aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-vrp.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-vrp.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-vrp.c5546
1 files changed, 5546 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-vrp.c b/gcc-4.2.1-5666.3/gcc/tree-vrp.c
new file mode 100644
index 000000000..a1b7f0a20
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/tree-vrp.c
@@ -0,0 +1,5546 @@
+/* Support routines for Value Range Propagation (VRP).
+ Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "flags.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-flow.h"
+#include "tree-pass.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "diagnostic.h"
+#include "toplev.h"
+#include "intl.h"
+#include "cfgloop.h"
+#include "tree-scalar-evolution.h"
+#include "tree-ssa-propagate.h"
+#include "tree-chrec.h"
+
+/* Set of SSA names found during the dominator traversal of a
+ sub-graph in find_assert_locations. */
+static sbitmap found_in_subgraph;
+
+/* Local functions. */
+static int compare_values (tree val1, tree val2);
+static int compare_values_warnv (tree val1, tree val2, bool *);
+static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
+
+/* Location information for ASSERT_EXPRs. Each instance of this
+ structure describes an ASSERT_EXPR for an SSA name. Since a single
+ SSA name may have more than one assertion associated with it, these
+ locations are kept in a linked list attached to the corresponding
+ SSA name. */
+struct assert_locus_d
+{
+ /* Basic block where the assertion would be inserted. */
+ basic_block bb;
+
+ /* Some assertions need to be inserted on an edge (e.g., assertions
+ generated by COND_EXPRs). In those cases, BB will be NULL. */
+ edge e;
+
+ /* Pointer to the statement that generated this assertion. */
+ block_stmt_iterator si;
+
+ /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
+ enum tree_code comp_code;
+
+ /* Value being compared against. */
+ tree val;
+
+ /* Next node in the linked list. */
+ struct assert_locus_d *next;
+};
+
+typedef struct assert_locus_d *assert_locus_t;
+
+/* If bit I is present, it means that SSA name N_i has a list of
+ assertions that should be inserted in the IL. */
+static bitmap need_assert_for;
+
+/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
+ holds a list of ASSERT_LOCUS_T nodes that describe where
+ ASSERT_EXPRs for SSA name N_I should be inserted. */
+static assert_locus_t *asserts_for;
+
+/* Set of blocks visited in find_assert_locations. Used to avoid
+ visiting the same block more than once. */
+static sbitmap blocks_visited;
+
+/* Value range array. After propagation, VR_VALUE[I] holds the range
+ of values that SSA name N_I may take. */
+static value_range_t **vr_value;
+
+
+/* Return whether TYPE should use an overflow infinity distinct from
+ TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
+ represent a signed overflow during VRP computations. An infinity
+ is distinct from a half-range, which will go from some number to
+ TYPE_{MIN,MAX}_VALUE. */
+
+static inline bool
+needs_overflow_infinity (tree type)
+{
+ return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
+}
+
+/* Return whether TYPE can support our overflow infinity
+ representation: we use the TREE_OVERFLOW flag, which only exists
+ for constants. If TYPE doesn't support this, we don't optimize
+ cases which would require signed overflow--we drop them to
+ VARYING. */
+
+static inline bool
+supports_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (needs_overflow_infinity (type));
+#endif
+ return (TYPE_MIN_VALUE (type) != NULL_TREE
+ && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
+ && TYPE_MAX_VALUE (type) != NULL_TREE
+ && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
+}
+
+/* VAL is the maximum or minimum value of a type. Return a
+ corresponding overflow infinity. */
+
+static inline tree
+make_overflow_infinity (tree val)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
+#endif
+ val = copy_node (val);
+ TREE_OVERFLOW (val) = 1;
+ return val;
+}
+
+/* Return a negative overflow infinity for TYPE. */
+
+static inline tree
+negative_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (supports_overflow_infinity (type));
+#endif
+ return make_overflow_infinity (TYPE_MIN_VALUE (type));
+}
+
+/* Return a positive overflow infinity for TYPE. */
+
+static inline tree
+positive_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (supports_overflow_infinity (type));
+#endif
+ return make_overflow_infinity (TYPE_MAX_VALUE (type));
+}
+
+/* Return whether VAL is a negative overflow infinity. */
+
+static inline bool
+is_negative_overflow_infinity (tree val)
+{
+ return (needs_overflow_infinity (TREE_TYPE (val))
+ && CONSTANT_CLASS_P (val)
+ && TREE_OVERFLOW (val)
+ && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
+}
+
+/* Return whether VAL is a positive overflow infinity. */
+
+static inline bool
+is_positive_overflow_infinity (tree val)
+{
+ return (needs_overflow_infinity (TREE_TYPE (val))
+ && CONSTANT_CLASS_P (val)
+ && TREE_OVERFLOW (val)
+ && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
+}
+
+/* Return whether VAL is a positive or negative overflow infinity. */
+
+static inline bool
+is_overflow_infinity (tree val)
+{
+ return (needs_overflow_infinity (TREE_TYPE (val))
+ && CONSTANT_CLASS_P (val)
+ && TREE_OVERFLOW (val)
+ && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
+ || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
+}
+
+/* If VAL is now an overflow infinity, return VAL. Otherwise, return
+ the same value with TREE_OVERFLOW clear. This can be used to avoid
+ confusing a regular value with an overflow value. */
+
+static inline tree
+avoid_overflow_infinity (tree val)
+{
+ if (!is_overflow_infinity (val))
+ return val;
+
+ if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
+ return TYPE_MAX_VALUE (TREE_TYPE (val));
+ else
+ {
+#ifdef ENABLE_CHECKING
+ gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
+#endif
+ return TYPE_MIN_VALUE (TREE_TYPE (val));
+ }
+}
+
+
+/* Return whether VAL is equal to the maximum value of its type. This
+ will be true for a positive overflow infinity. We can't do a
+ simple equality comparison with TYPE_MAX_VALUE because C typedefs
+ and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
+ to the integer constant with the same value in the type. */
+
+static inline bool
+vrp_val_is_max (tree val)
+{
+ tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
+
+ return (val == type_max
+ || (type_max != NULL_TREE
+ && operand_equal_p (val, type_max, 0)));
+}
+
+/* Return whether VAL is equal to the minimum value of its type. This
+ will be true for a negative overflow infinity. */
+
+static inline bool
+vrp_val_is_min (tree val)
+{
+ tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
+
+ return (val == type_min
+ || (type_min != NULL_TREE
+ && operand_equal_p (val, type_min, 0)));
+}
+
+
+/* Return true if ARG is marked with the nonnull attribute in the
+ current function signature. */
+
+static bool
+nonnull_arg_p (tree arg)
+{
+ tree t, attrs, fntype;
+ unsigned HOST_WIDE_INT arg_num;
+
+ gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
+
+ /* The static chain decl is always non null. */
+ if (arg == cfun->static_chain_decl)
+ return true;
+
+ fntype = TREE_TYPE (current_function_decl);
+ attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
+
+ /* If "nonnull" wasn't specified, we know nothing about the argument. */
+ if (attrs == NULL_TREE)
+ return false;
+
+ /* If "nonnull" applies to all the arguments, then ARG is non-null. */
+ if (TREE_VALUE (attrs) == NULL_TREE)
+ return true;
+
+ /* Get the position number for ARG in the function signature. */
+ for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
+ t;
+ t = TREE_CHAIN (t), arg_num++)
+ {
+ if (t == arg)
+ break;
+ }
+
+ gcc_assert (t == arg);
+
+ /* Now see if ARG_NUM is mentioned in the nonnull list. */
+ for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
+ {
+ if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Set value range VR to {T, MIN, MAX, EQUIV}. */
+
+static void
+set_value_range (value_range_t *vr, enum value_range_type t, tree min,
+ tree max, bitmap equiv)
+{
+#if defined ENABLE_CHECKING
+ /* Check the validity of the range. */
+ if (t == VR_RANGE || t == VR_ANTI_RANGE)
+ {
+ int cmp;
+
+ gcc_assert (min && max);
+
+ if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
+ gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
+
+ cmp = compare_values (min, max);
+ gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
+
+ if (needs_overflow_infinity (TREE_TYPE (min)))
+ gcc_assert (!is_overflow_infinity (min)
+ || !is_overflow_infinity (max));
+ }
+
+ if (t == VR_UNDEFINED || t == VR_VARYING)
+ gcc_assert (min == NULL_TREE && max == NULL_TREE);
+
+ if (t == VR_UNDEFINED || t == VR_VARYING)
+ gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
+#endif
+
+ vr->type = t;
+ vr->min = min;
+ vr->max = max;
+
+ /* Since updating the equivalence set involves deep copying the
+ bitmaps, only do it if absolutely necessary. */
+ if (vr->equiv == NULL)
+ vr->equiv = BITMAP_ALLOC (NULL);
+
+ if (equiv != vr->equiv)
+ {
+ if (equiv && !bitmap_empty_p (equiv))
+ bitmap_copy (vr->equiv, equiv);
+ else
+ bitmap_clear (vr->equiv);
+ }
+}
+
+
+/* Copy value range FROM into value range TO. */
+
+static inline void
+copy_value_range (value_range_t *to, value_range_t *from)
+{
+ set_value_range (to, from->type, from->min, from->max, from->equiv);
+}
+
+
+/* Set value range VR to VR_VARYING. */
+
+static inline void
+set_value_range_to_varying (value_range_t *vr)
+{
+ vr->type = VR_VARYING;
+ vr->min = vr->max = NULL_TREE;
+ if (vr->equiv)
+ bitmap_clear (vr->equiv);
+}
+
+/* Set value range VR to a single value. This function is only called
+ with values we get from statements, and exists to clear the
+ TREE_OVERFLOW flag so that we don't think we have an overflow
+ infinity when we shouldn't. */
+
+static inline void
+set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
+{
+ gcc_assert (is_gimple_min_invariant (val));
+ val = avoid_overflow_infinity (val);
+ set_value_range (vr, VR_RANGE, val, val, equiv);
+}
+
+/* Set value range VR to a non-negative range of type TYPE.
+ OVERFLOW_INFINITY indicates whether to use a overflow infinity
+ rather than TYPE_MAX_VALUE; this should be true if we determine
+ that the range is nonnegative based on the assumption that signed
+ overflow does not occur. */
+
+static inline void
+set_value_range_to_nonnegative (value_range_t *vr, tree type,
+ bool overflow_infinity)
+{
+ tree zero;
+
+ if (overflow_infinity && !supports_overflow_infinity (type))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ zero = build_int_cst (type, 0);
+ set_value_range (vr, VR_RANGE, zero,
+ (overflow_infinity
+ ? positive_overflow_infinity (type)
+ : TYPE_MAX_VALUE (type)),
+ vr->equiv);
+}
+
+/* Set value range VR to a non-NULL range of type TYPE. */
+
+static inline void
+set_value_range_to_nonnull (value_range_t *vr, tree type)
+{
+ tree zero = build_int_cst (type, 0);
+ set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
+}
+
+
+/* Set value range VR to a NULL range of type TYPE. */
+
+static inline void
+set_value_range_to_null (value_range_t *vr, tree type)
+{
+ set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
+}
+
+
+/* Set value range VR to VR_UNDEFINED. */
+
+static inline void
+set_value_range_to_undefined (value_range_t *vr)
+{
+ vr->type = VR_UNDEFINED;
+ vr->min = vr->max = NULL_TREE;
+ if (vr->equiv)
+ bitmap_clear (vr->equiv);
+}
+
+
+/* Return value range information for VAR.
+
+ If we have no values ranges recorded (ie, VRP is not running), then
+ return NULL. Otherwise create an empty range if none existed for VAR. */
+
+static value_range_t *
+get_value_range (tree var)
+{
+ value_range_t *vr;
+ tree sym;
+ unsigned ver = SSA_NAME_VERSION (var);
+
+ /* If we have no recorded ranges, then return NULL. */
+ if (! vr_value)
+ return NULL;
+
+ vr = vr_value[ver];
+ if (vr)
+ return vr;
+
+ /* Create a default value range. */
+ vr_value[ver] = vr = XNEW (value_range_t);
+ memset (vr, 0, sizeof (*vr));
+
+ /* Allocate an equivalence set. */
+ vr->equiv = BITMAP_ALLOC (NULL);
+
+ /* If VAR is a default definition, the variable can take any value
+ in VAR's type. */
+ sym = SSA_NAME_VAR (var);
+ if (var == default_def (sym))
+ {
+ /* Try to use the "nonnull" attribute to create ~[0, 0]
+ anti-ranges for pointers. Note that this is only valid with
+ default definitions of PARM_DECLs. */
+ if (TREE_CODE (sym) == PARM_DECL
+ && POINTER_TYPE_P (TREE_TYPE (sym))
+ && nonnull_arg_p (sym))
+ set_value_range_to_nonnull (vr, TREE_TYPE (sym));
+ else
+ set_value_range_to_varying (vr);
+ }
+
+ return vr;
+}
+
+/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
+
+static inline bool
+vrp_operand_equal_p (tree val1, tree val2)
+{
+ if (val1 == val2)
+ return true;
+ if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
+ return false;
+ if (is_overflow_infinity (val1))
+ return is_overflow_infinity (val2);
+ return true;
+}
+
+/* Return true, if the bitmaps B1 and B2 are equal. */
+
+static inline bool
+vrp_bitmap_equal_p (bitmap b1, bitmap b2)
+{
+ return (b1 == b2
+ || (b1 && b2
+ && bitmap_equal_p (b1, b2)));
+}
+
+/* Update the value range and equivalence set for variable VAR to
+ NEW_VR. Return true if NEW_VR is different from VAR's previous
+ value.
+
+ NOTE: This function assumes that NEW_VR is a temporary value range
+ object created for the sole purpose of updating VAR's range. The
+ storage used by the equivalence set from NEW_VR will be freed by
+ this function. Do not call update_value_range when NEW_VR
+ is the range object associated with another SSA name. */
+
+static inline bool
+update_value_range (tree var, value_range_t *new_vr)
+{
+ value_range_t *old_vr;
+ bool is_new;
+
+ /* Update the value range, if necessary. */
+ old_vr = get_value_range (var);
+ is_new = old_vr->type != new_vr->type
+ || !vrp_operand_equal_p (old_vr->min, new_vr->min)
+ || !vrp_operand_equal_p (old_vr->max, new_vr->max)
+ || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
+
+ if (is_new)
+ set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
+ new_vr->equiv);
+
+ BITMAP_FREE (new_vr->equiv);
+ new_vr->equiv = NULL;
+
+ return is_new;
+}
+
+
+/* Add VAR and VAR's equivalence set to EQUIV. */
+
+static void
+add_equivalence (bitmap equiv, tree var)
+{
+ unsigned ver = SSA_NAME_VERSION (var);
+ value_range_t *vr = vr_value[ver];
+
+ bitmap_set_bit (equiv, ver);
+ if (vr && vr->equiv)
+ bitmap_ior_into (equiv, vr->equiv);
+}
+
+
+/* Return true if VR is ~[0, 0]. */
+
+static inline bool
+range_is_nonnull (value_range_t *vr)
+{
+ return vr->type == VR_ANTI_RANGE
+ && integer_zerop (vr->min)
+ && integer_zerop (vr->max);
+}
+
+
+/* Return true if VR is [0, 0]. */
+
+static inline bool
+range_is_null (value_range_t *vr)
+{
+ return vr->type == VR_RANGE
+ && integer_zerop (vr->min)
+ && integer_zerop (vr->max);
+}
+
+
+/* Return true if value range VR involves at least one symbol. */
+
+static inline bool
+symbolic_range_p (value_range_t *vr)
+{
+ return (!is_gimple_min_invariant (vr->min)
+ || !is_gimple_min_invariant (vr->max));
+}
+
+/* Return true if value range VR uses a overflow infinity. */
+
+static inline bool
+overflow_infinity_range_p (value_range_t *vr)
+{
+ return (vr->type == VR_RANGE
+ && (is_overflow_infinity (vr->min)
+ || is_overflow_infinity (vr->max)));
+}
+
+/* Return false if we can not make a valid comparison based on VR;
+ this will be the case if it uses an overflow infinity and overflow
+ is not undefined (i.e., -fno-strict-overflow is in effect).
+ Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
+ uses an overflow infinity. */
+
+static bool
+usable_range_p (value_range_t *vr, bool *strict_overflow_p)
+{
+ gcc_assert (vr->type == VR_RANGE);
+ if (is_overflow_infinity (vr->min))
+ {
+ *strict_overflow_p = true;
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
+ return false;
+ }
+ if (is_overflow_infinity (vr->max))
+ {
+ *strict_overflow_p = true;
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
+ return false;
+ }
+ return true;
+}
+
+
+/* Like tree_expr_nonnegative_warnv_p, but this function uses value
+ ranges obtained so far. */
+
+static bool
+vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
+{
+ return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
+}
+
+/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
+ obtained so far. */
+
+static bool
+vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
+{
+ if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
+ return true;
+
+ /* If we have an expression of the form &X->a, then the expression
+ is nonnull if X is nonnull. */
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ {
+ tree base = get_base_address (TREE_OPERAND (expr, 0));
+
+ if (base != NULL_TREE
+ && TREE_CODE (base) == INDIRECT_REF
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
+ {
+ value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
+ if (range_is_nonnull (vr))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Returns true if EXPR is a valid value (as expected by compare_values) --
+ a gimple invariant, or SSA_NAME +- CST. */
+
+static bool
+valid_value_p (tree expr)
+{
+ if (TREE_CODE (expr) == SSA_NAME)
+ return true;
+
+ if (TREE_CODE (expr) == PLUS_EXPR
+ || TREE_CODE (expr) == MINUS_EXPR)
+ return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
+ && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
+
+ return is_gimple_min_invariant (expr);
+}
+
+/* Compare two values VAL1 and VAL2. Return
+
+ -2 if VAL1 and VAL2 cannot be compared at compile-time,
+ -1 if VAL1 < VAL2,
+ 0 if VAL1 == VAL2,
+ +1 if VAL1 > VAL2, and
+ +2 if VAL1 != VAL2
+
+ This is similar to tree_int_cst_compare but supports pointer values
+ and values that cannot be compared at compile time.
+
+ If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
+ true if the return value is only valid if we assume that signed
+ overflow is undefined. */
+
+static int
+compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
+{
+ if (val1 == val2)
+ return 0;
+
+ /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
+ both integers. */
+ gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
+ == POINTER_TYPE_P (TREE_TYPE (val2)));
+
+ if ((TREE_CODE (val1) == SSA_NAME
+ || TREE_CODE (val1) == PLUS_EXPR
+ || TREE_CODE (val1) == MINUS_EXPR)
+ && (TREE_CODE (val2) == SSA_NAME
+ || TREE_CODE (val2) == PLUS_EXPR
+ || TREE_CODE (val2) == MINUS_EXPR))
+ {
+ tree n1, c1, n2, c2;
+ enum tree_code code1, code2;
+
+ /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
+ return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
+ same name, return -2. */
+ if (TREE_CODE (val1) == SSA_NAME)
+ {
+ code1 = SSA_NAME;
+ n1 = val1;
+ c1 = NULL_TREE;
+ }
+ else
+ {
+ code1 = TREE_CODE (val1);
+ n1 = TREE_OPERAND (val1, 0);
+ c1 = TREE_OPERAND (val1, 1);
+ if (tree_int_cst_sgn (c1) == -1)
+ {
+ if (is_negative_overflow_infinity (c1))
+ return -2;
+ c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
+ if (!c1)
+ return -2;
+ code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+ }
+ }
+
+ if (TREE_CODE (val2) == SSA_NAME)
+ {
+ code2 = SSA_NAME;
+ n2 = val2;
+ c2 = NULL_TREE;
+ }
+ else
+ {
+ code2 = TREE_CODE (val2);
+ n2 = TREE_OPERAND (val2, 0);
+ c2 = TREE_OPERAND (val2, 1);
+ if (tree_int_cst_sgn (c2) == -1)
+ {
+ if (is_negative_overflow_infinity (c2))
+ return -2;
+ c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
+ if (!c2)
+ return -2;
+ code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+ }
+ }
+
+ /* Both values must use the same name. */
+ if (n1 != n2)
+ return -2;
+
+ if (code1 == SSA_NAME
+ && code2 == SSA_NAME)
+ /* NAME == NAME */
+ return 0;
+
+ /* If overflow is defined we cannot simplify more. */
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
+ return -2;
+
+ if (strict_overflow_p != NULL
+ && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
+ && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
+ *strict_overflow_p = true;
+
+ if (code1 == SSA_NAME)
+ {
+ if (code2 == PLUS_EXPR)
+ /* NAME < NAME + CST */
+ return -1;
+ else if (code2 == MINUS_EXPR)
+ /* NAME > NAME - CST */
+ return 1;
+ }
+ else if (code1 == PLUS_EXPR)
+ {
+ if (code2 == SSA_NAME)
+ /* NAME + CST > NAME */
+ return 1;
+ else if (code2 == PLUS_EXPR)
+ /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
+ return compare_values_warnv (c1, c2, strict_overflow_p);
+ else if (code2 == MINUS_EXPR)
+ /* NAME + CST1 > NAME - CST2 */
+ return 1;
+ }
+ else if (code1 == MINUS_EXPR)
+ {
+ if (code2 == SSA_NAME)
+ /* NAME - CST < NAME */
+ return -1;
+ else if (code2 == PLUS_EXPR)
+ /* NAME - CST1 < NAME + CST2 */
+ return -1;
+ else if (code2 == MINUS_EXPR)
+ /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
+ C1 and C2 are swapped in the call to compare_values. */
+ return compare_values_warnv (c2, c1, strict_overflow_p);
+ }
+
+ gcc_unreachable ();
+ }
+
+ /* We cannot compare non-constants. */
+ if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
+ return -2;
+
+ if (!POINTER_TYPE_P (TREE_TYPE (val1)))
+ {
+ /* We cannot compare overflowed values, except for overflow
+ infinities. */
+ if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
+ {
+ if (strict_overflow_p != NULL)
+ *strict_overflow_p = true;
+ if (is_negative_overflow_infinity (val1))
+ return is_negative_overflow_infinity (val2) ? 0 : -1;
+ else if (is_negative_overflow_infinity (val2))
+ return 1;
+ else if (is_positive_overflow_infinity (val1))
+ return is_positive_overflow_infinity (val2) ? 0 : 1;
+ else if (is_positive_overflow_infinity (val2))
+ return -1;
+ return -2;
+ }
+
+ return tree_int_cst_compare (val1, val2);
+ }
+ else
+ {
+ tree t;
+
+ /* First see if VAL1 and VAL2 are not the same. */
+ if (val1 == val2 || operand_equal_p (val1, val2, 0))
+ return 0;
+
+ /* If VAL1 is a lower address than VAL2, return -1. */
+ t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
+ if (t == boolean_true_node)
+ return -1;
+
+ /* If VAL1 is a higher address than VAL2, return +1. */
+ t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
+ if (t == boolean_true_node)
+ return 1;
+
+ /* If VAL1 is different than VAL2, return +2. */
+ t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
+ if (t == boolean_true_node)
+ return 2;
+
+ return -2;
+ }
+}
+
+/* Compare values like compare_values_warnv, but treat comparisons of
+ nonconstants which rely on undefined overflow as incomparable. */
+
+static int
+compare_values (tree val1, tree val2)
+{
+ bool sop;
+ int ret;
+
+ sop = false;
+ ret = compare_values_warnv (val1, val2, &sop);
+ if (sop
+ && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
+ ret = -2;
+ return ret;
+}
+
+
+/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
+ 0 if VAL is not inside VR,
+ -2 if we cannot tell either way.
+
+ FIXME, the current semantics of this functions are a bit quirky
+ when taken in the context of VRP. In here we do not care
+ about VR's type. If VR is the anti-range ~[3, 5] the call
+ value_inside_range (4, VR) will return 1.
+
+ This is counter-intuitive in a strict sense, but the callers
+ currently expect this. They are calling the function
+ merely to determine whether VR->MIN <= VAL <= VR->MAX. The
+ callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
+ themselves.
+
+ This also applies to value_ranges_intersect_p and
+ range_includes_zero_p. The semantics of VR_RANGE and
+ VR_ANTI_RANGE should be encoded here, but that also means
+ adapting the users of these functions to the new semantics. */
+
+static inline int
+value_inside_range (tree val, value_range_t *vr)
+{
+ tree cmp1, cmp2;
+
+ fold_defer_overflow_warnings ();
+
+ cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
+ if (!cmp1)
+ {
+ fold_undefer_and_ignore_overflow_warnings ();
+ return -2;
+ }
+
+ cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
+
+ fold_undefer_and_ignore_overflow_warnings ();
+
+ if (!cmp2)
+ return -2;
+
+ /* APPLE LOCAL begin 5562718 rewritten on mainline */
+ /* Insure cmp1 and cmp2 are constants. */
+ if ((cmp1 != boolean_true_node && cmp1 != boolean_false_node)
+ || (cmp2 != boolean_true_node && cmp2 != boolean_false_node))
+ return -2;
+ /* APPLE LOCAL end 5562718 rewritten on mainline */
+
+ return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
+}
+
+
+/* Return true if value ranges VR0 and VR1 have a non-empty
+ intersection. */
+
+static inline bool
+value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
+{
+ return (value_inside_range (vr1->min, vr0) == 1
+ || value_inside_range (vr1->max, vr0) == 1
+ || value_inside_range (vr0->min, vr1) == 1
+ || value_inside_range (vr0->max, vr1) == 1);
+}
+
+
+/* Return true if VR includes the value zero, false otherwise. FIXME,
+ currently this will return false for an anti-range like ~[-4, 3].
+ This will be wrong when the semantics of value_inside_range are
+ modified (currently the users of this function expect these
+ semantics). */
+
+static inline bool
+range_includes_zero_p (value_range_t *vr)
+{
+ tree zero;
+
+ gcc_assert (vr->type != VR_UNDEFINED
+ && vr->type != VR_VARYING
+ && !symbolic_range_p (vr));
+
+ zero = build_int_cst (TREE_TYPE (vr->min), 0);
+ /* APPLE LOCAL begin 5562718 rewritten on mainline */
+ switch (value_inside_range (zero, vr))
+ {
+ case 1: /* Range includes zero. */
+ case -2: /* Can't tell if range includes zero. */
+ return TRUE;
+ default: /* Range does not include zero. */
+ return FALSE;
+ }
+ /* APPLE LOCAL end 5562718 rewritten on mainline */
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
+ false otherwise or if no value range information is available. */
+
+bool
+ssa_name_nonnegative_p (tree t)
+{
+ value_range_t *vr = get_value_range (t);
+
+ if (!vr)
+ return false;
+
+ /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
+ which would return a useful value should be encoded as a VR_RANGE. */
+ if (vr->type == VR_RANGE)
+ {
+ int result = compare_values (vr->min, integer_zero_node);
+
+ return (result == 0 || result == 1);
+ }
+ return false;
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonzero. Return
+ false otherwise or if no value range information is available. */
+
+bool
+ssa_name_nonzero_p (tree t)
+{
+ value_range_t *vr = get_value_range (t);
+
+ if (!vr)
+ return false;
+
+ /* A VR_RANGE which does not include zero is a nonzero value. */
+ if (vr->type == VR_RANGE && !symbolic_range_p (vr))
+ return ! range_includes_zero_p (vr);
+
+ /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
+ if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
+ return range_includes_zero_p (vr);
+
+ return false;
+}
+
+
+/* Extract value range information from an ASSERT_EXPR EXPR and store
+ it in *VR_P. */
+
+static void
+extract_range_from_assert (value_range_t *vr_p, tree expr)
+{
+ tree var, cond, limit, min, max, type;
+ value_range_t *var_vr, *limit_vr;
+ enum tree_code cond_code;
+
+ var = ASSERT_EXPR_VAR (expr);
+ cond = ASSERT_EXPR_COND (expr);
+
+ gcc_assert (COMPARISON_CLASS_P (cond));
+
+ /* Find VAR in the ASSERT_EXPR conditional. */
+ if (var == TREE_OPERAND (cond, 0))
+ {
+ /* If the predicate is of the form VAR COMP LIMIT, then we just
+ take LIMIT from the RHS and use the same comparison code. */
+ limit = TREE_OPERAND (cond, 1);
+ cond_code = TREE_CODE (cond);
+ }
+ else
+ {
+ /* If the predicate is of the form LIMIT COMP VAR, then we need
+ to flip around the comparison code to create the proper range
+ for VAR. */
+ limit = TREE_OPERAND (cond, 0);
+ cond_code = swap_tree_comparison (TREE_CODE (cond));
+ }
+
+ limit = avoid_overflow_infinity (limit);
+
+ type = TREE_TYPE (limit);
+ gcc_assert (limit != var);
+
+ /* For pointer arithmetic, we only keep track of pointer equality
+ and inequality. */
+ if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
+ {
+ set_value_range_to_varying (vr_p);
+ return;
+ }
+
+ /* If LIMIT is another SSA name and LIMIT has a range of its own,
+ try to use LIMIT's range to avoid creating symbolic ranges
+ unnecessarily. */
+ limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
+
+ /* LIMIT's range is only interesting if it has any useful information. */
+ if (limit_vr
+ && (limit_vr->type == VR_UNDEFINED
+ || limit_vr->type == VR_VARYING
+ || symbolic_range_p (limit_vr)))
+ limit_vr = NULL;
+
+ /* Initially, the new range has the same set of equivalences of
+ VAR's range. This will be revised before returning the final
+ value. Since assertions may be chained via mutually exclusive
+ predicates, we will need to trim the set of equivalences before
+ we are done. */
+ gcc_assert (vr_p->equiv == NULL);
+ vr_p->equiv = BITMAP_ALLOC (NULL);
+ add_equivalence (vr_p->equiv, var);
+
+ /* Extract a new range based on the asserted comparison for VAR and
+ LIMIT's value range. Notice that if LIMIT has an anti-range, we
+ will only use it for equality comparisons (EQ_EXPR). For any
+ other kind of assertion, we cannot derive a range from LIMIT's
+ anti-range that can be used to describe the new range. For
+ instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
+ then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
+ no single range for x_2 that could describe LE_EXPR, so we might
+ as well build the range [b_4, +INF] for it. */
+ if (cond_code == EQ_EXPR)
+ {
+ enum value_range_type range_type;
+
+ if (limit_vr)
+ {
+ range_type = limit_vr->type;
+ min = limit_vr->min;
+ max = limit_vr->max;
+ }
+ else
+ {
+ range_type = VR_RANGE;
+ min = limit;
+ max = limit;
+ }
+
+ set_value_range (vr_p, range_type, min, max, vr_p->equiv);
+
+ /* When asserting the equality VAR == LIMIT and LIMIT is another
+ SSA name, the new range will also inherit the equivalence set
+ from LIMIT. */
+ if (TREE_CODE (limit) == SSA_NAME)
+ add_equivalence (vr_p->equiv, limit);
+ }
+ else if (cond_code == NE_EXPR)
+ {
+ /* As described above, when LIMIT's range is an anti-range and
+ this assertion is an inequality (NE_EXPR), then we cannot
+ derive anything from the anti-range. For instance, if
+ LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
+ not imply that VAR's range is [0, 0]. So, in the case of
+ anti-ranges, we just assert the inequality using LIMIT and
+ not its anti-range.
+
+ If LIMIT_VR is a range, we can only use it to build a new
+ anti-range if LIMIT_VR is a single-valued range. For
+ instance, if LIMIT_VR is [0, 1], the predicate
+ VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
+ Rather, it means that for value 0 VAR should be ~[0, 0]
+ and for value 1, VAR should be ~[1, 1]. We cannot
+ represent these ranges.
+
+ The only situation in which we can build a valid
+ anti-range is when LIMIT_VR is a single-valued range
+ (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
+ build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
+ if (limit_vr
+ && limit_vr->type == VR_RANGE
+ && compare_values (limit_vr->min, limit_vr->max) == 0)
+ {
+ min = limit_vr->min;
+ max = limit_vr->max;
+ }
+ else
+ {
+ /* In any other case, we cannot use LIMIT's range to build a
+ valid anti-range. */
+ min = max = limit;
+ }
+
+ /* If MIN and MAX cover the whole range for their type, then
+ just use the original LIMIT. */
+ if (INTEGRAL_TYPE_P (type)
+ && vrp_val_is_min (min)
+ && vrp_val_is_max (max))
+ min = max = limit;
+
+ set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
+ }
+ else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+ {
+ min = TYPE_MIN_VALUE (type);
+
+ if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
+ max = limit;
+ else
+ {
+ /* If LIMIT_VR is of the form [N1, N2], we need to build the
+ range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
+ LT_EXPR. */
+ max = limit_vr->max;
+ }
+
+ /* If the maximum value forces us to be out of bounds, simply punt.
+ It would be pointless to try and do anything more since this
+ all should be optimized away above us. */
+ if ((cond_code == LT_EXPR
+ && compare_values (max, min) == 0)
+ || is_overflow_infinity (max))
+ set_value_range_to_varying (vr_p);
+ else
+ {
+ /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
+ if (cond_code == LT_EXPR)
+ {
+ tree one = build_int_cst (type, 1);
+ max = fold_build2 (MINUS_EXPR, type, max, one);
+ if (EXPR_P (max))
+ TREE_NO_WARNING (max) = 1;
+ }
+
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ }
+ else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+ {
+ max = TYPE_MAX_VALUE (type);
+
+ if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
+ min = limit;
+ else
+ {
+ /* If LIMIT_VR is of the form [N1, N2], we need to build the
+ range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
+ GT_EXPR. */
+ min = limit_vr->min;
+ }
+
+ /* If the minimum value forces us to be out of bounds, simply punt.
+ It would be pointless to try and do anything more since this
+ all should be optimized away above us. */
+ if ((cond_code == GT_EXPR
+ && compare_values (min, max) == 0)
+ || is_overflow_infinity (min))
+ set_value_range_to_varying (vr_p);
+ else
+ {
+ /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
+ if (cond_code == GT_EXPR)
+ {
+ tree one = build_int_cst (type, 1);
+ min = fold_build2 (PLUS_EXPR, type, min, one);
+ if (EXPR_P (min))
+ TREE_NO_WARNING (min) = 1;
+ }
+
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ }
+ else
+ gcc_unreachable ();
+
+ /* If VAR already had a known range, it may happen that the new
+ range we have computed and VAR's range are not compatible. For
+ instance,
+
+ if (p_5 == NULL)
+ p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
+ x_7 = p_6->fld;
+ p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
+
+ While the above comes from a faulty program, it will cause an ICE
+ later because p_8 and p_6 will have incompatible ranges and at
+ the same time will be considered equivalent. A similar situation
+ would arise from
+
+ if (i_5 > 10)
+ i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
+ if (i_5 < 5)
+ i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
+
+ Again i_6 and i_7 will have incompatible ranges. It would be
+ pointless to try and do anything with i_7's range because
+ anything dominated by 'if (i_5 < 5)' will be optimized away.
+ Note, due to the wa in which simulation proceeds, the statement
+ i_7 = ASSERT_EXPR <...> we would never be visited because the
+ conditional 'if (i_5 < 5)' always evaluates to false. However,
+ this extra check does not hurt and may protect against future
+ changes to VRP that may get into a situation similar to the
+ NULL pointer dereference example.
+
+ Note that these compatibility tests are only needed when dealing
+ with ranges or a mix of range and anti-range. If VAR_VR and VR_P
+ are both anti-ranges, they will always be compatible, because two
+ anti-ranges will always have a non-empty intersection. */
+
+ var_vr = get_value_range (var);
+
+ /* We may need to make adjustments when VR_P and VAR_VR are numeric
+ ranges or anti-ranges. */
+ if (vr_p->type == VR_VARYING
+ || vr_p->type == VR_UNDEFINED
+ || var_vr->type == VR_VARYING
+ || var_vr->type == VR_UNDEFINED
+ || symbolic_range_p (vr_p)
+ || symbolic_range_p (var_vr))
+ return;
+
+ if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
+ {
+ /* If the two ranges have a non-empty intersection, we can
+ refine the resulting range. Since the assert expression
+ creates an equivalency and at the same time it asserts a
+ predicate, we can take the intersection of the two ranges to
+ get better precision. */
+ if (value_ranges_intersect_p (var_vr, vr_p))
+ {
+ /* Use the larger of the two minimums. */
+ if (compare_values (vr_p->min, var_vr->min) == -1)
+ min = var_vr->min;
+ else
+ min = vr_p->min;
+
+ /* Use the smaller of the two maximums. */
+ if (compare_values (vr_p->max, var_vr->max) == 1)
+ max = var_vr->max;
+ else
+ max = vr_p->max;
+
+ set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
+ }
+ else
+ {
+ /* The two ranges do not intersect, set the new range to
+ VARYING, because we will not be able to do anything
+ meaningful with it. */
+ set_value_range_to_varying (vr_p);
+ }
+ }
+ else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
+ || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
+ {
+ /* A range and an anti-range will cancel each other only if
+ their ends are the same. For instance, in the example above,
+ p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
+ so VR_P should be set to VR_VARYING. */
+ if (compare_values (var_vr->min, vr_p->min) == 0
+ && compare_values (var_vr->max, vr_p->max) == 0)
+ set_value_range_to_varying (vr_p);
+ else
+ {
+ tree min, max, anti_min, anti_max, real_min, real_max;
+
+ /* We want to compute the logical AND of the two ranges;
+ there are three cases to consider.
+
+
+ 1. The VR_ANTI_RANGE range is completely within the
+ VR_RANGE and the endpoints of the ranges are
+ different. In that case the resulting range
+ should be whichever range is more precise.
+ Typically that will be the VR_RANGE.
+
+ 2. The VR_ANTI_RANGE is completely disjoint from
+ the VR_RANGE. In this case the resulting range
+ should be the VR_RANGE.
+
+ 3. There is some overlap between the VR_ANTI_RANGE
+ and the VR_RANGE.
+
+ 3a. If the high limit of the VR_ANTI_RANGE resides
+ within the VR_RANGE, then the result is a new
+ VR_RANGE starting at the high limit of the
+ the VR_ANTI_RANGE + 1 and extending to the
+ high limit of the original VR_RANGE.
+
+ 3b. If the low limit of the VR_ANTI_RANGE resides
+ within the VR_RANGE, then the result is a new
+ VR_RANGE starting at the low limit of the original
+ VR_RANGE and extending to the low limit of the
+ VR_ANTI_RANGE - 1. */
+ if (vr_p->type == VR_ANTI_RANGE)
+ {
+ anti_min = vr_p->min;
+ anti_max = vr_p->max;
+ real_min = var_vr->min;
+ real_max = var_vr->max;
+ }
+ else
+ {
+ anti_min = var_vr->min;
+ anti_max = var_vr->max;
+ real_min = vr_p->min;
+ real_max = vr_p->max;
+ }
+
+
+ /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
+ not including any endpoints. */
+ if (compare_values (anti_max, real_max) == -1
+ && compare_values (anti_min, real_min) == 1)
+ {
+ set_value_range (vr_p, VR_RANGE, real_min,
+ real_max, vr_p->equiv);
+ }
+ /* Case 2, VR_ANTI_RANGE completely disjoint from
+ VR_RANGE. */
+ else if (compare_values (anti_min, real_max) == 1
+ || compare_values (anti_max, real_min) == -1)
+ {
+ set_value_range (vr_p, VR_RANGE, real_min,
+ real_max, vr_p->equiv);
+ }
+ /* Case 3a, the anti-range extends into the low
+ part of the real range. Thus creating a new
+ low for the real range. */
+ else if ((compare_values (anti_max, real_min) == 1
+ || compare_values (anti_max, real_min) == 0)
+ && compare_values (anti_max, real_max) == -1)
+ {
+ gcc_assert (!is_positive_overflow_infinity (anti_max));
+ if (needs_overflow_infinity (TREE_TYPE (anti_max))
+ && vrp_val_is_max (anti_max))
+ {
+ if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+ {
+ set_value_range_to_varying (vr_p);
+ return;
+ }
+ min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
+ }
+ else
+ min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
+ anti_max,
+ build_int_cst (TREE_TYPE (var_vr->min), 1));
+ max = real_max;
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ /* Case 3b, the anti-range extends into the high
+ part of the real range. Thus creating a new
+ higher for the real range. */
+ else if (compare_values (anti_min, real_min) == 1
+ && (compare_values (anti_min, real_max) == -1
+ || compare_values (anti_min, real_max) == 0))
+ {
+ gcc_assert (!is_negative_overflow_infinity (anti_min));
+ if (needs_overflow_infinity (TREE_TYPE (anti_min))
+ && vrp_val_is_min (anti_min))
+ {
+ if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+ {
+ set_value_range_to_varying (vr_p);
+ return;
+ }
+ max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
+ }
+ else
+ max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
+ anti_min,
+ build_int_cst (TREE_TYPE (var_vr->min), 1));
+ min = real_min;
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ }
+ }
+}
+
+
+/* Extract range information from SSA name VAR and store it in VR. If
+ VAR has an interesting range, use it. Otherwise, create the
+ range [VAR, VAR] and return it. This is useful in situations where
+ we may have conditionals testing values of VARYING names. For
+ instance,
+
+ x_3 = y_5;
+ if (x_3 > y_5)
+ ...
+
+ Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
+ always false. */
+
+static void
+extract_range_from_ssa_name (value_range_t *vr, tree var)
+{
+ value_range_t *var_vr = get_value_range (var);
+
+ if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
+ copy_value_range (vr, var_vr);
+ else
+ set_value_range (vr, VR_RANGE, var, var, NULL);
+
+ add_equivalence (vr->equiv, var);
+}
+
+
+/* Wrapper around int_const_binop. If the operation overflows and we
+ are not using wrapping arithmetic, then adjust the result to be
+ -INF or +INF depending on CODE, VAL1 and VAL2. This can return
+ NULL_TREE if we need to use an overflow infinity representation but
+ the type does not support it. */
+
+static tree
+vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
+{
+ tree res;
+
+ res = int_const_binop (code, val1, val2, 0);
+
+ /* If we are not using wrapping arithmetic, operate symbolically
+ on -INF and +INF. */
+ if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
+ {
+ int checkz = compare_values (res, val1);
+ bool overflow = false;
+
+ /* Ensure that res = val1 [+*] val2 >= val1
+ or that res = val1 - val2 <= val1. */
+ if ((code == PLUS_EXPR
+ && !(checkz == 1 || checkz == 0))
+ || (code == MINUS_EXPR
+ && !(checkz == 0 || checkz == -1)))
+ {
+ overflow = true;
+ }
+ /* Checking for multiplication overflow is done by dividing the
+ output of the multiplication by the first input of the
+ multiplication. If the result of that division operation is
+ not equal to the second input of the multiplication, then the
+ multiplication overflowed. */
+ else if (code == MULT_EXPR && !integer_zerop (val1))
+ {
+ tree tmp = int_const_binop (TRUNC_DIV_EXPR,
+ res,
+ val1, 0);
+ int check = compare_values (tmp, val2);
+
+ if (check != 0)
+ overflow = true;
+ }
+
+ if (overflow)
+ {
+ res = copy_node (res);
+ TREE_OVERFLOW (res) = 1;
+ }
+
+ }
+ else if ((TREE_OVERFLOW (res)
+ && !TREE_OVERFLOW (val1)
+ && !TREE_OVERFLOW (val2))
+ || is_overflow_infinity (val1)
+ || is_overflow_infinity (val2))
+ {
+ /* If the operation overflowed but neither VAL1 nor VAL2 are
+ overflown, return -INF or +INF depending on the operation
+ and the combination of signs of the operands. */
+ int sgn1 = tree_int_cst_sgn (val1);
+ int sgn2 = tree_int_cst_sgn (val2);
+
+ if (needs_overflow_infinity (TREE_TYPE (res))
+ && !supports_overflow_infinity (TREE_TYPE (res)))
+ return NULL_TREE;
+
+ /* We have to punt on adding infinities of different signs,
+ since we can't tell what the sign of the result should be.
+ Likewise for subtracting infinities of the same sign. */
+ if (((code == PLUS_EXPR && sgn1 != sgn2)
+ || (code == MINUS_EXPR && sgn1 == sgn2))
+ && is_overflow_infinity (val1)
+ && is_overflow_infinity (val2))
+ return NULL_TREE;
+
+ /* Don't try to handle division or shifting of infinities. */
+ if ((code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR
+ || code == RSHIFT_EXPR)
+ && (is_overflow_infinity (val1)
+ || is_overflow_infinity (val2)))
+ return NULL_TREE;
+
+ /* Notice that we only need to handle the restricted set of
+ operations handled by extract_range_from_binary_expr.
+ Among them, only multiplication, addition and subtraction
+ can yield overflow without overflown operands because we
+ are working with integral types only... except in the
+ case VAL1 = -INF and VAL2 = -1 which overflows to +INF
+ for division too. */
+
+ /* For multiplication, the sign of the overflow is given
+ by the comparison of the signs of the operands. */
+ if ((code == MULT_EXPR && sgn1 == sgn2)
+ /* For addition, the operands must be of the same sign
+ to yield an overflow. Its sign is therefore that
+ of one of the operands, for example the first. For
+ infinite operands X + -INF is negative, not positive. */
+ || (code == PLUS_EXPR
+ && (sgn1 >= 0
+ ? !is_negative_overflow_infinity (val2)
+ : is_positive_overflow_infinity (val2)))
+ /* For subtraction, non-infinite operands must be of
+ different signs to yield an overflow. Its sign is
+ therefore that of the first operand or the opposite of
+ that of the second operand. A first operand of 0 counts
+ as positive here, for the corner case 0 - (-INF), which
+ overflows, but must yield +INF. For infinite operands 0
+ - INF is negative, not positive. */
+ || (code == MINUS_EXPR
+ && (sgn1 >= 0
+ ? !is_positive_overflow_infinity (val2)
+ : is_negative_overflow_infinity (val2)))
+ /* For division, the only case is -INF / -1 = +INF. */
+ || code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR)
+ return (needs_overflow_infinity (TREE_TYPE (res))
+ ? positive_overflow_infinity (TREE_TYPE (res))
+ : TYPE_MAX_VALUE (TREE_TYPE (res)));
+ else
+ return (needs_overflow_infinity (TREE_TYPE (res))
+ ? negative_overflow_infinity (TREE_TYPE (res))
+ : TYPE_MIN_VALUE (TREE_TYPE (res)));
+ }
+
+ return res;
+}
+
+
+/* Extract range information from a binary expression EXPR based on
+ the ranges of each of its operands and the expression code. */
+
+static void
+extract_range_from_binary_expr (value_range_t *vr, tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ enum value_range_type type;
+ tree op0, op1, min, max;
+ int cmp;
+ value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+ value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ /* Not all binary expressions can be applied to ranges in a
+ meaningful way. Handle only arithmetic operations. */
+ if (code != PLUS_EXPR
+ && code != MINUS_EXPR
+ && code != MULT_EXPR
+ && code != TRUNC_DIV_EXPR
+ && code != FLOOR_DIV_EXPR
+ && code != CEIL_DIV_EXPR
+ && code != EXACT_DIV_EXPR
+ && code != ROUND_DIV_EXPR
+ && code != MIN_EXPR
+ && code != MAX_EXPR
+ && code != BIT_AND_EXPR
+ && code != TRUTH_ANDIF_EXPR
+ && code != TRUTH_ORIF_EXPR
+ && code != TRUTH_AND_EXPR
+ && code != TRUTH_OR_EXPR)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Get value ranges for each operand. For constant operands, create
+ a new value range with the operand to simplify processing. */
+ op0 = TREE_OPERAND (expr, 0);
+ if (TREE_CODE (op0) == SSA_NAME)
+ vr0 = *(get_value_range (op0));
+ else if (is_gimple_min_invariant (op0))
+ set_value_range_to_value (&vr0, op0, NULL);
+ else
+ set_value_range_to_varying (&vr0);
+
+ op1 = TREE_OPERAND (expr, 1);
+ if (TREE_CODE (op1) == SSA_NAME)
+ vr1 = *(get_value_range (op1));
+ else if (is_gimple_min_invariant (op1))
+ set_value_range_to_value (&vr1, op1, NULL);
+ else
+ set_value_range_to_varying (&vr1);
+
+ /* If either range is UNDEFINED, so is the result. */
+ if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
+ {
+ set_value_range_to_undefined (vr);
+ return;
+ }
+
+ /* The type of the resulting value range defaults to VR0.TYPE. */
+ type = vr0.type;
+
+ /* Refuse to operate on VARYING ranges, ranges of different kinds
+ and symbolic ranges. As an exception, we allow BIT_AND_EXPR
+ because we may be able to derive a useful range even if one of
+ the operands is VR_VARYING or symbolic range. TODO, we may be
+ able to derive anti-ranges in some cases. */
+ if (code != BIT_AND_EXPR
+ && code != TRUTH_AND_EXPR
+ && code != TRUTH_OR_EXPR
+ && (vr0.type == VR_VARYING
+ || vr1.type == VR_VARYING
+ || vr0.type != vr1.type
+ || symbolic_range_p (&vr0)
+ || symbolic_range_p (&vr1)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Now evaluate the expression to determine the new range. */
+ if (POINTER_TYPE_P (TREE_TYPE (expr))
+ || POINTER_TYPE_P (TREE_TYPE (op0))
+ || POINTER_TYPE_P (TREE_TYPE (op1)))
+ {
+ /* For pointer types, we are really only interested in asserting
+ whether the expression evaluates to non-NULL. FIXME, we used
+ to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
+ ivopts is generating expressions with pointer multiplication
+ in them. */
+ if (code == PLUS_EXPR)
+ {
+ if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
+ set_value_range_to_nonnull (vr, TREE_TYPE (expr));
+ else if (range_is_null (&vr0) && range_is_null (&vr1))
+ set_value_range_to_null (vr, TREE_TYPE (expr));
+ else
+ set_value_range_to_varying (vr);
+ }
+ else
+ {
+ /* Subtracting from a pointer, may yield 0, so just drop the
+ resulting range to varying. */
+ set_value_range_to_varying (vr);
+ }
+
+ return;
+ }
+
+ /* For integer ranges, apply the operation to each end of the
+ range and see what we end up with. */
+ if (code == TRUTH_ANDIF_EXPR
+ || code == TRUTH_ORIF_EXPR
+ || code == TRUTH_AND_EXPR
+ || code == TRUTH_OR_EXPR)
+ {
+ /* If one of the operands is zero, we know that the whole
+ expression evaluates zero. */
+ if (code == TRUTH_AND_EXPR
+ && ((vr0.type == VR_RANGE
+ && integer_zerop (vr0.min)
+ && integer_zerop (vr0.max))
+ || (vr1.type == VR_RANGE
+ && integer_zerop (vr1.min)
+ && integer_zerop (vr1.max))))
+ {
+ type = VR_RANGE;
+ min = max = build_int_cst (TREE_TYPE (expr), 0);
+ }
+ /* If one of the operands is one, we know that the whole
+ expression evaluates one. */
+ else if (code == TRUTH_OR_EXPR
+ && ((vr0.type == VR_RANGE
+ && integer_onep (vr0.min)
+ && integer_onep (vr0.max))
+ || (vr1.type == VR_RANGE
+ && integer_onep (vr1.min)
+ && integer_onep (vr1.max))))
+ {
+ type = VR_RANGE;
+ min = max = build_int_cst (TREE_TYPE (expr), 1);
+ }
+ else if (vr0.type != VR_VARYING
+ && vr1.type != VR_VARYING
+ && vr0.type == vr1.type
+ && !symbolic_range_p (&vr0)
+ && !overflow_infinity_range_p (&vr0)
+ && !symbolic_range_p (&vr1)
+ && !overflow_infinity_range_p (&vr1))
+ {
+ /* Boolean expressions cannot be folded with int_const_binop. */
+ min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
+ max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
+ }
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else if (code == PLUS_EXPR
+ || code == MIN_EXPR
+ || code == MAX_EXPR)
+ {
+ /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
+ VR_VARYING. It would take more effort to compute a precise
+ range for such a case. For example, if we have op0 == 1 and
+ op1 == -1 with their ranges both being ~[0,0], we would have
+ op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
+ Note that we are guaranteed to have vr0.type == vr1.type at
+ this point. */
+ if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* For operations that make the resulting range directly
+ proportional to the original ranges, apply the operation to
+ the same end of each range. */
+ min = vrp_int_const_binop (code, vr0.min, vr1.min);
+ max = vrp_int_const_binop (code, vr0.max, vr1.max);
+ }
+ else if (code == MULT_EXPR
+ || code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR)
+ {
+ tree val[4];
+ size_t i;
+ bool sop;
+
+ /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
+ drop to VR_VARYING. It would take more effort to compute a
+ precise range for such a case. For example, if we have
+ op0 == 65536 and op1 == 65536 with their ranges both being
+ ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
+ we cannot claim that the product is in ~[0,0]. Note that we
+ are guaranteed to have vr0.type == vr1.type at this
+ point. */
+ if (code == MULT_EXPR
+ && vr0.type == VR_ANTI_RANGE
+ && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Multiplications and divisions are a bit tricky to handle,
+ depending on the mix of signs we have in the two ranges, we
+ need to operate on different values to get the minimum and
+ maximum values for the new range. One approach is to figure
+ out all the variations of range combinations and do the
+ operations.
+
+ However, this involves several calls to compare_values and it
+ is pretty convoluted. It's simpler to do the 4 operations
+ (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
+ MAX1) and then figure the smallest and largest values to form
+ the new range. */
+
+ /* Divisions by zero result in a VARYING value. */
+ if (code != MULT_EXPR
+ && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Compute the 4 cross operations. */
+ sop = false;
+ val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
+ if (val[0] == NULL_TREE)
+ sop = true;
+
+ if (vr1.max == vr1.min)
+ val[1] = NULL_TREE;
+ else
+ {
+ val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
+ if (val[1] == NULL_TREE)
+ sop = true;
+ }
+
+ if (vr0.max == vr0.min)
+ val[2] = NULL_TREE;
+ else
+ {
+ val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
+ if (val[2] == NULL_TREE)
+ sop = true;
+ }
+
+ if (vr0.min == vr0.max || vr1.min == vr1.max)
+ val[3] = NULL_TREE;
+ else
+ {
+ val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
+ if (val[3] == NULL_TREE)
+ sop = true;
+ }
+
+ if (sop)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Set MIN to the minimum of VAL[i] and MAX to the maximum
+ of VAL[i]. */
+ min = val[0];
+ max = val[0];
+ for (i = 1; i < 4; i++)
+ {
+ if (!is_gimple_min_invariant (min)
+ || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+ || !is_gimple_min_invariant (max)
+ || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+ break;
+
+ if (val[i])
+ {
+ if (!is_gimple_min_invariant (val[i])
+ || (TREE_OVERFLOW (val[i])
+ && !is_overflow_infinity (val[i])))
+ {
+ /* If we found an overflowed value, set MIN and MAX
+ to it so that we set the resulting range to
+ VARYING. */
+ min = max = val[i];
+ break;
+ }
+
+ if (compare_values (val[i], min) == -1)
+ min = val[i];
+
+ if (compare_values (val[i], max) == 1)
+ max = val[i];
+ }
+ }
+ }
+ else if (code == MINUS_EXPR)
+ {
+ /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
+ VR_VARYING. It would take more effort to compute a precise
+ range for such a case. For example, if we have op0 == 1 and
+ op1 == 1 with their ranges both being ~[0,0], we would have
+ op0 - op1 == 0, so we cannot claim that the difference is in
+ ~[0,0]. Note that we are guaranteed to have
+ vr0.type == vr1.type at this point. */
+ if (vr0.type == VR_ANTI_RANGE)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* For MINUS_EXPR, apply the operation to the opposite ends of
+ each range. */
+ min = vrp_int_const_binop (code, vr0.min, vr1.max);
+ max = vrp_int_const_binop (code, vr0.max, vr1.min);
+ }
+ else if (code == BIT_AND_EXPR)
+ {
+ if (vr0.type == VR_RANGE
+ && vr0.min == vr0.max
+ && TREE_CODE (vr0.max) == INTEGER_CST
+ && !TREE_OVERFLOW (vr0.max)
+ && tree_int_cst_sgn (vr0.max) >= 0)
+ {
+ min = build_int_cst (TREE_TYPE (expr), 0);
+ max = vr0.max;
+ }
+ else if (vr1.type == VR_RANGE
+ && vr1.min == vr1.max
+ && TREE_CODE (vr1.max) == INTEGER_CST
+ && !TREE_OVERFLOW (vr1.max)
+ && tree_int_cst_sgn (vr1.max) >= 0)
+ {
+ type = VR_RANGE;
+ min = build_int_cst (TREE_TYPE (expr), 0);
+ max = vr1.max;
+ }
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ gcc_unreachable ();
+
+ /* If either MIN or MAX overflowed, then set the resulting range to
+ VARYING. But we do accept an overflow infinity
+ representation. */
+ if (min == NULL_TREE
+ || !is_gimple_min_invariant (min)
+ || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+ || max == NULL_TREE
+ || !is_gimple_min_invariant (max)
+ || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* We punt if:
+ 1) [-INF, +INF]
+ 2) [-INF, +-INF(OVF)]
+ 3) [+-INF(OVF), +INF]
+ 4) [+-INF(OVF), +-INF(OVF)]
+ We learn nothing when we have INF and INF(OVF) on both sides.
+ Note that we do accept [-INF, -INF] and [+INF, +INF] without
+ overflow. */
+ if ((vrp_val_is_min (min) || is_overflow_infinity (min))
+ && (vrp_val_is_max (max) || is_overflow_infinity (max)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ cmp = compare_values (min, max);
+ if (cmp == -2 || cmp == 1)
+ {
+ /* If the new range has its limits swapped around (MIN > MAX),
+ then the operation caused one of them to wrap around, mark
+ the new range VARYING. */
+ set_value_range_to_varying (vr);
+ }
+ else
+ set_value_range (vr, type, min, max, NULL);
+}
+
+
+/* Extract range information from a unary expression EXPR based on
+ the range of its operand and the expression code. */
+
+static void
+extract_range_from_unary_expr (value_range_t *vr, tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ tree min, max, op0;
+ int cmp;
+ value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ /* Refuse to operate on certain unary expressions for which we
+ cannot easily determine a resulting range. */
+ if (code == FIX_TRUNC_EXPR
+ || code == FIX_CEIL_EXPR
+ || code == FIX_FLOOR_EXPR
+ || code == FIX_ROUND_EXPR
+ || code == FLOAT_EXPR
+ || code == BIT_NOT_EXPR
+ || code == NON_LVALUE_EXPR
+ || code == CONJ_EXPR)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Get value ranges for the operand. For constant operands, create
+ a new value range with the operand to simplify processing. */
+ op0 = TREE_OPERAND (expr, 0);
+ if (TREE_CODE (op0) == SSA_NAME)
+ vr0 = *(get_value_range (op0));
+ else if (is_gimple_min_invariant (op0))
+ set_value_range_to_value (&vr0, op0, NULL);
+ else
+ set_value_range_to_varying (&vr0);
+
+ /* If VR0 is UNDEFINED, so is the result. */
+ if (vr0.type == VR_UNDEFINED)
+ {
+ set_value_range_to_undefined (vr);
+ return;
+ }
+
+ /* Refuse to operate on symbolic ranges, or if neither operand is
+ a pointer or integral type. */
+ if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ && !POINTER_TYPE_P (TREE_TYPE (op0)))
+ || (vr0.type != VR_VARYING
+ && symbolic_range_p (&vr0)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* If the expression involves pointers, we are only interested in
+ determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
+ if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
+ {
+ bool sop;
+
+ sop = false;
+ if (range_is_nonnull (&vr0)
+ || (tree_expr_nonzero_warnv_p (expr, &sop)
+ && !sop))
+ set_value_range_to_nonnull (vr, TREE_TYPE (expr));
+ else if (range_is_null (&vr0))
+ set_value_range_to_null (vr, TREE_TYPE (expr));
+ else
+ set_value_range_to_varying (vr);
+
+ return;
+ }
+
+ /* Handle unary expressions on integer ranges. */
+ if (code == NOP_EXPR || code == CONVERT_EXPR)
+ {
+ tree inner_type = TREE_TYPE (op0);
+ tree outer_type = TREE_TYPE (expr);
+
+ /* If VR0 represents a simple range, then try to convert
+ the min and max values for the range to the same type
+ as OUTER_TYPE. If the results compare equal to VR0's
+ min and max values and the new min is still less than
+ or equal to the new max, then we can safely use the newly
+ computed range for EXPR. This allows us to compute
+ accurate ranges through many casts. */
+ if ((vr0.type == VR_RANGE
+ && !overflow_infinity_range_p (&vr0))
+ || (vr0.type == VR_VARYING
+ && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
+ {
+ tree new_min, new_max, orig_min, orig_max;
+
+ /* Convert the input operand min/max to OUTER_TYPE. If
+ the input has no range information, then use the min/max
+ for the input's type. */
+ if (vr0.type == VR_RANGE)
+ {
+ orig_min = vr0.min;
+ orig_max = vr0.max;
+ }
+ else
+ {
+ orig_min = TYPE_MIN_VALUE (inner_type);
+ orig_max = TYPE_MAX_VALUE (inner_type);
+ }
+
+ new_min = fold_convert (outer_type, orig_min);
+ new_max = fold_convert (outer_type, orig_max);
+
+ /* Verify the new min/max values are gimple values and
+ that they compare equal to the original input's
+ min/max values. */
+ if (is_gimple_val (new_min)
+ && is_gimple_val (new_max)
+ && tree_int_cst_equal (new_min, orig_min)
+ && tree_int_cst_equal (new_max, orig_max)
+ && (!is_overflow_infinity (new_min)
+ || !is_overflow_infinity (new_max))
+ && compare_values (new_min, new_max) <= 0
+ && compare_values (new_min, new_max) >= -1)
+ {
+ set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
+ return;
+ }
+ }
+
+ /* When converting types of different sizes, set the result to
+ VARYING. Things like sign extensions and precision loss may
+ change the range. For instance, if x_3 is of type 'long long
+ int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
+ is impossible to know at compile time whether y_5 will be
+ ~[0, 0]. */
+ if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
+ || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+
+ /* Conversion of a VR_VARYING value to a wider type can result
+ in a usable range. So wait until after we've handled conversions
+ before dropping the result to VR_VARYING if we had a source
+ operand that is VR_VARYING. */
+ if (vr0.type == VR_VARYING)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Apply the operation to each end of the range and see what we end
+ up with. */
+ if (code == NEGATE_EXPR
+ && !TYPE_UNSIGNED (TREE_TYPE (expr)))
+ {
+ /* NEGATE_EXPR flips the range around. We need to treat
+ TYPE_MIN_VALUE specially. */
+ if (is_positive_overflow_infinity (vr0.max))
+ min = negative_overflow_infinity (TREE_TYPE (expr));
+ else if (is_negative_overflow_infinity (vr0.max))
+ min = positive_overflow_infinity (TREE_TYPE (expr));
+ else if (!vrp_val_is_min (vr0.max))
+ min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+ else if (needs_overflow_infinity (TREE_TYPE (expr)))
+ {
+ if (supports_overflow_infinity (TREE_TYPE (expr))
+ && !is_overflow_infinity (vr0.min)
+ && !vrp_val_is_min (vr0.min))
+ min = positive_overflow_infinity (TREE_TYPE (expr));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ min = TYPE_MIN_VALUE (TREE_TYPE (expr));
+
+ if (is_positive_overflow_infinity (vr0.min))
+ max = negative_overflow_infinity (TREE_TYPE (expr));
+ else if (is_negative_overflow_infinity (vr0.min))
+ max = positive_overflow_infinity (TREE_TYPE (expr));
+ else if (!vrp_val_is_min (vr0.min))
+ max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+ else if (needs_overflow_infinity (TREE_TYPE (expr)))
+ {
+ if (supports_overflow_infinity (TREE_TYPE (expr)))
+ max = positive_overflow_infinity (TREE_TYPE (expr));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ max = TYPE_MIN_VALUE (TREE_TYPE (expr));
+ }
+ else if (code == NEGATE_EXPR
+ && TYPE_UNSIGNED (TREE_TYPE (expr)))
+ {
+ if (!range_includes_zero_p (&vr0))
+ {
+ max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+ min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+ }
+ else
+ {
+ if (range_is_null (&vr0))
+ set_value_range_to_null (vr, TREE_TYPE (expr));
+ else
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else if (code == ABS_EXPR
+ && !TYPE_UNSIGNED (TREE_TYPE (expr)))
+ {
+ /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
+ useful range. */
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
+ && ((vr0.type == VR_RANGE
+ && vrp_val_is_min (vr0.min))
+ || (vr0.type == VR_ANTI_RANGE
+ && !vrp_val_is_min (vr0.min)
+ && !range_includes_zero_p (&vr0))))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* ABS_EXPR may flip the range around, if the original range
+ included negative values. */
+ if (is_overflow_infinity (vr0.min))
+ min = positive_overflow_infinity (TREE_TYPE (expr));
+ else if (!vrp_val_is_min (vr0.min))
+ min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+ else if (!needs_overflow_infinity (TREE_TYPE (expr)))
+ min = TYPE_MAX_VALUE (TREE_TYPE (expr));
+ else if (supports_overflow_infinity (TREE_TYPE (expr)))
+ min = positive_overflow_infinity (TREE_TYPE (expr));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ if (is_overflow_infinity (vr0.max))
+ max = positive_overflow_infinity (TREE_TYPE (expr));
+ else if (!vrp_val_is_min (vr0.max))
+ max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+ else if (!needs_overflow_infinity (TREE_TYPE (expr)))
+ max = TYPE_MAX_VALUE (TREE_TYPE (expr));
+ else if (supports_overflow_infinity (TREE_TYPE (expr)))
+ max = positive_overflow_infinity (TREE_TYPE (expr));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ cmp = compare_values (min, max);
+
+ /* If a VR_ANTI_RANGEs contains zero, then we have
+ ~[-INF, min(MIN, MAX)]. */
+ if (vr0.type == VR_ANTI_RANGE)
+ {
+ if (range_includes_zero_p (&vr0))
+ {
+ /* Take the lower of the two values. */
+ if (cmp != 1)
+ max = min;
+
+ /* Create ~[-INF, min (abs(MIN), abs(MAX))]
+ or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
+ flag_wrapv is set and the original anti-range doesn't include
+ TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
+ if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
+ {
+ tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
+
+ min = (vr0.min != type_min_value
+ ? int_const_binop (PLUS_EXPR, type_min_value,
+ integer_one_node, 0)
+ : type_min_value);
+ }
+ else
+ {
+ if (overflow_infinity_range_p (&vr0))
+ min = negative_overflow_infinity (TREE_TYPE (expr));
+ else
+ min = TYPE_MIN_VALUE (TREE_TYPE (expr));
+ }
+ }
+ else
+ {
+ /* All else has failed, so create the range [0, INF], even for
+ flag_wrapv since TYPE_MIN_VALUE is in the original
+ anti-range. */
+ vr0.type = VR_RANGE;
+ min = build_int_cst (TREE_TYPE (expr), 0);
+ if (needs_overflow_infinity (TREE_TYPE (expr)))
+ {
+ if (supports_overflow_infinity (TREE_TYPE (expr)))
+ max = positive_overflow_infinity (TREE_TYPE (expr));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ max = TYPE_MAX_VALUE (TREE_TYPE (expr));
+ }
+ }
+
+ /* If the range contains zero then we know that the minimum value in the
+ range will be zero. */
+ else if (range_includes_zero_p (&vr0))
+ {
+ if (cmp == 1)
+ max = min;
+ min = build_int_cst (TREE_TYPE (expr), 0);
+ }
+ else
+ {
+ /* If the range was reversed, swap MIN and MAX. */
+ if (cmp == 1)
+ {
+ tree t = min;
+ min = max;
+ max = t;
+ }
+ }
+ }
+ else
+ {
+ /* Otherwise, operate on each end of the range. */
+ min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
+ max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
+
+ if (needs_overflow_infinity (TREE_TYPE (expr)))
+ {
+ gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
+
+ /* If both sides have overflowed, we don't know
+ anything. */
+ if ((is_overflow_infinity (vr0.min)
+ || TREE_OVERFLOW (min))
+ && (is_overflow_infinity (vr0.max)
+ || TREE_OVERFLOW (max)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ if (is_overflow_infinity (vr0.min))
+ min = vr0.min;
+ else if (TREE_OVERFLOW (min))
+ {
+ if (supports_overflow_infinity (TREE_TYPE (expr)))
+ min = (tree_int_cst_sgn (min) >= 0
+ ? positive_overflow_infinity (TREE_TYPE (min))
+ : negative_overflow_infinity (TREE_TYPE (min)));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+
+ if (is_overflow_infinity (vr0.max))
+ max = vr0.max;
+ else if (TREE_OVERFLOW (max))
+ {
+ if (supports_overflow_infinity (TREE_TYPE (expr)))
+ max = (tree_int_cst_sgn (max) >= 0
+ ? positive_overflow_infinity (TREE_TYPE (max))
+ : negative_overflow_infinity (TREE_TYPE (max)));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ }
+ }
+
+ cmp = compare_values (min, max);
+ if (cmp == -2 || cmp == 1)
+ {
+ /* If the new range has its limits swapped around (MIN > MAX),
+ then the operation caused one of them to wrap around, mark
+ the new range VARYING. */
+ set_value_range_to_varying (vr);
+ }
+ else
+ set_value_range (vr, vr0.type, min, max, NULL);
+}
+
+
+/* Extract range information from a comparison expression EXPR based
+ on the range of its operand and the expression code. */
+
+static void
+extract_range_from_comparison (value_range_t *vr, tree expr)
+{
+ bool sop = false;
+ tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
+
+ /* A disadvantage of using a special infinity as an overflow
+ representation is that we lose the ability to record overflow
+ when we don't have an infinity. So we have to ignore a result
+ which relies on overflow. */
+
+ if (val && !is_overflow_infinity (val) && !sop)
+ {
+ /* Since this expression was found on the RHS of an assignment,
+ its type may be different from _Bool. Convert VAL to EXPR's
+ type. */
+ val = fold_convert (TREE_TYPE (expr), val);
+ if (is_gimple_min_invariant (val))
+ set_value_range_to_value (vr, val, vr->equiv);
+ else
+ set_value_range (vr, VR_RANGE, val, val, vr->equiv);
+ }
+ else
+ set_value_range_to_varying (vr);
+}
+
+
+/* Try to compute a useful range out of expression EXPR and store it
+ in *VR. */
+
+static void
+extract_range_from_expr (value_range_t *vr, tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+
+ if (code == ASSERT_EXPR)
+ extract_range_from_assert (vr, expr);
+ else if (code == SSA_NAME)
+ extract_range_from_ssa_name (vr, expr);
+ else if (TREE_CODE_CLASS (code) == tcc_binary
+ || code == TRUTH_ANDIF_EXPR
+ || code == TRUTH_ORIF_EXPR
+ || code == TRUTH_AND_EXPR
+ || code == TRUTH_OR_EXPR
+ || code == TRUTH_XOR_EXPR)
+ extract_range_from_binary_expr (vr, expr);
+ else if (TREE_CODE_CLASS (code) == tcc_unary)
+ extract_range_from_unary_expr (vr, expr);
+ else if (TREE_CODE_CLASS (code) == tcc_comparison)
+ extract_range_from_comparison (vr, expr);
+ else if (is_gimple_min_invariant (expr))
+ set_value_range_to_value (vr, expr, NULL);
+ else
+ set_value_range_to_varying (vr);
+
+ /* If we got a varying range from the tests above, try a final
+ time to derive a nonnegative or nonzero range. This time
+ relying primarily on generic routines in fold in conjunction
+ with range data. */
+ if (vr->type == VR_VARYING)
+ {
+ bool sop = false;
+
+ if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
+ && vrp_expr_computes_nonnegative (expr, &sop))
+ set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
+ sop || is_overflow_infinity (expr));
+ else if (vrp_expr_computes_nonzero (expr, &sop)
+ && !sop)
+ set_value_range_to_nonnull (vr, TREE_TYPE (expr));
+ }
+}
+
+/* Given a range VR, a LOOP and a variable VAR, determine whether it
+ would be profitable to adjust VR using scalar evolution information
+ for VAR. If so, update VR with the new limits. */
+
+static void
+adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
+ tree var)
+{
+ tree init, step, chrec, tmin, tmax, min, max, type;
+ enum ev_direction dir;
+
+ /* TODO. Don't adjust anti-ranges. An anti-range may provide
+ better opportunities than a regular range, but I'm not sure. */
+ if (vr->type == VR_ANTI_RANGE)
+ return;
+
+ chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
+ if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ return;
+
+ init = initial_condition_in_loop_num (chrec, loop->num);
+ step = evolution_part_in_loop_num (chrec, loop->num);
+
+ /* If STEP is symbolic, we can't know whether INIT will be the
+ minimum or maximum value in the range. Also, unless INIT is
+ a simple expression, compare_values and possibly other functions
+ in tree-vrp won't be able to handle it. */
+ if (step == NULL_TREE
+ || !is_gimple_min_invariant (step)
+ || !valid_value_p (init))
+ return;
+
+ dir = scev_direction (chrec);
+ if (/* Do not adjust ranges if we do not know whether the iv increases
+ or decreases, ... */
+ dir == EV_DIR_UNKNOWN
+ /* ... or if it may wrap. */
+ || scev_probably_wraps_p (init, step, stmt,
+ current_loops->parray[CHREC_VARIABLE (chrec)],
+ true))
+ return;
+
+ /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
+ negative_overflow_infinity and positive_overflow_infinity,
+ because we have concluded that the loop probably does not
+ wrap. */
+
+ type = TREE_TYPE (var);
+ if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
+ tmin = lower_bound_in_type (type, type);
+ else
+ tmin = TYPE_MIN_VALUE (type);
+ if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
+ tmax = upper_bound_in_type (type, type);
+ else
+ tmax = TYPE_MAX_VALUE (type);
+
+ if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
+ {
+ min = tmin;
+ max = tmax;
+
+ /* For VARYING or UNDEFINED ranges, just about anything we get
+ from scalar evolutions should be better. */
+
+ if (dir == EV_DIR_DECREASES)
+ max = init;
+ else
+ min = init;
+
+ /* If we would create an invalid range, then just assume we
+ know absolutely nothing. This may be over-conservative,
+ but it's clearly safe, and should happen only in unreachable
+ parts of code, or for invalid programs. */
+ if (compare_values (min, max) == 1)
+ return;
+
+ set_value_range (vr, VR_RANGE, min, max, vr->equiv);
+ }
+ else if (vr->type == VR_RANGE)
+ {
+ min = vr->min;
+ max = vr->max;
+
+ if (dir == EV_DIR_DECREASES)
+ {
+ /* INIT is the maximum value. If INIT is lower than VR->MAX
+ but no smaller than VR->MIN, set VR->MAX to INIT. */
+ if (compare_values (init, max) == -1)
+ {
+ max = init;
+
+ /* If we just created an invalid range with the minimum
+ greater than the maximum, we fail conservatively.
+ This should happen only in unreachable
+ parts of code, or for invalid programs. */
+ if (compare_values (min, max) == 1)
+ return;
+ }
+
+ /* According to the loop information, the variable does not
+ overflow. If we think it does, probably because of an
+ overflow due to arithmetic on a different INF value,
+ reset now. */
+ if (is_negative_overflow_infinity (min))
+ min = tmin;
+ }
+ else
+ {
+ /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
+ if (compare_values (init, min) == 1)
+ {
+ min = init;
+
+ /* Again, avoid creating invalid range by failing. */
+ if (compare_values (min, max) == 1)
+ return;
+ }
+
+ if (is_positive_overflow_infinity (max))
+ max = tmax;
+ }
+
+ set_value_range (vr, VR_RANGE, min, max, vr->equiv);
+ }
+}
+
+/* Return true if VAR may overflow at STMT. This checks any available
+ loop information to see if we can determine that VAR does not
+ overflow. */
+
+static bool
+vrp_var_may_overflow (tree var, tree stmt)
+{
+ struct loop *l;
+ tree chrec, init, step;
+
+ if (current_loops == NULL)
+ return true;
+
+ l = loop_containing_stmt (stmt);
+ if (l == NULL)
+ return true;
+
+ chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
+ if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ return true;
+
+ init = initial_condition_in_loop_num (chrec, l->num);
+ step = evolution_part_in_loop_num (chrec, l->num);
+
+ if (step == NULL_TREE
+ || !is_gimple_min_invariant (step)
+ || !valid_value_p (init))
+ return true;
+
+ /* If we get here, we know something useful about VAR based on the
+ loop information. If it wraps, it may overflow. */
+
+ if (scev_probably_wraps_p (init, step, stmt,
+ current_loops->parray[CHREC_VARIABLE (chrec)],
+ true))
+ return true;
+
+ if (dump_file && (dump_flags & TDF_DETAILS) != 0)
+ {
+ print_generic_expr (dump_file, var, 0);
+ fprintf (dump_file, ": loop information indicates does not overflow\n");
+ }
+
+ return false;
+}
+
+
+/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
+
+ - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
+ all the values in the ranges.
+
+ - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
+
+ - Return NULL_TREE if it is not always possible to determine the
+ value of the comparison.
+
+ Also set *STRICT_OVERFLOW_P to indicate whether a range with an
+ overflow infinity was used in the test. */
+
+
+static tree
+compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
+ bool *strict_overflow_p)
+{
+ /* VARYING or UNDEFINED ranges cannot be compared. */
+ if (vr0->type == VR_VARYING
+ || vr0->type == VR_UNDEFINED
+ || vr1->type == VR_VARYING
+ || vr1->type == VR_UNDEFINED)
+ return NULL_TREE;
+
+ /* Anti-ranges need to be handled separately. */
+ if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
+ {
+ /* If both are anti-ranges, then we cannot compute any
+ comparison. */
+ if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
+ return NULL_TREE;
+
+ /* These comparisons are never statically computable. */
+ if (comp == GT_EXPR
+ || comp == GE_EXPR
+ || comp == LT_EXPR
+ || comp == LE_EXPR)
+ return NULL_TREE;
+
+ /* Equality can be computed only between a range and an
+ anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
+ if (vr0->type == VR_RANGE)
+ {
+ /* To simplify processing, make VR0 the anti-range. */
+ value_range_t *tmp = vr0;
+ vr0 = vr1;
+ vr1 = tmp;
+ }
+
+ gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
+
+ if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
+ && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
+ return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
+
+ return NULL_TREE;
+ }
+
+ if (!usable_range_p (vr0, strict_overflow_p)
+ || !usable_range_p (vr1, strict_overflow_p))
+ return NULL_TREE;
+
+ /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
+ operands around and change the comparison code. */
+ if (comp == GT_EXPR || comp == GE_EXPR)
+ {
+ value_range_t *tmp;
+ comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
+ tmp = vr0;
+ vr0 = vr1;
+ vr1 = tmp;
+ }
+
+ if (comp == EQ_EXPR)
+ {
+ /* Equality may only be computed if both ranges represent
+ exactly one value. */
+ if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
+ && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
+ {
+ int cmp_min = compare_values_warnv (vr0->min, vr1->min,
+ strict_overflow_p);
+ int cmp_max = compare_values_warnv (vr0->max, vr1->max,
+ strict_overflow_p);
+ if (cmp_min == 0 && cmp_max == 0)
+ return boolean_true_node;
+ else if (cmp_min != -2 && cmp_max != -2)
+ return boolean_false_node;
+ }
+ /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
+ else if (compare_values_warnv (vr0->min, vr1->max,
+ strict_overflow_p) == 1
+ || compare_values_warnv (vr1->min, vr0->max,
+ strict_overflow_p) == 1)
+ return boolean_false_node;
+
+ return NULL_TREE;
+ }
+ else if (comp == NE_EXPR)
+ {
+ int cmp1, cmp2;
+
+ /* If VR0 is completely to the left or completely to the right
+ of VR1, they are always different. Notice that we need to
+ make sure that both comparisons yield similar results to
+ avoid comparing values that cannot be compared at
+ compile-time. */
+ cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+ cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
+ if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
+ return boolean_true_node;
+
+ /* If VR0 and VR1 represent a single value and are identical,
+ return false. */
+ else if (compare_values_warnv (vr0->min, vr0->max,
+ strict_overflow_p) == 0
+ && compare_values_warnv (vr1->min, vr1->max,
+ strict_overflow_p) == 0
+ && compare_values_warnv (vr0->min, vr1->min,
+ strict_overflow_p) == 0
+ && compare_values_warnv (vr0->max, vr1->max,
+ strict_overflow_p) == 0)
+ return boolean_false_node;
+
+ /* Otherwise, they may or may not be different. */
+ else
+ return NULL_TREE;
+ }
+ else if (comp == LT_EXPR || comp == LE_EXPR)
+ {
+ int tst;
+
+ /* If VR0 is to the left of VR1, return true. */
+ tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+ if ((comp == LT_EXPR && tst == -1)
+ || (comp == LE_EXPR && (tst == -1 || tst == 0)))
+ {
+ if (overflow_infinity_range_p (vr0)
+ || overflow_infinity_range_p (vr1))
+ *strict_overflow_p = true;
+ return boolean_true_node;
+ }
+
+ /* If VR0 is to the right of VR1, return false. */
+ tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
+ if ((comp == LT_EXPR && (tst == 0 || tst == 1))
+ || (comp == LE_EXPR && tst == 1))
+ {
+ if (overflow_infinity_range_p (vr0)
+ || overflow_infinity_range_p (vr1))
+ *strict_overflow_p = true;
+ return boolean_false_node;
+ }
+
+ /* Otherwise, we don't know. */
+ return NULL_TREE;
+ }
+
+ gcc_unreachable ();
+}
+
+
+/* Given a value range VR, a value VAL and a comparison code COMP, return
+ BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
+ values in VR. Return BOOLEAN_FALSE_NODE if the comparison
+ always returns false. Return NULL_TREE if it is not always
+ possible to determine the value of the comparison. Also set
+ *STRICT_OVERFLOW_P to indicate whether a range with an overflow
+ infinity was used in the test. */
+
+static tree
+compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
+ bool *strict_overflow_p)
+{
+ if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
+ return NULL_TREE;
+
+ /* Anti-ranges need to be handled separately. */
+ if (vr->type == VR_ANTI_RANGE)
+ {
+ /* For anti-ranges, the only predicates that we can compute at
+ compile time are equality and inequality. */
+ if (comp == GT_EXPR
+ || comp == GE_EXPR
+ || comp == LT_EXPR
+ || comp == LE_EXPR)
+ return NULL_TREE;
+
+ /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
+ if (value_inside_range (val, vr) == 1)
+ return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
+
+ return NULL_TREE;
+ }
+
+ if (!usable_range_p (vr, strict_overflow_p))
+ return NULL_TREE;
+
+ if (comp == EQ_EXPR)
+ {
+ /* EQ_EXPR may only be computed if VR represents exactly
+ one value. */
+ if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
+ {
+ int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
+ if (cmp == 0)
+ return boolean_true_node;
+ else if (cmp == -1 || cmp == 1 || cmp == 2)
+ return boolean_false_node;
+ }
+ else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
+ || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
+ return boolean_false_node;
+
+ return NULL_TREE;
+ }
+ else if (comp == NE_EXPR)
+ {
+ /* If VAL is not inside VR, then they are always different. */
+ if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
+ || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
+ return boolean_true_node;
+
+ /* If VR represents exactly one value equal to VAL, then return
+ false. */
+ if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
+ && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
+ return boolean_false_node;
+
+ /* Otherwise, they may or may not be different. */
+ return NULL_TREE;
+ }
+ else if (comp == LT_EXPR || comp == LE_EXPR)
+ {
+ int tst;
+
+ /* If VR is to the left of VAL, return true. */
+ tst = compare_values_warnv (vr->max, val, strict_overflow_p);
+ if ((comp == LT_EXPR && tst == -1)
+ || (comp == LE_EXPR && (tst == -1 || tst == 0)))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_true_node;
+ }
+
+ /* If VR is to the right of VAL, return false. */
+ tst = compare_values_warnv (vr->min, val, strict_overflow_p);
+ if ((comp == LT_EXPR && (tst == 0 || tst == 1))
+ || (comp == LE_EXPR && tst == 1))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_false_node;
+ }
+
+ /* Otherwise, we don't know. */
+ return NULL_TREE;
+ }
+ else if (comp == GT_EXPR || comp == GE_EXPR)
+ {
+ int tst;
+
+ /* If VR is to the right of VAL, return true. */
+ tst = compare_values_warnv (vr->min, val, strict_overflow_p);
+ if ((comp == GT_EXPR && tst == 1)
+ || (comp == GE_EXPR && (tst == 0 || tst == 1)))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_true_node;
+ }
+
+ /* If VR is to the left of VAL, return false. */
+ tst = compare_values_warnv (vr->max, val, strict_overflow_p);
+ if ((comp == GT_EXPR && (tst == -1 || tst == 0))
+ || (comp == GE_EXPR && tst == -1))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_false_node;
+ }
+
+ /* Otherwise, we don't know. */
+ return NULL_TREE;
+ }
+
+ gcc_unreachable ();
+}
+
+
+/* Debugging dumps. */
+
+void dump_value_range (FILE *, value_range_t *);
+void debug_value_range (value_range_t *);
+void dump_all_value_ranges (FILE *);
+void debug_all_value_ranges (void);
+void dump_vr_equiv (FILE *, bitmap);
+void debug_vr_equiv (bitmap);
+
+
+/* Dump value range VR to FILE. */
+
+void
+dump_value_range (FILE *file, value_range_t *vr)
+{
+ if (vr == NULL)
+ fprintf (file, "[]");
+ else if (vr->type == VR_UNDEFINED)
+ fprintf (file, "UNDEFINED");
+ else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
+ {
+ tree type = TREE_TYPE (vr->min);
+
+ fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
+
+ if (is_negative_overflow_infinity (vr->min))
+ fprintf (file, "-INF(OVF)");
+ else if (INTEGRAL_TYPE_P (type)
+ && !TYPE_UNSIGNED (type)
+ && vrp_val_is_min (vr->min))
+ fprintf (file, "-INF");
+ else
+ print_generic_expr (file, vr->min, 0);
+
+ fprintf (file, ", ");
+
+ if (is_positive_overflow_infinity (vr->max))
+ fprintf (file, "+INF(OVF)");
+ else if (INTEGRAL_TYPE_P (type)
+ && vrp_val_is_max (vr->max))
+ fprintf (file, "+INF");
+ else
+ print_generic_expr (file, vr->max, 0);
+
+ fprintf (file, "]");
+
+ if (vr->equiv)
+ {
+ bitmap_iterator bi;
+ unsigned i, c = 0;
+
+ fprintf (file, " EQUIVALENCES: { ");
+
+ EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
+ {
+ print_generic_expr (file, ssa_name (i), 0);
+ fprintf (file, " ");
+ c++;
+ }
+
+ fprintf (file, "} (%u elements)", c);
+ }
+ }
+ else if (vr->type == VR_VARYING)
+ fprintf (file, "VARYING");
+ else
+ fprintf (file, "INVALID RANGE");
+}
+
+
+/* Dump value range VR to stderr. */
+
+void
+debug_value_range (value_range_t *vr)
+{
+ dump_value_range (stderr, vr);
+ fprintf (stderr, "\n");
+}
+
+
+/* Dump value ranges of all SSA_NAMEs to FILE. */
+
+void
+dump_all_value_ranges (FILE *file)
+{
+ size_t i;
+
+ for (i = 0; i < num_ssa_names; i++)
+ {
+ if (vr_value[i])
+ {
+ print_generic_expr (file, ssa_name (i), 0);
+ fprintf (file, ": ");
+ dump_value_range (file, vr_value[i]);
+ fprintf (file, "\n");
+ }
+ }
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump all value ranges to stderr. */
+
+void
+debug_all_value_ranges (void)
+{
+ dump_all_value_ranges (stderr);
+}
+
+
+/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
+ create a new SSA name N and return the assertion assignment
+ 'V = ASSERT_EXPR <V, V OP W>'. */
+
+static tree
+build_assert_expr_for (tree cond, tree v)
+{
+ tree n, assertion;
+
+ gcc_assert (TREE_CODE (v) == SSA_NAME);
+ n = duplicate_ssa_name (v, NULL_TREE);
+
+ if (COMPARISON_CLASS_P (cond))
+ {
+ tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
+ assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
+ }
+ else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+ {
+ /* Given !V, build the assignment N = false. */
+ tree op0 = TREE_OPERAND (cond, 0);
+ gcc_assert (op0 == v);
+ assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
+ }
+ else if (TREE_CODE (cond) == SSA_NAME)
+ {
+ /* Given V, build the assignment N = true. */
+ gcc_assert (v == cond);
+ assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
+ }
+ else
+ gcc_unreachable ();
+
+ SSA_NAME_DEF_STMT (n) = assertion;
+
+ /* The new ASSERT_EXPR, creates a new SSA name that replaces the
+ operand of the ASSERT_EXPR. Register the new name and the old one
+ in the replacement table so that we can fix the SSA web after
+ adding all the ASSERT_EXPRs. */
+ register_new_name_mapping (n, v);
+
+ return assertion;
+}
+
+
+/* Return false if EXPR is a predicate expression involving floating
+ point values. */
+
+static inline bool
+fp_predicate (tree expr)
+{
+ return (COMPARISON_CLASS_P (expr)
+ && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
+}
+
+
+/* If the range of values taken by OP can be inferred after STMT executes,
+ return the comparison code (COMP_CODE_P) and value (VAL_P) that
+ describes the inferred range. Return true if a range could be
+ inferred. */
+
+static bool
+infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
+{
+ *val_p = NULL_TREE;
+ *comp_code_p = ERROR_MARK;
+
+ /* Do not attempt to infer anything in names that flow through
+ abnormal edges. */
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
+ return false;
+
+ /* Similarly, don't infer anything from statements that may throw
+ exceptions. */
+ if (tree_could_throw_p (stmt))
+ return false;
+
+ /* If STMT is the last statement of a basic block with no
+ successors, there is no point inferring anything about any of its
+ operands. We would not be able to find a proper insertion point
+ for the assertion, anyway. */
+ if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
+ return false;
+
+ /* We can only assume that a pointer dereference will yield
+ non-NULL if -fdelete-null-pointer-checks is enabled. */
+ if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
+ {
+ bool is_store;
+ unsigned num_uses, num_derefs;
+
+ count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
+ if (num_derefs > 0)
+ {
+ *val_p = build_int_cst (TREE_TYPE (op), 0);
+ *comp_code_p = NE_EXPR;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+void dump_asserts_for (FILE *, tree);
+void debug_asserts_for (tree);
+void dump_all_asserts (FILE *);
+void debug_all_asserts (void);
+
+/* Dump all the registered assertions for NAME to FILE. */
+
+void
+dump_asserts_for (FILE *file, tree name)
+{
+ assert_locus_t loc;
+
+ fprintf (file, "Assertions to be inserted for ");
+ print_generic_expr (file, name, 0);
+ fprintf (file, "\n");
+
+ loc = asserts_for[SSA_NAME_VERSION (name)];
+ while (loc)
+ {
+ fprintf (file, "\t");
+ print_generic_expr (file, bsi_stmt (loc->si), 0);
+ fprintf (file, "\n\tBB #%d", loc->bb->index);
+ if (loc->e)
+ {
+ fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
+ loc->e->dest->index);
+ dump_edge_info (file, loc->e, 0);
+ }
+ fprintf (file, "\n\tPREDICATE: ");
+ print_generic_expr (file, name, 0);
+ fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
+ print_generic_expr (file, loc->val, 0);
+ fprintf (file, "\n\n");
+ loc = loc->next;
+ }
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump all the registered assertions for NAME to stderr. */
+
+void
+debug_asserts_for (tree name)
+{
+ dump_asserts_for (stderr, name);
+}
+
+
+/* Dump all the registered assertions for all the names to FILE. */
+
+void
+dump_all_asserts (FILE *file)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
+ EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
+ dump_asserts_for (file, ssa_name (i));
+ fprintf (file, "\n");
+}
+
+
+/* Dump all the registered assertions for all the names to stderr. */
+
+void
+debug_all_asserts (void)
+{
+ dump_all_asserts (stderr);
+}
+
+
+/* If NAME doesn't have an ASSERT_EXPR registered for asserting
+ 'NAME COMP_CODE VAL' at a location that dominates block BB or
+ E->DEST, then register this location as a possible insertion point
+ for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
+
+ BB, E and SI provide the exact insertion point for the new
+ ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
+ on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
+ BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
+ must not be NULL. */
+
+static void
+register_new_assert_for (tree name,
+ enum tree_code comp_code,
+ tree val,
+ basic_block bb,
+ edge e,
+ block_stmt_iterator si)
+{
+ assert_locus_t n, loc, last_loc;
+ bool found;
+ basic_block dest_bb;
+
+#if defined ENABLE_CHECKING
+ gcc_assert (bb == NULL || e == NULL);
+
+ if (e == NULL)
+ gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
+ && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
+#endif
+
+ /* The new assertion A will be inserted at BB or E. We need to
+ determine if the new location is dominated by a previously
+ registered location for A. If we are doing an edge insertion,
+ assume that A will be inserted at E->DEST. Note that this is not
+ necessarily true.
+
+ If E is a critical edge, it will be split. But even if E is
+ split, the new block will dominate the same set of blocks that
+ E->DEST dominates.
+
+ The reverse, however, is not true, blocks dominated by E->DEST
+ will not be dominated by the new block created to split E. So,
+ if the insertion location is on a critical edge, we will not use
+ the new location to move another assertion previously registered
+ at a block dominated by E->DEST. */
+ dest_bb = (bb) ? bb : e->dest;
+
+ /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
+ VAL at a block dominating DEST_BB, then we don't need to insert a new
+ one. Similarly, if the same assertion already exists at a block
+ dominated by DEST_BB and the new location is not on a critical
+ edge, then update the existing location for the assertion (i.e.,
+ move the assertion up in the dominance tree).
+
+ Note, this is implemented as a simple linked list because there
+ should not be more than a handful of assertions registered per
+ name. If this becomes a performance problem, a table hashed by
+ COMP_CODE and VAL could be implemented. */
+ loc = asserts_for[SSA_NAME_VERSION (name)];
+ last_loc = loc;
+ found = false;
+ while (loc)
+ {
+ if (loc->comp_code == comp_code
+ && (loc->val == val
+ || operand_equal_p (loc->val, val, 0)))
+ {
+ /* If the assertion NAME COMP_CODE VAL has already been
+ registered at a basic block that dominates DEST_BB, then
+ we don't need to insert the same assertion again. Note
+ that we don't check strict dominance here to avoid
+ replicating the same assertion inside the same basic
+ block more than once (e.g., when a pointer is
+ dereferenced several times inside a block).
+
+ An exception to this rule are edge insertions. If the
+ new assertion is to be inserted on edge E, then it will
+ dominate all the other insertions that we may want to
+ insert in DEST_BB. So, if we are doing an edge
+ insertion, don't do this dominance check. */
+ if (e == NULL
+ && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
+ return;
+
+ /* Otherwise, if E is not a critical edge and DEST_BB
+ dominates the existing location for the assertion, move
+ the assertion up in the dominance tree by updating its
+ location information. */
+ if ((e == NULL || !EDGE_CRITICAL_P (e))
+ && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
+ {
+ loc->bb = dest_bb;
+ loc->e = e;
+ loc->si = si;
+ return;
+ }
+ }
+
+ /* Update the last node of the list and move to the next one. */
+ last_loc = loc;
+ loc = loc->next;
+ }
+
+ /* If we didn't find an assertion already registered for
+ NAME COMP_CODE VAL, add a new one at the end of the list of
+ assertions associated with NAME. */
+ n = XNEW (struct assert_locus_d);
+ n->bb = dest_bb;
+ n->e = e;
+ n->si = si;
+ n->comp_code = comp_code;
+ n->val = val;
+ n->next = NULL;
+
+ if (last_loc)
+ last_loc->next = n;
+ else
+ asserts_for[SSA_NAME_VERSION (name)] = n;
+
+ bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
+}
+
+
+/* Try to register an edge assertion for SSA name NAME on edge E for
+ the conditional jump pointed to by SI. Return true if an assertion
+ for NAME could be registered. */
+
+static bool
+register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
+{
+ tree val, stmt;
+ enum tree_code comp_code;
+
+ stmt = bsi_stmt (si);
+
+ /* Do not attempt to infer anything in names that flow through
+ abnormal edges. */
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
+ return false;
+
+ /* If NAME was not found in the sub-graph reachable from E, then
+ there's nothing to do. */
+ if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
+ return false;
+
+ /* We found a use of NAME in the sub-graph rooted at E->DEST.
+ Register an assertion for NAME according to the value that NAME
+ takes on edge E. */
+ if (TREE_CODE (stmt) == COND_EXPR)
+ {
+ /* If BB ends in a COND_EXPR then NAME then we should insert
+ the original predicate on EDGE_TRUE_VALUE and the
+ opposite predicate on EDGE_FALSE_VALUE. */
+ tree cond = COND_EXPR_COND (stmt);
+ bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
+
+ /* Predicates may be a single SSA name or NAME OP VAL. */
+ if (cond == name)
+ {
+ /* If the predicate is a name, it must be NAME, in which
+ case we create the predicate NAME == true or
+ NAME == false accordingly. */
+ comp_code = EQ_EXPR;
+ val = (is_else_edge) ? boolean_false_node : boolean_true_node;
+ }
+ else
+ {
+ /* Otherwise, we have a comparison of the form NAME COMP VAL
+ or VAL COMP NAME. */
+ if (name == TREE_OPERAND (cond, 1))
+ {
+ /* If the predicate is of the form VAL COMP NAME, flip
+ COMP around because we need to register NAME as the
+ first operand in the predicate. */
+ comp_code = swap_tree_comparison (TREE_CODE (cond));
+ val = TREE_OPERAND (cond, 0);
+ }
+ else
+ {
+ /* The comparison is of the form NAME COMP VAL, so the
+ comparison code remains unchanged. */
+ comp_code = TREE_CODE (cond);
+ val = TREE_OPERAND (cond, 1);
+ }
+
+ /* If we are inserting the assertion on the ELSE edge, we
+ need to invert the sign comparison. */
+ if (is_else_edge)
+ comp_code = invert_tree_comparison (comp_code, 0);
+
+ /* Do not register always-false predicates. FIXME, this
+ works around a limitation in fold() when dealing with
+ enumerations. Given 'enum { N1, N2 } x;', fold will not
+ fold 'if (x > N2)' to 'if (0)'. */
+ if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
+ && (INTEGRAL_TYPE_P (TREE_TYPE (val))
+ || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
+ {
+ tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
+ tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
+
+ if (comp_code == GT_EXPR && compare_values (val, max) == 0)
+ return false;
+
+ if (comp_code == LT_EXPR && compare_values (val, min) == 0)
+ return false;
+ }
+ }
+ }
+ else
+ {
+ /* FIXME. Handle SWITCH_EXPR. */
+ gcc_unreachable ();
+ }
+
+ register_new_assert_for (name, comp_code, val, NULL, e, si);
+ return true;
+}
+
+
+static bool find_assert_locations (basic_block bb);
+
+/* Determine whether the outgoing edges of BB should receive an
+ ASSERT_EXPR for each of the operands of BB's last statement. The
+ last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
+
+ If any of the sub-graphs rooted at BB have an interesting use of
+ the predicate operands, an assert location node is added to the
+ list of assertions for the corresponding operands. */
+
+static bool
+find_conditional_asserts (basic_block bb)
+{
+ bool need_assert;
+ block_stmt_iterator last_si;
+ tree op, last;
+ edge_iterator ei;
+ edge e;
+ ssa_op_iter iter;
+
+ need_assert = false;
+ last_si = bsi_last (bb);
+ last = bsi_stmt (last_si);
+
+ /* Look for uses of the operands in each of the sub-graphs
+ rooted at BB. We need to check each of the outgoing edges
+ separately, so that we know what kind of ASSERT_EXPR to
+ insert. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (e->dest == bb)
+ continue;
+
+ /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
+ Otherwise, when we finish traversing each of the sub-graphs, we
+ won't know whether the variables were found in the sub-graphs or
+ if they had been found in a block upstream from BB.
+
+ This is actually a bad idea is some cases, particularly jump
+ threading. Consider a CFG like the following:
+
+ 0
+ /|
+ 1 |
+ \|
+ 2
+ / \
+ 3 4
+
+ Assume that one or more operands in the conditional at the
+ end of block 0 are used in a conditional in block 2, but not
+ anywhere in block 1. In this case we will not insert any
+ assert statements in block 1, which may cause us to miss
+ opportunities to optimize, particularly for jump threading. */
+ FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
+ RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
+
+ /* Traverse the strictly dominated sub-graph rooted at E->DEST
+ to determine if any of the operands in the conditional
+ predicate are used. */
+ if (e->dest != bb)
+ need_assert |= find_assert_locations (e->dest);
+
+ /* Register the necessary assertions for each operand in the
+ conditional predicate. */
+ FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
+ need_assert |= register_edge_assert_for (op, e, last_si);
+ }
+
+ /* Finally, indicate that we have found the operands in the
+ conditional. */
+ FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
+ SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
+
+ return need_assert;
+}
+
+
+/* Traverse all the statements in block BB looking for statements that
+ may generate useful assertions for the SSA names in their operand.
+ If a statement produces a useful assertion A for name N_i, then the
+ list of assertions already generated for N_i is scanned to
+ determine if A is actually needed.
+
+ If N_i already had the assertion A at a location dominating the
+ current location, then nothing needs to be done. Otherwise, the
+ new location for A is recorded instead.
+
+ 1- For every statement S in BB, all the variables used by S are
+ added to bitmap FOUND_IN_SUBGRAPH.
+
+ 2- If statement S uses an operand N in a way that exposes a known
+ value range for N, then if N was not already generated by an
+ ASSERT_EXPR, create a new assert location for N. For instance,
+ if N is a pointer and the statement dereferences it, we can
+ assume that N is not NULL.
+
+ 3- COND_EXPRs are a special case of #2. We can derive range
+ information from the predicate but need to insert different
+ ASSERT_EXPRs for each of the sub-graphs rooted at the
+ conditional block. If the last statement of BB is a conditional
+ expression of the form 'X op Y', then
+
+ a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
+
+ b) If the conditional is the only entry point to the sub-graph
+ corresponding to the THEN_CLAUSE, recurse into it. On
+ return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
+ an ASSERT_EXPR is added for the corresponding variable.
+
+ c) Repeat step (b) on the ELSE_CLAUSE.
+
+ d) Mark X and Y in FOUND_IN_SUBGRAPH.
+
+ For instance,
+
+ if (a == 9)
+ b = a;
+ else
+ b = c + 1;
+
+ In this case, an assertion on the THEN clause is useful to
+ determine that 'a' is always 9 on that edge. However, an assertion
+ on the ELSE clause would be unnecessary.
+
+ 4- If BB does not end in a conditional expression, then we recurse
+ into BB's dominator children.
+
+ At the end of the recursive traversal, every SSA name will have a
+ list of locations where ASSERT_EXPRs should be added. When a new
+ location for name N is found, it is registered by calling
+ register_new_assert_for. That function keeps track of all the
+ registered assertions to prevent adding unnecessary assertions.
+ For instance, if a pointer P_4 is dereferenced more than once in a
+ dominator tree, only the location dominating all the dereference of
+ P_4 will receive an ASSERT_EXPR.
+
+ If this function returns true, then it means that there are names
+ for which we need to generate ASSERT_EXPRs. Those assertions are
+ inserted by process_assert_insertions.
+
+ TODO. Handle SWITCH_EXPR. */
+
+static bool
+find_assert_locations (basic_block bb)
+{
+ block_stmt_iterator si;
+ tree last, phi;
+ bool need_assert;
+ basic_block son;
+
+ if (TEST_BIT (blocks_visited, bb->index))
+ return false;
+
+ SET_BIT (blocks_visited, bb->index);
+
+ need_assert = false;
+
+ /* Traverse all PHI nodes in BB marking used operands. */
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ use_operand_p arg_p;
+ ssa_op_iter i;
+
+ FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
+ {
+ tree arg = USE_FROM_PTR (arg_p);
+ if (TREE_CODE (arg) == SSA_NAME)
+ {
+ gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
+ SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
+ }
+ }
+ }
+
+ /* Traverse all the statements in BB marking used names and looking
+ for statements that may infer assertions for their used operands. */
+ last = NULL_TREE;
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt, op;
+ ssa_op_iter i;
+
+ stmt = bsi_stmt (si);
+
+ /* See if we can derive an assertion for any of STMT's operands. */
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
+ {
+ tree value;
+ enum tree_code comp_code;
+
+ /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
+ the sub-graph of a conditional block, when we return from
+ this recursive walk, our parent will use the
+ FOUND_IN_SUBGRAPH bitset to determine if one of the
+ operands it was looking for was present in the sub-graph. */
+ SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
+
+ /* If OP is used in such a way that we can infer a value
+ range for it, and we don't find a previous assertion for
+ it, create a new assertion location node for OP. */
+ if (infer_value_range (stmt, op, &comp_code, &value))
+ {
+ /* If we are able to infer a nonzero value range for OP,
+ then walk backwards through the use-def chain to see if OP
+ was set via a typecast.
+
+ If so, then we can also infer a nonzero value range
+ for the operand of the NOP_EXPR. */
+ if (comp_code == NE_EXPR && integer_zerop (value))
+ {
+ tree t = op;
+ tree def_stmt = SSA_NAME_DEF_STMT (t);
+
+ while (TREE_CODE (def_stmt) == MODIFY_EXPR
+ && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
+ && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
+ && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
+ {
+ t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
+ def_stmt = SSA_NAME_DEF_STMT (t);
+
+ /* Note we want to register the assert for the
+ operand of the NOP_EXPR after SI, not after the
+ conversion. */
+ if (! has_single_use (t))
+ {
+ register_new_assert_for (t, comp_code, value,
+ bb, NULL, si);
+ need_assert = true;
+ }
+ }
+ }
+
+ /* If OP is used only once, namely in this STMT, don't
+ bother creating an ASSERT_EXPR for it. Such an
+ ASSERT_EXPR would do nothing but increase compile time. */
+ if (!has_single_use (op))
+ {
+ register_new_assert_for (op, comp_code, value, bb, NULL, si);
+ need_assert = true;
+ }
+ }
+ }
+
+ /* Remember the last statement of the block. */
+ last = stmt;
+ }
+
+ /* If BB's last statement is a conditional expression
+ involving integer operands, recurse into each of the sub-graphs
+ rooted at BB to determine if we need to add ASSERT_EXPRs. */
+ if (last
+ && TREE_CODE (last) == COND_EXPR
+ && !fp_predicate (COND_EXPR_COND (last))
+ && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
+ need_assert |= find_conditional_asserts (bb);
+
+ /* Recurse into the dominator children of BB. */
+ for (son = first_dom_son (CDI_DOMINATORS, bb);
+ son;
+ son = next_dom_son (CDI_DOMINATORS, son))
+ need_assert |= find_assert_locations (son);
+
+ return need_assert;
+}
+
+
+/* Create an ASSERT_EXPR for NAME and insert it in the location
+ indicated by LOC. Return true if we made any edge insertions. */
+
+static bool
+process_assert_insertions_for (tree name, assert_locus_t loc)
+{
+ /* Build the comparison expression NAME_i COMP_CODE VAL. */
+ tree stmt, cond, assert_expr;
+ edge_iterator ei;
+ edge e;
+
+ cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
+ assert_expr = build_assert_expr_for (cond, name);
+
+ if (loc->e)
+ {
+ /* We have been asked to insert the assertion on an edge. This
+ is used only by COND_EXPR and SWITCH_EXPR assertions. */
+#if defined ENABLE_CHECKING
+ gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
+ || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
+#endif
+
+ bsi_insert_on_edge (loc->e, assert_expr);
+ return true;
+ }
+
+ /* Otherwise, we can insert right after LOC->SI iff the
+ statement must not be the last statement in the block. */
+ stmt = bsi_stmt (loc->si);
+ if (!stmt_ends_bb_p (stmt))
+ {
+ bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
+ return false;
+ }
+
+ /* If STMT must be the last statement in BB, we can only insert new
+ assertions on the non-abnormal edge out of BB. Note that since
+ STMT is not control flow, there may only be one non-abnormal edge
+ out of BB. */
+ FOR_EACH_EDGE (e, ei, loc->bb->succs)
+ if (!(e->flags & EDGE_ABNORMAL))
+ {
+ bsi_insert_on_edge (e, assert_expr);
+ return true;
+ }
+
+ gcc_unreachable ();
+}
+
+
+/* Process all the insertions registered for every name N_i registered
+ in NEED_ASSERT_FOR. The list of assertions to be inserted are
+ found in ASSERTS_FOR[i]. */
+
+static void
+process_assert_insertions (void)
+{
+ unsigned i;
+ bitmap_iterator bi;
+ bool update_edges_p = false;
+ int num_asserts = 0;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_all_asserts (dump_file);
+
+ EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
+ {
+ assert_locus_t loc = asserts_for[i];
+ gcc_assert (loc);
+
+ while (loc)
+ {
+ assert_locus_t next = loc->next;
+ update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
+ free (loc);
+ loc = next;
+ num_asserts++;
+ }
+ }
+
+ if (update_edges_p)
+ bsi_commit_edge_inserts ();
+
+ if (dump_file && (dump_flags & TDF_STATS))
+ fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
+ num_asserts);
+}
+
+
+/* Traverse the flowgraph looking for conditional jumps to insert range
+ expressions. These range expressions are meant to provide information
+ to optimizations that need to reason in terms of value ranges. They
+ will not be expanded into RTL. For instance, given:
+
+ x = ...
+ y = ...
+ if (x < y)
+ y = x - 2;
+ else
+ x = y + 3;
+
+ this pass will transform the code into:
+
+ x = ...
+ y = ...
+ if (x < y)
+ {
+ x = ASSERT_EXPR <x, x < y>
+ y = x - 2
+ }
+ else
+ {
+ y = ASSERT_EXPR <y, x <= y>
+ x = y + 3
+ }
+
+ The idea is that once copy and constant propagation have run, other
+ optimizations will be able to determine what ranges of values can 'x'
+ take in different paths of the code, simply by checking the reaching
+ definition of 'x'. */
+
+static void
+insert_range_assertions (void)
+{
+ edge e;
+ edge_iterator ei;
+ bool update_ssa_p;
+
+ found_in_subgraph = sbitmap_alloc (num_ssa_names);
+ sbitmap_zero (found_in_subgraph);
+
+ blocks_visited = sbitmap_alloc (last_basic_block);
+ sbitmap_zero (blocks_visited);
+
+ need_assert_for = BITMAP_ALLOC (NULL);
+ asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
+ memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
+
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ update_ssa_p = false;
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
+ if (find_assert_locations (e->dest))
+ update_ssa_p = true;
+
+ if (update_ssa_p)
+ {
+ process_assert_insertions ();
+ update_ssa (TODO_update_ssa_no_phi);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
+ dump_function_to_file (current_function_decl, dump_file, dump_flags);
+ }
+
+ sbitmap_free (found_in_subgraph);
+ free (asserts_for);
+ BITMAP_FREE (need_assert_for);
+}
+
+
+/* Convert range assertion expressions into the implied copies and
+ copy propagate away the copies. Doing the trivial copy propagation
+ here avoids the need to run the full copy propagation pass after
+ VRP.
+
+ FIXME, this will eventually lead to copy propagation removing the
+ names that had useful range information attached to them. For
+ instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
+ then N_i will have the range [3, +INF].
+
+ However, by converting the assertion into the implied copy
+ operation N_i = N_j, we will then copy-propagate N_j into the uses
+ of N_i and lose the range information. We may want to hold on to
+ ASSERT_EXPRs a little while longer as the ranges could be used in
+ things like jump threading.
+
+ The problem with keeping ASSERT_EXPRs around is that passes after
+ VRP need to handle them appropriately.
+
+ Another approach would be to make the range information a first
+ class property of the SSA_NAME so that it can be queried from
+ any pass. This is made somewhat more complex by the need for
+ multiple ranges to be associated with one SSA_NAME. */
+
+static void
+remove_range_assertions (void)
+{
+ basic_block bb;
+ block_stmt_iterator si;
+
+ /* Note that the BSI iterator bump happens at the bottom of the
+ loop and no bump is necessary if we're removing the statement
+ referenced by the current BSI. */
+ FOR_EACH_BB (bb)
+ for (si = bsi_start (bb); !bsi_end_p (si);)
+ {
+ tree stmt = bsi_stmt (si);
+ tree use_stmt;
+
+ if (TREE_CODE (stmt) == MODIFY_EXPR
+ && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
+ {
+ tree rhs = TREE_OPERAND (stmt, 1), var;
+ tree cond = fold (ASSERT_EXPR_COND (rhs));
+ use_operand_p use_p;
+ imm_use_iterator iter;
+
+ gcc_assert (cond != boolean_false_node);
+
+ /* Propagate the RHS into every use of the LHS. */
+ var = ASSERT_EXPR_VAR (rhs);
+ FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
+ FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+ {
+ SET_USE (use_p, var);
+ gcc_assert (TREE_CODE (var) == SSA_NAME);
+ }
+
+ /* And finally, remove the copy, it is not needed. */
+ bsi_remove (&si, true);
+ }
+ else
+ bsi_next (&si);
+ }
+
+ sbitmap_free (blocks_visited);
+}
+
+
+/* Return true if STMT is interesting for VRP. */
+
+static bool
+stmt_interesting_for_vrp (tree stmt)
+{
+ if (TREE_CODE (stmt) == PHI_NODE
+ && is_gimple_reg (PHI_RESULT (stmt))
+ && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
+ || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
+ return true;
+ else if (TREE_CODE (stmt) == MODIFY_EXPR)
+ {
+ tree lhs = TREE_OPERAND (stmt, 0);
+ tree rhs = TREE_OPERAND (stmt, 1);
+
+ /* In general, assignments with virtual operands are not useful
+ for deriving ranges, with the obvious exception of calls to
+ builtin functions. */
+ if (TREE_CODE (lhs) == SSA_NAME
+ && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ || POINTER_TYPE_P (TREE_TYPE (lhs)))
+ && ((TREE_CODE (rhs) == CALL_EXPR
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
+ && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
+ && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
+ || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
+ return true;
+ }
+ else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
+ return true;
+
+ return false;
+}
+
+
+/* Initialize local data structures for VRP. */
+
+static void
+vrp_initialize (void)
+{
+ basic_block bb;
+
+ vr_value = XNEWVEC (value_range_t *, num_ssa_names);
+ memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
+
+ FOR_EACH_BB (bb)
+ {
+ block_stmt_iterator si;
+ tree phi;
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ {
+ if (!stmt_interesting_for_vrp (phi))
+ {
+ tree lhs = PHI_RESULT (phi);
+ set_value_range_to_varying (get_value_range (lhs));
+ DONT_SIMULATE_AGAIN (phi) = true;
+ }
+ else
+ DONT_SIMULATE_AGAIN (phi) = false;
+ }
+
+ for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
+ {
+ tree stmt = bsi_stmt (si);
+
+ if (!stmt_interesting_for_vrp (stmt))
+ {
+ ssa_op_iter i;
+ tree def;
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
+ set_value_range_to_varying (get_value_range (def));
+ DONT_SIMULATE_AGAIN (stmt) = true;
+ }
+ else
+ {
+ DONT_SIMULATE_AGAIN (stmt) = false;
+ }
+ }
+ }
+}
+
+
+/* Visit assignment STMT. If it produces an interesting range, record
+ the SSA name in *OUTPUT_P. */
+
+static enum ssa_prop_result
+vrp_visit_assignment (tree stmt, tree *output_p)
+{
+ tree lhs, rhs, def;
+ ssa_op_iter iter;
+
+ lhs = TREE_OPERAND (stmt, 0);
+ rhs = TREE_OPERAND (stmt, 1);
+
+ /* We only keep track of ranges in integral and pointer types. */
+ if (TREE_CODE (lhs) == SSA_NAME
+ && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ /* It is valid to have NULL MIN/MAX values on a type. See
+ build_range_type. */
+ && TYPE_MIN_VALUE (TREE_TYPE (lhs))
+ && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
+ || POINTER_TYPE_P (TREE_TYPE (lhs))))
+ {
+ struct loop *l;
+ value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ extract_range_from_expr (&new_vr, rhs);
+
+ /* If STMT is inside a loop, we may be able to know something
+ else about the range of LHS by examining scalar evolution
+ information. */
+ if (current_loops && (l = loop_containing_stmt (stmt)))
+ adjust_range_with_scev (&new_vr, l, stmt, lhs);
+
+ if (update_value_range (lhs, &new_vr))
+ {
+ *output_p = lhs;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Found new range for ");
+ print_generic_expr (dump_file, lhs, 0);
+ fprintf (dump_file, ": ");
+ dump_value_range (dump_file, &new_vr);
+ fprintf (dump_file, "\n\n");
+ }
+
+ if (new_vr.type == VR_VARYING)
+ return SSA_PROP_VARYING;
+
+ return SSA_PROP_INTERESTING;
+ }
+
+ return SSA_PROP_NOT_INTERESTING;
+ }
+
+ /* Every other statement produces no useful ranges. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+ set_value_range_to_varying (get_value_range (def));
+
+ return SSA_PROP_VARYING;
+}
+
+
+/* Compare all the value ranges for names equivalent to VAR with VAL
+ using comparison code COMP. Return the same value returned by
+ compare_range_with_value, including the setting of
+ *STRICT_OVERFLOW_P. */
+
+static tree
+compare_name_with_value (enum tree_code comp, tree var, tree val,
+ bool *strict_overflow_p)
+{
+ bitmap_iterator bi;
+ unsigned i;
+ bitmap e;
+ tree retval, t;
+ int used_strict_overflow;
+
+ t = retval = NULL_TREE;
+
+ /* Get the set of equivalences for VAR. */
+ e = get_value_range (var)->equiv;
+
+ /* Add VAR to its own set of equivalences so that VAR's value range
+ is processed by this loop (otherwise, we would have to replicate
+ the body of the loop just to check VAR's value range). */
+ bitmap_set_bit (e, SSA_NAME_VERSION (var));
+
+ /* Start at -1. Set it to 0 if we do a comparison without relying
+ on overflow, or 1 if all comparisons rely on overflow. */
+ used_strict_overflow = -1;
+
+ EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
+ {
+ bool sop;
+
+ value_range_t equiv_vr = *(vr_value[i]);
+
+ /* If name N_i does not have a valid range, use N_i as its own
+ range. This allows us to compare against names that may
+ have N_i in their ranges. */
+ if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
+ {
+ equiv_vr.type = VR_RANGE;
+ equiv_vr.min = ssa_name (i);
+ equiv_vr.max = ssa_name (i);
+ }
+
+ sop = false;
+ t = compare_range_with_value (comp, &equiv_vr, val, &sop);
+ if (t)
+ {
+ /* If we get different answers from different members
+ of the equivalence set this check must be in a dead
+ code region. Folding it to a trap representation
+ would be correct here. For now just return don't-know. */
+ if (retval != NULL
+ && t != retval)
+ {
+ retval = NULL_TREE;
+ break;
+ }
+ retval = t;
+
+ if (!sop)
+ used_strict_overflow = 0;
+ else if (used_strict_overflow < 0)
+ used_strict_overflow = 1;
+ }
+ }
+
+ /* Remove VAR from its own equivalence set. */
+ bitmap_clear_bit (e, SSA_NAME_VERSION (var));
+
+ if (retval)
+ {
+ if (used_strict_overflow > 0)
+ *strict_overflow_p = true;
+ return retval;
+ }
+
+ /* We couldn't find a non-NULL value for the predicate. */
+ return NULL_TREE;
+}
+
+
+/* Given a comparison code COMP and names N1 and N2, compare all the
+ ranges equivalent to N1 against all the ranges equivalent to N2
+ to determine the value of N1 COMP N2. Return the same value
+ returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
+ whether we relied on an overflow infinity in the comparison. */
+
+
+static tree
+compare_names (enum tree_code comp, tree n1, tree n2,
+ bool *strict_overflow_p)
+{
+ tree t, retval;
+ bitmap e1, e2;
+ bitmap_iterator bi1, bi2;
+ unsigned i1, i2;
+ int used_strict_overflow;
+
+ /* Compare the ranges of every name equivalent to N1 against the
+ ranges of every name equivalent to N2. */
+ e1 = get_value_range (n1)->equiv;
+ e2 = get_value_range (n2)->equiv;
+
+ /* Add N1 and N2 to their own set of equivalences to avoid
+ duplicating the body of the loop just to check N1 and N2
+ ranges. */
+ bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
+
+ /* If the equivalence sets have a common intersection, then the two
+ names can be compared without checking their ranges. */
+ if (bitmap_intersect_p (e1, e2))
+ {
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+
+ return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
+ ? boolean_true_node
+ : boolean_false_node;
+ }
+
+ /* Start at -1. Set it to 0 if we do a comparison without relying
+ on overflow, or 1 if all comparisons rely on overflow. */
+ used_strict_overflow = -1;
+
+ /* Otherwise, compare all the equivalent ranges. First, add N1 and
+ N2 to their own set of equivalences to avoid duplicating the body
+ of the loop just to check N1 and N2 ranges. */
+ EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
+ {
+ value_range_t vr1 = *(vr_value[i1]);
+
+ /* If the range is VARYING or UNDEFINED, use the name itself. */
+ if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
+ {
+ vr1.type = VR_RANGE;
+ vr1.min = ssa_name (i1);
+ vr1.max = ssa_name (i1);
+ }
+
+ t = retval = NULL_TREE;
+ EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
+ {
+ bool sop = false;
+
+ value_range_t vr2 = *(vr_value[i2]);
+
+ if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
+ {
+ vr2.type = VR_RANGE;
+ vr2.min = ssa_name (i2);
+ vr2.max = ssa_name (i2);
+ }
+
+ t = compare_ranges (comp, &vr1, &vr2, &sop);
+ if (t)
+ {
+ /* If we get different answers from different members
+ of the equivalence set this check must be in a dead
+ code region. Folding it to a trap representation
+ would be correct here. For now just return don't-know. */
+ if (retval != NULL
+ && t != retval)
+ {
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+ return NULL_TREE;
+ }
+ retval = t;
+
+ if (!sop)
+ used_strict_overflow = 0;
+ else if (used_strict_overflow < 0)
+ used_strict_overflow = 1;
+ }
+ }
+
+ if (retval)
+ {
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+ if (used_strict_overflow > 0)
+ *strict_overflow_p = true;
+ return retval;
+ }
+ }
+
+ /* None of the equivalent ranges are useful in computing this
+ comparison. */
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+ return NULL_TREE;
+}
+
+
+/* Given a conditional predicate COND, try to determine if COND yields
+ true or false based on the value ranges of its operands. Return
+ BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
+ BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
+ NULL if the conditional cannot be evaluated at compile time.
+
+ If USE_EQUIV_P is true, the ranges of all the names equivalent with
+ the operands in COND are used when trying to compute its value.
+ This is only used during final substitution. During propagation,
+ we only check the range of each variable and not its equivalents.
+
+ Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
+ infinity to produce the result. */
+
+static tree
+vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
+ bool *strict_overflow_p)
+{
+ gcc_assert (TREE_CODE (cond) == SSA_NAME
+ || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
+
+ if (TREE_CODE (cond) == SSA_NAME)
+ {
+ value_range_t *vr;
+ tree retval;
+
+ if (use_equiv_p)
+ retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
+ strict_overflow_p);
+ else
+ {
+ value_range_t *vr = get_value_range (cond);
+ retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
+ strict_overflow_p);
+ }
+
+ /* If COND has a known boolean range, return it. */
+ if (retval)
+ return retval;
+
+ /* Otherwise, if COND has a symbolic range of exactly one value,
+ return it. */
+ vr = get_value_range (cond);
+ if (vr->type == VR_RANGE && vr->min == vr->max)
+ return vr->min;
+ }
+ else
+ {
+ tree op0 = TREE_OPERAND (cond, 0);
+ tree op1 = TREE_OPERAND (cond, 1);
+
+ /* We only deal with integral and pointer types. */
+ if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ && !POINTER_TYPE_P (TREE_TYPE (op0)))
+ return NULL_TREE;
+
+ if (use_equiv_p)
+ {
+ if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
+ return compare_names (TREE_CODE (cond), op0, op1,
+ strict_overflow_p);
+ else if (TREE_CODE (op0) == SSA_NAME)
+ return compare_name_with_value (TREE_CODE (cond), op0, op1,
+ strict_overflow_p);
+ else if (TREE_CODE (op1) == SSA_NAME)
+ return (compare_name_with_value
+ (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
+ strict_overflow_p));
+ }
+ else
+ {
+ value_range_t *vr0, *vr1;
+
+ vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
+ vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
+
+ if (vr0 && vr1)
+ return compare_ranges (TREE_CODE (cond), vr0, vr1,
+ strict_overflow_p);
+ else if (vr0 && vr1 == NULL)
+ return compare_range_with_value (TREE_CODE (cond), vr0, op1,
+ strict_overflow_p);
+ else if (vr0 == NULL && vr1)
+ return (compare_range_with_value
+ (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
+ strict_overflow_p));
+ }
+ }
+
+ /* Anything else cannot be computed statically. */
+ return NULL_TREE;
+}
+
+/* Given COND within STMT, try to simplify it based on value range
+ information. Return NULL if the conditional can not be evaluated.
+ The ranges of all the names equivalent with the operands in COND
+ will be used when trying to compute the value. If the result is
+ based on undefined signed overflow, issue a warning if
+ appropriate. */
+
+tree
+vrp_evaluate_conditional (tree cond, tree stmt)
+{
+ bool sop;
+ tree ret;
+
+ sop = false;
+ ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
+
+ if (ret && sop)
+ {
+ enum warn_strict_overflow_code wc;
+ const char* warnmsg;
+
+ if (is_gimple_min_invariant (ret))
+ {
+ wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
+ warnmsg = G_("assuming signed overflow does not occur when "
+ "simplifying conditional to constant");
+ }
+ else
+ {
+ wc = WARN_STRICT_OVERFLOW_COMPARISON;
+ warnmsg = G_("assuming signed overflow does not occur when "
+ "simplifying conditional");
+ }
+
+ if (issue_strict_overflow_warning (wc))
+ {
+ location_t locus;
+
+ if (!EXPR_HAS_LOCATION (stmt))
+ locus = input_location;
+ else
+ locus = EXPR_LOCATION (stmt);
+ warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
+ }
+ }
+
+ return ret;
+}
+
+
+/* Visit conditional statement STMT. If we can determine which edge
+ will be taken out of STMT's basic block, record it in
+ *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
+ SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
+{
+ tree cond, val;
+ bool sop;
+
+ *taken_edge_p = NULL;
+
+ /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
+ add ASSERT_EXPRs for them. */
+ if (TREE_CODE (stmt) == SWITCH_EXPR)
+ return SSA_PROP_VARYING;
+
+ cond = COND_EXPR_COND (stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ tree use;
+ ssa_op_iter i;
+
+ fprintf (dump_file, "\nVisiting conditional with predicate: ");
+ print_generic_expr (dump_file, cond, 0);
+ fprintf (dump_file, "\nWith known ranges\n");
+
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
+ {
+ fprintf (dump_file, "\t");
+ print_generic_expr (dump_file, use, 0);
+ fprintf (dump_file, ": ");
+ dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ /* Compute the value of the predicate COND by checking the known
+ ranges of each of its operands.
+
+ Note that we cannot evaluate all the equivalent ranges here
+ because those ranges may not yet be final and with the current
+ propagation strategy, we cannot determine when the value ranges
+ of the names in the equivalence set have changed.
+
+ For instance, given the following code fragment
+
+ i_5 = PHI <8, i_13>
+ ...
+ i_14 = ASSERT_EXPR <i_5, i_5 != 0>
+ if (i_14 == 1)
+ ...
+
+ Assume that on the first visit to i_14, i_5 has the temporary
+ range [8, 8] because the second argument to the PHI function is
+ not yet executable. We derive the range ~[0, 0] for i_14 and the
+ equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
+ the first time, since i_14 is equivalent to the range [8, 8], we
+ determine that the predicate is always false.
+
+ On the next round of propagation, i_13 is determined to be
+ VARYING, which causes i_5 to drop down to VARYING. So, another
+ visit to i_14 is scheduled. In this second visit, we compute the
+ exact same range and equivalence set for i_14, namely ~[0, 0] and
+ { i_5 }. But we did not have the previous range for i_5
+ registered, so vrp_visit_assignment thinks that the range for
+ i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
+ is not visited again, which stops propagation from visiting
+ statements in the THEN clause of that if().
+
+ To properly fix this we would need to keep the previous range
+ value for the names in the equivalence set. This way we would've
+ discovered that from one visit to the other i_5 changed from
+ range [8, 8] to VR_VARYING.
+
+ However, fixing this apparent limitation may not be worth the
+ additional checking. Testing on several code bases (GCC, DLV,
+ MICO, TRAMP3D and SPEC2000) showed that doing this results in
+ 4 more predicates folded in SPEC. */
+ sop = false;
+ val = vrp_evaluate_conditional_warnv (cond, false, &sop);
+ if (val)
+ {
+ if (!sop)
+ *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "\nIgnoring predicate evaluation because "
+ "it assumes that signed overflow is undefined");
+ val = NULL_TREE;
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nPredicate evaluates to: ");
+ if (val == NULL_TREE)
+ fprintf (dump_file, "DON'T KNOW\n");
+ else
+ print_generic_stmt (dump_file, val, 0);
+ }
+
+ return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
+}
+
+
+/* Evaluate statement STMT. If the statement produces a useful range,
+ return SSA_PROP_INTERESTING and record the SSA name with the
+ interesting range into *OUTPUT_P.
+
+ If STMT is a conditional branch and we can determine its truth
+ value, the taken edge is recorded in *TAKEN_EDGE_P.
+
+ If STMT produces a varying value, return SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
+{
+ tree def;
+ ssa_op_iter iter;
+ stmt_ann_t ann;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting statement:\n");
+ print_generic_stmt (dump_file, stmt, dump_flags);
+ fprintf (dump_file, "\n");
+ }
+
+ ann = stmt_ann (stmt);
+ if (TREE_CODE (stmt) == MODIFY_EXPR)
+ {
+ tree rhs = TREE_OPERAND (stmt, 1);
+
+ /* In general, assignments with virtual operands are not useful
+ for deriving ranges, with the obvious exception of calls to
+ builtin functions. */
+ if ((TREE_CODE (rhs) == CALL_EXPR
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
+ && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
+ && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
+ || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+ return vrp_visit_assignment (stmt, output_p);
+ }
+ else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
+ return vrp_visit_cond_stmt (stmt, taken_edge_p);
+
+ /* All other statements produce nothing of interest for VRP, so mark
+ their outputs varying and prevent further simulation. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+ set_value_range_to_varying (get_value_range (def));
+
+ return SSA_PROP_VARYING;
+}
+
+
+/* Meet operation for value ranges. Given two value ranges VR0 and
+ VR1, store in VR0 the result of meeting VR0 and VR1.
+
+ The meeting rules are as follows:
+
+ 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
+
+ 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
+ union of VR0 and VR1. */
+
+static void
+vrp_meet (value_range_t *vr0, value_range_t *vr1)
+{
+ if (vr0->type == VR_UNDEFINED)
+ {
+ copy_value_range (vr0, vr1);
+ return;
+ }
+
+ if (vr1->type == VR_UNDEFINED)
+ {
+ /* Nothing to do. VR0 already has the resulting range. */
+ return;
+ }
+
+ if (vr0->type == VR_VARYING)
+ {
+ /* Nothing to do. VR0 already has the resulting range. */
+ return;
+ }
+
+ if (vr1->type == VR_VARYING)
+ {
+ set_value_range_to_varying (vr0);
+ return;
+ }
+
+ if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
+ {
+ /* If VR0 and VR1 have a non-empty intersection, compute the
+ union of both ranges. */
+ if (value_ranges_intersect_p (vr0, vr1))
+ {
+ int cmp;
+ tree min, max;
+
+ /* The lower limit of the new range is the minimum of the
+ two ranges. If they cannot be compared, the result is
+ VARYING. */
+ cmp = compare_values (vr0->min, vr1->min);
+ if (cmp == 0 || cmp == 1)
+ min = vr1->min;
+ else if (cmp == -1)
+ min = vr0->min;
+ else
+ {
+ set_value_range_to_varying (vr0);
+ return;
+ }
+
+ /* Similarly, the upper limit of the new range is the
+ maximum of the two ranges. If they cannot be compared,
+ the result is VARYING. */
+ cmp = compare_values (vr0->max, vr1->max);
+ if (cmp == 0 || cmp == -1)
+ max = vr1->max;
+ else if (cmp == 1)
+ max = vr0->max;
+ else
+ {
+ set_value_range_to_varying (vr0);
+ return;
+ }
+
+ /* Check for useless ranges. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (min))
+ && ((vrp_val_is_min (min) || is_overflow_infinity (min))
+ && (vrp_val_is_max (max) || is_overflow_infinity (max))))
+ {
+ set_value_range_to_varying (vr0);
+ return;
+ }
+
+ /* The resulting set of equivalences is the intersection of
+ the two sets. */
+ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+ bitmap_and_into (vr0->equiv, vr1->equiv);
+ else if (vr0->equiv && !vr1->equiv)
+ bitmap_clear (vr0->equiv);
+
+ set_value_range (vr0, vr0->type, min, max, vr0->equiv);
+ }
+ else
+ goto no_meet;
+ }
+ else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
+ {
+ /* Two anti-ranges meet only if they are both identical. */
+ if (compare_values (vr0->min, vr1->min) == 0
+ && compare_values (vr0->max, vr1->max) == 0
+ && compare_values (vr0->min, vr0->max) == 0)
+ {
+ /* The resulting set of equivalences is the intersection of
+ the two sets. */
+ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+ bitmap_and_into (vr0->equiv, vr1->equiv);
+ else if (vr0->equiv && !vr1->equiv)
+ bitmap_clear (vr0->equiv);
+ }
+ else
+ goto no_meet;
+ }
+ else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
+ {
+ /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
+ meet only if the ranges have an empty intersection. The
+ result of the meet operation is the anti-range. */
+ if (!symbolic_range_p (vr0)
+ && !symbolic_range_p (vr1)
+ && !value_ranges_intersect_p (vr0, vr1))
+ {
+ /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
+ set. We need to compute the intersection of the two
+ equivalence sets. */
+ if (vr1->type == VR_ANTI_RANGE)
+ set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
+
+ /* The resulting set of equivalences is the intersection of
+ the two sets. */
+ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+ bitmap_and_into (vr0->equiv, vr1->equiv);
+ else if (vr0->equiv && !vr1->equiv)
+ bitmap_clear (vr0->equiv);
+ }
+ else
+ goto no_meet;
+ }
+ else
+ gcc_unreachable ();
+
+ return;
+
+no_meet:
+ /* The two range VR0 and VR1 do not meet. Before giving up and
+ setting the result to VARYING, see if we can at least derive a
+ useful anti-range. FIXME, all this nonsense about distinguishing
+ anti-ranges from ranges is necessary because of the odd
+ semantics of range_includes_zero_p and friends. */
+ if (!symbolic_range_p (vr0)
+ && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
+ || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
+ && !symbolic_range_p (vr1)
+ && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
+ || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
+ {
+ set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
+
+ /* Since this meet operation did not result from the meeting of
+ two equivalent names, VR0 cannot have any equivalences. */
+ if (vr0->equiv)
+ bitmap_clear (vr0->equiv);
+ }
+ else
+ set_value_range_to_varying (vr0);
+}
+
+
+/* Visit all arguments for PHI node PHI that flow through executable
+ edges. If a valid value range can be derived from all the incoming
+ value ranges, set a new range for the LHS of PHI. */
+
+static enum ssa_prop_result
+vrp_visit_phi_node (tree phi)
+{
+ int i;
+ tree lhs = PHI_RESULT (phi);
+ value_range_t *lhs_vr = get_value_range (lhs);
+ value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ copy_value_range (&vr_result, lhs_vr);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting PHI node: ");
+ print_generic_expr (dump_file, phi, dump_flags);
+ }
+
+ for (i = 0; i < PHI_NUM_ARGS (phi); i++)
+ {
+ edge e = PHI_ARG_EDGE (phi, i);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file,
+ "\n Argument #%d (%d -> %d %sexecutable)\n",
+ i, e->src->index, e->dest->index,
+ (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
+ }
+
+ if (e->flags & EDGE_EXECUTABLE)
+ {
+ tree arg = PHI_ARG_DEF (phi, i);
+ value_range_t vr_arg;
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ vr_arg = *(get_value_range (arg));
+ else
+ {
+ if (is_overflow_infinity (arg))
+ {
+ arg = copy_node (arg);
+ TREE_OVERFLOW (arg) = 0;
+ }
+
+ vr_arg.type = VR_RANGE;
+ vr_arg.min = arg;
+ vr_arg.max = arg;
+ vr_arg.equiv = NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\t");
+ print_generic_expr (dump_file, arg, dump_flags);
+ fprintf (dump_file, "\n\tValue: ");
+ dump_value_range (dump_file, &vr_arg);
+ fprintf (dump_file, "\n");
+ }
+
+ vrp_meet (&vr_result, &vr_arg);
+
+ if (vr_result.type == VR_VARYING)
+ break;
+ }
+ }
+
+ if (vr_result.type == VR_VARYING)
+ goto varying;
+
+ /* To prevent infinite iterations in the algorithm, derive ranges
+ when the new value is slightly bigger or smaller than the
+ previous one. */
+ if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
+ {
+ if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
+ {
+ int cmp_min = compare_values (lhs_vr->min, vr_result.min);
+ int cmp_max = compare_values (lhs_vr->max, vr_result.max);
+
+ /* If the new minimum is smaller or larger than the previous
+ one, go all the way to -INF. In the first case, to avoid
+ iterating millions of times to reach -INF, and in the
+ other case to avoid infinite bouncing between different
+ minimums. */
+ if (cmp_min > 0 || cmp_min < 0)
+ {
+ /* If we will end up with a (-INF, +INF) range, set it
+ to VARYING. */
+ if (vrp_val_is_max (vr_result.max))
+ goto varying;
+
+ if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
+ || !vrp_var_may_overflow (lhs, phi))
+ vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
+ else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
+ vr_result.min =
+ negative_overflow_infinity (TREE_TYPE (vr_result.min));
+ else
+ goto varying;
+ }
+
+ /* Similarly, if the new maximum is smaller or larger than
+ the previous one, go all the way to +INF. */
+ if (cmp_max < 0 || cmp_max > 0)
+ {
+ /* If we will end up with a (-INF, +INF) range, set it
+ to VARYING. */
+ if (vrp_val_is_min (vr_result.min))
+ goto varying;
+
+ if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
+ || !vrp_var_may_overflow (lhs, phi))
+ vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
+ else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
+ vr_result.max =
+ positive_overflow_infinity (TREE_TYPE (vr_result.max));
+ else
+ goto varying;
+ }
+ }
+ }
+
+ /* If the new range is different than the previous value, keep
+ iterating. */
+ if (update_value_range (lhs, &vr_result))
+ return SSA_PROP_INTERESTING;
+
+ /* Nothing changed, don't add outgoing edges. */
+ return SSA_PROP_NOT_INTERESTING;
+
+ /* No match found. Set the LHS to VARYING. */
+varying:
+ set_value_range_to_varying (lhs_vr);
+ return SSA_PROP_VARYING;
+}
+
+/* Simplify a division or modulo operator to a right shift or
+ bitwise and if the first operand is unsigned or is greater
+ than zero and the second operand is an exact power of two. */
+
+static void
+simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
+{
+ tree val = NULL;
+ tree op = TREE_OPERAND (rhs, 0);
+ value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
+
+ if (TYPE_UNSIGNED (TREE_TYPE (op)))
+ {
+ val = integer_one_node;
+ }
+ else
+ {
+ bool sop = false;
+
+ val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
+
+ if (val
+ && sop
+ && integer_onep (val)
+ && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+ {
+ location_t locus;
+
+ if (!EXPR_HAS_LOCATION (stmt))
+ locus = input_location;
+ else
+ locus = EXPR_LOCATION (stmt);
+ warning (OPT_Wstrict_overflow,
+ ("%Hassuming signed overflow does not occur when "
+ "simplifying / or %% to >> or &"),
+ &locus);
+ }
+ }
+
+ if (val && integer_onep (val))
+ {
+ tree t;
+ tree op0 = TREE_OPERAND (rhs, 0);
+ tree op1 = TREE_OPERAND (rhs, 1);
+
+ if (rhs_code == TRUNC_DIV_EXPR)
+ {
+ t = build_int_cst (NULL_TREE, tree_log2 (op1));
+ t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
+ }
+ else
+ {
+ t = build_int_cst (TREE_TYPE (op1), 1);
+ t = int_const_binop (MINUS_EXPR, op1, t, 0);
+ t = fold_convert (TREE_TYPE (op0), t);
+ t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
+ }
+
+ TREE_OPERAND (stmt, 1) = t;
+ update_stmt (stmt);
+ }
+}
+
+/* If the operand to an ABS_EXPR is >= 0, then eliminate the
+ ABS_EXPR. If the operand is <= 0, then simplify the
+ ABS_EXPR into a NEGATE_EXPR. */
+
+static void
+simplify_abs_using_ranges (tree stmt, tree rhs)
+{
+ tree val = NULL;
+ tree op = TREE_OPERAND (rhs, 0);
+ tree type = TREE_TYPE (op);
+ value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
+
+ if (TYPE_UNSIGNED (type))
+ {
+ val = integer_zero_node;
+ }
+ else if (vr)
+ {
+ bool sop = false;
+
+ val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
+ if (!val)
+ {
+ sop = false;
+ val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
+ &sop);
+
+ if (val)
+ {
+ if (integer_zerop (val))
+ val = integer_one_node;
+ else if (integer_onep (val))
+ val = integer_zero_node;
+ }
+ }
+
+ if (val
+ && (integer_onep (val) || integer_zerop (val)))
+ {
+ tree t;
+
+ if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+ {
+ location_t locus;
+
+ if (!EXPR_HAS_LOCATION (stmt))
+ locus = input_location;
+ else
+ locus = EXPR_LOCATION (stmt);
+ warning (OPT_Wstrict_overflow,
+ ("%Hassuming signed overflow does not occur when "
+ "simplifying abs (X) to X or -X"),
+ &locus);
+ }
+
+ if (integer_onep (val))
+ t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
+ else
+ t = op;
+
+ TREE_OPERAND (stmt, 1) = t;
+ update_stmt (stmt);
+ }
+ }
+}
+
+/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
+ a known value range VR.
+
+ If there is one and only one value which will satisfy the
+ conditional, then return that value. Else return NULL. */
+
+static tree
+test_for_singularity (enum tree_code cond_code, tree op0,
+ tree op1, value_range_t *vr)
+{
+ tree min = NULL;
+ tree max = NULL;
+
+ /* Extract minimum/maximum values which satisfy the
+ the conditional as it was written. */
+ if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+ {
+ /* This should not be negative infinity; there is no overflow
+ here. */
+ min = TYPE_MIN_VALUE (TREE_TYPE (op0));
+
+ max = op1;
+ if (cond_code == LT_EXPR && !is_overflow_infinity (max))
+ {
+ tree one = build_int_cst (TREE_TYPE (op0), 1);
+ max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
+ if (EXPR_P (max))
+ TREE_NO_WARNING (max) = 1;
+ }
+ }
+ else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+ {
+ /* This should not be positive infinity; there is no overflow
+ here. */
+ max = TYPE_MAX_VALUE (TREE_TYPE (op0));
+
+ min = op1;
+ if (cond_code == GT_EXPR && !is_overflow_infinity (min))
+ {
+ tree one = build_int_cst (TREE_TYPE (op0), 1);
+ min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
+ if (EXPR_P (min))
+ TREE_NO_WARNING (min) = 1;
+ }
+ }
+
+ /* Now refine the minimum and maximum values using any
+ value range information we have for op0. */
+ if (min && max)
+ {
+ if (compare_values (vr->min, min) == -1)
+ min = min;
+ else
+ min = vr->min;
+ if (compare_values (vr->max, max) == 1)
+ max = max;
+ else
+ max = vr->max;
+
+ /* If the new min/max values have converged to a single value,
+ then there is only one value which can satisfy the condition,
+ return that value. */
+ if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
+ return min;
+ }
+ return NULL;
+}
+
+/* Simplify a conditional using a relational operator to an equality
+ test if the range information indicates only one value can satisfy
+ the original conditional. */
+
+static void
+simplify_cond_using_ranges (tree stmt)
+{
+ tree cond = COND_EXPR_COND (stmt);
+ tree op0 = TREE_OPERAND (cond, 0);
+ tree op1 = TREE_OPERAND (cond, 1);
+ enum tree_code cond_code = TREE_CODE (cond);
+
+ if (cond_code != NE_EXPR
+ && cond_code != EQ_EXPR
+ && TREE_CODE (op0) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ && is_gimple_min_invariant (op1))
+ {
+ value_range_t *vr = get_value_range (op0);
+
+ /* If we have range information for OP0, then we might be
+ able to simplify this conditional. */
+ if (vr->type == VR_RANGE)
+ {
+ tree new = test_for_singularity (cond_code, op0, op1, vr);
+
+ if (new)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "Simplified relational ");
+ print_generic_expr (dump_file, cond, 0);
+ fprintf (dump_file, " into ");
+ }
+
+ COND_EXPR_COND (stmt)
+ = build2 (EQ_EXPR, boolean_type_node, op0, new);
+ update_stmt (stmt);
+
+ if (dump_file)
+ {
+ print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
+ fprintf (dump_file, "\n");
+ }
+ return;
+
+ }
+
+ /* Try again after inverting the condition. We only deal
+ with integral types here, so no need to worry about
+ issues with inverting FP comparisons. */
+ cond_code = invert_tree_comparison (cond_code, false);
+ new = test_for_singularity (cond_code, op0, op1, vr);
+
+ if (new)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "Simplified relational ");
+ print_generic_expr (dump_file, cond, 0);
+ fprintf (dump_file, " into ");
+ }
+
+ COND_EXPR_COND (stmt)
+ = build2 (NE_EXPR, boolean_type_node, op0, new);
+ update_stmt (stmt);
+
+ if (dump_file)
+ {
+ print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
+ fprintf (dump_file, "\n");
+ }
+ return;
+
+ }
+ }
+ }
+}
+
+/* Simplify STMT using ranges if possible. */
+
+void
+simplify_stmt_using_ranges (tree stmt)
+{
+ if (TREE_CODE (stmt) == MODIFY_EXPR)
+ {
+ tree rhs = TREE_OPERAND (stmt, 1);
+ enum tree_code rhs_code = TREE_CODE (rhs);
+
+ /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
+ and BIT_AND_EXPR respectively if the first operand is greater
+ than zero and the second operand is an exact power of two. */
+ if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
+ && integer_pow2p (TREE_OPERAND (rhs, 1)))
+ simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
+
+ /* Transform ABS (X) into X or -X as appropriate. */
+ if (rhs_code == ABS_EXPR
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
+ simplify_abs_using_ranges (stmt, rhs);
+ }
+ else if (TREE_CODE (stmt) == COND_EXPR
+ && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
+ {
+ simplify_cond_using_ranges (stmt);
+ }
+}
+
+/* Stack of dest,src equivalency pairs that need to be restored after
+ each attempt to thread a block's incoming edge to an outgoing edge.
+
+ A NULL entry is used to mark the end of pairs which need to be
+ restored. */
+static VEC(tree,heap) *stack;
+
+/* A trivial wrapper so that we can present the generic jump threading
+ code with a simple API for simplifying statements. STMT is the
+ statement we want to simplify, WITHIN_STMT provides the location
+ for any overflow warnings. */
+
+static tree
+simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
+{
+ /* We only use VRP information to simplify conditionals. This is
+ overly conservative, but it's unclear if doing more would be
+ worth the compile time cost. */
+ if (TREE_CODE (stmt) != COND_EXPR)
+ return NULL;
+
+ return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
+}
+
+/* Blocks which have more than one predecessor and more than
+ one successor present jump threading opportunities. ie,
+ when the block is reached from a specific predecessor, we
+ may be able to determine which of the outgoing edges will
+ be traversed. When this optimization applies, we are able
+ to avoid conditionals at runtime and we may expose secondary
+ optimization opportunities.
+
+ This routine is effectively a driver for the generic jump
+ threading code. It basically just presents the generic code
+ with edges that may be suitable for jump threading.
+
+ Unlike DOM, we do not iterate VRP if jump threading was successful.
+ While iterating may expose new opportunities for VRP, it is expected
+ those opportunities would be very limited and the compile time cost
+ to expose those opportunities would be significant.
+
+ As jump threading opportunities are discovered, they are registered
+ for later realization. */
+
+static void
+identify_jump_threads (void)
+{
+ basic_block bb;
+ tree dummy;
+
+ /* Ugh. When substituting values earlier in this pass we can
+ wipe the dominance information. So rebuild the dominator
+ information as we need it within the jump threading code. */
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ /* We do not allow VRP information to be used for jump threading
+ across a back edge in the CFG. Otherwise it becomes too
+ difficult to avoid eliminating loop exit tests. Of course
+ EDGE_DFS_BACK is not accurate at this time so we have to
+ recompute it. */
+ mark_dfs_back_edges ();
+
+ /* Allocate our unwinder stack to unwind any temporary equivalences
+ that might be recorded. */
+ stack = VEC_alloc (tree, heap, 20);
+
+ /* To avoid lots of silly node creation, we create a single
+ conditional and just modify it in-place when attempting to
+ thread jumps. */
+ dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
+ dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
+
+ /* Walk through all the blocks finding those which present a
+ potential jump threading opportunity. We could set this up
+ as a dominator walker and record data during the walk, but
+ I doubt it's worth the effort for the classes of jump
+ threading opportunities we are trying to identify at this
+ point in compilation. */
+ FOR_EACH_BB (bb)
+ {
+ tree last, cond;
+
+ /* If the generic jump threading code does not find this block
+ interesting, then there is nothing to do. */
+ if (! potentially_threadable_block (bb))
+ continue;
+
+ /* We only care about blocks ending in a COND_EXPR. While there
+ may be some value in handling SWITCH_EXPR here, I doubt it's
+ terribly important. */
+ last = bsi_stmt (bsi_last (bb));
+ if (TREE_CODE (last) != COND_EXPR)
+ continue;
+
+ /* We're basically looking for any kind of conditional with
+ integral type arguments. */
+ cond = COND_EXPR_COND (last);
+ if ((TREE_CODE (cond) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
+ || (COMPARISON_CLASS_P (cond)
+ && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
+ && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
+ || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
+ && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
+ {
+ edge_iterator ei;
+ edge e;
+
+ /* We've got a block with multiple predecessors and multiple
+ successors which also ends in a suitable conditional. For
+ each predecessor, see if we can thread it to a specific
+ successor. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ /* Do not thread across back edges or abnormal edges
+ in the CFG. */
+ if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
+ continue;
+
+ thread_across_edge (dummy, e, true,
+ &stack,
+ simplify_stmt_for_jump_threading);
+ }
+ }
+ }
+
+ /* We do not actually update the CFG or SSA graphs at this point as
+ ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
+ handle ASSERT_EXPRs gracefully. */
+}
+
+/* We identified all the jump threading opportunities earlier, but could
+ not transform the CFG at that time. This routine transforms the
+ CFG and arranges for the dominator tree to be rebuilt if necessary.
+
+ Note the SSA graph update will occur during the normal TODO
+ processing by the pass manager. */
+static void
+finalize_jump_threads (void)
+{
+ bool cfg_altered = false;
+ cfg_altered = thread_through_all_blocks ();
+
+ /* If we threaded jumps, then we need to recompute the dominance
+ information, to safely do that we must clean up the CFG first. */
+ if (cfg_altered)
+ {
+ free_dominance_info (CDI_DOMINATORS);
+ cleanup_tree_cfg ();
+ calculate_dominance_info (CDI_DOMINATORS);
+ }
+ VEC_free (tree, heap, stack);
+}
+
+
+/* Traverse all the blocks folding conditionals with known ranges. */
+
+static void
+vrp_finalize (void)
+{
+ size_t i;
+ prop_value_t *single_val_range;
+ bool do_value_subst_p;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nValue ranges after VRP:\n\n");
+ dump_all_value_ranges (dump_file);
+ fprintf (dump_file, "\n");
+ }
+
+ /* We may have ended with ranges that have exactly one value. Those
+ values can be substituted as any other copy/const propagated
+ value using substitute_and_fold. */
+ single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
+ memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
+
+ do_value_subst_p = false;
+ for (i = 0; i < num_ssa_names; i++)
+ if (vr_value[i]
+ && vr_value[i]->type == VR_RANGE
+ && vr_value[i]->min == vr_value[i]->max)
+ {
+ single_val_range[i].value = vr_value[i]->min;
+ do_value_subst_p = true;
+ }
+
+ if (!do_value_subst_p)
+ {
+ /* We found no single-valued ranges, don't waste time trying to
+ do single value substitution in substitute_and_fold. */
+ free (single_val_range);
+ single_val_range = NULL;
+ }
+
+ substitute_and_fold (single_val_range, true);
+
+ /* We must identify jump threading opportunities before we release
+ the datastructures built by VRP. */
+ identify_jump_threads ();
+
+ /* Free allocated memory. */
+ for (i = 0; i < num_ssa_names; i++)
+ if (vr_value[i])
+ {
+ BITMAP_FREE (vr_value[i]->equiv);
+ free (vr_value[i]);
+ }
+
+ free (single_val_range);
+ free (vr_value);
+
+ /* So that we can distinguish between VRP data being available
+ and not available. */
+ vr_value = NULL;
+}
+
+
+/* Main entry point to VRP (Value Range Propagation). This pass is
+ loosely based on J. R. C. Patterson, ``Accurate Static Branch
+ Prediction by Value Range Propagation,'' in SIGPLAN Conference on
+ Programming Language Design and Implementation, pp. 67-78, 1995.
+ Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
+
+ This is essentially an SSA-CCP pass modified to deal with ranges
+ instead of constants.
+
+ While propagating ranges, we may find that two or more SSA name
+ have equivalent, though distinct ranges. For instance,
+
+ 1 x_9 = p_3->a;
+ 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
+ 3 if (p_4 == q_2)
+ 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
+ 5 endif
+ 6 if (q_2)
+
+ In the code above, pointer p_5 has range [q_2, q_2], but from the
+ code we can also determine that p_5 cannot be NULL and, if q_2 had
+ a non-varying range, p_5's range should also be compatible with it.
+
+ These equivalences are created by two expressions: ASSERT_EXPR and
+ copy operations. Since p_5 is an assertion on p_4, and p_4 was the
+ result of another assertion, then we can use the fact that p_5 and
+ p_4 are equivalent when evaluating p_5's range.
+
+ Together with value ranges, we also propagate these equivalences
+ between names so that we can take advantage of information from
+ multiple ranges when doing final replacement. Note that this
+ equivalency relation is transitive but not symmetric.
+
+ In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
+ cannot assert that q_2 is equivalent to p_5 because q_2 may be used
+ in contexts where that assertion does not hold (e.g., in line 6).
+
+ TODO, the main difference between this pass and Patterson's is that
+ we do not propagate edge probabilities. We only compute whether
+ edges can be taken or not. That is, instead of having a spectrum
+ of jump probabilities between 0 and 1, we only deal with 0, 1 and
+ DON'T KNOW. In the future, it may be worthwhile to propagate
+ probabilities to aid branch prediction. */
+
+static unsigned int
+execute_vrp (void)
+{
+ insert_range_assertions ();
+
+ current_loops = loop_optimizer_init (LOOPS_NORMAL);
+ if (current_loops)
+ scev_initialize (current_loops);
+
+ vrp_initialize ();
+ ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
+ vrp_finalize ();
+
+ if (current_loops)
+ {
+ scev_finalize ();
+ loop_optimizer_finalize (current_loops);
+ current_loops = NULL;
+ }
+
+ /* ASSERT_EXPRs must be removed before finalizing jump threads
+ as finalizing jump threads calls the CFG cleanup code which
+ does not properly handle ASSERT_EXPRs. */
+ remove_range_assertions ();
+
+ /* If we exposed any new variables, go ahead and put them into
+ SSA form now, before we handle jump threading. This simplifies
+ interactions between rewriting of _DECL nodes into SSA form
+ and rewriting SSA_NAME nodes into SSA form after block
+ duplication and CFG manipulation. */
+ update_ssa (TODO_update_ssa);
+
+ finalize_jump_threads ();
+ return 0;
+}
+
+static bool
+gate_vrp (void)
+{
+ return flag_tree_vrp != 0;
+}
+
+struct tree_opt_pass pass_vrp =
+{
+ "vrp", /* name */
+ gate_vrp, /* gate */
+ execute_vrp, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_TREE_VRP, /* tv_id */
+ PROP_ssa | PROP_alias, /* properties_required */
+ 0, /* properties_provided */
+ PROP_smt_usage, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_cleanup_cfg
+ | TODO_ggc_collect
+ | TODO_verify_ssa
+ | TODO_dump_func
+ | TODO_update_ssa
+ | TODO_update_smt_usage, /* todo_flags_finish */
+ 0 /* letter */
+};