aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/tree-vrp.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/tree-vrp.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/tree-vrp.c5546
1 files changed, 0 insertions, 5546 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/tree-vrp.c b/gcc-4.2.1-5666.3/gcc/tree-vrp.c
deleted file mode 100644
index a1b7f0a20..000000000
--- a/gcc-4.2.1-5666.3/gcc/tree-vrp.c
+++ /dev/null
@@ -1,5546 +0,0 @@
-/* Support routines for Value Range Propagation (VRP).
- Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
- Contributed by Diego Novillo <dnovillo@redhat.com>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to
-the Free Software Foundation, 51 Franklin Street, Fifth Floor,
-Boston, MA 02110-1301, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "flags.h"
-#include "tree.h"
-#include "basic-block.h"
-#include "tree-flow.h"
-#include "tree-pass.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "diagnostic.h"
-#include "toplev.h"
-#include "intl.h"
-#include "cfgloop.h"
-#include "tree-scalar-evolution.h"
-#include "tree-ssa-propagate.h"
-#include "tree-chrec.h"
-
-/* Set of SSA names found during the dominator traversal of a
- sub-graph in find_assert_locations. */
-static sbitmap found_in_subgraph;
-
-/* Local functions. */
-static int compare_values (tree val1, tree val2);
-static int compare_values_warnv (tree val1, tree val2, bool *);
-static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
-
-/* Location information for ASSERT_EXPRs. Each instance of this
- structure describes an ASSERT_EXPR for an SSA name. Since a single
- SSA name may have more than one assertion associated with it, these
- locations are kept in a linked list attached to the corresponding
- SSA name. */
-struct assert_locus_d
-{
- /* Basic block where the assertion would be inserted. */
- basic_block bb;
-
- /* Some assertions need to be inserted on an edge (e.g., assertions
- generated by COND_EXPRs). In those cases, BB will be NULL. */
- edge e;
-
- /* Pointer to the statement that generated this assertion. */
- block_stmt_iterator si;
-
- /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
- enum tree_code comp_code;
-
- /* Value being compared against. */
- tree val;
-
- /* Next node in the linked list. */
- struct assert_locus_d *next;
-};
-
-typedef struct assert_locus_d *assert_locus_t;
-
-/* If bit I is present, it means that SSA name N_i has a list of
- assertions that should be inserted in the IL. */
-static bitmap need_assert_for;
-
-/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
- holds a list of ASSERT_LOCUS_T nodes that describe where
- ASSERT_EXPRs for SSA name N_I should be inserted. */
-static assert_locus_t *asserts_for;
-
-/* Set of blocks visited in find_assert_locations. Used to avoid
- visiting the same block more than once. */
-static sbitmap blocks_visited;
-
-/* Value range array. After propagation, VR_VALUE[I] holds the range
- of values that SSA name N_I may take. */
-static value_range_t **vr_value;
-
-
-/* Return whether TYPE should use an overflow infinity distinct from
- TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
- represent a signed overflow during VRP computations. An infinity
- is distinct from a half-range, which will go from some number to
- TYPE_{MIN,MAX}_VALUE. */
-
-static inline bool
-needs_overflow_infinity (tree type)
-{
- return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
-}
-
-/* Return whether TYPE can support our overflow infinity
- representation: we use the TREE_OVERFLOW flag, which only exists
- for constants. If TYPE doesn't support this, we don't optimize
- cases which would require signed overflow--we drop them to
- VARYING. */
-
-static inline bool
-supports_overflow_infinity (tree type)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (needs_overflow_infinity (type));
-#endif
- return (TYPE_MIN_VALUE (type) != NULL_TREE
- && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
- && TYPE_MAX_VALUE (type) != NULL_TREE
- && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
-}
-
-/* VAL is the maximum or minimum value of a type. Return a
- corresponding overflow infinity. */
-
-static inline tree
-make_overflow_infinity (tree val)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
-#endif
- val = copy_node (val);
- TREE_OVERFLOW (val) = 1;
- return val;
-}
-
-/* Return a negative overflow infinity for TYPE. */
-
-static inline tree
-negative_overflow_infinity (tree type)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (supports_overflow_infinity (type));
-#endif
- return make_overflow_infinity (TYPE_MIN_VALUE (type));
-}
-
-/* Return a positive overflow infinity for TYPE. */
-
-static inline tree
-positive_overflow_infinity (tree type)
-{
-#ifdef ENABLE_CHECKING
- gcc_assert (supports_overflow_infinity (type));
-#endif
- return make_overflow_infinity (TYPE_MAX_VALUE (type));
-}
-
-/* Return whether VAL is a negative overflow infinity. */
-
-static inline bool
-is_negative_overflow_infinity (tree val)
-{
- return (needs_overflow_infinity (TREE_TYPE (val))
- && CONSTANT_CLASS_P (val)
- && TREE_OVERFLOW (val)
- && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
-}
-
-/* Return whether VAL is a positive overflow infinity. */
-
-static inline bool
-is_positive_overflow_infinity (tree val)
-{
- return (needs_overflow_infinity (TREE_TYPE (val))
- && CONSTANT_CLASS_P (val)
- && TREE_OVERFLOW (val)
- && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
-}
-
-/* Return whether VAL is a positive or negative overflow infinity. */
-
-static inline bool
-is_overflow_infinity (tree val)
-{
- return (needs_overflow_infinity (TREE_TYPE (val))
- && CONSTANT_CLASS_P (val)
- && TREE_OVERFLOW (val)
- && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
- || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
-}
-
-/* If VAL is now an overflow infinity, return VAL. Otherwise, return
- the same value with TREE_OVERFLOW clear. This can be used to avoid
- confusing a regular value with an overflow value. */
-
-static inline tree
-avoid_overflow_infinity (tree val)
-{
- if (!is_overflow_infinity (val))
- return val;
-
- if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
- return TYPE_MAX_VALUE (TREE_TYPE (val));
- else
- {
-#ifdef ENABLE_CHECKING
- gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
-#endif
- return TYPE_MIN_VALUE (TREE_TYPE (val));
- }
-}
-
-
-/* Return whether VAL is equal to the maximum value of its type. This
- will be true for a positive overflow infinity. We can't do a
- simple equality comparison with TYPE_MAX_VALUE because C typedefs
- and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
- to the integer constant with the same value in the type. */
-
-static inline bool
-vrp_val_is_max (tree val)
-{
- tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
-
- return (val == type_max
- || (type_max != NULL_TREE
- && operand_equal_p (val, type_max, 0)));
-}
-
-/* Return whether VAL is equal to the minimum value of its type. This
- will be true for a negative overflow infinity. */
-
-static inline bool
-vrp_val_is_min (tree val)
-{
- tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
-
- return (val == type_min
- || (type_min != NULL_TREE
- && operand_equal_p (val, type_min, 0)));
-}
-
-
-/* Return true if ARG is marked with the nonnull attribute in the
- current function signature. */
-
-static bool
-nonnull_arg_p (tree arg)
-{
- tree t, attrs, fntype;
- unsigned HOST_WIDE_INT arg_num;
-
- gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
-
- /* The static chain decl is always non null. */
- if (arg == cfun->static_chain_decl)
- return true;
-
- fntype = TREE_TYPE (current_function_decl);
- attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
-
- /* If "nonnull" wasn't specified, we know nothing about the argument. */
- if (attrs == NULL_TREE)
- return false;
-
- /* If "nonnull" applies to all the arguments, then ARG is non-null. */
- if (TREE_VALUE (attrs) == NULL_TREE)
- return true;
-
- /* Get the position number for ARG in the function signature. */
- for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
- t;
- t = TREE_CHAIN (t), arg_num++)
- {
- if (t == arg)
- break;
- }
-
- gcc_assert (t == arg);
-
- /* Now see if ARG_NUM is mentioned in the nonnull list. */
- for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
- {
- if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
- return true;
- }
-
- return false;
-}
-
-
-/* Set value range VR to {T, MIN, MAX, EQUIV}. */
-
-static void
-set_value_range (value_range_t *vr, enum value_range_type t, tree min,
- tree max, bitmap equiv)
-{
-#if defined ENABLE_CHECKING
- /* Check the validity of the range. */
- if (t == VR_RANGE || t == VR_ANTI_RANGE)
- {
- int cmp;
-
- gcc_assert (min && max);
-
- if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
- gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
-
- cmp = compare_values (min, max);
- gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
-
- if (needs_overflow_infinity (TREE_TYPE (min)))
- gcc_assert (!is_overflow_infinity (min)
- || !is_overflow_infinity (max));
- }
-
- if (t == VR_UNDEFINED || t == VR_VARYING)
- gcc_assert (min == NULL_TREE && max == NULL_TREE);
-
- if (t == VR_UNDEFINED || t == VR_VARYING)
- gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
-#endif
-
- vr->type = t;
- vr->min = min;
- vr->max = max;
-
- /* Since updating the equivalence set involves deep copying the
- bitmaps, only do it if absolutely necessary. */
- if (vr->equiv == NULL)
- vr->equiv = BITMAP_ALLOC (NULL);
-
- if (equiv != vr->equiv)
- {
- if (equiv && !bitmap_empty_p (equiv))
- bitmap_copy (vr->equiv, equiv);
- else
- bitmap_clear (vr->equiv);
- }
-}
-
-
-/* Copy value range FROM into value range TO. */
-
-static inline void
-copy_value_range (value_range_t *to, value_range_t *from)
-{
- set_value_range (to, from->type, from->min, from->max, from->equiv);
-}
-
-
-/* Set value range VR to VR_VARYING. */
-
-static inline void
-set_value_range_to_varying (value_range_t *vr)
-{
- vr->type = VR_VARYING;
- vr->min = vr->max = NULL_TREE;
- if (vr->equiv)
- bitmap_clear (vr->equiv);
-}
-
-/* Set value range VR to a single value. This function is only called
- with values we get from statements, and exists to clear the
- TREE_OVERFLOW flag so that we don't think we have an overflow
- infinity when we shouldn't. */
-
-static inline void
-set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
-{
- gcc_assert (is_gimple_min_invariant (val));
- val = avoid_overflow_infinity (val);
- set_value_range (vr, VR_RANGE, val, val, equiv);
-}
-
-/* Set value range VR to a non-negative range of type TYPE.
- OVERFLOW_INFINITY indicates whether to use a overflow infinity
- rather than TYPE_MAX_VALUE; this should be true if we determine
- that the range is nonnegative based on the assumption that signed
- overflow does not occur. */
-
-static inline void
-set_value_range_to_nonnegative (value_range_t *vr, tree type,
- bool overflow_infinity)
-{
- tree zero;
-
- if (overflow_infinity && !supports_overflow_infinity (type))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- zero = build_int_cst (type, 0);
- set_value_range (vr, VR_RANGE, zero,
- (overflow_infinity
- ? positive_overflow_infinity (type)
- : TYPE_MAX_VALUE (type)),
- vr->equiv);
-}
-
-/* Set value range VR to a non-NULL range of type TYPE. */
-
-static inline void
-set_value_range_to_nonnull (value_range_t *vr, tree type)
-{
- tree zero = build_int_cst (type, 0);
- set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
-}
-
-
-/* Set value range VR to a NULL range of type TYPE. */
-
-static inline void
-set_value_range_to_null (value_range_t *vr, tree type)
-{
- set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
-}
-
-
-/* Set value range VR to VR_UNDEFINED. */
-
-static inline void
-set_value_range_to_undefined (value_range_t *vr)
-{
- vr->type = VR_UNDEFINED;
- vr->min = vr->max = NULL_TREE;
- if (vr->equiv)
- bitmap_clear (vr->equiv);
-}
-
-
-/* Return value range information for VAR.
-
- If we have no values ranges recorded (ie, VRP is not running), then
- return NULL. Otherwise create an empty range if none existed for VAR. */
-
-static value_range_t *
-get_value_range (tree var)
-{
- value_range_t *vr;
- tree sym;
- unsigned ver = SSA_NAME_VERSION (var);
-
- /* If we have no recorded ranges, then return NULL. */
- if (! vr_value)
- return NULL;
-
- vr = vr_value[ver];
- if (vr)
- return vr;
-
- /* Create a default value range. */
- vr_value[ver] = vr = XNEW (value_range_t);
- memset (vr, 0, sizeof (*vr));
-
- /* Allocate an equivalence set. */
- vr->equiv = BITMAP_ALLOC (NULL);
-
- /* If VAR is a default definition, the variable can take any value
- in VAR's type. */
- sym = SSA_NAME_VAR (var);
- if (var == default_def (sym))
- {
- /* Try to use the "nonnull" attribute to create ~[0, 0]
- anti-ranges for pointers. Note that this is only valid with
- default definitions of PARM_DECLs. */
- if (TREE_CODE (sym) == PARM_DECL
- && POINTER_TYPE_P (TREE_TYPE (sym))
- && nonnull_arg_p (sym))
- set_value_range_to_nonnull (vr, TREE_TYPE (sym));
- else
- set_value_range_to_varying (vr);
- }
-
- return vr;
-}
-
-/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
-
-static inline bool
-vrp_operand_equal_p (tree val1, tree val2)
-{
- if (val1 == val2)
- return true;
- if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
- return false;
- if (is_overflow_infinity (val1))
- return is_overflow_infinity (val2);
- return true;
-}
-
-/* Return true, if the bitmaps B1 and B2 are equal. */
-
-static inline bool
-vrp_bitmap_equal_p (bitmap b1, bitmap b2)
-{
- return (b1 == b2
- || (b1 && b2
- && bitmap_equal_p (b1, b2)));
-}
-
-/* Update the value range and equivalence set for variable VAR to
- NEW_VR. Return true if NEW_VR is different from VAR's previous
- value.
-
- NOTE: This function assumes that NEW_VR is a temporary value range
- object created for the sole purpose of updating VAR's range. The
- storage used by the equivalence set from NEW_VR will be freed by
- this function. Do not call update_value_range when NEW_VR
- is the range object associated with another SSA name. */
-
-static inline bool
-update_value_range (tree var, value_range_t *new_vr)
-{
- value_range_t *old_vr;
- bool is_new;
-
- /* Update the value range, if necessary. */
- old_vr = get_value_range (var);
- is_new = old_vr->type != new_vr->type
- || !vrp_operand_equal_p (old_vr->min, new_vr->min)
- || !vrp_operand_equal_p (old_vr->max, new_vr->max)
- || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
-
- if (is_new)
- set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
- new_vr->equiv);
-
- BITMAP_FREE (new_vr->equiv);
- new_vr->equiv = NULL;
-
- return is_new;
-}
-
-
-/* Add VAR and VAR's equivalence set to EQUIV. */
-
-static void
-add_equivalence (bitmap equiv, tree var)
-{
- unsigned ver = SSA_NAME_VERSION (var);
- value_range_t *vr = vr_value[ver];
-
- bitmap_set_bit (equiv, ver);
- if (vr && vr->equiv)
- bitmap_ior_into (equiv, vr->equiv);
-}
-
-
-/* Return true if VR is ~[0, 0]. */
-
-static inline bool
-range_is_nonnull (value_range_t *vr)
-{
- return vr->type == VR_ANTI_RANGE
- && integer_zerop (vr->min)
- && integer_zerop (vr->max);
-}
-
-
-/* Return true if VR is [0, 0]. */
-
-static inline bool
-range_is_null (value_range_t *vr)
-{
- return vr->type == VR_RANGE
- && integer_zerop (vr->min)
- && integer_zerop (vr->max);
-}
-
-
-/* Return true if value range VR involves at least one symbol. */
-
-static inline bool
-symbolic_range_p (value_range_t *vr)
-{
- return (!is_gimple_min_invariant (vr->min)
- || !is_gimple_min_invariant (vr->max));
-}
-
-/* Return true if value range VR uses a overflow infinity. */
-
-static inline bool
-overflow_infinity_range_p (value_range_t *vr)
-{
- return (vr->type == VR_RANGE
- && (is_overflow_infinity (vr->min)
- || is_overflow_infinity (vr->max)));
-}
-
-/* Return false if we can not make a valid comparison based on VR;
- this will be the case if it uses an overflow infinity and overflow
- is not undefined (i.e., -fno-strict-overflow is in effect).
- Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
- uses an overflow infinity. */
-
-static bool
-usable_range_p (value_range_t *vr, bool *strict_overflow_p)
-{
- gcc_assert (vr->type == VR_RANGE);
- if (is_overflow_infinity (vr->min))
- {
- *strict_overflow_p = true;
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
- return false;
- }
- if (is_overflow_infinity (vr->max))
- {
- *strict_overflow_p = true;
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
- return false;
- }
- return true;
-}
-
-
-/* Like tree_expr_nonnegative_warnv_p, but this function uses value
- ranges obtained so far. */
-
-static bool
-vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
-{
- return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
-}
-
-/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
- obtained so far. */
-
-static bool
-vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
-{
- if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
- return true;
-
- /* If we have an expression of the form &X->a, then the expression
- is nonnull if X is nonnull. */
- if (TREE_CODE (expr) == ADDR_EXPR)
- {
- tree base = get_base_address (TREE_OPERAND (expr, 0));
-
- if (base != NULL_TREE
- && TREE_CODE (base) == INDIRECT_REF
- && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
- {
- value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
- if (range_is_nonnull (vr))
- return true;
- }
- }
-
- return false;
-}
-
-/* Returns true if EXPR is a valid value (as expected by compare_values) --
- a gimple invariant, or SSA_NAME +- CST. */
-
-static bool
-valid_value_p (tree expr)
-{
- if (TREE_CODE (expr) == SSA_NAME)
- return true;
-
- if (TREE_CODE (expr) == PLUS_EXPR
- || TREE_CODE (expr) == MINUS_EXPR)
- return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
- && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
-
- return is_gimple_min_invariant (expr);
-}
-
-/* Compare two values VAL1 and VAL2. Return
-
- -2 if VAL1 and VAL2 cannot be compared at compile-time,
- -1 if VAL1 < VAL2,
- 0 if VAL1 == VAL2,
- +1 if VAL1 > VAL2, and
- +2 if VAL1 != VAL2
-
- This is similar to tree_int_cst_compare but supports pointer values
- and values that cannot be compared at compile time.
-
- If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
- true if the return value is only valid if we assume that signed
- overflow is undefined. */
-
-static int
-compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
-{
- if (val1 == val2)
- return 0;
-
- /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
- both integers. */
- gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
- == POINTER_TYPE_P (TREE_TYPE (val2)));
-
- if ((TREE_CODE (val1) == SSA_NAME
- || TREE_CODE (val1) == PLUS_EXPR
- || TREE_CODE (val1) == MINUS_EXPR)
- && (TREE_CODE (val2) == SSA_NAME
- || TREE_CODE (val2) == PLUS_EXPR
- || TREE_CODE (val2) == MINUS_EXPR))
- {
- tree n1, c1, n2, c2;
- enum tree_code code1, code2;
-
- /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
- return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
- same name, return -2. */
- if (TREE_CODE (val1) == SSA_NAME)
- {
- code1 = SSA_NAME;
- n1 = val1;
- c1 = NULL_TREE;
- }
- else
- {
- code1 = TREE_CODE (val1);
- n1 = TREE_OPERAND (val1, 0);
- c1 = TREE_OPERAND (val1, 1);
- if (tree_int_cst_sgn (c1) == -1)
- {
- if (is_negative_overflow_infinity (c1))
- return -2;
- c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
- if (!c1)
- return -2;
- code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
- }
- }
-
- if (TREE_CODE (val2) == SSA_NAME)
- {
- code2 = SSA_NAME;
- n2 = val2;
- c2 = NULL_TREE;
- }
- else
- {
- code2 = TREE_CODE (val2);
- n2 = TREE_OPERAND (val2, 0);
- c2 = TREE_OPERAND (val2, 1);
- if (tree_int_cst_sgn (c2) == -1)
- {
- if (is_negative_overflow_infinity (c2))
- return -2;
- c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
- if (!c2)
- return -2;
- code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
- }
- }
-
- /* Both values must use the same name. */
- if (n1 != n2)
- return -2;
-
- if (code1 == SSA_NAME
- && code2 == SSA_NAME)
- /* NAME == NAME */
- return 0;
-
- /* If overflow is defined we cannot simplify more. */
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
- return -2;
-
- if (strict_overflow_p != NULL
- && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
- && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
- *strict_overflow_p = true;
-
- if (code1 == SSA_NAME)
- {
- if (code2 == PLUS_EXPR)
- /* NAME < NAME + CST */
- return -1;
- else if (code2 == MINUS_EXPR)
- /* NAME > NAME - CST */
- return 1;
- }
- else if (code1 == PLUS_EXPR)
- {
- if (code2 == SSA_NAME)
- /* NAME + CST > NAME */
- return 1;
- else if (code2 == PLUS_EXPR)
- /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
- return compare_values_warnv (c1, c2, strict_overflow_p);
- else if (code2 == MINUS_EXPR)
- /* NAME + CST1 > NAME - CST2 */
- return 1;
- }
- else if (code1 == MINUS_EXPR)
- {
- if (code2 == SSA_NAME)
- /* NAME - CST < NAME */
- return -1;
- else if (code2 == PLUS_EXPR)
- /* NAME - CST1 < NAME + CST2 */
- return -1;
- else if (code2 == MINUS_EXPR)
- /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
- C1 and C2 are swapped in the call to compare_values. */
- return compare_values_warnv (c2, c1, strict_overflow_p);
- }
-
- gcc_unreachable ();
- }
-
- /* We cannot compare non-constants. */
- if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
- return -2;
-
- if (!POINTER_TYPE_P (TREE_TYPE (val1)))
- {
- /* We cannot compare overflowed values, except for overflow
- infinities. */
- if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
- {
- if (strict_overflow_p != NULL)
- *strict_overflow_p = true;
- if (is_negative_overflow_infinity (val1))
- return is_negative_overflow_infinity (val2) ? 0 : -1;
- else if (is_negative_overflow_infinity (val2))
- return 1;
- else if (is_positive_overflow_infinity (val1))
- return is_positive_overflow_infinity (val2) ? 0 : 1;
- else if (is_positive_overflow_infinity (val2))
- return -1;
- return -2;
- }
-
- return tree_int_cst_compare (val1, val2);
- }
- else
- {
- tree t;
-
- /* First see if VAL1 and VAL2 are not the same. */
- if (val1 == val2 || operand_equal_p (val1, val2, 0))
- return 0;
-
- /* If VAL1 is a lower address than VAL2, return -1. */
- t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
- if (t == boolean_true_node)
- return -1;
-
- /* If VAL1 is a higher address than VAL2, return +1. */
- t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
- if (t == boolean_true_node)
- return 1;
-
- /* If VAL1 is different than VAL2, return +2. */
- t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
- if (t == boolean_true_node)
- return 2;
-
- return -2;
- }
-}
-
-/* Compare values like compare_values_warnv, but treat comparisons of
- nonconstants which rely on undefined overflow as incomparable. */
-
-static int
-compare_values (tree val1, tree val2)
-{
- bool sop;
- int ret;
-
- sop = false;
- ret = compare_values_warnv (val1, val2, &sop);
- if (sop
- && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
- ret = -2;
- return ret;
-}
-
-
-/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
- 0 if VAL is not inside VR,
- -2 if we cannot tell either way.
-
- FIXME, the current semantics of this functions are a bit quirky
- when taken in the context of VRP. In here we do not care
- about VR's type. If VR is the anti-range ~[3, 5] the call
- value_inside_range (4, VR) will return 1.
-
- This is counter-intuitive in a strict sense, but the callers
- currently expect this. They are calling the function
- merely to determine whether VR->MIN <= VAL <= VR->MAX. The
- callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
- themselves.
-
- This also applies to value_ranges_intersect_p and
- range_includes_zero_p. The semantics of VR_RANGE and
- VR_ANTI_RANGE should be encoded here, but that also means
- adapting the users of these functions to the new semantics. */
-
-static inline int
-value_inside_range (tree val, value_range_t *vr)
-{
- tree cmp1, cmp2;
-
- fold_defer_overflow_warnings ();
-
- cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
- if (!cmp1)
- {
- fold_undefer_and_ignore_overflow_warnings ();
- return -2;
- }
-
- cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
-
- fold_undefer_and_ignore_overflow_warnings ();
-
- if (!cmp2)
- return -2;
-
- /* APPLE LOCAL begin 5562718 rewritten on mainline */
- /* Insure cmp1 and cmp2 are constants. */
- if ((cmp1 != boolean_true_node && cmp1 != boolean_false_node)
- || (cmp2 != boolean_true_node && cmp2 != boolean_false_node))
- return -2;
- /* APPLE LOCAL end 5562718 rewritten on mainline */
-
- return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
-}
-
-
-/* Return true if value ranges VR0 and VR1 have a non-empty
- intersection. */
-
-static inline bool
-value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
-{
- return (value_inside_range (vr1->min, vr0) == 1
- || value_inside_range (vr1->max, vr0) == 1
- || value_inside_range (vr0->min, vr1) == 1
- || value_inside_range (vr0->max, vr1) == 1);
-}
-
-
-/* Return true if VR includes the value zero, false otherwise. FIXME,
- currently this will return false for an anti-range like ~[-4, 3].
- This will be wrong when the semantics of value_inside_range are
- modified (currently the users of this function expect these
- semantics). */
-
-static inline bool
-range_includes_zero_p (value_range_t *vr)
-{
- tree zero;
-
- gcc_assert (vr->type != VR_UNDEFINED
- && vr->type != VR_VARYING
- && !symbolic_range_p (vr));
-
- zero = build_int_cst (TREE_TYPE (vr->min), 0);
- /* APPLE LOCAL begin 5562718 rewritten on mainline */
- switch (value_inside_range (zero, vr))
- {
- case 1: /* Range includes zero. */
- case -2: /* Can't tell if range includes zero. */
- return TRUE;
- default: /* Range does not include zero. */
- return FALSE;
- }
- /* APPLE LOCAL end 5562718 rewritten on mainline */
-}
-
-/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
- false otherwise or if no value range information is available. */
-
-bool
-ssa_name_nonnegative_p (tree t)
-{
- value_range_t *vr = get_value_range (t);
-
- if (!vr)
- return false;
-
- /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
- which would return a useful value should be encoded as a VR_RANGE. */
- if (vr->type == VR_RANGE)
- {
- int result = compare_values (vr->min, integer_zero_node);
-
- return (result == 0 || result == 1);
- }
- return false;
-}
-
-/* Return true if T, an SSA_NAME, is known to be nonzero. Return
- false otherwise or if no value range information is available. */
-
-bool
-ssa_name_nonzero_p (tree t)
-{
- value_range_t *vr = get_value_range (t);
-
- if (!vr)
- return false;
-
- /* A VR_RANGE which does not include zero is a nonzero value. */
- if (vr->type == VR_RANGE && !symbolic_range_p (vr))
- return ! range_includes_zero_p (vr);
-
- /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
- if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
- return range_includes_zero_p (vr);
-
- return false;
-}
-
-
-/* Extract value range information from an ASSERT_EXPR EXPR and store
- it in *VR_P. */
-
-static void
-extract_range_from_assert (value_range_t *vr_p, tree expr)
-{
- tree var, cond, limit, min, max, type;
- value_range_t *var_vr, *limit_vr;
- enum tree_code cond_code;
-
- var = ASSERT_EXPR_VAR (expr);
- cond = ASSERT_EXPR_COND (expr);
-
- gcc_assert (COMPARISON_CLASS_P (cond));
-
- /* Find VAR in the ASSERT_EXPR conditional. */
- if (var == TREE_OPERAND (cond, 0))
- {
- /* If the predicate is of the form VAR COMP LIMIT, then we just
- take LIMIT from the RHS and use the same comparison code. */
- limit = TREE_OPERAND (cond, 1);
- cond_code = TREE_CODE (cond);
- }
- else
- {
- /* If the predicate is of the form LIMIT COMP VAR, then we need
- to flip around the comparison code to create the proper range
- for VAR. */
- limit = TREE_OPERAND (cond, 0);
- cond_code = swap_tree_comparison (TREE_CODE (cond));
- }
-
- limit = avoid_overflow_infinity (limit);
-
- type = TREE_TYPE (limit);
- gcc_assert (limit != var);
-
- /* For pointer arithmetic, we only keep track of pointer equality
- and inequality. */
- if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
- {
- set_value_range_to_varying (vr_p);
- return;
- }
-
- /* If LIMIT is another SSA name and LIMIT has a range of its own,
- try to use LIMIT's range to avoid creating symbolic ranges
- unnecessarily. */
- limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
-
- /* LIMIT's range is only interesting if it has any useful information. */
- if (limit_vr
- && (limit_vr->type == VR_UNDEFINED
- || limit_vr->type == VR_VARYING
- || symbolic_range_p (limit_vr)))
- limit_vr = NULL;
-
- /* Initially, the new range has the same set of equivalences of
- VAR's range. This will be revised before returning the final
- value. Since assertions may be chained via mutually exclusive
- predicates, we will need to trim the set of equivalences before
- we are done. */
- gcc_assert (vr_p->equiv == NULL);
- vr_p->equiv = BITMAP_ALLOC (NULL);
- add_equivalence (vr_p->equiv, var);
-
- /* Extract a new range based on the asserted comparison for VAR and
- LIMIT's value range. Notice that if LIMIT has an anti-range, we
- will only use it for equality comparisons (EQ_EXPR). For any
- other kind of assertion, we cannot derive a range from LIMIT's
- anti-range that can be used to describe the new range. For
- instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
- then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
- no single range for x_2 that could describe LE_EXPR, so we might
- as well build the range [b_4, +INF] for it. */
- if (cond_code == EQ_EXPR)
- {
- enum value_range_type range_type;
-
- if (limit_vr)
- {
- range_type = limit_vr->type;
- min = limit_vr->min;
- max = limit_vr->max;
- }
- else
- {
- range_type = VR_RANGE;
- min = limit;
- max = limit;
- }
-
- set_value_range (vr_p, range_type, min, max, vr_p->equiv);
-
- /* When asserting the equality VAR == LIMIT and LIMIT is another
- SSA name, the new range will also inherit the equivalence set
- from LIMIT. */
- if (TREE_CODE (limit) == SSA_NAME)
- add_equivalence (vr_p->equiv, limit);
- }
- else if (cond_code == NE_EXPR)
- {
- /* As described above, when LIMIT's range is an anti-range and
- this assertion is an inequality (NE_EXPR), then we cannot
- derive anything from the anti-range. For instance, if
- LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
- not imply that VAR's range is [0, 0]. So, in the case of
- anti-ranges, we just assert the inequality using LIMIT and
- not its anti-range.
-
- If LIMIT_VR is a range, we can only use it to build a new
- anti-range if LIMIT_VR is a single-valued range. For
- instance, if LIMIT_VR is [0, 1], the predicate
- VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
- Rather, it means that for value 0 VAR should be ~[0, 0]
- and for value 1, VAR should be ~[1, 1]. We cannot
- represent these ranges.
-
- The only situation in which we can build a valid
- anti-range is when LIMIT_VR is a single-valued range
- (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
- build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
- if (limit_vr
- && limit_vr->type == VR_RANGE
- && compare_values (limit_vr->min, limit_vr->max) == 0)
- {
- min = limit_vr->min;
- max = limit_vr->max;
- }
- else
- {
- /* In any other case, we cannot use LIMIT's range to build a
- valid anti-range. */
- min = max = limit;
- }
-
- /* If MIN and MAX cover the whole range for their type, then
- just use the original LIMIT. */
- if (INTEGRAL_TYPE_P (type)
- && vrp_val_is_min (min)
- && vrp_val_is_max (max))
- min = max = limit;
-
- set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
- }
- else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
- {
- min = TYPE_MIN_VALUE (type);
-
- if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
- max = limit;
- else
- {
- /* If LIMIT_VR is of the form [N1, N2], we need to build the
- range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
- LT_EXPR. */
- max = limit_vr->max;
- }
-
- /* If the maximum value forces us to be out of bounds, simply punt.
- It would be pointless to try and do anything more since this
- all should be optimized away above us. */
- if ((cond_code == LT_EXPR
- && compare_values (max, min) == 0)
- || is_overflow_infinity (max))
- set_value_range_to_varying (vr_p);
- else
- {
- /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
- if (cond_code == LT_EXPR)
- {
- tree one = build_int_cst (type, 1);
- max = fold_build2 (MINUS_EXPR, type, max, one);
- if (EXPR_P (max))
- TREE_NO_WARNING (max) = 1;
- }
-
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
- {
- max = TYPE_MAX_VALUE (type);
-
- if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
- min = limit;
- else
- {
- /* If LIMIT_VR is of the form [N1, N2], we need to build the
- range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
- GT_EXPR. */
- min = limit_vr->min;
- }
-
- /* If the minimum value forces us to be out of bounds, simply punt.
- It would be pointless to try and do anything more since this
- all should be optimized away above us. */
- if ((cond_code == GT_EXPR
- && compare_values (min, max) == 0)
- || is_overflow_infinity (min))
- set_value_range_to_varying (vr_p);
- else
- {
- /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
- if (cond_code == GT_EXPR)
- {
- tree one = build_int_cst (type, 1);
- min = fold_build2 (PLUS_EXPR, type, min, one);
- if (EXPR_P (min))
- TREE_NO_WARNING (min) = 1;
- }
-
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- else
- gcc_unreachable ();
-
- /* If VAR already had a known range, it may happen that the new
- range we have computed and VAR's range are not compatible. For
- instance,
-
- if (p_5 == NULL)
- p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
- x_7 = p_6->fld;
- p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
-
- While the above comes from a faulty program, it will cause an ICE
- later because p_8 and p_6 will have incompatible ranges and at
- the same time will be considered equivalent. A similar situation
- would arise from
-
- if (i_5 > 10)
- i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
- if (i_5 < 5)
- i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
-
- Again i_6 and i_7 will have incompatible ranges. It would be
- pointless to try and do anything with i_7's range because
- anything dominated by 'if (i_5 < 5)' will be optimized away.
- Note, due to the wa in which simulation proceeds, the statement
- i_7 = ASSERT_EXPR <...> we would never be visited because the
- conditional 'if (i_5 < 5)' always evaluates to false. However,
- this extra check does not hurt and may protect against future
- changes to VRP that may get into a situation similar to the
- NULL pointer dereference example.
-
- Note that these compatibility tests are only needed when dealing
- with ranges or a mix of range and anti-range. If VAR_VR and VR_P
- are both anti-ranges, they will always be compatible, because two
- anti-ranges will always have a non-empty intersection. */
-
- var_vr = get_value_range (var);
-
- /* We may need to make adjustments when VR_P and VAR_VR are numeric
- ranges or anti-ranges. */
- if (vr_p->type == VR_VARYING
- || vr_p->type == VR_UNDEFINED
- || var_vr->type == VR_VARYING
- || var_vr->type == VR_UNDEFINED
- || symbolic_range_p (vr_p)
- || symbolic_range_p (var_vr))
- return;
-
- if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
- {
- /* If the two ranges have a non-empty intersection, we can
- refine the resulting range. Since the assert expression
- creates an equivalency and at the same time it asserts a
- predicate, we can take the intersection of the two ranges to
- get better precision. */
- if (value_ranges_intersect_p (var_vr, vr_p))
- {
- /* Use the larger of the two minimums. */
- if (compare_values (vr_p->min, var_vr->min) == -1)
- min = var_vr->min;
- else
- min = vr_p->min;
-
- /* Use the smaller of the two maximums. */
- if (compare_values (vr_p->max, var_vr->max) == 1)
- max = var_vr->max;
- else
- max = vr_p->max;
-
- set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
- }
- else
- {
- /* The two ranges do not intersect, set the new range to
- VARYING, because we will not be able to do anything
- meaningful with it. */
- set_value_range_to_varying (vr_p);
- }
- }
- else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
- || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
- {
- /* A range and an anti-range will cancel each other only if
- their ends are the same. For instance, in the example above,
- p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
- so VR_P should be set to VR_VARYING. */
- if (compare_values (var_vr->min, vr_p->min) == 0
- && compare_values (var_vr->max, vr_p->max) == 0)
- set_value_range_to_varying (vr_p);
- else
- {
- tree min, max, anti_min, anti_max, real_min, real_max;
-
- /* We want to compute the logical AND of the two ranges;
- there are three cases to consider.
-
-
- 1. The VR_ANTI_RANGE range is completely within the
- VR_RANGE and the endpoints of the ranges are
- different. In that case the resulting range
- should be whichever range is more precise.
- Typically that will be the VR_RANGE.
-
- 2. The VR_ANTI_RANGE is completely disjoint from
- the VR_RANGE. In this case the resulting range
- should be the VR_RANGE.
-
- 3. There is some overlap between the VR_ANTI_RANGE
- and the VR_RANGE.
-
- 3a. If the high limit of the VR_ANTI_RANGE resides
- within the VR_RANGE, then the result is a new
- VR_RANGE starting at the high limit of the
- the VR_ANTI_RANGE + 1 and extending to the
- high limit of the original VR_RANGE.
-
- 3b. If the low limit of the VR_ANTI_RANGE resides
- within the VR_RANGE, then the result is a new
- VR_RANGE starting at the low limit of the original
- VR_RANGE and extending to the low limit of the
- VR_ANTI_RANGE - 1. */
- if (vr_p->type == VR_ANTI_RANGE)
- {
- anti_min = vr_p->min;
- anti_max = vr_p->max;
- real_min = var_vr->min;
- real_max = var_vr->max;
- }
- else
- {
- anti_min = var_vr->min;
- anti_max = var_vr->max;
- real_min = vr_p->min;
- real_max = vr_p->max;
- }
-
-
- /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
- not including any endpoints. */
- if (compare_values (anti_max, real_max) == -1
- && compare_values (anti_min, real_min) == 1)
- {
- set_value_range (vr_p, VR_RANGE, real_min,
- real_max, vr_p->equiv);
- }
- /* Case 2, VR_ANTI_RANGE completely disjoint from
- VR_RANGE. */
- else if (compare_values (anti_min, real_max) == 1
- || compare_values (anti_max, real_min) == -1)
- {
- set_value_range (vr_p, VR_RANGE, real_min,
- real_max, vr_p->equiv);
- }
- /* Case 3a, the anti-range extends into the low
- part of the real range. Thus creating a new
- low for the real range. */
- else if ((compare_values (anti_max, real_min) == 1
- || compare_values (anti_max, real_min) == 0)
- && compare_values (anti_max, real_max) == -1)
- {
- gcc_assert (!is_positive_overflow_infinity (anti_max));
- if (needs_overflow_infinity (TREE_TYPE (anti_max))
- && vrp_val_is_max (anti_max))
- {
- if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
- {
- set_value_range_to_varying (vr_p);
- return;
- }
- min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
- }
- else
- min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
- anti_max,
- build_int_cst (TREE_TYPE (var_vr->min), 1));
- max = real_max;
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- /* Case 3b, the anti-range extends into the high
- part of the real range. Thus creating a new
- higher for the real range. */
- else if (compare_values (anti_min, real_min) == 1
- && (compare_values (anti_min, real_max) == -1
- || compare_values (anti_min, real_max) == 0))
- {
- gcc_assert (!is_negative_overflow_infinity (anti_min));
- if (needs_overflow_infinity (TREE_TYPE (anti_min))
- && vrp_val_is_min (anti_min))
- {
- if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
- {
- set_value_range_to_varying (vr_p);
- return;
- }
- max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
- }
- else
- max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
- anti_min,
- build_int_cst (TREE_TYPE (var_vr->min), 1));
- min = real_min;
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- }
-}
-
-
-/* Extract range information from SSA name VAR and store it in VR. If
- VAR has an interesting range, use it. Otherwise, create the
- range [VAR, VAR] and return it. This is useful in situations where
- we may have conditionals testing values of VARYING names. For
- instance,
-
- x_3 = y_5;
- if (x_3 > y_5)
- ...
-
- Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
- always false. */
-
-static void
-extract_range_from_ssa_name (value_range_t *vr, tree var)
-{
- value_range_t *var_vr = get_value_range (var);
-
- if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
- copy_value_range (vr, var_vr);
- else
- set_value_range (vr, VR_RANGE, var, var, NULL);
-
- add_equivalence (vr->equiv, var);
-}
-
-
-/* Wrapper around int_const_binop. If the operation overflows and we
- are not using wrapping arithmetic, then adjust the result to be
- -INF or +INF depending on CODE, VAL1 and VAL2. This can return
- NULL_TREE if we need to use an overflow infinity representation but
- the type does not support it. */
-
-static tree
-vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
-{
- tree res;
-
- res = int_const_binop (code, val1, val2, 0);
-
- /* If we are not using wrapping arithmetic, operate symbolically
- on -INF and +INF. */
- if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
- {
- int checkz = compare_values (res, val1);
- bool overflow = false;
-
- /* Ensure that res = val1 [+*] val2 >= val1
- or that res = val1 - val2 <= val1. */
- if ((code == PLUS_EXPR
- && !(checkz == 1 || checkz == 0))
- || (code == MINUS_EXPR
- && !(checkz == 0 || checkz == -1)))
- {
- overflow = true;
- }
- /* Checking for multiplication overflow is done by dividing the
- output of the multiplication by the first input of the
- multiplication. If the result of that division operation is
- not equal to the second input of the multiplication, then the
- multiplication overflowed. */
- else if (code == MULT_EXPR && !integer_zerop (val1))
- {
- tree tmp = int_const_binop (TRUNC_DIV_EXPR,
- res,
- val1, 0);
- int check = compare_values (tmp, val2);
-
- if (check != 0)
- overflow = true;
- }
-
- if (overflow)
- {
- res = copy_node (res);
- TREE_OVERFLOW (res) = 1;
- }
-
- }
- else if ((TREE_OVERFLOW (res)
- && !TREE_OVERFLOW (val1)
- && !TREE_OVERFLOW (val2))
- || is_overflow_infinity (val1)
- || is_overflow_infinity (val2))
- {
- /* If the operation overflowed but neither VAL1 nor VAL2 are
- overflown, return -INF or +INF depending on the operation
- and the combination of signs of the operands. */
- int sgn1 = tree_int_cst_sgn (val1);
- int sgn2 = tree_int_cst_sgn (val2);
-
- if (needs_overflow_infinity (TREE_TYPE (res))
- && !supports_overflow_infinity (TREE_TYPE (res)))
- return NULL_TREE;
-
- /* We have to punt on adding infinities of different signs,
- since we can't tell what the sign of the result should be.
- Likewise for subtracting infinities of the same sign. */
- if (((code == PLUS_EXPR && sgn1 != sgn2)
- || (code == MINUS_EXPR && sgn1 == sgn2))
- && is_overflow_infinity (val1)
- && is_overflow_infinity (val2))
- return NULL_TREE;
-
- /* Don't try to handle division or shifting of infinities. */
- if ((code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR
- || code == RSHIFT_EXPR)
- && (is_overflow_infinity (val1)
- || is_overflow_infinity (val2)))
- return NULL_TREE;
-
- /* Notice that we only need to handle the restricted set of
- operations handled by extract_range_from_binary_expr.
- Among them, only multiplication, addition and subtraction
- can yield overflow without overflown operands because we
- are working with integral types only... except in the
- case VAL1 = -INF and VAL2 = -1 which overflows to +INF
- for division too. */
-
- /* For multiplication, the sign of the overflow is given
- by the comparison of the signs of the operands. */
- if ((code == MULT_EXPR && sgn1 == sgn2)
- /* For addition, the operands must be of the same sign
- to yield an overflow. Its sign is therefore that
- of one of the operands, for example the first. For
- infinite operands X + -INF is negative, not positive. */
- || (code == PLUS_EXPR
- && (sgn1 >= 0
- ? !is_negative_overflow_infinity (val2)
- : is_positive_overflow_infinity (val2)))
- /* For subtraction, non-infinite operands must be of
- different signs to yield an overflow. Its sign is
- therefore that of the first operand or the opposite of
- that of the second operand. A first operand of 0 counts
- as positive here, for the corner case 0 - (-INF), which
- overflows, but must yield +INF. For infinite operands 0
- - INF is negative, not positive. */
- || (code == MINUS_EXPR
- && (sgn1 >= 0
- ? !is_positive_overflow_infinity (val2)
- : is_negative_overflow_infinity (val2)))
- /* For division, the only case is -INF / -1 = +INF. */
- || code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR)
- return (needs_overflow_infinity (TREE_TYPE (res))
- ? positive_overflow_infinity (TREE_TYPE (res))
- : TYPE_MAX_VALUE (TREE_TYPE (res)));
- else
- return (needs_overflow_infinity (TREE_TYPE (res))
- ? negative_overflow_infinity (TREE_TYPE (res))
- : TYPE_MIN_VALUE (TREE_TYPE (res)));
- }
-
- return res;
-}
-
-
-/* Extract range information from a binary expression EXPR based on
- the ranges of each of its operands and the expression code. */
-
-static void
-extract_range_from_binary_expr (value_range_t *vr, tree expr)
-{
- enum tree_code code = TREE_CODE (expr);
- enum value_range_type type;
- tree op0, op1, min, max;
- int cmp;
- value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
- value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
-
- /* Not all binary expressions can be applied to ranges in a
- meaningful way. Handle only arithmetic operations. */
- if (code != PLUS_EXPR
- && code != MINUS_EXPR
- && code != MULT_EXPR
- && code != TRUNC_DIV_EXPR
- && code != FLOOR_DIV_EXPR
- && code != CEIL_DIV_EXPR
- && code != EXACT_DIV_EXPR
- && code != ROUND_DIV_EXPR
- && code != MIN_EXPR
- && code != MAX_EXPR
- && code != BIT_AND_EXPR
- && code != TRUTH_ANDIF_EXPR
- && code != TRUTH_ORIF_EXPR
- && code != TRUTH_AND_EXPR
- && code != TRUTH_OR_EXPR)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Get value ranges for each operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- op0 = TREE_OPERAND (expr, 0);
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
-
- op1 = TREE_OPERAND (expr, 1);
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- set_value_range_to_varying (&vr1);
-
- /* If either range is UNDEFINED, so is the result. */
- if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
-
- /* The type of the resulting value range defaults to VR0.TYPE. */
- type = vr0.type;
-
- /* Refuse to operate on VARYING ranges, ranges of different kinds
- and symbolic ranges. As an exception, we allow BIT_AND_EXPR
- because we may be able to derive a useful range even if one of
- the operands is VR_VARYING or symbolic range. TODO, we may be
- able to derive anti-ranges in some cases. */
- if (code != BIT_AND_EXPR
- && code != TRUTH_AND_EXPR
- && code != TRUTH_OR_EXPR
- && (vr0.type == VR_VARYING
- || vr1.type == VR_VARYING
- || vr0.type != vr1.type
- || symbolic_range_p (&vr0)
- || symbolic_range_p (&vr1)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Now evaluate the expression to determine the new range. */
- if (POINTER_TYPE_P (TREE_TYPE (expr))
- || POINTER_TYPE_P (TREE_TYPE (op0))
- || POINTER_TYPE_P (TREE_TYPE (op1)))
- {
- /* For pointer types, we are really only interested in asserting
- whether the expression evaluates to non-NULL. FIXME, we used
- to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
- ivopts is generating expressions with pointer multiplication
- in them. */
- if (code == PLUS_EXPR)
- {
- if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, TREE_TYPE (expr));
- else if (range_is_null (&vr0) && range_is_null (&vr1))
- set_value_range_to_null (vr, TREE_TYPE (expr));
- else
- set_value_range_to_varying (vr);
- }
- else
- {
- /* Subtracting from a pointer, may yield 0, so just drop the
- resulting range to varying. */
- set_value_range_to_varying (vr);
- }
-
- return;
- }
-
- /* For integer ranges, apply the operation to each end of the
- range and see what we end up with. */
- if (code == TRUTH_ANDIF_EXPR
- || code == TRUTH_ORIF_EXPR
- || code == TRUTH_AND_EXPR
- || code == TRUTH_OR_EXPR)
- {
- /* If one of the operands is zero, we know that the whole
- expression evaluates zero. */
- if (code == TRUTH_AND_EXPR
- && ((vr0.type == VR_RANGE
- && integer_zerop (vr0.min)
- && integer_zerop (vr0.max))
- || (vr1.type == VR_RANGE
- && integer_zerop (vr1.min)
- && integer_zerop (vr1.max))))
- {
- type = VR_RANGE;
- min = max = build_int_cst (TREE_TYPE (expr), 0);
- }
- /* If one of the operands is one, we know that the whole
- expression evaluates one. */
- else if (code == TRUTH_OR_EXPR
- && ((vr0.type == VR_RANGE
- && integer_onep (vr0.min)
- && integer_onep (vr0.max))
- || (vr1.type == VR_RANGE
- && integer_onep (vr1.min)
- && integer_onep (vr1.max))))
- {
- type = VR_RANGE;
- min = max = build_int_cst (TREE_TYPE (expr), 1);
- }
- else if (vr0.type != VR_VARYING
- && vr1.type != VR_VARYING
- && vr0.type == vr1.type
- && !symbolic_range_p (&vr0)
- && !overflow_infinity_range_p (&vr0)
- && !symbolic_range_p (&vr1)
- && !overflow_infinity_range_p (&vr1))
- {
- /* Boolean expressions cannot be folded with int_const_binop. */
- min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
- max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else if (code == PLUS_EXPR
- || code == MIN_EXPR
- || code == MAX_EXPR)
- {
- /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
- VR_VARYING. It would take more effort to compute a precise
- range for such a case. For example, if we have op0 == 1 and
- op1 == -1 with their ranges both being ~[0,0], we would have
- op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
- Note that we are guaranteed to have vr0.type == vr1.type at
- this point. */
- if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* For operations that make the resulting range directly
- proportional to the original ranges, apply the operation to
- the same end of each range. */
- min = vrp_int_const_binop (code, vr0.min, vr1.min);
- max = vrp_int_const_binop (code, vr0.max, vr1.max);
- }
- else if (code == MULT_EXPR
- || code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR)
- {
- tree val[4];
- size_t i;
- bool sop;
-
- /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
- drop to VR_VARYING. It would take more effort to compute a
- precise range for such a case. For example, if we have
- op0 == 65536 and op1 == 65536 with their ranges both being
- ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
- we cannot claim that the product is in ~[0,0]. Note that we
- are guaranteed to have vr0.type == vr1.type at this
- point. */
- if (code == MULT_EXPR
- && vr0.type == VR_ANTI_RANGE
- && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Multiplications and divisions are a bit tricky to handle,
- depending on the mix of signs we have in the two ranges, we
- need to operate on different values to get the minimum and
- maximum values for the new range. One approach is to figure
- out all the variations of range combinations and do the
- operations.
-
- However, this involves several calls to compare_values and it
- is pretty convoluted. It's simpler to do the 4 operations
- (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
- MAX1) and then figure the smallest and largest values to form
- the new range. */
-
- /* Divisions by zero result in a VARYING value. */
- if (code != MULT_EXPR
- && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Compute the 4 cross operations. */
- sop = false;
- val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
- if (val[0] == NULL_TREE)
- sop = true;
-
- if (vr1.max == vr1.min)
- val[1] = NULL_TREE;
- else
- {
- val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
- if (val[1] == NULL_TREE)
- sop = true;
- }
-
- if (vr0.max == vr0.min)
- val[2] = NULL_TREE;
- else
- {
- val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
- if (val[2] == NULL_TREE)
- sop = true;
- }
-
- if (vr0.min == vr0.max || vr1.min == vr1.max)
- val[3] = NULL_TREE;
- else
- {
- val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
- if (val[3] == NULL_TREE)
- sop = true;
- }
-
- if (sop)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Set MIN to the minimum of VAL[i] and MAX to the maximum
- of VAL[i]. */
- min = val[0];
- max = val[0];
- for (i = 1; i < 4; i++)
- {
- if (!is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- break;
-
- if (val[i])
- {
- if (!is_gimple_min_invariant (val[i])
- || (TREE_OVERFLOW (val[i])
- && !is_overflow_infinity (val[i])))
- {
- /* If we found an overflowed value, set MIN and MAX
- to it so that we set the resulting range to
- VARYING. */
- min = max = val[i];
- break;
- }
-
- if (compare_values (val[i], min) == -1)
- min = val[i];
-
- if (compare_values (val[i], max) == 1)
- max = val[i];
- }
- }
- }
- else if (code == MINUS_EXPR)
- {
- /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
- VR_VARYING. It would take more effort to compute a precise
- range for such a case. For example, if we have op0 == 1 and
- op1 == 1 with their ranges both being ~[0,0], we would have
- op0 - op1 == 0, so we cannot claim that the difference is in
- ~[0,0]. Note that we are guaranteed to have
- vr0.type == vr1.type at this point. */
- if (vr0.type == VR_ANTI_RANGE)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* For MINUS_EXPR, apply the operation to the opposite ends of
- each range. */
- min = vrp_int_const_binop (code, vr0.min, vr1.max);
- max = vrp_int_const_binop (code, vr0.max, vr1.min);
- }
- else if (code == BIT_AND_EXPR)
- {
- if (vr0.type == VR_RANGE
- && vr0.min == vr0.max
- && TREE_CODE (vr0.max) == INTEGER_CST
- && !TREE_OVERFLOW (vr0.max)
- && tree_int_cst_sgn (vr0.max) >= 0)
- {
- min = build_int_cst (TREE_TYPE (expr), 0);
- max = vr0.max;
- }
- else if (vr1.type == VR_RANGE
- && vr1.min == vr1.max
- && TREE_CODE (vr1.max) == INTEGER_CST
- && !TREE_OVERFLOW (vr1.max)
- && tree_int_cst_sgn (vr1.max) >= 0)
- {
- type = VR_RANGE;
- min = build_int_cst (TREE_TYPE (expr), 0);
- max = vr1.max;
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- gcc_unreachable ();
-
- /* If either MIN or MAX overflowed, then set the resulting range to
- VARYING. But we do accept an overflow infinity
- representation. */
- if (min == NULL_TREE
- || !is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || max == NULL_TREE
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* We punt if:
- 1) [-INF, +INF]
- 2) [-INF, +-INF(OVF)]
- 3) [+-INF(OVF), +INF]
- 4) [+-INF(OVF), +-INF(OVF)]
- We learn nothing when we have INF and INF(OVF) on both sides.
- Note that we do accept [-INF, -INF] and [+INF, +INF] without
- overflow. */
- if ((vrp_val_is_min (min) || is_overflow_infinity (min))
- && (vrp_val_is_max (max) || is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, type, min, max, NULL);
-}
-
-
-/* Extract range information from a unary expression EXPR based on
- the range of its operand and the expression code. */
-
-static void
-extract_range_from_unary_expr (value_range_t *vr, tree expr)
-{
- enum tree_code code = TREE_CODE (expr);
- tree min, max, op0;
- int cmp;
- value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
-
- /* Refuse to operate on certain unary expressions for which we
- cannot easily determine a resulting range. */
- if (code == FIX_TRUNC_EXPR
- || code == FIX_CEIL_EXPR
- || code == FIX_FLOOR_EXPR
- || code == FIX_ROUND_EXPR
- || code == FLOAT_EXPR
- || code == BIT_NOT_EXPR
- || code == NON_LVALUE_EXPR
- || code == CONJ_EXPR)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Get value ranges for the operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- op0 = TREE_OPERAND (expr, 0);
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
-
- /* If VR0 is UNDEFINED, so is the result. */
- if (vr0.type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
-
- /* Refuse to operate on symbolic ranges, or if neither operand is
- a pointer or integral type. */
- if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && !POINTER_TYPE_P (TREE_TYPE (op0)))
- || (vr0.type != VR_VARYING
- && symbolic_range_p (&vr0)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* If the expression involves pointers, we are only interested in
- determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
- if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
- {
- bool sop;
-
- sop = false;
- if (range_is_nonnull (&vr0)
- || (tree_expr_nonzero_warnv_p (expr, &sop)
- && !sop))
- set_value_range_to_nonnull (vr, TREE_TYPE (expr));
- else if (range_is_null (&vr0))
- set_value_range_to_null (vr, TREE_TYPE (expr));
- else
- set_value_range_to_varying (vr);
-
- return;
- }
-
- /* Handle unary expressions on integer ranges. */
- if (code == NOP_EXPR || code == CONVERT_EXPR)
- {
- tree inner_type = TREE_TYPE (op0);
- tree outer_type = TREE_TYPE (expr);
-
- /* If VR0 represents a simple range, then try to convert
- the min and max values for the range to the same type
- as OUTER_TYPE. If the results compare equal to VR0's
- min and max values and the new min is still less than
- or equal to the new max, then we can safely use the newly
- computed range for EXPR. This allows us to compute
- accurate ranges through many casts. */
- if ((vr0.type == VR_RANGE
- && !overflow_infinity_range_p (&vr0))
- || (vr0.type == VR_VARYING
- && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
- {
- tree new_min, new_max, orig_min, orig_max;
-
- /* Convert the input operand min/max to OUTER_TYPE. If
- the input has no range information, then use the min/max
- for the input's type. */
- if (vr0.type == VR_RANGE)
- {
- orig_min = vr0.min;
- orig_max = vr0.max;
- }
- else
- {
- orig_min = TYPE_MIN_VALUE (inner_type);
- orig_max = TYPE_MAX_VALUE (inner_type);
- }
-
- new_min = fold_convert (outer_type, orig_min);
- new_max = fold_convert (outer_type, orig_max);
-
- /* Verify the new min/max values are gimple values and
- that they compare equal to the original input's
- min/max values. */
- if (is_gimple_val (new_min)
- && is_gimple_val (new_max)
- && tree_int_cst_equal (new_min, orig_min)
- && tree_int_cst_equal (new_max, orig_max)
- && (!is_overflow_infinity (new_min)
- || !is_overflow_infinity (new_max))
- && compare_values (new_min, new_max) <= 0
- && compare_values (new_min, new_max) >= -1)
- {
- set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
- return;
- }
- }
-
- /* When converting types of different sizes, set the result to
- VARYING. Things like sign extensions and precision loss may
- change the range. For instance, if x_3 is of type 'long long
- int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
- is impossible to know at compile time whether y_5 will be
- ~[0, 0]. */
- if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
- || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
-
- /* Conversion of a VR_VARYING value to a wider type can result
- in a usable range. So wait until after we've handled conversions
- before dropping the result to VR_VARYING if we had a source
- operand that is VR_VARYING. */
- if (vr0.type == VR_VARYING)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Apply the operation to each end of the range and see what we end
- up with. */
- if (code == NEGATE_EXPR
- && !TYPE_UNSIGNED (TREE_TYPE (expr)))
- {
- /* NEGATE_EXPR flips the range around. We need to treat
- TYPE_MIN_VALUE specially. */
- if (is_positive_overflow_infinity (vr0.max))
- min = negative_overflow_infinity (TREE_TYPE (expr));
- else if (is_negative_overflow_infinity (vr0.max))
- min = positive_overflow_infinity (TREE_TYPE (expr));
- else if (!vrp_val_is_min (vr0.max))
- min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
- else if (needs_overflow_infinity (TREE_TYPE (expr)))
- {
- if (supports_overflow_infinity (TREE_TYPE (expr))
- && !is_overflow_infinity (vr0.min)
- && !vrp_val_is_min (vr0.min))
- min = positive_overflow_infinity (TREE_TYPE (expr));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- min = TYPE_MIN_VALUE (TREE_TYPE (expr));
-
- if (is_positive_overflow_infinity (vr0.min))
- max = negative_overflow_infinity (TREE_TYPE (expr));
- else if (is_negative_overflow_infinity (vr0.min))
- max = positive_overflow_infinity (TREE_TYPE (expr));
- else if (!vrp_val_is_min (vr0.min))
- max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
- else if (needs_overflow_infinity (TREE_TYPE (expr)))
- {
- if (supports_overflow_infinity (TREE_TYPE (expr)))
- max = positive_overflow_infinity (TREE_TYPE (expr));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- max = TYPE_MIN_VALUE (TREE_TYPE (expr));
- }
- else if (code == NEGATE_EXPR
- && TYPE_UNSIGNED (TREE_TYPE (expr)))
- {
- if (!range_includes_zero_p (&vr0))
- {
- max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
- min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
- }
- else
- {
- if (range_is_null (&vr0))
- set_value_range_to_null (vr, TREE_TYPE (expr));
- else
- set_value_range_to_varying (vr);
- return;
- }
- }
- else if (code == ABS_EXPR
- && !TYPE_UNSIGNED (TREE_TYPE (expr)))
- {
- /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
- useful range. */
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
- && ((vr0.type == VR_RANGE
- && vrp_val_is_min (vr0.min))
- || (vr0.type == VR_ANTI_RANGE
- && !vrp_val_is_min (vr0.min)
- && !range_includes_zero_p (&vr0))))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* ABS_EXPR may flip the range around, if the original range
- included negative values. */
- if (is_overflow_infinity (vr0.min))
- min = positive_overflow_infinity (TREE_TYPE (expr));
- else if (!vrp_val_is_min (vr0.min))
- min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
- else if (!needs_overflow_infinity (TREE_TYPE (expr)))
- min = TYPE_MAX_VALUE (TREE_TYPE (expr));
- else if (supports_overflow_infinity (TREE_TYPE (expr)))
- min = positive_overflow_infinity (TREE_TYPE (expr));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- if (is_overflow_infinity (vr0.max))
- max = positive_overflow_infinity (TREE_TYPE (expr));
- else if (!vrp_val_is_min (vr0.max))
- max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
- else if (!needs_overflow_infinity (TREE_TYPE (expr)))
- max = TYPE_MAX_VALUE (TREE_TYPE (expr));
- else if (supports_overflow_infinity (TREE_TYPE (expr)))
- max = positive_overflow_infinity (TREE_TYPE (expr));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- cmp = compare_values (min, max);
-
- /* If a VR_ANTI_RANGEs contains zero, then we have
- ~[-INF, min(MIN, MAX)]. */
- if (vr0.type == VR_ANTI_RANGE)
- {
- if (range_includes_zero_p (&vr0))
- {
- /* Take the lower of the two values. */
- if (cmp != 1)
- max = min;
-
- /* Create ~[-INF, min (abs(MIN), abs(MAX))]
- or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
- flag_wrapv is set and the original anti-range doesn't include
- TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
- if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
- {
- tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
-
- min = (vr0.min != type_min_value
- ? int_const_binop (PLUS_EXPR, type_min_value,
- integer_one_node, 0)
- : type_min_value);
- }
- else
- {
- if (overflow_infinity_range_p (&vr0))
- min = negative_overflow_infinity (TREE_TYPE (expr));
- else
- min = TYPE_MIN_VALUE (TREE_TYPE (expr));
- }
- }
- else
- {
- /* All else has failed, so create the range [0, INF], even for
- flag_wrapv since TYPE_MIN_VALUE is in the original
- anti-range. */
- vr0.type = VR_RANGE;
- min = build_int_cst (TREE_TYPE (expr), 0);
- if (needs_overflow_infinity (TREE_TYPE (expr)))
- {
- if (supports_overflow_infinity (TREE_TYPE (expr)))
- max = positive_overflow_infinity (TREE_TYPE (expr));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- max = TYPE_MAX_VALUE (TREE_TYPE (expr));
- }
- }
-
- /* If the range contains zero then we know that the minimum value in the
- range will be zero. */
- else if (range_includes_zero_p (&vr0))
- {
- if (cmp == 1)
- max = min;
- min = build_int_cst (TREE_TYPE (expr), 0);
- }
- else
- {
- /* If the range was reversed, swap MIN and MAX. */
- if (cmp == 1)
- {
- tree t = min;
- min = max;
- max = t;
- }
- }
- }
- else
- {
- /* Otherwise, operate on each end of the range. */
- min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
- max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
-
- if (needs_overflow_infinity (TREE_TYPE (expr)))
- {
- gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
-
- /* If both sides have overflowed, we don't know
- anything. */
- if ((is_overflow_infinity (vr0.min)
- || TREE_OVERFLOW (min))
- && (is_overflow_infinity (vr0.max)
- || TREE_OVERFLOW (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- if (is_overflow_infinity (vr0.min))
- min = vr0.min;
- else if (TREE_OVERFLOW (min))
- {
- if (supports_overflow_infinity (TREE_TYPE (expr)))
- min = (tree_int_cst_sgn (min) >= 0
- ? positive_overflow_infinity (TREE_TYPE (min))
- : negative_overflow_infinity (TREE_TYPE (min)));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
-
- if (is_overflow_infinity (vr0.max))
- max = vr0.max;
- else if (TREE_OVERFLOW (max))
- {
- if (supports_overflow_infinity (TREE_TYPE (expr)))
- max = (tree_int_cst_sgn (max) >= 0
- ? positive_overflow_infinity (TREE_TYPE (max))
- : negative_overflow_infinity (TREE_TYPE (max)));
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- }
- }
-
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, vr0.type, min, max, NULL);
-}
-
-
-/* Extract range information from a comparison expression EXPR based
- on the range of its operand and the expression code. */
-
-static void
-extract_range_from_comparison (value_range_t *vr, tree expr)
-{
- bool sop = false;
- tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
-
- /* A disadvantage of using a special infinity as an overflow
- representation is that we lose the ability to record overflow
- when we don't have an infinity. So we have to ignore a result
- which relies on overflow. */
-
- if (val && !is_overflow_infinity (val) && !sop)
- {
- /* Since this expression was found on the RHS of an assignment,
- its type may be different from _Bool. Convert VAL to EXPR's
- type. */
- val = fold_convert (TREE_TYPE (expr), val);
- if (is_gimple_min_invariant (val))
- set_value_range_to_value (vr, val, vr->equiv);
- else
- set_value_range (vr, VR_RANGE, val, val, vr->equiv);
- }
- else
- set_value_range_to_varying (vr);
-}
-
-
-/* Try to compute a useful range out of expression EXPR and store it
- in *VR. */
-
-static void
-extract_range_from_expr (value_range_t *vr, tree expr)
-{
- enum tree_code code = TREE_CODE (expr);
-
- if (code == ASSERT_EXPR)
- extract_range_from_assert (vr, expr);
- else if (code == SSA_NAME)
- extract_range_from_ssa_name (vr, expr);
- else if (TREE_CODE_CLASS (code) == tcc_binary
- || code == TRUTH_ANDIF_EXPR
- || code == TRUTH_ORIF_EXPR
- || code == TRUTH_AND_EXPR
- || code == TRUTH_OR_EXPR
- || code == TRUTH_XOR_EXPR)
- extract_range_from_binary_expr (vr, expr);
- else if (TREE_CODE_CLASS (code) == tcc_unary)
- extract_range_from_unary_expr (vr, expr);
- else if (TREE_CODE_CLASS (code) == tcc_comparison)
- extract_range_from_comparison (vr, expr);
- else if (is_gimple_min_invariant (expr))
- set_value_range_to_value (vr, expr, NULL);
- else
- set_value_range_to_varying (vr);
-
- /* If we got a varying range from the tests above, try a final
- time to derive a nonnegative or nonzero range. This time
- relying primarily on generic routines in fold in conjunction
- with range data. */
- if (vr->type == VR_VARYING)
- {
- bool sop = false;
-
- if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
- && vrp_expr_computes_nonnegative (expr, &sop))
- set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
- sop || is_overflow_infinity (expr));
- else if (vrp_expr_computes_nonzero (expr, &sop)
- && !sop)
- set_value_range_to_nonnull (vr, TREE_TYPE (expr));
- }
-}
-
-/* Given a range VR, a LOOP and a variable VAR, determine whether it
- would be profitable to adjust VR using scalar evolution information
- for VAR. If so, update VR with the new limits. */
-
-static void
-adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
- tree var)
-{
- tree init, step, chrec, tmin, tmax, min, max, type;
- enum ev_direction dir;
-
- /* TODO. Don't adjust anti-ranges. An anti-range may provide
- better opportunities than a regular range, but I'm not sure. */
- if (vr->type == VR_ANTI_RANGE)
- return;
-
- chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
- if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
- return;
-
- init = initial_condition_in_loop_num (chrec, loop->num);
- step = evolution_part_in_loop_num (chrec, loop->num);
-
- /* If STEP is symbolic, we can't know whether INIT will be the
- minimum or maximum value in the range. Also, unless INIT is
- a simple expression, compare_values and possibly other functions
- in tree-vrp won't be able to handle it. */
- if (step == NULL_TREE
- || !is_gimple_min_invariant (step)
- || !valid_value_p (init))
- return;
-
- dir = scev_direction (chrec);
- if (/* Do not adjust ranges if we do not know whether the iv increases
- or decreases, ... */
- dir == EV_DIR_UNKNOWN
- /* ... or if it may wrap. */
- || scev_probably_wraps_p (init, step, stmt,
- current_loops->parray[CHREC_VARIABLE (chrec)],
- true))
- return;
-
- /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
- negative_overflow_infinity and positive_overflow_infinity,
- because we have concluded that the loop probably does not
- wrap. */
-
- type = TREE_TYPE (var);
- if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
- tmin = lower_bound_in_type (type, type);
- else
- tmin = TYPE_MIN_VALUE (type);
- if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
- tmax = upper_bound_in_type (type, type);
- else
- tmax = TYPE_MAX_VALUE (type);
-
- if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
- {
- min = tmin;
- max = tmax;
-
- /* For VARYING or UNDEFINED ranges, just about anything we get
- from scalar evolutions should be better. */
-
- if (dir == EV_DIR_DECREASES)
- max = init;
- else
- min = init;
-
- /* If we would create an invalid range, then just assume we
- know absolutely nothing. This may be over-conservative,
- but it's clearly safe, and should happen only in unreachable
- parts of code, or for invalid programs. */
- if (compare_values (min, max) == 1)
- return;
-
- set_value_range (vr, VR_RANGE, min, max, vr->equiv);
- }
- else if (vr->type == VR_RANGE)
- {
- min = vr->min;
- max = vr->max;
-
- if (dir == EV_DIR_DECREASES)
- {
- /* INIT is the maximum value. If INIT is lower than VR->MAX
- but no smaller than VR->MIN, set VR->MAX to INIT. */
- if (compare_values (init, max) == -1)
- {
- max = init;
-
- /* If we just created an invalid range with the minimum
- greater than the maximum, we fail conservatively.
- This should happen only in unreachable
- parts of code, or for invalid programs. */
- if (compare_values (min, max) == 1)
- return;
- }
-
- /* According to the loop information, the variable does not
- overflow. If we think it does, probably because of an
- overflow due to arithmetic on a different INF value,
- reset now. */
- if (is_negative_overflow_infinity (min))
- min = tmin;
- }
- else
- {
- /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
- if (compare_values (init, min) == 1)
- {
- min = init;
-
- /* Again, avoid creating invalid range by failing. */
- if (compare_values (min, max) == 1)
- return;
- }
-
- if (is_positive_overflow_infinity (max))
- max = tmax;
- }
-
- set_value_range (vr, VR_RANGE, min, max, vr->equiv);
- }
-}
-
-/* Return true if VAR may overflow at STMT. This checks any available
- loop information to see if we can determine that VAR does not
- overflow. */
-
-static bool
-vrp_var_may_overflow (tree var, tree stmt)
-{
- struct loop *l;
- tree chrec, init, step;
-
- if (current_loops == NULL)
- return true;
-
- l = loop_containing_stmt (stmt);
- if (l == NULL)
- return true;
-
- chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
- if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
- return true;
-
- init = initial_condition_in_loop_num (chrec, l->num);
- step = evolution_part_in_loop_num (chrec, l->num);
-
- if (step == NULL_TREE
- || !is_gimple_min_invariant (step)
- || !valid_value_p (init))
- return true;
-
- /* If we get here, we know something useful about VAR based on the
- loop information. If it wraps, it may overflow. */
-
- if (scev_probably_wraps_p (init, step, stmt,
- current_loops->parray[CHREC_VARIABLE (chrec)],
- true))
- return true;
-
- if (dump_file && (dump_flags & TDF_DETAILS) != 0)
- {
- print_generic_expr (dump_file, var, 0);
- fprintf (dump_file, ": loop information indicates does not overflow\n");
- }
-
- return false;
-}
-
-
-/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
-
- - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
- all the values in the ranges.
-
- - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
-
- - Return NULL_TREE if it is not always possible to determine the
- value of the comparison.
-
- Also set *STRICT_OVERFLOW_P to indicate whether a range with an
- overflow infinity was used in the test. */
-
-
-static tree
-compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
- bool *strict_overflow_p)
-{
- /* VARYING or UNDEFINED ranges cannot be compared. */
- if (vr0->type == VR_VARYING
- || vr0->type == VR_UNDEFINED
- || vr1->type == VR_VARYING
- || vr1->type == VR_UNDEFINED)
- return NULL_TREE;
-
- /* Anti-ranges need to be handled separately. */
- if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
- {
- /* If both are anti-ranges, then we cannot compute any
- comparison. */
- if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
- return NULL_TREE;
-
- /* These comparisons are never statically computable. */
- if (comp == GT_EXPR
- || comp == GE_EXPR
- || comp == LT_EXPR
- || comp == LE_EXPR)
- return NULL_TREE;
-
- /* Equality can be computed only between a range and an
- anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
- if (vr0->type == VR_RANGE)
- {
- /* To simplify processing, make VR0 the anti-range. */
- value_range_t *tmp = vr0;
- vr0 = vr1;
- vr1 = tmp;
- }
-
- gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
-
- if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
- && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
- return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
-
- return NULL_TREE;
- }
-
- if (!usable_range_p (vr0, strict_overflow_p)
- || !usable_range_p (vr1, strict_overflow_p))
- return NULL_TREE;
-
- /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
- operands around and change the comparison code. */
- if (comp == GT_EXPR || comp == GE_EXPR)
- {
- value_range_t *tmp;
- comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
- tmp = vr0;
- vr0 = vr1;
- vr1 = tmp;
- }
-
- if (comp == EQ_EXPR)
- {
- /* Equality may only be computed if both ranges represent
- exactly one value. */
- if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
- && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
- {
- int cmp_min = compare_values_warnv (vr0->min, vr1->min,
- strict_overflow_p);
- int cmp_max = compare_values_warnv (vr0->max, vr1->max,
- strict_overflow_p);
- if (cmp_min == 0 && cmp_max == 0)
- return boolean_true_node;
- else if (cmp_min != -2 && cmp_max != -2)
- return boolean_false_node;
- }
- /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
- else if (compare_values_warnv (vr0->min, vr1->max,
- strict_overflow_p) == 1
- || compare_values_warnv (vr1->min, vr0->max,
- strict_overflow_p) == 1)
- return boolean_false_node;
-
- return NULL_TREE;
- }
- else if (comp == NE_EXPR)
- {
- int cmp1, cmp2;
-
- /* If VR0 is completely to the left or completely to the right
- of VR1, they are always different. Notice that we need to
- make sure that both comparisons yield similar results to
- avoid comparing values that cannot be compared at
- compile-time. */
- cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
- cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
- if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
- return boolean_true_node;
-
- /* If VR0 and VR1 represent a single value and are identical,
- return false. */
- else if (compare_values_warnv (vr0->min, vr0->max,
- strict_overflow_p) == 0
- && compare_values_warnv (vr1->min, vr1->max,
- strict_overflow_p) == 0
- && compare_values_warnv (vr0->min, vr1->min,
- strict_overflow_p) == 0
- && compare_values_warnv (vr0->max, vr1->max,
- strict_overflow_p) == 0)
- return boolean_false_node;
-
- /* Otherwise, they may or may not be different. */
- else
- return NULL_TREE;
- }
- else if (comp == LT_EXPR || comp == LE_EXPR)
- {
- int tst;
-
- /* If VR0 is to the left of VR1, return true. */
- tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
- if ((comp == LT_EXPR && tst == -1)
- || (comp == LE_EXPR && (tst == -1 || tst == 0)))
- {
- if (overflow_infinity_range_p (vr0)
- || overflow_infinity_range_p (vr1))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
-
- /* If VR0 is to the right of VR1, return false. */
- tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
- if ((comp == LT_EXPR && (tst == 0 || tst == 1))
- || (comp == LE_EXPR && tst == 1))
- {
- if (overflow_infinity_range_p (vr0)
- || overflow_infinity_range_p (vr1))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
-
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Given a value range VR, a value VAL and a comparison code COMP, return
- BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
- values in VR. Return BOOLEAN_FALSE_NODE if the comparison
- always returns false. Return NULL_TREE if it is not always
- possible to determine the value of the comparison. Also set
- *STRICT_OVERFLOW_P to indicate whether a range with an overflow
- infinity was used in the test. */
-
-static tree
-compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
- bool *strict_overflow_p)
-{
- if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
- return NULL_TREE;
-
- /* Anti-ranges need to be handled separately. */
- if (vr->type == VR_ANTI_RANGE)
- {
- /* For anti-ranges, the only predicates that we can compute at
- compile time are equality and inequality. */
- if (comp == GT_EXPR
- || comp == GE_EXPR
- || comp == LT_EXPR
- || comp == LE_EXPR)
- return NULL_TREE;
-
- /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
- if (value_inside_range (val, vr) == 1)
- return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
-
- return NULL_TREE;
- }
-
- if (!usable_range_p (vr, strict_overflow_p))
- return NULL_TREE;
-
- if (comp == EQ_EXPR)
- {
- /* EQ_EXPR may only be computed if VR represents exactly
- one value. */
- if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
- {
- int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
- if (cmp == 0)
- return boolean_true_node;
- else if (cmp == -1 || cmp == 1 || cmp == 2)
- return boolean_false_node;
- }
- else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
- || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
- return boolean_false_node;
-
- return NULL_TREE;
- }
- else if (comp == NE_EXPR)
- {
- /* If VAL is not inside VR, then they are always different. */
- if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
- || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
- return boolean_true_node;
-
- /* If VR represents exactly one value equal to VAL, then return
- false. */
- if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
- && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
- return boolean_false_node;
-
- /* Otherwise, they may or may not be different. */
- return NULL_TREE;
- }
- else if (comp == LT_EXPR || comp == LE_EXPR)
- {
- int tst;
-
- /* If VR is to the left of VAL, return true. */
- tst = compare_values_warnv (vr->max, val, strict_overflow_p);
- if ((comp == LT_EXPR && tst == -1)
- || (comp == LE_EXPR && (tst == -1 || tst == 0)))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
-
- /* If VR is to the right of VAL, return false. */
- tst = compare_values_warnv (vr->min, val, strict_overflow_p);
- if ((comp == LT_EXPR && (tst == 0 || tst == 1))
- || (comp == LE_EXPR && tst == 1))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
-
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
- else if (comp == GT_EXPR || comp == GE_EXPR)
- {
- int tst;
-
- /* If VR is to the right of VAL, return true. */
- tst = compare_values_warnv (vr->min, val, strict_overflow_p);
- if ((comp == GT_EXPR && tst == 1)
- || (comp == GE_EXPR && (tst == 0 || tst == 1)))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
-
- /* If VR is to the left of VAL, return false. */
- tst = compare_values_warnv (vr->max, val, strict_overflow_p);
- if ((comp == GT_EXPR && (tst == -1 || tst == 0))
- || (comp == GE_EXPR && tst == -1))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
-
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Debugging dumps. */
-
-void dump_value_range (FILE *, value_range_t *);
-void debug_value_range (value_range_t *);
-void dump_all_value_ranges (FILE *);
-void debug_all_value_ranges (void);
-void dump_vr_equiv (FILE *, bitmap);
-void debug_vr_equiv (bitmap);
-
-
-/* Dump value range VR to FILE. */
-
-void
-dump_value_range (FILE *file, value_range_t *vr)
-{
- if (vr == NULL)
- fprintf (file, "[]");
- else if (vr->type == VR_UNDEFINED)
- fprintf (file, "UNDEFINED");
- else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
- {
- tree type = TREE_TYPE (vr->min);
-
- fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
-
- if (is_negative_overflow_infinity (vr->min))
- fprintf (file, "-INF(OVF)");
- else if (INTEGRAL_TYPE_P (type)
- && !TYPE_UNSIGNED (type)
- && vrp_val_is_min (vr->min))
- fprintf (file, "-INF");
- else
- print_generic_expr (file, vr->min, 0);
-
- fprintf (file, ", ");
-
- if (is_positive_overflow_infinity (vr->max))
- fprintf (file, "+INF(OVF)");
- else if (INTEGRAL_TYPE_P (type)
- && vrp_val_is_max (vr->max))
- fprintf (file, "+INF");
- else
- print_generic_expr (file, vr->max, 0);
-
- fprintf (file, "]");
-
- if (vr->equiv)
- {
- bitmap_iterator bi;
- unsigned i, c = 0;
-
- fprintf (file, " EQUIVALENCES: { ");
-
- EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
- {
- print_generic_expr (file, ssa_name (i), 0);
- fprintf (file, " ");
- c++;
- }
-
- fprintf (file, "} (%u elements)", c);
- }
- }
- else if (vr->type == VR_VARYING)
- fprintf (file, "VARYING");
- else
- fprintf (file, "INVALID RANGE");
-}
-
-
-/* Dump value range VR to stderr. */
-
-void
-debug_value_range (value_range_t *vr)
-{
- dump_value_range (stderr, vr);
- fprintf (stderr, "\n");
-}
-
-
-/* Dump value ranges of all SSA_NAMEs to FILE. */
-
-void
-dump_all_value_ranges (FILE *file)
-{
- size_t i;
-
- for (i = 0; i < num_ssa_names; i++)
- {
- if (vr_value[i])
- {
- print_generic_expr (file, ssa_name (i), 0);
- fprintf (file, ": ");
- dump_value_range (file, vr_value[i]);
- fprintf (file, "\n");
- }
- }
-
- fprintf (file, "\n");
-}
-
-
-/* Dump all value ranges to stderr. */
-
-void
-debug_all_value_ranges (void)
-{
- dump_all_value_ranges (stderr);
-}
-
-
-/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
- create a new SSA name N and return the assertion assignment
- 'V = ASSERT_EXPR <V, V OP W>'. */
-
-static tree
-build_assert_expr_for (tree cond, tree v)
-{
- tree n, assertion;
-
- gcc_assert (TREE_CODE (v) == SSA_NAME);
- n = duplicate_ssa_name (v, NULL_TREE);
-
- if (COMPARISON_CLASS_P (cond))
- {
- tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
- assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
- }
- else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
- {
- /* Given !V, build the assignment N = false. */
- tree op0 = TREE_OPERAND (cond, 0);
- gcc_assert (op0 == v);
- assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
- }
- else if (TREE_CODE (cond) == SSA_NAME)
- {
- /* Given V, build the assignment N = true. */
- gcc_assert (v == cond);
- assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
- }
- else
- gcc_unreachable ();
-
- SSA_NAME_DEF_STMT (n) = assertion;
-
- /* The new ASSERT_EXPR, creates a new SSA name that replaces the
- operand of the ASSERT_EXPR. Register the new name and the old one
- in the replacement table so that we can fix the SSA web after
- adding all the ASSERT_EXPRs. */
- register_new_name_mapping (n, v);
-
- return assertion;
-}
-
-
-/* Return false if EXPR is a predicate expression involving floating
- point values. */
-
-static inline bool
-fp_predicate (tree expr)
-{
- return (COMPARISON_CLASS_P (expr)
- && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
-}
-
-
-/* If the range of values taken by OP can be inferred after STMT executes,
- return the comparison code (COMP_CODE_P) and value (VAL_P) that
- describes the inferred range. Return true if a range could be
- inferred. */
-
-static bool
-infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
-{
- *val_p = NULL_TREE;
- *comp_code_p = ERROR_MARK;
-
- /* Do not attempt to infer anything in names that flow through
- abnormal edges. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
- return false;
-
- /* Similarly, don't infer anything from statements that may throw
- exceptions. */
- if (tree_could_throw_p (stmt))
- return false;
-
- /* If STMT is the last statement of a basic block with no
- successors, there is no point inferring anything about any of its
- operands. We would not be able to find a proper insertion point
- for the assertion, anyway. */
- if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
- return false;
-
- /* We can only assume that a pointer dereference will yield
- non-NULL if -fdelete-null-pointer-checks is enabled. */
- if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
- {
- bool is_store;
- unsigned num_uses, num_derefs;
-
- count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
- if (num_derefs > 0)
- {
- *val_p = build_int_cst (TREE_TYPE (op), 0);
- *comp_code_p = NE_EXPR;
- return true;
- }
- }
-
- return false;
-}
-
-
-void dump_asserts_for (FILE *, tree);
-void debug_asserts_for (tree);
-void dump_all_asserts (FILE *);
-void debug_all_asserts (void);
-
-/* Dump all the registered assertions for NAME to FILE. */
-
-void
-dump_asserts_for (FILE *file, tree name)
-{
- assert_locus_t loc;
-
- fprintf (file, "Assertions to be inserted for ");
- print_generic_expr (file, name, 0);
- fprintf (file, "\n");
-
- loc = asserts_for[SSA_NAME_VERSION (name)];
- while (loc)
- {
- fprintf (file, "\t");
- print_generic_expr (file, bsi_stmt (loc->si), 0);
- fprintf (file, "\n\tBB #%d", loc->bb->index);
- if (loc->e)
- {
- fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
- loc->e->dest->index);
- dump_edge_info (file, loc->e, 0);
- }
- fprintf (file, "\n\tPREDICATE: ");
- print_generic_expr (file, name, 0);
- fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
- print_generic_expr (file, loc->val, 0);
- fprintf (file, "\n\n");
- loc = loc->next;
- }
-
- fprintf (file, "\n");
-}
-
-
-/* Dump all the registered assertions for NAME to stderr. */
-
-void
-debug_asserts_for (tree name)
-{
- dump_asserts_for (stderr, name);
-}
-
-
-/* Dump all the registered assertions for all the names to FILE. */
-
-void
-dump_all_asserts (FILE *file)
-{
- unsigned i;
- bitmap_iterator bi;
-
- fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
- EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
- dump_asserts_for (file, ssa_name (i));
- fprintf (file, "\n");
-}
-
-
-/* Dump all the registered assertions for all the names to stderr. */
-
-void
-debug_all_asserts (void)
-{
- dump_all_asserts (stderr);
-}
-
-
-/* If NAME doesn't have an ASSERT_EXPR registered for asserting
- 'NAME COMP_CODE VAL' at a location that dominates block BB or
- E->DEST, then register this location as a possible insertion point
- for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
-
- BB, E and SI provide the exact insertion point for the new
- ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
- on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
- BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
- must not be NULL. */
-
-static void
-register_new_assert_for (tree name,
- enum tree_code comp_code,
- tree val,
- basic_block bb,
- edge e,
- block_stmt_iterator si)
-{
- assert_locus_t n, loc, last_loc;
- bool found;
- basic_block dest_bb;
-
-#if defined ENABLE_CHECKING
- gcc_assert (bb == NULL || e == NULL);
-
- if (e == NULL)
- gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
- && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
-#endif
-
- /* The new assertion A will be inserted at BB or E. We need to
- determine if the new location is dominated by a previously
- registered location for A. If we are doing an edge insertion,
- assume that A will be inserted at E->DEST. Note that this is not
- necessarily true.
-
- If E is a critical edge, it will be split. But even if E is
- split, the new block will dominate the same set of blocks that
- E->DEST dominates.
-
- The reverse, however, is not true, blocks dominated by E->DEST
- will not be dominated by the new block created to split E. So,
- if the insertion location is on a critical edge, we will not use
- the new location to move another assertion previously registered
- at a block dominated by E->DEST. */
- dest_bb = (bb) ? bb : e->dest;
-
- /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
- VAL at a block dominating DEST_BB, then we don't need to insert a new
- one. Similarly, if the same assertion already exists at a block
- dominated by DEST_BB and the new location is not on a critical
- edge, then update the existing location for the assertion (i.e.,
- move the assertion up in the dominance tree).
-
- Note, this is implemented as a simple linked list because there
- should not be more than a handful of assertions registered per
- name. If this becomes a performance problem, a table hashed by
- COMP_CODE and VAL could be implemented. */
- loc = asserts_for[SSA_NAME_VERSION (name)];
- last_loc = loc;
- found = false;
- while (loc)
- {
- if (loc->comp_code == comp_code
- && (loc->val == val
- || operand_equal_p (loc->val, val, 0)))
- {
- /* If the assertion NAME COMP_CODE VAL has already been
- registered at a basic block that dominates DEST_BB, then
- we don't need to insert the same assertion again. Note
- that we don't check strict dominance here to avoid
- replicating the same assertion inside the same basic
- block more than once (e.g., when a pointer is
- dereferenced several times inside a block).
-
- An exception to this rule are edge insertions. If the
- new assertion is to be inserted on edge E, then it will
- dominate all the other insertions that we may want to
- insert in DEST_BB. So, if we are doing an edge
- insertion, don't do this dominance check. */
- if (e == NULL
- && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
- return;
-
- /* Otherwise, if E is not a critical edge and DEST_BB
- dominates the existing location for the assertion, move
- the assertion up in the dominance tree by updating its
- location information. */
- if ((e == NULL || !EDGE_CRITICAL_P (e))
- && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
- {
- loc->bb = dest_bb;
- loc->e = e;
- loc->si = si;
- return;
- }
- }
-
- /* Update the last node of the list and move to the next one. */
- last_loc = loc;
- loc = loc->next;
- }
-
- /* If we didn't find an assertion already registered for
- NAME COMP_CODE VAL, add a new one at the end of the list of
- assertions associated with NAME. */
- n = XNEW (struct assert_locus_d);
- n->bb = dest_bb;
- n->e = e;
- n->si = si;
- n->comp_code = comp_code;
- n->val = val;
- n->next = NULL;
-
- if (last_loc)
- last_loc->next = n;
- else
- asserts_for[SSA_NAME_VERSION (name)] = n;
-
- bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
-}
-
-
-/* Try to register an edge assertion for SSA name NAME on edge E for
- the conditional jump pointed to by SI. Return true if an assertion
- for NAME could be registered. */
-
-static bool
-register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
-{
- tree val, stmt;
- enum tree_code comp_code;
-
- stmt = bsi_stmt (si);
-
- /* Do not attempt to infer anything in names that flow through
- abnormal edges. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
- return false;
-
- /* If NAME was not found in the sub-graph reachable from E, then
- there's nothing to do. */
- if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
- return false;
-
- /* We found a use of NAME in the sub-graph rooted at E->DEST.
- Register an assertion for NAME according to the value that NAME
- takes on edge E. */
- if (TREE_CODE (stmt) == COND_EXPR)
- {
- /* If BB ends in a COND_EXPR then NAME then we should insert
- the original predicate on EDGE_TRUE_VALUE and the
- opposite predicate on EDGE_FALSE_VALUE. */
- tree cond = COND_EXPR_COND (stmt);
- bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
-
- /* Predicates may be a single SSA name or NAME OP VAL. */
- if (cond == name)
- {
- /* If the predicate is a name, it must be NAME, in which
- case we create the predicate NAME == true or
- NAME == false accordingly. */
- comp_code = EQ_EXPR;
- val = (is_else_edge) ? boolean_false_node : boolean_true_node;
- }
- else
- {
- /* Otherwise, we have a comparison of the form NAME COMP VAL
- or VAL COMP NAME. */
- if (name == TREE_OPERAND (cond, 1))
- {
- /* If the predicate is of the form VAL COMP NAME, flip
- COMP around because we need to register NAME as the
- first operand in the predicate. */
- comp_code = swap_tree_comparison (TREE_CODE (cond));
- val = TREE_OPERAND (cond, 0);
- }
- else
- {
- /* The comparison is of the form NAME COMP VAL, so the
- comparison code remains unchanged. */
- comp_code = TREE_CODE (cond);
- val = TREE_OPERAND (cond, 1);
- }
-
- /* If we are inserting the assertion on the ELSE edge, we
- need to invert the sign comparison. */
- if (is_else_edge)
- comp_code = invert_tree_comparison (comp_code, 0);
-
- /* Do not register always-false predicates. FIXME, this
- works around a limitation in fold() when dealing with
- enumerations. Given 'enum { N1, N2 } x;', fold will not
- fold 'if (x > N2)' to 'if (0)'. */
- if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
- && (INTEGRAL_TYPE_P (TREE_TYPE (val))
- || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
- {
- tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
- tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
-
- if (comp_code == GT_EXPR && compare_values (val, max) == 0)
- return false;
-
- if (comp_code == LT_EXPR && compare_values (val, min) == 0)
- return false;
- }
- }
- }
- else
- {
- /* FIXME. Handle SWITCH_EXPR. */
- gcc_unreachable ();
- }
-
- register_new_assert_for (name, comp_code, val, NULL, e, si);
- return true;
-}
-
-
-static bool find_assert_locations (basic_block bb);
-
-/* Determine whether the outgoing edges of BB should receive an
- ASSERT_EXPR for each of the operands of BB's last statement. The
- last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
-
- If any of the sub-graphs rooted at BB have an interesting use of
- the predicate operands, an assert location node is added to the
- list of assertions for the corresponding operands. */
-
-static bool
-find_conditional_asserts (basic_block bb)
-{
- bool need_assert;
- block_stmt_iterator last_si;
- tree op, last;
- edge_iterator ei;
- edge e;
- ssa_op_iter iter;
-
- need_assert = false;
- last_si = bsi_last (bb);
- last = bsi_stmt (last_si);
-
- /* Look for uses of the operands in each of the sub-graphs
- rooted at BB. We need to check each of the outgoing edges
- separately, so that we know what kind of ASSERT_EXPR to
- insert. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (e->dest == bb)
- continue;
-
- /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
- Otherwise, when we finish traversing each of the sub-graphs, we
- won't know whether the variables were found in the sub-graphs or
- if they had been found in a block upstream from BB.
-
- This is actually a bad idea is some cases, particularly jump
- threading. Consider a CFG like the following:
-
- 0
- /|
- 1 |
- \|
- 2
- / \
- 3 4
-
- Assume that one or more operands in the conditional at the
- end of block 0 are used in a conditional in block 2, but not
- anywhere in block 1. In this case we will not insert any
- assert statements in block 1, which may cause us to miss
- opportunities to optimize, particularly for jump threading. */
- FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
- RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
-
- /* Traverse the strictly dominated sub-graph rooted at E->DEST
- to determine if any of the operands in the conditional
- predicate are used. */
- if (e->dest != bb)
- need_assert |= find_assert_locations (e->dest);
-
- /* Register the necessary assertions for each operand in the
- conditional predicate. */
- FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
- need_assert |= register_edge_assert_for (op, e, last_si);
- }
-
- /* Finally, indicate that we have found the operands in the
- conditional. */
- FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
- SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
-
- return need_assert;
-}
-
-
-/* Traverse all the statements in block BB looking for statements that
- may generate useful assertions for the SSA names in their operand.
- If a statement produces a useful assertion A for name N_i, then the
- list of assertions already generated for N_i is scanned to
- determine if A is actually needed.
-
- If N_i already had the assertion A at a location dominating the
- current location, then nothing needs to be done. Otherwise, the
- new location for A is recorded instead.
-
- 1- For every statement S in BB, all the variables used by S are
- added to bitmap FOUND_IN_SUBGRAPH.
-
- 2- If statement S uses an operand N in a way that exposes a known
- value range for N, then if N was not already generated by an
- ASSERT_EXPR, create a new assert location for N. For instance,
- if N is a pointer and the statement dereferences it, we can
- assume that N is not NULL.
-
- 3- COND_EXPRs are a special case of #2. We can derive range
- information from the predicate but need to insert different
- ASSERT_EXPRs for each of the sub-graphs rooted at the
- conditional block. If the last statement of BB is a conditional
- expression of the form 'X op Y', then
-
- a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
-
- b) If the conditional is the only entry point to the sub-graph
- corresponding to the THEN_CLAUSE, recurse into it. On
- return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
- an ASSERT_EXPR is added for the corresponding variable.
-
- c) Repeat step (b) on the ELSE_CLAUSE.
-
- d) Mark X and Y in FOUND_IN_SUBGRAPH.
-
- For instance,
-
- if (a == 9)
- b = a;
- else
- b = c + 1;
-
- In this case, an assertion on the THEN clause is useful to
- determine that 'a' is always 9 on that edge. However, an assertion
- on the ELSE clause would be unnecessary.
-
- 4- If BB does not end in a conditional expression, then we recurse
- into BB's dominator children.
-
- At the end of the recursive traversal, every SSA name will have a
- list of locations where ASSERT_EXPRs should be added. When a new
- location for name N is found, it is registered by calling
- register_new_assert_for. That function keeps track of all the
- registered assertions to prevent adding unnecessary assertions.
- For instance, if a pointer P_4 is dereferenced more than once in a
- dominator tree, only the location dominating all the dereference of
- P_4 will receive an ASSERT_EXPR.
-
- If this function returns true, then it means that there are names
- for which we need to generate ASSERT_EXPRs. Those assertions are
- inserted by process_assert_insertions.
-
- TODO. Handle SWITCH_EXPR. */
-
-static bool
-find_assert_locations (basic_block bb)
-{
- block_stmt_iterator si;
- tree last, phi;
- bool need_assert;
- basic_block son;
-
- if (TEST_BIT (blocks_visited, bb->index))
- return false;
-
- SET_BIT (blocks_visited, bb->index);
-
- need_assert = false;
-
- /* Traverse all PHI nodes in BB marking used operands. */
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- use_operand_p arg_p;
- ssa_op_iter i;
-
- FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
- {
- tree arg = USE_FROM_PTR (arg_p);
- if (TREE_CODE (arg) == SSA_NAME)
- {
- gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
- SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
- }
- }
- }
-
- /* Traverse all the statements in BB marking used names and looking
- for statements that may infer assertions for their used operands. */
- last = NULL_TREE;
- for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
- {
- tree stmt, op;
- ssa_op_iter i;
-
- stmt = bsi_stmt (si);
-
- /* See if we can derive an assertion for any of STMT's operands. */
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
- {
- tree value;
- enum tree_code comp_code;
-
- /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
- the sub-graph of a conditional block, when we return from
- this recursive walk, our parent will use the
- FOUND_IN_SUBGRAPH bitset to determine if one of the
- operands it was looking for was present in the sub-graph. */
- SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
-
- /* If OP is used in such a way that we can infer a value
- range for it, and we don't find a previous assertion for
- it, create a new assertion location node for OP. */
- if (infer_value_range (stmt, op, &comp_code, &value))
- {
- /* If we are able to infer a nonzero value range for OP,
- then walk backwards through the use-def chain to see if OP
- was set via a typecast.
-
- If so, then we can also infer a nonzero value range
- for the operand of the NOP_EXPR. */
- if (comp_code == NE_EXPR && integer_zerop (value))
- {
- tree t = op;
- tree def_stmt = SSA_NAME_DEF_STMT (t);
-
- while (TREE_CODE (def_stmt) == MODIFY_EXPR
- && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
- && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
- && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
- {
- t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
- def_stmt = SSA_NAME_DEF_STMT (t);
-
- /* Note we want to register the assert for the
- operand of the NOP_EXPR after SI, not after the
- conversion. */
- if (! has_single_use (t))
- {
- register_new_assert_for (t, comp_code, value,
- bb, NULL, si);
- need_assert = true;
- }
- }
- }
-
- /* If OP is used only once, namely in this STMT, don't
- bother creating an ASSERT_EXPR for it. Such an
- ASSERT_EXPR would do nothing but increase compile time. */
- if (!has_single_use (op))
- {
- register_new_assert_for (op, comp_code, value, bb, NULL, si);
- need_assert = true;
- }
- }
- }
-
- /* Remember the last statement of the block. */
- last = stmt;
- }
-
- /* If BB's last statement is a conditional expression
- involving integer operands, recurse into each of the sub-graphs
- rooted at BB to determine if we need to add ASSERT_EXPRs. */
- if (last
- && TREE_CODE (last) == COND_EXPR
- && !fp_predicate (COND_EXPR_COND (last))
- && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
- need_assert |= find_conditional_asserts (bb);
-
- /* Recurse into the dominator children of BB. */
- for (son = first_dom_son (CDI_DOMINATORS, bb);
- son;
- son = next_dom_son (CDI_DOMINATORS, son))
- need_assert |= find_assert_locations (son);
-
- return need_assert;
-}
-
-
-/* Create an ASSERT_EXPR for NAME and insert it in the location
- indicated by LOC. Return true if we made any edge insertions. */
-
-static bool
-process_assert_insertions_for (tree name, assert_locus_t loc)
-{
- /* Build the comparison expression NAME_i COMP_CODE VAL. */
- tree stmt, cond, assert_expr;
- edge_iterator ei;
- edge e;
-
- cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
- assert_expr = build_assert_expr_for (cond, name);
-
- if (loc->e)
- {
- /* We have been asked to insert the assertion on an edge. This
- is used only by COND_EXPR and SWITCH_EXPR assertions. */
-#if defined ENABLE_CHECKING
- gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
- || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
-#endif
-
- bsi_insert_on_edge (loc->e, assert_expr);
- return true;
- }
-
- /* Otherwise, we can insert right after LOC->SI iff the
- statement must not be the last statement in the block. */
- stmt = bsi_stmt (loc->si);
- if (!stmt_ends_bb_p (stmt))
- {
- bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
- return false;
- }
-
- /* If STMT must be the last statement in BB, we can only insert new
- assertions on the non-abnormal edge out of BB. Note that since
- STMT is not control flow, there may only be one non-abnormal edge
- out of BB. */
- FOR_EACH_EDGE (e, ei, loc->bb->succs)
- if (!(e->flags & EDGE_ABNORMAL))
- {
- bsi_insert_on_edge (e, assert_expr);
- return true;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Process all the insertions registered for every name N_i registered
- in NEED_ASSERT_FOR. The list of assertions to be inserted are
- found in ASSERTS_FOR[i]. */
-
-static void
-process_assert_insertions (void)
-{
- unsigned i;
- bitmap_iterator bi;
- bool update_edges_p = false;
- int num_asserts = 0;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_all_asserts (dump_file);
-
- EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
- {
- assert_locus_t loc = asserts_for[i];
- gcc_assert (loc);
-
- while (loc)
- {
- assert_locus_t next = loc->next;
- update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
- free (loc);
- loc = next;
- num_asserts++;
- }
- }
-
- if (update_edges_p)
- bsi_commit_edge_inserts ();
-
- if (dump_file && (dump_flags & TDF_STATS))
- fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
- num_asserts);
-}
-
-
-/* Traverse the flowgraph looking for conditional jumps to insert range
- expressions. These range expressions are meant to provide information
- to optimizations that need to reason in terms of value ranges. They
- will not be expanded into RTL. For instance, given:
-
- x = ...
- y = ...
- if (x < y)
- y = x - 2;
- else
- x = y + 3;
-
- this pass will transform the code into:
-
- x = ...
- y = ...
- if (x < y)
- {
- x = ASSERT_EXPR <x, x < y>
- y = x - 2
- }
- else
- {
- y = ASSERT_EXPR <y, x <= y>
- x = y + 3
- }
-
- The idea is that once copy and constant propagation have run, other
- optimizations will be able to determine what ranges of values can 'x'
- take in different paths of the code, simply by checking the reaching
- definition of 'x'. */
-
-static void
-insert_range_assertions (void)
-{
- edge e;
- edge_iterator ei;
- bool update_ssa_p;
-
- found_in_subgraph = sbitmap_alloc (num_ssa_names);
- sbitmap_zero (found_in_subgraph);
-
- blocks_visited = sbitmap_alloc (last_basic_block);
- sbitmap_zero (blocks_visited);
-
- need_assert_for = BITMAP_ALLOC (NULL);
- asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
- memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
-
- calculate_dominance_info (CDI_DOMINATORS);
-
- update_ssa_p = false;
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
- if (find_assert_locations (e->dest))
- update_ssa_p = true;
-
- if (update_ssa_p)
- {
- process_assert_insertions ();
- update_ssa (TODO_update_ssa_no_phi);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
- dump_function_to_file (current_function_decl, dump_file, dump_flags);
- }
-
- sbitmap_free (found_in_subgraph);
- free (asserts_for);
- BITMAP_FREE (need_assert_for);
-}
-
-
-/* Convert range assertion expressions into the implied copies and
- copy propagate away the copies. Doing the trivial copy propagation
- here avoids the need to run the full copy propagation pass after
- VRP.
-
- FIXME, this will eventually lead to copy propagation removing the
- names that had useful range information attached to them. For
- instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
- then N_i will have the range [3, +INF].
-
- However, by converting the assertion into the implied copy
- operation N_i = N_j, we will then copy-propagate N_j into the uses
- of N_i and lose the range information. We may want to hold on to
- ASSERT_EXPRs a little while longer as the ranges could be used in
- things like jump threading.
-
- The problem with keeping ASSERT_EXPRs around is that passes after
- VRP need to handle them appropriately.
-
- Another approach would be to make the range information a first
- class property of the SSA_NAME so that it can be queried from
- any pass. This is made somewhat more complex by the need for
- multiple ranges to be associated with one SSA_NAME. */
-
-static void
-remove_range_assertions (void)
-{
- basic_block bb;
- block_stmt_iterator si;
-
- /* Note that the BSI iterator bump happens at the bottom of the
- loop and no bump is necessary if we're removing the statement
- referenced by the current BSI. */
- FOR_EACH_BB (bb)
- for (si = bsi_start (bb); !bsi_end_p (si);)
- {
- tree stmt = bsi_stmt (si);
- tree use_stmt;
-
- if (TREE_CODE (stmt) == MODIFY_EXPR
- && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
- {
- tree rhs = TREE_OPERAND (stmt, 1), var;
- tree cond = fold (ASSERT_EXPR_COND (rhs));
- use_operand_p use_p;
- imm_use_iterator iter;
-
- gcc_assert (cond != boolean_false_node);
-
- /* Propagate the RHS into every use of the LHS. */
- var = ASSERT_EXPR_VAR (rhs);
- FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
- FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
- {
- SET_USE (use_p, var);
- gcc_assert (TREE_CODE (var) == SSA_NAME);
- }
-
- /* And finally, remove the copy, it is not needed. */
- bsi_remove (&si, true);
- }
- else
- bsi_next (&si);
- }
-
- sbitmap_free (blocks_visited);
-}
-
-
-/* Return true if STMT is interesting for VRP. */
-
-static bool
-stmt_interesting_for_vrp (tree stmt)
-{
- if (TREE_CODE (stmt) == PHI_NODE
- && is_gimple_reg (PHI_RESULT (stmt))
- && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
- || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
- return true;
- else if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- tree lhs = TREE_OPERAND (stmt, 0);
- tree rhs = TREE_OPERAND (stmt, 1);
-
- /* In general, assignments with virtual operands are not useful
- for deriving ranges, with the obvious exception of calls to
- builtin functions. */
- if (TREE_CODE (lhs) == SSA_NAME
- && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || POINTER_TYPE_P (TREE_TYPE (lhs)))
- && ((TREE_CODE (rhs) == CALL_EXPR
- && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
- && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
- && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
- || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
- return true;
- }
- else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
- return true;
-
- return false;
-}
-
-
-/* Initialize local data structures for VRP. */
-
-static void
-vrp_initialize (void)
-{
- basic_block bb;
-
- vr_value = XNEWVEC (value_range_t *, num_ssa_names);
- memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
-
- FOR_EACH_BB (bb)
- {
- block_stmt_iterator si;
- tree phi;
-
- for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
- {
- if (!stmt_interesting_for_vrp (phi))
- {
- tree lhs = PHI_RESULT (phi);
- set_value_range_to_varying (get_value_range (lhs));
- DONT_SIMULATE_AGAIN (phi) = true;
- }
- else
- DONT_SIMULATE_AGAIN (phi) = false;
- }
-
- for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
- {
- tree stmt = bsi_stmt (si);
-
- if (!stmt_interesting_for_vrp (stmt))
- {
- ssa_op_iter i;
- tree def;
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
- DONT_SIMULATE_AGAIN (stmt) = true;
- }
- else
- {
- DONT_SIMULATE_AGAIN (stmt) = false;
- }
- }
- }
-}
-
-
-/* Visit assignment STMT. If it produces an interesting range, record
- the SSA name in *OUTPUT_P. */
-
-static enum ssa_prop_result
-vrp_visit_assignment (tree stmt, tree *output_p)
-{
- tree lhs, rhs, def;
- ssa_op_iter iter;
-
- lhs = TREE_OPERAND (stmt, 0);
- rhs = TREE_OPERAND (stmt, 1);
-
- /* We only keep track of ranges in integral and pointer types. */
- if (TREE_CODE (lhs) == SSA_NAME
- && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- /* It is valid to have NULL MIN/MAX values on a type. See
- build_range_type. */
- && TYPE_MIN_VALUE (TREE_TYPE (lhs))
- && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
- || POINTER_TYPE_P (TREE_TYPE (lhs))))
- {
- struct loop *l;
- value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
-
- extract_range_from_expr (&new_vr, rhs);
-
- /* If STMT is inside a loop, we may be able to know something
- else about the range of LHS by examining scalar evolution
- information. */
- if (current_loops && (l = loop_containing_stmt (stmt)))
- adjust_range_with_scev (&new_vr, l, stmt, lhs);
-
- if (update_value_range (lhs, &new_vr))
- {
- *output_p = lhs;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Found new range for ");
- print_generic_expr (dump_file, lhs, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, &new_vr);
- fprintf (dump_file, "\n\n");
- }
-
- if (new_vr.type == VR_VARYING)
- return SSA_PROP_VARYING;
-
- return SSA_PROP_INTERESTING;
- }
-
- return SSA_PROP_NOT_INTERESTING;
- }
-
- /* Every other statement produces no useful ranges. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
-
- return SSA_PROP_VARYING;
-}
-
-
-/* Compare all the value ranges for names equivalent to VAR with VAL
- using comparison code COMP. Return the same value returned by
- compare_range_with_value, including the setting of
- *STRICT_OVERFLOW_P. */
-
-static tree
-compare_name_with_value (enum tree_code comp, tree var, tree val,
- bool *strict_overflow_p)
-{
- bitmap_iterator bi;
- unsigned i;
- bitmap e;
- tree retval, t;
- int used_strict_overflow;
-
- t = retval = NULL_TREE;
-
- /* Get the set of equivalences for VAR. */
- e = get_value_range (var)->equiv;
-
- /* Add VAR to its own set of equivalences so that VAR's value range
- is processed by this loop (otherwise, we would have to replicate
- the body of the loop just to check VAR's value range). */
- bitmap_set_bit (e, SSA_NAME_VERSION (var));
-
- /* Start at -1. Set it to 0 if we do a comparison without relying
- on overflow, or 1 if all comparisons rely on overflow. */
- used_strict_overflow = -1;
-
- EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
- {
- bool sop;
-
- value_range_t equiv_vr = *(vr_value[i]);
-
- /* If name N_i does not have a valid range, use N_i as its own
- range. This allows us to compare against names that may
- have N_i in their ranges. */
- if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
- {
- equiv_vr.type = VR_RANGE;
- equiv_vr.min = ssa_name (i);
- equiv_vr.max = ssa_name (i);
- }
-
- sop = false;
- t = compare_range_with_value (comp, &equiv_vr, val, &sop);
- if (t)
- {
- /* If we get different answers from different members
- of the equivalence set this check must be in a dead
- code region. Folding it to a trap representation
- would be correct here. For now just return don't-know. */
- if (retval != NULL
- && t != retval)
- {
- retval = NULL_TREE;
- break;
- }
- retval = t;
-
- if (!sop)
- used_strict_overflow = 0;
- else if (used_strict_overflow < 0)
- used_strict_overflow = 1;
- }
- }
-
- /* Remove VAR from its own equivalence set. */
- bitmap_clear_bit (e, SSA_NAME_VERSION (var));
-
- if (retval)
- {
- if (used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
-
- /* We couldn't find a non-NULL value for the predicate. */
- return NULL_TREE;
-}
-
-
-/* Given a comparison code COMP and names N1 and N2, compare all the
- ranges equivalent to N1 against all the ranges equivalent to N2
- to determine the value of N1 COMP N2. Return the same value
- returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
- whether we relied on an overflow infinity in the comparison. */
-
-
-static tree
-compare_names (enum tree_code comp, tree n1, tree n2,
- bool *strict_overflow_p)
-{
- tree t, retval;
- bitmap e1, e2;
- bitmap_iterator bi1, bi2;
- unsigned i1, i2;
- int used_strict_overflow;
-
- /* Compare the ranges of every name equivalent to N1 against the
- ranges of every name equivalent to N2. */
- e1 = get_value_range (n1)->equiv;
- e2 = get_value_range (n2)->equiv;
-
- /* Add N1 and N2 to their own set of equivalences to avoid
- duplicating the body of the loop just to check N1 and N2
- ranges. */
- bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
-
- /* If the equivalence sets have a common intersection, then the two
- names can be compared without checking their ranges. */
- if (bitmap_intersect_p (e1, e2))
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
-
- return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
- ? boolean_true_node
- : boolean_false_node;
- }
-
- /* Start at -1. Set it to 0 if we do a comparison without relying
- on overflow, or 1 if all comparisons rely on overflow. */
- used_strict_overflow = -1;
-
- /* Otherwise, compare all the equivalent ranges. First, add N1 and
- N2 to their own set of equivalences to avoid duplicating the body
- of the loop just to check N1 and N2 ranges. */
- EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
- {
- value_range_t vr1 = *(vr_value[i1]);
-
- /* If the range is VARYING or UNDEFINED, use the name itself. */
- if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
- {
- vr1.type = VR_RANGE;
- vr1.min = ssa_name (i1);
- vr1.max = ssa_name (i1);
- }
-
- t = retval = NULL_TREE;
- EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
- {
- bool sop = false;
-
- value_range_t vr2 = *(vr_value[i2]);
-
- if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
- {
- vr2.type = VR_RANGE;
- vr2.min = ssa_name (i2);
- vr2.max = ssa_name (i2);
- }
-
- t = compare_ranges (comp, &vr1, &vr2, &sop);
- if (t)
- {
- /* If we get different answers from different members
- of the equivalence set this check must be in a dead
- code region. Folding it to a trap representation
- would be correct here. For now just return don't-know. */
- if (retval != NULL
- && t != retval)
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return NULL_TREE;
- }
- retval = t;
-
- if (!sop)
- used_strict_overflow = 0;
- else if (used_strict_overflow < 0)
- used_strict_overflow = 1;
- }
- }
-
- if (retval)
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- if (used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
- }
-
- /* None of the equivalent ranges are useful in computing this
- comparison. */
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return NULL_TREE;
-}
-
-
-/* Given a conditional predicate COND, try to determine if COND yields
- true or false based on the value ranges of its operands. Return
- BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
- BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
- NULL if the conditional cannot be evaluated at compile time.
-
- If USE_EQUIV_P is true, the ranges of all the names equivalent with
- the operands in COND are used when trying to compute its value.
- This is only used during final substitution. During propagation,
- we only check the range of each variable and not its equivalents.
-
- Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
- infinity to produce the result. */
-
-static tree
-vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
- bool *strict_overflow_p)
-{
- gcc_assert (TREE_CODE (cond) == SSA_NAME
- || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
-
- if (TREE_CODE (cond) == SSA_NAME)
- {
- value_range_t *vr;
- tree retval;
-
- if (use_equiv_p)
- retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
- strict_overflow_p);
- else
- {
- value_range_t *vr = get_value_range (cond);
- retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
- strict_overflow_p);
- }
-
- /* If COND has a known boolean range, return it. */
- if (retval)
- return retval;
-
- /* Otherwise, if COND has a symbolic range of exactly one value,
- return it. */
- vr = get_value_range (cond);
- if (vr->type == VR_RANGE && vr->min == vr->max)
- return vr->min;
- }
- else
- {
- tree op0 = TREE_OPERAND (cond, 0);
- tree op1 = TREE_OPERAND (cond, 1);
-
- /* We only deal with integral and pointer types. */
- if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && !POINTER_TYPE_P (TREE_TYPE (op0)))
- return NULL_TREE;
-
- if (use_equiv_p)
- {
- if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
- return compare_names (TREE_CODE (cond), op0, op1,
- strict_overflow_p);
- else if (TREE_CODE (op0) == SSA_NAME)
- return compare_name_with_value (TREE_CODE (cond), op0, op1,
- strict_overflow_p);
- else if (TREE_CODE (op1) == SSA_NAME)
- return (compare_name_with_value
- (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
- strict_overflow_p));
- }
- else
- {
- value_range_t *vr0, *vr1;
-
- vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
- vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
-
- if (vr0 && vr1)
- return compare_ranges (TREE_CODE (cond), vr0, vr1,
- strict_overflow_p);
- else if (vr0 && vr1 == NULL)
- return compare_range_with_value (TREE_CODE (cond), vr0, op1,
- strict_overflow_p);
- else if (vr0 == NULL && vr1)
- return (compare_range_with_value
- (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
- strict_overflow_p));
- }
- }
-
- /* Anything else cannot be computed statically. */
- return NULL_TREE;
-}
-
-/* Given COND within STMT, try to simplify it based on value range
- information. Return NULL if the conditional can not be evaluated.
- The ranges of all the names equivalent with the operands in COND
- will be used when trying to compute the value. If the result is
- based on undefined signed overflow, issue a warning if
- appropriate. */
-
-tree
-vrp_evaluate_conditional (tree cond, tree stmt)
-{
- bool sop;
- tree ret;
-
- sop = false;
- ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
-
- if (ret && sop)
- {
- enum warn_strict_overflow_code wc;
- const char* warnmsg;
-
- if (is_gimple_min_invariant (ret))
- {
- wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
- warnmsg = G_("assuming signed overflow does not occur when "
- "simplifying conditional to constant");
- }
- else
- {
- wc = WARN_STRICT_OVERFLOW_COMPARISON;
- warnmsg = G_("assuming signed overflow does not occur when "
- "simplifying conditional");
- }
-
- if (issue_strict_overflow_warning (wc))
- {
- location_t locus;
-
- if (!EXPR_HAS_LOCATION (stmt))
- locus = input_location;
- else
- locus = EXPR_LOCATION (stmt);
- warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
- }
- }
-
- return ret;
-}
-
-
-/* Visit conditional statement STMT. If we can determine which edge
- will be taken out of STMT's basic block, record it in
- *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
- SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
-{
- tree cond, val;
- bool sop;
-
- *taken_edge_p = NULL;
-
- /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
- add ASSERT_EXPRs for them. */
- if (TREE_CODE (stmt) == SWITCH_EXPR)
- return SSA_PROP_VARYING;
-
- cond = COND_EXPR_COND (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- tree use;
- ssa_op_iter i;
-
- fprintf (dump_file, "\nVisiting conditional with predicate: ");
- print_generic_expr (dump_file, cond, 0);
- fprintf (dump_file, "\nWith known ranges\n");
-
- FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, use, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
- }
-
- fprintf (dump_file, "\n");
- }
-
- /* Compute the value of the predicate COND by checking the known
- ranges of each of its operands.
-
- Note that we cannot evaluate all the equivalent ranges here
- because those ranges may not yet be final and with the current
- propagation strategy, we cannot determine when the value ranges
- of the names in the equivalence set have changed.
-
- For instance, given the following code fragment
-
- i_5 = PHI <8, i_13>
- ...
- i_14 = ASSERT_EXPR <i_5, i_5 != 0>
- if (i_14 == 1)
- ...
-
- Assume that on the first visit to i_14, i_5 has the temporary
- range [8, 8] because the second argument to the PHI function is
- not yet executable. We derive the range ~[0, 0] for i_14 and the
- equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
- the first time, since i_14 is equivalent to the range [8, 8], we
- determine that the predicate is always false.
-
- On the next round of propagation, i_13 is determined to be
- VARYING, which causes i_5 to drop down to VARYING. So, another
- visit to i_14 is scheduled. In this second visit, we compute the
- exact same range and equivalence set for i_14, namely ~[0, 0] and
- { i_5 }. But we did not have the previous range for i_5
- registered, so vrp_visit_assignment thinks that the range for
- i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
- is not visited again, which stops propagation from visiting
- statements in the THEN clause of that if().
-
- To properly fix this we would need to keep the previous range
- value for the names in the equivalence set. This way we would've
- discovered that from one visit to the other i_5 changed from
- range [8, 8] to VR_VARYING.
-
- However, fixing this apparent limitation may not be worth the
- additional checking. Testing on several code bases (GCC, DLV,
- MICO, TRAMP3D and SPEC2000) showed that doing this results in
- 4 more predicates folded in SPEC. */
- sop = false;
- val = vrp_evaluate_conditional_warnv (cond, false, &sop);
- if (val)
- {
- if (!sop)
- *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "\nIgnoring predicate evaluation because "
- "it assumes that signed overflow is undefined");
- val = NULL_TREE;
- }
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nPredicate evaluates to: ");
- if (val == NULL_TREE)
- fprintf (dump_file, "DON'T KNOW\n");
- else
- print_generic_stmt (dump_file, val, 0);
- }
-
- return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
-}
-
-
-/* Evaluate statement STMT. If the statement produces a useful range,
- return SSA_PROP_INTERESTING and record the SSA name with the
- interesting range into *OUTPUT_P.
-
- If STMT is a conditional branch and we can determine its truth
- value, the taken edge is recorded in *TAKEN_EDGE_P.
-
- If STMT produces a varying value, return SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
-{
- tree def;
- ssa_op_iter iter;
- stmt_ann_t ann;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting statement:\n");
- print_generic_stmt (dump_file, stmt, dump_flags);
- fprintf (dump_file, "\n");
- }
-
- ann = stmt_ann (stmt);
- if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- tree rhs = TREE_OPERAND (stmt, 1);
-
- /* In general, assignments with virtual operands are not useful
- for deriving ranges, with the obvious exception of calls to
- builtin functions. */
- if ((TREE_CODE (rhs) == CALL_EXPR
- && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
- && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
- && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
- || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
- return vrp_visit_assignment (stmt, output_p);
- }
- else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
- return vrp_visit_cond_stmt (stmt, taken_edge_p);
-
- /* All other statements produce nothing of interest for VRP, so mark
- their outputs varying and prevent further simulation. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
-
- return SSA_PROP_VARYING;
-}
-
-
-/* Meet operation for value ranges. Given two value ranges VR0 and
- VR1, store in VR0 the result of meeting VR0 and VR1.
-
- The meeting rules are as follows:
-
- 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
-
- 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
- union of VR0 and VR1. */
-
-static void
-vrp_meet (value_range_t *vr0, value_range_t *vr1)
-{
- if (vr0->type == VR_UNDEFINED)
- {
- copy_value_range (vr0, vr1);
- return;
- }
-
- if (vr1->type == VR_UNDEFINED)
- {
- /* Nothing to do. VR0 already has the resulting range. */
- return;
- }
-
- if (vr0->type == VR_VARYING)
- {
- /* Nothing to do. VR0 already has the resulting range. */
- return;
- }
-
- if (vr1->type == VR_VARYING)
- {
- set_value_range_to_varying (vr0);
- return;
- }
-
- if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
- {
- /* If VR0 and VR1 have a non-empty intersection, compute the
- union of both ranges. */
- if (value_ranges_intersect_p (vr0, vr1))
- {
- int cmp;
- tree min, max;
-
- /* The lower limit of the new range is the minimum of the
- two ranges. If they cannot be compared, the result is
- VARYING. */
- cmp = compare_values (vr0->min, vr1->min);
- if (cmp == 0 || cmp == 1)
- min = vr1->min;
- else if (cmp == -1)
- min = vr0->min;
- else
- {
- set_value_range_to_varying (vr0);
- return;
- }
-
- /* Similarly, the upper limit of the new range is the
- maximum of the two ranges. If they cannot be compared,
- the result is VARYING. */
- cmp = compare_values (vr0->max, vr1->max);
- if (cmp == 0 || cmp == -1)
- max = vr1->max;
- else if (cmp == 1)
- max = vr0->max;
- else
- {
- set_value_range_to_varying (vr0);
- return;
- }
-
- /* Check for useless ranges. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (min))
- && ((vrp_val_is_min (min) || is_overflow_infinity (min))
- && (vrp_val_is_max (max) || is_overflow_infinity (max))))
- {
- set_value_range_to_varying (vr0);
- return;
- }
-
- /* The resulting set of equivalences is the intersection of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_and_into (vr0->equiv, vr1->equiv);
- else if (vr0->equiv && !vr1->equiv)
- bitmap_clear (vr0->equiv);
-
- set_value_range (vr0, vr0->type, min, max, vr0->equiv);
- }
- else
- goto no_meet;
- }
- else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
- {
- /* Two anti-ranges meet only if they are both identical. */
- if (compare_values (vr0->min, vr1->min) == 0
- && compare_values (vr0->max, vr1->max) == 0
- && compare_values (vr0->min, vr0->max) == 0)
- {
- /* The resulting set of equivalences is the intersection of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_and_into (vr0->equiv, vr1->equiv);
- else if (vr0->equiv && !vr1->equiv)
- bitmap_clear (vr0->equiv);
- }
- else
- goto no_meet;
- }
- else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
- {
- /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
- meet only if the ranges have an empty intersection. The
- result of the meet operation is the anti-range. */
- if (!symbolic_range_p (vr0)
- && !symbolic_range_p (vr1)
- && !value_ranges_intersect_p (vr0, vr1))
- {
- /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
- set. We need to compute the intersection of the two
- equivalence sets. */
- if (vr1->type == VR_ANTI_RANGE)
- set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
-
- /* The resulting set of equivalences is the intersection of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_and_into (vr0->equiv, vr1->equiv);
- else if (vr0->equiv && !vr1->equiv)
- bitmap_clear (vr0->equiv);
- }
- else
- goto no_meet;
- }
- else
- gcc_unreachable ();
-
- return;
-
-no_meet:
- /* The two range VR0 and VR1 do not meet. Before giving up and
- setting the result to VARYING, see if we can at least derive a
- useful anti-range. FIXME, all this nonsense about distinguishing
- anti-ranges from ranges is necessary because of the odd
- semantics of range_includes_zero_p and friends. */
- if (!symbolic_range_p (vr0)
- && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
- || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
- && !symbolic_range_p (vr1)
- && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
- || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
- {
- set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
-
- /* Since this meet operation did not result from the meeting of
- two equivalent names, VR0 cannot have any equivalences. */
- if (vr0->equiv)
- bitmap_clear (vr0->equiv);
- }
- else
- set_value_range_to_varying (vr0);
-}
-
-
-/* Visit all arguments for PHI node PHI that flow through executable
- edges. If a valid value range can be derived from all the incoming
- value ranges, set a new range for the LHS of PHI. */
-
-static enum ssa_prop_result
-vrp_visit_phi_node (tree phi)
-{
- int i;
- tree lhs = PHI_RESULT (phi);
- value_range_t *lhs_vr = get_value_range (lhs);
- value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
-
- copy_value_range (&vr_result, lhs_vr);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting PHI node: ");
- print_generic_expr (dump_file, phi, dump_flags);
- }
-
- for (i = 0; i < PHI_NUM_ARGS (phi); i++)
- {
- edge e = PHI_ARG_EDGE (phi, i);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "\n Argument #%d (%d -> %d %sexecutable)\n",
- i, e->src->index, e->dest->index,
- (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
- }
-
- if (e->flags & EDGE_EXECUTABLE)
- {
- tree arg = PHI_ARG_DEF (phi, i);
- value_range_t vr_arg;
-
- if (TREE_CODE (arg) == SSA_NAME)
- vr_arg = *(get_value_range (arg));
- else
- {
- if (is_overflow_infinity (arg))
- {
- arg = copy_node (arg);
- TREE_OVERFLOW (arg) = 0;
- }
-
- vr_arg.type = VR_RANGE;
- vr_arg.min = arg;
- vr_arg.max = arg;
- vr_arg.equiv = NULL;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, arg, dump_flags);
- fprintf (dump_file, "\n\tValue: ");
- dump_value_range (dump_file, &vr_arg);
- fprintf (dump_file, "\n");
- }
-
- vrp_meet (&vr_result, &vr_arg);
-
- if (vr_result.type == VR_VARYING)
- break;
- }
- }
-
- if (vr_result.type == VR_VARYING)
- goto varying;
-
- /* To prevent infinite iterations in the algorithm, derive ranges
- when the new value is slightly bigger or smaller than the
- previous one. */
- if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
- {
- if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
- {
- int cmp_min = compare_values (lhs_vr->min, vr_result.min);
- int cmp_max = compare_values (lhs_vr->max, vr_result.max);
-
- /* If the new minimum is smaller or larger than the previous
- one, go all the way to -INF. In the first case, to avoid
- iterating millions of times to reach -INF, and in the
- other case to avoid infinite bouncing between different
- minimums. */
- if (cmp_min > 0 || cmp_min < 0)
- {
- /* If we will end up with a (-INF, +INF) range, set it
- to VARYING. */
- if (vrp_val_is_max (vr_result.max))
- goto varying;
-
- if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
- || !vrp_var_may_overflow (lhs, phi))
- vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
- else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
- vr_result.min =
- negative_overflow_infinity (TREE_TYPE (vr_result.min));
- else
- goto varying;
- }
-
- /* Similarly, if the new maximum is smaller or larger than
- the previous one, go all the way to +INF. */
- if (cmp_max < 0 || cmp_max > 0)
- {
- /* If we will end up with a (-INF, +INF) range, set it
- to VARYING. */
- if (vrp_val_is_min (vr_result.min))
- goto varying;
-
- if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
- || !vrp_var_may_overflow (lhs, phi))
- vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
- else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
- vr_result.max =
- positive_overflow_infinity (TREE_TYPE (vr_result.max));
- else
- goto varying;
- }
- }
- }
-
- /* If the new range is different than the previous value, keep
- iterating. */
- if (update_value_range (lhs, &vr_result))
- return SSA_PROP_INTERESTING;
-
- /* Nothing changed, don't add outgoing edges. */
- return SSA_PROP_NOT_INTERESTING;
-
- /* No match found. Set the LHS to VARYING. */
-varying:
- set_value_range_to_varying (lhs_vr);
- return SSA_PROP_VARYING;
-}
-
-/* Simplify a division or modulo operator to a right shift or
- bitwise and if the first operand is unsigned or is greater
- than zero and the second operand is an exact power of two. */
-
-static void
-simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
-{
- tree val = NULL;
- tree op = TREE_OPERAND (rhs, 0);
- value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
-
- if (TYPE_UNSIGNED (TREE_TYPE (op)))
- {
- val = integer_one_node;
- }
- else
- {
- bool sop = false;
-
- val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
-
- if (val
- && sop
- && integer_onep (val)
- && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
- {
- location_t locus;
-
- if (!EXPR_HAS_LOCATION (stmt))
- locus = input_location;
- else
- locus = EXPR_LOCATION (stmt);
- warning (OPT_Wstrict_overflow,
- ("%Hassuming signed overflow does not occur when "
- "simplifying / or %% to >> or &"),
- &locus);
- }
- }
-
- if (val && integer_onep (val))
- {
- tree t;
- tree op0 = TREE_OPERAND (rhs, 0);
- tree op1 = TREE_OPERAND (rhs, 1);
-
- if (rhs_code == TRUNC_DIV_EXPR)
- {
- t = build_int_cst (NULL_TREE, tree_log2 (op1));
- t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
- }
- else
- {
- t = build_int_cst (TREE_TYPE (op1), 1);
- t = int_const_binop (MINUS_EXPR, op1, t, 0);
- t = fold_convert (TREE_TYPE (op0), t);
- t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
- }
-
- TREE_OPERAND (stmt, 1) = t;
- update_stmt (stmt);
- }
-}
-
-/* If the operand to an ABS_EXPR is >= 0, then eliminate the
- ABS_EXPR. If the operand is <= 0, then simplify the
- ABS_EXPR into a NEGATE_EXPR. */
-
-static void
-simplify_abs_using_ranges (tree stmt, tree rhs)
-{
- tree val = NULL;
- tree op = TREE_OPERAND (rhs, 0);
- tree type = TREE_TYPE (op);
- value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
-
- if (TYPE_UNSIGNED (type))
- {
- val = integer_zero_node;
- }
- else if (vr)
- {
- bool sop = false;
-
- val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
- if (!val)
- {
- sop = false;
- val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
- &sop);
-
- if (val)
- {
- if (integer_zerop (val))
- val = integer_one_node;
- else if (integer_onep (val))
- val = integer_zero_node;
- }
- }
-
- if (val
- && (integer_onep (val) || integer_zerop (val)))
- {
- tree t;
-
- if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
- {
- location_t locus;
-
- if (!EXPR_HAS_LOCATION (stmt))
- locus = input_location;
- else
- locus = EXPR_LOCATION (stmt);
- warning (OPT_Wstrict_overflow,
- ("%Hassuming signed overflow does not occur when "
- "simplifying abs (X) to X or -X"),
- &locus);
- }
-
- if (integer_onep (val))
- t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
- else
- t = op;
-
- TREE_OPERAND (stmt, 1) = t;
- update_stmt (stmt);
- }
- }
-}
-
-/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
- a known value range VR.
-
- If there is one and only one value which will satisfy the
- conditional, then return that value. Else return NULL. */
-
-static tree
-test_for_singularity (enum tree_code cond_code, tree op0,
- tree op1, value_range_t *vr)
-{
- tree min = NULL;
- tree max = NULL;
-
- /* Extract minimum/maximum values which satisfy the
- the conditional as it was written. */
- if (cond_code == LE_EXPR || cond_code == LT_EXPR)
- {
- /* This should not be negative infinity; there is no overflow
- here. */
- min = TYPE_MIN_VALUE (TREE_TYPE (op0));
-
- max = op1;
- if (cond_code == LT_EXPR && !is_overflow_infinity (max))
- {
- tree one = build_int_cst (TREE_TYPE (op0), 1);
- max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
- if (EXPR_P (max))
- TREE_NO_WARNING (max) = 1;
- }
- }
- else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
- {
- /* This should not be positive infinity; there is no overflow
- here. */
- max = TYPE_MAX_VALUE (TREE_TYPE (op0));
-
- min = op1;
- if (cond_code == GT_EXPR && !is_overflow_infinity (min))
- {
- tree one = build_int_cst (TREE_TYPE (op0), 1);
- min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
- if (EXPR_P (min))
- TREE_NO_WARNING (min) = 1;
- }
- }
-
- /* Now refine the minimum and maximum values using any
- value range information we have for op0. */
- if (min && max)
- {
- if (compare_values (vr->min, min) == -1)
- min = min;
- else
- min = vr->min;
- if (compare_values (vr->max, max) == 1)
- max = max;
- else
- max = vr->max;
-
- /* If the new min/max values have converged to a single value,
- then there is only one value which can satisfy the condition,
- return that value. */
- if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
- return min;
- }
- return NULL;
-}
-
-/* Simplify a conditional using a relational operator to an equality
- test if the range information indicates only one value can satisfy
- the original conditional. */
-
-static void
-simplify_cond_using_ranges (tree stmt)
-{
- tree cond = COND_EXPR_COND (stmt);
- tree op0 = TREE_OPERAND (cond, 0);
- tree op1 = TREE_OPERAND (cond, 1);
- enum tree_code cond_code = TREE_CODE (cond);
-
- if (cond_code != NE_EXPR
- && cond_code != EQ_EXPR
- && TREE_CODE (op0) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && is_gimple_min_invariant (op1))
- {
- value_range_t *vr = get_value_range (op0);
-
- /* If we have range information for OP0, then we might be
- able to simplify this conditional. */
- if (vr->type == VR_RANGE)
- {
- tree new = test_for_singularity (cond_code, op0, op1, vr);
-
- if (new)
- {
- if (dump_file)
- {
- fprintf (dump_file, "Simplified relational ");
- print_generic_expr (dump_file, cond, 0);
- fprintf (dump_file, " into ");
- }
-
- COND_EXPR_COND (stmt)
- = build2 (EQ_EXPR, boolean_type_node, op0, new);
- update_stmt (stmt);
-
- if (dump_file)
- {
- print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
- fprintf (dump_file, "\n");
- }
- return;
-
- }
-
- /* Try again after inverting the condition. We only deal
- with integral types here, so no need to worry about
- issues with inverting FP comparisons. */
- cond_code = invert_tree_comparison (cond_code, false);
- new = test_for_singularity (cond_code, op0, op1, vr);
-
- if (new)
- {
- if (dump_file)
- {
- fprintf (dump_file, "Simplified relational ");
- print_generic_expr (dump_file, cond, 0);
- fprintf (dump_file, " into ");
- }
-
- COND_EXPR_COND (stmt)
- = build2 (NE_EXPR, boolean_type_node, op0, new);
- update_stmt (stmt);
-
- if (dump_file)
- {
- print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
- fprintf (dump_file, "\n");
- }
- return;
-
- }
- }
- }
-}
-
-/* Simplify STMT using ranges if possible. */
-
-void
-simplify_stmt_using_ranges (tree stmt)
-{
- if (TREE_CODE (stmt) == MODIFY_EXPR)
- {
- tree rhs = TREE_OPERAND (stmt, 1);
- enum tree_code rhs_code = TREE_CODE (rhs);
-
- /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
- and BIT_AND_EXPR respectively if the first operand is greater
- than zero and the second operand is an exact power of two. */
- if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
- && integer_pow2p (TREE_OPERAND (rhs, 1)))
- simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
-
- /* Transform ABS (X) into X or -X as appropriate. */
- if (rhs_code == ABS_EXPR
- && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
- simplify_abs_using_ranges (stmt, rhs);
- }
- else if (TREE_CODE (stmt) == COND_EXPR
- && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
- {
- simplify_cond_using_ranges (stmt);
- }
-}
-
-/* Stack of dest,src equivalency pairs that need to be restored after
- each attempt to thread a block's incoming edge to an outgoing edge.
-
- A NULL entry is used to mark the end of pairs which need to be
- restored. */
-static VEC(tree,heap) *stack;
-
-/* A trivial wrapper so that we can present the generic jump threading
- code with a simple API for simplifying statements. STMT is the
- statement we want to simplify, WITHIN_STMT provides the location
- for any overflow warnings. */
-
-static tree
-simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
-{
- /* We only use VRP information to simplify conditionals. This is
- overly conservative, but it's unclear if doing more would be
- worth the compile time cost. */
- if (TREE_CODE (stmt) != COND_EXPR)
- return NULL;
-
- return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
-}
-
-/* Blocks which have more than one predecessor and more than
- one successor present jump threading opportunities. ie,
- when the block is reached from a specific predecessor, we
- may be able to determine which of the outgoing edges will
- be traversed. When this optimization applies, we are able
- to avoid conditionals at runtime and we may expose secondary
- optimization opportunities.
-
- This routine is effectively a driver for the generic jump
- threading code. It basically just presents the generic code
- with edges that may be suitable for jump threading.
-
- Unlike DOM, we do not iterate VRP if jump threading was successful.
- While iterating may expose new opportunities for VRP, it is expected
- those opportunities would be very limited and the compile time cost
- to expose those opportunities would be significant.
-
- As jump threading opportunities are discovered, they are registered
- for later realization. */
-
-static void
-identify_jump_threads (void)
-{
- basic_block bb;
- tree dummy;
-
- /* Ugh. When substituting values earlier in this pass we can
- wipe the dominance information. So rebuild the dominator
- information as we need it within the jump threading code. */
- calculate_dominance_info (CDI_DOMINATORS);
-
- /* We do not allow VRP information to be used for jump threading
- across a back edge in the CFG. Otherwise it becomes too
- difficult to avoid eliminating loop exit tests. Of course
- EDGE_DFS_BACK is not accurate at this time so we have to
- recompute it. */
- mark_dfs_back_edges ();
-
- /* Allocate our unwinder stack to unwind any temporary equivalences
- that might be recorded. */
- stack = VEC_alloc (tree, heap, 20);
-
- /* To avoid lots of silly node creation, we create a single
- conditional and just modify it in-place when attempting to
- thread jumps. */
- dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
- dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
-
- /* Walk through all the blocks finding those which present a
- potential jump threading opportunity. We could set this up
- as a dominator walker and record data during the walk, but
- I doubt it's worth the effort for the classes of jump
- threading opportunities we are trying to identify at this
- point in compilation. */
- FOR_EACH_BB (bb)
- {
- tree last, cond;
-
- /* If the generic jump threading code does not find this block
- interesting, then there is nothing to do. */
- if (! potentially_threadable_block (bb))
- continue;
-
- /* We only care about blocks ending in a COND_EXPR. While there
- may be some value in handling SWITCH_EXPR here, I doubt it's
- terribly important. */
- last = bsi_stmt (bsi_last (bb));
- if (TREE_CODE (last) != COND_EXPR)
- continue;
-
- /* We're basically looking for any kind of conditional with
- integral type arguments. */
- cond = COND_EXPR_COND (last);
- if ((TREE_CODE (cond) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
- || (COMPARISON_CLASS_P (cond)
- && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
- && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
- || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
- {
- edge_iterator ei;
- edge e;
-
- /* We've got a block with multiple predecessors and multiple
- successors which also ends in a suitable conditional. For
- each predecessor, see if we can thread it to a specific
- successor. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- /* Do not thread across back edges or abnormal edges
- in the CFG. */
- if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
- continue;
-
- thread_across_edge (dummy, e, true,
- &stack,
- simplify_stmt_for_jump_threading);
- }
- }
- }
-
- /* We do not actually update the CFG or SSA graphs at this point as
- ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
- handle ASSERT_EXPRs gracefully. */
-}
-
-/* We identified all the jump threading opportunities earlier, but could
- not transform the CFG at that time. This routine transforms the
- CFG and arranges for the dominator tree to be rebuilt if necessary.
-
- Note the SSA graph update will occur during the normal TODO
- processing by the pass manager. */
-static void
-finalize_jump_threads (void)
-{
- bool cfg_altered = false;
- cfg_altered = thread_through_all_blocks ();
-
- /* If we threaded jumps, then we need to recompute the dominance
- information, to safely do that we must clean up the CFG first. */
- if (cfg_altered)
- {
- free_dominance_info (CDI_DOMINATORS);
- cleanup_tree_cfg ();
- calculate_dominance_info (CDI_DOMINATORS);
- }
- VEC_free (tree, heap, stack);
-}
-
-
-/* Traverse all the blocks folding conditionals with known ranges. */
-
-static void
-vrp_finalize (void)
-{
- size_t i;
- prop_value_t *single_val_range;
- bool do_value_subst_p;
-
- if (dump_file)
- {
- fprintf (dump_file, "\nValue ranges after VRP:\n\n");
- dump_all_value_ranges (dump_file);
- fprintf (dump_file, "\n");
- }
-
- /* We may have ended with ranges that have exactly one value. Those
- values can be substituted as any other copy/const propagated
- value using substitute_and_fold. */
- single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
- memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
-
- do_value_subst_p = false;
- for (i = 0; i < num_ssa_names; i++)
- if (vr_value[i]
- && vr_value[i]->type == VR_RANGE
- && vr_value[i]->min == vr_value[i]->max)
- {
- single_val_range[i].value = vr_value[i]->min;
- do_value_subst_p = true;
- }
-
- if (!do_value_subst_p)
- {
- /* We found no single-valued ranges, don't waste time trying to
- do single value substitution in substitute_and_fold. */
- free (single_val_range);
- single_val_range = NULL;
- }
-
- substitute_and_fold (single_val_range, true);
-
- /* We must identify jump threading opportunities before we release
- the datastructures built by VRP. */
- identify_jump_threads ();
-
- /* Free allocated memory. */
- for (i = 0; i < num_ssa_names; i++)
- if (vr_value[i])
- {
- BITMAP_FREE (vr_value[i]->equiv);
- free (vr_value[i]);
- }
-
- free (single_val_range);
- free (vr_value);
-
- /* So that we can distinguish between VRP data being available
- and not available. */
- vr_value = NULL;
-}
-
-
-/* Main entry point to VRP (Value Range Propagation). This pass is
- loosely based on J. R. C. Patterson, ``Accurate Static Branch
- Prediction by Value Range Propagation,'' in SIGPLAN Conference on
- Programming Language Design and Implementation, pp. 67-78, 1995.
- Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
-
- This is essentially an SSA-CCP pass modified to deal with ranges
- instead of constants.
-
- While propagating ranges, we may find that two or more SSA name
- have equivalent, though distinct ranges. For instance,
-
- 1 x_9 = p_3->a;
- 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
- 3 if (p_4 == q_2)
- 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
- 5 endif
- 6 if (q_2)
-
- In the code above, pointer p_5 has range [q_2, q_2], but from the
- code we can also determine that p_5 cannot be NULL and, if q_2 had
- a non-varying range, p_5's range should also be compatible with it.
-
- These equivalences are created by two expressions: ASSERT_EXPR and
- copy operations. Since p_5 is an assertion on p_4, and p_4 was the
- result of another assertion, then we can use the fact that p_5 and
- p_4 are equivalent when evaluating p_5's range.
-
- Together with value ranges, we also propagate these equivalences
- between names so that we can take advantage of information from
- multiple ranges when doing final replacement. Note that this
- equivalency relation is transitive but not symmetric.
-
- In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
- cannot assert that q_2 is equivalent to p_5 because q_2 may be used
- in contexts where that assertion does not hold (e.g., in line 6).
-
- TODO, the main difference between this pass and Patterson's is that
- we do not propagate edge probabilities. We only compute whether
- edges can be taken or not. That is, instead of having a spectrum
- of jump probabilities between 0 and 1, we only deal with 0, 1 and
- DON'T KNOW. In the future, it may be worthwhile to propagate
- probabilities to aid branch prediction. */
-
-static unsigned int
-execute_vrp (void)
-{
- insert_range_assertions ();
-
- current_loops = loop_optimizer_init (LOOPS_NORMAL);
- if (current_loops)
- scev_initialize (current_loops);
-
- vrp_initialize ();
- ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
- vrp_finalize ();
-
- if (current_loops)
- {
- scev_finalize ();
- loop_optimizer_finalize (current_loops);
- current_loops = NULL;
- }
-
- /* ASSERT_EXPRs must be removed before finalizing jump threads
- as finalizing jump threads calls the CFG cleanup code which
- does not properly handle ASSERT_EXPRs. */
- remove_range_assertions ();
-
- /* If we exposed any new variables, go ahead and put them into
- SSA form now, before we handle jump threading. This simplifies
- interactions between rewriting of _DECL nodes into SSA form
- and rewriting SSA_NAME nodes into SSA form after block
- duplication and CFG manipulation. */
- update_ssa (TODO_update_ssa);
-
- finalize_jump_threads ();
- return 0;
-}
-
-static bool
-gate_vrp (void)
-{
- return flag_tree_vrp != 0;
-}
-
-struct tree_opt_pass pass_vrp =
-{
- "vrp", /* name */
- gate_vrp, /* gate */
- execute_vrp, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_VRP, /* tv_id */
- PROP_ssa | PROP_alias, /* properties_required */
- 0, /* properties_provided */
- PROP_smt_usage, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_cleanup_cfg
- | TODO_ggc_collect
- | TODO_verify_ssa
- | TODO_dump_func
- | TODO_update_ssa
- | TODO_update_smt_usage, /* todo_flags_finish */
- 0 /* letter */
-};