the lsu (for small DECDPUN). This would not affect */
- /* the value of the results, but would disturb test harness spill */
- /* checking. */
- dest->bits = src->bits;
- dest->exponent = src->exponent;
- dest->digits = src->digits;
- dest->lsu[0] = src->lsu[0];
- if (src->digits > DECDPUN)
- { /* more Units to come */
- Unit *d; /* work */
- const Unit *s, *smsup; /* work */
- /* memcpy for the remaining Units would be safe as they cannot */
- /* overlap. However, this explicit loop is faster in short cases. */
- d = dest->lsu + 1; /* -> first destination */
- smsup = src->lsu + D2U (src->digits); /* -> source msu+1 */
- for (s = src->lsu + 1; s < smsup; s++, d++)
- *d = *s;
- }
- return dest;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberTrim -- remove insignificant zeros */
-/* */
-/* dn is the number to trim */
-/* returns dn */
-/* */
-/* All fields are updated as required. This is a utility operation, */
-/* so special values are unchanged and no error is possible. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberTrim (decNumber * dn)
-{
- Int dropped; /* work */
- return decTrim (dn, 0, &dropped);
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberVersion -- return the name and version of this module */
-/* */
-/* No error is possible. */
-/* ------------------------------------------------------------------ */
-const char *
-decNumberVersion (void)
-{
- return DECVERSION;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberZero -- set a number to 0 */
-/* */
-/* dn is the number to set, with space for one digit */
-/* returns dn */
-/* */
-/* No error is possible. */
-/* ------------------------------------------------------------------ */
-/* Memset is not used as it is much slower in some environments. */
-decNumber *
-decNumberZero (decNumber * dn)
-{
-
-#if DECCHECK
- if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
- return dn;
-#endif
-
- dn->bits = 0;
- dn->exponent = 0;
- dn->digits = 1;
- dn->lsu[0] = 0;
- return dn;
-}
-
-/* ================================================================== */
-/* Local routines */
-/* ================================================================== */
-
-/* ------------------------------------------------------------------ */
-/* decToString -- lay out a number into a string */
-/* */
-/* dn is the number to lay out */
-/* string is where to lay out the number */
-/* eng is 1 if Engineering, 0 if Scientific */
-/* */
-/* str must be at least dn->digits+14 characters long */
-/* No error is possible. */
-/* */
-/* Note that this routine can generate a -0 or 0.000. These are */
-/* never generated in subset to-number or arithmetic, but can occur */
-/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
-/* ------------------------------------------------------------------ */
-/* If DECCHECK is enabled the string "?" is returned if a number is */
-/* invalid. */
-
-/* TODIGIT -- macro to remove the leading digit from the unsigned */
-/* integer u at column cut (counting from the right, LSD=0) and place */
-/* it as an ASCII character into the character pointed to by c. Note */
-/* that cut must be <= 9, and the maximum value for u is 2,000,000,000 */
-/* (as is needed for negative exponents of subnormals). The unsigned */
-/* integer pow is used as a temporary variable. */
-#define TODIGIT(u, cut, c) { \
- *(c)='0'; \
- pow=powers[cut]*2; \
- if ((u)>pow) { \
- pow*=4; \
- if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
- pow/=2; \
- if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
- pow/=2; \
- } \
- if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
- pow/=2; \
- if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
- }
-
-static void
-decToString (const decNumber * dn, char *string, Flag eng)
-{
- Int exp = dn->exponent; /* local copy */
- Int e; /* E-part value */
- Int pre; /* digits before the '.' */
- Int cut; /* for counting digits in a Unit */
- char *c = string; /* work [output pointer] */
- const Unit *up = dn->lsu + D2U (dn->digits) - 1; /* -> msu [input pointer] */
- uInt u, pow; /* work */
-
-#if DECCHECK
- if (decCheckOperands (DECUNUSED, dn, DECUNUSED, DECUNUSED))
- {
- strcpy (string, "?");
- return;
- }
-#endif
-
- if (decNumberIsNegative (dn))
- { /* Negatives get a minus (except */
- *c = '-'; /* NaNs, which remove the '-' below) */
- c++;
- }
- if (dn->bits & DECSPECIAL)
- { /* Is a special value */
- if (decNumberIsInfinite (dn))
- {
- strcpy (c, "Infinity");
- return;
- }
- /* a NaN */
- if (dn->bits & DECSNAN)
- { /* signalling NaN */
- *c = 's';
- c++;
- }
- strcpy (c, "NaN");
- c += 3; /* step past */
- /* if not a clean non-zero coefficient, that's all we have in a */
- /* NaN string */
- if (exp != 0 || (*dn->lsu == 0 && dn->digits == 1))
- return;
- /* [drop through to add integer] */
- }
-
- /* calculate how many digits in msu, and hence first cut */
- cut = dn->digits % DECDPUN;
- if (cut == 0)
- cut = DECDPUN; /* msu is full */
- cut--; /* power of ten for digit */
-
- if (exp == 0)
- { /* simple integer [common fastpath, */
- /* used for NaNs, too] */
- for (; up >= dn->lsu; up--)
- { /* each Unit from msu */
- u = *up; /* contains DECDPUN digits to lay out */
- for (; cut >= 0; c++, cut--)
- TODIGIT (u, cut, c);
- cut = DECDPUN - 1; /* next Unit has all digits */
- }
- *c = '\0'; /* terminate the string */
- return;
- }
-
- /* non-0 exponent -- assume plain form */
- pre = dn->digits + exp; /* digits before '.' */
- e = 0; /* no E */
- if ((exp > 0) || (pre < -5))
- { /* need exponential form */
- e = exp + dn->digits - 1; /* calculate E value */
- pre = 1; /* assume one digit before '.' */
- if (eng && (e != 0))
- { /* may need to adjust */
- Int adj; /* adjustment */
- /* The C remainder operator is undefined for negative numbers, so */
- /* we must use positive remainder calculation here */
- if (e < 0)
- {
- adj = (-e) % 3;
- if (adj != 0)
- adj = 3 - adj;
- }
- else
- { /* e>0 */
- adj = e % 3;
- }
- e = e - adj;
- /* if we are dealing with zero we will use exponent which is a */
- /* multiple of three, as expected, but there will only be the */
- /* one zero before the E, still. Otherwise note the padding. */
- if (!ISZERO (dn))
- pre += adj;
- else
- { /* is zero */
- if (adj != 0)
- { /* 0.00Esnn needed */
- e = e + 3;
- pre = -(2 - adj);
- }
- } /* zero */
- } /* eng */
- }
-
- /* lay out the digits of the coefficient, adding 0s and . as needed */
- u = *up;
- if (pre > 0)
- { /* xxx.xxx or xx00 (engineering) form */
- for (; pre > 0; pre--, c++, cut--)
- {
- if (cut < 0)
- { /* need new Unit */
- if (up == dn->lsu)
- break; /* out of input digits (pre>digits) */
- up--;
- cut = DECDPUN - 1;
- u = *up;
- }
- TODIGIT (u, cut, c);
- }
- if (up > dn->lsu || (up == dn->lsu && cut >= 0))
- { /* more to come, after '.' */
- *c = '.';
- c++;
- for (;; c++, cut--)
- {
- if (cut < 0)
- { /* need new Unit */
- if (up == dn->lsu)
- break; /* out of input digits */
- up--;
- cut = DECDPUN - 1;
- u = *up;
- }
- TODIGIT (u, cut, c);
- }
- }
- else
- for (; pre > 0; pre--, c++)
- *c = '0'; /* 0 padding (for engineering) needed */
- }
- else
- { /* 0.xxx or 0.000xxx form */
- *c = '0';
- c++;
- *c = '.';
- c++;
- for (; pre < 0; pre++, c++)
- *c = '0'; /* add any 0's after '.' */
- for (;; c++, cut--)
- {
- if (cut < 0)
- { /* need new Unit */
- if (up == dn->lsu)
- break; /* out of input digits */
- up--;
- cut = DECDPUN - 1;
- u = *up;
- }
- TODIGIT (u, cut, c);
- }
- }
-
- /* Finally add the E-part, if needed. It will never be 0, has a
- base maximum and minimum of +999999999 through -999999999, but
- could range down to -1999999998 for subnormal numbers */
- if (e != 0)
- {
- Flag had = 0; /* 1=had non-zero */
- *c = 'E';
- c++;
- *c = '+';
- c++; /* assume positive */
- u = e; /* .. */
- if (e < 0)
- {
- *(c - 1) = '-'; /* oops, need - */
- u = -e; /* uInt, please */
- }
- /* layout the exponent (_itoa is not ANSI C) */
- for (cut = 9; cut >= 0; cut--)
- {
- TODIGIT (u, cut, c);
- if (*c == '0' && !had)
- continue; /* skip leading zeros */
- had = 1; /* had non-0 */
- c++; /* step for next */
- } /* cut */
- }
- *c = '\0'; /* terminate the string (all paths) */
- return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decAddOp -- add/subtract operation */
-/* */
-/* This computes C = A + B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* negate is DECNEG if rhs should be negated, or 0 otherwise */
-/* status accumulates status for the caller */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* If possible, we calculate the coefficient directly into C. */
-/* However, if: */
-/* -- we need a digits+1 calculation because numbers are unaligned */
-/* and span more than set->digits digits */
-/* -- a carry to digits+1 digits looks possible */
-/* -- C is the same as A or B, and the result would destructively */
-/* overlap the A or B coefficient */
-/* then we must calculate into a temporary buffer. In this latter */
-/* case we use the local (stack) buffer if possible, and only if too */
-/* long for that do we resort to malloc. */
-/* */
-/* Misalignment is handled as follows: */
-/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
-/* BPad: Apply the padding by a combination of shifting (whole */
-/* units) and multiplication (part units). */
-/* */
-/* Addition, especially x=x+1, is speed-critical, so we take pains */
-/* to make returning as fast as possible, by flagging any allocation. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decAddOp (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set, uByte negate, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Int rhsshift; /* working shift (in Units) */
- Int maxdigits; /* longest logical length */
- Int mult; /* multiplier */
- Int residue; /* rounding accumulator */
- uByte bits; /* result bits */
- Flag diffsign; /* non-0 if arguments have different sign */
- Unit *acc; /* accumulator for result */
- Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer [+1 is for possible */
- /* final carry digit or DECBUFFER=0] */
- Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
- Flag alloced = 0; /* set non-0 if any allocations */
- Int reqdigits = set->digits; /* local copy; requested DIGITS */
- uByte merged; /* merged flags */
- Int padding; /* work */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- alloced = 1;
- }
- if (rhs->digits > reqdigits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- alloced = 1;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* note whether signs differ */
- diffsign = (Flag) ((lhs->bits ^ rhs->bits ^ negate) & DECNEG);
-
- /* handle infinities and NaNs */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- { /* a special bit set */
- if (merged & (DECSNAN | DECNAN)) /* a NaN */
- decNaNs (res, lhs, rhs, status);
- else
- { /* one or two infinities */
- if (decNumberIsInfinite (lhs))
- { /* LHS is infinity */
- /* two infinities with different signs is invalid */
- if (decNumberIsInfinite (rhs) && diffsign)
- {
- *status |= DEC_Invalid_operation;
- break;
- }
- bits = lhs->bits & DECNEG; /* get sign from LHS */
- }
- else
- bits = (rhs->bits ^ negate) & DECNEG; /* RHS must be Infinity */
- bits |= DECINF;
- decNumberZero (res);
- res->bits = bits; /* set +/- infinity */
- } /* an infinity */
- break;
- }
-
- /* Quick exit for add 0s; return the non-0, modified as need be */
- if (ISZERO (lhs))
- {
- Int adjust; /* work */
- Int lexp = lhs->exponent; /* save in case LHS==RES */
- bits = lhs->bits; /* .. */
- residue = 0; /* clear accumulator */
- decCopyFit (res, rhs, set, &residue, status); /* copy (as needed) */
- res->bits ^= negate; /* flip if rhs was negated */
-#if DECSUBSET
- if (set->extended)
- { /* exponents on zeros count */
-#endif
- /* exponent will be the lower of the two */
- adjust = lexp - res->exponent; /* adjustment needed [if -ve] */
- if (ISZERO (res))
- { /* both 0: special IEEE 854 rules */
- if (adjust < 0)
- res->exponent = lexp; /* set exponent */
- /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
- if (diffsign)
- {
- if (set->round != DEC_ROUND_FLOOR)
- res->bits = 0;
- else
- res->bits = DECNEG; /* preserve 0 sign */
- }
- }
- else
- { /* non-0 res */
- if (adjust < 0)
- { /* 0-padding needed */
- if ((res->digits - adjust) > set->digits)
- {
- adjust = res->digits - set->digits; /* to fit exactly */
- *status |= DEC_Rounded; /* [but exact] */
- }
- res->digits =
- decShiftToMost (res->lsu, res->digits, -adjust);
- res->exponent += adjust; /* set the exponent. */
- }
- } /* non-0 res */
-#if DECSUBSET
- } /* extended */
-#endif
- decFinish (res, set, &residue, status); /* clean and finalize */
- break;
- }
-
- if (ISZERO (rhs))
- { /* [lhs is non-zero] */
- Int adjust; /* work */
- Int rexp = rhs->exponent; /* save in case RHS==RES */
- bits = rhs->bits; /* be clean */
- residue = 0; /* clear accumulator */
- decCopyFit (res, lhs, set, &residue, status); /* copy (as needed) */
-#if DECSUBSET
- if (set->extended)
- { /* exponents on zeros count */
-#endif
- /* exponent will be the lower of the two */
- /* [0-0 case handled above] */
- adjust = rexp - res->exponent; /* adjustment needed [if -ve] */
- if (adjust < 0)
- { /* 0-padding needed */
- if ((res->digits - adjust) > set->digits)
- {
- adjust = res->digits - set->digits; /* to fit exactly */
- *status |= DEC_Rounded; /* [but exact] */
- }
- res->digits =
- decShiftToMost (res->lsu, res->digits, -adjust);
- res->exponent += adjust; /* set the exponent. */
- }
-#if DECSUBSET
- } /* extended */
-#endif
- decFinish (res, set, &residue, status); /* clean and finalize */
- break;
- }
- /* [both fastpath and mainpath code below assume these cases */
- /* (notably 0-0) have already been handled] */
-
- /* calculate the padding needed to align the operands */
- padding = rhs->exponent - lhs->exponent;
-
- /* Fastpath cases where the numbers are aligned and normal, the RHS */
- /* is all in one unit, no operand rounding is needed, and no carry, */
- /* lengthening, or borrow is needed */
- if (rhs->digits <= DECDPUN && padding == 0 && rhs->exponent >= set->emin /* [some normals drop through] */
- && rhs->digits <= reqdigits && lhs->digits <= reqdigits)
- {
- Int partial = *lhs->lsu;
- if (!diffsign)
- { /* adding */
- Int maxv = DECDPUNMAX; /* highest no-overflow */
- if (lhs->digits < DECDPUN)
- maxv = powers[lhs->digits] - 1;
- partial += *rhs->lsu;
- if (partial <= maxv)
- { /* no carry */
- if (res != lhs)
- decNumberCopy (res, lhs); /* not in place */
- *res->lsu = (Unit) partial; /* [copy could have overwritten RHS] */
- break;
- }
- /* else drop out for careful add */
- }
- else
- { /* signs differ */
- partial -= *rhs->lsu;
- if (partial > 0)
- { /* no borrow needed, and non-0 result */
- if (res != lhs)
- decNumberCopy (res, lhs); /* not in place */
- *res->lsu = (Unit) partial;
- /* this could have reduced digits [but result>0] */
- res->digits = decGetDigits (res->lsu, D2U (res->digits));
- break;
- }
- /* else drop out for careful subtract */
- }
- }
-
- /* Now align (pad) the lhs or rhs so we can add or subtract them, as
- necessary. If one number is much larger than the other (that is,
- if in plain form there is a least one digit between the lowest
- digit or one and the highest of the other) we need to pad with up
- to DIGITS-1 trailing zeros, and then apply rounding (as exotic
- rounding modes may be affected by the residue).
- */
- rhsshift = 0; /* rhs shift to left (padding) in Units */
- bits = lhs->bits; /* assume sign is that of LHS */
- mult = 1; /* likely multiplier */
-
- /* if padding==0 the operands are aligned; no padding needed */
- if (padding != 0)
- {
- /* some padding needed */
- /* We always pad the RHS, as we can then effect any required */
- /* padding by a combination of shifts and a multiply */
- Flag swapped = 0;
- if (padding < 0)
- { /* LHS needs the padding */
- const decNumber *t;
- padding = -padding; /* will be +ve */
- bits = (uByte) (rhs->bits ^ negate); /* assumed sign is now that of RHS */
- t = lhs;
- lhs = rhs;
- rhs = t;
- swapped = 1;
- }
-
- /* If, after pad, rhs would be longer than lhs by digits+1 or */
- /* more then lhs cannot affect the answer, except as a residue, */
- /* so we only need to pad up to a length of DIGITS+1. */
- if (rhs->digits + padding > lhs->digits + reqdigits + 1)
- {
- /* The RHS is sufficient */
- /* for residue we use the relative sign indication... */
- Int shift = reqdigits - rhs->digits; /* left shift needed */
- residue = 1; /* residue for rounding */
- if (diffsign)
- residue = -residue; /* signs differ */
- /* copy, shortening if necessary */
- decCopyFit (res, rhs, set, &residue, status);
- /* if it was already shorter, then need to pad with zeros */
- if (shift > 0)
- {
- res->digits = decShiftToMost (res->lsu, res->digits, shift);
- res->exponent -= shift; /* adjust the exponent. */
- }
- /* flip the result sign if unswapped and rhs was negated */
- if (!swapped)
- res->bits ^= negate;
- decFinish (res, set, &residue, status); /* done */
- break;
- }
-
- /* LHS digits may affect result */
- rhsshift = D2U (padding + 1) - 1; /* this much by Unit shift .. */
- mult = powers[padding - (rhsshift * DECDPUN)]; /* .. this by multiplication */
- } /* padding needed */
-
- if (diffsign)
- mult = -mult; /* signs differ */
-
- /* determine the longer operand */
- maxdigits = rhs->digits + padding; /* virtual length of RHS */
- if (lhs->digits > maxdigits)
- maxdigits = lhs->digits;
-
- /* Decide on the result buffer to use; if possible place directly */
- /* into result. */
- acc = res->lsu; /* assume build direct */
- /* If destructive overlap, or the number is too long, or a carry or */
- /* borrow to DIGITS+1 might be possible we must use a buffer. */
- /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
- if ((maxdigits >= reqdigits) /* is, or could be, too large */
- || (res == rhs && rhsshift > 0))
- { /* destructive overlap */
- /* buffer needed; choose it */
- /* we'll need units for maxdigits digits, +1 Unit for carry or borrow */
- Int need = D2U (maxdigits) + 1;
- acc = accbuff; /* assume use local buffer */
- if (need * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (need * sizeof (Unit));
- if (allocacc == NULL)
- { /* hopeless -- abandon */
- *status |= DEC_Insufficient_storage;
- break;
- }
- acc = allocacc;
- alloced = 1;
- }
- }
-
- res->bits = (uByte) (bits & DECNEG); /* it's now safe to overwrite.. */
- res->exponent = lhs->exponent; /* .. operands (even if aliased) */
-
-#if DECTRACE
- decDumpAr ('A', lhs->lsu, D2U (lhs->digits));
- decDumpAr ('B', rhs->lsu, D2U (rhs->digits));
- printf (" :h: %d %d\n", rhsshift, mult);
-#endif
-
- /* add [A+B*m] or subtract [A+B*(-m)] */
- res->digits = decUnitAddSub (lhs->lsu, D2U (lhs->digits), rhs->lsu, D2U (rhs->digits), rhsshift, acc, mult) * DECDPUN; /* [units -> digits] */
- if (res->digits < 0)
- { /* we borrowed */
- res->digits = -res->digits;
- res->bits ^= DECNEG; /* flip the sign */
- }
-#if DECTRACE
- decDumpAr ('+', acc, D2U (res->digits));
-#endif
-
- /* If we used a buffer we need to copy back, possibly shortening */
- /* (If we didn't use buffer it must have fit, so can't need rounding */
- /* and residue must be 0.) */
- residue = 0; /* clear accumulator */
- if (acc != res->lsu)
- {
-#if DECSUBSET
- if (set->extended)
- { /* round from first significant digit */
-#endif
- /* remove leading zeros that we added due to rounding up to */
- /* integral Units -- before the test for rounding. */
- if (res->digits > reqdigits)
- res->digits = decGetDigits (acc, D2U (res->digits));
- decSetCoeff (res, set, acc, res->digits, &residue, status);
-#if DECSUBSET
- }
- else
- { /* subset arithmetic rounds from original significant digit */
- /* We may have an underestimate. This only occurs when both */
- /* numbers fit in DECDPUN digits and we are padding with a */
- /* negative multiple (-10, -100...) and the top digit(s) become */
- /* 0. (This only matters if we are using X3.274 rules where the */
- /* leading zero could be included in the rounding.) */
- if (res->digits < maxdigits)
- {
- *(acc + D2U (res->digits)) = 0; /* ensure leading 0 is there */
- res->digits = maxdigits;
- }
- else
- {
- /* remove leading zeros that we added due to rounding up to */
- /* integral Units (but only those in excess of the original */
- /* maxdigits length, unless extended) before test for rounding. */
- if (res->digits > reqdigits)
- {
- res->digits = decGetDigits (acc, D2U (res->digits));
- if (res->digits < maxdigits)
- res->digits = maxdigits;
- }
- }
- decSetCoeff (res, set, acc, res->digits, &residue, status);
- /* Now apply rounding if needed before removing leading zeros. */
- /* This is safe because subnormals are not a possibility */
- if (residue != 0)
- {
- decApplyRound (res, set, residue, status);
- residue = 0; /* we did what we had to do */
- }
- } /* subset */
-#endif
- } /* used buffer */
-
- /* strip leading zeros [these were left on in case of subset subtract] */
- res->digits = decGetDigits (res->lsu, D2U (res->digits));
-
- /* apply checks and rounding */
- decFinish (res, set, &residue, status);
-
- /* "When the sum of two operands with opposite signs is exactly */
- /* zero, the sign of that sum shall be '+' in all rounding modes */
- /* except round toward -Infinity, in which mode that sign shall be */
- /* '-'." [Subset zeros also never have '-', set by decFinish.] */
- if (ISZERO (res) && diffsign
-#if DECSUBSET
- && set->extended
-#endif
- && (*status & DEC_Inexact) == 0)
- {
- if (set->round == DEC_ROUND_FLOOR)
- res->bits |= DECNEG; /* sign - */
- else
- res->bits &= ~DECNEG; /* sign + */
- }
- }
- while (0); /* end protected */
-
- if (alloced)
- {
- if (allocacc != NULL)
- free (allocacc); /* drop any storage we used */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- }
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decDivideOp -- division operation */
-/* */
-/* This routine performs the calculations for all four division */
-/* operators (divide, divideInteger, remainder, remainderNear). */
-/* */
-/* C=A op B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
-/* status is the usual accumulator */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* ------------------------------------------------------------------ */
-/* The underlying algorithm of this routine is the same as in the */
-/* 1981 S/370 implementation, that is, non-restoring long division */
-/* with bi-unit (rather than bi-digit) estimation for each unit */
-/* multiplier. In this pseudocode overview, complications for the */
-/* Remainder operators and division residues for exact rounding are */
-/* omitted for clarity. */
-/* */
-/* Prepare operands and handle special values */
-/* Test for x/0 and then 0/x */
-/* Exp =Exp1 - Exp2 */
-/* Exp =Exp +len(var1) -len(var2) */
-/* Sign=Sign1 * Sign2 */
-/* Pad accumulator (Var1) to double-length with 0's (pad1) */
-/* Pad Var2 to same length as Var1 */
-/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
-/* have=0 */
-/* Do until (have=digits+1 OR residue=0) */
-/* if exp<0 then if integer divide/residue then leave */
-/* this_unit=0 */
-/* Do forever */
-/* compare numbers */
-/* if <0 then leave inner_loop */
-/* if =0 then (* quick exit without subtract *) do */
-/* this_unit=this_unit+1; output this_unit */
-/* leave outer_loop; end */
-/* Compare lengths of numbers (mantissae): */
-/* If same then tops2=msu2pair -- {units 1&2 of var2} */
-/* else tops2=msu2plus -- {0, unit 1 of var2} */
-/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
-/* mult=tops1/tops2 -- Good and safe guess at divisor */
-/* if mult=0 then mult=1 */
-/* this_unit=this_unit+mult */
-/* subtract */
-/* end inner_loop */
-/* if have\=0 | this_unit\=0 then do */
-/* output this_unit */
-/* have=have+1; end */
-/* var2=var2/10 */
-/* exp=exp-1 */
-/* end outer_loop */
-/* exp=exp+1 -- set the proper exponent */
-/* if have=0 then generate answer=0 */
-/* Return (Result is defined by Var1) */
-/* */
-/* ------------------------------------------------------------------ */
-/* We need two working buffers during the long division; one (digits+ */
-/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
-/* long subtractions. These are acc and var1 respectively. */
-/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
-/* ------------------------------------------------------------------ */
-static decNumber *
-decDivideOp (decNumber * res,
- const decNumber * lhs, const decNumber * rhs,
- decContext * set, Flag op, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Unit accbuff[D2U (DECBUFFER + DECDPUN)]; /* local buffer */
- Unit *acc = accbuff; /* -> accumulator array for result */
- Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
- Unit *accnext; /* -> where next digit will go */
- Int acclength; /* length of acc needed [Units] */
- Int accunits; /* count of units accumulated */
- Int accdigits; /* count of digits accumulated */
-
- Unit varbuff[D2U (DECBUFFER * 2 + DECDPUN) * sizeof (Unit)]; /* buffer for var1 */
- Unit *var1 = varbuff; /* -> var1 array for long subtraction */
- Unit *varalloc = NULL; /* -> allocated buffer, iff used */
-
- const Unit *var2; /* -> var2 array */
-
- Int var1units, var2units; /* actual lengths */
- Int var2ulen; /* logical length (units) */
- Int var1initpad = 0; /* var1 initial padding (digits) */
- Unit *msu1; /* -> msu of each var */
- const Unit *msu2; /* -> msu of each var */
- Int msu2plus; /* msu2 plus one [does not vary] */
- eInt msu2pair; /* msu2 pair plus one [does not vary] */
- Int maxdigits; /* longest LHS or required acc length */
- Int mult; /* multiplier for subtraction */
- Unit thisunit; /* current unit being accumulated */
- Int residue; /* for rounding */
- Int reqdigits = set->digits; /* requested DIGITS */
- Int exponent; /* working exponent */
- Int maxexponent = 0; /* DIVIDE maximum exponent if unrounded */
- uByte bits; /* working sign */
- uByte merged; /* merged flags */
- Unit *target; /* work */
- const Unit *source; /* work */
- uInt const *pow; /* .. */
- Int shift, cut; /* .. */
-#if DECSUBSET
- Int dropped; /* work */
-#endif
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- if (rhs->digits > reqdigits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- bits = (lhs->bits ^ rhs->bits) & DECNEG; /* assumed sign for divisions */
-
- /* handle infinities and NaNs */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- { /* a special bit set */
- if (merged & (DECSNAN | DECNAN))
- { /* one or two NaNs */
- decNaNs (res, lhs, rhs, status);
- break;
- }
- /* one or two infinities */
- if (decNumberIsInfinite (lhs))
- { /* LHS (dividend) is infinite */
- if (decNumberIsInfinite (rhs) || /* two infinities are invalid .. */
- op & (REMAINDER | REMNEAR))
- { /* as is remainder of infinity */
- *status |= DEC_Invalid_operation;
- break;
- }
- /* [Note that infinity/0 raises no exceptions] */
- decNumberZero (res);
- res->bits = bits | DECINF; /* set +/- infinity */
- break;
- }
- else
- { /* RHS (divisor) is infinite */
- residue = 0;
- if (op & (REMAINDER | REMNEAR))
- {
- /* result is [finished clone of] lhs */
- decCopyFit (res, lhs, set, &residue, status);
- }
- else
- { /* a division */
- decNumberZero (res);
- res->bits = bits; /* set +/- zero */
- /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
- /* is a 0 with infinitely negative exponent, clamped to minimum */
- if (op & DIVIDE)
- {
- res->exponent = set->emin - set->digits + 1;
- *status |= DEC_Clamped;
- }
- }
- decFinish (res, set, &residue, status);
- break;
- }
- }
-
- /* handle 0 rhs (x/0) */
- if (ISZERO (rhs))
- { /* x/0 is always exceptional */
- if (ISZERO (lhs))
- {
- decNumberZero (res); /* [after lhs test] */
- *status |= DEC_Division_undefined; /* 0/0 will become NaN */
- }
- else
- {
- decNumberZero (res);
- if (op & (REMAINDER | REMNEAR))
- *status |= DEC_Invalid_operation;
- else
- {
- *status |= DEC_Division_by_zero; /* x/0 */
- res->bits = bits | DECINF; /* .. is +/- Infinity */
- }
- }
- break;
- }
-
- /* handle 0 lhs (0/x) */
- if (ISZERO (lhs))
- { /* 0/x [x!=0] */
-#if DECSUBSET
- if (!set->extended)
- decNumberZero (res);
- else
- {
-#endif
- if (op & DIVIDE)
- {
- residue = 0;
- exponent = lhs->exponent - rhs->exponent; /* ideal exponent */
- decNumberCopy (res, lhs); /* [zeros always fit] */
- res->bits = bits; /* sign as computed */
- res->exponent = exponent; /* exponent, too */
- decFinalize (res, set, &residue, status); /* check exponent */
- }
- else if (op & DIVIDEINT)
- {
- decNumberZero (res); /* integer 0 */
- res->bits = bits; /* sign as computed */
- }
- else
- { /* a remainder */
- exponent = rhs->exponent; /* [save in case overwrite] */
- decNumberCopy (res, lhs); /* [zeros always fit] */
- if (exponent < res->exponent)
- res->exponent = exponent; /* use lower */
- }
-#if DECSUBSET
- }
-#endif
- break;
- }
-
- /* Precalculate exponent. This starts off adjusted (and hence fits */
- /* in 31 bits) and becomes the usual unadjusted exponent as the */
- /* division proceeds. The order of evaluation is important, here, */
- /* to avoid wrap. */
- exponent =
- (lhs->exponent + lhs->digits) - (rhs->exponent + rhs->digits);
-
- /* If the working exponent is -ve, then some quick exits are */
- /* possible because the quotient is known to be <1 */
- /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
- if (exponent < 0 && !(op == DIVIDE))
- {
- if (op & DIVIDEINT)
- {
- decNumberZero (res); /* integer part is 0 */
-#if DECSUBSET
- if (set->extended)
-#endif
- res->bits = bits; /* set +/- zero */
- break;
- }
- /* we can fastpath remainders so long as the lhs has the */
- /* smaller (or equal) exponent */
- if (lhs->exponent <= rhs->exponent)
- {
- if (op & REMAINDER || exponent < -1)
- {
- /* It is REMAINDER or safe REMNEAR; result is [finished */
- /* clone of] lhs (r = x - 0*y) */
- residue = 0;
- decCopyFit (res, lhs, set, &residue, status);
- decFinish (res, set, &residue, status);
- break;
- }
- /* [unsafe REMNEAR drops through] */
- }
- } /* fastpaths */
-
- /* We need long (slow) division; roll up the sleeves... */
-
- /* The accumulator will hold the quotient of the division. */
- /* If it needs to be too long for stack storage, then allocate. */
- acclength = D2U (reqdigits + DECDPUN); /* in Units */
- if (acclength * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (acclength * sizeof (Unit));
- if (allocacc == NULL)
- { /* hopeless -- abandon */
- *status |= DEC_Insufficient_storage;
- break;
- }
- acc = allocacc; /* use the allocated space */
- }
-
- /* var1 is the padded LHS ready for subtractions. */
- /* If it needs to be too long for stack storage, then allocate. */
- /* The maximum units we need for var1 (long subtraction) is: */
- /* Enough for */
- /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
- /* or (lhs->digits) -- to allow for long lhs */
- /* whichever is larger */
- /* +1 -- for rounding of slide to right */
- /* +1 -- for leading 0s */
- /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
- /* [Note: unused units do not participate in decUnitAddSub data] */
- maxdigits = rhs->digits + reqdigits - 1;
- if (lhs->digits > maxdigits)
- maxdigits = lhs->digits;
- var1units = D2U (maxdigits) + 2;
- /* allocate a guard unit above msu1 for REMAINDERNEAR */
- if (!(op & DIVIDE))
- var1units++;
- if ((var1units + 1) * sizeof (Unit) > sizeof (varbuff))
- {
- varalloc = (Unit *) malloc ((var1units + 1) * sizeof (Unit));
- if (varalloc == NULL)
- { /* hopeless -- abandon */
- *status |= DEC_Insufficient_storage;
- break;
- }
- var1 = varalloc; /* use the allocated space */
- }
-
- /* Extend the lhs and rhs to full long subtraction length. The lhs */
- /* is truly extended into the var1 buffer, with 0 padding, so we can */
- /* subtract in place. The rhs (var2) has virtual padding */
- /* (implemented by decUnitAddSub). */
- /* We allocated one guard unit above msu1 for rem=rem+rem in REMAINDERNEAR */
- msu1 = var1 + var1units - 1; /* msu of var1 */
- source = lhs->lsu + D2U (lhs->digits) - 1; /* msu of input array */
- for (target = msu1; source >= lhs->lsu; source--, target--)
- *target = *source;
- for (; target >= var1; target--)
- *target = 0;
-
- /* rhs (var2) is left-aligned with var1 at the start */
- var2ulen = var1units; /* rhs logical length (units) */
- var2units = D2U (rhs->digits); /* rhs actual length (units) */
- var2 = rhs->lsu; /* -> rhs array */
- msu2 = var2 + var2units - 1; /* -> msu of var2 [never changes] */
- /* now set up the variables which we'll use for estimating the */
- /* multiplication factor. If these variables are not exact, we add */
- /* 1 to make sure that we never overestimate the multiplier. */
- msu2plus = *msu2; /* it's value .. */
- if (var2units > 1)
- msu2plus++; /* .. +1 if any more */
- msu2pair = (eInt) * msu2 * (DECDPUNMAX + 1); /* top two pair .. */
- if (var2units > 1)
- { /* .. [else treat 2nd as 0] */
- msu2pair += *(msu2 - 1); /* .. */
- if (var2units > 2)
- msu2pair++; /* .. +1 if any more */
- }
-
- /* Since we are working in units, the units may have leading zeros, */
- /* but we calculated the exponent on the assumption that they are */
- /* both left-aligned. Adjust the exponent to compensate: add the */
- /* number of leading zeros in var1 msu and subtract those in var2 msu. */
- /* [We actually do this by counting the digits and negating, as */
- /* lead1=DECDPUN-digits1, and similarly for lead2.] */
- for (pow = &powers[1]; *msu1 >= *pow; pow++)
- exponent--;
- for (pow = &powers[1]; *msu2 >= *pow; pow++)
- exponent++;
-
- /* Now, if doing an integer divide or remainder, we want to ensure */
- /* that the result will be Unit-aligned. To do this, we shift the */
- /* var1 accumulator towards least if need be. (It's much easier to */
- /* do this now than to reassemble the residue afterwards, if we are */
- /* doing a remainder.) Also ensure the exponent is not negative. */
- if (!(op & DIVIDE))
- {
- Unit *u;
- /* save the initial 'false' padding of var1, in digits */
- var1initpad = (var1units - D2U (lhs->digits)) * DECDPUN;
- /* Determine the shift to do. */
- if (exponent < 0)
- cut = -exponent;
- else
- cut = DECDPUN - exponent % DECDPUN;
- decShiftToLeast (var1, var1units, cut);
- exponent += cut; /* maintain numerical value */
- var1initpad -= cut; /* .. and reduce padding */
- /* clean any most-significant units we just emptied */
- for (u = msu1; cut >= DECDPUN; cut -= DECDPUN, u--)
- *u = 0;
- } /* align */
- else
- { /* is DIVIDE */
- maxexponent = lhs->exponent - rhs->exponent; /* save */
- /* optimization: if the first iteration will just produce 0, */
- /* preadjust to skip it [valid for DIVIDE only] */
- if (*msu1 < *msu2)
- {
- var2ulen--; /* shift down */
- exponent -= DECDPUN; /* update the exponent */
- }
- }
-
- /* ---- start the long-division loops ------------------------------ */
- accunits = 0; /* no units accumulated yet */
- accdigits = 0; /* .. or digits */
- accnext = acc + acclength - 1; /* -> msu of acc [NB: allows digits+1] */
- for (;;)
- { /* outer forever loop */
- thisunit = 0; /* current unit assumed 0 */
- /* find the next unit */
- for (;;)
- { /* inner forever loop */
- /* strip leading zero units [from either pre-adjust or from */
- /* subtract last time around]. Leave at least one unit. */
- for (; *msu1 == 0 && msu1 > var1; msu1--)
- var1units--;
-
- if (var1units < var2ulen)
- break; /* var1 too low for subtract */
- if (var1units == var2ulen)
- { /* unit-by-unit compare needed */
- /* compare the two numbers, from msu */
- Unit *pv1, v2; /* units to compare */
- const Unit *pv2; /* units to compare */
- pv2 = msu2; /* -> msu */
- for (pv1 = msu1;; pv1--, pv2--)
- {
- /* v1=*pv1 -- always OK */
- v2 = 0; /* assume in padding */
- if (pv2 >= var2)
- v2 = *pv2; /* in range */
- if (*pv1 != v2)
- break; /* no longer the same */
- if (pv1 == var1)
- break; /* done; leave pv1 as is */
- }
- /* here when all inspected or a difference seen */
- if (*pv1 < v2)
- break; /* var1 too low to subtract */
- if (*pv1 == v2)
- { /* var1 == var2 */
- /* reach here if var1 and var2 are identical; subtraction */
- /* would increase digit by one, and the residue will be 0 so */
- /* we are done; leave the loop with residue set to 0. */
- thisunit++; /* as though subtracted */
- *var1 = 0; /* set var1 to 0 */
- var1units = 1; /* .. */
- break; /* from inner */
- } /* var1 == var2 */
- /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
- /* Estimate the multiplier (there's always a msu1-1)... */
- /* Bring in two units of var2 to provide a good estimate. */
- mult =
- (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
- *(msu1 - 1)) / msu2pair);
- } /* lengths the same */
- else
- { /* var1units > var2ulen, so subtraction is safe */
- /* The var2 msu is one unit towards the lsu of the var1 msu, */
- /* so we can only use one unit for var2. */
- mult =
- (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
- *(msu1 - 1)) / msu2plus);
- }
- if (mult == 0)
- mult = 1; /* must always be at least 1 */
- /* subtraction needed; var1 is > var2 */
- thisunit = (Unit) (thisunit + mult); /* accumulate */
- /* subtract var1-var2, into var1; only the overlap needs */
- /* processing, as we are in place */
- shift = var2ulen - var2units;
-#if DECTRACE
- decDumpAr ('1', &var1[shift], var1units - shift);
- decDumpAr ('2', var2, var2units);
- printf ("m=%d\n", -mult);
-#endif
- decUnitAddSub (&var1[shift], var1units - shift,
- var2, var2units, 0, &var1[shift], -mult);
-#if DECTRACE
- decDumpAr ('#', &var1[shift], var1units - shift);
-#endif
- /* var1 now probably has leading zeros; these are removed at the */
- /* top of the inner loop. */
- } /* inner loop */
-
- /* We have the next unit; unless it's a leading zero, add to acc */
- if (accunits != 0 || thisunit != 0)
- { /* put the unit we got */
- *accnext = thisunit; /* store in accumulator */
- /* account exactly for the digits we got */
- if (accunits == 0)
- {
- accdigits++; /* at least one */
- for (pow = &powers[1]; thisunit >= *pow; pow++)
- accdigits++;
- }
- else
- accdigits += DECDPUN;
- accunits++; /* update count */
- accnext--; /* ready for next */
- if (accdigits > reqdigits)
- break; /* we have all we need */
- }
-
- /* if the residue is zero, we're done (unless divide or */
- /* divideInteger and we haven't got enough digits yet) */
- if (*var1 == 0 && var1units == 1)
- { /* residue is 0 */
- if (op & (REMAINDER | REMNEAR))
- break;
- if ((op & DIVIDE) && (exponent <= maxexponent))
- break;
- /* [drop through if divideInteger] */
- }
- /* we've also done enough if calculating remainder or integer */
- /* divide and we just did the last ('units') unit */
- if (exponent == 0 && !(op & DIVIDE))
- break;
-
- /* to get here, var1 is less than var2, so divide var2 by the per- */
- /* Unit power of ten and go for the next digit */
- var2ulen--; /* shift down */
- exponent -= DECDPUN; /* update the exponent */
- } /* outer loop */
-
- /* ---- division is complete --------------------------------------- */
- /* here: acc has at least reqdigits+1 of good results (or fewer */
- /* if early stop), starting at accnext+1 (its lsu) */
- /* var1 has any residue at the stopping point */
- /* accunits is the number of digits we collected in acc */
- if (accunits == 0)
- { /* acc is 0 */
- accunits = 1; /* show we have one .. */
- accdigits = 1; /* .. */
- *accnext = 0; /* .. whose value is 0 */
- }
- else
- accnext++; /* back to last placed */
- /* accnext now -> lowest unit of result */
-
- residue = 0; /* assume no residue */
- if (op & DIVIDE)
- {
- /* record the presence of any residue, for rounding */
- if (*var1 != 0 || var1units > 1)
- residue = 1;
- else
- { /* no residue */
- /* We had an exact division; clean up spurious trailing 0s. */
- /* There will be at most DECDPUN-1, from the final multiply, */
- /* and then only if the result is non-0 (and even) and the */
- /* exponent is 'loose'. */
-#if DECDPUN>1
- Unit lsu = *accnext;
- if (!(lsu & 0x01) && (lsu != 0))
- {
- /* count the trailing zeros */
- Int drop = 0;
- for (;; drop++)
- { /* [will terminate because lsu!=0] */
- if (exponent >= maxexponent)
- break; /* don't chop real 0s */
-#if DECDPUN<=4
- if ((lsu - QUOT10 (lsu, drop + 1)
- * powers[drop + 1]) != 0)
- break; /* found non-0 digit */
-#else
- if (lsu % powers[drop + 1] != 0)
- break; /* found non-0 digit */
-#endif
- exponent++;
- }
- if (drop > 0)
- {
- accunits = decShiftToLeast (accnext, accunits, drop);
- accdigits = decGetDigits (accnext, accunits);
- accunits = D2U (accdigits);
- /* [exponent was adjusted in the loop] */
- }
- } /* neither odd nor 0 */
-#endif
- } /* exact divide */
- } /* divide */
- else /* op!=DIVIDE */
- {
- /* check for coefficient overflow */
- if (accdigits + exponent > reqdigits)
- {
- *status |= DEC_Division_impossible;
- break;
- }
- if (op & (REMAINDER | REMNEAR))
- {
- /* [Here, the exponent will be 0, because we adjusted var1 */
- /* appropriately.] */
- Int postshift; /* work */
- Flag wasodd = 0; /* integer was odd */
- Unit *quotlsu; /* for save */
- Int quotdigits; /* .. */
-
- /* Fastpath when residue is truly 0 is worthwhile [and */
- /* simplifies the code below] */
- if (*var1 == 0 && var1units == 1)
- { /* residue is 0 */
- Int exp = lhs->exponent; /* save min(exponents) */
- if (rhs->exponent < exp)
- exp = rhs->exponent;
- decNumberZero (res); /* 0 coefficient */
-#if DECSUBSET
- if (set->extended)
-#endif
- res->exponent = exp; /* .. with proper exponent */
- break;
- }
- /* note if the quotient was odd */
- if (*accnext & 0x01)
- wasodd = 1; /* acc is odd */
- quotlsu = accnext; /* save in case need to reinspect */
- quotdigits = accdigits; /* .. */
-
- /* treat the residue, in var1, as the value to return, via acc */
- /* calculate the unused zero digits. This is the smaller of: */
- /* var1 initial padding (saved above) */
- /* var2 residual padding, which happens to be given by: */
- postshift =
- var1initpad + exponent - lhs->exponent + rhs->exponent;
- /* [the 'exponent' term accounts for the shifts during divide] */
- if (var1initpad < postshift)
- postshift = var1initpad;
-
- /* shift var1 the requested amount, and adjust its digits */
- var1units = decShiftToLeast (var1, var1units, postshift);
- accnext = var1;
- accdigits = decGetDigits (var1, var1units);
- accunits = D2U (accdigits);
-
- exponent = lhs->exponent; /* exponent is smaller of lhs & rhs */
- if (rhs->exponent < exponent)
- exponent = rhs->exponent;
- bits = lhs->bits; /* remainder sign is always as lhs */
-
- /* Now correct the result if we are doing remainderNear; if it */
- /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
- /* the integer was odd then the result should be rem-rhs. */
- if (op & REMNEAR)
- {
- Int compare, tarunits; /* work */
- Unit *up; /* .. */
-
-
- /* calculate remainder*2 into the var1 buffer (which has */
- /* 'headroom' of an extra unit and hence enough space) */
- /* [a dedicated 'double' loop would be faster, here] */
- tarunits =
- decUnitAddSub (accnext, accunits, accnext, accunits, 0,
- accnext, 1);
- /* decDumpAr('r', accnext, tarunits); */
-
- /* Here, accnext (var1) holds tarunits Units with twice the */
- /* remainder's coefficient, which we must now compare to the */
- /* RHS. The remainder's exponent may be smaller than the RHS's. */
- compare =
- decUnitCompare (accnext, tarunits, rhs->lsu,
- D2U (rhs->digits),
- rhs->exponent - exponent);
- if (compare == BADINT)
- { /* deep trouble */
- *status |= DEC_Insufficient_storage;
- break;
- }
-
- /* now restore the remainder by dividing by two; we know the */
- /* lsu is even. */
- for (up = accnext; up < accnext + tarunits; up++)
- {
- Int half; /* half to add to lower unit */
- half = *up & 0x01;
- *up /= 2; /* [shift] */
- if (!half)
- continue;
- *(up - 1) += (DECDPUNMAX + 1) / 2;
- }
- /* [accunits still describes the original remainder length] */
-
- if (compare > 0 || (compare == 0 && wasodd))
- { /* adjustment needed */
- Int exp, expunits, exprem; /* work */
- /* This is effectively causing round-up of the quotient, */
- /* so if it was the rare case where it was full and all */
- /* nines, it would overflow and hence division-impossible */
- /* should be raised */
- Flag allnines = 0; /* 1 if quotient all nines */
- if (quotdigits == reqdigits)
- { /* could be borderline */
- for (up = quotlsu;; up++)
- {
- if (quotdigits > DECDPUN)
- {
- if (*up != DECDPUNMAX)
- break; /* non-nines */
- }
- else
- { /* this is the last Unit */
- if (*up == powers[quotdigits] - 1)
- allnines = 1;
- break;
- }
- quotdigits -= DECDPUN; /* checked those digits */
- } /* up */
- } /* borderline check */
- if (allnines)
- {
- *status |= DEC_Division_impossible;
- break;
- }
-
- /* we need rem-rhs; the sign will invert. Again we can */
- /* safely use var1 for the working Units array. */
- exp = rhs->exponent - exponent; /* RHS padding needed */
- /* Calculate units and remainder from exponent. */
- expunits = exp / DECDPUN;
- exprem = exp % DECDPUN;
- /* subtract [A+B*(-m)]; the result will always be negative */
- accunits = -decUnitAddSub (accnext, accunits,
- rhs->lsu, D2U (rhs->digits),
- expunits, accnext,
- -(Int) powers[exprem]);
- accdigits = decGetDigits (accnext, accunits); /* count digits exactly */
- accunits = D2U (accdigits); /* and recalculate the units for copy */
- /* [exponent is as for original remainder] */
- bits ^= DECNEG; /* flip the sign */
- }
- } /* REMNEAR */
- } /* REMAINDER or REMNEAR */
- } /* not DIVIDE */
-
- /* Set exponent and bits */
- res->exponent = exponent;
- res->bits = (uByte) (bits & DECNEG); /* [cleaned] */
-
- /* Now the coefficient. */
- decSetCoeff (res, set, accnext, accdigits, &residue, status);
-
- decFinish (res, set, &residue, status); /* final cleanup */
-
-#if DECSUBSET
- /* If a divide then strip trailing zeros if subset [after round] */
- if (!set->extended && (op == DIVIDE))
- decTrim (res, 0, &dropped);
-#endif
- }
- while (0); /* end protected */
-
- if (varalloc != NULL)
- free (varalloc); /* drop any storage we used */
- if (allocacc != NULL)
- free (allocacc); /* .. */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decMultiplyOp -- multiplication operation */
-/* */
-/* This routine performs the multiplication C=A x B. */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* status is the usual accumulator */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* ------------------------------------------------------------------ */
-/* Note: We use 'long' multiplication rather than Karatsuba, as the */
-/* latter would give only a minor improvement for the short numbers */
-/* we expect to handle most (and uses much more memory). */
-/* */
-/* We always have to use a buffer for the accumulator. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decMultiplyOp (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Unit accbuff[D2U (DECBUFFER * 2 + 1)]; /* local buffer (+1 in case DECBUFFER==0) */
- Unit *acc = accbuff; /* -> accumulator array for exact result */
- Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
- const Unit *mer, *mermsup; /* work */
- Int accunits; /* Units of accumulator in use */
- Int madlength; /* Units in multiplicand */
- Int shift; /* Units to shift multiplicand by */
- Int need; /* Accumulator units needed */
- Int exponent; /* work */
- Int residue = 0; /* rounding residue */
- uByte bits; /* result sign */
- uByte merged; /* merged flags */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > set->digits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* precalculate result sign */
- bits = (uByte) ((lhs->bits ^ rhs->bits) & DECNEG);
-
- /* handle infinities and NaNs */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- { /* a special bit set */
- if (merged & (DECSNAN | DECNAN))
- { /* one or two NaNs */
- decNaNs (res, lhs, rhs, status);
- break;
- }
- /* one or two infinities. Infinity * 0 is invalid */
- if (((lhs->bits & DECSPECIAL) == 0 && ISZERO (lhs))
- || ((rhs->bits & DECSPECIAL) == 0 && ISZERO (rhs)))
- {
- *status |= DEC_Invalid_operation;
- break;
- }
- decNumberZero (res);
- res->bits = bits | DECINF; /* infinity */
- break;
- }
-
- /* For best speed, as in DMSRCN, we use the shorter number as the */
- /* multiplier (rhs) and the longer as the multiplicand (lhs) */
- if (lhs->digits < rhs->digits)
- { /* swap... */
- const decNumber *hold = lhs;
- lhs = rhs;
- rhs = hold;
- }
-
- /* if accumulator is too long for local storage, then allocate */
- need = D2U (lhs->digits) + D2U (rhs->digits); /* maximum units in result */
- if (need * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (need * sizeof (Unit));
- if (allocacc == NULL)
- {
- *status |= DEC_Insufficient_storage;
- break;
- }
- acc = allocacc; /* use the allocated space */
- }
-
- /* Now the main long multiplication loop */
- /* Unlike the equivalent in the IBM Java implementation, there */
- /* is no advantage in calculating from msu to lsu. So we do it */
- /* by the book, as it were. */
- /* Each iteration calculates ACC=ACC+MULTAND*MULT */
- accunits = 1; /* accumulator starts at '0' */
- *acc = 0; /* .. (lsu=0) */
- shift = 0; /* no multiplicand shift at first */
- madlength = D2U (lhs->digits); /* we know this won't change */
- mermsup = rhs->lsu + D2U (rhs->digits); /* -> msu+1 of multiplier */
-
- for (mer = rhs->lsu; mer < mermsup; mer++)
- {
- /* Here, *mer is the next Unit in the multiplier to use */
- /* If non-zero [optimization] add it... */
- if (*mer != 0)
- {
- accunits =
- decUnitAddSub (&acc[shift], accunits - shift, lhs->lsu,
- madlength, 0, &acc[shift], *mer) + shift;
- }
- else
- { /* extend acc with a 0; we'll use it shortly */
- /* [this avoids length of <=0 later] */
- *(acc + accunits) = 0;
- accunits++;
- }
- /* multiply multiplicand by 10**DECDPUN for next Unit to left */
- shift++; /* add this for 'logical length' */
- } /* n */
-#if DECTRACE
- /* Show exact result */
- decDumpAr ('*', acc, accunits);
-#endif
-
- /* acc now contains the exact result of the multiplication */
- /* Build a decNumber from it, noting if any residue */
- res->bits = bits; /* set sign */
- res->digits = decGetDigits (acc, accunits); /* count digits exactly */
-
- /* We might have a 31-bit wrap in calculating the exponent. */
- /* This can only happen if both input exponents are negative and */
- /* both their magnitudes are large. If we did wrap, we set a safe */
- /* very negative exponent, from which decFinalize() will raise a */
- /* hard underflow. */
- exponent = lhs->exponent + rhs->exponent; /* calculate exponent */
- if (lhs->exponent < 0 && rhs->exponent < 0 && exponent > 0)
- exponent = -2 * DECNUMMAXE; /* force underflow */
- res->exponent = exponent; /* OK to overwrite now */
-
- /* Set the coefficient. If any rounding, residue records */
- decSetCoeff (res, set, acc, res->digits, &residue, status);
-
- decFinish (res, set, &residue, status); /* final cleanup */
- }
- while (0); /* end protected */
-
- if (allocacc != NULL)
- free (allocacc); /* drop any storage we used */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decQuantizeOp -- force exponent to requested value */
-/* */
-/* This computes C = op(A, B), where op adjusts the coefficient */
-/* of C (by rounding or shifting) such that the exponent (-scale) */
-/* of C has the value B or matches the exponent of B. */
-/* The numerical value of C will equal A, except for the effects of */
-/* any rounding that occurred. */
-/* */
-/* res is C, the result. C may be A or B */
-/* lhs is A, the number to adjust */
-/* rhs is B, the requested exponent */
-/* set is the context */
-/* quant is 1 for quantize or 0 for rescale */
-/* status is the status accumulator (this can be called without */
-/* risk of control loss) */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* Unless there is an error or the result is infinite, the exponent */
-/* after the operation is guaranteed to be that requested. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decQuantizeOp (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set, Flag quant, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- const decNumber *inrhs = rhs; /* save original rhs */
- Int reqdigits = set->digits; /* requested DIGITS */
- Int reqexp; /* requested exponent [-scale] */
- Int residue = 0; /* rounding residue */
- uByte merged; /* merged flags */
- Int etiny = set->emin - (set->digits - 1);
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- if (rhs->digits > reqdigits)
- { /* [this only checks lostDigits] */
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* Handle special values */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if ((lhs->bits | rhs->bits) & DECSPECIAL)
- {
- /* NaNs get usual processing */
- if (merged & (DECSNAN | DECNAN))
- decNaNs (res, lhs, rhs, status);
- /* one infinity but not both is bad */
- else if ((lhs->bits ^ rhs->bits) & DECINF)
- *status |= DEC_Invalid_operation;
- /* both infinity: return lhs */
- else
- decNumberCopy (res, lhs); /* [nop if in place] */
- break;
- }
-
- /* set requested exponent */
- if (quant)
- reqexp = inrhs->exponent; /* quantize -- match exponents */
- else
- { /* rescale -- use value of rhs */
- /* Original rhs must be an integer that fits and is in range */
-#if DECSUBSET
- reqexp = decGetInt (inrhs, set);
-#else
- reqexp = decGetInt (inrhs);
-#endif
- }
-
-#if DECSUBSET
- if (!set->extended)
- etiny = set->emin; /* no subnormals */
-#endif
-
- if (reqexp == BADINT /* bad (rescale only) or .. */
- || (reqexp < etiny) /* < lowest */
- || (reqexp > set->emax))
- { /* > Emax */
- *status |= DEC_Invalid_operation;
- break;
- }
-
- /* we've processed the RHS, so we can overwrite it now if necessary */
- if (ISZERO (lhs))
- { /* zero coefficient unchanged */
- decNumberCopy (res, lhs); /* [nop if in place] */
- res->exponent = reqexp; /* .. just set exponent */
-#if DECSUBSET
- if (!set->extended)
- res->bits = 0; /* subset specification; no -0 */
-#endif
- }
- else
- { /* non-zero lhs */
- Int adjust = reqexp - lhs->exponent; /* digit adjustment needed */
- /* if adjusted coefficient will not fit, give up now */
- if ((lhs->digits - adjust) > reqdigits)
- {
- *status |= DEC_Invalid_operation;
- break;
- }
-
- if (adjust > 0)
- { /* increasing exponent */
- /* this will decrease the length of the coefficient by adjust */
- /* digits, and must round as it does so */
- decContext workset; /* work */
- workset = *set; /* clone rounding, etc. */
- workset.digits = lhs->digits - adjust; /* set requested length */
- /* [note that the latter can be <1, here] */
- decCopyFit (res, lhs, &workset, &residue, status); /* fit to result */
- decApplyRound (res, &workset, residue, status); /* .. and round */
- residue = 0; /* [used] */
- /* If we rounded a 999s case, exponent will be off by one; */
- /* adjust back if so. */
- if (res->exponent > reqexp)
- {
- res->digits = decShiftToMost (res->lsu, res->digits, 1); /* shift */
- res->exponent--; /* (re)adjust the exponent. */
- }
-#if DECSUBSET
- if (ISZERO (res) && !set->extended)
- res->bits = 0; /* subset; no -0 */
-#endif
- } /* increase */
- else /* adjust<=0 */
- { /* decreasing or = exponent */
- /* this will increase the length of the coefficient by -adjust */
- /* digits, by adding trailing zeros. */
- decNumberCopy (res, lhs); /* [it will fit] */
- /* if padding needed (adjust<0), add it now... */
- if (adjust < 0)
- {
- res->digits =
- decShiftToMost (res->lsu, res->digits, -adjust);
- res->exponent += adjust; /* adjust the exponent */
- }
- } /* decrease */
- } /* non-zero */
-
- /* Check for overflow [do not use Finalize in this case, as an */
- /* overflow here is a "don't fit" situation] */
- if (res->exponent > set->emax - res->digits + 1)
- { /* too big */
- *status |= DEC_Invalid_operation;
- break;
- }
- else
- {
- decFinalize (res, set, &residue, status); /* set subnormal flags */
- *status &= ~DEC_Underflow; /* suppress Underflow [754r] */
- }
- }
- while (0); /* end protected */
-
- if (allocrhs != NULL)
- free (allocrhs); /* drop any storage we used */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decCompareOp -- compare, min, or max two Numbers */
-/* */
-/* This computes C = A ? B and returns the signum (as a Number) */
-/* for COMPARE or the maximum or minimum (for COMPMAX and COMPMIN). */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* op is the operation flag */
-/* status is the usual accumulator */
-/* */
-/* C must have space for one digit for COMPARE or set->digits for */
-/* COMPMAX and COMPMIN. */
-/* ------------------------------------------------------------------ */
-/* The emphasis here is on speed for common cases, and avoiding */
-/* coefficient comparison if possible. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decCompareOp (decNumber * res, const decNumber * lhs, const decNumber * rhs,
- decContext * set, Flag op, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Int result = 0; /* default result value */
- uByte merged; /* merged flags */
- uByte bits = 0; /* non-0 for NaN */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > set->digits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- {
- result = BADINT;
- break;
- }
- lhs = alloclhs;
- }
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- {
- result = BADINT;
- break;
- }
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* handle NaNs now; let infinities drop through */
- /* +++ review sNaN handling with 754r, for now assumes sNaN */
- /* (even just one) leads to NaN. */
- merged = (lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
- if (merged)
- { /* a NaN bit set */
- if (op == COMPARE);
- else if (merged & DECSNAN);
- else
- { /* 754r rules for MIN and MAX ignore single NaN */
- /* here if MIN or MAX, and one or two quiet NaNs */
- if (lhs->bits & rhs->bits & DECNAN);
- else
- { /* just one quiet NaN */
- /* force choice to be the non-NaN operand */
- op = COMPMAX;
- if (lhs->bits & DECNAN)
- result = -1; /* pick rhs */
- else
- result = +1; /* pick lhs */
- break;
- }
- }
- op = COMPNAN; /* use special path */
- decNaNs (res, lhs, rhs, status);
- break;
- }
-
- result = decCompare (lhs, rhs); /* we have numbers */
- }
- while (0); /* end protected */
-
- if (result == BADINT)
- *status |= DEC_Insufficient_storage; /* rare */
- else
- {
- if (op == COMPARE)
- { /* return signum */
- decNumberZero (res); /* [always a valid result] */
- if (result == 0)
- res->bits = bits; /* (maybe qNaN) */
- else
- {
- *res->lsu = 1;
- if (result < 0)
- res->bits = DECNEG;
- }
- }
- else if (op == COMPNAN); /* special, drop through */
- else
- { /* MAX or MIN, non-NaN result */
- Int residue = 0; /* rounding accumulator */
- /* choose the operand for the result */
- const decNumber *choice;
- if (result == 0)
- { /* operands are numerically equal */
- /* choose according to sign then exponent (see 754r) */
- uByte slhs = (lhs->bits & DECNEG);
- uByte srhs = (rhs->bits & DECNEG);
-#if DECSUBSET
- if (!set->extended)
- { /* subset: force left-hand */
- op = COMPMAX;
- result = +1;
- }
- else
-#endif
- if (slhs != srhs)
- { /* signs differ */
- if (slhs)
- result = -1; /* rhs is max */
- else
- result = +1; /* lhs is max */
- }
- else if (slhs && srhs)
- { /* both negative */
- if (lhs->exponent < rhs->exponent)
- result = +1;
- else
- result = -1;
- /* [if equal, we use lhs, technically identical] */
- }
- else
- { /* both positive */
- if (lhs->exponent > rhs->exponent)
- result = +1;
- else
- result = -1;
- /* [ditto] */
- }
- } /* numerically equal */
- /* here result will be non-0 */
- if (op == COMPMIN)
- result = -result; /* reverse if looking for MIN */
- choice = (result > 0 ? lhs : rhs); /* choose */
- /* copy chosen to result, rounding if need be */
- decCopyFit (res, choice, set, &residue, status);
- decFinish (res, set, &residue, status);
- }
- }
- if (allocrhs != NULL)
- free (allocrhs); /* free any storage we used */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decCompare -- compare two decNumbers by numerical value */
-/* */
-/* This routine compares A ? B without altering them. */
-/* */
-/* Arg1 is A, a decNumber which is not a NaN */
-/* Arg2 is B, a decNumber which is not a NaN */
-/* */
-/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
-/* (the only possible failure is an allocation error) */
-/* ------------------------------------------------------------------ */
-/* This could be merged into decCompareOp */
-static Int
-decCompare (const decNumber * lhs, const decNumber * rhs)
-{
- Int result; /* result value */
- Int sigr; /* rhs signum */
- Int compare; /* work */
- result = 1; /* assume signum(lhs) */
- if (ISZERO (lhs))
- result = 0;
- else if (decNumberIsNegative (lhs))
- result = -1;
- sigr = 1; /* compute signum(rhs) */
- if (ISZERO (rhs))
- sigr = 0;
- else if (decNumberIsNegative (rhs))
- sigr = -1;
- if (result > sigr)
- return +1; /* L > R, return 1 */
- if (result < sigr)
- return -1; /* R < L, return -1 */
-
- /* signums are the same */
- if (result == 0)
- return 0; /* both 0 */
- /* Both non-zero */
- if ((lhs->bits | rhs->bits) & DECINF)
- { /* one or more infinities */
- if (lhs->bits == rhs->bits)
- result = 0; /* both the same */
- else if (decNumberIsInfinite (rhs))
- result = -result;
- return result;
- }
-
- /* we must compare the coefficients, allowing for exponents */
- if (lhs->exponent > rhs->exponent)
- { /* LHS exponent larger */
- /* swap sides, and sign */
- const decNumber *temp = lhs;
- lhs = rhs;
- rhs = temp;
- result = -result;
- }
-
- compare = decUnitCompare (lhs->lsu, D2U (lhs->digits),
- rhs->lsu, D2U (rhs->digits),
- rhs->exponent - lhs->exponent);
-
- if (compare != BADINT)
- compare *= result; /* comparison succeeded */
- return compare; /* what we got */
-}
-
-/* ------------------------------------------------------------------ */
-/* decUnitCompare -- compare two >=0 integers in Unit arrays */
-/* */
-/* This routine compares A ? B*10**E where A and B are unit arrays */
-/* A is a plain integer */
-/* B has an exponent of E (which must be non-negative) */
-/* */
-/* Arg1 is A first Unit (lsu) */
-/* Arg2 is A length in Units */
-/* Arg3 is B first Unit (lsu) */
-/* Arg4 is B length in Units */
-/* Arg5 is E */
-/* */
-/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
-/* (the only possible failure is an allocation error) */
-/* ------------------------------------------------------------------ */
-static Int
-decUnitCompare (const Unit * a, Int alength, const Unit * b, Int blength, Int exp)
-{
- Unit *acc; /* accumulator for result */
- Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer */
- Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
- Int accunits, need; /* units in use or needed for acc */
- const Unit *l, *r, *u; /* work */
- Int expunits, exprem, result; /* .. */
-
- if (exp == 0)
- { /* aligned; fastpath */
- if (alength > blength)
- return 1;
- if (alength < blength)
- return -1;
- /* same number of units in both -- need unit-by-unit compare */
- l = a + alength - 1;
- r = b + alength - 1;
- for (; l >= a; l--, r--)
- {
- if (*l > *r)
- return 1;
- if (*l < *r)
- return -1;
- }
- return 0; /* all units match */
- } /* aligned */
-
- /* Unaligned. If one is >1 unit longer than the other, padded */
- /* approximately, then we can return easily */
- if (alength > blength + (Int) D2U (exp))
- return 1;
- if (alength + 1 < blength + (Int) D2U (exp))
- return -1;
-
- /* We need to do a real subtract. For this, we need a result buffer */
- /* even though we only are interested in the sign. Its length needs */
- /* to be the larger of alength and padded blength, +2 */
- need = blength + D2U (exp); /* maximum real length of B */
- if (need < alength)
- need = alength;
- need += 2;
- acc = accbuff; /* assume use local buffer */
- if (need * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (need * sizeof (Unit));
- if (allocacc == NULL)
- return BADINT; /* hopeless -- abandon */
- acc = allocacc;
- }
- /* Calculate units and remainder from exponent. */
- expunits = exp / DECDPUN;
- exprem = exp % DECDPUN;
- /* subtract [A+B*(-m)] */
- accunits = decUnitAddSub (a, alength, b, blength, expunits, acc,
- -(Int) powers[exprem]);
- /* [UnitAddSub result may have leading zeros, even on zero] */
- if (accunits < 0)
- result = -1; /* negative result */
- else
- { /* non-negative result */
- /* check units of the result before freeing any storage */
- for (u = acc; u < acc + accunits - 1 && *u == 0;)
- u++;
- result = (*u == 0 ? 0 : +1);
- }
- /* clean up and return the result */
- if (allocacc != NULL)
- free (allocacc); /* drop any storage we used */
- return result;
-}
-
-/* ------------------------------------------------------------------ */
-/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
-/* */
-/* This routine performs the calculation: */
-/* */
-/* C=A+(B*M) */
-/* */
-/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
-/* */
-/* A may be shorter or longer than B. */
-/* */
-/* Leading zeros are not removed after a calculation. The result is */
-/* either the same length as the longer of A and B (adding any */
-/* shift), or one Unit longer than that (if a Unit carry occurred). */
-/* */
-/* A and B content are not altered unless C is also A or B. */
-/* C may be the same array as A or B, but only if no zero padding is */
-/* requested (that is, C may be B only if bshift==0). */
-/* C is filled from the lsu; only those units necessary to complete */
-/* the calculation are referenced. */
-/* */
-/* Arg1 is A first Unit (lsu) */
-/* Arg2 is A length in Units */
-/* Arg3 is B first Unit (lsu) */
-/* Arg4 is B length in Units */
-/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
-/* Arg6 is C first Unit (lsu) */
-/* Arg7 is M, the multiplier */
-/* */
-/* returns the count of Units written to C, which will be non-zero */
-/* and negated if the result is negative. That is, the sign of the */
-/* returned Int is the sign of the result (positive for zero) and */
-/* the absolute value of the Int is the count of Units. */
-/* */
-/* It is the caller's responsibility to make sure that C size is */
-/* safe, allowing space if necessary for a one-Unit carry. */
-/* */
-/* This routine is severely performance-critical; *any* change here */
-/* must be measured (timed) to assure no performance degradation. */
-/* In particular, trickery here tends to be counter-productive, as */
-/* increased complexity of code hurts register optimizations on */
-/* register-poor architectures. Avoiding divisions is nearly */
-/* always a Good Idea, however. */
-/* */
-/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
-/* (IBM Warwick, UK) for some of the ideas used in this routine. */
-/* ------------------------------------------------------------------ */
-static Int
-decUnitAddSub (const Unit * a, Int alength,
- const Unit * b, Int blength, Int bshift, Unit * c, Int m)
-{
- const Unit *alsu = a; /* A lsu [need to remember it] */
- Unit *clsu = c; /* C ditto */
- Unit *minC; /* low water mark for C */
- Unit *maxC; /* high water mark for C */
- eInt carry = 0; /* carry integer (could be Long) */
- Int add; /* work */
-#if DECDPUN==4 /* myriadal */
- Int est; /* estimated quotient */
-#endif
-
-#if DECTRACE
- if (alength < 1 || blength < 1)
- printf ("decUnitAddSub: alen blen m %d %d [%d]\n", alength, blength, m);
-#endif
-
- maxC = c + alength; /* A is usually the longer */
- minC = c + blength; /* .. and B the shorter */
- if (bshift != 0)
- { /* B is shifted; low As copy across */
- minC += bshift;
- /* if in place [common], skip copy unless there's a gap [rare] */
- if (a == c && bshift <= alength)
- {
- c += bshift;
- a += bshift;
- }
- else
- for (; c < clsu + bshift; a++, c++)
- { /* copy needed */
- if (a < alsu + alength)
- *c = *a;
- else
- *c = 0;
- }
- }
- if (minC > maxC)
- { /* swap */
- Unit *hold = minC;
- minC = maxC;
- maxC = hold;
- }
-
- /* For speed, we do the addition as two loops; the first where both A */
- /* and B contribute, and the second (if necessary) where only one or */
- /* other of the numbers contribute. */
- /* Carry handling is the same (i.e., duplicated) in each case. */
- for (; c < minC; c++)
- {
- carry += *a;
- a++;
- carry += ((eInt) * b) * m; /* [special-casing m=1/-1 */
- b++; /* here is not a win] */
- /* here carry is new Unit of digits; it could be +ve or -ve */
- if ((ueInt) carry <= DECDPUNMAX)
- { /* fastpath 0-DECDPUNMAX */
- *c = (Unit) carry;
- carry = 0;
- continue;
- }
- /* remainder operator is undefined if negative, so we must test */
-#if DECDPUN==4 /* use divide-by-multiply */
- if (carry >= 0)
- {
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
- carry = est; /* likely quotient [89%] */
- if (*c < DECDPUNMAX + 1)
- continue; /* estimate was correct */
- carry++;
- *c -= DECDPUNMAX + 1;
- continue;
- }
- /* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1));
- carry = est - (DECDPUNMAX + 1); /* correctly negative */
- if (*c < DECDPUNMAX + 1)
- continue; /* was OK */
- carry++;
- *c -= DECDPUNMAX + 1;
-#else
- if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
- { /* fastpath carry +1 */
- *c = (Unit) (carry - (DECDPUNMAX + 1)); /* [helps additions] */
- carry = 1;
- continue;
- }
- if (carry >= 0)
- {
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1);
- continue;
- }
- /* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
-#endif
- } /* c */
-
- /* we now may have one or other to complete */
- /* [pretest to avoid loop setup/shutdown] */
- if (c < maxC)
- for (; c < maxC; c++)
- {
- if (a < alsu + alength)
- { /* still in A */
- carry += *a;
- a++;
- }
- else
- { /* inside B */
- carry += ((eInt) * b) * m;
- b++;
- }
- /* here carry is new Unit of digits; it could be +ve or -ve and */
- /* magnitude up to DECDPUNMAX squared */
- if ((ueInt) carry <= DECDPUNMAX)
- { /* fastpath 0-DECDPUNMAX */
- *c = (Unit) carry;
- carry = 0;
- continue;
- }
- /* result for this unit is negative or >DECDPUNMAX */
-#if DECDPUN==4 /* use divide-by-multiply */
- /* remainder is undefined if negative, so we must test */
- if (carry >= 0)
- {
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
- carry = est; /* likely quotient [79.7%] */
- if (*c < DECDPUNMAX + 1)
- continue; /* estimate was correct */
- carry++;
- *c -= DECDPUNMAX + 1;
- continue;
- }
- /* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1));
- carry = est - (DECDPUNMAX + 1); /* correctly negative */
- if (*c < DECDPUNMAX + 1)
- continue; /* was OK */
- carry++;
- *c -= DECDPUNMAX + 1;
-#else
- if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
- { /* fastpath carry 1 */
- *c = (Unit) (carry - (DECDPUNMAX + 1));
- carry = 1;
- continue;
- }
- /* remainder is undefined if negative, so we must test */
- if (carry >= 0)
- {
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1);
- continue;
- }
- /* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
-#endif
- } /* c */
-
- /* OK, all A and B processed; might still have carry or borrow */
- /* return number of Units in the result, negated if a borrow */
- if (carry == 0)
- return c - clsu; /* no carry, we're done */
- if (carry > 0)
- { /* positive carry */
- *c = (Unit) carry; /* place as new unit */
- c++; /* .. */
- return c - clsu;
- }
- /* -ve carry: it's a borrow; complement needed */
- add = 1; /* temporary carry... */
- for (c = clsu; c < maxC; c++)
- {
- add = DECDPUNMAX + add - *c;
- if (add <= DECDPUNMAX)
- {
- *c = (Unit) add;
- add = 0;
- }
- else
- {
- *c = 0;
- add = 1;
- }
- }
- /* add an extra unit iff it would be non-zero */
-#if DECTRACE
- printf ("UAS borrow: add %d, carry %d\n", add, carry);
-#endif
- if ((add - carry - 1) != 0)
- {
- *c = (Unit) (add - carry - 1);
- c++; /* interesting, include it */
- }
- return clsu - c; /* -ve result indicates borrowed */
-}
-
-/* ------------------------------------------------------------------ */
-/* decTrim -- trim trailing zeros or normalize */
-/* */
-/* dn is the number to trim or normalize */
-/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
-/* dropped returns the number of discarded trailing zeros */
-/* returns dn */
-/* */
-/* All fields are updated as required. This is a utility operation, */
-/* so special values are unchanged and no error is possible. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decTrim (decNumber * dn, Flag all, Int * dropped)
-{
- Int d, exp; /* work */
- uInt cut; /* .. */
- Unit *up; /* -> current Unit */
-
-#if DECCHECK
- if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
- return dn;
-#endif
-
- *dropped = 0; /* assume no zeros dropped */
- if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
- || (*dn->lsu & 0x01))
- return dn; /* .. or odd */
- if (ISZERO (dn))
- { /* .. or 0 */
- dn->exponent = 0; /* (sign is preserved) */
- return dn;
- }
-
- /* we have a finite number which is even */
- exp = dn->exponent;
- cut = 1; /* digit (1-DECDPUN) in Unit */
- up = dn->lsu; /* -> current Unit */
- for (d = 0; d < dn->digits - 1; d++)
- { /* [don't strip the final digit] */
- /* slice by powers */
-#if DECDPUN<=4
- uInt quot = QUOT10 (*up, cut);
- if ((*up - quot * powers[cut]) != 0)
- break; /* found non-0 digit */
-#else
- if (*up % powers[cut] != 0)
- break; /* found non-0 digit */
-#endif
- /* have a trailing 0 */
- if (!all)
- { /* trimming */
- /* [if exp>0 then all trailing 0s are significant for trim] */
- if (exp <= 0)
- { /* if digit might be significant */
- if (exp == 0)
- break; /* then quit */
- exp++; /* next digit might be significant */
- }
- }
- cut++; /* next power */
- if (cut > DECDPUN)
- { /* need new Unit */
- up++;
- cut = 1;
- }
- } /* d */
- if (d == 0)
- return dn; /* none dropped */
-
- /* effect the drop */
- decShiftToLeast (dn->lsu, D2U (dn->digits), d);
- dn->exponent += d; /* maintain numerical value */
- dn->digits -= d; /* new length */
- *dropped = d; /* report the count */
- return dn;
-}
-
-/* ------------------------------------------------------------------ */
-/* decShiftToMost -- shift digits in array towards most significant */
-/* */
-/* uar is the array */
-/* digits is the count of digits in use in the array */
-/* shift is the number of zeros to pad with (least significant); */
-/* it must be zero or positive */
-/* */
-/* returns the new length of the integer in the array, in digits */
-/* */
-/* No overflow is permitted (that is, the uar array must be known to */
-/* be large enough to hold the result, after shifting). */
-/* ------------------------------------------------------------------ */
-static Int
-decShiftToMost (Unit * uar, Int digits, Int shift)
-{
- Unit *target, *source, *first; /* work */
- uInt rem; /* for division */
- Int cut; /* odd 0's to add */
- uInt next; /* work */
-
- if (shift == 0)
- return digits; /* [fastpath] nothing to do */
- if ((digits + shift) <= DECDPUN)
- { /* [fastpath] single-unit case */
- *uar = (Unit) (*uar * powers[shift]);
- return digits + shift;
- }
-
- cut = (DECDPUN - shift % DECDPUN) % DECDPUN;
- source = uar + D2U (digits) - 1; /* where msu comes from */
- first = uar + D2U (digits + shift) - 1; /* where msu of source will end up */
- target = source + D2U (shift); /* where upper part of first cut goes */
- next = 0;
-
- for (; source >= uar; source--, target--)
- {
- /* split the source Unit and accumulate remainder for next */
-#if DECDPUN<=4
- uInt quot = QUOT10 (*source, cut);
- rem = *source - quot * powers[cut];
- next += quot;
-#else
- rem = *source % powers[cut];
- next += *source / powers[cut];
-#endif
- if (target <= first)
- *target = (Unit) next; /* write to target iff valid */
- next = rem * powers[DECDPUN - cut]; /* save remainder for next Unit */
- }
- /* propagate to one below and clear the rest */
- for (; target >= uar; target--)
- {
- *target = (Unit) next;
- next = 0;
- }
- return digits + shift;
-}
-
-/* ------------------------------------------------------------------ */
-/* decShiftToLeast -- shift digits in array towards least significant */
-/* */
-/* uar is the array */
-/* units is length of the array, in units */
-/* shift is the number of digits to remove from the lsu end; it */
-/* must be zero or positive and less than units*DECDPUN. */
-/* */
-/* returns the new length of the integer in the array, in units */
-/* */
-/* Removed digits are discarded (lost). Units not required to hold */
-/* the final result are unchanged. */
-/* ------------------------------------------------------------------ */
-static Int
-decShiftToLeast (Unit * uar, Int units, Int shift)
-{
- Unit *target, *up; /* work */
- Int cut, count; /* work */
- Int quot, rem; /* for division */
-
- if (shift == 0)
- return units; /* [fastpath] nothing to do */
-
- up = uar + shift / DECDPUN; /* source; allow for whole Units */
- cut = shift % DECDPUN; /* odd 0's to drop */
- target = uar; /* both paths */
- if (cut == 0)
- { /* whole units shift */
- for (; up < uar + units; target++, up++)
- *target = *up;
- return target - uar;
- }
- /* messier */
- count = units * DECDPUN - shift; /* the maximum new length */
-#if DECDPUN<=4
- quot = QUOT10 (*up, cut);
-#else
- quot = *up / powers[cut];
-#endif
- for (;; target++)
- {
- *target = (Unit) quot;
- count -= (DECDPUN - cut);
- if (count <= 0)
- break;
- up++;
- quot = *up;
-#if DECDPUN<=4
- quot = QUOT10 (quot, cut);
- rem = *up - quot * powers[cut];
-#else
- rem = quot % powers[cut];
- quot = quot / powers[cut];
-#endif
- *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
- count -= cut;
- if (count <= 0)
- break;
- }
- return target - uar + 1;
-}
-
-#if DECSUBSET
-/* ------------------------------------------------------------------ */
-/* decRoundOperand -- round an operand [used for subset only] */
-/* */
-/* dn is the number to round (dn->digits is > set->digits) */
-/* set is the relevant context */
-/* status is the status accumulator */
-/* */
-/* returns an allocated decNumber with the rounded result. */
-/* */
-/* lostDigits and other status may be set by this. */
-/* */
-/* Since the input is an operand, we are not permitted to modify it. */
-/* We therefore return an allocated decNumber, rounded as required. */
-/* It is the caller's responsibility to free the allocated storage. */
-/* */
-/* If no storage is available then the result cannot be used, so NULL */
-/* is returned. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decRoundOperand (const decNumber * dn, decContext * set, uInt * status)
-{
- decNumber *res; /* result structure */
- uInt newstatus = 0; /* status from round */
- Int residue = 0; /* rounding accumulator */
-
- /* Allocate storage for the returned decNumber, big enough for the */
- /* length specified by the context */
- res = (decNumber *) malloc (sizeof (decNumber)
- + (D2U (set->digits) - 1) * sizeof (Unit));
- if (res == NULL)
- {
- *status |= DEC_Insufficient_storage;
- return NULL;
- }
- decCopyFit (res, dn, set, &residue, &newstatus);
- decApplyRound (res, set, residue, &newstatus);
-
- /* If that set Inexact then we "lost digits" */
- if (newstatus & DEC_Inexact)
- newstatus |= DEC_Lost_digits;
- *status |= newstatus;
- return res;
-}
-#endif
-
-/* ------------------------------------------------------------------ */
-/* decCopyFit -- copy a number, shortening the coefficient if needed */
-/* */
-/* dest is the target decNumber */
-/* src is the source decNumber */
-/* set is the context [used for length (digits) and rounding mode] */
-/* residue is the residue accumulator */
-/* status contains the current status to be updated */
-/* */
-/* (dest==src is allowed and will be a no-op if fits) */
-/* All fields are updated as required. */
-/* ------------------------------------------------------------------ */
-static void
-decCopyFit (decNumber * dest, const decNumber * src, decContext * set,
- Int * residue, uInt * status)
-{
- dest->bits = src->bits;
- dest->exponent = src->exponent;
- decSetCoeff (dest, set, src->lsu, src->digits, residue, status);
-}
-
-/* ------------------------------------------------------------------ */
-/* decSetCoeff -- set the coefficient of a number */
-/* */
-/* dn is the number whose coefficient array is to be set. */
-/* It must have space for set->digits digits */
-/* set is the context [for size] */
-/* lsu -> lsu of the source coefficient [may be dn->lsu] */
-/* len is digits in the source coefficient [may be dn->digits] */
-/* residue is the residue accumulator. This has values as in */
-/* decApplyRound, and will be unchanged unless the */
-/* target size is less than len. In this case, the */
-/* coefficient is truncated and the residue is updated to */
-/* reflect the previous residue and the dropped digits. */
-/* status is the status accumulator, as usual */
-/* */
-/* The coefficient may already be in the number, or it can be an */
-/* external intermediate array. If it is in the number, lsu must == */
-/* dn->lsu and len must == dn->digits. */
-/* */
-/* Note that the coefficient length (len) may be < set->digits, and */
-/* in this case this merely copies the coefficient (or is a no-op */
-/* if dn->lsu==lsu). */
-/* */
-/* Note also that (only internally, from decNumberRescale and */
-/* decSetSubnormal) the value of set->digits may be less than one, */
-/* indicating a round to left. */
-/* This routine handles that case correctly; caller ensures space. */
-/* */
-/* dn->digits, dn->lsu (and as required), and dn->exponent are */
-/* updated as necessary. dn->bits (sign) is unchanged. */
-/* */
-/* DEC_Rounded status is set if any digits are discarded. */
-/* DEC_Inexact status is set if any non-zero digits are discarded, or */
-/* incoming residue was non-0 (implies rounded) */
-/* ------------------------------------------------------------------ */
-/* mapping array: maps 0-9 to canonical residues, so that we can */
-/* adjust by a residue in range [-1, +1] and achieve correct rounding */
-/* 0 1 2 3 4 5 6 7 8 9 */
-static const uByte resmap[10] = { 0, 3, 3, 3, 3, 5, 7, 7, 7, 7 };
-static void
-decSetCoeff (decNumber * dn, decContext * set, const Unit * lsu,
- Int len, Int * residue, uInt * status)
-{
- Int discard; /* number of digits to discard */
- uInt discard1; /* first discarded digit */
- uInt cut; /* cut point in Unit */
- uInt quot, rem; /* for divisions */
- Unit *target; /* work */
- const Unit *up; /* work */
- Int count; /* .. */
-#if DECDPUN<=4
- uInt temp; /* .. */
-#endif
-
- discard = len - set->digits; /* digits to discard */
- if (discard <= 0)
- { /* no digits are being discarded */
- if (dn->lsu != lsu)
- { /* copy needed */
- /* copy the coefficient array to the result number; no shift needed */
- up = lsu;
- for (target = dn->lsu; target < dn->lsu + D2U (len); target++, up++)
- {
- *target = *up;
- }
- dn->digits = len; /* set the new length */
- }
- /* dn->exponent and residue are unchanged */
- if (*residue != 0)
- *status |= (DEC_Inexact | DEC_Rounded); /* record inexactitude */
- return;
- }
-
- /* we have to discard some digits */
- *status |= DEC_Rounded; /* accumulate Rounded status */
- if (*residue > 1)
- *residue = 1; /* previous residue now to right, so -1 to +1 */
-
- if (discard > len)
- { /* everything, +1, is being discarded */
- /* guard digit is 0 */
- /* residue is all the number [NB could be all 0s] */
- if (*residue <= 0)
- for (up = lsu + D2U (len) - 1; up >= lsu; up--)
- {
- if (*up != 0)
- { /* found a non-0 */
- *residue = 1;
- break; /* no need to check any others */
- }
- }
- if (*residue != 0)
- *status |= DEC_Inexact; /* record inexactitude */
- *dn->lsu = 0; /* coefficient will now be 0 */
- dn->digits = 1; /* .. */
- dn->exponent += discard; /* maintain numerical value */
- return;
- } /* total discard */
-
- /* partial discard [most common case] */
- /* here, at least the first (most significant) discarded digit exists */
-
- /* spin up the number, noting residue as we pass, until we get to */
- /* the Unit with the first discarded digit. When we get there, */
- /* extract it and remember where we're at */
- count = 0;
- for (up = lsu;; up++)
- {
- count += DECDPUN;
- if (count >= discard)
- break; /* full ones all checked */
- if (*up != 0)
- *residue = 1;
- } /* up */
-
- /* here up -> Unit with discarded digit */
- cut = discard - (count - DECDPUN) - 1;
- if (cut == DECDPUN - 1)
- { /* discard digit is at top */
-#if DECDPUN<=4
- discard1 = QUOT10 (*up, DECDPUN - 1);
- rem = *up - discard1 * powers[DECDPUN - 1];
-#else
- rem = *up % powers[DECDPUN - 1];
- discard1 = *up / powers[DECDPUN - 1];
-#endif
- if (rem != 0)
- *residue = 1;
- up++; /* move to next */
- cut = 0; /* bottom digit of result */
- quot = 0; /* keep a certain compiler happy */
- }
- else
- {
- /* discard digit is in low digit(s), not top digit */
- if (cut == 0)
- quot = *up;
- else /* cut>0 */
- { /* it's not at bottom of Unit */
-#if DECDPUN<=4
- quot = QUOT10 (*up, cut);
- rem = *up - quot * powers[cut];
-#else
- rem = *up % powers[cut];
- quot = *up / powers[cut];
-#endif
- if (rem != 0)
- *residue = 1;
- }
- /* discard digit is now at bottom of quot */
-#if DECDPUN<=4
- temp = (quot * 6554) >> 16; /* fast /10 */
- /* Vowels algorithm here not a win (9 instructions) */
- discard1 = quot - X10 (temp);
- quot = temp;
-#else
- discard1 = quot % 10;
- quot = quot / 10;
-#endif
- cut++; /* update cut */
- }
-
- /* here: up -> Unit of the array with discarded digit */
- /* cut is the division point for each Unit */
- /* quot holds the uncut high-order digits for the current */
- /* Unit, unless cut==0 in which case it's still in *up */
- /* copy the coefficient array to the result number, shifting as we go */
- count = set->digits; /* digits to end up with */
- if (count <= 0)
- { /* special for Rescale/Subnormal :-( */
- *dn->lsu = 0; /* .. result is 0 */
- dn->digits = 1; /* .. */
- }
- else
- { /* shift to least */
- /* [this is similar to decShiftToLeast code, with copy] */
- dn->digits = count; /* set the new length */
- if (cut == 0)
- {
- /* on unit boundary, so simple shift down copy loop suffices */
- for (target = dn->lsu; target < dn->lsu + D2U (count);
- target++, up++)
- {
- *target = *up;
- }
- }
- else
- for (target = dn->lsu;; target++)
- {
- *target = (Unit) quot;
- count -= (DECDPUN - cut);
- if (count <= 0)
- break;
- up++;
- quot = *up;
-#if DECDPUN<=4
- quot = QUOT10 (quot, cut);
- rem = *up - quot * powers[cut];
-#else
- rem = quot % powers[cut];
- quot = quot / powers[cut];
-#endif
- *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
- count -= cut;
- if (count <= 0)
- break;
- }
- } /* shift to least needed */
- dn->exponent += discard; /* maintain numerical value */
-
- /* here, discard1 is the guard digit, and residue is everything else */
- /* [use mapping to accumulate residue safely] */
- *residue += resmap[discard1];
-
- if (*residue != 0)
- *status |= DEC_Inexact; /* record inexactitude */
- return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decApplyRound -- apply pending rounding to a number */
-/* */
-/* dn is the number, with space for set->digits digits */
-/* set is the context [for size and rounding mode] */
-/* residue indicates pending rounding, being any accumulated */
-/* guard and sticky information. It may be: */
-/* 6-9: rounding digit is >5 */
-/* 5: rounding digit is exactly half-way */
-/* 1-4: rounding digit is <5 and >0 */
-/* 0: the coefficient is exact */
-/* -1: as 1, but the hidden digits are subtractive, that */
-/* is, of the opposite sign to dn. In this case the */
-/* coefficient must be non-0. */
-/* status is the status accumulator, as usual */
-/* */
-/* This routine applies rounding while keeping the length of the */
-/* coefficient constant. The exponent and status are unchanged */
-/* except if: */
-/* */
-/* -- the coefficient was increased and is all nines (in which */
-/* case Overflow could occur, and is handled directly here so */
-/* the caller does not need to re-test for overflow) */
-/* */
-/* -- the coefficient was decreased and becomes all nines (in which */
-/* case Underflow could occur, and is also handled directly). */
-/* */
-/* All fields in dn are updated as required. */
-/* */
-/* ------------------------------------------------------------------ */
-static void
-decApplyRound (decNumber * dn, decContext * set, Int residue, uInt * status)
-{
- Int bump; /* 1 if coefficient needs to be incremented */
- /* -1 if coefficient needs to be decremented */
-
- if (residue == 0)
- return; /* nothing to apply */
-
- bump = 0; /* assume a smooth ride */
-
- /* now decide whether, and how, to round, depending on mode */
- switch (set->round)
- {
- case DEC_ROUND_DOWN:
- {
- /* no change, except if negative residue */
- if (residue < 0)
- bump = -1;
- break;
- } /* r-d */
-
- case DEC_ROUND_HALF_DOWN:
- {
- if (residue > 5)
- bump = 1;
- break;
- } /* r-h-d */
-
- case DEC_ROUND_HALF_EVEN:
- {
- if (residue > 5)
- bump = 1; /* >0.5 goes up */
- else if (residue == 5)
- { /* exactly 0.5000... */
- /* 0.5 goes up iff [new] lsd is odd */
- if (*dn->lsu & 0x01)
- bump = 1;
- }
- break;
- } /* r-h-e */
-
- case DEC_ROUND_HALF_UP:
- {
- if (residue >= 5)
- bump = 1;
- break;
- } /* r-h-u */
-
- case DEC_ROUND_UP:
- {
- if (residue > 0)
- bump = 1;
- break;
- } /* r-u */
-
- case DEC_ROUND_CEILING:
- {
- /* same as _UP for positive numbers, and as _DOWN for negatives */
- /* [negative residue cannot occur on 0] */
- if (decNumberIsNegative (dn))
- {
- if (residue < 0)
- bump = -1;
- }
- else
- {
- if (residue > 0)
- bump = 1;
- }
- break;
- } /* r-c */
-
- case DEC_ROUND_FLOOR:
- {
- /* same as _UP for negative numbers, and as _DOWN for positive */
- /* [negative residue cannot occur on 0] */
- if (!decNumberIsNegative (dn))
- {
- if (residue < 0)
- bump = -1;
- }
- else
- {
- if (residue > 0)
- bump = 1;
- }
- break;
- } /* r-f */
-
- default:
- { /* e.g., DEC_ROUND_MAX */
- *status |= DEC_Invalid_context;
-#if DECTRACE
- printf ("Unknown rounding mode: %d\n", set->round);
-#endif
- break;
- }
- } /* switch */
-
- /* now bump the number, up or down, if need be */
- if (bump == 0)
- return; /* no action required */
-
- /* Simply use decUnitAddSub unless we are bumping up and the number */
- /* is all nines. In this special case we set to 1000... and adjust */
- /* the exponent by one (as otherwise we could overflow the array) */
- /* Similarly handle all-nines result if bumping down. */
- if (bump > 0)
- {
- Unit *up; /* work */
- uInt count = dn->digits; /* digits to be checked */
- for (up = dn->lsu;; up++)
- {
- if (count <= DECDPUN)
- {
- /* this is the last Unit (the msu) */
- if (*up != powers[count] - 1)
- break; /* not still 9s */
- /* here if it, too, is all nines */
- *up = (Unit) powers[count - 1]; /* here 999 -> 100 etc. */
- for (up = up - 1; up >= dn->lsu; up--)
- *up = 0; /* others all to 0 */
- dn->exponent++; /* and bump exponent */
- /* [which, very rarely, could cause Overflow...] */
- if ((dn->exponent + dn->digits) > set->emax + 1)
- {
- decSetOverflow (dn, set, status);
- }
- return; /* done */
- }
- /* a full unit to check, with more to come */
- if (*up != DECDPUNMAX)
- break; /* not still 9s */
- count -= DECDPUN;
- } /* up */
- } /* bump>0 */
- else
- { /* -1 */
- /* here we are lookng for a pre-bump of 1000... (leading 1, */
- /* all other digits zero) */
- Unit *up, *sup; /* work */
- uInt count = dn->digits; /* digits to be checked */
- for (up = dn->lsu;; up++)
- {
- if (count <= DECDPUN)
- {
- /* this is the last Unit (the msu) */
- if (*up != powers[count - 1])
- break; /* not 100.. */
- /* here if we have the 1000... case */
- sup = up; /* save msu pointer */
- *up = (Unit) powers[count] - 1; /* here 100 in msu -> 999 */
- /* others all to all-nines, too */
- for (up = up - 1; up >= dn->lsu; up--)
- *up = (Unit) powers[DECDPUN] - 1;
- dn->exponent--; /* and bump exponent */
-
- /* iff the number was at the subnormal boundary (exponent=etiny) */
- /* then the exponent is now out of range, so it will in fact get */
- /* clamped to etiny and the final 9 dropped. */
- /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
- /* dn->exponent, set->digits); */
- if (dn->exponent + 1 == set->emin - set->digits + 1)
- {
- if (count == 1 && dn->digits == 1)
- *sup = 0; /* here 9 -> 0[.9] */
- else
- {
- *sup = (Unit) powers[count - 1] - 1; /* here 999.. in msu -> 99.. */
- dn->digits--;
- }
- dn->exponent++;
- *status |=
- DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
- }
- return; /* done */
- }
-
- /* a full unit to check, with more to come */
- if (*up != 0)
- break; /* not still 0s */
- count -= DECDPUN;
- } /* up */
-
- } /* bump<0 */
-
- /* Actual bump needed. Do it. */
- decUnitAddSub (dn->lsu, D2U (dn->digits), one, 1, 0, dn->lsu, bump);
-}
-
-#if DECSUBSET
-/* ------------------------------------------------------------------ */
-/* decFinish -- finish processing a number */
-/* */
-/* dn is the number */
-/* set is the context */
-/* residue is the rounding accumulator (as in decApplyRound) */
-/* status is the accumulator */
-/* */
-/* This finishes off the current number by: */
-/* 1. If not extended: */
-/* a. Converting a zero result to clean '0' */
-/* b. Reducing positive exponents to 0, if would fit in digits */
-/* 2. Checking for overflow and subnormals (always) */
-/* Note this is just Finalize when no subset arithmetic. */
-/* All fields are updated as required. */
-/* ------------------------------------------------------------------ */
-static void
-decFinish (decNumber * dn, decContext * set, Int * residue, uInt * status)
-{
- if (!set->extended)
- {
- if ISZERO
- (dn)
- { /* value is zero */
- dn->exponent = 0; /* clean exponent .. */
- dn->bits = 0; /* .. and sign */
- return; /* no error possible */
- }
- if (dn->exponent >= 0)
- { /* non-negative exponent */
- /* >0; reduce to integer if possible */
- if (set->digits >= (dn->exponent + dn->digits))
- {
- dn->digits = decShiftToMost (dn->lsu, dn->digits, dn->exponent);
- dn->exponent = 0;
- }
- }
- } /* !extended */
-
- decFinalize (dn, set, residue, status);
-}
-#endif
-
-/* ------------------------------------------------------------------ */
-/* decFinalize -- final check, clamp, and round of a number */
-/* */
-/* dn is the number */
-/* set is the context */
-/* residue is the rounding accumulator (as in decApplyRound) */
-/* status is the status accumulator */
-/* */
-/* This finishes off the current number by checking for subnormal */
-/* results, applying any pending rounding, checking for overflow, */
-/* and applying any clamping. */
-/* Underflow and overflow conditions are raised as appropriate. */
-/* All fields are updated as required. */
-/* ------------------------------------------------------------------ */
-static void
-decFinalize (decNumber * dn, decContext * set, Int * residue, uInt * status)
-{
- Int shift; /* shift needed if clamping */
-
- /* We have to be careful when checking the exponent as the adjusted */
- /* exponent could overflow 31 bits [because it may already be up */
- /* to twice the expected]. */
-
- /* First test for subnormal. This must be done before any final */
- /* round as the result could be rounded to Nmin or 0. */
- if (dn->exponent < 0 /* negative exponent */
- && (dn->exponent < set->emin - dn->digits + 1))
- {
- /* Go handle subnormals; this will apply round if needed. */
- decSetSubnormal (dn, set, residue, status);
- return;
- }
-
- /* now apply any pending round (this could raise overflow). */
- if (*residue != 0)
- decApplyRound (dn, set, *residue, status);
-
- /* Check for overflow [redundant in the 'rare' case] or clamp */
- if (dn->exponent <= set->emax - set->digits + 1)
- return; /* neither needed */
-
- /* here when we might have an overflow or clamp to do */
- if (dn->exponent > set->emax - dn->digits + 1)
- { /* too big */
- decSetOverflow (dn, set, status);
- return;
- }
- /* here when the result is normal but in clamp range */
- if (!set->clamp)
- return;
-
- /* here when we need to apply the IEEE exponent clamp (fold-down) */
- shift = dn->exponent - (set->emax - set->digits + 1);
-
- /* shift coefficient (if non-zero) */
- if (!ISZERO (dn))
- {
- dn->digits = decShiftToMost (dn->lsu, dn->digits, shift);
- }
- dn->exponent -= shift; /* adjust the exponent to match */
- *status |= DEC_Clamped; /* and record the dirty deed */
- return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decSetOverflow -- set number to proper overflow value */
-/* */
-/* dn is the number (used for sign [only] and result) */
-/* set is the context [used for the rounding mode] */
-/* status contains the current status to be updated */
-/* */
-/* This sets the sign of a number and sets its value to either */
-/* Infinity or the maximum finite value, depending on the sign of */
-/* dn and therounding mode, following IEEE 854 rules. */
-/* ------------------------------------------------------------------ */
-static void
-decSetOverflow (decNumber * dn, decContext * set, uInt * status)
-{
- Flag needmax = 0; /* result is maximum finite value */
- uByte sign = dn->bits & DECNEG; /* clean and save sign bit */
-
- if (ISZERO (dn))
- { /* zero does not overflow magnitude */
- Int emax = set->emax; /* limit value */
- if (set->clamp)
- emax -= set->digits - 1; /* lower if clamping */
- if (dn->exponent > emax)
- { /* clamp required */
- dn->exponent = emax;
- *status |= DEC_Clamped;
- }
- return;
- }
-
- decNumberZero (dn);
- switch (set->round)
- {
- case DEC_ROUND_DOWN:
- {
- needmax = 1; /* never Infinity */
- break;
- } /* r-d */
- case DEC_ROUND_CEILING:
- {
- if (sign)
- needmax = 1; /* Infinity if non-negative */
- break;
- } /* r-c */
- case DEC_ROUND_FLOOR:
- {
- if (!sign)
- needmax = 1; /* Infinity if negative */
- break;
- } /* r-f */
- default:
- break; /* Infinity in all other cases */
- }
- if (needmax)
- {
- Unit *up; /* work */
- Int count = set->digits; /* nines to add */
- dn->digits = count;
- /* fill in all nines to set maximum value */
- for (up = dn->lsu;; up++)
- {
- if (count > DECDPUN)
- *up = DECDPUNMAX; /* unit full o'nines */
- else
- { /* this is the msu */
- *up = (Unit) (powers[count] - 1);
- break;
- }
- count -= DECDPUN; /* we filled those digits */
- } /* up */
- dn->bits = sign; /* sign */
- dn->exponent = set->emax - set->digits + 1;
- }
- else
- dn->bits = sign | DECINF; /* Value is +/-Infinity */
- *status |= DEC_Overflow | DEC_Inexact | DEC_Rounded;
-}
-
-/* ------------------------------------------------------------------ */
-/* decSetSubnormal -- process value whose exponent is <Emin */
-/* */
-/* dn is the number (used as input as well as output; it may have */
-/* an allowed subnormal value, which may need to be rounded) */
-/* set is the context [used for the rounding mode] */
-/* residue is any pending residue */
-/* status contains the current status to be updated */
-/* */
-/* If subset mode, set result to zero and set Underflow flags. */
-/* */
-/* Value may be zero with a low exponent; this does not set Subnormal */
-/* but the exponent will be clamped to Etiny. */
-/* */
-/* Otherwise ensure exponent is not out of range, and round as */
-/* necessary. Underflow is set if the result is Inexact. */
-/* ------------------------------------------------------------------ */
-static void
-decSetSubnormal (decNumber * dn, decContext * set,
- Int * residue, uInt * status)
-{
- decContext workset; /* work */
- Int etiny, adjust; /* .. */
-
-#if DECSUBSET
- /* simple set to zero and 'hard underflow' for subset */
- if (!set->extended)
- {
- decNumberZero (dn);
- /* always full overflow */
- *status |= DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
- return;
- }
-#endif
-
- /* Full arithmetic -- allow subnormals, rounded to minimum exponent */
- /* (Etiny) if needed */
- etiny = set->emin - (set->digits - 1); /* smallest allowed exponent */
-
- if ISZERO
- (dn)
- { /* value is zero */
- /* residue can never be non-zero here */
-#if DECCHECK
- if (*residue != 0)
- {
- printf ("++ Subnormal 0 residue %d\n", *residue);
- *status |= DEC_Invalid_operation;
- }
-#endif
- if (dn->exponent < etiny)
- { /* clamp required */
- dn->exponent = etiny;
- *status |= DEC_Clamped;
- }
- return;
- }
-
- *status |= DEC_Subnormal; /* we have a non-zero subnormal */
-
- adjust = etiny - dn->exponent; /* calculate digits to remove */
- if (adjust <= 0)
- { /* not out of range; unrounded */
- /* residue can never be non-zero here, so fast-path out */
-#if DECCHECK
- if (*residue != 0)
- {
- printf ("++ Subnormal no-adjust residue %d\n", *residue);
- *status |= DEC_Invalid_operation;
- }
-#endif
- /* it may already be inexact (from setting the coefficient) */
- if (*status & DEC_Inexact)
- *status |= DEC_Underflow;
- return;
- }
-
- /* adjust>0. we need to rescale the result so exponent becomes Etiny */
- /* [this code is similar to that in rescale] */
- workset = *set; /* clone rounding, etc. */
- workset.digits = dn->digits - adjust; /* set requested length */
- workset.emin -= adjust; /* and adjust emin to match */
- /* [note that the latter can be <1, here, similar to Rescale case] */
- decSetCoeff (dn, &workset, dn->lsu, dn->digits, residue, status);
- decApplyRound (dn, &workset, *residue, status);
-
- /* Use 754R/854 default rule: Underflow is set iff Inexact */
- /* [independent of whether trapped] */
- if (*status & DEC_Inexact)
- *status |= DEC_Underflow;
-
- /* if we rounded up a 999s case, exponent will be off by one; adjust */
- /* back if so [it will fit, because we shortened] */
- if (dn->exponent > etiny)
- {
- dn->digits = decShiftToMost (dn->lsu, dn->digits, 1);
- dn->exponent--; /* (re)adjust the exponent. */
- }
-}
-
-/* ------------------------------------------------------------------ */
-/* decGetInt -- get integer from a number */
-/* */
-/* dn is the number [which will not be altered] */
-/* set is the context [requested digits], subset only */
-/* returns the converted integer, or BADINT if error */
-/* */
-/* This checks and gets a whole number from the input decNumber. */
-/* The magnitude of the integer must be <2^31. */
-/* Any discarded fractional part must be 0. */
-/* If subset it must also fit in set->digits */
-/* ------------------------------------------------------------------ */
-#if DECSUBSET
-static Int
-decGetInt (const decNumber * dn, decContext * set)
-{
-#else
-static Int
-decGetInt (const decNumber * dn)
-{
-#endif
- Int theInt; /* result accumulator */
- const Unit *up; /* work */
- Int got; /* digits (real or not) processed */
- Int ilength = dn->digits + dn->exponent; /* integral length */
-
- /* The number must be an integer that fits in 10 digits */
- /* Assert, here, that 10 is enough for any rescale Etiny */
-#if DEC_MAX_EMAX > 999999999
-#error GetInt may need updating [for Emax]
-#endif
-#if DEC_MIN_EMIN < -999999999
-#error GetInt may need updating [for Emin]
-#endif
- if (ISZERO (dn))
- return 0; /* zeros are OK, with any exponent */
- if (ilength > 10)
- return BADINT; /* always too big */
-#if DECSUBSET
- if (!set->extended && ilength > set->digits)
- return BADINT;
-#endif
-
- up = dn->lsu; /* ready for lsu */
- theInt = 0; /* ready to accumulate */
- if (dn->exponent >= 0)
- { /* relatively easy */
- /* no fractional part [usual]; allow for positive exponent */
- got = dn->exponent;
- }
- else
- { /* -ve exponent; some fractional part to check and discard */
- Int count = -dn->exponent; /* digits to discard */
- /* spin up whole units until we get to the Unit with the unit digit */
- for (; count >= DECDPUN; up++)
- {
- if (*up != 0)
- return BADINT; /* non-zero Unit to discard */
- count -= DECDPUN;
- }
- if (count == 0)
- got = 0; /* [a multiple of DECDPUN] */
- else
- { /* [not multiple of DECDPUN] */
- Int rem; /* work */
- /* slice off fraction digits and check for non-zero */
-#if DECDPUN<=4
- theInt = QUOT10 (*up, count);
- rem = *up - theInt * powers[count];
-#else
- rem = *up % powers[count]; /* slice off discards */
- theInt = *up / powers[count];
-#endif
- if (rem != 0)
- return BADINT; /* non-zero fraction */
- /* OK, we're good */
- got = DECDPUN - count; /* number of digits so far */
- up++; /* ready for next */
- }
- }
- /* collect the rest */
- for (; got < ilength; up++)
- {
- theInt += *up * powers[got];
- got += DECDPUN;
- }
- if ((ilength == 10) /* check no wrap */
- && (theInt / (Int) powers[got - DECDPUN] != *(up - 1)))
- return BADINT;
- /* [that test also disallows the BADINT result case] */
-
- /* apply any sign and return */
- if (decNumberIsNegative (dn))
- theInt = -theInt;
- return theInt;
-}
-
-/* ------------------------------------------------------------------ */
-/* decStrEq -- caseless comparison of strings */
-/* */
-/* str1 is one of the strings to compare */
-/* str2 is the other */
-/* */
-/* returns 1 if strings caseless-compare equal, 0 otherwise */
-/* */
-/* Note that the strings must be the same length if they are to */
-/* compare equal; there is no padding. */
-/* ------------------------------------------------------------------ */
-/* [strcmpi is not in ANSI C] */
-static Flag
-decStrEq (const char *str1, const char *str2)
-{
- for (;; str1++, str2++)
- {
- unsigned char u1 = (unsigned char) *str1;
- unsigned char u2 = (unsigned char) *str2;
- if (u1 == u2)
- {
- if (u1 == '\0')
- break;
- }
- else
- {
- if (tolower (u1) != tolower (u2))
- return 0;
- }
- } /* stepping */
- return 1;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNaNs -- handle NaN operand or operands */
-/* */
-/* res is the result number */
-/* lhs is the first operand */
-/* rhs is the second operand, or NULL if none */
-/* status contains the current status */
-/* returns res in case convenient */
-/* */
-/* Called when one or both operands is a NaN, and propagates the */
-/* appropriate result to res. When an sNaN is found, it is changed */
-/* to a qNaN and Invalid operation is set. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decNaNs (decNumber * res, const decNumber * lhs, const decNumber * rhs, uInt * status)
-{
- /* This decision tree ends up with LHS being the source pointer, */
- /* and status updated if need be */
- if (lhs->bits & DECSNAN)
- *status |= DEC_Invalid_operation | DEC_sNaN;
- else if (rhs == NULL);
- else if (rhs->bits & DECSNAN)
- {
- lhs = rhs;
- *status |= DEC_Invalid_operation | DEC_sNaN;
- }
- else if (lhs->bits & DECNAN);
- else
- lhs = rhs;
-
- decNumberCopy (res, lhs);
- res->bits &= ~DECSNAN; /* convert any sNaN to NaN, while */
- res->bits |= DECNAN; /* .. preserving sign */
- res->exponent = 0; /* clean exponent */
- /* [coefficient was copied] */
- return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decStatus -- apply non-zero status */
-/* */
-/* dn is the number to set if error */
-/* status contains the current status (not yet in context) */
-/* set is the context */
-/* */
-/* If the status is an error status, the number is set to a NaN, */
-/* unless the error was an overflow, divide-by-zero, or underflow, */
-/* in which case the number will have already been set. */
-/* */
-/* The context status is then updated with the new status. Note that */
-/* this may raise a signal, so control may never return from this */
-/* routine (hence resources must be recovered before it is called). */
-/* ------------------------------------------------------------------ */
-static void
-decStatus (decNumber * dn, uInt status, decContext * set)
-{
- if (status & DEC_NaNs)
- { /* error status -> NaN */
- /* if cause was an sNaN, clear and propagate [NaN is already set up] */
- if (status & DEC_sNaN)
- status &= ~DEC_sNaN;
- else
- {
- decNumberZero (dn); /* other error: clean throughout */
- dn->bits = DECNAN; /* and make a quiet NaN */
- }
- }
- decContextSetStatus (set, status);
- return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decGetDigits -- count digits in a Units array */
-/* */
-/* uar is the Unit array holding the number [this is often an */
-/* accumulator of some sort] */
-/* len is the length of the array in units */
-/* */
-/* returns the number of (significant) digits in the array */
-/* */
-/* All leading zeros are excluded, except the last if the array has */
-/* only zero Units. */
-/* ------------------------------------------------------------------ */
-/* This may be called twice during some operations. */
-static Int
-decGetDigits (const Unit * uar, Int len)
-{
- const Unit *up = uar + len - 1; /* -> msu */
- Int digits = len * DECDPUN; /* maximum possible digits */
- uInt const *pow; /* work */
-
- for (; up >= uar; up--)
- {
- digits -= DECDPUN;
- if (*up == 0)
- { /* unit is 0 */
- if (digits != 0)
- continue; /* more to check */
- /* all units were 0 */
- digits++; /* .. so bump digits to 1 */
- break;
- }
- /* found the first non-zero Unit */
- digits++;
- if (*up < 10)
- break; /* fastpath 1-9 */
- digits++;
- for (pow = &powers[2]; *up >= *pow; pow++)
- digits++;
- break;
- } /* up */
-
- return digits;
-}
-
-
-#if DECTRACE | DECCHECK
-/* ------------------------------------------------------------------ */
-/* decNumberShow -- display a number [debug aid] */
-/* dn is the number to show */
-/* */
-/* Shows: sign, exponent, coefficient (msu first), digits */
-/* or: sign, special-value */
-/* ------------------------------------------------------------------ */
-/* this is public so other modules can use it */
-void
-decNumberShow (const decNumber * dn)
-{
- const Unit *up; /* work */
- uInt u, d; /* .. */
- Int cut; /* .. */
- char isign = '+'; /* main sign */
- if (dn == NULL)
- {
- printf ("NULL\n");
- return;
- }
- if (decNumberIsNegative (dn))
- isign = '-';
- printf (" >> %c ", isign);
- if (dn->bits & DECSPECIAL)
- { /* Is a special value */
- if (decNumberIsInfinite (dn))
- printf ("Infinity");
- else
- { /* a NaN */
- if (dn->bits & DECSNAN)
- printf ("sNaN"); /* signalling NaN */
- else
- printf ("NaN");
- }
- /* if coefficient and exponent are 0, we're done */
- if (dn->exponent == 0 && dn->digits == 1 && *dn->lsu == 0)
- {
- printf ("\n");
- return;
- }
- /* drop through to report other information */
- printf (" ");
- }
-
- /* now carefully display the coefficient */
- up = dn->lsu + D2U (dn->digits) - 1; /* msu */
- printf ("%d", *up);
- for (up = up - 1; up >= dn->lsu; up--)
- {
- u = *up;
- printf (":");
- for (cut = DECDPUN - 1; cut >= 0; cut--)
- {
- d = u / powers[cut];
- u -= d * powers[cut];
- printf ("%d", d);
- } /* cut */
- } /* up */
- if (dn->exponent != 0)
- {
- char esign = '+';
- if (dn->exponent < 0)
- esign = '-';
- printf (" E%c%d", esign, abs (dn->exponent));
- }
- printf (" [%d]\n", dn->digits);
-}
-#endif
-
-#if DECTRACE || DECCHECK
-/* ------------------------------------------------------------------ */
-/* decDumpAr -- display a unit array [debug aid] */
-/* name is a single-character tag name */
-/* ar is the array to display */
-/* len is the length of the array in Units */
-/* ------------------------------------------------------------------ */
-static void
-decDumpAr (char name, const Unit * ar, Int len)
-{
- Int i;
-#if DECDPUN==4
- const char *spec = "%04d ";
-#else
- const char *spec = "%d ";
-#endif
- printf (" :%c: ", name);
- for (i = len - 1; i >= 0; i--)
- {
- if (i == len - 1)
- printf ("%d ", ar[i]);
- else
- printf (spec, ar[i]);
- }
- printf ("\n");
- return;
-}
-#endif
-
-#if DECCHECK
-/* ------------------------------------------------------------------ */
-/* decCheckOperands -- check operand(s) to a routine */
-/* res is the result structure (not checked; it will be set to */
-/* quiet NaN if error found (and it is not NULL)) */
-/* lhs is the first operand (may be DECUNUSED) */
-/* rhs is the second (may be DECUNUSED) */
-/* set is the context (may be DECUNUSED) */
-/* returns 0 if both operands, and the context are clean, or 1 */
-/* otherwise (in which case the context will show an error, */
-/* unless NULL). Note that res is not cleaned; caller should */
-/* handle this so res=NULL case is safe. */
-/* The caller is expected to abandon immediately if 1 is returned. */
-/* ------------------------------------------------------------------ */
-static Flag
-decCheckOperands (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- Flag bad = 0;
- if (set == NULL)
- { /* oops; hopeless */
-#if DECTRACE
- printf ("Context is NULL.\n");
-#endif
- bad = 1;
- return 1;
- }
- else if (set != DECUNUSED
- && (set->digits < 1 || set->round < 0
- || set->round >= DEC_ROUND_MAX))
- {
- bad = 1;
-#if DECTRACE
- printf ("Bad context [digits=%d round=%d].\n", set->digits, set->round);
-#endif
- }
- else
- {
- if (res == NULL)
- {
- bad = 1;
-#if DECTRACE
- printf ("Bad result [is NULL].\n");
-#endif
- }
- if (!bad && lhs != DECUNUSED)
- bad = (decCheckNumber (lhs, set));
- if (!bad && rhs != DECUNUSED)
- bad = (decCheckNumber (rhs, set));
- }
- if (bad)
- {
- if (set != DECUNUSED)
- decContextSetStatus (set, DEC_Invalid_operation);
- if (res != DECUNUSED && res != NULL)
- {
- decNumberZero (res);
- res->bits = DECNAN; /* qNaN */
- }
- }
- return bad;
-}
-
-/* ------------------------------------------------------------------ */
-/* decCheckNumber -- check a number */
-/* dn is the number to check */
-/* set is the context (may be DECUNUSED) */
-/* returns 0 if the number is clean, or 1 otherwise */
-/* */
-/* The number is considered valid if it could be a result from some */
-/* operation in some valid context (not necessarily the current one). */
-/* ------------------------------------------------------------------ */
-Flag
-decCheckNumber (const decNumber * dn, decContext * set)
-{
- const Unit *up; /* work */
- uInt maxuint; /* .. */
- Int ae, d, digits; /* .. */
- Int emin, emax; /* .. */
-
- if (dn == NULL)
- { /* hopeless */
-#if DECTRACE
- printf ("Reference to decNumber is NULL.\n");
-#endif
- return 1;
- }
-
- /* check special values */
- if (dn->bits & DECSPECIAL)
- {
- if (dn->exponent != 0)
- {
-#if DECTRACE
- printf ("Exponent %d (not 0) for a special value.\n", dn->exponent);
-#endif
- return 1;
- }
-
- /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
- if (decNumberIsInfinite (dn))
- {
- if (dn->digits != 1)
- {
-#if DECTRACE
- printf ("Digits %d (not 1) for an infinity.\n", dn->digits);
-#endif
- return 1;
- }
- if (*dn->lsu != 0)
- {
-#if DECTRACE
- printf ("LSU %d (not 0) for an infinity.\n", *dn->lsu);
-#endif
- return 1;
- }
- } /* Inf */
- /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
- /* concrete formats (decimal64, etc.), though they are */
- /* never visible in strings. */
- return 0;
-
- /* if ((dn->bits & DECINF) || (dn->bits & DECNEG)==0) return 0; */
- /* #if DECTRACE */
- /* printf("Negative NaN in number.\n"); */
- /* #endif */
- /* return 1; */
- }
-
- /* check the coefficient */
- if (dn->digits < 1 || dn->digits > DECNUMMAXP)
- {
-#if DECTRACE
- printf ("Digits %d in number.\n", dn->digits);
-#endif
- return 1;
- }
-
- d = dn->digits;
-
- for (up = dn->lsu; d > 0; up++)
- {
- if (d > DECDPUN)
- maxuint = DECDPUNMAX;
- else
- { /* we are at the msu */
- maxuint = powers[d] - 1;
- if (dn->digits > 1 && *up < powers[d - 1])
- {
-#if DECTRACE
- printf ("Leading 0 in number.\n");
- decNumberShow (dn);
-#endif
- return 1;
- }
- }
- if (*up > maxuint)
- {
-#if DECTRACE
- printf ("Bad Unit [%08x] in number at offset %d [maxuint %d].\n",
- *up, up - dn->lsu, maxuint);
-#endif
- return 1;
- }
- d -= DECDPUN;
- }
-
- /* check the exponent. Note that input operands can have exponents */
- /* which are out of the set->emin/set->emax and set->digits range */
- /* (just as they can have more digits than set->digits). */
- ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
- emax = DECNUMMAXE;
- emin = DECNUMMINE;
- digits = DECNUMMAXP;
- if (ae < emin - (digits - 1))
- {
-#if DECTRACE
- printf ("Adjusted exponent underflow [%d].\n", ae);
- decNumberShow (dn);
-#endif
- return 1;
- }
- if (ae > +emax)
- {
-#if DECTRACE
- printf ("Adjusted exponent overflow [%d].\n", ae);
- decNumberShow (dn);
-#endif
- return 1;
- }
-
- return 0; /* it's OK */
-}
-#endif
-
-#if DECALLOC
-#undef malloc
-#undef free
-/* ------------------------------------------------------------------ */
-/* decMalloc -- accountable allocation routine */
-/* n is the number of bytes to allocate */
-/* */
-/* Semantics is the same as the stdlib malloc routine, but bytes */
-/* allocated are accounted for globally, and corruption fences are */
-/* added before and after the 'actual' storage. */
-/* ------------------------------------------------------------------ */
-/* This routine allocates storage with an extra twelve bytes; 8 are */
-/* at the start and hold: */
-/* 0-3 the original length requested */
-/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
-/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
-/* ------------------------------------------------------------------ */
-static void *
-decMalloc (uInt n)
-{
- uInt size = n + 12; /* true size */
- void *alloc; /* -> allocated storage */
- uInt *j; /* work */
- uByte *b, *b0; /* .. */
-
- alloc = malloc (size); /* -> allocated storage */
- if (alloc == NULL)
- return NULL; /* out of strorage */
- b0 = (uByte *) alloc; /* as bytes */
- decAllocBytes += n; /* account for storage */
- j = (uInt *) alloc; /* -> first four bytes */
- *j = n; /* save n */
- /* printf("++ alloc(%d)\n", n); */
- for (b = b0 + 4; b < b0 + 8; b++)
- *b = DECFENCE;
- for (b = b0 + n + 8; b < b0 + n + 12; b++)
- *b = DECFENCE;
- return b0 + 8; /* -> play area */
-}
-
-/* ------------------------------------------------------------------ */
-/* decFree -- accountable free routine */
-/* alloc is the storage to free */
-/* */
-/* Semantics is the same as the stdlib malloc routine, except that */
-/* the global storage accounting is updated and the fences are */
-/* checked to ensure that no routine has written 'out of bounds'. */
-/* ------------------------------------------------------------------ */
-/* This routine first checks that the fences have not been corrupted. */
-/* It then frees the storage using the 'truw' storage address (that */
-/* is, offset by 8). */
-/* ------------------------------------------------------------------ */
-static void
-decFree (void *alloc)
-{
- uInt *j, n; /* pointer, original length */
- uByte *b, *b0; /* work */
-
- if (alloc == NULL)
- return; /* allowed; it's a nop */
- b0 = (uByte *) alloc; /* as bytes */
- b0 -= 8; /* -> true start of storage */
- j = (uInt *) b0; /* -> first four bytes */
- n = *j; /* lift */
- for (b = b0 + 4; b < b0 + 8; b++)
- if (*b != DECFENCE)
- printf ("=== Corrupt byte [%02x] at offset %d from %d ===\n", *b,
- b - b0 - 8, (Int) b0);
- for (b = b0 + n + 8; b < b0 + n + 12; b++)
- if (*b != DECFENCE)
- printf ("=== Corrupt byte [%02x] at offset +%d from %d, n=%d ===\n", *b,
- b - b0 - 8, (Int) b0, n);
- free (b0); /* drop the storage */
- decAllocBytes -= n; /* account for storage */
-}
-#endif